WO2015072691A1 - 원자층증착 장치 및 방법 - Google Patents

원자층증착 장치 및 방법 Download PDF

Info

Publication number
WO2015072691A1
WO2015072691A1 PCT/KR2014/010498 KR2014010498W WO2015072691A1 WO 2015072691 A1 WO2015072691 A1 WO 2015072691A1 KR 2014010498 W KR2014010498 W KR 2014010498W WO 2015072691 A1 WO2015072691 A1 WO 2015072691A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
atomic layer
layer deposition
substrate
chamber
Prior art date
Application number
PCT/KR2014/010498
Other languages
English (en)
French (fr)
Inventor
이춘수
정홍기
Original Assignee
코닉이앤씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코닉이앤씨 주식회사 filed Critical 코닉이앤씨 주식회사
Priority to CN201480073139.7A priority Critical patent/CN105900215A/zh
Publication of WO2015072691A1 publication Critical patent/WO2015072691A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67748Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a single workpiece
    • H01L21/205
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67173Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement

Definitions

  • the present invention relates to a vapor deposition reactor and a method for forming a thin film using the same, and in particular, in atomic layer deposition (hereinafter referred to as ALD), a plurality of substrates connected in a vertical direction after mounting a substrate are arranged in a vertical direction.
  • ALD atomic layer deposition
  • Substrate mounted in the carrier to implement the first and second carriers that can be transported to the chamber and when coupled to each other to form a closed reaction space to perform the atomic layer deposition process on the substrate to act as a process chamber The process is carried out continuously while the carrier is transported in the order of the buffer chamber, the vacuum chamber, and the buffer chamber by connecting the plurality of vacuum chambers to enable the atomic layer deposition process for the carrier and the buffer chambers for the import / export of the carriers in the form of a straight line.
  • the present invention relates to an atomic layer deposition apparatus and method which allows to easily perform a process even in a substrate of a large area (ATOMIC LAYER DEPOSITION APPARATUS AND METHOD THEREOF), as the process proceeds in a state in which arrangement the substrate vertically.
  • a method of depositing a thin film having a predetermined thickness on a substrate includes physical vapor deposition (PVD) using physical collisions such as sputtering, and chemical vapor deposition using a chemical reaction.
  • PVD physical vapor deposition
  • CVD Chemical vapor deposition
  • This atomic layer deposition method is similar to the general chemical vapor deposition method in that it uses a chemical reaction between gas molecules. However, unlike conventional CVD in which a plurality of gas molecules are simultaneously injected into a process chamber to deposit a reaction product generated on a substrate, the atomic layer deposition method is heated by injecting a gas containing one source material into the process chamber. The difference is that the product is deposited by chemical reaction between the source materials at the substrate surface by chemisorbing to the substrate and then injecting a gas containing another source material into the process chamber.
  • the above-described atomic layer deposition method is a thin film encapsulation of an AMOLED (Active Matrix Organic Light Emitting Diodes) display, a barrier film of a flexible substrate, a solar buffer layer, a ferroelectric for semiconductors (high) -k) can be used to form high dielectric materials for capacitors or aluminum (Al), copper (Cu) wiring diffusion barriers (TiN, TaN, etc.) and the like.
  • AMOLED Active Matrix Organic Light Emitting Diodes
  • the atomic layer deposition method is a process in which the single-sheet, batch-type and scan-type small reactors, which have been used in Plasma Enhanced Chemical Vapor Deposition (PECVD) until now, are transported on the substrate or the substrate is transferred.
  • PECVD Plasma Enhanced Chemical Vapor Deposition
  • the single sheet method is a process proceeds after the input of a single substrate, the moving susceptor for the import / export and heating of the substrate, a diffuser (mainstream showerhead type) for the process gas input and the exhaust portion.
  • the chamber is very thick to prevent deformation of the process chamber and the periphery according to the external atmospheric pressure during vacuum formation. Since there is an enormous increase in productivity, there is a problem that the productivity is significantly reduced due to the rapid increase in the consumption of the raw material precursor and the reaction precursor, the increase in the maintenance cost, and the increase in the process time due to the adsorption-purge-reaction-purge time increase.
  • the batch-type method of simultaneously processing a plurality of substrates has a large volume of conventional atomic layer deposition equipment, so that a large amount of raw material precursors and reaction precursors require a lot of raw material precursors and reactive precursors.
  • the process is carried out simultaneously.
  • this batch type is partially applied to the solar cell process, there is a problem of simultaneous film formation on both the front surface and the back surface of the substrate, the problem of the uniformity and reproducibility of the thin film on a plurality of substrates. There is a problem that must be done.
  • the scan-type small reactor method is a method in which a plurality of small reactors corresponding to the length of one side of the substrate in the vacuum chamber are disposed so that the substrate or the small reactor is reciprocated to form a film. It is difficult to control the perfect gas flow of a small reactor, and it is difficult to realize a clear separation between the precursor precursor and the reactant precursor, which causes particle issues.
  • the present invention in the atomic layer deposition, it is possible to transfer to a plurality of chambers mounted in a vertical direction after mounting the substrate and connected in a date form, and when combined with each other to form a closed reaction space to form atoms in the substrate
  • the buffer chamber in the form of a straight line, the carrier is continuously transferred while transferring the buffer chamber, the vacuum chamber, and the buffer chamber in order to increase the efficiency of the atomic layer deposition process.
  • two substrates can be simultaneously processed in an atomic layer deposition process to increase productivity, and the process can be easily performed on a large-area substrate as the process is performed with the substrates arranged vertically.
  • the aim is to provide atomic layer deposition techniques.
  • the present invention described above is an atomic layer deposition apparatus, wherein a substrate to be subjected to an atomic layer deposition process is mounted on a first carrier and a second carrier, and the first carrier and the second carrier on which the substrate is mounted are moved in a direction facing each other. And a loading chamber in which the substrate mounted on the first carrier and the substrate mounted on the second carrier are arranged in a vertical direction when viewed from the ground, and connected to the loading chamber in a straight line form, and the substrate from the loading chamber.
  • a first buffer chamber into which the mounted first carrier and the second carrier are loaded, and adjusting an internal pressure to a first pressure for the atomic layer deposition process of the substrate; Connected to each other to maintain a closed reaction space formed in a vacuum state in which the first carrier and the second carrier are bonded to each other during the deposition process on the substrate. And a ball chamber, being connected with said vacuum chamber and date mode, and a second buffer chamber by pulling the substrate from the vacuum chamber to perform the pressure control as first pressure or at atmospheric pressure for the next step.
  • the first buffer chamber is characterized in that it comprises a transport means for transporting the first carrier and the second carrier in the horizontal direction.
  • the vacuum chamber may include a conveying means for conveying the first carrier and the second carrier in a horizontal direction, and driving means for closely contacting or separating the first carrier and the second carrier in a direction facing each other. It characterized by having a.
  • the vacuum chamber may include a reactor module coupled to the first carrier and the second carrier to form the reaction space in an inner central region of the vacuum chamber, and when performing an atomic layer deposition process on the substrate.
  • the first carrier and the second carrier are in close contact with each other by the driving means, are coupled to the reactor module, and the atomic layer deposition process is performed through the reactor module.
  • the vacuum chamber may include a reactor module positioned at both inner and outer peripheral regions of the vacuum chamber and controlled to move in the horizontal direction to form the reaction space by combining with the first carrier and the second carrier.
  • the reactor module is coupled with the first carrier After being coupled to the gas passage formed to be connected to the reaction space on both sides of the second carrier, characterized in that the atomic layer deposition process through the reactor module is performed.
  • the reactor module is waiting in a predetermined position inside the vacuum chamber, and when the first carrier and the second carrier is in close contact with the left and right by a driving means to move the first carrier and the first 2 is characterized in that it is coupled to or separated from the carrier.
  • the reactor module may include a gas supply unit configured to supply a process gas or a purge gas to the reaction space at one side thereof, and a gas exhaust unit configured to exhaust the process gas or purge gas supplied to the reaction space at the other side thereof. Characterized in that.
  • the reactor module is characterized in that it comprises an electrode for generating plasma on a part or the entire surface of the region adjacent to the reaction space.
  • the reactor module may include an electrode for generating plasma at an introduction portion of the gas supply unit.
  • each vacuum chamber is a chamber structure for the atomic layer deposition process using heat or a chamber structure for the atomic layer deposition process using direct plasma Or it is formed of one of the chamber structure for the atomic layer deposition process using an indirect plasma, or characterized in that formed by a combination of different chamber structures.
  • the present invention is a method for atomic layer deposition, the first chamber and the second carrier on which the substrate to be subjected to the atomic layer deposition process is mounted in the loading chamber connected to the vacuum chamber in which the process is performed in a straight line form perpendicular to each other Arranging and loading the first carrier and the second carrier in a first buffer chamber connected to the loading chamber in a straight line, and adjusting an internal pressure to a first pressure for an atomic layer deposition process of the substrate; Carrying out the pressure adjusting step, bringing the first carrier and the second carrier into the vacuum chamber, performing an atomic layer deposition process on the substrate in the vacuum chamber, and depositing the atomic layer. And carrying out the substrate on which the process is performed to the second buffer chamber connected to the vacuum chamber in a straight form.
  • the performing of the atomic layer deposition process may include: positioning the first carrier and the second carrier at a reference position for the atomic layer deposition process in the vacuum chamber, and the first carrier and the second carrier. Closely coupling the carriers in a direction facing each other and coupling the carrier module with the reactor module located in the inner central region of the vacuum chamber, and in the closed reaction space inside the first carrier and the second carrier formed according to the coupling; It characterized in that it comprises the step of performing an atomic layer deposition process on the substrate using a reactor module.
  • the first carrier and the second carrier are positioned at a reference position for the atomic layer deposition process in the vacuum chamber, and are in close contact with each other in a direction in which they are sealed.
  • the vacuum chamber may include a conveying means for conveying the first carrier and the second carrier in a horizontal direction, and driving means for closely contacting or separating the first carrier and the second carrier in a direction facing each other. It characterized by having a.
  • the reactor module may include a gas supply unit configured to supply a process gas or a purge gas to the reaction space at one side thereof, and a gas exhaust unit configured to exhaust the process gas or purge gas supplied to the reaction space at the other side thereof. Characterized in that.
  • the reactor module is characterized in that it comprises an electrode for generating plasma on a part or the entire surface of the region adjacent to the reaction space.
  • the reactor module may include an electrode for generating plasma at an introduction portion of the gas supply unit.
  • the present invention in the atomic layer deposition, it is possible to transfer to a plurality of chambers mounted in a vertical direction after mounting the substrate and connected in a date form, and when combined with each other to form a closed reaction space to form atoms in the substrate
  • the carrier is sequentially transferred while transferring the buffer chamber, the vacuum chamber, and the buffer chamber, thereby increasing the efficiency of the atomic layer deposition process.
  • the reactor module that configures the process gas inlet and outlet to the carrier and provides the process gas has only a secondary function such as a guide and docking / undocking for inlet and outlet of the process gas so that the two carriers can be in close contact.
  • the film forming process may be performed by dividing the film thickness formed in each vacuum chamber according to the type, thickness, etc. of the thin film, or may form various composite thin films such as thin film 1, thin film 2, and thin film 3.
  • FIG. 1 is a configuration diagram of an atomic layer deposition apparatus of the form of a straight line for the atomic layer deposition process by sequentially arranging two substrates according to an embodiment of the present invention
  • FIG. 1 is enlarged views of the vacuum chamber structure of FIG. 1;
  • FIG. 3 is a detailed structural diagram of a reactor module according to another embodiment of the present invention.
  • Figure 4a is a schematic configuration of a cross-sectional structure of a vacuum chamber according to an embodiment of the present invention in which the process gas is injected in the cross flow or moving wave method on the substrate,
  • Figure 4b is a schematic configuration diagram capable of plasma processing as a cross-sectional structure of the vacuum chamber according to an embodiment of the present invention
  • Figure 4c is a schematic configuration capable of indirect plasma processing as a cross-sectional structure of the vacuum chamber according to an embodiment of the present invention.
  • FIG. 1 is a configuration of an atomic layer deposition apparatus in which an atomic layer deposition process is performed while moving a plurality of vacuum chambers in which carriers vertically supporting two substrates are arranged in a straight line according to an embodiment of the present invention. It is shown.
  • the atomic layer deposition apparatus of the date type includes an import chamber 710, a first buffer chamber 700, a vacuum chamber 800, 900, 950, a second buffer chamber 750, and the like. .
