WO2017030414A1 - 기판 처리 장치 및 기판 처리 방법 - Google Patents

기판 처리 장치 및 기판 처리 방법 Download PDF

Info

Publication number
WO2017030414A1
WO2017030414A1 PCT/KR2016/009179 KR2016009179W WO2017030414A1 WO 2017030414 A1 WO2017030414 A1 WO 2017030414A1 KR 2016009179 W KR2016009179 W KR 2016009179W WO 2017030414 A1 WO2017030414 A1 WO 2017030414A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
gas injection
disk
plasma
substrate
Prior art date
Application number
PCT/KR2016/009179
Other languages
English (en)
French (fr)
Inventor
천민호
유진혁
황철주
Original Assignee
주성엔지니어링(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주성엔지니어링(주) filed Critical 주성엔지니어링(주)
Priority to JP2018507690A priority Critical patent/JP2018527749A/ja
Priority to US15/753,967 priority patent/US20180269078A1/en
Priority to CN201680061579.XA priority patent/CN108352295A/zh
Publication of WO2017030414A1 publication Critical patent/WO2017030414A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32733Means for moving the material to be treated
    • H01J37/32743Means for moving the material to be treated for introducing the material into processing chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68771Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by supporting more than one semiconductor substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits

Definitions

  • the present invention relates to a substrate processing apparatus and a substrate processing method.
  • a semiconductor device In order to manufacture a solar cell, a semiconductor device, a flat panel display, a predetermined thin film layer, a thin film circuit pattern, or an optical pattern should be formed on a surface of a substrate.
  • Semiconductor manufacturing processes such as a thin film deposition process, a photo process for selectively exposing the thin film using a photosensitive material, and an etching process for forming a pattern by removing the thin film of the selectively exposed portion are performed.
  • Such a semiconductor manufacturing process is performed inside a substrate processing apparatus designed in an optimal environment for the process, and in recent years, many substrate processing apparatuses that perform deposition or etching processes using plasma are widely used.
  • the substrate processing apparatus using plasma includes a plasma enhanced chemical vapor deposition (PECVD) apparatus for forming a thin film using plasma, a plasma etching apparatus for etching and patterning a thin film.
  • PECVD plasma enhanced chemical vapor deposition
  • FIG. 1 is a diagram schematically illustrating a general substrate processing apparatus.
  • a general substrate processing apparatus includes a chamber 10, a plasma electrode 20, a susceptor 30, and a gas ejection means 40.
  • Chamber 10 provides a reaction space for a substrate processing process. At this time, one bottom surface of the chamber 10 communicates with an exhaust port 12 for exhausting the reaction space.
  • the plasma electrode 20 is installed above the chamber 10 to seal the reaction space.
  • One side of the plasma electrode 20 is electrically connected to an RF (Radio Frequency) power source 24 through the matching member 22.
  • the RF power source 24 generates RF power and supplies the RF power to the plasma electrode 20.
  • the central portion of the plasma electrode 20 is in communication with the gas supply pipe 26 for supplying the source gas for the substrate processing process.
  • the matching member 22 is connected between the plasma electrode 20 and the RF power supply 24 to match the load impedance and the source impedance of the RF power supplied from the RF power supply 24 to the plasma electrode 20.
  • the susceptor 30 supports a plurality of substrates W installed in the chamber 10 and loaded from the outside.
  • the susceptor 30 is an opposing electrode facing the plasma electrode 20, and is electrically grounded through the lifting shaft 32 for elevating the susceptor 30.
  • the lifting shaft 32 is lifted up and down by a lifting device (not shown). At this time, the lifting shaft 32 is wrapped by the bellows 34 sealing the lifting shaft 32 and the bottom surface of the chamber 10.
  • the gas injection means 40 is installed below the plasma electrode 20 so as to face the susceptor 30. At this time, a gas diffusion space 42 through which the source gas supplied from the gas supply pipe 26 penetrating the plasma electrode 20 is formed between the gas injection means 40 and the plasma electrode 20. The gas injection means 40 uniformly injects the source gas to the entire portion of the reaction space through the plurality of gas injection holes 44 communicated with the gas diffusion space 42.
  • Such a general substrate processing apparatus loads the substrate W into the susceptor 30, and then sprays a predetermined source gas into the reaction space of the chamber 10 and supplies RF power to the plasma electrode 20.
  • a predetermined thin film on the substrate W is formed by using a plasma formed on the substrate W by the electromagnetic field.
  • the uniformity of the thin film material deposited on the substrate W is determined according to the uniformity of the plasma density formed in the reaction space. There is difficulty in controlling the membrane quality.
