WO2015034208A1 - 적층형 원자층 증착 장치 및 방법 - Google Patents
적층형 원자층 증착 장치 및 방법 Download PDFInfo
- Publication number
- WO2015034208A1 WO2015034208A1 PCT/KR2014/008050 KR2014008050W WO2015034208A1 WO 2015034208 A1 WO2015034208 A1 WO 2015034208A1 KR 2014008050 W KR2014008050 W KR 2014008050W WO 2015034208 A1 WO2015034208 A1 WO 2015034208A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- process chamber
- substrate
- atomic layer
- layer deposition
- chamber
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45565—Shower nozzles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/4412—Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45544—Atomic layer deposition [ALD] characterized by the apparatus
- C23C16/45546—Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
Definitions
- the present invention relates to a vapor deposition reactor and a method for forming a thin film using the same, and in particular, in an atomic layer deposition (ALD), a unit process chamber for an atomic layer deposition process capable of separating and combining upper and lower layers is laminated.
- ALD atomic layer deposition
- the present invention relates to a stacked atomic layer deposition apparatus and method arranged in plural.
- a method of depositing a thin film having a predetermined thickness on a substrate such as a semiconductor substrate or glass includes physical vapor deposition (PVD) using physical collision, such as sputtering, and chemical reaction using a chemical reaction.
- PVD physical vapor deposition
- CVD chemical vapor deposition
- This atomic layer deposition method is similar to the general chemical vapor deposition method in that it uses a chemical reaction between gas molecules. However, unlike conventional CVD in which a plurality of gas molecules are simultaneously injected into a process chamber to deposit a reaction product generated on a substrate, an atomic layer deposition method is heated by injecting a gas containing one source material into the process chamber. The difference is that the product is deposited by chemical reaction between the source materials at the substrate surface by chemisorbing to the substrate and then injecting a gas containing another source material into the process chamber.
- the atomic layer deposition method described above is a thin film encapsulation of an AMOLED display, a barrier film of a flexible substrate, a solar buffer layer, and a high-k dielectric material for a high-k capacitor for semiconductors. Or aluminum (Al), copper (Cu) wiring diffusion barrier (TiN, TaN, etc.).
- a single-sheet, batch-type, and scan-type small reactor which has been used in plasma enhanced chemical vapor deposition (PECVD), is transported on a substrate or vice versa.
- PECVD plasma enhanced chemical vapor deposition
- the single sheet method is a process proceeds after the input of one substrate, the moving susceptor for the import / export and heating of the substrate, the diffuser (mainstream showerhead type) for the process gas input and exhaust.
- the chamber is very thick to prevent deformation of the process chamber and the periphery according to the external atmospheric pressure during vacuum formation. Since there is an enormous increase in productivity, there is a problem in that the productivity is significantly reduced due to the rapid increase in the consumption of the raw material precursor and the reaction precursor, the increase in the maintenance cost, and the increase in the process time due to the increase in the adsorption-purge-reaction-purge time.
- the batch-type method of simultaneously processing a plurality of substrates is applied to a plurality of substrates in order to solve the increase in maintenance cost and low productivity due to the large volume of the precursor precursor and the reaction precursor due to the large volume of the conventional atomic layer deposition equipment.
- the process is carried out simultaneously.
- this batch type is partially applied to the solar cell process, there is a problem of simultaneous film formation not only on the front side of the substrate but also on the back side, the uniformity and reproducibility of the thin film on a plurality of substrates, and when the chamber is contaminated, the entire ultra large chamber is separated and cleaned There is a problem that must be done.
- the scan-type small reactor method is a method in which a plurality of small reactors corresponding to the length of one side of the substrate in the vacuum chamber is disposed so that the substrate or the small reactor is reciprocated to form a film. It is difficult to control the perfect gas flow of a small reactor, and it is difficult to realize a clear separation between the precursor precursor and the reactant precursor, which causes particle issues.
- a plurality of unit process chambers capable of separating and combining the upper and lower parts are arranged in a stacked form, and a separate vacuum forming and pressure control vacuum chamber is implemented on the outside of the plurality of process chambers arranged in the stacked form.
- the present invention as described above is a stacked atomic layer deposition apparatus comprising an upper process chamber and a lower process chamber, the upper process chamber and the lower process chamber is separated when loading or unloading a substrate to be atomic layer deposition process, the substrate During the deposition process for the process, the upper process chamber and the lower process chamber are combined to form a closed reaction space, and at least two or more of the process chambers are stacked in a vertical direction to support the process. It includes a vacuum chamber for maintaining the space in which the chamber is stacked in a vacuum state.
- the upper process chamber is fixed to the vacuum chamber
- the lower process chamber is characterized in that coupled to or separated from the upper process chamber by moving in the vertical direction in the vacuum chamber.
- the upper process chamber may include a gas supply unit that supplies a process gas or purge gas to the sealed reaction space on one side of the upper process chamber, and exhausts the gas supplied to the sealed reaction space. And an exhaust part on the other upper surface of the upper process chamber.
- the gas supply unit characterized in that formed in the outer or central portion on the side or the upper surface of the upper process chamber.
- an electrode for plasma generation is formed on the lower surface of the upper process chamber.
- an electrode for generating plasma may be formed at an introduction portion of the gas supply unit through which the process gas or the purge gas is introduced into the closed reaction space.
- the electrode may be surrounded by an insulator so as to be insulated from the upper process chamber.
- the gas supply unit may include a diffusion space or a shower head diffuser for uniform gas flow in the side or center portion of the upper process chamber, and the process gas or the vertical or horizontal direction to the substrate in the sealed reaction space. It is characterized by injecting a purge gas.
- the vacuum chamber is characterized in that it comprises a guide unit for supporting or carrying in / carrying out by stacking the process chamber in the inner space of the vacuum chamber.
- the vacuum chamber may include fixing means for fixing the upper process chamber and transfer means for moving the lower process chamber up and down.
- the present invention is a stacked atomic layer deposition method, the step of loading a substrate and a mask in the process chamber, and when the substrate and mask is loaded, the upper process chamber and the lower process chamber of the process chamber is combined and sealed reaction Forming a space, and performing an atomic layer deposition process on the substrate in a closed reaction space.
- the stacked atomic layer deposition method is characterized in that when the atomic layer deposition process is completed, the upper process chamber and the lower process chamber is separated, the substrate is unloaded.
- the atomic layer deposition process is characterized in that carried out simultaneously in the two or more process chambers.
- the upper process chamber is fixed to the vacuum chamber
- the lower process chamber is characterized in that it is coupled to or separated from the upper process chamber by moving vertically in the vacuum chamber.
- the lower process chamber is moved up and down by a conveying means provided in the vacuum chamber, characterized in that separated or combined with the upper process chamber.
- the performing of the atomic layer deposition process may include supplying a raw material precursor to the substrate in the reaction space through a gas supply part formed at one upper surface of the process chamber, and adsorbing the raw material precursor onto the substrate. And exhausting the raw material precursor that has not been adsorbed onto the substrate by supplying purge gas to the substrate through the gas supply unit, and supplying the reaction precursor to the substrate through the gas supply unit after exhausting the raw material precursor.
- At least one of the raw material precursor, the reaction precursor, and the purge gas may be supplied through a gas supply part formed as a diffusion space or a shower head diffuser for uniform gas flow in the side or the center of the upper process chamber, It is characterized in that the injection in the vertical or horizontal direction to the substrate.
- reaction precursor when supplied to the substrate, generating a plasma in the lower surface of the upper process chamber corresponding to the substrate or the inlet connected to the reaction space, and chemical reaction of the reaction precursor and the raw material precursor using the plasma Forming an atomic layer thin film through the reaction is characterized in that it further comprises.
- a plurality of process chambers are stacked inside the vacuum chamber and are stacked, and the atomic layer deposition process can be performed independently in each process chamber, thereby optimizing the plurality of process chambers. Simultaneous process progress in the process chamber has the advantage of significantly improving productivity.
- the volume optimization in the process chamber reduces the adsorption time of the precursor, the reaction time of the precursor and the purge time, thereby improving productivity, and increasing the precursor, reaction precursor, and purge.
- reducing the consumption of gas has the advantage of reducing the cost of the atomic layer deposition process.
- the separate external vacuum chamber configuration can simplify the process chamber and reduce the weight, thereby reducing the maintenance cost of the atomic layer deposition equipment and increasing the convenience of maintenance.
- the atomic layer deposition target substrate in the optimized process chamber is in close contact with the upper process chamber or the lower process chamber has the advantage of preventing the film deposition on the back of the substrate.
- FIG. 1 is a three-dimensional perspective view of an atomic layer deposition apparatus structure according to an embodiment of the present invention
- FIGS. 2A and 2B are cross-sectional detailed structural diagrams of a process chamber according to an embodiment of the present invention.
- 3A to 3D are separate three-dimensional perspective views of the process chamber shown in FIGS. 2A and 2B, respectively;
- 3E to 3H are separate stereoscopic perspective views of a process chamber according to another embodiment of the present invention, respectively;
- FIG. 4A is a schematic configuration diagram of a process chamber according to an embodiment of the present invention in which process gas is injected in a cross flow or moving wave manner on a substrate;
- Figure 4b is a schematic configuration diagram capable of plasma processing as a cross-sectional structure of the process chamber according to an embodiment of the present invention
- Figure 4c is a schematic configuration diagram capable of indirect plasma processing as a cross-sectional structure of the process chamber according to an embodiment of the present invention
- FIG. 5A is a schematic configuration diagram of a cross-sectional structure of a process chamber according to another embodiment of the present invention, in which process gas is injected in a cross flow or moving wave manner on a substrate;
- Figure 5b is a schematic configuration diagram capable of plasma processing as a cross-sectional structure of the process chamber according to another embodiment of the present invention
- Figure 5c is a schematic configuration capable of indirect plasma processing as a cross-sectional structure of the process chamber according to another embodiment of the present invention.
- FIG. 1 illustrates a three-dimensional perspective view of an atomic layer deposition apparatus structure according to an embodiment of the present invention, wherein the atomic layer deposition apparatus 1000 accommodates a plurality of process chambers 1200 and a plurality of process chambers 1200. Vacuum chamber 1100 and the like.
- the plurality of process chambers 1200 are implemented to have independent spaces as chambers capable of performing an atomic layer deposition process on a substrate, and are stacked in a vertical direction and accommodated in an external vacuum chamber 1100. do.
- the process chamber 1200 is moved up and down by the upper process chamber 1210 and the transfer unit provided in the vacuum chamber 1100 when the position is fixed in the vacuum chamber 1100 is coupled to the upper process chamber 1210 or It may be composed of a separate lower process chamber 1220.
- the process chamber 1200 is configured to be separated or combined into the upper process chamber 1210 and the lower process chamber 1220 as described above to ensure only the space for the optimal atomic layer deposition process to ensure the volume of the atomic layer deposition apparatus It can be designed to minimize the.
- the process chamber 1200 may enter and exit the vacuum chamber 1100 in conjunction with the guide portion 1204 installed on the upper or side surfaces of the vacuum chamber 1100, and may be introduced into a reference position in the vacuum chamber 1100. It is possible to fix by adjusting the guide portion 1204 in the state.
