WO2013180453A1 - 기판 처리 장치 및 기판 처리 방법 - Google Patents

기판 처리 장치 및 기판 처리 방법 Download PDF

Info

Publication number
WO2013180453A1
WO2013180453A1 PCT/KR2013/004679 KR2013004679W WO2013180453A1 WO 2013180453 A1 WO2013180453 A1 WO 2013180453A1 KR 2013004679 W KR2013004679 W KR 2013004679W WO 2013180453 A1 WO2013180453 A1 WO 2013180453A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
gas
gas injection
electrode
substrate support
Prior art date
Application number
PCT/KR2013/004679
Other languages
English (en)
French (fr)
Inventor
한정훈
황철주
서승훈
이상돈
Original Assignee
주성엔지니어링(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020120057041A external-priority patent/KR102029952B1/ko
Priority claimed from KR1020120057045A external-priority patent/KR101987138B1/ko
Application filed by 주성엔지니어링(주) filed Critical 주성엔지니어링(주)
Priority to CN201380029010.1A priority Critical patent/CN104380435B/zh
Priority to US14/404,448 priority patent/US9748077B2/en
Publication of WO2013180453A1 publication Critical patent/WO2013180453A1/ko
Priority to US15/665,388 priority patent/US10504701B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention relates to a substrate processing apparatus, and more particularly, to a substrate processing apparatus and a substrate processing method capable of increasing the deposition uniformity of a thin film deposited on a substrate.
  • a semiconductor device In order to manufacture a solar cell, a semiconductor device, a flat panel display, a predetermined thin film layer, a thin film circuit pattern, or an optical pattern should be formed on a surface of a substrate.
  • Semiconductor manufacturing processes such as a thin film deposition process, a photo process for selectively exposing the thin film using a photosensitive material, and an etching process for forming a pattern by removing the thin film of the selectively exposed portion are performed.
  • Such a semiconductor manufacturing process is performed inside a substrate processing apparatus designed in an optimal environment for the process, and in recent years, many substrate processing apparatuses that perform deposition or etching processes using plasma are widely used.
  • the substrate processing apparatus using plasma includes a plasma enhanced chemical vapor deposition (PECVD) apparatus for forming a thin film using plasma, a plasma etching apparatus for etching and patterning a thin film.
  • PECVD plasma enhanced chemical vapor deposition
  • FIG. 1 is a view for schematically explaining a conventional substrate processing apparatus.
  • a general substrate processing apparatus includes a chamber 10, a power electrode 20, a susceptor 30, and a gas ejection means 40.
  • Chamber 10 provides a reaction space for a substrate processing process. At this time, one bottom surface of the chamber 10 communicates with an exhaust port 12 for exhausting the reaction space.
  • the power electrode 20 is installed above the chamber 10 to seal the reaction space.
  • One side of the power source electrode 20 is electrically connected to an RF (Radio Frequency) power source 24 through the matching member 22.
  • the RF power source 24 generates RF power and supplies the RF power to the power electrode 20.
  • the central portion of the power supply electrode 20 is in communication with the gas supply pipe 26 for supplying the source gas for the substrate processing process.
  • the matching member 22 is connected between the power supply electrode 20 and the RF power supply 24 to match the load impedance and source impedance of the RF power supplied from the RF power supply 24 to the power supply electrode 20.
  • the susceptor 30 supports a plurality of substrates W installed in the chamber 10 and loaded from the outside.
  • the susceptor 30 is an opposite electrode facing the power supply electrode 20, and is electrically grounded through the lifting shaft 32 for elevating the susceptor 30.
  • the lifting shaft 32 is lifted up and down by a lifting device (not shown). At this time, the lifting shaft 32 is wrapped by the bellows 34 sealing the lifting shaft 32 and the bottom surface of the chamber 10.
  • the gas injection means 40 is installed under the power supply electrode 20 so as to face the susceptor 30. At this time, a gas diffusion space 42 through which the source gas supplied from the gas supply pipe 26 penetrating the power electrode 20 is formed between the gas injection means 40 and the power electrode 20. The gas injection means 40 uniformly injects the source gas to the entire portion of the reaction space through the plurality of gas injection holes 44 communicated with the gas diffusion space 42.
  • the general substrate processing apparatus loads the substrate W into the susceptor 30, and then supplies RF power to the power electrode 20 while spraying a predetermined source gas into the reaction space of the chamber 10. By forming a predetermined thin film on the substrate (W).
  • the present invention is to solve the above-mentioned conventional problems, the present invention is to prevent the plasma discharge to be transferred to the substrate substrate processing apparatus and substrate processing method for solving the problem that the substrate is damaged by the plasma discharge and the film quality is degraded
  • the purpose is to provide.
  • a process chamber A substrate support installed in the process chamber to support at least one substrate, the substrate support being configured to rotate in a predetermined direction; A chamber lid facing the substrate support and covering the top of the process chamber; And a gas injector connected to the chamber lid and having a plurality of gas injecting modules injecting gas onto the substrate, wherein each of the plurality of gas injecting modules has a power electrode and a ground facing each other. And an electrode, wherein a plasma discharge space is formed between the power supply electrode and the ground electrode, and the plasma discharge space does not overlap with a thin film formation region on a substrate supported by the substrate support. to provide.
  • the invention also provides a process chamber; A substrate support installed in the process chamber to support at least one substrate, the substrate support being configured to rotate in a predetermined direction; A chamber lid facing the substrate support and covering the top of the process chamber; And a gas injector connected to the chamber lid and having a plurality of gas injecting modules injecting gas onto the substrate, wherein each of the plurality of gas injecting modules has a power electrode and a ground facing each other.
  • a plasma discharge space is formed between the power supply electrode and the ground electrode, and the substrate support part is connected to a predetermined lifting mechanism, and the plasma discharge space is lowered when the substrate support part is lowered by the lifting mechanism.
  • the plasma discharge space overlaps with the thin film formation region on the substrate supported by the substrate support when the substrate support portion is raised by the elevating mechanism without overlapping with the thin film formation region on the substrate supported by the substrate support. It becomes the board
  • the invention also provides a process chamber; A substrate support installed in the process chamber to support at least one substrate, the substrate support being configured to rotate in a predetermined direction and to change a rotation speed thereof; A chamber lid facing the substrate support and covering the top of the process chamber; And a gas injector connected to the chamber lid and having a plurality of gas injecting modules for injecting gas onto the substrate, wherein each of the plurality of gas injecting modules is spatially separated from each other. And a first gas injection space for injecting a gas and a second gas injection space for injecting a second gas, wherein the substrate support portion is configured to move up and down in connection with a predetermined lifting mechanism, so that the gas injection module and the substrate support portion are elevated. It provides a substrate processing apparatus, characterized in that the gap therebetween can be changed.
  • the present invention also provides a process for installing a plurality of gas injection modules in a process chamber and mounting at least one substrate on a substrate support; Rotating the substrate support; And generating a plasma discharge by injecting a gas onto the substrate from at least one gas injection module of the plurality of gas injection modules, wherein each of the plurality of gas injection modules has a power electrode and a ground facing each other. And an electrode, wherein a plasma discharge space is formed between the power supply electrode and the ground electrode, and the plasma discharge space does not overlap a thin film formation region on a substrate seated on the substrate support. do.
  • the present invention also provides a process for installing a plurality of gas injection modules in a process chamber and mounting at least one substrate on a substrate support; Rotating the substrate support; Generating a first plasma discharge while injecting a first gas onto the substrate from at least one gas injection module of the plurality of gas injection modules; And generating a second plasma discharge by injecting a second gas onto the substrate from at least one gas injection module of the plurality of gas injection modules, wherein the first plasma discharge process is a plasma discharge space.
  • the second plasma discharge process is performed while the plasma discharge space is not overlapped with the thin film formation region on the substrate seated on the substrate support.
  • the present invention also provides a process for installing a plurality of gas injection modules in a process chamber and mounting at least one substrate on a substrate support; Determining a gap between the gas injection module and the substrate support and lifting the substrate support to match the gap; Determining a rotational speed of the substrate support and rotating the substrate support according to the determined rotational speed; And a thin film forming process of forming a thin film layer by injecting gas onto the substrate from at least one gas injection module of the plurality of gas injection modules, wherein each of the plurality of gas injection modules is spatially separated from each other. And a first gas injection space for injecting the first gas and a second gas injection space for injecting the second gas, wherein the thin film layer is formed by the first gas and the second gas during the thin film formation process.
  • a substrate processing method is provided.
  • the plasma discharge space is not formed in the region between the power supply electrode and the substrate as in the prior art, but is formed between the power supply electrode and the ground electrode facing each other. Therefore, since the plasma discharge space does not overlap with the thin film formation region on the substrate supported by the substrate support 120, the problem of the substrate being damaged by the plasma discharge and the film quality deposited on the substrate may be solved.
  • FIG. 1 is a view for schematically explaining a conventional substrate processing apparatus.
  • FIG. 2 is a schematic view of a substrate processing apparatus according to an embodiment of the present invention.
  • FIG 3 is a view conceptually illustrating a plurality of gas injection modules disposed on a substrate support according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a gas injection module disposed on a substrate according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing a gas injection module disposed on a substrate according to another embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a gas injection module disposed on a substrate according to another embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing a gas injection module according to another embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing a gas injection module according to another embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing a gas injection module according to another embodiment of the present invention.
  • FIG. 10 is a diagram for describing a substrate processing apparatus according to yet another exemplary embodiment.
  • 11 and 12 are process charts showing a substrate processing process using the substrate processing apparatus according to FIG. 10.
  • FIG. 13 is a cross-sectional view showing a gas injection module according to another embodiment of the present invention.
  • FIG. 2 is a view schematically showing a substrate processing apparatus according to an embodiment of the present invention
  • FIG. 3 is a view conceptually showing a plurality of gas injection modules disposed on a substrate support according to an embodiment of the present invention
  • 4 is a cross-sectional view showing a gas injection module disposed on the substrate W according to an embodiment of the present invention.
  • a substrate processing apparatus may include a process chamber 110, a chamber lid 115, a substrate support 120, and a gas injector 130. It is configured to include.
  • the process chamber 110 provides a reaction space for a substrate processing process (eg, a thin film deposition process).
  • the bottom surface or the side surface of the process chamber 110 may be in communication with an exhaust pipe (not shown) for exhausting the gas of the reaction space.
  • the chamber lid 115 is installed on the process chamber 110 to cover the top of the process chamber 110 and is electrically grounded.
  • the chamber lid 115 supports the gas injector 130, and includes a plurality of module mounting portions 115a, 115b, 115c, and 115d formed to divide the upper portion of the substrate support 120 into a plurality of spaces. Is done.
  • the plurality of module installation units 115a, 115b, 115c, and 115d may be formed in a radial shape on the chamber lead 115 while being spaced at an angle of 90 degrees with respect to the center point of the chamber lead 115.
  • the process chamber 110 and the chamber lid 115 may be formed in a polygonal structure, such as a hexagon, as shown, but may be formed in a circular or elliptical structure.
  • the chamber lid 115 is shown as having four module mounting portions 115a, 115b, 115c, 115d, but is not limited thereto, and the chamber lid 115 is symmetrical with respect to its center point. 2N (where N is a natural number) can be provided. However, the present invention is not limited thereto, and an odd number of module installation units may be provided.
  • the chamber lid 115 includes the first to fourth module mounting portions 115a, 115b, 115c, and 115d.
  • the reaction space of the process chamber 110 sealed by the chamber lid 115 described above may be connected to an external pumping means (not shown) through a pumping pipe 117 installed in the chamber lid 115.
  • the pumping pipe 117 is in communication with the reaction space of the process chamber 110 through the pimping hole 115e formed in the center of the chamber lid 115. Accordingly, the inside of the process chamber 110 is in a vacuum state or an atmospheric pressure state according to the pumping operation of the pumping means through the pumping pipe 117.
  • the exhaust space of the reaction space uses the upper central exhaust method using the pumping pipe 117 and the pumping hole 115e.
  • the present invention is not limited thereto, and the pumping pipe 117 and the pumping hole 115e may be omitted.
  • the substrate support 120 may be rotatably installed in the process chamber 110, and may be electrically floated or grounded.
  • the substrate support part 120 is supported by a rotating shaft (not shown) penetrating the center bottom surface of the process chamber 110.
  • the rotation shaft rotates in response to the driving of the shaft driving member (not shown) to rotate the substrate support part 120 in a predetermined direction (for example, counterclockwise direction).
  • the rotating shaft exposed to the outside of the lower surface of the process chamber 110 is sealed by a bellows (not shown) installed on the lower surface of the process chamber 110.
  • the substrate support part 120 supports at least one substrate W loaded from an external substrate loading device (not shown).
  • the substrate support part 120 is formed to have a disc shape, and supports the plurality of substrates W, for example, a semiconductor substrate or a wafer.
  • the plurality of substrates W may be disposed in a circle shape at regular intervals on the substrate support 120 to improve productivity.
  • the gas injection unit 130 is inserted into each of the first to fourth module installation units 115a, 115b, 115c, and 115d of the chamber lid 115 to be spaced apart from the center point of the substrate support unit 120.
  • Each of the first to fourth gas injection modules 130a, 130b, 130c, and 130d injects the first gas and the second gas G1 and G2 into the gas injection region on the substrate support 120. Accordingly, the first and second gases G1 and G2 injected from each of the first to fourth gas injection modules 130a, 130b, 130c, and 130d are disposed on the substrate W loaded on the substrate support 120. Reaction forms a thin film layer.
  • the first gas G1 may be activated by plasma discharge and injected onto the substrate W.
  • the first gas G1 may react with a source gas SG to be described later to form a thin film layer ( Reactant Gas (RG).
  • the reaction gas RG may include at least one kind of gas selected from nitrogen (N 2), oxygen (O 2), nitrogen dioxide (N 2 O), and ozone (O 3).
  • the second gas G2 may be formed of a source gas SG including a thin film material to be deposited on the substrate W.
  • the source gas may include a thin film material such as silicon (Si), titanium group elements (Ti, Zr, Hf, etc.), or aluminum (Al).
  • the source gas containing a thin film of silicon (Si) may be Tetraethylorthosilicate (TEOS), Dichlorosilane (DCS), Hexachlorosilane (HCD), Tri-dimethylaminosilane (TriDMAS), Trisilylamine (TSA), SiH2Cl2, SiH4, Si2H6. , Si3H8, Si4H10, and Si5H12.
  • Each of the first to fourth gas injection modules 130a, 130b, 130c, and 130d includes a ground electrode frame 210, a gas hole pattern member 230, an insulation member 240, and a power electrode 250. do.
  • the ground electrode frame 210 is formed to have a first gas injection space S1 for injecting the first gas G1 and a second gas injection space S2 for injecting the second gas G2.
  • the ground electrode frame 210 is inserted into and installed in each module installation unit 115a, 115b, 115c, or 115d of the chamber lead 115 to be electrically grounded through the chamber lead 115.
  • the ground electrode frame 210 is composed of a top plate 210a, a ground sidewall 210b, and a ground partition member 210c.
  • the upper plate 210a is formed in a rectangular shape and is coupled to the corresponding module mounting portions 115a, 115b, 115c, and 115d of the chamber lid 115.
  • An insulating member support hole 212, a first gas supply hole 214, and a second gas supply hole 216 are formed in the upper plate 210a.
  • the insulating member support hole 212 is formed through the upper plate 210a to communicate with the first gas injection space S1.
  • the insulating member support hole 212 may be formed to have a plane having a rectangular shape.
  • the first gas supply hole 214 is formed through the upper plate 210a to communicate with the first gas injection space S1.
  • the first gas supply hole 214 is connected to an external first gas supply means (not shown) through a gas supply pipe (not shown), so that the first gas supply hole 214 is connected to the first gas supply pipe (not shown) by the first gas supply pipe.
  • the gas G1, that is, the reaction gas is supplied.
  • the first gas supply hole 214 may be formed in plural so as to have a predetermined interval on both sides of the insulating member support hole 212 and communicate with the first gas injection space S1.
  • the first gas G1 supplied to the first gas supply hole 214 is supplied to the first gas injection space S1 to be activated by plasma discharge in the first gas injection space S1, and has a first pressure.
  • a lower surface of the first gas injection space S1 serves as a first gas injection hole 231 having a shape that is entirely opened without a separate gas injection hole pattern so that the first gas G1 is injected downward toward the substrate. do.
  • the second gas supply hole 216 is formed through the top plate 210a to communicate with the second gas injection space S2.
  • the second gas supply hole 216 is connected to an external second gas supply means (not shown) through a gas supply pipe (not shown), so that the second gas supply hole 216 is connected to a second gas supply pipe (not shown) through a gas supply pipe.
  • Gas G2 that is, the source gas is supplied.
  • the second gas supply holes 216 may be formed in plural so as to have a predetermined interval in the upper plate 210a and communicate with the second gas injection space S2.
  • Each of the plurality of ground sidewalls 210b protrudes vertically from the lower surface of the long side and short side edges of the top plate 210a to have a predetermined height to form a rectangular bottom surface opening in the lower portion of the top plate 210a.
  • Each of the ground sidewalls 210b is electrically grounded through the chamber lead 115 to serve as a ground electrode.
  • the ground partition wall member 210c protrudes vertically from the central lower surface of the top plate 210a to have a predetermined height and is disposed in parallel with the long sides of the ground sidewalls 210b.
  • the first and second gas injection spaces S1 and S2 are separated from each other by the ground partition member 210c.
  • the ground partition member 210c is integrally or electrically coupled to the ground electrode frame 210 to be electrically grounded through the ground electrode frame 210 to serve as a ground electrode.
  • the ground electrode frame 210 has been described as being composed of an upper plate 210a, ground sidewalls 210b, and a ground partition member 210c, but is not limited thereto.
  • the electrode frame 210 may have a body in which the top plate 210a, the ground sidewalls 210b, and the ground partition member 210c are integrated with each other.
  • the positions of the first and second gas injection spaces S1 and S2 of the ground electrode frame 210 may be changed. That is, the positions of the first and second gas injection spaces S1 and S2 are the first gas after the substrate W, which rotates according to the rotation of the substrate support 120, is first exposed to the second gas G2. It may be set to be exposed to G1), or may be set to be exposed to the first gas G1 first and then to the second gas G2.
  • the gas hole pattern member 230 is installed in the second gas injection space S2 so that the first gas G1 injected from the adjacent first gas injection space S1 with the ground partition member 210c interposed therebetween is formed.
  • the diffusion, backflow, and penetration into the two gas injection spaces S2 are prevented. That is, when the first gas G1 diffuses, flows back, and penetrates into the second gas injection space S2, the first gas G1 and the second gas in the second gas injection space S2. (G2) may react, and as a result, an abnormal thin film may be deposited on the inner wall of the second gas injection space S2 or an abnormal thin film of a powder component may be formed to generate particles falling on the substrate. Accordingly, the gas hole pattern member 230 may prevent the abnormal thin film from being deposited on the inner wall of the second gas injection space S2 or the abnormal thin film of the powder component.
  • the gas hole pattern member 230 may be disposed on the bottom surfaces of each of the ground sidewalls 210b and the ground partition wall member 210c that provide the second gas injection space S2 to cover the bottom surface of the second gas injection space S2. It may be integrated or formed in the form of an insulating plate (or shower head) made of an insulating material having no polarity and may be coupled to the bottom surface of the second gas injection space S2. Accordingly, a predetermined gas diffusion space or gas buffering space is provided in the second gas injection space S2 between the upper plate 210a of the ground electrode frame 210 and the gas hole pattern member 230.
  • the gas hole pattern member 230 includes a plurality of second gas injection holes 232 which downwardly inject the second gas G2 supplied to the second gas injection space S2 toward the substrate through the second gas supply hole 216. It is configured to include).