  • the present invention has been made to solve the above-described problems, and spatially separates the source gas and the reactive gas injected onto the substrate, and rotates the first and second disks respectively, and rotates the first disk and the second disk to rotate the deposition uniformity of the thin film deposited on the substrate. It is a technical object of the present invention to provide a substrate processing apparatus and a substrate processing method capable of increasing particles, controlling film quality of a thin film, and improving particles by minimizing a cumulative thickness deposited in a chamber.
  • Embodiments of the present invention are not limited to the above-mentioned technical problems, and other technical problems not mentioned above may be clearly understood by those skilled in the art to which the embodiments belong.
  • Substrate processing apparatus comprises a process chamber; A substrate support part installed in the process chamber to support a plurality of substrates and rotating in a predetermined direction; A chamber lid covering an upper portion of the process chamber to face the substrate support; And a gas injector installed in the chamber lid to spatially separate the first and second gases different from each other and to eject the plurality of substrates to the plurality of substrates, wherein the substrate support is provided to be rotatable; And at least one second disk disposed on the first disk to seat the substrate and to rotate about the rotation of the first disk and the center of the first disk as the first disk rotates.
  • the rotation speed and the rotation speed of the second disk may be different.
  • the rotation ratio of the first disk and the second disk may be less than 1: 1 at 1: 0.1 or more.
  • the gas injector may include a first gas injector installed in the chamber lid and injecting the first gas supplied to a gas injecting space provided between a plurality of ground electrode members; And a second gas injection module installed in the chamber lid to be spaced apart from the first gas injection module and injecting the second gas supplied to the gas injection space provided between the plurality of ground electrode members.
  • At least one gas injection module of the first and second gas injection modules may include a plasma electrode member disposed between the ground electrode members to form a plasma in the gas injection space.
  • Substrate processing apparatus comprises a process chamber; A substrate support part installed in the process chamber to support a plurality of substrates and rotating in a predetermined direction; A chamber lid covering an upper portion of the process chamber to face the substrate support; And a first gas injection module installed in the chamber lid so as to overlap the first gas injection region on the substrate support, and spaced apart from the first gas injection region, and a first gas injection module for injecting a first gas into the first gas injection region.
  • a gas injector installed on the chamber lid so as to overlap a second gas injecting region, the gas injecting unit including a second gas injecting module injecting a second gas into the second gas injecting region, and the substrate support unit being rotatable A first disk, and at least one second disk disposed on the first disk to seat the substrate, the first disk rotating as the axis rotates and the center of the first disk axially;
  • the second gas injection module is connected to the plasma power supply supplied to the plasma electrode member disposed alternately with the plurality of ground electrode members. It is possible for the jet to the second gas for generating plasma.
  • the first gas injection module injects the first gas supplied between the plurality of ground electrode members as it is, or the first gas according to a plasma power source supplied to the plasma electrode members alternately arranged with the plurality of ground electrode members. Can be sprayed by plasma.
  • Each of the first and second gas injection modules may be configured in plurality, and each of the plurality of second gas injection modules may be alternately disposed with the plurality of first gas injection modules.
  • the gas injector may further include third and fourth gas injector modules installed in the chamber lid to be disposed between the first and second gas injector modules to inject a third gas to the plurality of substrates.
  • Substrate processing apparatus comprises a process chamber; A substrate support part installed in the process chamber to support a plurality of substrates and rotating in a predetermined direction; A chamber lid covering an upper portion of the process chamber to face the substrate support; And a gas injection unit formed to include a gas injection space provided between the plurality of ground electrode members, the gas injection unit including a plurality of gas injection modules provided at regular intervals on the chamber lid, wherein at least one of the plurality of gas injection modules is connected to the ground.
  • Plasma is formed in the gas jetting space according to a plasma power source applied to the plasma electrode member disposed alternately with the electrode member, and the substrate support is disposed on the first disk, and the substrate is disposed on the first disk.
  • the seat may include at least one second disk that rotates about an axis of the first disk and rotates as the first disk rotates.
  • Substrate processing method comprises the steps of (A) seating a plurality of substrates at regular intervals in a substrate support installed in the process chamber; (B) rotating the substrate support on which the plurality of substrates are seated so that the second disk rotates and revolves as the first disk rotates about a central axis; And a plurality of substrates by spatially separating the first and second gases different from each other through the first and second gas injection modules disposed at regular intervals on the chamber lid covering the upper portion of the process chamber so as to face the substrate support. And a step (C) of injecting the gas into the plurality of substrates, wherein the first gas injecting module supplies the first gas supplied to the gas ejection spaces between the plurality of ground electrode members.