- the vacuum chamber 1100 has a multi-stage support portion 1202 and a guide portion 1204, etc., capable of stacking a plurality of process chambers in a vertical direction, and maintaining a vacuum state in each process chamber 1200. Allow atomic layer deposition processes to take place.
- the vacuum chamber 1100 supports a plurality of inner process chambers 1200 in which the unit process chambers 1200 configured to be separated and coupled for the atomic layer deposition process are stacked, and a substrate is loaded in each process chamber. It is possible to carry out, and to minimize the influence of the external force applied to the inner process chamber 1200 from the environment where the external atmosphere and pressure difference exists.
- a plurality of process chambers 1200 may be used. Since the film is formed on two substrates at the same time, it is possible to have several times the productivity improvement compared to the conventional single substrate evaporator.
- FIGS. 2A and 2B show a detailed cross-sectional structure of a process chamber according to an embodiment of the present invention.
- FIG. 2A illustrates a state in which the lower process chamber 1220 is moved downward to open the process chamber to load the substrate 1010 and the mask 1020 into the process chamber 1200.
- the substrate 1010 and the mask 1020 are processed in a state in which the lower process chamber 1220 is moved from the upper process chamber 1210 to the lower portion in the vertical direction by the transfer unit 1110 and opened.
- the substrate support 1015 and the mask support 1017 in the 1200 are sequentially loaded.
- the upper process chamber 1210 of the process chamber 1200 is fixed to and supported by the vacuum chamber 1100
- the lower process chamber 1220 is supported by the conveying unit 1110 provided in the vacuum chamber 1100. It can be moved up and down in the vertical direction with respect to 1100.
- the lower process chamber 1220 is raised by the transfer unit 1110, and the substrate 1010 and As the mask 1020 is sequentially seated in the lower process chamber 1220, the lower process chamber 1220 is finally coupled to the upper process chamber 1210 as shown in FIG. 2B.
- the loading of the substrate 1010 and the mask 1020 may be performed separately for each process chamber 1200, or may be simultaneously performed in a state in which a plurality of process chambers 1200 in the vacuum chamber 1100 are opened. have.
- FIG. 2B illustrates that the lower process chamber 1220 is moved upward and coupled with the upper process chamber 1210 in order to process the process while the substrate 1010 and the mask 1020 are loaded in the process chamber 1200. The state is shown.
- the lower process chamber 1220 is raised by the transfer unit 1110 to lower the process chamber ( As the 1220 is coupled to the upper process chamber 1210, an independent space of the process chamber 1200 may be formed.
- the required gas is introduced into the process gas supply unit 1212 as the process proceeds, thereby providing a substrate 1010.
- An atomic layer deposition process may be performed.
- the lower process chamber 1220 is moved by the transfer unit 1110.
- An unloading operation is performed in which the upper process chamber 1210 and the lower process chamber 1220 are separated by being lowered and carried out to the outside of the process chamber 1200 with respect to the substrate 1010 on which the process is completed in such an unloading state. You lose.
- 3A to 3D show separate three-dimensional perspective views of the process chambers shown in FIGS. 2A and 2B, respectively.
- 3A and 3B are three-dimensional perspective views of the upper process chamber 1210 and the lower process chamber 1220 of the process chamber 1200, respectively, and FIGS. 3C and 3D illustrate the upper process chamber of the process chamber 1200, respectively.
- 3D and the lower process chamber 1220 is a three-dimensional perspective view from the bottom.
- a gas supply part 1212 and an exhaust part 1211 may be formed on an upper surface of the upper process chamber 1210.
- the gas supply part 1212 may be formed in a round tube shape at the center of both sides of the upper process chamber 1210.
- a slit 1216 including an internal diffusion region is formed in the lower surface of the upper process chamber 1210 to ensure a uniform flow of process gas on the entire surface of the gas supplied from the gas supply unit 1212.
- a mask support 1017 for seating the mask 1020 and a substrate support 1015 for seating the substrate 1010 may be formed on an upper surface of the lower process chamber 1220.
- the mask 1020 and the substrate 1010 are loaded to be seated on the mask support 1017 and the substrate support 1015, respectively, and then in an independent space in the process chamber generated when the lower process chamber and the upper process chamber are combined. Will be located.
- the lower surface of the lower process chamber is formed with a connecting portion 1018 for increasing the self-weight, height limitation, and support of the mask support 1017 and the substrate support 1015, the support of the lower process chamber for the complete blocking of the process gas
- Separate sealing parts such as O-rings and bellows can be added between the hole and the support.
- 3E to 3H illustrate separate three-dimensional perspective views of a process chamber according to another embodiment of the present invention, and show a three-dimensional perspective view of a process chamber in which a gas supply unit is formed in a showerhead manner.
- 3E and 3F are three-dimensional perspective views of the upper process chamber 1210 and the lower process chamber 1220 of the process chamber 1200, respectively, and FIGS. 3G and 3H show the upper process chamber of the process chamber 1200, respectively.
- 3D and the lower process chamber 1220 is a three-dimensional perspective view from the bottom.
- a gas supply part 1212 and an exhaust part 1211 may be formed on an upper surface of the upper process chamber 1210.
- the gas supply part 1212 may be formed in a round tube shape at the center of both sides of the upper process chamber 1210.
- a showerhead type diffuser 1312 is formed on a lower surface of the upper process chamber 1210 for spraying a process gas for spraying the gas supplied from the gas supply unit 1212 onto the entire surface of the substrate.
- a mask support 1017 for seating the mask 1020 and a substrate support 1015 for seating the substrate 1010 may be formed on an upper surface of the lower process chamber 1220.
- the mask 1020 and the substrate 1010 are loaded to be seated on the mask support 1017 and the substrate support 1015, and then a process generated when the lower process chamber 1220 and the upper process chamber 1210 are combined. It is located in an independent space in the chamber 1200.
- a connection portion 1018 is formed on the lower surface of the lower process chamber 1220 to fix the mask support 1017 and the substrate support 1015 to the process chamber 1200.
- Figure 4a is a cross-sectional structure of the process chamber according to an embodiment of the present invention shows a schematic configuration in which the process gas is injected in the cross flow or moving wave method on the substrate.
- an atomic layer includes a raw material precursor, a reaction precursor, and a purge gas to a substrate 1010 positioned inside the process chamber 1200 on one side of the upper process chamber 1210 through the gas supply unit 1212. It supplies sequentially according to the order of the deposition process, and shows a structure to exhaust the process gas or purge gas used in each process through the gas exhaust unit 1211 formed on the other side of the upper process chamber 1210 have.
- the raw material precursor (TAM, etc.) supplied to the gas supply unit 1212 passes through a solid or wavy region in which one side of the upper process chamber 1210 is easily diffused, and then the one of the substrate 1010. It is uniformly supplied to the side surface, and thus, an adsorption reaction occurs on the upper surface of the substrate 1010 seated in the lower process chamber 1220.
- the purge gas Ar, O2, N2, N2O, etc.
- the purge gas Ar, O2, N2, N2O, etc.
- the reaction precursor is supplied to the gas supply unit 1212.
- the substrate 1010 sprayed onto the substrate 1010 to form a desired atomic layer thin film by chemical reaction between the raw material precursor and the reaction precursor.
- the purge gas is supplied to the gas supply unit 1212 again to remove all remaining reactive precursors that do not bond with the raw material precursors on the substrate 1010.
- the atomic layer thin film on the substrate 1010 is formed to a desired thickness through a repeating process using one cycle of the above four steps.
- a susceptor function may be performed by providing a heater function to the lower process chamber 1220 to enable temperature control of the substrate 1010.
- the lower part may be prevented from generating particles due to gas leakage to the outside of the process chamber 1200 due to incomplete coupling of the process chamber 1200.
- a basic sealing part 1221 and an additional sealing part 1222 may be configured on the outer side of the process chamber 1220, and a surface contact forming part for perfect surface contact between the upper process chamber 1210 and the lower process chamber 1220. It can also be configured additionally.
- the gas supply unit ( The raw material precursor is supplied through 1212, and the raw material precursor supplied through the gas supply unit 1212 is sprayed onto the substrate 1010 to be subjected to the atomic layer deposition process so that a single molecular layer of the raw material precursor is provided on the substrate 1010.
- the raw material precursor is sufficiently injected onto the substrate 1010, physical adsorption that is physically coupled onto the substrate 1010 by supplying a purge gas to the gas supply unit 1212 in the second step of the atomic layer deposition process.
- the bond with the substrate 1010 is separated by the purge gas to be exhausted through the gas exhaust unit 1211 to obtain a single molecular layer of the precursor precursor.
- the raw material precursor when the raw material precursor is injected onto the substrate 1010, the raw material precursor is chemically or physically adsorbed onto the surface of the substrate 1010 to form a thin film. In this state, the inert purge gas is transferred to the substrate 1010.
- the precursor precursor of the physical adsorption layer which has a relatively weak bonding force, is separated from the substrate 1010 and exhausted, but is chemically bonded to the substrate 1010 through covalent bonding to provide a relatively strong bonding force compared to the physical adsorption layer.
- the raw material precursor of the chemisorption layer is not separated.
- the reaction precursor is supplied through the gas supply unit 1212 to inject the reaction precursor onto the substrate 1010.
- the reaction precursor sprayed on the substrate 1010 reacts with the raw material precursor adsorbed on the substrate 1010 to form an atomic layer thin film.
- the purge gas is supplied through the gas supply unit 1212 to supply excess gas on the substrate 1010. Remove precursor or physisorption molecules.
- the atomic layer thin film is formed on the substrate 1010 by a desired thickness through an iterative process using the above four-step atomic layer deposition process as one cycle.
- the gas supply unit 1212 is formed on one side of the process chamber 1200, and the process gas is described by way of example, which is injected by the cross flow or moving wave method on the substrate.
- the gas supply unit 1212 may be formed in a shower head type on the upper process chamber 1210 so that the precursor is sprayed perpendicular to the surface of the substrate 1010.
- Figure 4b is a cross-sectional structure of the process chamber 1200 according to an embodiment of the present invention shows a schematic configuration capable of plasma processing.
- a raw material precursor, a reaction precursor, and a purge are disposed on the substrate 1010 located inside the process chamber 1200 on one side of the upper process chamber 1210 through the gas supply unit 1212.
- the gas is sequentially supplied in the order of the atomic layer deposition process, and the process gas or purge gas used in each process is exhausted through the gas exhaust unit 1211 formed on the other side of the upper process chamber 1210.
- the structure shown is shown.
- an electrode 1313 is formed at the center of the upper process chamber 1210 and the electrode 1313 and the upper process chamber (FIG. 4A) are used to use the plasma in the atomic layer deposition process.
- the insulator 1314 is formed between 1210 to prevent a short between the upper process chamber 1210 and the electrode 1313.
- the raw material precursor is supplied to the gas supply unit 1212 and uniformly supplied to one side of the substrate 1010, and thus the upper layer of the substrate 1010 seated in the lower process chamber 1220. At this point, adsorption reaction occurs.
- the purge gas is supplied to the gas supply part 1212 to discharge the raw material precursor remaining on the substrate 1010 to the gas exhaust part 1211.