  • the loading chamber 710 includes a first carrier 702 and a second carrier 703 that can mount an atomic layer deposition process target substrate 701 including a mask.
  • the first carrier 702 and the second carrier 703 has a configuration that is coupled to or separated from each other in a vertical arrangement in a direction facing each other, interlocked with the reactor module provided in the vacuum chamber 800 to be described later
  • a closed reaction space for the atomic layer deposition process may be formed inside the first carrier 702 and the second carrier 703.
  • first carrier 702 and the second carrier 703 is configured as a structure that can form a closed reaction space when combined with the reactor module as described above, after the reaction space is formed in the sealed reaction space
  • first carrier 702 and the second carrier 703 may transfer the substrate 701 as well as the inter-chamber transfer to the mounted substrate 701. It also serves as a process chamber in which the atomic layer deposition process of.
  • the loading chamber 710 faces the first carrier 702 and the second carrier 703, respectively.
  • the substrate 701 mounted on the first carrier 702 and the substrate 701 mounted on the second carrier 703 are arranged in the vertical direction when viewed from the ground, and the conveying means (not shown). Not used) to the first buffer chamber 700.
  • the first buffer chamber 700 is a pressure control chamber, which is connected to the carry-in chamber 710 in a straight shape, and has a first carrier 702 and a second carrier 703 on which the substrate 701 is mounted from the carry-in chamber 710. ), And when the first carrier 702 and the second carrier 703 are loaded, the pressure inside the chamber is adjusted to a preset pressure for the atomic layer deposition process of the substrate 701.
  • the first buffer chamber 700 may adjust a pressure difference such as air / vacuum or high vacuum / low vacuum, and a heating chamber for controlling the temperature of the substrate 701 through a heater 720 or the like. may also serve as a chamber.
  • the vacuum chamber 800 is connected to the first buffer chamber 700 in the form of a straight line, and when the atomic layer deposition process is performed on the substrate 701, the first carrier 702 and the second carrier 703 are connected to each other.
  • the sealed reaction space formed by bonding is maintained in a vacuum state.
  • the vacuum chamber 800 is configured to transfer the first carrier 702 and the second carrier 703 in the left and right directions, as shown in FIGS. 2A and 2B, which enlarge the configuration of the vacuum chamber 800.
  • the conveying means 830 and the driving means 820 for contacting or separating the first carrier 702 and the second carrier 703 in a direction facing each other are provided.
  • the second buffer chamber 750 is connected to the vacuum chamber 800 in the form of a straight line, and the substrate 701 is introduced into the substrate 701 which is carried out by the atomic layer deposition process from the vacuum chamber 800, and the chamber is operated under pressure for the next process.
  • the pressure in the chamber is adjusted to atmospheric pressure when the pressure within the substrate is removed or when the process of the substrate 701 is completed.
  • the substrate 701 for atomic layer deposition is mounted on the first carrier 702 and the second carrier 703 of the loading chamber 710.
  • the first carrier 702 and the second carrier 703 mounted on the substrate 701 may be loaded in the chamber 710.
  • the inverter module not shown
  • it is transferred from the loading chamber 710 to the first buffer chamber 700 by a conveying means (not shown).
  • the transport means 830 for transporting the first carrier 702 and the second carrier 703 to each chamber is, for example, coupled to a roller or the like on the lower portion of the carriers 702 and 703 arranged vertically.
  • the transfer means 830 can be implemented in various ways by those skilled in the art.
  • the pressure is adjusted in the first buffer chamber 700. That is, in the first buffer chamber 700, a pressure difference such as air / vacuum or high vacuum / low vacuum may be adjusted.
  • the pressure inside the chamber may be a substrate. It can be adjusted to a predetermined pressure for the atomic layer deposition process of 701. In this case, the preset pressure may be the same pressure as the pressure inside the vacuum chamber 800 in which the atomic layer deposition process on the substrate 701 is performed.
  • the temperature of the substrate 701 may be controlled through the heater 720.
  • the first carrier 702 and the second carrier 703 on which the substrate 701 is mounted are provided in the first buffer chamber 700. It is transferred to the vacuum chamber 800 through the transfer means 830.
  • the vacuum chamber 800 includes a transfer means capable of transferring the first carrier 702 and the second carrier 703 on which the substrate 701 is mounted, for example, in the form of a roller.
  • the transfer means may be installed, the driving means for contacting or separating the first carrier 702 and the second carrier 703 in a direction facing each other may be installed.
  • the first carrier 702 and the second carrier 703 are carried into the vacuum chamber 800, the first carrier 702 and the second carrier 703 are to be positioned at a predetermined reference position for performing the atomic layer deposition process in the vacuum chamber 800 by the transfer means. After being positioned at the reference position, the first carrier 702 and the second carrier 703 may be in close contact by the driving means to form a closed reaction space.
  • the vacuum chamber 800 is provided in the reaction chamber.
  • the reactor module 810 coupled with the first carrier 702 and the second carrier 703 to supply and exhaust, the required gas is supplied to the reaction space as the process proceeds, thereby depositing atomic layers on the substrate 701. The process can be performed.
  • the reactor module 810 as described above may be located in the central region or both outer regions of the vacuum chamber 800, as shown in Figure 1 or 3, the first carrier 702 and the second carrier 703 It refers to a device that can perform the atomic layer deposition process in conjunction with the.
  • the reactor module 810 when the reactor module 810 is installed in the inner central region of the vacuum chamber 800, when the atomic layer deposition process is performed on the substrate 701, the first carrier 702 is performed. ) And the second carrier 703 are in close contact with each other by the driving means to be combined with the reactor module 810 to form a closed reaction space. Then, the gas is supplied to the reaction space through the reactor module 810 as the process proceeds, and the atomic layer deposition process on the substrate 701 may be performed.
  • the reactor module 810 when the reactor module 810 is located at both inner and outer regions of the vacuum chamber 800 so as to be movable side to side, an atomic layer deposition process on the substrate 701.
  • the reactor module 810 is the first carrier 702 and the It is coupled to the gas passage 816 formed to be connected to the reaction space on both sides of the second carrier 703. Thereafter, the required gas is supplied to the reaction space through the reactor module 810 to process the atomic layer deposition process on the substrate 701.
  • the first carrier 702 and the second carrier 703 are separated in a direction facing each other by the driving means 820, and the transfer means 830. It is transferred to the second buffer chamber 750 which is connected to the vacuum chamber 800 in the form of a straight line.
  • the atomic layer deposition process is carried out from the vacuum chamber 800, and the substrate 701 is introduced into the substrate 701.
  • the pressure in the chamber is adjusted to atmospheric pressure.
  • the atomic layer deposition apparatus is configured in a straight form into the loading chamber 710, the first buffer chamber 700, the vacuum chamber 800, the second buffer chamber 750, and the like, and thus, the substrate 701.
  • Loading, process execution, and unloading operations for the sequential in-line (in-line) can be performed sequentially to increase productivity.
  • the two carriers 702 and 703 on which the substrate 701 is mounted may be vertically arranged in a direction facing each other so that the process may be simultaneously performed on the two substrates 701, thereby further improving productivity.
  • a plurality of vacuum chambers 800, 900, and 950 connected in a straight shape have different chamber structures.
  • this is merely an example for convenience of description and a thin film formed on the substrate 701.
  • the various types of vacuum chamber as described above may be a direct plasma, such as a chamber structure for the atomic layer deposition process using the same heat as in the vacuum chamber corresponding to the reference number 800 or the vacuum chamber corresponding to the reference number 900, for example.
  • a chamber structure for the atomic layer deposition process may be used or a chamber structure for the atomic layer deposition process using an indirect plasma, such as in a vacuum chamber corresponding to the reference numeral 950.
  • Figure 4a is a cross-sectional structure of a vacuum chamber 800 according to an embodiment of the present invention shows a schematic configuration in which the process gas is injected in a cross flow or moving wave method on the substrate.
  • the gas supply part 812 in the reactor module 810 is formed.
  • the raw material precursor, the reaction precursor, and the purge gas are sequentially supplied to the substrate 701 located inside the reaction space in the order of the atomic layer deposition process, and the gas exhaust part 813 formed in the opposite reactor module 810 is provided. It shows a structure to exhaust the process gas or purge gas used in each process through.
  • TMA trimethylaluminum
  • a purge gas for example, Ar, O2, N2, N2O, or the like, is supplied to the gas supply unit 812 to discharge the remaining raw material precursor on the substrate 701 to the gas exhaust unit 813, and then the reaction precursor. Is supplied to the gas supply unit 812 and sprayed onto the substrate 701 to form a desired atomic layer thin film by chemical reaction between the raw material precursor and the reaction precursor.
  • the purge gas is supplied to the gas supply unit 812 again to remove all remaining reactive precursors that cannot be combined with the raw material precursors on the substrate 701.
  • the atomic layer thin film on the substrate 701 is formed to a desired thickness through a repeating process using one of the above four steps as one cycle.
  • a heater 720 may be installed in the vacuum chamber 800 to control the temperature of the substrate 701.
  • Figure 4b is a cross-sectional structure of a vacuum chamber 900 according to an embodiment of the present invention shows a schematic configuration capable of a plasma process.
  • the reactor module 810 After the first carrier 702 and the second carrier 703 are combined with the reactor module 810 to form a closed reaction space, the reactor module 810 The raw material precursor, the reaction precursor, and the purge gas are sequentially supplied to the substrate 701 located in the reaction space through the gas supply unit 812 in the order of the atomic layer deposition process, and the gas formed in the opposite reactor module 810 is provided.
  • the exhaust gas 813 has a structure in which process gas or purge gas used in each process is exhausted.
  • an electrode 811 is disposed at the center of the reactor module 810 to use plasma in the atomic layer deposition process, and the electrode 811 and the reactor module are disposed. Between the 810, an insulator 814 is formed to prevent a short between the reactor module 810 and the electrode 811.
  • the raw material precursor is supplied to the gas supply unit 812 so as to be uniform to one side of two substrates 701 mounted on the first carrier 702 and the second carrier 703 in the reaction space, respectively.
  • the adsorption reaction occurs on the surfaces of the two substrates 701 mounted on the first carrier 702 and the second carrier 703, respectively.
  • the purge gas is supplied to the gas supply part 812 to discharge the remaining raw material precursor on the substrate 701 to the gas exhaust part 813.
  • the reaction precursor is again supplied to the gas supply unit 812 and injected into the substrate 701. Then, power is supplied to the electrode 811 to generate a plasma 816 directly onto the substrate 701.
  • the atomic layer thin film is formed through a chemical reaction between the raw material precursor and the reaction precursor by 816.
  • the plasma 816 is supplied when the raw material precursor on the substrate 701 is completely removed by supplying a purge gas including the reaction precursor. May be formed to form a film.
  • Figure 4c is a cross-sectional structure of the vacuum chamber 950 according to an embodiment of the present invention shows a schematic configuration capable of an indirect plasma process.
  • the gas supply part 812 in the reactor module 810 is formed.
  • the raw material precursor, the reaction precursor, and the purge gas are sequentially supplied to the substrate 701 located inside the reaction space in the order of the atomic layer deposition process, and the gas exhaust part 812 formed in the opposite reactor module 810 is provided. It shows a structure to exhaust the process gas or purge gas used in each process through.
  • 4C has a separate electrode 811 and an insulator 814 in the gas supply part 812 in order to minimize the effect on the thin film of the substrate 701 according to the direct plasma 816 shown in FIG. 4B.
  • the structure is shown.
  • the gap insulator 815 is disposed between the electrode 811 and the gas supply part 812 in addition to the insulator 814 in order to prevent a risk of damaging the thin film on the substrate 701 by a material or an ion and electron which are difficult to apply the plasma directly.
  • the precursor precursor is supplied to the gas supply unit 812 to be uniformly disposed on one side surface of two substrates 701 mounted on the first carrier 702 and the second carrier 703 in the reaction space, respectively.
  • an adsorption reaction occurs on the surfaces of the two substrates 701 mounted on the first carrier 702 and the second carrier 703, respectively.
  • the purge gas is supplied to the gas supply part 812 to discharge the remaining raw material precursor on the substrate 701 to the gas exhaust part 813.
  • the present invention in the atomic layer deposition, it is possible to transfer to a plurality of chambers mounted in a vertical direction after mounting the substrate and connected in a form of a form, and when combined with each other to form a closed reaction space Loading of a plurality of vacuum chambers and carriers to implement the first and second carriers acting as a process chamber capable of performing an atomic layer deposition process on a substrate, and to enable an atomic layer deposition process on a substrate mounted in the carrier
  • the carrier is sequentially transferred while transferring the buffer chamber, the vacuum chamber, and the buffer chamber, thereby increasing the efficiency of the atomic layer deposition process.
  • the atomic layer deposition process can be performed simultaneously on two or more substrates in one vacuum chamber, thereby increasing productivity.
  • the process can also be easily performed on a large area substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명에서는 원자층증착에 있어서, 기판을 탑재하여 수직 방향으로 배열된 후 일자 형태로써 연결되는 다수의 챔버로의 이송이 가능하며 서로 결합되는 경우 밀폐된 반응공간을 형성하여 기판에 대한 원자층증착 공정을 수행할 수 있는 공정챔버로써 동작하는 제1 및 제2 캐리어를 구현하고, 캐리어내 탑재된 기판에 대한 원자층증착 공정이 가능하도록 하는 다수의 진공챔버와 캐리어의 반입/반출을 위한 버퍼챔버를 일자 형태로써 연결시킴으로써 캐리어가 버퍼챔버, 진공챔버, 버퍼챔버 순으로 이송하면서 연속으로 공정이 수행되어 원자층증착 공정의 효율을 높일 수 있다. 또한, 두 개의 캐리어에 각각 기판을 탑재하여 하나의 진공챔버에서 두 개의 기판에 대해 동시에 원자층증착 공정을 진행할 수 있어 생산성을 높일 수 있으며, 기판을 수직으로 배열시킨 상태에서 공정을 진행함에 따라 대형 면적의 기판에 대해서도 용이하게 공정을 수행할 수 있다.