  • the second gas injection module may inject the second gas supplied to the gas injection spaces between the plurality of ground electrode members to the plurality of substrates so as to be spatially separated from the first gas.
  • the rotation ratio of the first disk and the second disk may be less than 1: 1 at 1: 0.1 or more.
  • the step (C) is performed simultaneously with the first gas injection step of injecting the first gas through the first gas injection module and the second gas injection step of injecting the second gas through the second gas injection module. Or sequential.
  • the first gas may be plasma-formed by the plasma formed in the gas injection space of the first gas injection module and injected into the plurality of substrates.
  • the substrate processing apparatus and the substrate processing method according to the present invention spatially separate the source gas and the reactive gas through a plurality of gas injection modules disposed spatially separated on the substrate support portion on the substrate
  • a plurality of gas injection modules disposed spatially separated on the substrate support portion on the substrate
  • the substrate processing apparatus and the substrate processing method using the same according to the present invention prevent the reaction of the source gas and the reactive gas during the injection to the substrate through the purge gas to more easily control the uniformity of the thin film material and the film quality of the thin film material. can do.
  • the second disk may be rotated without using a separate second disk rotating device using air or gas, thereby simplifying the structure of the substrate processing apparatus and reducing power and energy consumption used for processing the substrate. It can be effective.
  • vibration and noise generated when the second disk is rotated can be suppressed, so that shaking of the substrate seated on the upper surface of the second disk, uneven deposition on the substrate, and occurrence of etching can be suppressed.
  • FIG. 1 is a diagram schematically illustrating a general substrate processing apparatus.
  • FIG. 2A is a schematic view of a substrate processing apparatus according to a first embodiment of the present invention.
  • FIG. 2B is a sectional perspective view showing a substrate processing apparatus according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically illustrating a cross section of the gas injection module illustrated in FIG. 2A.
  • FIG. 4A is a view for explaining a substrate processing method using the substrate processing apparatus according to the first embodiment of the present invention described above.
  • FIG. 4B is a waveform diagram illustrating an operation procedure of the first to fourth gas injection modules illustrated in FIG. 4A.
  • 5A through 5D are waveform diagrams for describing modifications of the substrate processing method through the first to fourth gas injection modules illustrated in FIG. 2.
  • FIG. 6 is a view for explaining a modified embodiment of the substrate processing apparatus according to the first embodiment of the present invention.
  • FIG. 7 is a waveform diagram illustrating an operation procedure of the first to fourth gas injection modules illustrated in FIG. 6.
  • FIG. 8 is a schematic view of a substrate processing apparatus according to a second embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view of the first and third gas injection modules illustrated in FIG. 8.
  • FIG. 10 is a view for explaining a substrate processing method using the substrate processing apparatus according to the second embodiment of the present invention described above.
  • FIG. 11 is a schematic view of a substrate processing apparatus according to a third embodiment of the present invention.
  • FIG. 12 is a view for explaining a substrate processing method using the substrate processing apparatus according to the third embodiment of the present invention described above.
  • FIG. 13 is a schematic view of a substrate processing apparatus according to a fourth embodiment of the present invention.
  • FIG. 14 is a view for explaining a substrate processing method using the substrate processing apparatus according to the fourth embodiment of the present invention described above.
  • FIG. 15 is a view for explaining a substrate processing apparatus and method using the above-described substrate processing apparatus shown in 2b.
  • FIG. 2A is a schematic view of a substrate processing apparatus according to a first embodiment of the present invention
  • FIG. 3 is a cross-sectional view schematically illustrating a cross section of the gas injection module illustrated in FIG. 2A.
  • the substrate processing apparatus 100 may include a process chamber 110, a chamber lid 115, a substrate support 120, and a gas injection unit. And 130.
  • the process chamber 110 provides a reaction space for a substrate processing process, for example, a thin film deposition process.
  • the bottom or side surface of the process chamber 110 is in communication with an exhaust pipe (not shown) for exhausting the gas of the reaction space.
  • the chamber lid 115 is installed on the process chamber 110 to cover the top of the process chamber 110 and is electrically grounded.
  • the chamber lid 115 supports the gas injector 130 and includes a plurality of module installation units 115a, 115b, 115c, and 115d into which the gas injector 130 is inserted.
  • the plurality of module installation units 115a, 115b, 115c, and 115d may be formed in the chamber lid 115 to be spaced in units of 90 degrees so as to be symmetrical in a diagonal direction with respect to the center point of the chamber lid 115.