- the reaction precursor is supplied to the gas supply unit 1212 and sprayed onto the substrate, and then, power is supplied to the electrode 1313 to generate a plasma 1030 directly onto the substrate 1010 to generate a plasma 1030.
- the atomic layer thin film is formed through the chemical reaction between the raw material precursor and the reaction precursor by.
- the plasma 1030 is supplied when the raw material precursor on the substrate 1010 is completely removed by supplying a purge gas including the reaction precursor. May be formed to form a film.
- Figure 4c is a cross-sectional structure of the process chamber 1200 according to an embodiment of the present invention shows a schematic configuration capable of indirect plasma processing.
- an atomic layer deposition process is performed on a raw material precursor, a reaction precursor, and a purge gas to a substrate 1010 located in the process chamber 1200 on one side of the upper process chamber 1210 through the gas supply unit 1212.
- the gas supply unit 1212 In order to supply sequentially, and has a structure to exhaust the process gas or purge gas used in each process through the gas exhaust unit 1211 formed on the other side of the upper process chamber 1210.
- the gas supply unit 1212 in order to minimize the effect on the thin film of the substrate 1010 according to the direct plasma 1030 illustrated in FIG. 4B, the gas supply unit 1212 has a separate electrode 1313 and an insulator 1314. The structure is shown.
- the precursor is uniformly supplied to one side of the substrate 1010 by supplying the raw material precursor to the gas supply unit 1212, and thus the upper layer surface of the substrate 1010 seated in the lower process chamber 1220. Adsorption reaction occurs at.
- the purge gas is supplied to the gas supply part 1212 to discharge the raw material precursor remaining on the substrate 1010 to the gas exhaust part 1211.
- the plasma 1030 is generated by supplying power to the electrode 1313 for plasma generation formed in the gas supply unit 1212. Let's do it. Accordingly, radicals generated by the reaction precursor and the plasma 1030 are supplied onto the substrate 1010 according to the gas flow to form an atomic layer thin film through chemical reaction between the precursor precursor and the reaction precursor by the plasma 1030. Let's go.
- Figure 5a is a cross-sectional structure of the process chamber 1200 according to another embodiment of the present invention shows a schematic configuration in which the process gas is injected in the cross flow or moving wave method on the substrate.
- a raw material precursor, a reaction precursor, and a purge gas are transferred to a substrate 1010 located inside the process chamber 1200 outside the upper process chamber 1210 through the gas supply unit 1212.
- a structure in which a process gas or purge gas used in each process is exhausted through the gas exhaust unit 1211 formed at the center of the upper process chamber 1210.
- the operation will be uniformly supplied on the substrate 1010 through the gas supply unit 1212 formed on both outer sides of the upper process chamber 1210, and after being used in the process, the upper process chamber 1210 It is discharged through the gas exhaust part 1211 formed in the center part.
- the adsorption reaction occurs in the upper surface of the substrate 1010 that is seated in the lower process chamber 1220.
- the purge gas is supplied to the gas supply unit 1212 to discharge the raw material precursor remaining on the substrate 1010 to the gas exhaust unit 1211, and then the reaction precursor is supplied to the gas supply unit 1212 to supply the substrate 1010.
- the reaction precursor is supplied to the gas supply unit 1212 to supply the substrate 1010.
- the purge gas is supplied to the gas supply unit 1212 again to remove all remaining reactive precursors that do not bond with the raw material precursors on the substrate 1010.
- an atomic layer thin film on the substrate 1010 is formed to a desired thickness through a repeating process of performing the above four step process in one cycle.
- the process proceeds while the gas supply unit 1212 and the gas exhaust unit 1211 are shared with the substrate or the blank mask 1050 which can be periodically replaced by the robot while minimizing contamination of the upper process chamber 1210. It is possible.
- 5B illustrates a schematic configuration of a plasma process as a cross-sectional structure of a process chamber 1200 according to another embodiment of the present invention.
- the raw material precursor, the reaction precursor, and the purge gas are transferred to the substrate 1010 located in the process chamber 1200 through the shower head diffuser 1312 formed at the center of the upper process chamber 1210. It supplies sequentially according to the order of the atomic layer deposition process, and the process gas or purge gas used in each process is exhausted through the gas exhaust unit 1211 formed on both sides of the upper process chamber 1210 Indicates.
- the raw material precursor supplied through the center portion of the upper process chamber 1210 is uniformly formed on the substrate 1010 through the showerhead diffuser 1312 formed on the substrate 1010 to have a similar area to the substrate. After being used in the process, it is discharged through the gas exhaust 1211 formed on the outer surface of the upper process chamber 1210. Through the above process, the adsorption reaction occurs in the upper surface of the substrate 1010 that is seated in the lower process chamber 1220.
- the purge gas is supplied to the gas supply unit 1212 to discharge the raw material precursor remaining on the substrate 1010 to the gas exhaust unit 1211, and then the reaction precursor is supplied to the gas supply unit 1212 to supply the swashhead. It is sprayed onto the substrate 1010 through the diffuser 1312.
- the reaction precursor is supplied, power is supplied to the electrode 1413 formed in the showerhead diffuser 1312 so that the plasma 1030 is formed on the substrate 1010, so that the precursor precursor and the reaction precursor using the plasma 1030 are formed.
- an insulator 1314 is formed between the electrode 1413 and the upper process chamber 1210 to prevent a short between the upper process chamber 1210 and the electrode 1413.
- the exhaust region adjacent to the substrate 1010 as described above may be composed of both ends or the entire four sides of the substrate 1010, and the uniformity of the exhaust pressure such as a corrugated shape, a wavy shape, a hole diffuser, and a slit diffuser in a predetermined region of the exhaust path.
- the exhaust entry portion may be disposed as close as possible to the substrate 1010 so as to minimize contamination of unnecessary areas other than the substrate 1010 requiring film formation.
- FIG. 5C illustrates a schematic configuration in which an indirect plasma process is possible as a cross-sectional structure of a process chamber 1200 according to another exemplary embodiment of the present disclosure.
- the raw material precursor, the reaction precursor, and the purge gas are transferred to the substrate 1010 located in the process chamber 1200 through the shower head diffuser 1312 formed at the center of the upper process chamber 1210.
- the shower head diffuser 1312 formed at the center of the upper process chamber 1210.
- the raw material precursor supplied through the central portion of the upper process chamber 1210 is formed through the shower head diffuser 1312 formed on the substrate 1010 similar to the area of the substrate 1010. It is supplied uniformly to the phase, and after being used in the process, is discharged through the gas exhaust 1211 formed on the outer surface of the upper process chamber 1210. Through the above process, the adsorption reaction occurs in the upper surface of the substrate 1010 that is seated in the lower process chamber 1220.
- the purge gas is supplied through the shower head diffuser 1312 to discharge the raw material precursor remaining on the substrate 1010 to the gas exhaust unit 1211, and then the showerhead diffuser 1312 when the reaction precursor is supplied.
- the plasma layer 1030 is formed on the substrate 1010 by supplying power to the electrode 1413 formed at the electrode, thereby forming the atomic layer thin film by chemical reaction between the precursor precursor and the reaction precursor using the plasma 1030.
- the electrode 1413 and the showerhead other than the insulator 1314 may be used to prevent the risk of damage to the lower layer.
- a gap insulator 1414 is further formed between the diffuser 1312 to generate a plasma 1030 only between the electrode 1413 and the diffuser 1312 to supply radicals through dissociation of the reaction precursor to damage the substrate 1010. It is possible to form the atomic layer thin film without giving.
- a plurality of unit process chambers for the atomic layer deposition process capable of separating and combining the upper and lower portions are arranged in a stacked form, and the plurality of process chambers arranged in the stacked form.
- a separate vacuum-forming and pressure-controlled vacuum chamber on the outside of the raw material precursor and the reaction precursor to allow the simultaneous progress of the atomic layer deposition process in a plurality of process chambers implemented to have only the minimum space for the optimal process Reduced usage and minimizing process time can improve productivity while reducing costs.
- the atomic layer deposition target substrate is perfectly in close contact with the upper process chamber or the lower process chamber in the optimized process chamber, thereby preventing the film formation on the back side of the substrate.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
본 발명에서는 원자층 증착에 있어서, 상부 및 하부의 분리 및 결합이 가능한 원자층 증착 공정을 위한 단위 공정챔버를 적층형태로 다수 개 배치하며, 적층형태로 배치된 다수 개의 공정챔버의 외부에는 별도의 진공형성 및 압력 조절용 진공 챔버를 구현하여 최적의 공정이 가능한 최소의 공간만을 가지도록 구현된 다수 개의 공정챔버에서 동시에 원자층 증착 공정진행이 가능하도록 함으로써, 원료전구체 및 반응전구체의 사용량 감소 및 공정시간 최소화를 통해 비용을 절감시키면서 생산성을 향상시킬 수 있도록 한다. 또한, 최적화된 공정챔버내에서 원자층 증착 대상 기판이 상부 공정챔버 또는 하부 공정챔버에 완벽하게 밀착하게 되어 기판 뒷면의 성막을 방지시킬 수 있도록 한다.
Description
본 발명은 기상 증착 반응기 및 이를 이용한 박막 형성 방법에 관한 것으로, 특히 원자층 증착(atomic layer deposition : ALD)에 있어서, 상부 및 하부의 분리 및 결합이 가능한 원자층 증착 공정을 위한 단위 공정챔버를 적층형태로 다수개 배치한 적층형 원자층 증착 장치 및 방법에 관한 것이다.
일반적으로, 반도체 기판이나 글라스 등의 기판 상에 소정 두께의 박막을 증착하는 방법으로는 스퍼터링(sputtering)과 같이 물리적인 충돌을 이용하는 물리 기상 증착법(physical vapor deposition, PVD)과, 화학반응을 이용하는 화학 기상 증착법(chemical vapor deposition, CVD) 등이 있다.
그러나, 최근들어 반도체 소자의 디자인 룰(design rule)이 급격하게 미세해짐에 따라 미세 패턴의 박막이 요구되고 박막이 형성되는 영역의 단차 또한 매우 커지고 있어 원자층 두께의 미세 패턴을 매우 균일하게 형성할 수 있을 뿐만 아니라 스텝커버리지(step coverage)가 우수한 원자층 증착방법(atomic layer deposition : ALD)의 사용이 증대되고 있다.
이러한 원자층 증착방법은 기체 분자들 간의 화학반응을 이용한다는 점에 있어서 일반적인 화학 기상 증착방법과 유사하다. 하지만, 통상의 CVD가 복수의 기체 분자들을 동시에 프로세스 챔버 내로 주입하여 발생된 반응 생성물을 기판에 증착하는 것과 달리, 원자층 증착방법은 하나의 소스 물질을 포함하는 가스를 프로세스 챔버 내로 주입하여 가열된 기판에 화학흡착시키고 이후 다른 소스 물질을 포함하는 가스를 프로세스 챔버에 주입함으로써 기판 표면에서 소스 물질 사이의 화학반응에 의한 생성물이 증착된다는 점에서 차이가 있다.