  • the plurality of second gas injection holes 232 are formed in a hole pattern shape so as to communicate with the second gas injection space S2 through which the second gas G2 is diffused, thereby converting the second gas G2 into the first gas.
  • the jet is injected downward toward the substrate at a second pressure higher than the injection pressure of (G1).
  • the gas hole pattern member 230 increases the injection pressure of the second gas G2 to be sprayed onto the substrate so that the first gas G1 to be injected from the first gas injection space S1 is jetted to the second gas. To prevent diffusion, backflow, and penetration into space S2.
  • the gas hole pattern member 230 injects the second gas G2 downward through the second gas injection hole 232, and delays the second gas G2 due to the plate shape in which the hole is formed.
  • the amount of the second gas G2 can be reduced by stagnation.
  • the flow rate of the gas can be adjusted by adjusting the hole pattern shape of the gas injection port 232, thereby increasing the use efficiency of the second gas G2.
  • the insulating member 240 is made of an insulating material and inserted into the insulating member support hole 212 formed in the ground electrode frame 210 and is coupled to the upper surface of the ground electrode frame 210 by a fastening member (not shown).
  • the insulating member 240 includes an electrode insertion hole in communication with the first gas injection space S1.
  • the power electrode 250 is made of a conductive material and is inserted through the electrode insertion hole of the insulating member 240 to protrude to a predetermined height from the lower surface of the ground electrode frame 210 and is disposed in the first gas injection space S1. In this case, the power electrode 250 may protrude to the same height as the sidewall 210b of the ground partition member 210c and the ground electrode frame 210 that function as the ground electrode.
  • the power electrode 250 is electrically connected to the plasma power supply unit 140 through a feed cable to cause plasma discharge in the first gas injection space S1 according to the plasma power supplied from the plasma power supply unit 140. That is, the plasma discharge is generated between each of the ground sidewall 210b and the ground partition member 210c serving as the ground electrode and the power electrode 250 to which plasma power is supplied, thereby supplying the first gas injection space S1.
  • the first gas G1 to be activated.
  • the plasma power supply unit 140 generates plasma power having a predetermined frequency, and supplies the plasma power to each of the first to fourth gas injection modules 130a, 130b, 130c, and 130d through a feed cable or separately. Supply.
  • the plasma power is supplied with high frequency (eg, High Frequency (HF) power or Very High Frequency (VHF) power.
  • HF High Frequency
  • VHF Very High Frequency
  • the HF power has a frequency in the range of 3 MHz to 30 MHz
  • the VHF power is It may have a frequency in the range of 30MHz to 300MHz.
  • an impedance matching circuit (not shown) is connected to the feed cable.
  • the impedance matching circuit matches the load impedance and the source impedance of the plasma power source supplied from the plasma power supply unit 140 to each of the first to fourth gas injection modules 130a, 130b, 130c, and 130d.
  • the impedance matching circuit may be composed of at least two impedance elements (not shown) composed of at least one of a variable capacitor and a variable inductor.
  • Each of the first to fourth gas injection modules 130a, 130b, 130c, and 130d described above generates a plasma discharge in the first gas injection space S1 according to the plasma power supplied to the power electrode 250 to generate the first gas.
  • the first gas G1 of the injection space S1 is activated and injected downward, and at the same time, the second gas G2 of the second gas injection space S2 is lowered to a predetermined pressure through the gas hole pattern member 230. Spray.
  • the plasma discharge space is not formed in the region between the power supply electrode and the substrate as in the prior art, but is formed between the power supply electrode and the ground electrode facing each other. Therefore, according to the present invention, since the plasma discharge space does not overlap with the thin film formation region on the substrate W supported by the substrate support 120, the substrate W is damaged by the plasma discharge and the substrate W is The problem of falling film quality deposited on the surface can be solved.
  • the distance between the power electrode 240 and the substrate (W) rather than the distance (D) between the power electrode 240 and the ground electrode 210b ( By making H) larger, the problem caused by the plasma discharge can be solved. If the distance H between the power electrode 240 and the substrate W is smaller than the distance D between the power electrode 240 and the ground electrode 210b, the power electrode 240 and the substrate W are smaller than the distance D between the power electrode 240 and the ground electrode 210b. ), Plasma discharge may also occur between the substrate support units 120 supporting the (), which may adversely affect the substrate (W) by the plasma discharge.
  • the power electrode 250 and the ground electrode protrude in a direction perpendicular to the surface of the substrate W, positive or electrons generated by plasma discharge are generated on the substrate W surface. It does not move to, but moves in the direction of the power electrode 250 or the ground electrode that is parallel to the surface of the substrate (W), thereby minimizing the influence of the substrate (W) by the plasma discharge.
  • the substrate processing method using the substrate processing apparatus 100 according to the embodiment of the present invention is as follows.
  • a plurality of gas injection modules 130a, 130b, 130c, and 130d are installed in the process chamber 110, and at least one substrate W is mounted on the substrate support 120.
  • the first gas G1 and at least one gas injection module of the plurality of gas injection modules may be rotated.
  • Plasma discharge is generated while injecting the second gas G2 downward onto the substrate W.
  • the first gas G1 and the first gas G1 injected from the gas injection module are formed on the substrates W passing through the lower portions of the gas injection modules 130a, 130b, 130c, and 130d according to the rotation of the substrate support 120.
  • the thin film material is deposited by the mutual reaction of the two gases G2.
  • the first gas G1 and the second gas G2 are provided through the plurality of gas injection modules 130a, 130b, 130c, and 130d arranged to spatially divide the reaction space.
  • the use efficiency of the source gas is lowered, whereas according to the present invention, the use efficiency of the source gas is achieved by using the plurality of gas injection modules 130a, 130b, 130c, and 130d. This can be improved.
  • FIG. 5 is a cross-sectional view illustrating a gas injection module disposed on a substrate W according to another embodiment of the present invention
  • FIG. 6 illustrates a gas injection module disposed on a substrate W according to another embodiment of the present invention.
  • 5 and 6 are the same as in FIG. 4 except that the protruding length of the power electrode 250 is changed. Therefore, the same reference numerals are assigned to the same components, and repeated descriptions of the same components will be omitted.
  • the power electrode 250 may be formed to protrude more than the sidewall 210b of the ground electrode frame 210 serving as the ground electrode. As shown in FIG. 6, the power electrode 250 may be a ground electrode. It may be formed so as to protrude slightly more than the side wall 210b of the ground electrode frame 210.
  • the distance between the end of the power electrode 240 and the end of the ground electrode 210b is greater than the distance D1 between the same height point of the power electrode 240 and the ground electrode 210b. D2) becomes large. In this case, it is a problem due to the plasma discharge that the distance H between the power electrode 240 and the substrate W is greater than the distance D2 between the end of the power electrode 240 and the end of the ground electrode 210b. It may be desirable for a solution.
  • FIG. 7 is a cross-sectional view illustrating a gas injection module according to another embodiment of the present invention, in which a power electrode 450 is additionally formed in the second gas injection space S2 of the gas injection module illustrated in FIG. 4. .
  • a power electrode 450 is additionally formed in the second gas injection space S2 of the gas injection module illustrated in FIG. 4. .
  • the power electrode 450 is further formed in the second gas injection space (S2).
  • an insulating member support hole 215 is formed in communication with the second gas injection space S2 and penetrates the upper plate 210a, and the insulating member 240 is inserted into the insulating member support hole 215.
  • the insulation member 240 includes an electrode insertion hole communicating with the second gas injection space S2, and the power electrode 450 protrudes through the electrode insertion hole.
  • the structure of the power electrode 450 formed in the second gas injection space S2 may be the same as that of the power electrode 450 formed in the first gas injection space S1.
  • FIG. 8 is a cross-sectional view illustrating a gas injection module according to another embodiment of the present invention, in which the gas hole pattern member 230 is omitted in the second gas injection space S2 of the gas injection module illustrated in FIG. 4. . That is, although the advantages as described above can be obtained by the gas hole pattern member 230, the gas hole pattern member 230 is not necessarily required.
  • FIG. 9 is a cross-sectional view illustrating a gas injection module according to another exemplary embodiment, in which the gas hole pattern member 230 is omitted in the second gas injection space S2 of the gas injection module illustrated in FIG. 7. .
  • FIG. 10 is a view for explaining a substrate processing apparatus according to another embodiment of the present invention
  • FIGS. 11 and 12 are process charts showing a substrate processing process using the substrate processing apparatus according to FIG. 10.
  • the substrate support part 120 is connected to a predetermined lifting mechanism (not shown), so that the substrate support part 120 can be raised and lowered by the lifting mechanism.
  • the elevating mechanism for elevating the substrate support 120 may use various mechanisms known in the art.
  • the substrate support part 120 is configured to be raised and lowered, as shown in FIGS. 11 and 12, between the power electrode 250 and the substrate W.
  • FIG. The distance (H) of can be easily adjusted.
  • the distance between the power electrode 250 and the substrate W is greater than the distance D between the power electrode 250 and the ground electrode 210b. Can be made smaller.
  • plasma discharge may also occur between the power electrode 250 and the substrate support 120, and thus, the plasma discharge space may overlap with the thin film formation region on the substrate W supported by the substrate support 120. Can be.
  • the plasma discharge space overlaps the thin film formation region on the substrate W as described above, the surface of the substrate W is affected by the plasma discharge.
  • the pre-cleaning process is a process of removing the unnecessary material formed on the substrate (W), such a pre-deposition process cleaning process such as the plasma discharge space and the thin film formation region on the substrate (W) When performed in an overlapped state, the efficiency of the cleaning process may be rather improved. Therefore, in another embodiment of the present invention, in a state where the plasma discharge space overlaps with the thin film formation region on the substrate W, a cleaning process before deposition or a process for improving the surface roughness of the substrate W may be performed. I would have to.
  • the thin film deposition rate may increase. Therefore, although not a process for improving the surface roughness of the substrate W or the cleaning process before deposition, even in the case of the thin film forming process having less influence by the plasma, the plasma discharge space as described above is a thin film on the substrate W. It may also be performed in a state where it overlaps with the formation region.
  • the distance between the power supply electrode 250 and the substrate W is lower than the distance D between the power supply electrode 250 and the ground electrode 210b by lowering the substrate support part 120 by a lifting mechanism. Is larger.
  • the plasma discharge space does not overlap with the thin film formation region on the substrate W supported by the substrate support 120, and thus, a thin film deposition process is performed on the substrate W without adverse effects due to the plasma discharge. can do.
  • FIG. 13 is a cross-sectional view showing a gas injection module according to another embodiment of the present invention.
  • the first gas injection space S1 and the second gas injection space S2, in which the reaction gas and the source gas are spatially separated from each other, are provided. Injecting separately from) allows separate control of reactant and source gases.
  • another embodiment of the present invention by controlling the rotational speed of the substrate support 120 or by controlling the interval between the gas injection module (130a, 130b, 130c, 130d) and the substrate support 120, By controlling the behavior of the reaction gas and the source gas, the film quality of the stacked thin film layer and the deposition rate of the stacked thin film layer can be easily adjusted. This will be described in detail below.
  • the first gas (reaction gas) and the second gas (source gas) react to form the substrate W.
  • a thin film layer is deposited on it. That is, when the substrate support part 120 is rotated at a relatively high first rotation speed, the deposition speed is increased, but the film quality of the thin film layer is degraded, similar to a general CVD process.
  • a thin film layer is deposited while the first gas (reaction gas) and the second gas (source gas) are sequentially stacked on the substrate (W). That is, when the substrate support part 120 is rotated at a relatively slow second rotation speed, the deposition speed is slow but the film quality of the thin film layer is excellent, similar to a general ALD process.
  • the substrate support part 120 When the substrate support part 120 is rotated at a third rotational speed smaller than the first rotational speed and larger than the second rotational speed, a portion of the first gas (reactive gas) and the second gas (source gas) react with each other.
  • the thin film layer may be deposited on (W), and the thin film layer may be deposited while the rest of the first gas (reactive gas) and the second gas (source gas) are sequentially stacked on the substrate (W). That is, when the substrate support part 120 is rotated at a relatively medium third rotation speed, the film quality of the thin film layer similar to the combination of the general CVD process and the ALD process can be obtained while the deposition rate is medium.
  • the rotational speed of the substrate support portion 120 by controlling the rotational speed of the substrate support portion 120, it is possible to easily control the film quality of the laminated thin film layer and the deposition rate of the laminated thin film layer, and therefore, the thin film to be deposited In consideration of the characteristics of the rotation speed of the substrate support 120 may be determined.
  • the reaction is controlled by controlling the interval (see H in FIG. 4) between the gas injection modules 130a, 130b, 130c, and 130d and the substrate support 120 in a state where the rotation speed of the substrate support 120 is fixed.
  • a method of controlling the film quality of the laminated thin film layer and the deposition rate of the stacked thin film layer by controlling the behavior of the gas and the source gas will be described with reference to Table 2 below.
  • a distance (see L in FIG. 13) between the gas injection modules 130a, 130b, 130c, and 130d and the substrate support part 120 at a relatively small second interval causes the first gas (reactive gas) and the second to be separated.
  • the thin film layer is deposited while the gas (source gas) is sequentially stacked on the substrate W.
  • the deposition rate is increased and the film quality of the thin film layer is excellent, similar to a general ALD process.
  • the film When set to a third interval smaller than the first interval and larger than the second interval, a portion of the first gas (reactive gas) and the second gas (source gas) react to deposit a thin film layer on the substrate W, and The thin film layer may be deposited while the rest of the first gas (reaction gas) and the second gas (source gas) are sequentially stacked on the substrate (W).
  • the film quality of the thin film layer which is similar to the combination of the general CVD process and the ALD process, with a medium deposition rate, can be obtained.
  • the present invention by controlling the interval (see L in FIG. 13) between the gas injection module (130a, 130b, 130c, 130d) and the substrate support portion 120, the film quality of the laminated thin film layer And it is possible to easily control the deposition rate of the thin film layer to be stacked, and thus, the gap between the gas injection module (130a, 130b, 130c, 130d) and the substrate support 120 in consideration of the characteristics of the thin film to be deposited (FIG. 13 L).
  • the rotational speed of the substrate support 120 and the distance between the gas injection module (130a, 130b, 130c, 130d) and the substrate support 120 By controlling together, it is possible to easily control the film quality of the thin film layer and the deposition rate of the laminated thin film layer.
  • the plasma discharge space is not formed in the region between the power supply electrode and the substrate as in the prior art, but is formed between the power supply electrode and the ground electrode facing each other, Damage to the substrate W can be prevented.
  • the power electrode 250 and the ground electrode extend in the direction perpendicular to the surface of the substrate W, the positive electrode or electrons generated by the plasma discharge are generated from the substrate W. It does not move to the surface, but moves in the direction of the power electrode 250 or the ground electrode that is parallel to the surface of the substrate W, thus minimizing the influence of the substrate W due to plasma discharge.
  • Such a substrate processing method using the substrate processing apparatus 100 according to another embodiment of the present invention is as follows.
  • a plurality of gas injection modules 130a, 130b, 130c, and 130d are installed in the process chamber 110, and at least one substrate W is mounted on the substrate support 120.
  • the gap between the gas injection modules 130a, 130b, 130c, and 130d and the substrate support part 120 is determined, and the substrate support part 120 is lifted to adjust the gap.
  • the process of determining the distance between the gas injection modules 130a, 130b, 130c, and 130d and the substrate support part 120 may be performed in advance before the substrate W is seated.
  • the process of determining the distance (L) between the gas injection module (130a, 130b, 130c, 130d) and the substrate support 120 is performed in accordance with the characteristics of the thin film layer to be formed as described above. Specifically, when the first gas (reactive gas) and the second gas (source gas) react with each other to deposit a thin film layer on the substrate to form a thin film layer having a film quality similar to CVD, the interval L is relatively spaced. This large first interval is determined. In addition, when a thin film layer similar to ALD is formed by depositing a thin film layer while sequentially stacking a first gas (reactive gas) and a second gas (source gas) on a substrate, the gap L is relatively spaced. This small second interval is determined.
  • first gas (reactive gas) and the second gas (source gas) react with each other to deposit a thin film layer on the substrate, and the remainder of the first gas (reactive gas) and the second gas (source gas)
  • a thin film layer having a film quality similar to the combination of CVD and ALD is formed by depositing a thin film layer while being sequentially stacked on the substrate, it is determined as a third interval smaller than the first interval and larger than the second interval as the interval L.
  • the rotational speed of the substrate supporter 120 is determined and the substrate supporter 120 is rotated according to the determined rotational speed.
  • the process of determining the rotational speed of the substrate support 120 is performed in accordance with the characteristics of the thin film layer to be formed as described above. Specifically, when the first gas (reactive gas) and the second gas (source gas) react with each other to deposit a thin film layer on a substrate to form a thin film layer having a film quality similar to CVD, the rotation speed is relatively high. Determine at the first rotational speed. In addition, when a thin film layer similar to ALD is formed by depositing a thin film layer while sequentially stacking a first gas (reactive gas) and a second gas (source gas) on a substrate, the rotation speed is relatively small. Determine at the second rotational speed.
  • the first gas (reactive gas) and the second gas (source gas) react with each other to deposit a thin film layer on the substrate, and the remainder of the first gas (reactive gas) and the second gas (source gas)
  • the third rotation speed smaller than the first rotation speed and larger than the second rotation speed is determined as the speed.
  • a thin film forming process of spraying the first gas G1 and the second gas G2 down onto the substrate W is performed through at least one gas injection module of the plurality of gas injection modules while generating a plasma discharge. . Accordingly, the thin film layer according to each case described above is formed.
  • the thin film forming process may include a first thin film forming process and a second thin film forming process.
  • the first thin film forming process and the second thin film forming process may be performed under different process conditions to obtain a first thin film layer and a second thin film layer having different film quality.
  • the rotational speed of the substrate support part 120 in the first thin film forming process may be different from the rotational speed of the substrate support part 120 in the second thin film forming process, and the first thin film may be formed.
  • the interval between the gas injection modules 130a, 130b, 130c, and 130d and the substrate support part 120 during the process, and the gas injection modules 130a, 130b, 130c, and 130d during the second thin film forming process and the The spacing between the substrate supports may be set differently.
  • the first thin film layer and the second thin film layer may be made of the same material, or may be made of a different material.
  • the first gas (G1) and the second gas through a plurality of gas injection modules 130a, 130b, 130c, 130d arranged to spatially divide the reaction space ( By spraying G2) and depositing a thin film on each substrate W, the deposition uniformity, deposition rate, and deposition efficiency of the thin film can be improved, and film quality control of the thin film can be facilitated.
  • the use efficiency of the source gas is lowered, whereas according to another embodiment of the present invention, by using the plurality of gas injection modules 130a, 130b, 130c, and 130d, The use efficiency of the source gas can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 공정 챔버; 적어도 하나의 기판을 지지하도록 상기 공정 챔버 내에 설치되며, 소정 방향으로 회전하도록 구성된 기판 지지부; 상기 기판 지지부에 대향하면서 상기 공정 챔버의 상부를 덮는 챔버 리드; 및 상기 챔버 리드에 연결되어 있고, 상기 기판 상에 가스를 분사하는 복수의 가스 분사 모듈을 구비한 가스 분사부를 포함하여 이루어지고, 이때, 상기 복수의 가스 분사 모듈 각각은 서로 마주하는 전원 전극 및 접지 전극을 포함하여 이루어져 상기 전원 전극과 상기 접지 전극 사이에서 플라즈마 방전 공간이 형성되고, 상기 플라즈마 방전 공간은 상기 기판 지지부에 의해 지지되는 기판 상의 박막 형성 영역과 오버랩되지 않는 것을 특징으로 하는 기판 처리 장치에 관한 것이다.