Description

원자층증착 장치 및 방법
본 발명은 기상 증착 반응기 및 이를 이용한 박막 형성 방법에 관한 것으로, 특히 원자층증착(Atomic Layer Deposition,이하 ALD라 함)에 있어서, 기판을 탑재하여 수직 방향으로 배열된 후 일자 형태로써 연결되는 다수의 챔버로의 이송이 가능하며 서로 결합되는 경우 밀폐된 반응공간을 형성하여 기판에 대한 원자층증착 공정을 수행할 수 있는 공정챔버로써 동작하는 제1, 제2 캐리어를 구현하고, 캐리어내 탑재된 기판에 대한 원자층증착 공정이 가능하도록 하는 다수의 진공챔버와 캐리어의 반입/반출을 위한 버퍼챔버를 일자 형태로 연결시킴으로써, 캐리어가 버퍼챔버, 진공챔버, 버퍼챔버 순으로 이송하면서 연속으로 공정이 수행되어 원자층증착 공정의 효율을 높일 수 있고, 두 개의 기판을 동시에 원자층증착 공정을 진행할 수 있어 생산성을 높일 수 있으며, 기판을 수직으로 배열시킨 상태에서 공정을 진행함에 따라 대형 면적의 기판에 대해서도 용이하게 공정을 수행할 수 있도록 하는 원자층증착 장치 및 방법(ATOMIC LAYER DEPOSITION APPARATUS AND METHOD THEREOF)에 관한 것이다.
일반적으로, 웨이퍼 또는 글라스 등의 기판 상에 소정 두께의 박막을 증착하는 방법으로는 스퍼터링(sputtering)과 같이 물리적인 충돌을 이용하는 물리 기상 증착법(Physical Vapor Deposition, PVD)과, 화학반응을 이용하는 화학 기상 증착법(Chemical Vapor Deposition, 이하 CVD라 함) 등이 있다.
그러나, 최근 들어 반도체 소자의 디자인 룰(design rule)이 급격하게 미세해짐에 따라 미세 패턴의 박막이 요구되고 박막이 형성되는 영역의 단차 또한 매우 커지고 있어 원자층 두께의 미세 패턴을 매우 균일하게 형성할 수 있을 뿐만 아니라 스텝-커버리지(step-coverage)가 우수한 원자층증착방법(ALD)의 사용이 증대되고 있다.
이러한 원자층증착방법은 기체 분자들 간의 화학반응을 이용한다는 점에 있어서 일반적인 화학 기상 증착방법과 유사하다. 하지만, 통상의 CVD가 복수의 기체 분자들을 동시에 프로세스 챔버 내로 주입하여 발생된 반응 생성물을 기판에 증착하는 것과 달리, 원자층증착방법은 하나의 소스 물질을 포함하는 가스를 프로세스 챔버 내로 주입하여 가열된 기판에 화학흡착시키고 이후 다른 소스 물질을 포함하는 가스를 프로세스 챔버에 주입함으로써 기판 표면에서 소스 물질 사이의 화학반응에 의한 생성물이 증착된다는 점에서 차이가 있다.
한편, 위와 같은 원자층증착방법은 AMOLED(Active Matrix Organic Light Emitting Diodes) 디스플레이의 박막 봉지, 플렉서블(flexible) 기판의 베리어막(barrier film), 태양광 버퍼 레이어(buffer layer), 반도체용 강유전체(high-k) 캐패시터용 고유전 물질 또는 알루미늄(Al), 구리(Cu) 배선 확산 방지막(TiN, TaN 등) 등을 형성하는데 사용될 수 있다.
이러한 원자층증착방법은 현재까지 PECVD(Plasma Enhanced Chemical Vapor Deposition)에서 사용되던 매엽식, 배치식 및 스캔형 소형 반응기가 기판위를 이송 또는 기판이 이송하는 방식으로 공정이 이루어지고 있다.
먼저, 매엽 방식은 1장의 기판 투입 후 공정진행이 이루어지며, 기판의 입/반출 및 히팅을 위한 무빙용 서셉터, 공정가스 투입을 위한 디퓨져(샤워헤드 타입이 주류) 및 배기부로 구성되어 있다. 그러나, 매엽 방식에서는 진공 형성시 외부 대기압에 따른 공정챔버 및 주변부의 변형방지를 위하여 챔버가 매우 두껍고 기판의 반입/반출 및 공정 영역 구분을 위한 게이트 밸브의 필요로 대면적기판용 장비 구성시 내부 부피가 엄청나게 늘어나게 되므로 원료전구체 및 반응전구체의 소모량 급증, 유지비용 급증, 흡착-퍼지-반응-퍼지 시간증가에 따른 공정시간 증가로 생산성이 현저히 감소하는 문제점이 있다.
다음으로, 다수의 기판에 대해 동시에 공정을 진행하는 배치형 방식은 종래 원자층증착 장비의 부피가 커서 원료전구체와 반응전구체가 많이 소요됨에 따른 유지비용 증가와 저생산성 문제점을 해결하고자 여러장의 기판에 대해 동시에 공정을 수행하는 방식이다. 이러한 배치형 방식은 태양전지 공정에 일부 적용되고 있으나, 기판 전면뿐만 아니라 뒷면에도 동시 성막이 되는 문제점, 다수 기판에 대한 박막의 균일도 및 재현성의 문제가 있으며, 챔버오염시 초대형 챔버 전체를 분리하여 세정해야 하는 문제점이 있다.
다음으로, 스캔형 소형 반응기방식은 진공챔버내 기판의 한면의 길이에 대응하는 소형 반응기를 여러개 배치하여 기판 또는 소형 반응기가 왕복 운동하여 성막하는 방식으로, 일부 디스플레이 박막봉지 공정에 적용되었으나, 기판과 소형 반응기의 완벽한 가스 유동 제어가 어려우며, 원료전구체와 반응전구체의 명확한 분리 구현이 어려워 파티클 이슈가 발생하는 문제점이 있다.
따라서, 본 발명에서는 원자층증착에 있어서, 기판을 탑재하여 수직 방향으로 배열된 후 일자 형태로써 연결되는 다수의 챔버로의 이송이 가능하며 서로 결합되는 경우 밀폐된 반응공간을 형성하여 기판에 대한 원자층증착 공정을 수행할 수 있는 공정챔버로써 동작하는 제1, 제2 캐리어를 구현하고, 캐리어내 탑재된 기판에 대한 원자층증착 공정이 가능하도록 하는 다수의 진공챔버와 캐리어의 반입/반출을 위한 버퍼챔버를 일자 형태로 연결시킴으로써, 캐리어가 버퍼챔버, 진공챔버, 버퍼챔버 순으로 이송하면서 연속으로 공정이 수행되어 원자층증착 공정의 효율을 높이고자 한다.
또한, 본 발명에서는 두 개의 기판을 동시에 원자층증착 공정을 진행할 수 있어 생산성을 높일 수 있으며, 기판을 수직으로 배열시킨 상태에서 공정을 진행함에 따라 대면적의 기판에 대해서도 용이하게 공정을 수행할 수 있도록 하는 원자층증착 기술을 제공하고자 한다.
상술한 본 발명은 원자층증착 장치로서, 원자층증착 공정 대상 기판을 제1 캐리어, 제2 캐리어에 탑재하고, 상기 기판이 탑재된 상기 제1 캐리어 및 상기 제2 캐리어를 서로 마주보는 방향으로 이동시켜, 상기 제1 캐리어에 탑재된 기판과 상기 제2 캐리어에 탑재된 기판이 지면에서 볼 때 수직 방향으로 배열되도록 하는 반입챔버와, 상기 반입챔버와 일자 형태로써 연결되며, 상기 반입챔버로부터 상기 기판이 탑재된 상기 제1 캐리어 및 상기 제2 캐리어를 반입하고, 내부의 압력을 상기 기판의 원자층증착 공정을 위한 제1 압력으로 조절하는 제1 버퍼챔버와, 상기 제1 버퍼챔버와 일자 형태로써 연결되며, 상기 기판에 대한 증착 공정의 진행 시에, 상기 제1 캐리어 및 상기 제2 캐리어가 서로 결합하여 형성되는 밀폐된 반응공간을 진공상태로 유지시키는 진공챔버와, 상기 진공챔버와 일자 형태로써 연결되며, 상기 진공챔버로부터 상기 기판을 인입하여 다음 공정을 위한 제2 압력 또는 대기압으로 압력조절을 수행하는 제2 버퍼챔버를 포함한다.
또한, 상기 제1 버퍼챔버는, 상기 제1 캐리어 및 제2 캐리어를 좌우 방향으로 이송시키기 위한 이송수단을 구비하는 것을 특징으로 한다.
또한, 상기 진공챔버는, 상기 제1 캐리어 및 상기 제2 캐리어를 좌우 방향으로 이송시키기 위한 이송수단과, 상기 제1 캐리어 및 상기 제2 캐리어를 서로 마주보는 방향으로 밀착시키거나 분리시키기 위한 구동수단을 구비하는 것을 특징으로 한다.
또한, 상기 진공챔버는, 상기 진공챔버의 내부 중앙 영역에 상기 제1 캐리어 및 상기 제2 캐리어와 결합하여 상기 반응공간을 형성되는 반응기 모듈을 구비하며, 상기 기판에 대한 원자층증착 공정의 수행 시, 상기 제1 캐리어 및 상기 제2 캐리어는 상기 구동수단에 의해 서로 마주보는 방향으로 밀착되어 상기 반응기 모듈과 결합되고, 상기 반응기 모듈을 통해 상기 원자층증착 공정이 수행되는 것을 특징으로 한다.
또한, 상기 진공챔버는, 상기 진공챔버의 내부 양측 외곽 영역에 위치하고, 좌우 방향으로 이동 제어되어 상기 제1 캐리어 및 상기 제2 캐리어와 결합하여 상기 반응공간을 형성하는 반응기 모듈을 구비하며, 상기 기판에 대한 원자층증착 공정의 수행 시, 상기 제1 캐리어 및 상기 제2 캐리어는 상기 구동수단에 의해 서로 마주보는 방향으로 밀착되어 상기 반응공간을 형성하고, 상기 반응기 모듈은 결합된 상기 제1 캐리어와 상기 제2 캐리어의양측면에 상기 반응공간과 연결되도록 형성된 가스 통로에 결합된 후, 상기 반응기 모듈을 통한 상기 원자층증착 공정이 수행되는 것을 특징으로 한다.