  • the chamber lid 115 is shown as having four module mounting portions 115a, 115b, 115c, 115d, but is not limited to this, and the chamber lid 115 is 2N symmetrical with respect to the center point. However, N may be provided with module installation parts. At this time, each of the plurality of module mounting portion is provided to be mutually symmetrical in the diagonal direction with respect to the center point of the chamber lead 115.
  • the chamber lid 115 includes the first to fourth module mounting portions 115a, 115b, 115c, and 115d.
  • the reaction space of the process chamber 110 sealed by the chamber lid 115 described above is connected to an external pumping means (not shown) through a pumping tube 117 installed in the chamber lid 115.
  • the pumping pipe 117 is in communication with the reaction space of the process chamber 110 through the pimping hole 115e formed in the center of the chamber lid 115. Accordingly, the inside of the process chamber 110 is in a vacuum state or an atmospheric pressure state according to the pumping operation of the pumping means through the pumping pipe 117.
  • the substrate support part 120 is rotatably installed in the process chamber 110.
  • the substrate support part 120 is supported by a rotating shaft (not shown) penetrating the center bottom surface of the process chamber 110.
  • the rotation shaft rotates according to the driving of the shaft driving member (not shown) to rotate the substrate support part 120 in a predetermined direction.
  • the rotating shaft exposed to the outside of the lower surface of the process chamber 110 is sealed by a bellows (not shown) installed on the lower surface of the process chamber 110.
  • the substrate support part 120 supports a plurality of substrates W loaded from an external substrate loading device (not shown).
  • the substrate support part 120 has a disc shape, and is disposed in a circle shape such that a plurality of substrates W, for example, semiconductor substrates or wafers have a predetermined interval.
  • the substrate processing apparatus of the embodiment may include a first disk 1000, a second disk 2000, a metal ring 3000, a bearing 6000, and a frame 5000.
  • the first disk 1000 may be accommodated in the accommodating part 5100 provided in the frame 5000 so as to be capable of rotating firstly, that is, rotating about the frame 5000.
  • the first disk 1000 may be provided with a second disk 2000 to be described later to be symmetrical with respect to the center of the first disk 1000.
  • the first disk 1000 may be mounted on the frame 5000.
  • the frame 5000 may be provided with an accommodating part 5100 recessed and formed in an area and a shape corresponding to the shape and area of the first disk 1000 to allow the first disk 1000 to be seated thereon. .
  • the second disk 2000 when the second disk 2000 is provided on the first disk 1000, the second disk 2000 may be radially disposed in various numbers on the first disk 1000 according to its size.
  • a disc seating portion which is recessed in an area and a shape corresponding to the shape and area of the second disk 2000 on the first disk 1000 to allow the second disk 2000 to be seated It may be provided.
  • the second disk 2000 is disposed on the first disk 1000, the substrate is seated on an upper surface thereof, and the second disk 2000 is rotated and the center of the first disk 1000 is rotated as the first disk 1000 rotates.
  • the second rotation i.e., can be idle.
  • a substrate may be mounted on the top surface of the second disk 2000.
  • the substrate may be, for example, a circular wafer.
  • the substrate processing may be performed by spraying a process gas including a source material on a substrate such as a wafer seated on an upper surface of the second disk 2000.
  • the second disk 2000 since the second disk 2000 rotates based on the center of the second disk 2000 at the same time as the rotation of the center of the first substrate, the second disk 2000 has a circular shape seated on the second disk 2000.
  • the substrate may have a deposition film or an etched shape that is mutually symmetrical in the radial direction with respect to the center thereof.
  • the second disk 2000 rotates with respect to the center of the second disk 2000 at the same time as the rotation of the center of the first disk 1000, the rotation of the first disk (1000)
  • the speed and the rotation speed of the second disk 2000 may not be the same.
  • the uniformity of deposition of the substrate (not shown) during the deposition process on the substrate (not shown) on the second disk 2000 can be kept constant.
  • the ratio of the rotation speed of the first disk 1000 to the rotation speed of the second disk 2000 is set to 1 when the rotation speed of the first disk 1000 is 1.
  • the ratio of the rotation speed can maintain the deposition uniformity (Uniformity) on the substrate between 1% (percent) and 2% (percent) at speeds above 0.1 and less than 1.
  • the process gas injected is influenced by the rotation speed of the substrate in the process space.
  • the deposition uniformity at may not be constant.
  • a first support part 2100 may be formed under the second disc 2000.
  • the first support portion 2100 may protrude from the lower portion of the second disk 2000.