Description

기판 처리 장치 및 기판 처리 방법
본 발명은 기판 처리 장치에 관한 것으로, 보다 구체적으로는, 기판에 증착되는 박막의 증착 균일도를 증가시킬 수 있도록 한 기판 처리 장치 및 기판 처리 방법에 관한 것이다.
일반적으로, 태양전지(Solar Cell), 반도체 소자, 평판 디스플레이 등을 제조하기 위해서는 기판 표면에 소정의 박막층, 박막 회로 패턴, 또는 광학적 패턴을 형성하여야 하며, 이를 위해서는 기판에 특정 물질의 박막을 증착하는 박막 증착 공정, 감광성 물질을 사용하여 박막을 선택적으로 노출시키는 포토 공정, 선택적으로 노출된 부분의 박막을 제거하여 패턴을 형성하는 식각 공정 등의 반도체 제조 공정을 수행하게 된다.
이러한 반도체 제조 공정은 해당 공정을 위해 최적의 환경으로 설계된 기판 처리 장치의 내부에서 진행되며, 최근에는 플라즈마를 이용하여 증착 또는 식각 공정을 수행하는 기판 처리 장치가 많이 사용되고 있다.
플라즈마를 이용한 기판 처리 장치에는 플라즈마를 이용하여 박막을 형성하는 PECVD(Plasma Enhanced Chemical Vapor Deposition) 장치, 박막을 식각하여 패터닝하는 플라즈마 식각장치 등이 있다.
도 1은 종래의 기판 처리 장치를 개략적으로 설명하기 위한 도면이다.
도 1을 참조하면, 일반적인 기판 처리 장치는 챔버(10), 전원 전극(20), 서셉터(30), 및 가스 분사 수단(40)을 구비한다.
챔버(10)는 기판 처리 공정을 위한 반응 공간을 제공한다. 이때, 챔버(10)의 일측 바닥면은 반응 공간을 배기시키기 위한 배기구(12)에 연통된다.
전원 전극(20)은 반응 공간을 밀폐하도록 챔버(10)의 상부에 설치된다.
전원 전극(20)의 일측은 정합 부재(22)를 통해 RF(Radio Frequency) 전원(24)에 전기적으로 접속된다. 이때, RF 전원(24)은 RF 전력을 생성하여 전원 전극(20)에 공급한다.
또한, 전원 전극(20)의 중앙 부분은 기판 처리 공정을 위한 소스 가스를 공급하는 가스 공급관(26)에 연통된다.
정합 부재(22)는 전원 전극(20)과 RF 전원(24) 간에 접속되어 RF 전원(24)으로부터 전원 전극(20)에 공급되는 RF 전력의 부하 임피던스와 소스 임피던스를 정합시킨다.
서셉터(30)는 챔버(10)의 내부에 설치되어 외부로부터 로딩되는 복수의 기판(W)을 지지한다. 이러한 서셉터(30)는 전원 전극(20)에 대향되는 대향 전극으로써, 서셉터(30)를 승강시키는 승강축(32)을 통해 전기적으로 접지된다.
승강축(32)은 승강 장치(미도시)에 의해 상하 방향으로 승강된다. 이때, 승강축(32)은 승강축(32)과 챔버(10)의 바닥면을 밀봉하는 벨로우즈(34)에 의해 감싸여진다.
가스 분사 수단(40)은 서셉터(30)에 대향되도록 전원 전극(20)의 하부에 설치된다. 이때, 가스 분사 수단(40)과 전원 전극(20) 사이에는 전원 전극(20)을 관통하는 가스 공급관(26)으로부터 공급되는 소스 가스가 확산되는 가스 확산 공간(42)이 형성된다. 이러한, 가스 분사 수단(40)은 가스 확산 공간(42)에 연통된 복수의 가스 분사구(44)를 통해 소스 가스를 반응 공간의 전 부분에 균일하게 분사한다.
이와 같은, 일반적인 기판 처리 장치는 기판(W)을 서셉터(30)에 로딩시킨 다음, 챔버(10)의 반응 공간에 소정의 소스 가스를 분사하면서 전원 전극(20)에 RF 전력을 공급하여 플라즈마를 형성함으로써 기판(W) 상에 소정의 박막을 형성하게 된다.
그러나, 종래의 기판 처리 장치는 상기 소스 가스가 분사되는 공간과 상기 플라즈마가 형성되는 공간이 동일하기 때문에, 플라즈마 방전이 기판(W) 위에서 이루어지고, 그에 따라, 플라즈마 방전에 의해서 기판(W)이 손상되고 막질이 떨어지는 문제점이 있다.
본 발명은 전술한 종래의 문제점을 해결하기 위한 것으로서, 본 발명은 플라즈마 방전이 기판까지 전달되는 것을 방지함으로써 플라즈마 방전에 의해서 기판이 손상되고 막질이 떨어지는 문제점을 해결하기 위한 기판 처리 장치 및 기판 처리 방법을 제공하는 것을 목적으로 한다.
본 발명은 전술한 목적을 달성하기 위해서, 공정 챔버; 적어도 하나의 기판을 지지하도록 상기 공정 챔버 내에 설치되며, 소정 방향으로 회전하도록 구성된 기판 지지부; 상기 기판 지지부에 대향하면서 상기 공정 챔버의 상부를 덮는 챔버 리드; 및 상기 챔버 리드에 연결되어 있고, 상기 기판 상에 가스를 분사하는 복수의 가스 분사 모듈을 구비한 가스 분사부를 포함하여 이루어지고, 이때, 상기 복수의 가스 분사 모듈 각각은 서로 마주하는 전원 전극 및 접지 전극을 포함하여 이루어져 상기 전원 전극과 상기 접지 전극 사이에서 플라즈마 방전 공간이 형성되고, 상기 플라즈마 방전 공간은 상기 기판 지지부에 의해 지지되는 기판 상의 박막 형성 영역과 오버랩되지 않는 것을 특징으로 하는 기판 처리 장치를 제공한다.
본 발명은 또한, 공정 챔버; 적어도 하나의 기판을 지지하도록 상기 공정 챔버 내에 설치되며, 소정 방향으로 회전하도록 구성된 기판 지지부; 상기 기판 지지부에 대향하면서 상기 공정 챔버의 상부를 덮는 챔버 리드; 및 상기 챔버 리드에 연결되어 있고, 상기 기판 상에 가스를 분사하는 복수의 가스 분사 모듈을 구비한 가스 분사부를 포함하여 이루어지고, 이때, 상기 복수의 가스 분사 모듈 각각은 서로 마주하는 전원 전극 및 접지 전극을 포함하여 이루어져 상기 전원 전극과 상기 접지 전극 사이에서 플라즈마 방전 공간이 형성되고, 상기 기판 지지부는 소정의 승강기구와 연결되어 있어, 상기 승강기구에 의해 상기 기판 지지부가 하강할 경우에는 상기 플라즈마 방전 공간이 상기 기판 지지부에 의해 지지되는 기판 상의 박막 형성 영역과 오버랩되지 않고, 상기 승강기구에 의해 상기 기판 지지부가 상승할 경우에는 상기 플라즈마 방전 공간이 상기 기판 지지부에 의해 지지되는 기판 상의 박막 형성 영역과 오버랩되는 것을 특징으로 하는 기판 처리 장치를 제공한다.
본 발명은 또한, 공정 챔버; 적어도 하나의 기판을 지지하도록 상기 공정 챔버 내에 설치되며, 소정 방향으로 회전하며 그 회전속도가 변경될 수 있도록 구성된 기판 지지부; 상기 기판 지지부에 대향하면서 상기 공정 챔버의 상부를 덮는 챔버 리드; 및 상기 챔버 리드에 연결되어 있고, 상기 기판 상에 가스를 분사하는 복수의 가스 분사 모듈을 구비한 가스 분사부를 포함하여 이루어지고, 이때, 복수의 가스 분사 모듈 각각은 서로 공간적으로 분리되어 마련된 제 1 가스를 분사하는 제 1 가스 분사 공간 및 제 2 가스를 분사하는 제 2 가스 분사 공간을 포함하여 이루어지고, 상기 기판 지지부는 소정의 승강기구와 연결되어 승강하도록 구성되어 있어서 상기 가스 분사 모듈과 상기 기판 지지부 사이의 간격이 변경될 수 있는 것을 특징으로 하는 기판 처리 장치를 제공한다.
본 발명은 또한, 공정 챔버 내에 복수의 가스 분사 모듈을 설치하고 기판 지지부 상에 적어도 하나의 기판을 안착시키는 공정; 상기 기판 지지부를 회전시키는 공정; 및 상기 복수의 가스 분사 모듈 중 적어도 하나의 가스 분사 모듈에서 상기 기판 상으로 가스를 분사하면서 플라즈마 방전을 일으키는 공정을 포함하여 이루어지고, 이때, 복수의 가스 분사 모듈 각각은 서로 마주하는 전원 전극 및 접지 전극을 포함하여 이루어져 상기 전원 전극과 상기 접지 전극 사이에서 플라즈마 방전 공간이 형성되고, 상기 플라즈마 방전 공간은 상기 기판 지지부에 안착된 기판 상의 박막 형성 영역과 오버랩되지 않는 것을 특징으로 하는 기판 처리 방법을 제공한다.
본 발명은 또한, 공정 챔버 내에 복수의 가스 분사 모듈을 설치하고 기판 지지부 상에 적어도 하나의 기판을 안착시키는 공정; 상기 기판 지지부를 회전시키는 공정; 상기 복수의 가스 분사 모듈 중 적어도 하나의 가스 분사 모듈에서 상기 기판 상으로 제1 가스를 분사하면서 제1 플라즈마 방전을 일으키는 공정; 및 상기 복수의 가스 분사 모듈 중 적어도 하나의 가스 분사 모듈에서 상기 기판 상으로 제2 가스를 분사하면서 제2 플라즈마 방전을 일으키는 공정을 포함하여 이루어지고, 이때, 상기 제1 플라즈마 방전 공정은 플라즈마 방전 공간이 상기 기판 지지부에 안착된 기판 상의 박막 형성 영역과 오버랩된 상태에서 수행하고, 상기 제2 플라즈마 방전 공정은 플라즈마 방전 공간이 상기 기판 지지부에 안착된 기판 상의 박막 형성 영역과 오버랩되지 않은 상태에서 수행하는 것을 특징으로 하는 기판 처리 방법을 제공한다.
본 발명은 또한, 공정 챔버 내에 복수의 가스 분사 모듈을 설치하고 기판 지지부 상에 적어도 하나의 기판을 안착시키는 공정; 상기 가스 분사 모듈과 상기 기판 지지부 사이의 간격을 결정하고 상기 기판 지지부를 승강시켜 상기 간격을 맞추는 공정; 상기 기판 지지부의 회전속도를 결정하고 결정한 회전속도에 따라 상기 기판 지지부를 회전시키는 공정; 및 상기 복수의 가스 분사 모듈 중 적어도 하나의 가스 분사 모듈에서 상기 기판 상으로 가스를 분사하여 박막층을 형성하는 박막 형성 공정을 포함하여 이루어지고, 이때, 복수의 가스 분사 모듈 각각은 서로 공간적으로 분리되어 마련된 제 1 가스를 분사하는 제 1 가스 분사 공간 및 제 2 가스를 분사하는 제 2 가스 분사 공간을 포함하여 이루어져, 상기 박막 형성 공정시 상기 제1 가스와 상기 제2 가스에 의해서 상기 박막층이 형성되는 것을 특징으로 하는 기판 처리 방법을 제공한다.
상기 구성에 의하면 다음과 같은 효과가 있다.
본 발명은 플라즈마 방전 공간이, 종래와 같이 전원 전극과 기판 사이의 영역에 형성되는 것이 아니라, 서로 마주하는 전원 전극과 접지 전극 사이에서 형성된다. 따라서, 플라즈마 방전 공간이 상기 기판 지지부(120)에 의해 지지되는 기판 상의 박막 형성 영역과 오버랩되지 않기 때문에, 플라즈마 방전에 의해서 기판이 손상되고 기판 상에 증착되는 막질이 떨어지는 문제가 해소될 수 있다.
도 1은 종래의 기판 처리 장치를 개략적으로 설명하기 위한 도면이다.
도 2는 본 발명의 일 실시예에 따른 기판 처리 장치를 개략적으로 나타내는 도면이다.
도 3은 본 발명의 일 실시예에 따른 기판 지지부 위에 배치된 복수의 가스 분사 모듈을 개념적으로 나타내는 도면이다.
도 4는 본 발명의 일 실시예에 따른 기판 위에 배치된 가스 분사 모듈을 나타내는 단면도이다.
도 5는 본 발명의 다른 실시예에 따른 기판 위에 배치된 가스 분사 모듈을 나타내는 단면도이다.
도 6은 본 발명의 또 다른 실시예에 따른 기판 위에 배치된 가스 분사 모듈을 나타내는 단면도이다.
도 7은 본 발명의 또 다른 실시예에 따른 가스 분사 모듈을 나타내는 단면도이다.
도 8은 본 발명의 또 다른 실시예에 따른 가스 분사 모듈을 나타내는 단면도이다.
도 9는 본 발명의 또 다른 실시예에 따른 가스 분사 모듈을 나타내는 단면도이다.
도 10은 본 발명의 또 다른 실시 예에 따른 기판 처리 장치를 설명하기 위한 도면이다.
도 11 및 도 12는 도 10에 따른 기판 처리 장치를 이용한 기판 처리 공정을 보여주는 공정도이다.
도 13은 본 발명의 또 다른 실시예에 따른 가스 분사 모듈을 나타내는 단면도이다.
이하, 도면을 참조로 본 발명에 따른 바람직한 실시 예에 대해서 상세히 설명하기로 한다.
도 2는 본 발명의 일 실시예에 따른 기판 처리 장치를 개략적으로 나타내는 도면이고, 도 3은 본 발명의 일 실시예에 따른 기판 지지부 위에 배치된 복수의 가스 분사 모듈을 개념적으로 나타내는 도면이며, 도 4는 본 발명의 일 실시예에 따른 기판(W) 위에 배치된 가스 분사 모듈을 나타내는 단면도이다.
도 2 내지 도 4를 참조하면, 본 발명의 일 실시예에 따른 기판 처리 장치는 공정 챔버(110), 챔버 리드(Chamber Lid; 115), 기판 지지부(120), 및 가스 분사부(130)를 포함하여 구성된다.
공정 챔버(110)는 기판 처리 공정(예를 들어, 박막 증착 공정)을 위한 반응 공간을 제공한다. 상기의 공정 챔버(110)의 바닥면 또는 측면은 반응 공간의 가스 등을 배기시키기 위한 배기관(미도시)에 연통될 수 있다.