또한, 상기 반응기 모듈은, 상기 진공챔버의 내부에 기설정된 위치에 대기하고 있다가 상기 제1 캐리어 및 상기 제2 캐리어가 밀착되는 경우 구동수단에 의해 좌우 방향으로 이동되어 상기 제1 캐리어 및 상기 제2 캐리어와 결합되거나 분리되는 것을 특징으로 한다.
또한, 상기 반응기 모듈은, 일측부에 상기 반응공간에 공정가스 또는 퍼지가스를 공급하는 가스 공급부를 구비하고, 타측부에 상기 반응공간에 공급된 상기 공정 가스 또는 퍼지 가스를 배기시키는 가스 배기부를 구비하는 것을 특징으로 한다.
또한, 상기 반응기 모듈은, 상기 반응공간과 인접하는 영역의 일부 또는 전체면에 플라즈마 발생을 위한 전극을 구비하는 것을 특징으로 한다.
또한, 상기 반응기 모듈은, 상기 가스 공급부의 도입부에 플라즈마 발생을 위한 전극을 구비하는 것을 특징으로 한다.
또한, 상기 진공챔버는, 일자 형태로써 연결되는 방식으로 적어도 두 개 이상 구비되며, 각각의 진공챔버는 열을 이용한 원자층증착 공정을 위한 챔버구조 또는 직접 플라즈마를 이용한 원자층증착 공정을 위한 챔버구조 또는 간접 플라즈마를 이용한 원자층증착 공정을 위한 챔버구조 중 하나의 챔버구조로 형성되거나, 서로 다른 챔버구조의 조합으로 형성되는 것을 특징으로 한다.
또한, 본 발명은 원자층증착 방법으로서, 공정이 수행되는 진공챔버와 일자 형태로써 연결되는 반입챔버에서, 원자층증착 공정 대상 기판이 탑재된 제1 캐리어 및 제2 캐리어를 서로 마주보는 방향으로 수직 배열하는 단계와, 상기 반입챔버와 일자 형태로써 연결되는 제1 버퍼챔버에서 상기 제1 캐리어 및 상기 제2 캐리어를 반입하고, 내부의 압력을 상기 기판의 원자층증착 공정을 위한 제1 압력으로 조절하는 단계와, 상기 압력 조절 후, 상기 진공챔버로 상기 제1 캐리어 및 상기 제2 캐리어를 반입하는 단계와, 상기 진공챔버에서 상기 기판에 대해 원자층증착 공정을 수행하는 단계와, 상기 원자층증착 공정이 수행된 기판을 상기 진공챔버와 일자 형태로써 연결되는 제2 버퍼챔버로 반출하는 단계를 포함한다.
또한, 상기 원자층증착 공정을 수행하는 단계는, 상기 제1 캐리어 및 상기 제2 캐리어를 상기 진공챔버내 상기 원자층증착 공정을 위한 기준 위치에 위치시키는 단계와, 상기 제1 캐리어 및 상기 제2 캐리어를 서로 마주보는 방향으로 밀착시켜 상기 진공챔버의 내부 중앙 영역에 위치된 반응기 모듈과 결합시키는 단계와, 상기 결합에 따라 형성되는 상기 제1 캐리어 및 상기 제2 캐리어 내부의 밀폐된 반응공간에서 상기 반응기 모듈을 이용하여 상기 기판에 대한 원자층증착 공정을 수행하는 단계를 포함하는 것을 특징으로 한다.
또한, 상기 원자층증착 공정을 수행하는 단계는, 상기 제1 캐리어 및 상기 제2 캐리어를 상기 진공챔버내 상기 원자층증착 공정을 위한 기준 위치에 위치시키고, 서로 마주보는 방향으로 밀착시켜 밀폐된 반응공간을 형성시키는 단계와, 상기 진공챔버의 내부 양측 외곽 영역에 위치한 반응기 모듈을 이동시켜 상기 결합된 상기 제1 캐리어 및 상기 제2 캐리어의 양측면에 상기 반응 공간과 연결되도록 형성된 가스 통로에 결합시키는 단계와, 상기 결합 후, 상기 반응공간에서 상기 반응기 모듈을 이용하여 상기 기판에 대한 원자층증착 공정을 수행하는 단계를 포함하는 것을 특징으로 한다.
또한, 상기 진공챔버는, 상기 제1 캐리어 및 상기 제2 캐리어를 좌우 방향으로 이송시키기 위한 이송수단과, 상기 제1 캐리어 및 상기 제2 캐리어를 서로 마주보는 방향으로 밀착시키거나 분리시키기 위한 구동수단을 구비하는 것을 특징으로 한다.
또한, 상기 반응기 모듈은, 일측부에 상기 반응공간에 공정가스 또는 퍼지가스를 공급하는 가스 공급부를 구비하고, 타측부에 상기 반응공간에 공급된 상기 공정 가스 또는 퍼지 가스를 배기시키는 가스 배기부를 구비하는 것을 특징으로 한다.
또한, 상기 반응기 모듈은, 상기 반응공간과 인접하는 영역의 일부 또는 전체면에 플라즈마 발생을 위한 전극을 구비하는 것을 특징으로 한다.
또한, 상기 반응기 모듈은, 상기 가스 공급부의 도입부에 플라즈마 발생을 위한 전극을 구비하는 것을 특징으로 한다.
본 발명에 따르면, 원자층증착에 있어서, 기판을 탑재하여 수직 방향으로 배열된 후 일자 형태로써 연결되는 다수의 챔버로의 이송이 가능하며 서로 결합되는 경우 밀폐된 반응공간을 형성하여 기판에 대한 원자층증착 공정을 수행할 수 있는 공정챔버로써 동작하는 제1, 제2 캐리어를 구현하고, 캐리어내 탑재된 기판에 대한 원자층증착 공정이 가능하도록 하는 다수의 진공챔버와 캐리어의 반입/반출을 위한 버퍼챔버를 일자 형태로써 연결시킴으로써 캐리어가 버퍼챔버, 진공챔버, 버퍼챔버 순으로 이송하면서 연속으로 공정이 수행되어 원자층증착 공정의 효율을 높일 수 있는 이점이 있다.
또한, 두 개의 캐리어에 각각 기판을 탑재하여 하나의 진공챔버에서 두 개의 기판에 대해 동시에 원자층증착 공정을 진행할 수 있어 생산성을 높일 수 있으며, 기판을 수직으로 배열시킨 상태에서 공정을 진행함에 따라 대형 면적의 기판에 대해서도 용이하게 공정을 수행할 수 있는 이점이 있다.
또한, 캐리어에 공정가스 입출부를 구성하고 공정가스를 제공하는 반응기 모듈은 두 개의 캐리어가 밀착할 수 있도록 가이드 및 공정가스의 입출을 위한 도킹/언도킹 등의 보조 기능만 구성하도록 함으로써 주기적인 캐리어의 대체 및 세정을 통해서 진공챔버내 불필요한 성막 발생을 방지시켜 진공챔버에 대한 주기적인 세정을 줄일 수 있도록 하는 이점이 있다.
또한, 박막의 종류, 두께 등의 특성에 따라 각 진공챔버에서 형성되는 성막 두께를 분할하여 성막 공정을 진행하거나 박막1, 박막2, 박막3 등 다양한 복합 박막의 형성도 가능한 이점이 있다.
도 1은 본 발명의 실시예에 따른 두 개의 기판을 수직 배열하여 원자층증착 공정이 순차적으로 이루어질 수 있도록 하기 위한 일자 형태의 원자층증착 장치의 구성도,
도 2a 내지 도 2b는 도 1의 진공챔버 구조의 확대 예시도,
도 3은 본 발명의 다른 실시예에 따른 반응기 모듈의 상세 구조 예시도,
도 4a는 본 발명의 실시예에 따른 진공챔버의 단면 구조로서 공정가스가 기판상 교차흐름 또는 이동파 방식으로 분사되는 개략적인 구성도,
도 4b는 본 발명의 실시예에 따른 진공챔버의 단면 구조로서 플라즈마 공정이 가능한 개략적인 구성도,
도 4c는 본 발명의 실시예에 따른 진공챔버의 단면 구조로서 간접 플라즈마 공정이 가능한 개략적인 구성도.
이하, 첨부된 도면을 참조하여 본 발명의 동작 원리를 상세히 설명한다. 하기에서 본 발명을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
도 1은 본 발명의 실시예에 따른 두 개의 기판을 수직으로 지지하는 캐리어(carrier)가 일자 형태로써 배치된 다수의 진공챔버를 이동하면서 원자층증착 공정이 수행되도록 하는 원자층증착 장치의 구성을 도시한 것이다.
위 도 1을 참조하면, 일자 형태의 원자층증착 장치는 반입챔버(710), 제1 버퍼챔버(700), 진공챔버(800, 900, 950), 제2 버퍼챔버(750) 등을 포함한다.
반입챔버(710)는 마스크(mask)를 포함하여 원자층증착 공정 대상 기판(701)을 탑재할 수 있는 제1 캐리어(702)와 제2 캐리어(703)를 구비한다.
이때, 이러한 제1 캐리어(702)와 제2 캐리어(703)는 서로 마주보는 방향으로 수직 배열된 상태에서 서로 결합되거나 분리되는 구성을 가지며, 후술되는 진공챔버(800)에 구비되는 반응기 모듈과 연동하여 서로 밀착되게 결합되는 경우 제1 캐리어(702)와 제2 캐리어(703)가 서로 결합한 내부에 원자층증착 공정을 위한 밀폐된 반응공간이 형성될 수 있다. 또한, 제1 캐리어(702)와 제2 캐리어(703)는 위와 같이 반응기 모듈과 결합하는 경우 밀폐된 반응공간을 형성할 수 있는 구조로 구성되며, 이와 같이 반응공간이 형성된 후 밀폐된 반응공간에 위치한 기판(701)에 대해 반응기 모듈을 통해 원자층증착 공정이 이루어지는 경우, 제1 캐리어(702)와 제2 캐리어(703)는 탑재된 기판(701)에 대한 챔버간 이송뿐만 아니라 기판(701)의 원자층증착 공정이 수행되는 공정챔버로써의 역할도 수행하게 된다.
또한, 반입챔버(710)는 제1 캐리어(702) 및 제2 캐리어(703)에 각각 기판(701)이 탑재되는 경우, 제1 캐리어(702) 및 상기 제2 캐리어(703)를 서로 마주보는 방향으로 이동시켜, 제1 캐리어(702)에 탑재된 기판(701)과 상기 제2 캐리어(703)에 탑재된 기판(701)이 지면에서 볼 때 수직 방향으로 배열되도록 하고, 이송수단(도시하지 않음)을 이용하여 제1 버퍼챔버(700)로 제공한다.