한편, 위와 같은 원자층 증착방법은 AMOLED 디스플레이의 박막 봉지, 플렉서블(flexible) 기판의 베리어막(barrier film), 태양광 버퍼 레이어(buffer layer), 반도체용 강유전체(high-k) 캐패시터용 고유전 물질 또는 알루미늄(Al), 구리(Cu) 배선 확산 방지막(TiN, TaN 등) 등을 형성하는데 사용될 수 있다.
이러한 원자층 증착방법은 현재까지 PECVD(plasma enhanced chemical vapor deposition)에서 사용되던 매엽식, 배치식 및 스캔형 소형 반응기가 기판위를 이송 또는 반대 방식으로 공정이 이루어지고 있다.
먼저, 매엽 방식은 1장의 기판 투입후 공정진행이 이루어지며, 기판의 입/반출 및 히팅을 위한 무빙용 서셉터, 공정가스 투입을 위한 디퓨져(샤워헤드 타입이 주류) 및 배기부로 구성되어 있다. 그러나, 매엽 방식에서는 진공 형성시 외부 대기압에 따른 공정챔버 및 주변부의 변형방지를 위하여 챔버가 매우 두껍고 기판의 반입/반출 및 공정 영역 구분을 위한 게이트 밸브의 필요로 대면적기판용 장비 구성시 내부 부피가 엄청나게 늘어나게 되므로 원료전구체 및 반응전구체의 소모량 급증, 유지비용 급증, 흡착-퍼지-반응-퍼지시간 증가에 따른 공정시간 증가로 생산성이 현저히 감소하는 문제점이 있다.
다음으로, 다수의 기판에 대해 동시에 공정을 진행하는 배치형 방식은 종래 원자층 증착 장비의 부피가 커서 원료전구체와 반응전구체가 많이 소요됨에 따른 유지비용 증가와 저생산성 문제점을 해결하고자 여러 장의 기판에 대해 동시에 공정을 수행하는 방식이다. 이러한 배치형 방식은 태양전지 공정에 일부 적용되고 있으나, 기판 전면 뿐만 아니라 뒷면에도 동시 성막이 되는 문제점, 다수 기판에 대한 박막의 균일도 및 재현성의 문제가 있으며, 챔버 오염시 초대형 챔버 전체를 분리하여 세정해야 하는 문제점이 있다.
다음으로, 스캔형 소형 반응기방식은 진공챔버내 기판의 한면의 길이에 대응하는 소형 반응기를 여러개 배치하여 기판 또는 소형 반응기가 왕복 운동하여 성막하는 방식으로, 일부 디스플레이 박막봉지 공정에서 적용되었으나, 기판과 소형 반응기의 완벽한 가스 유동 제어가 어려우며, 원료전구체와 반응전구체의 명확한 분리 구현이 어려워 파티클 이슈가 발생하는 문제점이 있다.
따라서, 본 발명에서는 상부 및 하부의 분리 및 결합이 가능한 단위 공정챔버를 적층형태로 다수개 배치하며, 적층형태로 배치된 다수개의 공정챔버의 외부에는 별도의 진공형성 및 압력 조절용 진공 챔버를 구현하여 최적의 공정이 가능한 최소의 공간만을 가지도록 구현된 다수개의 공정챔버에서 동시에 원자층 증착 공정진행이 가능하도록 함으로써, 원료전구체 및 반응전구체의 사용량 감소 및 공정시간 최소화를 통해 비용을 절감시키면서 생산성을 향상시킬 수 있도록 하며, 최적화된 공정챔버 내에서 원자층 증착 대상 기판이 상부 공정챔버 또는 하부 공정챔버에 완벽하게 밀착하게 되어 기판 뒷면의 성막을 방지시킬 수 있도록 하는 적층형 원자층 증착 장치 및 방법을 제공하고자 한다.
상술한 본 발명은 적층형 원자층 증착장치로서, 상부공정챔버와 하부공정챔버를 구비하고, 원자층 증착 공정 대상 기판의 로딩 또는 언로딩 시에는 상기 상부 공정챔버와 하부 공정챔버가 분리되며, 상기 기판에 대한 증착 공정의 진행시에는 상기 상부 공정챔버와 하부 공정챔버가 결합하여 밀폐된 반응공간을 형성하는 공정챔버와, 적어도 2개 이상의 상기 공정챔버를 수직 방향으로 적층된 형태로 지지하고, 상기 공정챔버가 적층된 공간을 진공상태로 유지시키는 진공챔버를 포함한다.
또한, 상기 상부 공정챔버는 상기 진공챔버에 고정되며, 상기 하부 공정챔버는 상기 진공챔버내에서 상하 방향으로 이동하여 상기 상부 공정챔버와 결합되거나 분리되는 것을 특징으로 한다.
또한, 상기 상부 공정챔버는, 상기 밀폐된 반응공간에 공정가스 또는 퍼지가스를 공급하는 가스 공급부를 상기 상부 공정챔버의 일측 상부면에 구비하고, 상기 밀폐된 반응공간에 공급된 가스를 배기시키는 가스 배기부를 상기 상부 공정챔버의 타측 상부면에 구비하는 것을 특징으로 한다.
또한, 상기 가스 공급부는, 상기 상부 공정챔버의 측면 또는 상부면 상의 외곽 또는 중앙부에 형성되는 것을 특징으로 한다.
또한, 상기 상부 공정챔버의 하부면에 플라즈마 발생을 위한 전극이 형성되는 것을 특징으로 한다.
또한, 상기 공정가스 또는 상기 퍼지가스가 상기 밀폐된 반응공간으로 인입되는 상기 가스 공급부의 도입부에 플라즈마 발생을 위한 전극이 형성되는 것을 특징으로 한다.
또한, 상기 전극은, 상기 상부 공정챔버와 절연되도록 절연체에 의해 둘러싸이는 것을 특징으로 한다.
또한, 상기 가스 공급부는, 상기 상부 공정챔버의 측면 또는 중앙부에 균일한 가스유동을 위한 확산공간 또는 샤워헤드 디퓨져로 형성되어 상기 밀폐된 반응공간내의 상기 기판에 수직 또는 수평 방향으로 상기 공정가스 또는 상기 퍼지가스를 분사하는 것을 특징으로 한다.
또한, 상기 진공챔버는, 상기 진공챔버의 내부 공간에 상기 공정챔버를 적층하여 지지 또는 반입/반출 이송하기 위한 가이드부를 포함하는 것을 특징으로 한다.
또한, 상기 진공챔버는, 상기 상부 공정챔버를 고정시키는 고정수단 및 상기 하부 공정챔버를 상하로 이동시키는 이송수단을 구비하는 것을 특징으로 한다.
또한, 본 발명은 적층형 원자층 증착방법으로서, 상기 공정챔버내에서 기판 및 마스크가 로딩되는 단계와, 상기 기판 및 마스크가 로딩되면 상기 공정챔버의 상부 공정챔버와 하부 공정챔버가 결합하여 밀폐된 반응공간을 형성하는 단계와, 밀폐된 반응공간에서 상기 기판에 대한 원자층 증착 공정을 수행하는 단계를 포함한다.
또한, 상기 적층형 원자층 증착방법은 원자층 증착 공정이 완료되면, 상기 상부 공정챔버와 상기 하부 공정챔버가 분리되고, 상기 기판이 언로딩 되는 것을 특징으로 한다.
또한, 원자층 증착 공정은 상기 2개 이상의 공정챔버에서 동시에 수행되는 것을 특징으로 한다.
또한, 상기 상부 공정챔버는 상기 진공챔버에 고정되며, 상기 하부 공정챔버는 상기 진공챔버내 수직방향으로 상하로 이동하여 상기 상부 공정챔버와 결합되거나 분리되는 것을 특징으로 한다.
또한, 상기 하부 공정챔버는, 상기 진공챔버에 구비되는 이송수단에 의해 상하로 이동되어 상기 상부 공정챔버와 분리되거나 결합되는 것을 특징으로 한다.
또한, 상기 원자층 증착 공정을 수행하는 단계는, 상기 공정챔버의 일측 상부면에 형성되는 가스 공급부를 통해 상기 반응공간내의 상기 기판으로 원료전구체를 공급하는 단계와, 상기 기판상에 원료전구체가 흡착된 후, 상기 가스 공급부를 통해 상기 기판으로 퍼지가스를 공급하여 상기 기판상에 흡착되지 못한 원료전구체를 배기시키는 단계와, 상기 배기 후, 상기 가스 공급부를 통해 상기 기판으로 반응전구체를 공급하여 상기 원료전구체와 화학적 반응을 통해 원자층 박막을 형성시키는 단계와, 상기 원자층 박막의 형성 후, 상기 가스 공급부를 통해 상기 기판으로 퍼지가스를 공급하여 상기 원료전구체와 결합하지 못한 반응전구체를 배기시키는 단계를 포함하는 것을 특징으로 한다.
또한, 상기 원료전구체, 반응전구체, 퍼지가스중 적어도 하나는, 상기 상부 공정챔버의 측면 또는 중앙부에 균일한 가스 유동을 위한 확산공간 또는 샤워헤드 디퓨져로 형성되는 가스 공급부를 통해 공급되어 상기 반응공간내의 기판에 수직 또는 수평방향으로 분사되는 것을 특징으로 한다.
또한, 상기 기판으로 반응전구체를 공급 시 상기 기판과 대응하는 상부 공정챔버의 하부면 또는 상기 반응공간과 연결되는 도입부에 플라즈마를 발생시키는 단계와, 상기 플라즈마를 이용한 상기 반응전구체와 상기 원료전구체의 화학적 반응을 통해 원자층 박막을 형성시키는 단계를 더 포함하는 것을 특징으로 한다.
본 발명에 따르면, 원자층 증착에 있어서, 진공챔버의 내측에 적층형으로 수납되는 다수개의 공정챔버를 구비하고, 각각의 공정챔버에서 독립적으로 원자층 증착 공정이 수행될 수 있도록 함으로써, 최적화된 다수개의 공정챔버에서 동시에 공정 진행이 가능하여 생산성을 대폭 향상시킬 수 있는 이점이 있다.
또한, 각각의 공정챔버 내에서 공정을 위한 공간을 최소화하여 공정챔버내 부피 최적화로 원료전구체의 흡착시간, 반응전구체의 반응시간 및 퍼지시간을 감소시켜 생산성을 향상시키고, 원료전구체, 반응전구체, 퍼지가스의 소모량을 감소시켜 원자층 증착 공정에 소요되는 비용을 절감시킬 수 있는 이점이 있다.
또한, 별도의 외부 진공챔버 구성으로 공정챔버의 단순화를 구현하고 무게를 감소시킬 수 있어 원자층 증착 장비의 유지보수 비용을 감소시킬 수 있고, 유지보수 편의성을 증대시킬 수 있는 이점이 있다.
또한, 최적화된 공정챔버 내에서 원자층 증착 대상 기판이 상부 공정챔버 또는 하부 공정챔버에 완벽하게 밀착하게 되어 기판 뒷면의 성막을 방지시킬 수 있는 이점이 있다.
또한, 다수개의 공정챔버가 외부의 진공챔버에 고정되는 고정타입으로 구현하여 기판과 공정챔버의 상대운동에 따른 가스제어의 어려움으로 발생하는 파티클 문제를 해결할 수 있고, 원료전구체, 반응전구체, 퍼지가스의 입/출부의 다양한 구성이 용이하여 향후 다양한 공정특성 및 기판에 맞게 구성의 변경 적용이 용이한 이점이 있다.