챔버 리드(115)는 공정 챔버(110)의 상부를 덮도록 공정 챔버(110)의 상부에 설치되어 전기적으로 접지된다. 이러한 챔버 리드(115)는 가스 분사부(130)를 지지하는 것으로, 기판 지지부(120)의 상부를 복수의 공간으로 분할하도록 형성된 복수의 모듈 설치부(115a, 115b, 115c, 115d)를 포함하여 이루어진다. 이때, 복수의 모듈 설치부(115a, 115b, 115c, 115d)는 챔버 리드(115)의 중심점을 기준으로 90도 각도로 이격되면서 챔버 리드(115)에 방사 형태로 형성될 수 있다.
공정 챔버(110) 및 챔버 리드(115)는 도시된 것처럼 6각형과 같은 다각형 구조로 형성될 수도 있지만, 원형 또는 타원형 구조로 형성될 수도 있다.
도 2에서, 챔버 리드(115)는 4개의 모듈 설치부(115a, 115b, 115c, 115d)를 구비하는 것으로 도시되었지만, 이에 한정되지 않고, 챔버 리드(115)는 그 중심점을 기준으로 서로 대칭되는 2N(단, N은 자연수)개의 모듈 설치부를 구비할 수 있다. 다만, 반드시 그에 한정되는 것은 아니고 홀수 개의 모듈 설치부가 구비될 수도 있다. 이하, 챔버 리드(115)는 제 1 내지 제 4 모듈 설치부(115a, 115b, 115c, 115d)를 구비하는 것으로 가정하여 설명하기로 한다.
전술한 상기 챔버 리드(115)에 의해 밀폐되는 공정 챔버(110)의 반응 공간은 챔버 리드(115)에 설치된 펌핑 관(117)을 통해 외부의 펌핑 수단(미도시)에 연결될 수 있다.
상기 펌핑 관(117)은 챔버 리드(115)의 중심부에 형성된 핌핑 홀(115e)을 통해 공정 챔버(110)의 반응 공간에 연통된다. 이에 따라, 공정 챔버(110)의 내부는 펌핑 관(117)을 통한 펌핑 수단의 펌핑 동작에 따라 진공 상태 또는 대기압 상태가 된다. 이 경우, 반응 공간의 배기 공정은 상기 펌핑 관(117) 및 펌핑 홀(115e)을 이용한 상부 중앙 배기 방식을 이용하게 된다. 다만, 반드시 그에 한정되는 것은 아니고, 상기 펌핑 관(117) 및 펌핑 홀(115e)은 생략이 가능하다.
기판 지지부(120)는 공정 챔버(110) 내부에 회전 가능하게 설치되며, 전기적으로 플로팅(Floating)될 수도 있고 접지(groud)될 수도 있다. 이러한 기판 지지부(120)는 공정 챔버(110)의 중앙 바닥면을 관통하는 회전축(미도시)에 의해 지지된다. 상기 회전축은 축 구동 부재(미도시)의 구동에 따라 회전됨으로써 기판 지지부(120)를 소정 방향(예를 들어, 반시계 방향)으로 회전시킨다. 그리고, 공정 챔버(110)의 하면 외부로 노출되는 상기의 회전축은 공정 챔버(110)의 하면에 설치되는 벨로우즈(미도시)에 의해 밀폐된다.
상기 기판 지지부(120)는 외부의 기판 로딩 장치(미도시)로부터 로딩되는 적어도 하나의 기판(W)을 지지한다. 이때, 기판 지지부(120)는 원판 형태를 가지도록 형성되어, 복수의 기판(W), 예를 들어 반도체 기판 또는 웨이퍼를 지지한다. 이 경우, 생산성 향상을 위해 기판 지지부(120)에는 복수의 기판(W)이 일정한 간격을 가지면서 원 형태로 배치될 수 있다.
가스 분사부(130)는 챔버 리드(115)의 제 1 내지 제 4 모듈 설치부(115a, 115b, 115c, 115d) 각각에 삽입 설치되어 기판 지지부(120)의 중심점을 기준으로 이격 배치된 제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d)을 포함하여 구성된다. 이러한, 제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d) 각각은 기판 지지부(120) 위의 가스 분사 영역에 제 1 가스 및 제 2 가스(G1, G2)를 분사한다. 이에 따라, 제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d) 각각에서 분사되는 제 1 및 제 2 가스(G1, G2)는 기판 지지부(120) 상에 로딩된 기판(W) 상에서 반응하여 박막층을 형성한다.
상기 제 1 가스(G1)는 플라즈마 방전에 의해 활성화되어 기판(W) 위로 분사될 수 있으며, 이와 같은 제 1 가스(G1)는 후술하는 소스 가스(SG)와 반응하여 박막층을 형성하는 반응 가스(Reactant Gas)(RG)로 이루어질 수 있다. 예를 들어, 상기 반응 가스(RG)는 질소(N2), 산소(O2), 이산화질소(N2O), 및 오존(O3) 중 적어도 어느 한 종류의 가스로 이루어질 수 있다.
상기 제 2 가스(G2)는 기판(W) 상에 증착될 박막 물질을 포함하는 소스 가스(Source Gas)(SG)로 이루어질 수 있다. 상기 소스 가스는 실리콘(Si), 티탄족 원소(Ti, Zr, Hf 등), 또는 알루미늄(Al) 등과 같은 박막 물질을 함유하여 이루어질 수 있다. 예를 들어, 실리콘(Si)의 박막 물질을 함유하여 이루어진 소스 가스는 TEOS(Tetraethylorthosilicate), DCS(Dichlorosilane), HCD(Hexachlorosilane), TriDMAS(Tri-dimethylaminosilane), TSA(Trisilylamine), SiH2Cl2, SiH4, Si2H6, Si3H8, Si4H10, 및 Si5H12 중에서 선택된 가스일 수 있다.
제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d) 각각은 접지 전극 프레임(210), 가스 홀 패턴 부재(230), 절연 부재(240), 및 전원 전극(250)을 포함하여 구성된다.
접지 전극 프레임(210)은 제 1 가스(G1)를 분사하는 제 1 가스 분사 공간(S1)과 제 2 가스(G2)를 분사하는 제 2 가스 분사 공간(S2)을 가지도록 형성된다. 이러한 접지 전극 프레임(210)은 챔버 리드(115)의 각 모듈 설치부(115a, 115b, 115c, 115d)에 삽입 설치되어 챔버 리드(115)를 통해 전기적으로 접지된다. 이를 위해, 접지 전극 프레임(210)은 상면 플레이트(210a), 접지 측벽(210b), 및 접지 격벽 부재(210c)로 이루어진다.
상면 플레이트(210a)는 직사각 형태로 형성되어 챔버 리드(115)의 해당 모듈 설치부(115a, 115b, 115c, 115d)에 결합된다. 이러한 상면 플레이트(210a)에는 절연 부재 지지 홀(212), 제 1 가스 공급 홀(214), 및 제 2 가스 공급 홀(216)이 형성된다.
절연 부재 지지 홀(212)은 제 1 가스 분사 공간(S1)에 연통되도록 상면 플레이트(210a)를 관통하여 형성된다. 이러한 절연 부재 지지 홀(212)은 직사각 형태의 평면을 가지도록 형성될 수 있다.
제 1 가스 공급 홀(214)은 제 1 가스 분사 공간(S1)에 연통되도록 상면 플레이트(210a)를 관통하여 형성된다. 이러한 제 1 가스 공급 홀(214)은 가스 공급 관(미도시)을 통해 외부의 제 1 가스 공급 수단(미도시)에 연결됨으로써 제 1 가스 공급 수단(미도시)으로부터 가스 공급 관을 통해 제 1 가스(G1), 즉 상기 반응 가스를 공급받는다. 상기 제 1 가스 공급 홀(214)은 상기 절연 부재 지지 홀(212)의 양측에 일정한 간격을 가지도록 복수로 형성되어 제 1 가스 분사 공간(S1)에 연통될 수 있다. 상기 제 1 가스 공급 홀(214)에 공급되는 제 1 가스(G1)는 제 1 가스 분사 공간(S1)에 공급되어 제 1 가스 분사 공간(S1) 내에서 플라즈마 방전에 의해 활성화되고, 제 1 압력으로 기판 쪽으로 하향 분사된다. 이를 위해, 제 1 가스 분사 공간(S1)의 하면은 상기 제 1 가스(G1)가 기판 쪽으로 하향 분사되도록 별도의 가스 분사 홀 패턴 없이 전체적으로 개구된 형태를 갖는 제 1 가스 분사구(231)의 역할을 한다.
제 2 가스 공급 홀(216)은 제 2 가스 분사 공간(S2)에 연통되도록 상면 플레이트(210a)를 관통하여 형성된다. 이러한 제 2 가스 공급 홀(216)은 가스 공급 관(미도시)을 통해 외부의 제 2 가스 공급 수단(미도시)에 연결됨으로써 제 2 가스 공급 수단(미도시)으로부터 가스 공급 관을 통해 제 2 가스(G2), 즉 상기 소스 가스를 공급받는다. 상기 제 2 가스 공급 홀(216)은 상면 플레이트(210a)에 일정한 간격을 가지도록 복수로 형성되어 제 2 가스 분사 공간(S2)에 연통될 수 있다.
복수 개의 접지 측벽(210b) 각각은 상면 플레이트(210a)의 장변 및 단변 가장자리 하면으로부터 소정 높이를 가지도록 수직하게 돌출되어 상면 플레이트(210a)의 하부에 사각 형태의 하면 개구부를 마련한다. 이러한 접지 측벽들(210b) 각각은 챔버 리드(115)를 통해 전기적으로 접지되어 접지 전극의 역할을 한다.
접지 격벽 부재(210c)는 상면 플레이트(210a)의 중앙 하면으로부터 소정 높이를 가지도록 수직하게 돌출되어 접지 측벽들(210b)의 장변들과 나란하게 배치된다. 이러한 접지 격벽 부재(210c)에 의해서 상기 제 1 및 제 2 가스 분사 공간(S1, S2)이 서로 분리된다. 이와 같은, 상기 접지 격벽 부재(210c)는 접지 전극 프레임(210)에 일체화되거나 전기적으로 결합되어 접지 전극 프레임(210)을 통해 전기적으로 접지됨으로써 접지 전극의 역할을 한다.
전술한 접지 전극 프레임(210)의 설명에서는 접지 전극 프레임(210)이 상면 플레이트(210a)와 접지 측벽들(210b) 및 접지 격벽 부재(210c)로 구성되는 것으로 설명하였지만, 이에 한정되지 않고, 접지 전극 프레임(210)은 상면 플레이트(210a)와 접지 측벽들(210b) 및 접지 격벽 부재(210c)가 서로 일체화된 하나의 몸체가 형성될 수 있다.
한편, 상기 접지 전극 프레임(210)의 제 1 및 제 2 가스 분사 공간(S1, S2)의 위치는 변경이 가능하다. 즉, 상기 제 1 및 제 2 가스 분사 공간(S1, S2)의 위치는 기판 지지부(120)의 회전에 따라 회전하는 기판(W)이 제 2 가스(G2)에 먼저 노출된 후 제 1 가스(G1)에 노출되도록 설정될 수도 있고, 제1 가스(G1)에 먼저 노출된 후 제2 가스(G2)에 노출되도록 설정될 수도 있다.
가스 홀 패턴 부재(230)는 제 2 가스 분사 공간(S2)에 설치되어 상기 접지 격벽 부재(210c)를 사이에 두고 인접한 제 1 가스 분사 공간(S1)으로부터 분사되는 제 1 가스(G1)가 제 2 가스 분사 공간(S2)으로 확산, 역류, 및 침투하는 것을 방지한다. 즉, 상기 제 1 가스(G1)가 제 2 가스 분사 공간(S2)으로 확산, 역류, 및 침투할 경우, 제 2 가스 분사 공간(S2) 내에서 상기 제 1 가스(G1)와 상기 제 2 가스(G2)가 반응할 수 있고, 이로 인해 제 2 가스 분사 공간(S2)의 내벽에 이상 박막이 증착되거나 파우더 성분의 이상 박막이 형성되어 기판에 떨어지는 파티클이 생성될 수도 있다. 따라서, 상기 가스 홀 패턴 부재(230)는 이와 같은 제 2 가스 분사 공간(S2)의 내벽에 이상 박막이 증착되거나 파우더 성분의 이상 박막이 형성되는 것을 방지하는 기능을 하는 것이다.
상기 가스 홀 패턴 부재(230)는 제 2 가스 분사 공간(S2)의 하면을 덮도록 제 2 가스 분사 공간(S2)을 마련하는 접지 측벽들(210b)과 접지 격벽 부재(210c) 각각의 하면에 일체화되거나, 극성을 가지지 않는 절연 재질의 절연판(또는 샤워 헤드) 형태로 형성되어 제 2 가스 분사 공간(S2)의 하면에 결합될 수 있다. 이에 따라, 접지 전극 프레임(210)의 상면 플레이트(210a)와 가스 홀 패턴 부재(230) 사이의 제 2 가스 분사 공간(S2)에는 소정의 가스 확산 공간 또는 가스 버퍼링 공간이 마련된다.
상기 가스 홀 패턴 부재(230)는 제 2 가스 공급 홀(216)을 통해 제 2 가스 분사 공간(S2)에 공급된 제 2 가스(G2)를 기판 쪽으로 하향 분사하는 복수의 제 2 가스 분사구(232)를 포함하여 구성된다.
상기 복수의 제 2 가스 분사구(232)는 상기 제 2 가스(G2)가 확산되는 제 2 가스 분사 공간(S2)에 연통되도록 홀 패턴 형태로 형성되어 상기 제 2 가스(G2)를 상기 제 1 가스(G1)의 분사 압력보다 높은 제 2 압력으로 기판 쪽으로 하향 분사한다. 이와 같이, 상기 가스 홀 패턴 부재(230)는 기판 상에 분사되는 제 2 가스(G2)의 분사 압력을 높여줘 제 1 가스 분사 공간(S1)으로부터 분사되는 제 1 가스(G1)가 제 2 가스 분사 공간(S2)으로 확산, 역류, 및 침투하는 것을 방지한다.