제1 버퍼챔버(700)는 압력 조절용 챔버로써, 반입챔버(710)와 일자 형태로써 연결되어, 반입챔버(710)로부터 기판(701)이 탑재된 제1 캐리어(702) 및 제2 캐리어(703)를 반입하며, 제1 캐리어(702) 및 제2 캐리어(703)가 반입되는 경우 챔버 내부의 압력을 기판(701)의 원자층증착 공정을 위한 기 설정된 압력으로 조절한다. 이때, 제1 버퍼챔버(700)는 대기/진공 또는 고진공/저진공 등의 압력차를 조절할 수 있으며, 히터(heater)(720) 등을 통해 기판(701)의 온도를 조절하는 히팅챔버(heating chamber)의 역할도 수행할 수 있다.
진공챔버(800)는 제1 버퍼챔버(700)와 일자 형태로써 연결되며, 기판(701)에 대한 원자층증착 공정의 진행 시에, 제1 캐리어(702) 및 제2 캐리어(703)가 서로 결합하여 형성되는 밀폐된 반응공간을 진공상태로 유지시킨다.
또한, 진공챔버(800)는 진공챔버(800)의 구성을 확대하여 도시한 도 2a 및 도 2b에서 보여지는 바와 같이 제1 캐리어(702) 및 제2 캐리어(703)를 좌우 방향으로 이송시키기 위한 이송수단(830)과, 제1 캐리어(702) 및 제2 캐리어(703)를 서로 마주보는 방향으로 밀착시키거나 분리시키기 위한 구동수단(820)을 구비한다.
제2 버퍼챔버(750)는 진공챔버(800)와 일자 형태로써 연결되며, 진공챔버(800)로부터 원자층증착 공정이 수행되어 반출되는 기판(701)을 인입하고, 다음 공정을 위한 압력으로 챔버내 압력을 조절하거나 공정 완료된 기판(701)의 반출 시 챔버내 압력을 대기압 등으로 조절을 수행한다.
이하, 동작을 살펴보면, 먼저 원자층증착을 위한 기판(701)은 반입챔버(710)의 제1 캐리어(702) 및 제2 캐리어(703)에 탑재된다.
이와 같이 제1 캐리어(702)와 제2 캐리어(703)에 기판(701)이 탑재되는 경우, 기판(701)에 탑재된 제1 캐리어(702)와 제2 캐리어(703)는 반입챔버(710)에 구비되는 반전기 모듈(도시하지 않음)에 의해 서로 마주보는 방향으로 수직 배열된 후, 이송수단(도시하지 않음)에 의해 반입챔버(710)로부터 제1 버퍼챔버(700)로 이송된다.
이때, 제1 캐리어(702)와 제2 캐리어(703)를 각 챔버로 이송시키는 이송수단(830)은 예를 들어, 수직으로 배열된 캐리어(702, 703)의 하부에 롤러(roller) 등과 결합할 수 있는 구조를 구성하여, 롤러의 구동을 통해 일자 형태로 연결되는 각 챔버로 이송이 가능하도록 구현할 수 있으며, 이와 같은 이송수단(830)은 당업자에 의해 다양한 방법으로 구현될 수 있다.
이어, 위와 같이 기판(701)이 탑재된 제1 캐리어(702)와 제2 캐리어(703)가 제1 버퍼챔버(700)로 반입되는 경우, 제1 버퍼챔버(700)에서 압력이 조절된다. 즉, 제1 버퍼챔버(700)에서는 대기/진공 또는 고진공/저진공 등의 압력차를 조절할 수 있으며, 제1 캐리어(702) 및 제2 캐리어(703)가 반입되는 경우 챔버 내부의 압력은 기판(701)의 원자층증착 공정을 위한 기 설정된 압력으로 조절될 수 있다. 이때 기 설정된 압력은 기판(701)에 대한 원자층증착 공정이 수행되는 진공챔버(800) 내부의 압력과 동일한 압력이 될 수 있다. 또한, 제1 버퍼챔버(700)에서는 히터(720) 등을 통해 기판(701)의 온도가 조절될 수도 있다.
이어, 위와 같이 제1 버퍼챔버(700)에서 압력이 조절된 후, 기판(701)이 탑재된 제1 캐리어(702)와 제2 캐리어(703)는 제1 버퍼챔버(700)내 구비된 캐리어 이송수단(830)을 통해 진공챔버(800)로 이송된다.
이때, 진공챔버(800)에는 제1 버퍼챔버(700)와 마찬가지로 기판(701)을 탑재한 제1 캐리어(702) 및 제2 캐리어(703)를 이송할 수 있는 이송수단, 예를 들어 롤러 형태의 이송수단이 설치될 수 있으며, 제1 캐리어(702) 및 제2 캐리어(703)를 서로 마주보는 방향으로 밀착시키거나 분리시키는 구동수단이 설치될 수 있다.
따라서, 제1 캐리어(702)와 제2 캐리어(703)는 진공챔버(800)로 반입되는 경우 이송수단에 의해 진공챔버(800) 내 원자층증착 공정의 수행을 위한 기 설정된 기준위치에 위치될 수 있으며, 기준위치에 위치된 이후에는 구동수단에 의해 제1 캐리어(702) 및 제2 캐리어(703)가 밀착되어 밀폐된 반응공간을 형성할 수 있게 된다.
또한, 위와 같이 제1 캐리어(702)와 제2 캐리어(703)가 밀착되어 기판에 대한 원자층증착 공정 진행이 가능한 반응공간이 형성되는 경우 진공챔버(800)내 구비되며, 반응공간으로 가스의 공급 및 배기가 가능하도록 제1 캐리어(702)와 제2 캐리어(703)와 결합되는 반응기 모듈(810)을 통해 반응공간으로 공정 진행에 따라 필요한 가스가 공급되어 기판(701)에 대한 원자층증착 공정이 수행될 수 있다.
이때, 위와 같은 반응기 모듈(810)은 도 1 또는 도 3에 예시한 바와 같이 진공챔버(800)내 중앙 영역 또는 양측 외곽 영역에 위치할 수 있으며 제1 캐리어(702)와 제2 캐리어(703)와 연동하여 원자층증착 공정을 수행할 수 있는 장치를 말한다.
먼저, 도 1에 예시한 바와 같이, 반응기 모듈(810)이 진공챔버(800)의 내부 중앙 영역에 설치되는 경우에는, 기판(701)에 대한 원자층증착 공정의 수행 시, 제1 캐리어(702) 및 제2 캐리어(703)가 구동수단에 의해 서로 마주보는 방향으로 밀착되어 반응기 모듈(810)과 함께 결합하여 밀폐된 반응공간을 형성하게 된다. 이후 반응기 모듈(810)을 통해 반응공간으로 공정 진행에 따라 필요한 가스가 공급되어 기판(701)에 대한 원자층증착 공정이 수행될 수 있다.
다음으로, 도 3에 예시한 바와 같이, 반응기 모듈(810)이 진공챔버(800)의 내부 양측 외곽 영역에 위치하여 좌우로 이동 가능하도록 설치되는 경우에는, 기판(701)에 대한 원자층증착 공정의 수행 시, 제1 캐리어(702) 및 제2 캐리어(703)가 구동수단에 의해 서로 마주보는 방향으로 밀착되어 반응공간을 형성한 이후, 반응기 모듈(810)이 제1 캐리어(702)와 상기 제2 캐리어(703)의 양측면에 반응공간과 연결되도록 형성된 가스 통로(816)에 결합하게 된다. 이후, 반응기 모듈(810)을 통해 반응공간으로 공정 진행에 따라 필요한 가스가 공급되어 기판(701)에 대한 원자층증착 공정이 수행될 수 있다.
이어, 기판(701)에 대한 원자층증착 공정이 수행된 경우 제1 캐리어(702)와 제2 캐리어(703)는 구동수단(820)에 의해 서로 마주 보는 방향으로 분리되고, 이송수단(830)에 의해 진공챔버(800)와 일자 형태로써 연결되는 제2 버퍼챔버(750)로 이송된다.
이때, 제2 버퍼챔버(750)에서는 진공챔버(800)로부터 원자층증착 공정이 수행되어 반출되는 기판(701)을 인입하여 다음 공정을 위한 압력으로 챔버내 압력을 조절하거나 공정 완료된 기판(701)의 반출 시에는 챔버내 압력을 대기압 등으로 조절하게 된다.
따라서, 위와 같이, 원자층증착 장치를 반입챔버(710), 제1 버퍼챔버(700), 진공챔버(800), 제2 버퍼챔버(750) 등으로 일자 형태로 구성함에 따라, 기판(701)에 대한 로딩, 공정 수행, 언로딩 동작이 인라인(in-line) 방식으로 순차적으로 진행되어 생산성을 높일 수 있게 된다. 또한, 기판(701)을 탑재한 두 개의 캐리어(702, 703)를 서로 마주 보는 방향으로 수직 배열시켜 두 개의 기판(701)에 대해 동시에 공정을 진행할 수 있으므로 생산성을 더욱 향상시킬 수 있게 된다.
한편, 위 도 1에서는 일자 형태로써 연결된 다수의 진공챔버(800, 900, 950)가 서로 다른 챔버구조를 가지는 것을 예시 하였으나, 이는 설명의 편의를 위한 예시일 뿐, 기판(701)상 형성시키는 박막의 두께, 종류, 특성 등에 따라 동일한 챔버구조를 가지도록 하거나, 일부는 서로 다른 챔버구조로 일부는 동일한 챔버구조를 가지도록 하는 등 다양한 형태로 조합하여 구성할 수도 있다.
이때, 위와 같은 다양한 형태의 진공챔버는 예를 들어 참조번호 800에 해당하는 진공챔버에서와 같은 열을 이용한 원자층증착 공정을 위한 챔버 구조 또는 참조번호 900에 해당하는 진공챔버에서와 같은 직접 플라즈마를 이용한 원자층증착 공정을 위한 챔버 구조 또는 참조번호 950에 해당하는 진공챔버에서와 같은 간접 플라즈마를 이용한 원자층증착 공정을 위한 챔버구조가 될 수 있다.