  • the gas injection unit 130 is inserted into each of the first to fourth module mounting units 115a, 115b, 115c, and 115d formed in the chamber lid 115.
  • the gas injector 130 spatially separates and injects the first and second gases onto the plurality of substrates W that are rotated according to the rotation of the substrate supporter 120.
  • the first gas may be a source gas including a thin film material to be deposited on the substrate (W).
  • the source gas may contain silicon (Si), titanium group elements (Ti, Zr, Hf, etc.), aluminum (Al), and the like.
  • the source gas containing silicon (Si) may be silane (Silane; SiH 4), disilane (Disilane; Si 2 H 6), trisilane (Si 3 H 8), TEOS (Tetraethylorthosilicate), DCS (Dichlorosilane), HCD ( Hexachlorosilane), TriDMA dimethylaminosilane (TriDMAS), and trisylylamine (TSA).
  • the second gas may be made of a reactant gas that reacts with the above-described source gas so that the thin film material contained in the source gas is deposited on the substrate (W).
  • the reaction gas may include at least one kind of gas selected from nitrogen (N 2 ), oxygen (O 2 ), nitrogen dioxide (N 2 O), and ozone (O 3 ).
  • the gas injector 130 is inserted into each of the first to fourth module installation units 115a, 115b, 115c, and 115d to be spatially separated on the substrate support 120. And first to fourth gas injection modules 130a, 130b, 130c, and 130d for spatially separating and injecting the first and second gases.
  • Each of the first to fourth gas injection modules 130a, 130b, 130c, and 130d may be inserted into each of the first to fourth module mounting portions 115a, 115b, 115c, and 115d of the chamber lid 115 to provide a substrate support ( 120 is arranged to be symmetrical to each other in the X-axis and Y-axis direction with respect to the center point.
  • the first gas injection module 130a is inserted into and installed in the first module installation unit 115a overlapping the first gas injection region defined on the substrate support 120 to plasma the first gas injection region. Spray down.
  • the first gas injection module 130a includes a ground frame 210, a ground partition member 220, a plurality of insulation members 230, and a plurality of plasma electrode members 240.
  • the ground frame 210 is formed such that the bottom surface of the ground frame 210 has a plurality of gas injection spaces 212 separated by the ground partition member 220.
  • the ground frame 210 is inserted into the first module installation unit 115a of the chamber lead 115 and electrically grounded through the chamber lead 115.
  • the ground frame 210 is composed of a top plate 210a and ground sidewalls 210b.
  • the upper plate 210a is formed in a rectangular shape and is coupled to the first module installation unit 115a of the chamber lid 115.
  • a plurality of insulating member support holes 214 and a plurality of gas supply holes 216 are formed in the upper plate 210a.
  • Each of the plurality of insulating member support holes 214 is formed through the top plate 210a to communicate with each of the plurality of gas injection spaces 212.
  • Each of the plurality of insulating member support holes 214 is formed to have a rectangular plane.
  • Each of the plurality of gas supply holes 216 is formed through the top plate 210a to communicate with each of the plurality of gas injection spaces 212.
  • Each of the plurality of gas supply holes 216 is connected to an external gas supply means (not shown) through a gas supply pipe to receive the first gas from the gas supply means (not shown) through the gas supply pipe.
  • Each of the ground sidewalls 210b protrudes vertically from the long side and short side edge portions of the top plate 210a to provide a gas injection space 212 below the top plate 210a.
  • Each of these ground sidewalls 210b is electrically grounded through the chamber lid 115.
  • the long side ground sidewalls serve as ground electrodes.
  • the ground partition wall member 220 protrudes vertically from the center lower surface of the top plate 210a and is disposed in parallel with the long sides of the ground sidewalls 210b.
  • the ground partition member 220 is formed in the ground frame 210 to have a predetermined height to provide a plurality of gas injection spaces 212 that are spatially separated in the ground frame 210.
  • the ground partition member 220 is integrally or electrically coupled to the ground frame 210 to be electrically grounded through the ground frame 210 to serve as a ground electrode.
  • ground sidewalls 210b and the ground partition wall member 220 are disposed in parallel to the ground frame 220 at regular intervals to form a plurality of ground electrode members.
  • Each of the plurality of insulating members 230 is made of an insulating material and inserted into the insulating member support hole 214 formed in the ground frame 210, and is coupled to the upper surface of the ground frame 210 by a fastening member (not shown).
  • Each of the plurality of plasma electrode members 240 is made of a conductive material and is inserted into the insulating member 230 to protrude to a predetermined height from the lower surface of the ground frame 210 to be disposed in the gas injection space 212.