또한, 상기 가스 홀 패턴 부재(230)는 제 2 가스 분사구(232)를 통해 상기 제 2 가스(G2)를 하향 분사하고, 홀이 형성된 판형상으로 인해 상기 제 2 가스(G2)를 지연시키거나 정체시켜 제 2 가스(G2)의 사용량을 감소시킬 수 있다. 게다가, 가스 분사구(232)의 홀 패턴 형상을 조절 함으로서 가스의 유량을 조절할 수 있어서 상기 제 제 2 가스(G2)의 사용 효율성을 증대시킨다.
절연 부재(240)는 절연 물질로 이루어져 접지 전극 프레임(210)에 형성된 절연 부재 지지 홀(212)에 삽입됨과 아울러 체결 부재(미도시)에 의해 접지 전극 프레임(210)의 상면에 결합된다. 이러한 절연 부재(240)는 제 1 가스 분사 공간(S1)에 연통되는 전극 삽입 홀을 포함하여 구성된다.
전원 전극(250)은 도전성 재질로 이루어져 절연 부재(240)의 전극 삽입 홀에 관통 삽입되어 접지 전극 프레임(210)의 하면으로부터 소정 높이로 돌출됨으로써 제 1 가스 분사 공간(S1)에 배치된다. 이때, 전원 전극(250)은 접지 전극으로 기능하는 접지 격벽 부재(210c) 및 접지 전극 프레임(210)의 측벽(210b)과 동일한 높이로 돌출될 수 있다.
상기 전원 전극(250)은 급전 케이블을 통해 플라즈마 전원 공급부(140)에 전기적으로 접속됨으로써 플라즈마 전원 공급부(140)로부터 공급되는 플라즈마 전원에 따라 제 1 가스 분사 공간(S1)에 플라즈마 방전을 일으킨다. 즉, 상기 플라즈마 방전은 접지 전극의 역할을 하는 접지 측벽(210b) 및 접지 격벽 부재(210c) 각각과 플라즈마 전원이 공급되는 전원 전극(250) 사이에 발생됨으로써 제 1 가스 분사 공간(S1)에 공급되는 제 1 가스(G1)를 활성화시킨다.
플라즈마 전원 공급부(140)는 소정의 주파수를 가지는 플라즈마 전원을 발생하고, 급전 케이블을 통해 플라즈마 전원을 제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d) 각각에 공통적으로 공급하거나 개별적으로 공급한다. 이때, 플라즈마 전원은 고주파(예를 들어, HF(High Frequency) 전력 또는 VHF(Very High Frequency) 전력이 공급된다. 예를 들어, HF 전력은 3㎒ ~ 30㎒ 범위의 주파수를 가지며, VHF 전력은 30㎒ ~ 300㎒ 범위의 주파수를 가질 수 있다.
한편, 상기 급전 케이블에는 임피던스 매칭 회로(미도시)가 접속된다. 상기 임피던스 매칭 회로는 플라즈마 전원 공급부(140)로부터 제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d) 각각에 공급되는 플라즈마 전원의 부하 임피던스와 소스 임피던스를 정합시킨다. 이러한 임피던스 매칭 회로는 가변 커패시터 및 가변 인덕터 중 적어도 하나로 구성되는 적어도 2개의 임피던스 소자(미도시)로 이루어질 수 있다.
전술한 제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d) 각각은 전원 전극(250)에 공급되는 플라즈마 전원에 따라 제 1 가스 분사 공간(S1)에 플라즈마 방전을 발생시켜 제 1 가스 분사 공간(S1)의 제 1 가스(G1)를 활성화하여 하향 분사함과 동시에 가스 홀 패턴 부재(230)를 통해 제 2 가스 분사 공간(S2)의 제 2 가스(G2)를 소정의 압력으로 하향 분사한다.
이상과 같이, 본 발명은 플라즈마 방전 공간이, 종래와 같이 전원 전극과 기판 사이의 영역에 형성되는 것이 아니라, 서로 마주하는 전원 전극과 접지 전극 사이에서 형성된다. 따라서, 본 발명에 따르면, 플라즈마 방전 공간이 상기 기판 지지부(120)에 의해 지지되는 기판(W) 상의 박막 형성 영역과 오버랩되지 않기 때문에, 플라즈마 방전에 의해서 기판(W)이 손상되고 기판(W) 상에 증착되는 막질이 떨어지는 문제가 해소될 수 있다.
특히, 도 4에서 알 수 있듯이, 본 발명의 일 실시예에 따르면, 전원 전극(240)과 접지 전극(210b) 사이의 거리(D)보다 전원 전극(240)과 기판(W) 사이의 거리(H)가 더 크도록 함으로써 상기 플라즈마 방전에 의한 문제를 해결할 수 있다. 만약, 전원 전극(240)과 접지 전극(210b) 사이의 거리(D)보다 전원 전극(240)과 기판(W) 사이의 거리(H)를 작게 할 경우, 전원 전극(240)과 기판(W)을 지지하는 기판 지지부(120) 사이에도 플라즈마 방전이 생길 수 있어 플라즈마 방전에 의해서 기판(W)에 악영향을 미칠 수 있다.
또한, 본 발명의 일 실시예에 따르면, 전원 전극(250)과 접지 전극이 기판(W) 면에 대해서 수직 방향으로 돌출되어 있기 때문에, 플라즈마 방전에 의해서 생성되는 양이온 또는 전자가 기판(W) 면으로 이동하지 않고, 기판(W) 면에 평행한 방향인 전원 전극(250) 또는 접지 전극 방향으로 이동하고, 따라서 플라즈마 방전에 의한 기판(W) 영향을 최소화할 수 있다.
이와 같은, 본 발명의 일 실시예에 따른 기판 처리 장치(100)를 이용한 기판 처리 방법은 다음과 같다.
우선, 공정 챔버(110) 내에 복수의 가스 분사 모듈(130a, 130b, 130c, 130d)을 설치하고 기판 지지부(120) 상에 적어도 하나의 기판(W)을 안착시킨다.
다음, 기판(W)이 안착된 기판 지지부(120)를 소정 방향(예를 들어, 시계 반대 방향)으로 회전시키면서 복수 개의 가스 분사 모듈 중 적어도 하나의 가스 분사 모듈을 통해 제 1 가스(G1) 및 제 2 가스(G2)를 기판(W) 상으로 하향 분사하면서 플라즈마 방전을 일으킨다. 이에 따라, 기판 지지부(120)의 회전에 따라 각 가스 분사 모듈(130a, 130b, 130c, 130d)의 하부를 통과하는 각 기판(W) 상에는 가스 분사 모듈로부터 분사되는 제 1 가스(G1)와 제 2 가스(G2)의 상호 반응에 의해 소정의 박막 물질이 증착되게 된다.
이상과 같이, 본 발명의 일 실시예에 따르면, 반응 공간을 공간적으로 분할하도록 배치된 복수의 가스 분사 모듈(130a, 130b, 130c, 130d)을 통해 제 1 가스(G1)와 제 2 가스(G2)를 분사하여 각 기판(W)에 박막을 증착함으로써 박막의 증착 균일도, 증착 속도 및 증착 효율을 향상시키고, 박막의 막질 제어를 용이하게 할 수 있다.
또한, 종래에는 기판 상의 전영역에 소스 가스가 분사되므로 소스 가스의 사용 효율성이 저하되는 반면, 본 발명에 따르면 복수의 가스 분사 모듈(130a, 130b, 130c, 130d)을 사용함으로써 소스 가스의 사용 효율성이 향상될 수 있다.
도 5는 본 발명의 다른 실시예에 따른 기판(W) 위에 배치된 가스 분사 모듈을 나타내는 단면도이고, 도 6은 본 발명의 또 다른 실시예에 따른 기판(W) 위에 배치된 가스 분사 모듈을 나타내는 단면도로서, 도 5 및 도 6은 전원 전극(250)의 돌출 길이가 변경된 것을 제외하고 전술한 도 4와 동일하다. 따라서, 동일한 구성에 대해서는 동일한 도면부호를 부여하였고, 동일한 구성에 대한 반복 설명은 생략하기로 한다.
도 5와 같이, 전원 전극(250)은 접지 전극으로 기능하는 접지 전극 프레임(210)의 측벽(210b)보다 더 많이 돌출되도록 형성될 수도 있고, 도 6과 같이, 전원 전극(250)은 접지 전극으로 기능하는 접지 전극 프레임(210)의 측벽(210b)보다 더 조금 돌출되도록 형성될 수도 있다.
도 5 및 도 6과 같은 구조에서는, 전원 전극(240)과 접지 전극(210b)의 동일 높이 지점 사이의 거리(D1)보다 전원 전극(240)의 끝단과 접지 전극(210b)의 끝단 사이 거리(D2)가 크게 된다. 이 경우, 전원 전극(240)의 끝단과 접지 전극(210b)의 끝단 사이 거리(D2)보다 전원 전극(240)과 기판(W) 사이의 거리(H)가 큰 것이, 상기 플라즈마 방전에 의한 문제 해결을 위해서 바람직할 수 있다.
도 7은 본 발명의 또 다른 실시예에 따른 가스 분사 모듈을 나타내는 단면도로서, 이는 도 4에 도시한 가스 분사 모듈의 제 2 가스 분사 공간(S2)에 전원 전극(450)을 추가로 형성한 것이다. 이하에서는, 상이한 구성에 대해서만 설명하기로 한다.
도 7에서 알 수 있듯이, 본 발명의 또 다른 실시예에 따르면, 제 2 가스 분사 공간(S2)에 전원 전극(450)이 추가로 형성된다. 이를 위해서, 제2 가스 분사 공간(S2)에 연통되면서 상면 플레이트(210a)를 관통하는 절연 부재 지지 홀(215)이 형성되고, 절연 부재(240)가 상기 절연 부재 지지 홀(215)에 삽입된다. 이때, 상기 절연 부재(240)는 제 2 가스 분사 공간(S2)에 연통되는 전극 삽입 홀을 포함하여 구성되어 있어, 전원 전극(450)이 전극 삽입 홀을 관통하여 돌출되어 있다.
이와 같이, 제 2 가스 분사 공간(S2)에 형성되는 전원 전극(450)의 구조는 제 1 가스 분사 공간(S1)에 형성되는 전원 전극(450)의 구조와 동일할 수 있다.
도 8은 본 발명의 또 다른 실시예에 따른 가스 분사 모듈을 나타내는 단면도로서, 이는 도 4에 도시한 가스 분사 모듈의 제 2 가스 분사 공간(S2)에서 가스 홀 패턴 부재(230)를 생략한 것이다. 즉, 가스 홀 패턴 부재(230)에 의해서 전술한 바와 같은 이점을 얻을 수 있지만, 가스 홀 패턴 부재(230)가 반드시 필요한 것은 아니다.
도 9는 본 발명의 또 다른 실시예에 따른 가스 분사 모듈을 나타내는 단면도로서, 이는 도 7에 도시한 가스 분사 모듈의 제 2 가스 분사 공간(S2)에서 가스 홀 패턴 부재(230)를 생략한 것이다.
도 10은 본 발명의 또 다른 실시 예에 따른 기판 처리 장치를 설명하기 위한 도면이고, 도 11 및 도 12는 도 10에 따른 기판 처리 장치를 이용한 기판 처리 공정을 보여주는 공정도이다.
도 10에 도시한 기판 처리 장치에 따르면, 기판 지지부(120)가 소정의 승강기구(미도시)와 연결되어 있어, 상기 승강기구에 의해 상기 기판 지지부(120)가 상승 및 하강할 수 있도록 구성된 것이다. 이와 같은 기판 지지부(120)를 승강시키는 승강기구는 당업계에 공지된 다양한 기구를 이용할 수 있다.
이하에서는, 전술한 실시예들과 상이한 구성에 대해서만 설명하기로 한다.
도 10에 도시한 기판 처리 장치에 따르면, 상기 기판 지지부(120)가 상승 및 하강할 수 있도록 구성되어 있기 때문에, 도 11 및 도 12에서 알 수 있듯이, 전원 전극(250)과 기판(W) 사이의 거리(H)를 용이하게 조절할 수 있다.
따라서, 도 11에서와 같이, 승강기구에 의해 상기 기판 지지부(120)를 상승시킴으로써 전원 전극(250)과 접지 전극(210b) 사이의 거리(D)보다 전원 전극(250)과 기판(W) 사이의 거리가 더 작도록 할 수 있다. 이 경우, 전원 전극(250)과 기판 지지부(120) 사이에서도 플라즈마 방전이 발생할 수 있고, 따라서, 플라즈마 방전 공간이 상기 기판 지지부(120)에 의해 지지되는 기판(W) 상의 박막 형성 영역과 오버랩될 수 있다. 이와 같이 플라즈마 방전 공간이 기판(W) 상의 박막 형성 영역과 오버랩되는 경우, 플라즈마 방전에 의해서 기판(W) 면이 영향을 받게 된다.
한편, 증착 공정 전 세정 공정(Precleaning)은 기판(W) 상에 형성된 불필요한 물질을 제거하는 공정으로서, 이와 같은 증착 공정 전 세정 공정을 상기와 같은 플라즈마 방전 공간이 기판(W) 상의 박막 형성 영역과 오버랩된 상태에서 수행할 경우, 오히려 세정 공정 효율이 향상될 수 있다. 따라서, 본 발명의 다른 실시예에서는, 플라즈마 방전 공간이 기판(W) 상의 박막 형성 영역과 오버랩되도록 한 상태에서, 증착 전 세정 공정 또는 기판(W)의 표면 거칠기를 향상시키기 위한 공정 등을 수행할 수 있도록 한 것이다.
승강기구에 의해 상기 기판 지지부(120)를 상승시킴으로써 전원 전극(250)과 기판(W) 사이의 거리를 줄이면 박막 증착 속도는 증가할 수 있다. 따라서, 비록, 증착 전 세정 공정 또는 기판(W)의 표면 거칠기를 향상시키기 위한 공정이 아니라 하더라도, 플라즈마에 의한 영향이 적은 박막 형성 공정의 경우도 상기와 같은 플라즈마 방전 공간이 기판(W) 상의 박막 형성 영역과 오버랩되도록 한 상태에서 수행할 수도 있다.
도 12의 경우는, 승강기구에 의해 상기 기판 지지부(120)를 하강시킴으로써 전원 전극(250)과 접지 전극(210b) 사이의 거리(D)보다 전원 전극(250)과 기판(W) 사이의 거리가 더 크도록 한 것이다. 이 경우, 플라즈마 방전 공간이 상기 기판 지지부(120)에 의해 지지되는 기판(W) 상의 박막 형성 영역과 오버랩되지 않게 되고, 따라서, 플라즈마 방전에 의한 악영향 없이 기판(W) 상에 박막 증착 공정을 수행할 수 있다.