이하, 도 4a 내지 도 4c를 참조하여 일자 형태로써 구성되는 원자층증착 장치의 각각의 진공챔버(800)에서 수직 배열된 캐리어(702, 703)에 탑재된 기판(701)에 대해 원자층증착 공정을 수행하는 다양한 예를 설명하기로 한다.
도 4a는 본 발명의 실시예에 따른 진공챔버(800)의 단면 구조로서 공정가스가 기판상 교차흐름 또는 이동파 방식으로 분사되는 개략적인 구성을 도시한 것이다.
위 도 4a를 참조하면, 제1 캐리어(702)와 제2 캐리어(703)가 반응기 모듈(810)과 함께 결합하여 밀폐된 반응공간을 형성한 후, 반응기 모듈(810)내 가스 공급부(812)를 통해 반응공간 내부에 위치한 기판(701)으로 원료전구체, 반응전구체, 퍼지가스를 원자층증착 공정의 순서에 따라 순차적으로 공급하게 되며, 반대쪽 반응기 모듈(810)내 형성되는 가스 배기부(813)를 통해 각각의 공정에서 사용된 공정가스 또는 퍼지가스가 배기되도록 하는 구조를 나타내고 있다.
이하, 동작을 살펴보면, 가스 공급부(812)로 공급된 원료전구체, 예를 들어 TMA(Trimethylaluminum) 등이 반응공간 내 위치한 제1 캐리어(702) 및 제2 캐리어(703)에 각각 탑재된 두 개의 기판(701)의 일측면으로 균일하게 공급되고, 이에 따라, 제1 캐리어(702) 및 제2 캐리어(703)에 각각 탑재된 두 개의 기판(701)의 표면에서 흡착반응이 일어나게 된다.
흡착이 완료되면 가스 공급부(812)로 퍼지가스, 예를 들어 Ar, O2, N2, N2O 등을 공급하여 기판(701)상 잔존하는 원료전구체를 가스 배기부(813)로 배출시킨 후, 반응전구체를 가스 공급부(812)에 공급하여 기판(701)으로 분사시킴으로써 원료전구체와 반응전구체간 화학적 반응에 의해 원하는 원자층 박막을 형성시키게 된다.
이와 같이 기판(701)에 박막을 형성시킨 후에는 다시 가스 공급부(812)로 퍼지가스를 공급하여 기판(701)상 원료전구체와 결합하지 못하고 잔존하는 반응전구체를 모두 제거함으로써 1층의 원자층 박막을 완성하게 되며, 위와 같은 4단계의 공정을 1사이클로 하는 반복 공정을 통해 기판(701)상 원자층 박막을 원하는 두께만큼 형성시키게 된다.
이때, 반응전구체의 원활한 반응 및 박막 특성의 향상을 위하여 진공챔버(800)에 히터(heater)(720)를 설치하여 기판(701)의 온도 조절이 가능하도록 할 수 있다.
도 4b는 본 발명의 실시예에 따른 진공챔버(900)의 단면 구조로서 플라즈마 공정이 가능한 개략적인 구성을 도시한 것이다.
위 도 4b를 참조하면, 도 4a에서와 마찬가지로 제1 캐리어(702)와 제2 캐리어(703)가 반응기 모듈(810)과 함께 결합하여 밀폐된 반응공간을 형성한 후, 반응기 모듈(810)내 가스 공급부(812)를 통해 반응공간 내부에 위치한 기판(701)으로 원료전구체, 반응전구체, 퍼지가스를 원자층증착 공정의 순서에 따라 순차적으로 공급하게 되며, 반대쪽 반응기 모듈(810)내 형성되는 가스 배기부(813)를 통해 각각의 공정에서 사용된 공정가스 또는 퍼지가스가 배기되도록 하는 구조를 나타내고 있다.
이때, 도 4b에서는 원자층증착 공정에 플라즈마(plasma)를 이용하기 위해 도 4a에서와는 달리, 반응기 모듈(810)의 중심부에 플라즈마 형성을 위한 전극(811)을 배치하고, 전극(811)과 반응기 모듈(810) 사이는 절연체(814)를 형성하여 반응기 모듈(810)과 전극(811)간 쇼트(short) 발생을 방지할 수 있는 구조를 나타내고 있다.
이하, 동작을 살펴보면, 먼저, 원료전구체를 가스 공급부(812)로 공급하여 반응공간내 제1 캐리어(702)와 제2 캐리어(703)에 각각 탑재된 두 개의 기판(701)의 일측면으로 균일하게 공급되도록 하고, 이에 따라 제1 캐리어(702) 및 제2 캐리어(703)에 각각 탑재된 두 개의 기판(701)의 표면에서 흡착반응이 일어나게 된다.
이어, 위와 같은 원료전구체의 흡착이 완료되면 가스 공급부(812)로 퍼지가스를 공급하여 기판(701)상 잔존하는 원료전구체를 가스 배기부(813)로 배출시킨다.
이어, 다시 반응전구체를 가스 공급부(812)에 공급하여 기판(701)으로 분사시킨 후, 전극(811)에 전원을 공급하여 기판(701)상으로 직접 플라즈마(plasma)(816)를 발생시켜 플라즈마(816)에 의한 원료전구체와 반응전구체간 화학적 반응을 통해 원자층 박막을 형성시키게 된다. 이때, 플라즈마(816)를 이용한 기판(701)상 원자층 박막 형성에 있어서는 다른 실시예로써 반응전구체를 포함하는 퍼지가스를 공급하여 기판(701)상 원료전구체가 완전히 제거되는 시점에 플라즈마(816)를 발생시켜 막을 형성시킬 수도 있다.
도 4c는 본 발명의 실시예에 따른 진공챔버(950)의 단면 구조로서 간접 플라즈마 공정이 가능한 개략적인 구성을 도시한 것이다.
위 도 4c를 참조하면, 제1 캐리어(702)와 제2 캐리어(703)가 반응기 모듈(810)과 함께 결합하여 밀폐된 반응공간을 형성한 후, 반응기 모듈(810)내 가스 공급부(812)를 통해 반응공간 내부에 위치한 기판(701)으로 원료전구체, 반응전구체, 퍼지가스를 원자층증착 공정의 순서에 따라 순차적으로 공급하게 되며, 반대쪽 반응기 모듈(810)내 형성되는 가스 배기부(812)를 통해 각각의 공정에서 사용된 공정가스 또는 퍼지가스가 배기되도록 하는 구조를 나타내고 있다.
이때, 도 4c에서는 도 4b에 도시된 직접 플라즈마(816)에 따른 기판(701)의 박막에 가해지는 영향을 최소화하기 위하여 가스 공급부(812)에 별도의 전극(811) 및 절연체(814)를 가지도록 하는 구조를 나타내고 있다.
또한, 직접 플라즈마 적용이 어려운 물질이나 또는 이온 및 전자에 의한 기판(701)상 박막의 손상 위험을 방지하기 위해 절연체(814)이외에 전극(811)과 가스 공급부(812) 사이에 간극 절연체(815)를 추가로 구성하여 전극(811)과 가스 공급부(812) 사이에서만 플라즈마(816)를 발생시킴으로써 반응전구체의 해리를 통한 라디칼을 공급하여 기판(701)에 손상을 주지 않으면서 원자층 박막의 형성이 가능하도록 하는 구조를 나타내고 있다.
이하, 동작을 살펴보면, 먼저 원료전구체를 가스 공급부(812)로 공급하여 반응공간내 제1 캐리어(702)와 제2 캐리어(703)에 각각 탑재된 두 개의 기판(701)의 일측면으로 균일하게 공급되도록 하고, 이에 따라 제1 캐리어(702) 및 제2 캐리어(703)에 각각 탑재된 두 개의 기판(701)의 표면에서 흡착반응이 일어나게 된다.
이어, 위와 같은 원료전구체의 흡착이 완료되면 가스 공급부(812)로 퍼지가스를 공급하여 기판(701)상 잔존하는 원료전구체를 가스 배기부(813)로 배출시킨다.
이어, 다시 반응전구체를 가스 공급부(812)에 공급하여 기판(701)으로 분사시키는 시점에, 가스 공급부(812)에 형성된 플라즈마 발생을 위한 전극(811)에 전원을 공급하여 플라즈마(816)를 발생시킨다. 이에 따라 반응전구체와 플라즈마(816)에 의해 발생한 라디칼(radical)이 가스 흐름에 따라 기판(701)상으로 공급되어 플라즈마(816)에 의한 원료전구체와 반응전구체간 화학적 반응을 통해 원자층 박막을 형성시키게 된다.
상기한 바와 같이 본 발명에 따르면, 원자층증착에 있어서, 기판을 탑재하여 수직 방향으로 배열된 후 일자 형태로써 연결되는 다수의 챔버로의 이송이 가능하며 서로 결합되는 경우 밀폐된 반응공간을 형성하여 기판에 대한 원자층증착 공정을 수행할 수 있는 공정챔버로써 동작하는 제1, 제2 캐리어를 구현하고, 캐리어내 탑재된 기판에 대한 원자층증착 공정이 가능하도록 하는 다수의 진공챔버와 캐리어의 반입/반출을 위한 버퍼챔버를 일자 형태로써 연결시킴으로써 캐리어가 버퍼챔버, 진공챔버, 버퍼챔버 순으로 이송하면서 연속으로 공정이 수행되어 원자층증착 공정의 효율을 높일 수 있다. 또한, 두 개의 캐리어에 각각 기판을 탑재하여 하나의 진공챔버에서 두 개 이상의 기판에 대해 동시에 원자층증착 공정을 진행할 수 있어 생산성을 높일 수 있으며, 기판을 수직으로 배열시킨 상태에서 공정을 진행함에 따라 대형 면적의 기판에 대해서도 용이하게 공정을 수행할 수 있다.
한편 상술한 본 발명의 설명에서는 구체적인 실시예에 관해 설명하였으나, 여러 가지 변형이 본 발명의 범위에서 벗어나지 않고 실시될 수 있다. 즉, 본 발명의 실시예에서는 원자층증착 장치에서의 동작을 예를 들어 설명하고 있으나, PECVD에서도 동일하게 적용 가능하다.
따라서 발명의 범위는 설명된 실시 예에 의하여 정할 것이 아니고 특허청구범위에 의해 정하여져야 한다.