  • each of the plurality of plasma electrode members 240 may protrude to the same height as each of the sidewalls 210b of the ground barrier member 220 and the ground frame 210. Accordingly, the plurality of plasma electrode members 240 are alternately arranged to be parallel to the above-described ground electrode member at predetermined intervals.
  • the plasma electrode member 240 is electrically connected to the plasma power supply unit 140 through a feed cable to form plasma in the gas injection space 212 according to the plasma power supplied from the plasma power supply unit 140. Accordingly, the plasma converts the first gas supplied to the gas injection space 212 into a plasma, and the plasma converted first gas is injected downward into the first gas injection region.
  • the plasma first gas may be injected downward from the gas injection space 212 by the flow rate (or flow) of the first gas supplied to the gas injection space 212.
  • the plasma power supply unit 140 generates plasma power having a predetermined frequency, and supplies plasma power to each of the first to fourth gas injection modules 130a, 130b, 130c, and 130d through a feed cable, or separately. Supply.
  • the plasma power is supplied with high frequency (eg, High Frequency (HF) power or Very High Frequency (VHF) power.
  • HF High Frequency
  • VHF Very High Frequency
  • the HF power has a frequency in the range of 3 MHz to 30 MHz
  • the VHF power is It may have a frequency in the range of 30MHz to 300MHz.
  • an impedance matching circuit (not shown) is connected to the feed cable.
  • the impedance matching circuit matches the load impedance and the source impedance of the plasma power source supplied from the plasma power supply unit 140 to each of the first to fourth gas injection modules 130a, 130b, 130c, and 130d.
  • the impedance matching circuit may be composed of at least two impedance elements (not shown) composed of at least one of a variable capacitor and a variable inductor.
  • the first gas injection module 130a forms a plasma in the gas injection space 212 according to the plasma power supplied from the plasma power supply unit 140 to the plasma electrode member 240, and supplies the plasma to the gas injection space 212.
  • the first gas to be turned into plasma is injected downward into the first gas injection region.
  • the second gas injection module 130b is inserted into and installed in the second module installation portion 115b overlapping the second gas injection region defined on the substrate support 120 so as to be spatially separated from the first gas injection region.
  • the second gas that has been plasma is injected downward into the second gas injection region.
  • the second gas injection module 130b may include a ground frame 210, a ground partition member 220, a plurality of insulation members 230, and a plurality of plasma electrode members 240. ), And the description of these components will be replaced with the above description.
  • the second gas injection module 130b is electrically connected to the plasma power supply unit 140 through a feed cable, thereby depending on the plasma power supplied from the plasma power supply unit 140 to the plasma electrode member 240. Plasma is formed in the gas injection space 212, and the second gas supplied to the gas injection space 212 is converted into plasma to be injected downward into the second gas injection region.
  • the third gas injection module 130c is inserted into and installed in the third module installation unit 115c overlapping the third gas injection region defined on the substrate support 120 so as to be spatially separated from the above-described second gas injection region.
  • the plasma first gas is injected downward into the third gas injection region.
  • the third gas injection module 130c may include a ground frame 210, a ground partition member 220, a plurality of insulation members 230, and a plurality of plasma electrode members 240. ), And the description of these components will be replaced with the above description.
  • the third gas injection module 130c may be electrically connected to the plasma power supply 140 through a feed cable, thereby depending on the plasma power supplied from the plasma power supply 140 to the plasma electrode member 240. Plasma is formed in the gas injection space 212, and the first gas supplied to the gas injection space 212 is converted into plasma to be injected downward into the third gas injection region.
  • the fourth gas injection module 130b overlaps the fourth gas injection region defined on the substrate support 120 between the first and third gas injection regions so as to be spatially separated from the aforementioned first and third gas injection regions.
  • the second module inserted into the fourth module installation unit 115d is injected downward into the fourth gas injection region to form a plasma.
  • the fourth gas injection module 130d may include a ground frame 210, a ground partition wall member 220, a plurality of insulation members 230, and a plurality of plasma electrode members 240. ), And the description of these components will be replaced with the above description.
  • the fourth gas injection module 130d may be electrically connected to the plasma power supply 140 through a feed cable, thereby depending on the plasma power supplied from the plasma power supply 140 to the plasma electrode member 240.
  • Plasma is formed in the gas injection space 212, and the second gas supplied to the gas injection space 212 is converted into plasma to be injected downward into the fourth gas injection region.
  • Substrate processing apparatus 100 is spatially separated on the substrate support 120 to arrange the first to fourth gas injection module (130a, 130b, 130c, 130d)
  • the plasmalized first and second gases through the first to fourth gas injection modules 130a, 130b, 130c, and 130d, respectively, to be spatially separated and sprayed onto the rotated substrate support 120.