도 13은 본 발명의 또 다른 실시예에 따른 가스 분사 모듈을 나타내는 단면도이다.
도 2, 도 10 및 도 13을 참조하면, 본 발명의 또 다른 실시예에 따르면, 반응 가스 및 소스 가스가 서로 공간적으로 분리되어 마련된 제 1 가스 분사 공간(S1) 및 제 2 가스 분사 공간(S2)에서 개별적으로 분사되므로 반응 가스 및 소스 가스에 대한 개별적인 제어가 가능하다.
특히, 본 발명의 또 다른 실시예는 상기 기판 지지부(120)의 회전속도를 제어하거나 또는 상기 가스 분사 모듈(130a, 130b, 130c, 130d)과 기판 지지부(120) 사이의 간격을 제어함으로써, 상기 반응 가스와 소스 가스의 거동을 제어하여 적층되는 박막층의 막질 및 적층되는 박막층의 증착속도 등을 용이하게 조절할 수 있다. 이에 대해서 구체적으로 설명하면 다음과 같다.
우선, 상기 가스 분사 모듈(130a, 130b, 130c, 130d)과 기판 지지부(120) 사이의 간격을 고정한 상태에서 상기 기판 지지부(120)의 회전속도를 제어함으로써, 상기 반응 가스와 소스 가스의 거동을 제어하여 적층되는 박막층의 막질 및 적층되는 박막층의 증착속도 등을 조절하는 방법을 하기 표 1을 참조하여 설명하기로 한다.
표 1
회전속도 증착속도 가스 거동 박막층 막질
제1 회전속도(빠름) 빠름 반응가스와 소스가스가 반응하여 증착됨
제2 회전속도(느림) 느림 반응가스와 소스가스가 순차적으로 적층되면서 증착됨
제3 회전속도(중간) 중간 일부는 반응하여 증착되고, 나머지는 별도의 적층되면서 증착됨
위의 표 1에서 알 수 있듯이, 상대적으로 빠른 제1 회전속도로 상기 기판 지지부(120)를 회전시키게 되면 제1 가스(반응 가스)와 제2 가스(소스 가스)가 반응하여 기판(W) 상에 박막층이 증착된다. 즉, 상대적으로 빠른 제1 회전속도로 상기 기판 지지부(120)를 회전시키게 되면 증착속도는 빨라지지만 일반적인 CVD 공정과 유사하게 박막층의 막질은 떨어지게 된다.
상대적으로 느린 제2 회전속도로 상기 기판 지지부(120)를 회전시키게 되면 제1 가스(반응 가스)와 제2 가스(소스 가스)가 기판(W) 상에 순차적으로 적층되면서 박막층이 증착된다. 즉, 상대적으로 느린 제2 회전속도로 상기 기판 지지부(120)를 회전시키게 되면 증착속도는 느려지지만 일반적인 ALD 공정과 유사하게 박막층의 막질은 우수하게 된다.
상기 제1 회전속도보다는 작고 상기 제2 회전속도보다는 큰 제3 회전속도로 상기 기판 지지부(120)를 회전시키게 되면 제1 가스(반응 가스)와 제2 가스(소스 가스)의 일부는 반응하여 기판(W) 상에 박막층이 증착되고 제1 가스(반응 가스)와 제2 가스(소스 가스)의 나머지는 기판(W) 상에 순차적으로 적층되면서 박막층이 증착될 수 있다. 즉, 상대적으로 중간인 제3 회전속도로 상기 기판 지지부(120)를 회전시키게 되면 증착속도는 중간이면서 일반적인 CVD 공정 및 ALD 공정의 조합과 유사한 박막층의 막질을 얻을 수 있다.
따라서, 본 발명의 또 다른 실시예에 따르면, 상기 기판 지지부(120)의 회전속도를 제어함으로써, 적층되는 박막층의 막질 및 적층되는 박막층의 증착속도를 용이하게 조절할 수 있고, 따라서, 증착해야 하는 박막의 특성을 고려하여 상기 기판 지지부(120)의 회전속도를 결정할 수 있다.
다음, 상기 기판 지지부(120)의 회전속도를 고정한 상태에서 상기 가스 분사 모듈(130a, 130b, 130c, 130d)과 기판 지지부(120) 사이의 간격(도 4의 H 참조)을 제어함으로써, 상기 반응 가스와 소스 가스의 거동을 제어하여 적층되는 박막층의 막질 및 적층되는 박막층의 증착속도 등을 조절하는 방법을 하기 표 2를 참조하여 설명하기로 한다.
표 2
간격 증착속도 가스 거동 박막층 막질
제1 간격(큼) 느림 반응가스와 소스가스가 반응하여 증착됨
제2 간격(작음) 빠름 반응가스와 소스가스가 순차적으로 적층되면서 증착됨
제3 간격(중간) 중간 일부는 반응하여 증착되고, 나머지는 별도의 적층되면서 증착됨
위의 표 2에서 알 수 있듯이, 상대적으로 큰 제1 간격으로 상기 가스 분사 모듈(130a, 130b, 130c, 130d)과 기판 지지부(120) 사이의 간격(도 13의 L 참조)을 설정하게 되면 제1 가스(반응 가스)와 제2 가스(소스 가스)가 반응하여 기판(W) 상에 박막층이 증착된다. 즉, 상대적으로 큰 제1 간격으로 설정하면 증착속도는 느려지고 일반적인 CVD 공정과 유사하게 박막층의 막질은 떨어지게 된다.
상대적으로 작은 제2 간격으로 상기 가스 분사 모듈(130a, 130b, 130c, 130d)과 기판 지지부(120) 사이의 간격(도 13의 L 참조)을 설정하게 되면 제1 가스(반응 가스)와 제2 가스(소스 가스)가 기판(W) 상에 순차적으로 적층되면서 박막층이 증착된다. 즉, 상대적으로 작은 제2 간격으로 설명하게 되면 증착속도는 빨라지고 일반적인 ALD 공정과 유사하게 박막층의 막질은 우수하게 된다.
상기 제1 간격보다는 작고 상기 제2 간격보다는 큰 제3 간격으로 설정하게 되면 제1 가스(반응 가스)와 제2 가스(소스 가스)의 일부는 반응하여 기판(W) 상에 박막층이 증착되고 제1 가스(반응 가스)와 제2 가스(소스 가스)의 나머지는 기판(W) 상에 순차적으로 적층되면서 박막층이 증착될 수 있다. 즉, 상대적으로 중간인 제3 간격으로 설정하게 되면 증착속도는 중간이면서 일반적인 CVD 공정 및 ALD 공정의 조합과 유사한 박막층의 막질을 얻을 수 있다.
따라서, 본 발명의 또 다른 실시예에 따르면, 상기 가스 분사 모듈(130a, 130b, 130c, 130d)과 기판 지지부(120) 사이의 간격(도 13의 L 참조)을 제어함으로써, 적층되는 박막층의 막질 및 적층되는 박막층의 증착속도를 용이하게 조절할 수 있고, 따라서, 증착해야 하는 박막의 특성을 고려하여 상기 가스 분사 모듈(130a, 130b, 130c, 130d)과 기판 지지부(120) 사이의 간격(도 13의 L 참조)을 결정할 수 있다.
결국, 본 발명의 또 다른 실시예에 따르면, 기판 지지부(120)의 회전속도와 상기 가스 분사 모듈(130a, 130b, 130c, 130d)과 기판 지지부(120) 사이의 간격(도 13의 L 참조)을 함께 제어함으로써, 박막층의 막질 및 적층되는 박막층의 증착속도를 용이하게 조절할 수 있게 된다.
또한, 본 발명의 또 다른 실시예에 따르면, 플라즈마 방전 공간이, 종래와 같이 전원 전극과 기판 사이의 영역에 형성되는 것이 아니라, 서로 마주하는 전원 전극과 접지 전극 사이에서 형성되어 있어 플라즈마 방전에 의한 기판(W) 손상이 방지될 수 있다. 또한, 본 발명의 또 다른 실시예에 따르면, 전원 전극(250)과 접지 전극이 기판(W) 면에 대해서 수직 방향으로 연장되어 있기 때문에, 플라즈마 방전에 의해서 생성되는 양이온 또는 전자가 기판(W) 면으로 이동하지 않고, 기판(W) 면에 평행한 방향인 전원 전극(250) 또는 접지 전극 방향으로 이동하고, 따라서 플라즈마 방전에 의한 기판(W) 영향을 최소화할 수 있다.
이와 같은, 본 발명의 또 다른 실시예에 따른 기판 처리 장치(100)를 이용한 기판 처리 방법은 다음과 같다.
공정 챔버(110) 내에 복수의 가스 분사 모듈(130a, 130b, 130c, 130d)을 설치하고 기판 지지부(120) 상에 적어도 하나의 기판(W)을 안착시킨다.
그 후, 상기 가스 분사 모듈(130a, 130b, 130c, 130d)과 상기 기판 지지부(120) 사이의 간격을 결정하고 상기 기판 지지부(120)를 승강시켜 상기 간격을 맞춘다. 상기 가스 분사 모듈(130a, 130b, 130c, 130d)과 상기 기판 지지부(120) 사이의 간격을 결정하는 공정은 상기 기판(W)을 안착시키기 전에 미리 수행할 수도 있다.
이때, 상기 가스 분사 모듈(130a, 130b, 130c, 130d)과 상기 기판 지지부(120) 사이의 간격(L)을 결정하는 공정은, 전술한 바와 같이 형성되어야 할 박막층의 특성에 맞춰서 수행한다. 구체적으로, 제1 가스(반응 가스)와 제2 가스(소스 가스)가 서로 반응하여 기판 상에 박막층을 증착함으로써 CVD와 유사한 막질의 박막층을 형성할 경우에는, 상기 간격(L)으로서 상대적으로 간격이 큰 제1 간격으로 결정한다. 또한, 제1 가스(반응 가스)와 제2 가스(소스 가스)가 기판 상에 순차적으로 적층되면서 박막층을 증착함으로써 ALD와 유사한 막질의 박막층을 형성할 경우에는, 상기 간격(L)으로서 상대적으로 간격이 작은 제2 간격으로 결정한다. 또한, 제1 가스(반응 가스)와 제2 가스(소스 가스)의 일부는 서로 반응하여 기판 상에 박막층을 증착하고 제1 가스(반응 가스)와 제2 가스(소스 가스)의 나머지는 기판 상에 순차적으로 적층되면서 박막층을 증착함으로써 CVD 및 ALD의 조합과 유사한 막질의 박막층을 형성할 경우에는, 상기 간격(L)으로서 상기 제1 간격보다 작고 상기 제2 간격보다 큰 제3 간격으로 결정한다.
다음, 상기 기판 지지부(120)의 회전속도를 결정하고 결정한 회전속도에 따라 상기 기판 지지부(120)를 회전시킨다.
이때, 상기 기판 지지부(120)의 회전속도를 결정하는 공정은, 전술한 바와 같이 형성되어야 할 박막층의 특성에 맞춰서 수행한다. 구체적으로, 제1 가스(반응 가스)와 제2 가스(소스 가스)가 서로 반응하여 기판 상에 박막층을 증착함으로써 CVD와 유사한 막질의 박막층을 형성할 경우에는, 상기 회전속도로서 상대적으로 속도가 큰 제1 회전속도로 결정한다. 또한, 제1 가스(반응 가스)와 제2 가스(소스 가스)가 기판 상에 순차적으로 적층되면서 박막층을 증착함으로써 ALD와 유사한 막질의 박막층을 형성할 경우에는, 상기 회전속도로서 상대적으로 속도가 작은 제2 회전속도로 결정한다. 또한, 제1 가스(반응 가스)와 제2 가스(소스 가스)의 일부는 서로 반응하여 기판 상에 박막층을 증착하고 제1 가스(반응 가스)와 제2 가스(소스 가스)의 나머지는 기판 상에 순차적으로 적층되면서 박막층을 증착함으로써 CVD 및 ALD의 조합과 유사한 막질의 박막층을 형성할 경우에는, 상기 속도로서 상기 제1 회전속도보다 작고 상기 제2 회전속도보다 큰 제3 회전속도로 결정한다.
다음, 플라즈마 방전을 일으키면서 복수 개의 가스 분사 모듈 중 적어도 하나의 가스 분사 모듈을 통해 제 1 가스(G1) 및 제 2 가스(G2)를 기판(W) 상으로 하향 분사하는 박막 형성 공정을 수행한다. 이에 따라, 전술한 각각의 경우에 따른 박막층이 형성된다.
상기 박막 형성 공정은 제1 박막 형성 공정 및 제2 박막 형성 공정으로 이루어질 수 있다. 이때, 상기 제1 박막 형성 공정과 상기 제2 박막 형성 공정은 서로 상이한 공정 조건에서 수행함으로써 막질이 상이한 제1 박막층과 제2 박막층을 얻을 수 있다.
구체적으로, 상기 제1 박막 형성 공정시의 상기 기판 지지부(120)의 회전속도와 상기 제2 박막 형성 공정시의 상기 기판 지지부(120)의 회전속도를 상이하게 설정할 수도 있고, 상기 제1 박막 형성 공정시의 상기 가스 분사 모듈(130a, 130b, 130c, 130d)과 상기 기판 지지부(120) 사이의 간격과 상기 제2 박막 형성 공정시의 상기 가스 분사 모듈(130a, 130b, 130c, 130d)과 상기 기판 지지부 사이의 간격을 상이하게 설정할 수도 있다.
이때, 상기 제1 박막층과 제2 박막층은 서로 동일한 물질로 이루어질 수도 있고, 서로 상이한 물질로 이루어질 수도 있다.
이상과 같이, 본 발명의 또 다른 실시예에 따르면, 반응 공간을 공간적으로 분할하도록 배치된 복수의 가스 분사 모듈(130a, 130b, 130c, 130d)을 통해 제 1 가스(G1)와 제 2 가스(G2)를 분사하여 각 기판(W)에 박막을 증착함으로써 박막의 증착 균일도, 증착 속도 및 증착 효율을 향상시키고, 박막의 막질 제어를 용이하게 할 수 있다.
또한, 종래에는 기판 상의 전영역에 소스 가스가 분사되므로 소스 가스의 사용 효율성이 저하되는 반면, 본 발명의 또 다른 실시예에 따르면 복수의 가스 분사 모듈(130a, 130b, 130c, 130d)을 사용함으로써 소스 가스의 사용 효율성이 향상될 수 있다.
본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (19)