Claims (13)

  1. 원자층증착 공정 대상 기판을 제1 캐리어, 제2 캐리어에 탑재하고, 상기 기판이 탑재된 상기 제1 캐리어 및 상기 제2 캐리어를 서로 마주보는 방향으로 이동시켜, 상기 제1 캐리어에 탑재된 기판과 상기 제2 캐리어에 탑재된 기판이 지면에서 볼 때 수직 방향으로 배열되도록 하는 반입챔버와,
    상기 반입챔버와 일자 형태로써 연결되며, 상기 반입챔버로부터 상기 기판이 탑재된 상기 제1 캐리어 및 상기 제2 캐리어를 반입하고, 내부의 압력을 상기 기판의 원자층증착 공정을 위한 제1 압력으로 조절하는 제1 버퍼챔버와,
    상기 제1 버퍼챔버와 일자 형태로써 연결되며, 상기 기판에 대한 증착 공정의 진행 시에, 상기 제1 캐리어 및 상기 제2 캐리어가 서로 결합하여 형성되는 밀폐된 반응공간을 진공상태로 유지시키는 진공챔버와,
    상기 진공챔버와 일자 형태로써 연결되며, 상기 진공챔버로부터 상기 기판을 인입하여 다음 공정을 위한 제2 압력 또는 대기압으로 압력조절을 수행하는 제2 버퍼챔버
    를 포함하는 원자층증착 장치.
  2. 제 1 항에 있어서,
    상기 제1 버퍼챔버는,
    상기 제1 캐리어 및 제2 캐리어를 좌우 방향으로 이송시키기 위한 이송수단을 구비하는 것을 특징으로 하는 원자층증착 장치.
  3. 제 1 항에 있어서,
    상기 진공챔버는,
    상기 제1 캐리어 및 상기 제2 캐리어를 좌우 방향으로 이송시키기 위한 이송수단과, 상기 제1 캐리어 및 상기 제2 캐리어를 서로 마주보는 방향으로 결합시키거나 분리시키기 위한 구동수단을 구비하는 것을 특징으로 하는 원자층증착 장치.
  4. 제 3 항에 있어서,
    상기 진공챔버는,
    상기 진공챔버의 내부 중앙 영역에 상기 제1 캐리어 및 상기 제2 캐리어와 결합하여 상기 반응공간을 형성되는 반응기 모듈을 구비하며,
    상기 기판에 대한 원자층증착 공정의 수행 시, 상기 제1 캐리어 및 상기 제2 캐리어는 상기 구동수단에 의해 서로 마주보는 방향으로 밀착되어 상기 반응기 모듈과 결합되고, 상기 반응기 모듈을 통해 상기 원자층증착 공정이 수행되는 것을 특징으로 하는 원자층증착 장치.
  5. 제 3 항에 있어서,
    상기 진공챔버는,
    상기 진공챔버의 내부 양측 외곽 영역에 위치하고, 좌우 방향으로 이동 제어되어 상기 제1 캐리어 및 상기 제2 캐리어와 결합하여 상기 반응공간을 형성하는 반응기 모듈을 구비하며,
    상기 반응기 모듈은,
    상기 진공챔버의 내부에 기설정된 위치에 대기하고 있다가 상기 제1 캐리어 및 상기 제2 캐리어가 결합되는 경우 구동수단에 의해 좌우 방향으로 이동되어 상기 제1 캐리어 및 상기 제2 캐리어와 결합되거나 분리되는 것을 특징으로 하는 원자층증착 장치.
  6. 제 5 항에 있어서,
    상기 반응기 모듈이 상기 제1 캐리어 및 제2캐리어와 결합될 때, 상기 반응기 모듈은 상기 반응공간에 가스 공급이 가능하도록, 상기 제1 캐리어 및 상기 제2 캐리어의 양측면에 형성된 가스통로에 정합되도록 결합되는 것을 특징으로 하는 원자측증착 장치.
  7. 제 5 항에 있어서,
    상기 반응기 모듈은,
    일측에 상기 반응공간에 공정가스 또는 퍼지가스를 공급하는 가스 공급부를 구비하고,
    타측에 상기 반응공간에 공급된 상기 공정 가스 또는 퍼지 가스를 배기시키는 가스 배기부를 구비하는 것을 특징으로 하는 원자층증착 장치.
  8. 제 7 항에 있어서,
    상기 반응기 모듈은,
    상기 반응공간과 인접하는 영역의 일부 또는 전체면에 플라즈마 발생을 위한 전극을 구비하는 것을 특징으로 하는 원자층증착 장치.
  9. 제 7 항에 있어서,
    상기 반응기 모듈은,
    상기 가스 공급부의 도입부에 플라즈마 발생을 위한 전극을 구비하는 것을 특징으로 하는 원자층증착 장치.
  10. 제 1 항에 있어서,
    상기 진공챔버는,
    일자 형태로써 연결되는 방식으로 적어도 두 개 이상 구비되며, 각각의 진공챔버는 열을 이용하여 원자층증착 공정을 수행하는 챔버구조 또는 직접 플라즈마를 이용하는 챔버구조 또는 간접 플라즈마를 이용하는 챔버구조 중 하나의 챔버구조로 형성되거나, 서로 다른 챔버구조의 조합으로 형성되는 것을 특징으로 하는 원자층증착 장치.
  11. 공정이 수행되는 진공챔버와 일자 형태로써 연결되는 반입챔버에서, 원자층증착 공정 대상 기판이 탑재된 제1 캐리어 및 제2 캐리어를 서로 마주보는 방향으로 수직 배열하는 단계와,
    상기 반입챔버와 일자 형태로써 연결되는 제1 버퍼챔버에서 상기 제1 캐리어 및 상기 제2 캐리어를 반입하고, 내부의 압력을 상기 기판의 원자층증착 공정을 위한 제1 압력으로 조절하는 단계와,
    상기 압력 조절 후, 상기 진공챔버로 상기 제1 캐리어 및 상기 제2 캐리어를 반입하는 단계와,
    상기 진공챔버에서 상기 기판에 대해 원자층증착 공정을 수행하는 단계와,
    상기 원자층증착 공정이 수행된 기판을 상기 진공챔버와 일자 형태로써 연결되는 제2 버퍼챔버로 반출하는 단계
    를 포함하는 원자층증착 방법.
  12. 제 11 항에 있어서,
    상기 원자층증착 공정을 수행하는 단계는,
    상기 제1 캐리어 및 상기 제2 캐리어를 상기 진공챔버내 상기 원자층증착 공정을 위한 기준 위치에 위치시키는 단계와,
    상기 제1 캐리어 및 상기 제2 캐리어를 서로 마주보는 방향으로 밀착시켜 상기 진공챔버의 내부 중앙 영역에 위치된 반응기 모듈과 결합시키는 단계와,
    상기 결합에 따라 형성되는 상기 제1 캐리어 및 상기 제2 캐리어 내부의 밀폐된 반응공간에서 상기 반응기 모듈을 이용하여 상기 기판에 대한 원자층증착 공정을 수행하는 단계
    를 포함하는 것을 특징으로 하는 원자층증착 방법.
  13. 제 11 항에 있어서,
    상기 원자층증착 공정을 수행하는 단계는,
    상기 제1 캐리어 및 상기 제2 캐리어를 상기 진공챔버내 상기 원자층증착 공정을 위한 기준 위치에 위치시키고, 서로 마주보는 방향으로 결합시켜 밀폐된 반응공간을 형성시키는 단계와,
    상기 진공챔버의 내부 양측 외곽 영역에 위치한 반응기 모듈을 이동시켜 상기 결합된 상기 제1 캐리어 및 상기 제2 캐리어의양측면에 상기 반응 공간과 연결되도록 형성된 가스 통로에 결합시키는 단계와,
    상기 결합 후, 상기 반응공간에서 상기 반응기 모듈을 이용하여 상기 기판에 대한 원자층증착 공정을 수행하는 단계
    를 포함하는 것을 특징으로 하는 원자층증착 방법.
PCT/KR2014/010498 2013-11-15 2014-11-04 원자층증착 장치 및 방법 WO2015072691A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480073139.7A CN105900215A (zh) 2013-11-15 2014-11-04 原子层沉积装置及方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130139158A KR101486937B1 (ko) 2013-11-15 2013-11-15 원자층 증착 장치 및 방법
KR10-2013-0139158 2013-11-15