도 1은 본 발명의 실시예에 따른 원자층 증착 장치 구조의 입체 사시도,
도 2a 및 도 2b는 본 발명의 실시예에 따른 공정챔버의 단면 상세 구조도,
도 3a 내지 도 3d는 각각 도 2a와 도 2b에 도시된 공정챔버의 분리 입체 사시도,
도 3e 내지 도 3h는 각각 본 발명의 다른 실시예에 따른 공정챔버의 분리 입체 사시도,
도 4a는 본 발명의 실시예에 따른 공정챔버의 단면 구조로서 공정가스가 기판상 교차흐름 또는 이동파 방식으로 분사되는 개략적인 구성도,
도 4b는 본 발명의 실시예에 따른 공정챔버의 단면 구조로서 플라즈마 공정이 가능한 개략적인 구성도,
도 4c는 본 발명의 실시예에 따른 공정챔버의 단면 구조로서 간접 플라즈마 공정이 가능한 개략적인 구성도,
도 5a는 본 발명의 다른 실시예에 따른 공정챔버의 단면 구조로서 공정가스가 기판상 교차흐름 또는 이동파 방식으로 분사되는 개략적인 구성도,
도 5b는 본 발명의 다른 실시예에 따른 공정챔버의 단면 구조로서 플라즈마 공정이 가능한 개략적인 구성도,
도 5c는 본 발명의 다른 실시예에 따른 공정챔버의 단면 구조로서 간접 플라즈마 공정이 가능한 개략적인 구성도.
이하, 첨부된 도면을 참조하여 본 발명의 동작 원리를 상세히 설명한다. 하기에서 본 발명을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
도 1은 본 발명의 실시예에 따른 원자층 증착 장치 구조의 입체 사시도를 도시한 것으로, 원자층 증착 장치(1000)는 다수개의 공정챔버(1200)와 상기 다수개의 공정챔버(1200)를 수용하는 진공챔버(1100) 등을 포함할 수 있다.
이하, 도 1을 참조하여 본 발명의 원자층 증착 장치(1000)의 구조를 상세히 설명하기로 한다.
먼저, 다수개의 공정챔버(1200)는 기판에 대한 원자층 증착공정을 수행할 수 있는 챔버(chamber)로서 각각 독립적인 공간을 가지도록 구현되며, 수직 방향으로 적층되어 외부 진공챔버(1100)에 수용된다. 이러한 공정챔버(1200)는 진공챔버(1100)에 인입 시 위치가 고정되는 상부 공정챔버(1210)와 진공챔버(1100)에 구비되는 이송부에 의해 상하로 이동되어 상부 공정챔버(1210)와 결합되거나 분리되는 하부 공정챔버(1220)로 구성될 수 있다.
이러한 공정챔버(1200)는 위와 같은 상부 공정챔버(1210)와 하부 공정챔버(1220)로 분리 또는 결합되도록 하는 구성을 통해 최적의 원자층 증착 공정이 가능한 공간만 확보하도록 하여 원자층 증착 장치의 부피를 최소화할 수 있도록 설계될 수 있다.
상부 공정챔버(1210)와 하부 공정챔버(1220)의 상세한 구조 및 동작은 후술되는 도 2 내지 도 5의 설명시에 보다 자세히 설명될 것이다.
또한, 공정챔버(1200)는 진공챔버(1100)의 상부 또는 측면에 설치되는 가이드부(1204)와 연계하여 진공챔버(1100)로의 입출이 가능하며, 진공챔버(1100)내 기준위치에 인입된 상태에서 가이드부(1204)를 조절하여 고정이 가능하게 된다.
다음으로, 진공챔버(1100)는 내부에 다수개의 공정챔버를 수직 방향으로 적재할 수 있는 다단 지지부(1202)와 가이드부(1204) 등을 가지며 진공상태를 유지하여 각각의 공정챔버(1200)에서 원자층 증착 공정이 이루어질 수 있도록 한다.
즉, 진공챔버(1100)는 원자층 증착 공정을 위해 분리 결합이 가능하도록 구성된 단위 공정챔버(1200)가 적층되어 배치된 내측의 다수개의 공정챔버(1200)를 지지하고 각 공정챔버에서 기판이 반입/반출 가능하도록 하며, 외부의 대기 및 압력차가 존재하는 환경으로부터 내측 공정챔버(1200)에 가해지는 외력의 영향을 최소화시킬 수 있다.
따라서, 위 도 1에서와 같이 독립적인 원자층 증착 공정이 수행되는 다수개의 공정챔버(1200)를 하나의 진공챔버(1100)에 수직으로 적층한 구조를 이용하는 경우 다수개의 공정챔버(1200)에서 다수개의 기판에 동시에 성막이 이루어지므로 종래 단일 기판용 증착기에 대비하여 몇배의 생산성 향상을 가질 수 있도록 한다.
도 2a 및 도 2b는 본 발명의 실시예에 따른 공정챔버의 단면 상세 구조를 도시한 것이다.
먼저, 도 2a는 공정챔버(1200)내로 기판(1010) 및 마스크(1020)를 로딩시키기 위해 하부 공정챔버(1220)가 하부로 이동되어 공정챔버가 개방된 상태를 도시한 것이다.
위 도 2a를 참조하면, 하부 공정챔버(1220)가 이송부(1110)에 의해 상부 공정챔버(1210)로부터 수직방향의 하부로 이동되어 개방된 상태에서 기판(1010)과 마스크(1020)가 공정챔버(1200) 내부의 기판 지지부(1015)와 마스크 지지부(1017)에 순차적으로 로딩된다. 이때, 공정챔버(1200)의 상부 공정챔버(1210)는 진공챔버(1100)에 고정되어 지지되며, 하부 공정챔버(1220)는 진공챔버(1100)에 구비되는 이송부(1110)에 의해 진공챔버(1100)에 대해 수직방향으로 상하 이동될 수 있다.
위와 같이, 기판 지지부(1015)와 마스크 지지부(1017)에 기판(1010)과 마스크(1020)가 로딩되는 경우, 이송부(1110)에 의해 하부 공정챔버(1220)가 상승하고, 기판(1010)과 마스크(1020)가 하부 공정챔버(1220)에 순차적으로 안착되면서 도 2b에서와 같이 하부 공정챔버(1220)가 상부 공정챔버(1210)에 최종 결합하게 된다.
한편, 이때 기판(1010)과 마스크(1020)의 로딩은 각각의 공정챔버(1200)별로 개별적으로 이루어질 수도 있으며, 진공챔버(1100)내 다수의 공정챔버(1200)가 개방된 상태에서 동시에 이루어질 수도 있다.
다음으로, 도 2b는 공정챔버(1200)에 기판(1010)과 마스크(1020)가 로딩된 상태에서 공정진행을 위해 하부 공정챔버(1220)가 상부로 이동되어 상부 공정챔버(1210)와 결합된 상태를 도시한 것이다.
위 도 2b를 참조하면, 공정챔버(1200)가 개방된 상태에서 기판(1010)과 마스크(1020)가 로딩된 후, 이송부(1110)에 의해 하부 공정챔버(1220)가 상승되어 하부 공정챔버(1220)가 상부 공정챔버(1210)에 결합하게 됨으로서 공정챔버(1200)의 독립적인 공간이 형성될 수 있다.
이와 같이 상부 공정챔버(1210)와 하부 공정챔버(1220)가 결합되어 공정 진행이 가능한 독립적인 공간이 형성되는 경우, 공정 진행에 따라 공정 가스 공급부(1212)로 필요한 가스가 인입되면서 기판(1010)에 대한 원자층 증착 공정이 수행될 수 있다.
한편, 위와 같이 상부 공정챔버(1210)와 하부 공정챔버(1220)가 결합된 상태에서 기판(1010)에 대한 원자층 증착 공정이 완료되는 경우, 하부 공정챔버(1220)가 이송부(1110)에 의해 하강되어 상부 공정챔버(1210)와 하부 공정챔버(1220)가 분리되는 언로딩 동작이 수행되며, 이와 같은 언로딩 상태에서 공정이 완료된 기판(1010)에 대해 공정챔버(1200) 외부로 반출이 이루어지게 된다.
도 3a 내지 도 3d는 각각 도 2a와 도 2b에 도시된 공정챔버의 분리 입체 사시도를 도시한 것이다.
도 3a 및 도 3b는 각각 공정챔버(1200)의 상부 공정챔버(1210)와 하부 공정챔버(1220)를 상부에서 바라본 입체 사시도이고, 도 3c 및 도 3d는 각각 공정챔버(1200)의 상부 공정챔버(1210)와 하부 공정챔버(1220)를 하부에서 바라본 입체 사시도이다.
도 3a 내지 도 3d를 참조하면, 상부 공정챔버(1210)의 상부면에는 가스 공급부(1212)와 배기부(1211)가 형성될 수 있다. 이때 가스 공급부(1212)는 상부 공정챔버(1210)의 양측면의 중앙부에 둥근 관 형태로 형성될 수 있다. 또한, 상부 공정챔버(1210)의 하부면에는 가스 공급부(1212)에서 공급된 가스가 기판상 전체면에 균일한 공정가스의 유동확보를 위해 내부 확산영역을 포함한 슬릿(1216)이 형성된다.
하부 공정챔버(1220)의 상부면에는 마스크(1020)를 안착시키기 위한 마스크 지지대(1017)와 기판(1010)을 안착시키기 위한 기판 지지대(1015)가 형성될 수 있다. 이때 마스크(1020)와 기판(1010)은 각각의 마스크 지지대(1017)와 기판 지지대(1015)에 안착되도록 로딩된 후, 하부 공정챔버와 상부 공정챔버의 결합 시 생성되는 공정챔버내 독립적인 공간에 위치하게 된다. 또한, 하부 공정챔버의 하부면에는 마스크 지지대(1017)와 기판 지지대(1015)의 자중증가, 높이 제한, 지지를 위한 연결부(1018)가 형성되며, 공정가스의 완벽한 차단을 위하여 하부 공정챔버의 지지대 홀과 지지대 사이에 오링, 벨로즈등 별도의 실링부를 추가 구성할 수 있다.
도 3e 내지 도 3h는 본 발명의 다른 실시예에 따른 공정챔버의 분리 입체 사시도를 도시한 것으로, 가스 공급부가 샤워헤드 방식으로 형성된 공정챔버의 입체 사시도를 도시한 것이다.
도 3e 및 도 3f는 각각 공정챔버(1200)의 상부 공정챔버(1210)와 하부 공정챔버(1220)를 상부에서 바라본 입체 사시도이고, 도 3g 및 도 3h는 각각 공정챔버(1200)의 상부 공정챔버(1210)와 하부 공정챔버(1220)를 하부에서 바라본 입체 사시도이다.
도 3e 내지 도 3h를 참조하면, 상부 공정챔버(1210)의 상부면에는 가스 공급부(1212)와 배기부(1211)가 형성될 수 있다. 이때 가스 공급부(1212)는 상부 공정챔버(1210)의 양측면의 중앙부에 둥근 관 형태로 형성될 수 있다. 또한, 상부 공정챔버(1210)의 하부면에는 가스 공급부(1212)에서 공급된 가스가 기판상 전체면에 분사되도록 하기 위한 공정가스 분사를 위한 샤워헤드형 디퓨저(1312)가 형성된다.