  1. 공정 챔버;
    적어도 하나의 기판을 지지하도록 상기 공정 챔버 내에 설치되며, 소정 방향으로 회전하도록 구성된 기판 지지부;
    상기 기판 지지부에 대향하면서 상기 공정 챔버의 상부를 덮는 챔버 리드; 및
    상기 챔버 리드에 연결되어 있고, 상기 기판 상에 가스를 분사하는 복수의 가스 분사 모듈을 구비한 가스 분사부를 포함하여 이루어지고,
    이때, 상기 복수의 가스 분사 모듈 각각은 서로 마주하는 전원 전극 및 접지 전극을 포함하여 이루어져 상기 전원 전극과 상기 접지 전극 사이에서 플라즈마 방전 공간이 형성되고, 상기 플라즈마 방전 공간은 상기 기판 지지부에 의해 지지되는 기판 상의 박막 형성 영역과 오버랩되지 않는 것을 특징으로 하는 기판 처리 장치.
  2. 제1항에 있어서,
    상기 전원 전극과 상기 접지 전극 사이의 거리보다 상기 전원 전극과 상기 기판 사이의 거리가 더 큰 것을 특징으로 하는 기판 처리 장치.
  3. 제2항에 있어서,
    상기 전원 전극과 상기 접지 전극 사이의 거리는 상기 전원 전극의 끝단과 상기 접지 전극의 끝단 사이의 거리인 것을 특징으로 하는 기판 처리 장치.
  4. 공정 챔버;
    적어도 하나의 기판을 지지하도록 상기 공정 챔버 내에 설치되며, 소정 방향으로 회전하도록 구성된 기판 지지부;
    상기 기판 지지부에 대향하면서 상기 공정 챔버의 상부를 덮는 챔버 리드; 및
    상기 챔버 리드에 연결되어 있고, 상기 기판 상에 가스를 분사하는 복수의 가스 분사 모듈을 구비한 가스 분사부를 포함하여 이루어지고,
    이때, 상기 복수의 가스 분사 모듈 각각은 서로 마주하는 전원 전극 및 접지 전극을 포함하여 이루어져 상기 전원 전극과 상기 접지 전극 사이에서 플라즈마 방전 공간이 형성되고,
    상기 기판 지지부는 소정의 승강기구와 연결되어 있어, 상기 승강기구에 의해 상기 기판 지지부가 하강할 경우에는 상기 플라즈마 방전 공간이 상기 기판 지지부에 의해 지지되는 기판 상의 박막 형성 영역과 오버랩되지 않고, 상기 승강기구에 의해 상기 기판 지지부가 상승할 경우에는 상기 플라즈마 방전 공간이 상기 기판 지지부에 의해 지지되는 기판 상의 박막 형성 영역과 오버랩되는 것을 특징으로 하는 기판 처리 장치.
  5. 제4항에 있어서,
    상기 기판 지지부가 하강할 경우에는 상기 전원 전극과 상기 접지 전극 사이의 거리보다 상기 전원 전극과 상기 기판 사이의 거리가 더 크고,
    상기 기판 지지부가 상승할 경우에는 상기 전원 전극과 상기 접지 전극 사이의 거리보다 상기 전원 전극과 상기 기판 사이의 거리가 더 작은 것을 특징으로 하는 기판 처리 장치.
  6. 제5항에 있어서,
    상기 전원 전극과 상기 접지 전극 사이의 거리는 상기 전원 전극의 끝단과 상기 접지 전극의 끝단 사이의 거리인 것을 특징으로 하는 기판 처리 장치.
  7. 제1항 또는 제4항에 있어서,
    상기 플라즈마 방전에 의해 형성된 양성자 및 전자가 상기 기판 면과 수평 방향으로 이동할 수 있도록, 상기 전원 전극 및 접지 전극은 상기 기판 면과 수직 방향으로 돌출 형성되어 있는 것을 특징으로 하는 기판 처리 장치.
  8. 제1항 또는 제4항에 있어서,
    상기 복수의 가스 분사 모듈 각각은, 서로 공간적으로 분리되어 마련된 제 1 가스를 분사하는 제 1 가스 분사 공간 및 제 2 가스를 분사하는 제 2 가스 분사 공간을 포함하여 이루어지고,
    상기 제1 가스 분사 공간에 상기 전원 전극과 상기 접지 전극이 형성되어 있는 것을 특징으로 하는 기판 처리 장치.
  9. 제8항에 있어서,
    상기 제 2 가스 분사 공간에는 상기 제 1 가스 분사 공간으로부터 분사되는 상기 제 1 가스가 상기 제 2 가스 분사 공간으로 흐르는 것을 방지하는 가스 홀 패턴 부재가 추가로 형성되어 있는 것을 특징으로 하는 기판 처리 장치.
  10. 제8항에 있어서,
    상기 제 2 가스 분사 공간에 별도의 전원 전극과 접지 전극이 추가로 형성되어 있는 것을 특징으로 하는 기판 처리 장치.
  11. 공정 챔버 내에 복수의 가스 분사 모듈을 설치하고 기판 지지부 상에 적어도 하나의 기판을 안착시키는 공정;
    상기 기판 지지부를 회전시키는 공정; 및
    상기 복수의 가스 분사 모듈 중 적어도 하나의 가스 분사 모듈에서 상기 기판 상으로 가스를 분사하면서 플라즈마 방전을 일으키는 공정을 포함하여 이루어지고,
    이때, 복수의 가스 분사 모듈 각각은 서로 마주하는 전원 전극 및 접지 전극을 포함하여 이루어져 상기 전원 전극과 상기 접지 전극 사이에서 플라즈마 방전 공간이 형성되고, 상기 플라즈마 방전 공간은 상기 기판 지지부에 안착된 기판 상의 박막 형성 영역과 오버랩되지 않는 것을 특징으로 하는 기판 처리 방법.
  12. 제11항에 있어서,
    상기 플라즈마 방전은, 상기 전원 전극과 상기 접지 전극 사이의 거리보다 상기 전원 전극과 상기 기판 사이의 거리가 더 큰 상태에서 수행하는 것을 특징으로 하는 기판 처리 방법.
  13. 제12항에 있어서,
    상기 전원 전극과 상기 접지 전극 사이의 거리는 상기 전원 전극의 끝단과 상기 접지 전극의 끝단 사이의 거리인 것을 특징으로 하는 기판 처리 방법.
  14. 공정 챔버 내에 복수의 가스 분사 모듈을 설치하고 기판 지지부 상에 적어도 하나의 기판을 안착시키는 공정;
    상기 기판 지지부를 회전시키는 공정;
    상기 복수의 가스 분사 모듈 중 적어도 하나의 가스 분사 모듈에서 상기 기판 상으로 제1 가스를 분사하면서 제1 플라즈마 방전을 일으키는 공정; 및
    상기 복수의 가스 분사 모듈 중 적어도 하나의 가스 분사 모듈에서 상기 기판 상으로 제2 가스를 분사하면서 제2 플라즈마 방전을 일으키는 공정을 포함하여 이루어지고,
    이때, 상기 제1 플라즈마 방전 공정은 플라즈마 방전 공간이 상기 기판 지지부에 안착된 기판 상의 박막 형성 영역과 오버랩된 상태에서 수행하고,
    상기 제2 플라즈마 방전 공정은 플라즈마 방전 공간이 상기 기판 지지부에 안착된 기판 상의 박막 형성 영역과 오버랩되지 않은 상태에서 수행하는 것을 특징으로 하는 기판 처리 방법.
  15. 제14항에 있어서,
    상기 제1 플라즈마 방전 공정은 상기 기판 지지부를 상승시켜 상기 전원 전극과 상기 접지 전극 사이의 거리보다 상기 전원 전극과 상기 기판 사이의 거리가 더 작은 상태에서 수행하고,
    상기 제2 플라즈마 방전 공정은 상기 기판 지지부를 하강시켜 상기 전원 전극과 상기 접지 전극 사이의 거리보다 상기 전원 전극과 상기 기판 사이의 거리가 더 큰 상태에서 수행하는 것을 특징으로 하는 기판 처리 방법.
  16. 제15항에 있어서,
    상기 전원 전극과 상기 접지 전극 사이의 거리는 상기 전원 전극의 끝단과 상기 접지 전극의 끝단 사이의 거리인 것을 특징으로 하는 기판 처리 방법.
  17. 제14항에 있어서,
    상기 제1 플라즈마 방전 공정은 증착 공정 전 세정 공정으로 이루어지고, 상기 제2 플라즈마 방전 공정은 증착 공정으로 이루어진 것을 특징으로 하는 기판 처리 방법.
  18. 공정 챔버;
    적어도 하나의 기판을 지지하도록 상기 공정 챔버 내에 설치되며, 소정 방향으로 회전하며 그 회전속도가 변경될 수 있도록 구성된 기판 지지부;
    상기 기판 지지부에 대향하면서 상기 공정 챔버의 상부를 덮는 챔버 리드; 및
    상기 챔버 리드에 연결되어 있고, 상기 기판 상에 가스를 분사하는 복수의 가스 분사 모듈을 구비한 가스 분사부를 포함하여 이루어지고,
    이때, 복수의 가스 분사 모듈 각각은 서로 공간적으로 분리되어 마련된 제 1 가스를 분사하는 제 1 가스 분사 공간 및 제 2 가스를 분사하는 제 2 가스 분사 공간을 포함하여 이루어지고,
    상기 기판 지지부는 소정의 승강기구와 연결되어 승강하도록 구성되어 있어서 상기 가스 분사 모듈과 상기 기판 지지부 사이의 간격이 변경될 수 있는 것을 특징으로 하는 기판 처리 장치.
  19. 공정 챔버 내에 복수의 가스 분사 모듈을 설치하고 기판 지지부 상에 적어도 하나의 기판을 안착시키는 공정;
    상기 가스 분사 모듈과 상기 기판 지지부 사이의 간격을 결정하고 상기 기판 지지부를 승강시켜 상기 간격을 맞추는 공정;
    상기 기판 지지부의 회전속도를 결정하고 결정한 회전속도에 따라 상기 기판 지지부를 회전시키는 공정; 및
    상기 복수의 가스 분사 모듈 중 적어도 하나의 가스 분사 모듈에서 상기 기판 상으로 가스를 분사하여 박막층을 형성하는 박막 형성 공정을 포함하여 이루어지고,
    이때, 복수의 가스 분사 모듈 각각은 서로 공간적으로 분리되어 마련된 제 1 가스를 분사하는 제 1 가스 분사 공간 및 제 2 가스를 분사하는 제 2 가스 분사 공간을 포함하여 이루어져, 상기 박막 형성 공정시 상기 제1 가스와 상기 제2 가스에 의해서 상기 박막층이 형성되는 것을 특징으로 하는 기판 처리 방법.
PCT/KR2013/004679 2012-05-29 2013-05-28 기판 처리 장치 및 기판 처리 방법 WO2013180453A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380029010.1A CN104380435B (zh) 2012-05-29 2013-05-28 基板加工装置及基板加工方法
US14/404,448 US9748077B2 (en) 2012-05-29 2013-05-28 Substrate processing device and substrate processing method
US15/665,388 US10504701B2 (en) 2012-05-29 2017-07-31 Substrate processing device and substrate processing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0057041 2012-05-29
KR1020120057041A KR102029952B1 (ko) 2012-05-29 2012-05-29 기판 처리 장치 및 기판 처리 방법
KR10-2012-0057045 2012-05-30
KR1020120057045A KR101987138B1 (ko) 2012-05-30 2012-05-30 기판 처리 장치 및 기판 처리 방법