Publications (1)

Publication Number Publication Date
WO2015072691A1 true WO2015072691A1 (ko) 2015-05-21

Family

ID=52592898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010498 WO2015072691A1 (ko) 2013-11-15 2014-11-04 원자층증착 장치 및 방법

Country Status (3)

Country Link
KR (1) KR101486937B1 (ko)
CN (1) CN105900215A (ko)
WO (1) WO2015072691A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112011786A (zh) * 2019-05-29 2020-12-01 佳能株式会社 沉积设备和沉积方法
CN113802107A (zh) * 2020-06-16 2021-12-17 北京石墨烯研究院 利用pecvd制备石墨烯的装置和方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190125292A (ko) * 2018-04-26 2019-11-06 어플라이드 머티어리얼스, 인코포레이티드 진공 프로세싱 시스템 및 진공 프로세싱 시스템의 작동 방법
KR102205200B1 (ko) * 2018-09-20 2021-01-20 주식회사 엔씨디 박막 증착장치
CN111364025A (zh) * 2020-05-09 2020-07-03 南京原磊纳米材料有限公司 一种改进型ald镀膜机
CN113174588A (zh) * 2021-04-26 2021-07-27 睿馨(珠海)投资发展有限公司 一种原子层沉积系统及沉积方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080027459A (ko) * 2005-11-04 2008-03-27 어플라이드 머티어리얼스, 인코포레이티드 플라즈마-강화 원자층 증착 장치 및 방법
JP2009105081A (ja) * 2007-10-19 2009-05-14 Ebatekku:Kk 基板処理装置
KR100935812B1 (ko) * 2003-05-02 2010-01-08 가부시키가이샤 아이에이치아이 박막 형성장치의 기판 반송장치
JP2013072132A (ja) * 2011-09-29 2013-04-22 Ulvac Japan Ltd 成膜装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009105091A (ja) * 2007-10-19 2009-05-14 Fujitsu Microelectronics Ltd 半導体装置の信号線配置方法及び配置・配線装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100935812B1 (ko) * 2003-05-02 2010-01-08 가부시키가이샤 아이에이치아이 박막 형성장치의 기판 반송장치
KR20080027459A (ko) * 2005-11-04 2008-03-27 어플라이드 머티어리얼스, 인코포레이티드 플라즈마-강화 원자층 증착 장치 및 방법
JP2009105081A (ja) * 2007-10-19 2009-05-14 Ebatekku:Kk 基板処理装置
JP2013072132A (ja) * 2011-09-29 2013-04-22 Ulvac Japan Ltd 成膜装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112011786A (zh) * 2019-05-29 2020-12-01 佳能株式会社 沉积设备和沉积方法
CN113802107A (zh) * 2020-06-16 2021-12-17 北京石墨烯研究院 利用pecvd制备石墨烯的装置和方法
CN113802107B (zh) * 2020-06-16 2023-12-08 北京石墨烯研究院 利用pecvd制备石墨烯的装置和方法

Also Published As

Publication number Publication date
CN105900215A (zh) 2016-08-24
KR101486937B1 (ko) 2015-01-29

Similar Documents

Publication Publication Date Title
WO2015072691A1 (ko) 원자층증착 장치 및 방법
WO2009102133A2 (ko) 배치형 원자층 증착 장치
WO2013147481A1 (ko) 선택적 에피택셜 성장을 위한 장치 및 클러스터 설비
US20140126980A1 (en) Substrate processing apparatus
WO2010055669A1 (ja) 電極回路、成膜装置、電極ユニットおよび成膜方法
JP2002217119A (ja) プラズマcvd法及び装置
TWI424579B (zh) 薄膜太陽電池製造裝置
AU2004234806A1 (en) Substrate transfer device for thin-film deposition apparatus
WO2013180452A1 (ko) 기판 처리 장치 및 기판 처리 방법
JP5280441B2 (ja) 成膜装置
US20110262641A1 (en) Inline chemical vapor deposition system
KR20140069715A (ko) 대면적 원자층 증착 장치
CN101999172B (zh) 薄膜太阳能电池制造装置
WO2014119971A1 (ko) 박막증착장치
WO2015034208A1 (ko) 적층형 원자층 증착 장치 및 방법
WO2015072690A1 (ko) 원자층 증착 장치 및 방법
WO2015142131A1 (ko) 멀티형 증착 장치 및 이를 이용한 박막 형성 방법
WO2018190696A1 (ko) 원자층 증착을 위한 가스 공급 모듈
JP2002083774A (ja) 成膜装置
WO2014007572A1 (ko) 기판 처리 장치
TWI452713B (zh) 薄膜太陽能電池製造裝置
KR101512140B1 (ko) 원자층 증착 장치 및 방법
WO2024054056A1 (ko) 가스 분사 장치, 기판 처리 장치 및 박막 증착 방법
WO2010019008A2 (en) Vapor deposition reactor
WO2014175573A1 (ko) 클러스터형 배치식 기판처리 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/11/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14861627

Country of ref document: EP

Kind code of ref document: A1