  • FIG. 4A is a view for explaining a substrate processing method using the substrate processing apparatus according to the first embodiment of the present invention described above, and FIG. 4B is a view illustrating an operation procedure of the first to fourth gas injection modules shown in FIG. 4A. It is a waveform diagram for that.
  • FIGS. 4A and 4B and FIG. 3 a substrate processing method using the substrate processing apparatus according to the first embodiment of the present invention will be described as follows.
  • the plurality of substrates W are loaded on the substrate support 120 at regular intervals.
  • the substrate support part 120 loaded with the plurality of substrates W is rotated in a predetermined direction.
  • the first gas is supplied to the gas injection spaces 212 of each of the first and third gas injection modules 130a and 130c, and the plasma electrode member of each of the first and third gas injection modules 130a and 130c (by applying plasma power to the 240, the first gas PG1 that has been plasma is sprayed downward on each of the first and third gas injection regions on the substrate support part 120.
  • the plasmalized first gas PG1 is continuously injected regardless of the process cycle period in which the substrate support 120 rotates once in a predetermined direction.
  • the second gas is supplied to the gas injection space 212 of each of the second and fourth gas injection modules 130b and 130d, and the plasma electrode member of each of the second and fourth gas injection modules 130b and 130d is provided.
  • the plasma power is applied to the 240 to continuously inject the plasmad second gas PG2 into the second and fourth gas injection regions on the substrate support 120.
  • the plasmaized second gas PG2 is continuously injected regardless of the process cycle period.
  • each of the plurality of substrates W seated on the substrate support part 120 passes through the first to fourth gas ejection regions in accordance with the rotation of the substrate support part 120.
  • each of the first to fourth gas injection modules 130a, 130b, 130c, and 130d simultaneously sprays the first and second gases PG1 and PG2 that have been plasmaized as described above.
  • the first and second gases PG1 and PG2 may be sprayed according to the operation sequence according to the control of the control module (not shown).
  • 5A through 5D are waveform diagrams for describing modifications of the substrate processing method through the first to fourth gas injection modules illustrated in FIG. 2A.
  • the substrate treating method according to the first modified example sequentially performs operations of each of the first to fourth gas injection modules 130a, 130b, 130c, and 130d for each process cycle, thereby performing plasma treatment.
  • the first and second gases PG1 and PG2 are sprayed sequentially.
  • each process cycle may be composed of first to fourth sections.
  • the first gas PG1 that has been plasma-formed is injected into the first gas injection region through only the first gas injection module 130a.
  • the gas injection through the first gas injection module 130a is stopped, and the second gas PG2 that has been plasmamed through only the second gas injection module 130b is transferred to the second gas. Sprayed in the spraying region.
  • gas injection through the second gas injection module 130b is stopped, and the first gas PG1 that has been plasma-formed through only the third gas injection module 130c is transferred to the third gas. Sprayed in the spraying region.
  • the gas injection through the third gas injection module 130c is stopped, and the second gas PG2 that has been plasmamed through only the fourth gas injection module 130d is discharged to the fourth section. Is injected into the gas injection zone.
  • the substrate processing method according to the second modification may include operations of the first and third gas injection modules 130a and 130c and the second and fourth gas injection modules 130b and 130d for each process cycle.
  • the plasmalized first and second gases PG1 and PG2 may be alternately sprayed.
  • each process cycle may be composed of first to fourth sections.
  • the first gas PG1 which has been plasma-formed, is sprayed to the first and third gas injection regions simultaneously through only the first and third gas injection modules 130a and 130c.
  • gas injection through the first and third gas injection modules 130a and 130c is stopped, and plasma treatment is performed through only the second and fourth gas injection modules 130b and 130d.
  • Two gases PG2 are sprayed simultaneously to the second and fourth gas injection regions.
  • the gas injection through the second and fourth gas injection modules 130b and 130d is stopped, and the plasma treatment is performed through only the first and third gas injection modules 130a and 130c.
  • One gas PG1 is simultaneously sprayed into the first and third gas injection regions.
  • the gas injection through the first and third gas injection modules 130a and 130c is stopped, and only the second and fourth gas injection modules 130b and 130d are plasmamed.
  • the second gas PG2 is simultaneously sprayed into the second and fourth gas injection regions.