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/404,448 A-371-Of-International US9748077B2 (en) 2012-05-29 2013-05-28 Substrate processing device and substrate processing method
US15/665,388 Division US10504701B2 (en) 2012-05-29 2017-07-31 Substrate processing device and substrate processing method

Publications (1)

Publication Number Publication Date
WO2013180453A1 true WO2013180453A1 (ko) 2013-12-05

Family

ID=49673588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004679 WO2013180453A1 (ko) 2012-05-29 2013-05-28 기판 처리 장치 및 기판 처리 방법

Country Status (4)

Country Link
US (2) US9748077B2 (ko)
CN (2) CN104380435B (ko)
TW (2) TWI582265B (ko)
WO (1) WO2013180453A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6846964B2 (ja) * 2017-03-16 2021-03-24 株式会社Screenホールディングス 基板処理装置
KR102155281B1 (ko) * 2017-07-28 2020-09-11 주성엔지니어링(주) 기판처리장치의 가스분사장치, 기판처리장치, 및 기판처리방법
KR102515110B1 (ko) * 2018-01-29 2023-03-28 주성엔지니어링(주) 기판처리장치
TWI834658B (zh) * 2018-04-20 2024-03-11 南韓商周星工程股份有限公司 用於處理基板的設備
KR102670124B1 (ko) * 2018-05-03 2024-05-28 주성엔지니어링(주) 기판 처리 장치
US20190376184A1 (en) * 2018-06-12 2019-12-12 Lam Research Corporation Chemical vapor deposition shower head for uniform gas distribution
US11898248B2 (en) 2019-12-18 2024-02-13 Jiangsu Favored Nanotechnology Co., Ltd. Coating apparatus and coating method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090008799A (ko) * 2007-07-19 2009-01-22 주식회사 아이피에스 박막증착장치, 박막증착방법 및 반도체 소자의 갭-필 방법
KR20090028414A (ko) * 2007-09-13 2009-03-18 가부시키가이샤 소쿠도 기판처리장치 및 기판처리방법
KR20090078978A (ko) * 2008-01-16 2009-07-21 (주)소슬 플라즈마 처리장치
KR20100013148A (ko) * 2008-07-30 2010-02-09 램 리써치 코포레이션 기판 처리 장치 및 기판 처리 방법
KR101039524B1 (ko) * 2010-02-19 2011-06-09 주성엔지니어링(주) 플라즈마 처리 장치

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6083355A (en) * 1997-07-14 2000-07-04 The University Of Tennessee Research Corporation Electrodes for plasma treater systems
JP4212210B2 (ja) 1999-12-07 2009-01-21 株式会社小松製作所 表面処理装置
DE10060002B4 (de) * 1999-12-07 2016-01-28 Komatsu Ltd. Vorrichtung zur Oberflächenbehandlung
DE10134513A1 (de) * 2001-07-16 2003-01-30 Unaxis Balzers Ag Hebe-und Stützvorichtung
JP4121269B2 (ja) * 2001-11-27 2008-07-23 日本エー・エス・エム株式会社 セルフクリーニングを実行するプラズマcvd装置及び方法
KR100965758B1 (ko) * 2003-05-22 2010-06-24 주성엔지니어링(주) 액정표시장치용 플라즈마 강화 화학기상증착 장치의샤워헤드 어셈블리
JP2005125746A (ja) * 2003-09-30 2005-05-19 Ricoh Co Ltd 基板成形用金型装置、ディスク基板及び基板成形製造方法
JP4378301B2 (ja) * 2005-02-28 2009-12-02 東京エレクトロン株式会社 基板処理装置及び基板処理方法及び基板処理プログラム
JP4745920B2 (ja) * 2006-08-28 2011-08-10 三菱重工業株式会社 放電電極、薄膜製造装置、及び太陽電池の製造方法
KR100963291B1 (ko) * 2008-02-22 2010-06-11 주식회사 유진테크 기판처리장치 및 기판처리방법
KR101562327B1 (ko) * 2008-07-08 2015-10-22 주성엔지니어링(주) 가스분배판 및 이를 포함하는 기판처리장치
KR101497413B1 (ko) 2008-08-28 2015-03-02 주식회사 뉴파워 프라즈마 용량 결합 플라즈마 반응기 및 이를 이용한 플라즈마 처리 방법 및 이것에 의해 제조된 반도체 장치
KR101031315B1 (ko) * 2008-09-17 2011-04-29 에이피시스템 주식회사 기판 처리 시스템
US8851012B2 (en) 2008-09-17 2014-10-07 Veeco Ald Inc. Vapor deposition reactor using plasma and method for forming thin film using the same
CN102239543A (zh) * 2009-03-03 2011-11-09 周星工程股份有限公司 气体分配装置及具有其的基板处理装置
WO2010131758A1 (ja) * 2009-05-12 2010-11-18 日本電気株式会社 モデル検証システム、モデル検証方法および記録媒体
JP5648349B2 (ja) 2009-09-17 2015-01-07 東京エレクトロン株式会社 成膜装置
JP5570528B2 (ja) * 2009-11-20 2014-08-13 京セラ株式会社 堆積膜形成装置
KR101561013B1 (ko) 2009-12-22 2015-10-14 주식회사 원익아이피에스 기판처리장치
KR20110076115A (ko) * 2009-12-29 2011-07-06 주식회사 케이씨텍 가스분사 유닛 및 이를 구비하는 원자층 증착장치
KR20110077743A (ko) 2009-12-30 2011-07-07 주식회사 케이씨텍 다성분 박막의 증착을 위한 원자층 증착장치
KR101693673B1 (ko) * 2010-06-23 2017-01-09 주성엔지니어링(주) 가스분배수단 및 이를 포함한 기판처리장치
KR101697970B1 (ko) 2010-07-29 2017-01-19 주성엔지니어링(주) 플라즈마 처리 장치 및 이를 이용한 챔버 세정 방법
CN103201408A (zh) * 2010-11-05 2013-07-10 思诺斯技术公司 具有多个等离子体室的游离基反应器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090008799A (ko) * 2007-07-19 2009-01-22 주식회사 아이피에스 박막증착장치, 박막증착방법 및 반도체 소자의 갭-필 방법
KR20090028414A (ko) * 2007-09-13 2009-03-18 가부시키가이샤 소쿠도 기판처리장치 및 기판처리방법
KR20090078978A (ko) * 2008-01-16 2009-07-21 (주)소슬 플라즈마 처리장치
KR20100013148A (ko) * 2008-07-30 2010-02-09 램 리써치 코포레이션 기판 처리 장치 및 기판 처리 방법
KR101039524B1 (ko) * 2010-02-19 2011-06-09 주성엔지니어링(주) 플라즈마 처리 장치

Also Published As

Publication number Publication date
TWI582265B (zh) 2017-05-11
TW201404929A (zh) 2014-02-01
CN104380435B (zh) 2018-04-06
TWI623648B (zh) 2018-05-11
US10504701B2 (en) 2019-12-10
CN108277478A (zh) 2018-07-13
US9748077B2 (en) 2017-08-29
TW201718936A (zh) 2017-06-01
CN108277478B (zh) 2020-03-20
US20170330733A1 (en) 2017-11-16
CN104380435A (zh) 2015-02-25
US20150235812A1 (en) 2015-08-20

Similar Documents

Publication Publication Date Title
WO2013180453A1 (ko) 기판 처리 장치 및 기판 처리 방법
WO2013180451A1 (ko) 기판 처리 장치 및 기판 처리 방법
WO2014104751A1 (ko) 기판 처리 장치
WO2014030973A1 (ko) 기판 처리 장치 및 기판 처리 방법
WO2013095030A1 (ko) 기판 처리 장치 및 기판 처리 방법
WO2013180452A1 (ko) 기판 처리 장치 및 기판 처리 방법
WO2013147481A1 (ko) 선택적 에피택셜 성장을 위한 장치 및 클러스터 설비
WO2015016526A1 (ko) 기판 처리 장치
WO2017030414A1 (ko) 기판 처리 장치 및 기판 처리 방법
WO2017131404A1 (ko) 기판처리장치
WO2014007572A1 (ko) 기판 처리 장치
KR101954758B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR101929481B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR20130134291A (ko) 기판 처리 장치 및 기판 처리 방법
KR101987138B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR102046391B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR102029952B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR102066414B1 (ko) 기판 처리 장치
KR101995717B1 (ko) 기판 처리 장치
KR20130097425A (ko) 기판 처리 장치 및 이를 이용한 기판 처리 방법
KR101977917B1 (ko) 기판 처리 장치 및 기판 처리 방법
WO2015034208A1 (ko) 적층형 원자층 증착 장치 및 방법
KR20190051929A (ko) 기판 처리 장치
WO2022080656A1 (ko) 기판처리장치
WO2021002605A1 (ko) 기판처리장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797372

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14404448

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13797372

Country of ref document: EP

Kind code of ref document: A1