하부 공정챔버(1220)의 상부면에는 마스크(1020)를 안착시키기 위한 마스크 지지대(1017)와 기판(1010)을 안착시키기 위한 기판 지지대(1015)가 형성될 수 있다. 이때 마스크(1020)와 기판(1010)은 각각의 마스크 지지대(1017)와 기판 지지대(1015)에 안착되도록 로딩된 후, 하부 공정챔버(1220)와 상부 공정챔버(1210)의 결합 시 생성되는 공정챔버(1200)내 독립적인 공간에 위치하게 된다. 또한, 하부 공정챔버(1220)의 하부면에는 마스크 지지대(1017)와 기판 지지대(1015)를 공정챔버(1200)에 고정시키기 위한 연결부(1018)가 형성된다.
도 4a는 본 발명의 실시예에 따른 공정챔버의 단면 구조로서 공정가스가 기판상 교차흐름 또는 이동파 방식으로 분사되는 개략적인 구성을 도시한 것이다.
위 도 4a를 참조하면, 가스 공급부(1212)를 통해 상부 공정챔버(1210) 외곽의 일측면에서 공정챔버(1200)의 내부에 위치한 기판(1010)으로 원료전구체, 반응전구체, 퍼지가스를 원자층 증착 공정의 순서에 따라 순차적으로 공급하게 되며, 상부 공정챔버(1210)의 타측면에 형성되는 가스 배기부(1211)를 통해 각각의 공정에서 사용된 공정가스 또는 퍼지가스가 배기되도록 하는 구조를 나타내고 있다.
이하, 동작을 살펴보면, 가스 공급부(1212)로 공급된 원료전구체(TAM 등)가 상부 공정챔버(1210)의 일측면의 확산이 용이한 고깔 형상 또는 물결형상의 영역을 지나 기판(1010)의 일측면으로 균일하게 공급되고, 이에 따라, 하부 공정챔버(1220)에 안착되어 있는 기판(1010)의 상층면에서 흡착반응이 일어나게 된다.
흡착이 완료되면 가스 공급부(1212)로 퍼지가스(Ar, O2, N2, N2O 등)를 공급하여 기판상 잔존하는 원료전구체를 가스 배기부(1211)로 배출시킨 후, 반응전구체를 가스 공급부(1212)에 공급하여 기판(1010)으로 분사시킴으로써 원료전구체와 반응전구체간 화학적 반응에 의해 원하는 원자층 박막을 형성시키게 된다.
이와 같이 기판(1010)에 박막을 형성시킨 후에는 다시 가스 공급부(1212)로 퍼지가스를 공급하여 기판(1010)상 원료전구체와 결합하지 못하고 잔존하는 반응전구체를 모두 제거함으로써 1층의 원자층 박막을 완성하게 되며, 위와 같은 4단계의 공정을 1사이클로 하는 반복 공정을 통해 기판(1010)상 원자층 박막을 원하는 두께만큼 형성시키게 된다.
이때, 반응전구체의 원활한 반응 및 박막 특성의 향상을 위하여 하부 공정챔버(1220)에 히터(heater) 기능을 부여하여 기판(1010)의 온도 조절이 가능하도록 하여 서셉터 기능을 수행할 수 있다. 또한, 상부 공정챔버(1210)와 하부 공정챔버(1220)가 결합된 이후 공정챔버(1200)의 불완전한 결합 등으로 공정챔버(1200) 외부로의 가스누출에 따른 파티클(particle) 발생 방지를 위해 하부 공정챔버(1220)의 외곽에 기본 실링부(1221)와 추가 실링부(1222)를 구성할 수 있고, 상부 공정챔버(1210)와 하부 공정챔버(1220) 간 완벽한 면접촉을 위한 면접촉 형성부를 추가로 구성할 수도 있다.
이하에서는 위 공정챔버(1200)에서 원자층 증착 공정에 대해 보다 상세히 설명하기로 한다.
먼저, 공정챔버(1200)의 상부 공정챔버(1210)와 하부 공정챔버(1220)가 결합되어 원자층 증착 공정의 공정 진행이 가능한 상황이 되는 경우, 원자층 증착공정의 1 단계로, 가스 공급부(1212)를 통해 원료전구체를 공급하고, 가스 공급부(1212)를 통해 공급된 원료전구체가 원자층 증착 공정의 대상이 되는 기판(1010)에 분사되도록 하여 기판(1010)상에 원료전구체의 단일 분자층을 형성시킨다. 다음으로, 원료전구체가 기판(1010)상에 충분히 분사된 경우, 원자층 증착공정의 2단계로, 가스 공급부(1212)로 퍼지가스를 공급하여 기판(1010)상에 물리적으로 결합하고 있는 물리흡착층의 원료전구체에 대해서는 퍼지가스에 의해 기판(1010)과의 결합을 분리시켜 가스 배기부(1211)를 통해 배기되도록 함으로써 원료전구체의 단일 분자층을 얻도록 한다.
이때, 기판(1010)상으로 원료전구체가 분사되는 경우 원료전구체는 기판(1010) 표면에 화학적으로 또는 물리적으로 흡착하여 박막을 형성하게 되는데, 이와 같은 상태에서 불활성의 퍼지가스가 기판(1010)으로 분사되는 경우 상대적으로 결합력이 약한 물리흡착층의 원료전구체는 기판(1010)과 분리되어 배기되나, 기판(1010)상 화화적으로 공유 결합을 통해 결합되어 물리흡착층과 비교하여 상대적으로 강한 결합력을 가지고 있는 화학흡착층의 원료전구체는 분리되지 않는다.
다음으로, 원자층 증착공정의 3단계로, 가스 공급부(1212)를 통해 반응전구체를 공급하여 기판(1010)상으로 반응전구체를 분사시킨다. 이에 따라 기판(1010)상에 분사되는 반응전구체가 기판(1010)에 흡착되어 있는 원료전구체와 반응하여 원자층 박막이 형성된다. 마지막으로, 위와 같이 원료전구체와 반응전구체간 기상 반응에 의한 원자층 증착이 이루어진 경우, 원자층 증착공정의 4단계로, 가스 공급부(1212)를 통해 퍼지가스를 공급하여 기판(1010)상의 과잉의 전구체 또는 물리흡착 분자를 제거시키게 된다.
위와 같은 4단계의 원자층 증착공정을 1사이클(cycle)로 하는 반복 공정을 통해 기판(1010)상에 원자층 박막을 원하는 두께만큼 형성시키게 된다.
이때, 상술한 원자층 증착 공정에서는 가스 공급부(1212)가 공정챔버(1200)의 일측부에 형성되어 공정가스가 기판상 교차흐름 또는 이동파 방식으로 분사되는 것을 예를 들어 설명하였으나, 이는 하나의 실시예일뿐 이러한 가스 공급부(1212)는 상부 공정챔버(1210)상 샤워헤드(shower head)형 등으로 형성되어 전구체가 기판(1010)면에 수직으로 분사되는 형태로도 가능하다.
도 4b는 본 발명의 실시예에 따른 공정챔버(1200)의 단면 구조로서 플라즈마 공정이 가능한 개략적인 구성을 도시한 것이다.
위 도 4b를 참조하면, 도 4a에서와 마찬가지로 가스 공급부(1212)를 통해 상부 공정챔버(1210) 외곽의 일측면에서 공정챔버(1200) 내부에 위치한 기판(1010)으로 원료전구체, 반응전구체, 퍼지가스를 원자층 증착 공정의 순서에 따라 순차적으로 공급하게 되며, 상부 공정챔버(1210)의 타측면에 형성되는 가스 배기부(1211)를 통해 각각의 공정에서 사용된 공정가스 또는 퍼지가스가 배기되도록 하는 구조를 나타내고 있다.
이때, 도 4b에서는 원자층 증착 공정에 플라즈마를 이용하기 위해 도 4a에서와는 달리, 상부 공정챔버(1210)의 중심부에 플라즈마 형성을 위한 전극(1313)을 배치하고, 전극(1313)과 상부 공정챔버(1210) 사이는 절연체(1314)를 형성하여 상부 공정챔버(1210)와 전극(1313)간 쇼트(short)가 발생하는 것을 방지시키도록 하는 구조를 나타내고 있다.
이하, 동작을 살펴보면, 먼저, 원료전구체를 가스 공급부(1212)로 공급하여 기판(1010)의 일측면으로 균일하게 공급되고, 이에 따라 하부 공정챔버(1220)에 안착되어 있는 기판(1010)의 상층면에서 흡착반응이 일어나게 된다.
이어, 위와 같은 원료전구체의 흡착이 완료되면 가스 공급부(1212)로 퍼지가스를 공급하여 기판(1010)상 잔존하는 원료전구체를 가스 배기부(1211)로 배출시킨다.
이어, 다시 반응전구체를 가스 공급부(1212)에 공급하여 기판으로 분사시킨 후, 전극(1313)에 전원을 공급하여 기판(1010)상으로 직접 플라즈마(plasma)(1030)를 발생시켜 플라즈마(1030)에 의한 원료전구체와 반응전구체간 화학적 반응을 통해 원자층 박막을 형성시키게 된다. 이때, 플라즈마(1030)를 이용한 기판(1010)상 원자층 박막 형성에 있어서는 다른 실시예로써 반응전구체를 포함하는 퍼지가스를 공급하여 기판(1010)상 원료전구체가 완전히 제거되는 시점에 플라즈마(1030)를 발생시켜 막을 형성시킬 수도 있다.
도 4c는 본 발명의 실시예에 따른 공정챔버(1200)의 단면 구조로서 간접 플라즈마 공정이 가능한 개략적인 구성을 도시한 것이다.
위 도 4c를 참조하면, 가스 공급부(1212)를 통해 상부 공정챔버(1210) 외곽의 일측면에서 공정챔버(1200)내 위치한 기판(1010)으로 원료전구체, 반응전구체, 퍼지가스를 원자층 증착 공정의 순서에 따라 순차적으로 공급하게 되며, 상부 공정챔버(1210)의 타측면에 형성되는 가스 배기부(1211)를 통해 각각의 공정에서 사용된 공정가스 또는 퍼지가스가 배기되도록 하는 구조를 나타내고 있다.
이때, 도 4c에서는 도 4b에 도시된 직접 플라즈마(1030)에 따른 기판(1010)의 박막에 가해지는 영향을 최소화하기 위하여 가스 공급부(1212)에 별도의 전극(1313) 및 절연체(1314)를 가지도록 하는 구조를 나타내고 있다.
이하, 동작을 살펴보면, 먼저 원료전구체를 가스 공급부(1212)로 공급하여 기판(1010)의 일측면으로 균일하게 공급되고, 이에 따라 하부 공정챔버(1220)에 안착되어 있는 기판(1010)의 상층면에서 흡착반응이 일어나게 된다.
이어, 위와 같은 원료전구체의 흡착이 완료되면 가스 공급부(1212)로 퍼지가스를 공급하여 기판(1010)상 잔존하는 원료전구체를 가스 배기부(1211)로 배출시킨다.
이어, 다시 반응전구체를 가스 공급부(1212)에 공급하여 기판(1010)으로 분사시키는 시점에, 가스 공급부(1212)에 형성된 플라즈마 발생을 위한 전극(1313)에 전원을 공급하여 플라즈마(1030)를 발생시킨다. 이에 따라 반응전구체와 플라즈마(1030)에 의해 발생한 라디칼(radical)이 가스 흐름에 따라 기판(1010)상으로 공급되어 플라즈마(1030)에 의한 원료전구체와 반응전구체간 화학적 반응을 통해 원자층 박막을 형성시키게 된다.
도 5a는 본 발명의 다른 실시예에 따른 공정챔버(1200)의 단면 구조로서 공정가스가 기판상 교차흐름 또는 이동파 방식으로 분사되는 개략적인 구성을 도시한 것이다.
위 도 5a를 참조하면, 가스 공급부(1212)를 통해 상부 공정챔버(1210)의 외곽에서 공정챔버(1200) 내부에 위치한 기판(1010)으로 원료전구체, 반응전구체, 퍼지가스를 원자층 증착 공정의 순서에 따라 순차적으로 공급하게 되며, 상부 공정챔버(1210)의 중앙부에 형성되는 가스 배기부(1211)를 통해 각각의 공정에서 사용된 공정가스 또는 퍼지가스가 배기되도록 하는 구조를 나타내고 있다.
이하, 동작을 살펴보면, 상부 공정챔버(1210)의 양측 외곽부에 형성되는 가스공급부(1212)를 통해 기판(1010)상에 균일하게 공급되며, 공정에 사용된 후에는 상부 공정챔버(1210)의 중앙부에 형성되는 가스 배기부(1211)를 통해 배출된다. 위와 같은 공정을 통해 하부 공정챔버(1220)에 안착되어 있는 기판(1010)의 상층면에서 흡착반응이 일어나게 된다.
흡착이 완료되면 가스 공급부(1212)로 퍼지가스를 공급하여 기판(1010)상 잔존하는 원료전구체를 가스 배기부(1211)로 배출 시킨 후, 반응전구체를 가스 공급부(1212)에 공급하여 기판(1010)으로 분사시킴으로써 원료전구체와 반응전구체간 화학적 반응에 의해 원하는 원자층 박막을 형성시키게 된다.
이와 같이 기판(1010)에 박막을 형성시킨 후에는 다시 가스 공급부(1212)로 퍼지가스를 공급하여 기판(1010)상 원료전구체와 결합하지 못하고 잔존하는 반응전구체를 모두 제거함으로써 1층의 원자층 박막을 완성하게 되며, 위와 같은 4단계의 공정을 1사이클(cycle)로 하는 반복 공정을 통해 기판(1010)상 원자층 박막을 원하는 두께만큼 형성시키게 된다.
또한, 상부 공정챔버(1210)의 오염 최소화를 위해 가스 공급부(1212)와 가스 배기부(1211)를 공유하면서 로봇에 의해 주기적으로 교체 가능한 기판 또는 블랭크 마스크(1050)를 부착한 상태로 공정진행이 가능하다.
도 5b는 본 발명의 다른 실시예에 따른 공정챔버(1200)의 단면 구조로서 플라즈마 공정이 가능한 개략적인 구성을 도시한 것이다.
위 도 5b를 참조하면, 상부 공정챔버(1210)의 중앙부에 형성된 샤워헤드 디퓨져(1312)를 통해 샤워헤드 방식으로 공정챔버(1200)내 위치한 기판(1010)으로 원료전구체, 반응전구체, 퍼지가스를 원자층 증착 공정의 순서에 따라 순차적으로 공급하게 되며, 상부 공정챔버(1210)의 양측 외곽으로 형성되는 가스 배기부(1211)를 통해 각각의 공정에서 사용된 공정가스 또는 퍼지가스가 배기되도록 하는 구조를 나타내고 있다.
이하, 동작을 살펴보면, 상부 공정챔버(1210)의 중앙부를 통해 공급된 원료전구체는 기판(1010)의 상부에 기판 면적과 유사하게 형성되는 샤워헤드 디퓨져(1312)를 통해 기판(1010)상에 균일하게 공급되며, 공정에 사용된 후에는 상부 공정챔버(1210)의 외측면에 형성되는 가스 배기부(1211)를 통해 배출된다. 위와 같은 공정을 통해 하부 공정챔버(1220)에 안착되어 있는 기판(1010)의 상층면에서 흡착반응이 일어나게 된다.
이어 흡착이 완료되면 가스 공급부(1212)로 퍼지가스를 공급하여 기판(1010)상 잔존하는 원료전구체를 가스 배기부(1211)로 배출 시킨 후, 반응전구체를 가스 공급부(1212)에 공급하여 샤위헤드 디퓨져(1312)를 통해 기판(1010)상으로 분사되도록 한다. 이때 반응전구체의 공급 시 샤워헤드 디퓨져(1312)에 형성되는 전극(1413)에 전원을 공급하여 기판(1010)상에 플라즈마(1030)가 형성되도록 함으로써 플라즈마(1030)를 이용한 원료전구체와 반응전구체간 화학적 반응에 의해 원하는 박막을 형성시키게 된다. 이때, 전극(1413)과 상부 공정챔버(1210) 사이는 절연체(1314)를 형성하여 상부 공정챔버(1210)와 전극(1413)간 쇼트가 발생하는 것을 방지시키도록 한다.
위와 같은 기판(1010)과 근접한 배기 영역은 기판(1010)의 양단 또는 4면 전체로 구성될 수 있으며, 배기 경로중 일정 영역에 꼬깔형상, 물결형상, 홀형 디퓨져, 슬릿형 디퓨져등의 배기압 균일도 향상을 위한 구성부를 포함할 수 있으며, 배기 초입부는 기판(1010)과 최대한 근접하게 배치되어 성막이 필요한 기판(1010)외 불필요한 영역의 오염을 최소화할 수 있다.
도 5c는 본 발명의 다른 실시예에 따른 공정챔버(1200)의 단면 구조로서 간접 플라즈마 공정이 가능한 개략적인 구성을 도시한 것이다.
위 도 5c를 참조하면, 상부 공정챔버(1210)의 중앙부에 형성된 샤워헤드 디퓨져(1312)를 통해 샤워헤드 방식으로 공정챔버(1200)내 위치한 기판(1010)으로 원료전구체, 반응전구체, 퍼지가스를 원자층 증착 공정의 순서에 따라 순차적으로 공급하게 되며, 상부 공정챔버(1210)의 양측 외곽으로 형성되는 배기부(1211)를 통해 각각의 공정에서 사용된 공정가스 또는 퍼지가스가 배기되도록 하는 구조를 나타내고 있다.
이하, 동작을 살펴보면, 상부 공정챔버(1210)의 중앙부를 통해 공급된 원료전구체는 기판(1010)의 상부에 기판(1010) 면적과 유사하게 형성되는 샤워헤드 디퓨져(1312)를 통해 기판(1010)상에 균일하게 공급되며, 공정에 사용된 후에는 상부 공정챔버(1210)의 외측면에 형성되는 가스 배기부(1211)를 통해 배출된다. 위와 같은 공정을 통해 하부 공정챔버(1220)에 안착되어 있는 기판(1010)의 상층면에서 흡착반응이 일어나게 된다.
이어 흡착이 완료되면 샤워헤드 디퓨져(1312)를 통해 퍼지가스를 공급하여 기판(1010)상 잔존하는 원료전구체를 가스 배기부(1211)로 배출시킨 후, 반응전구체의 공급 시 샤워헤드 디퓨져(1312)에 형성된 전극(1413)에 전원을 공급하여 기판(1010)상에 플라즈마(1030)가 형성되도록 함으로써 플라즈마(1030)를 이용한 원료전구체와 반응전구체간 화학적 반응에 의해 원자층 박막을 형성시키게 된다.
이때, 도 5b에서와는 달리, 도 5c에서는 직접 플라즈마 적용이 어려운 물질이나 또는 이온 및 전자에 의한 하부막의 손상이 우려되는 경우 하부막의 손상 위험을 방지하기 위해 절연체(1314)이외에 전극(1413)과 샤워헤드 디퓨져(1312) 사이에 간극 절연체(1414)를 추가로 구성하여 전극(1413)과 디퓨져(1312) 사이에서만 플라즈마(1030)를 발생시킴으로써 반응전구체의 해리를 통한 라디칼을 공급하여 기판(1010)에 손상을 주지 않으면서 원자층 박막의 형성이 가능하도록 한다.
상기한 바와 같이, 본 발명에서는 원자층 증착에 있어서, 상부 및 하부의 분리 및 결합이 가능한 원자층 증착 공정을 위한 단위 공정챔버를 적층형태로 다수 개 배치하며, 적층형태로 배치된 다수개의 공정챔버의 외부에는 별도의 진공형성 및 압력 조절용 진공 챔버를 구현하여 최적의 공정이 가능한 최소의 공간만을 가지도록 구현된 다수 개의 공정챔버에서 동시에 원자층 증착 공정진행이 가능하도록 함으로써, 원료전구체 및 반응전구체의 사용량 감소 및 공정시간 최소화를 통해 비용을 절감시키면서 생산성을 향상시킬 수 있도록 한다. 또한, 본 발명에 따르면 최적화된 공정챔버내에서 원자층 증착 대상 기판이 상부 공정챔버 또는 하부 공정챔버에 완벽하게 밀착하게 되어 기판 뒷면의 성막을 방지시킬 수 있도록 한다.
한편 상술한 본 발명의 설명에서는 구체적인 실시예에 관해 설명하였으나, 여러 가지 변형이 본 발명의 범위에서 벗어나지 않고 실시될 수 있다. 예를 들어, 본 발명의 실시예에서는 원자층 증착장치에서의 동작을 예를 들어 설명하고 있으나, 본 발명은 PECVD에서도 동일하게 적용 가능하다.
따라서 발명의 범위는 설명된 실시 예에 의하여 정할 것이 아니고 특허청구범위에 의해 정하여져야 한다.
Claims (18)
- 상부 공정챔버와 하부 공정챔버를 구비하고, 원자층 증착 공정 대상 기판의 로딩 또는 언로딩 시에는 상기 상부 공정챔버와 하부 공정챔버가 분리되며, 상기 기판에 대한 증착 공정의 진행시에는 상기 상부 공정챔버와 하부 공정챔버가 결합하여 밀폐된 반응공간을 형성하는 공정챔버와,적어도 2개 이상의 상기 공정챔버를 수직 방향으로 적층된 형태로 지지하고, 상기 공정챔버가 적층된 공간을 진공상태로 유지시키는 진공챔버를 포함하는 적층형 원자층 증착장치.
- 제 1 항에 있어서,상기 상부 공정챔버는 상기 진공챔버에 고정되며, 상기 하부 공정챔버는 상기 진공챔버내에서 상하 방향으로 이동하여 상기 상부 공정챔버와 결합되거나 분리되는 것을 특징으로 하는 적층형 원자층 증착장치.
- 제 1 항에 있어서,상기 상부 공정챔버는,상기 밀폐된 반응공간에 공정가스 또는 퍼지가스를 공급하는 가스 공급부를 상기 상부 공정챔버의 일측 상부면에 구비하고,상기 밀폐된 반응공간에 공급된 가스를 배기시키는 가스 배기부를 상기 상부 공정챔버의 타측 상부면에 구비하는 것을 특징으로 하는 적층형 원자층 증착장치.
- 제 3 항에 있어서,상기 가스 공급부는,상기 상부 공정챔버의 측면 또는 상부면 상의 외곽 또는 중앙부에 형성되는 것을 특징으로 하는 적층형 원자층 증착장치.
- 제 1 항에 있어서,상기 상부 공정챔버의 하부면에 플라즈마 발생을 위한 전극이 형성되는 것을 특징으로 하는 적층형 원자층 증착장치.
- 제 3 항에 있어서,상기 공정가스 또는 상기 퍼지가스가 상기 밀폐된 반응공간으로 인입되는 상기 가스 공급부의 도입부에 플라즈마 발생을 위한 전극이 형성되는 것을 특징으로 하는 적층형 원자층 증착장치.
- 제 6 항에 있어서,상기 전극은,상기 상부 공정챔버와 절연되도록 절연체에 의해 둘러싸이는 것을 특징으로 하는 적층형 원자층 증착장치.
- 제 3 항에 있어서,상기 가스 공급부는,상기 상부 공정챔버의 측면 중앙부에 균일한 가스 유동을 위한 확산공간 또는 샤워헤드 디퓨져로 형성되어 상기 밀폐된 반응공간내의 상기 기판에 수직 또는 수평 방향으로 상기 공정가스 또는 상기 퍼지가스를 분사하는 것을 특징으로 하는 적층형 원자층 증착장치.
- 제 1 항에 있어서,상기 진공챔버는,상기 진공챔버의 내부 공간에 상기 공정챔버를 적층하여 지지하거나 반입/반출하거나 이송하기 위한 가이드부를 포함하는 것을 특징으로 하는 적층형 원자층 증착장치.
- 제 1 항에 있어서,상기 진공챔버는,상기 상부 공정챔버를 고정시키는 고정수단 및 상기 하부 공정챔버를 상하로 이동시키는 이송수단을 구비하는 것을 특징으로 하는 적층형 원자층 증착장치.
- 진공챔버 내에 적어도 2개 이상의 공정챔버가 적층되어 있는 적층형 원자층 증착장치에서 수행되는 원자층 증착 방법으로서,상기 공정챔버내에서 기판 및 마스크가 로딩되는 단계와,상기 기판 및 마스크가 로딩되면, 상기 공정챔버의 상부 공정챔버와 하부 공정챔버가 결합하여 밀폐된 반응공간을 형성하는 단계와,상기 밀폐된 반응공간에서 상기 기판에 대한 원자층 증착 공정을 수행하는 단계를 포함하는 원자층 증착방법.
- 제 11 항에 있어서,상기 원자층 증착 공정이 완료되면, 상기 상부 공정챔버와 상기 하부 공정챔버가 분리되고, 상기 기판이 언로딩되는 것을 특징으로 하는 원자층 증착방법.
- 제 11 항에 있어서,상기 원자층 증착 공정은 상기 2개 이상의 공정챔버에서 동시에 수행되는 것을 특징으로 하는 원자층 증착방법.
- 제 11 항에 있어서,상기 상부 공정챔버는 상기 진공챔버에 고정되며, 상기 하부 공정챔버는 상기 진공챔버내에서 상하 방향으로 이동하여 상기 상부 공정챔버와 결합되거나 분리되는 것을 특징으로 하는 원자층 증착방법.
- 제 11 항에 있어서,상기 하부 공정챔버는,상기 진공챔버에 구비되는 이송수단에 의해 상하로 이동되어 상기 상부 공정챔버와 분리되거나 결합되는 것을 특징으로 하는 원자층 증착방법.
- 제 11 항에 있어서,상기 원자층 증착 공정을 수행하는 단계는,상기 공정챔버의 일측 상부면에 형성되는 가스 공급부를 통해 상기 반응공간내의 상기 기판으로 원료전구체를 공급하는 단계와,상기 기판상에 원료전구체가 흡착된 후, 상기 가스 공급부를 통해 상기 기판으로 퍼지가스를 공급하여 상기 기판상에 흡착되지 못한 원료전구체를 배기시키는 단계와,상기 배기 후, 상기 가스 공급부를 통해 상기 기판으로 반응전구체를 공급하여 상기 원료전구체와 화학적 반응을 통해 원자층 박막을 형성시키는 단계와,상기 원자층 박막의 형성 후, 상기 가스 공급부를 통해 상기 기판으로 퍼지가스를 공급하여 상기 원료전구체와 결합하지 못한 반응전구체를 배기시키는 단계를 포함하는 것을 특징으로 하는 원자층 증착방법.
- 제 16 항에 있어서,상기 원료전구체, 반응전구체, 퍼지가스중 적어도 하나는,상기 상부 공정챔버의 측면 또는 중앙부에 균일한 가스 유동을 위한 확산공간 또는 샤워헤드 디퓨져로 형성되는 가스 공급부를 통해 공급되어 상기 반응공간내의 기판에 수직 또는 수평 방향으로 분사되는 것을 특징으로 하는 원자층 증착방법.
- 제 16 항에 있어서,상기 기판으로 반응전구체를 공급 시 상기 기판과 대응하는 상부 공정챔버의 하부면 또는 상기 반응공간과 연결되는 도입부에 플라즈마를 발생시키는 단계를 더 포함하고,상기 원자층 박막을 형성시키는 단계는 상기 플라즈마를 이용하여 상기 반응전구체와 상기 원료전구체의 화학적 반응을 유도하는 것을 특징으로 하는 원자층 증착방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2013-0107378 | 2013-09-06 | ||
KR20130107378A KR20150028574A (ko) | 2013-09-06 | 2013-09-06 | 적층형 원자층 증착 장치 및 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015034208A1 true WO2015034208A1 (ko) | 2015-03-12 |
Family
ID=52628617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/008050 WO2015034208A1 (ko) | 2013-09-06 | 2014-08-29 | 적층형 원자층 증착 장치 및 방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20150028574A (ko) |
WO (1) | WO2015034208A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3421638A1 (de) * | 2017-06-28 | 2019-01-02 | Meyer Burger (Germany) GmbH | Vorrichtung zur hochtemperatur-cvd mit einer stapelanordnung aus gasverteilern und aufnahmeplatten |
CN113151805A (zh) * | 2020-01-22 | 2021-07-23 | Eq泰科普勒斯株式会社 | 薄膜形成装置以及用于形成薄膜的自由基单元 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090015378A (ko) * | 2007-08-08 | 2009-02-12 | 주식회사 에이디피엔지니어링 | 기판 증착장치 |
KR20110092825A (ko) * | 2010-02-10 | 2011-08-18 | 세메스 주식회사 | 플라즈마 처리 장치 및 이를 이용한 방법 |
KR20120066853A (ko) * | 2010-12-15 | 2012-06-25 | 주식회사 엔씨디 | 박막 증착장치 |
KR20120140627A (ko) * | 2011-06-21 | 2012-12-31 | 도쿄엘렉트론가부시키가이샤 | 일괄식 처리 장치 |
-
2013
- 2013-09-06 KR KR20130107378A patent/KR20150028574A/ko active Search and Examination
-
2014
- 2014-08-29 WO PCT/KR2014/008050 patent/WO2015034208A1/ko active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090015378A (ko) * | 2007-08-08 | 2009-02-12 | 주식회사 에이디피엔지니어링 | 기판 증착장치 |
KR20110092825A (ko) * | 2010-02-10 | 2011-08-18 | 세메스 주식회사 | 플라즈마 처리 장치 및 이를 이용한 방법 |
KR20120066853A (ko) * | 2010-12-15 | 2012-06-25 | 주식회사 엔씨디 | 박막 증착장치 |
KR20120140627A (ko) * | 2011-06-21 | 2012-12-31 | 도쿄엘렉트론가부시키가이샤 | 일괄식 처리 장치 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3421638A1 (de) * | 2017-06-28 | 2019-01-02 | Meyer Burger (Germany) GmbH | Vorrichtung zur hochtemperatur-cvd mit einer stapelanordnung aus gasverteilern und aufnahmeplatten |
WO2019002262A1 (de) * | 2017-06-28 | 2019-01-03 | Meyer Burger (Germany) Gmbh | Vorrichtung zur hochtemperatur-cvd mit einer stapelanordnung aus gasverteilern und aufnahmeplatten |
CN113151805A (zh) * | 2020-01-22 | 2021-07-23 | Eq泰科普勒斯株式会社 | 薄膜形成装置以及用于形成薄膜的自由基单元 |
CN113151805B (zh) * | 2020-01-22 | 2023-05-09 | Eq泰科普勒斯株式会社 | 薄膜形成装置以及用于形成薄膜的自由基单元 |
Also Published As
Publication number | Publication date |
---|---|
KR20150028574A (ko) | 2015-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10190214B2 (en) | Deposition apparatus and deposition system having the same | |
WO2015072691A1 (ko) | 원자층증착 장치 및 방법 | |
WO2013147481A1 (ko) | 선택적 에피택셜 성장을 위한 장치 및 클러스터 설비 | |
CN111354657B (zh) | 半导体多站处理腔体 | |
KR101210555B1 (ko) | 박막 태양전지 제조 장치 | |
WO2010055669A1 (ja) | 電極回路、成膜装置、電極ユニットおよび成膜方法 | |
US20140126980A1 (en) | Substrate processing apparatus | |
WO2013095030A1 (ko) | 기판 처리 장치 및 기판 처리 방법 | |
WO2018042756A1 (ja) | 原子層成長装置および原子層成長方法 | |
WO2013180453A1 (ko) | 기판 처리 장치 및 기판 처리 방법 | |
WO2013180452A1 (ko) | 기판 처리 장치 및 기판 처리 방법 | |
JP5280441B2 (ja) | 成膜装置 | |
US8052887B2 (en) | Substrate processing apparatus | |
WO2015034208A1 (ko) | 적층형 원자층 증착 장치 및 방법 | |
WO2014119971A1 (ko) | 박막증착장치 | |
WO2015037858A1 (ko) | 스캔형 반응기를 가지는 원자층 증착 장치 및 방법 | |
WO2015142131A1 (ko) | 멀티형 증착 장치 및 이를 이용한 박막 형성 방법 | |
WO2014007572A1 (ko) | 기판 처리 장치 | |
WO2015072690A1 (ko) | 원자층 증착 장치 및 방법 | |
TWI452713B (zh) | 薄膜太陽能電池製造裝置 | |
KR101512140B1 (ko) | 원자층 증착 장치 및 방법 | |
WO2015016492A1 (ko) | 기판 처리장치 | |
JP2002083774A (ja) | 成膜装置 | |
KR101215089B1 (ko) | 박막 태양전지 제조 장치 | |
WO2024054056A1 (ko) | 가스 분사 장치, 기판 처리 장치 및 박막 증착 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14841611 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14841611 Country of ref document: EP Kind code of ref document: A1 |