  • the substrate treating method according to the third modified example may include the first gas PG1 that has been plasma-formed through the first and third gas injection modules 130a and 130c for each process cycle. Simultaneously spraying the three gas injection zones at predetermined intervals, and simultaneously plasma-forming the second gas PG2 through the second and fourth gas injection modules 130b and 130d to the second and fourth gas injection zones.
  • Can spray
  • the substrate treating method according to the fourth modified example may include the first gas PG1 that has been plasma-formed through the first and third gas injection modules 130a and 130c for each process cycle. Simultaneously spraying on the three gas injection zones and simultaneously plasma-forming the second gas PG2 plasma-formed through the second and fourth gas injection modules 130b and 130d to the second and fourth gas injection zones at predetermined intervals.
  • Can spray
  • FIG. 6 is a view for explaining a modified embodiment of the substrate processing apparatus according to the first embodiment of the present invention.
  • the substrate processing apparatus according to the modified example of the first embodiment of the present invention except for the type of gas injected from each of the first to fourth gas injection modules 130a, 130b, 130c, and 130d is illustrated in FIG. Since it is the same as the substrate processing apparatus shown in 2a, below, only the kind of gas injected from each of the 1st-4th gas injection module 130a, 130b, 130c, 130d is demonstrated.
  • the first gas injection module 130a receives the above-described first gas from the gas supply means and injects the plasma first gas downwardly into the first gas injection region.
  • the second gas injection module 130b receives the third gas from the gas supply means and injects the plasma-formed third gas PG3 downward into the second gas injection region.
  • the third gas may be a purge gas for purging the above-described first and second gases.
  • the third gas is to purge the first gas remaining without being deposited on the substrate W and / or the second gas remaining without reacting with the first gas, and include nitrogen (N 2), argon (Ar), and xenon ( Ze) and helium (He).
  • the third gas injection module 130c receives the above-described second gas from the gas supply means and injects the plasma-formed second gas downward into the third gas injection region.
  • the fourth gas injection module 130d receives the third gas from the gas supply means and injects the plasma-formed third gas PG3 downward into the fourth gas injection region.
  • FIG. 7 is a waveform diagram illustrating an operation procedure of the first to fourth gas injection modules illustrated in FIG. 6.
  • the plurality of substrates W are loaded on the substrate support 120 at regular intervals.
  • the substrate support part 120 loaded with the plurality of substrates W is rotated in a predetermined direction.
  • first and second gases G1 and G2 are spatially separated through the first and third gas injection modules 130a and 130c, respectively, and alternately sprayed at predetermined intervals, and the second and fourth gas injections are performed.
  • Plasmaized third gas PG3 is continuously injected through the modules 130b and 130d.
  • plasma-forming injection is performed separately from each of the first to fourth gas injection modules 130a, 130b, 130c, and 130d on each of the plurality of substrates W mounted on the rotating substrate support 120.
  • the predetermined thin film material is deposited by the mutual reaction of the first and second gases PG1 and PG2.
  • the plasmalized third gas PG3 prevents the first and second plasmaized gases PG1 and PG2 from being mixed and reacted while being sprayed onto the substrate W to form the first and second plasmaized gases PG3.
  • Two gases PG1 and PG2 are injected onto the upper surface of the substrate W and then mixed with each other to react.
  • the substrate processing apparatus and the substrate processing method according to the modification of the first exemplary embodiment of the present invention include the plasmalized first and second gases PG1 sprayed onto the substrate W through the third gas G3.
  • the deposition uniformity and film quality of the thin films deposited on the respective substrates W may be further increased.
  • the substrate processing method using a substrate processing apparatus is the first to fourth gas injection module 130a, 130b, in accordance with the operation sequence shown in Figs.
  • the above-described plasma first to third gases PG1, PG2 and PG3 may be spatially separated and injected into the first to fourth gas injection regions.
  • FIG. 8 is a schematic view of a substrate processing apparatus according to a second embodiment of the present invention.
  • the substrate processing apparatus 200 may include a process chamber 110, a chamber lid 115, a substrate support 120, and a gas injector 130. Since the other components except for the gas injection unit 130 are the same as those of the substrate processing apparatus 100 described above, the description of the same components will be replaced with the above description.
  • the gas injection unit 130 is inserted into each of the first to fourth module mounting units 115a, 115b, 115c, and 115d formed in the chamber lid 115, and the first gas that is not plasmaified and the second gas that is plasmaized are installed. Are spatially separated and sprayed downward toward the substrate support part 120.
  • the gas injection unit 130 is configured to include the first to fourth gas injection module (330a, 130b, 330c, 130d).
  • the first gas injection module 330a is inserted into the second module installation unit 115b overlapping the above-described first gas injection region, and downwardly sprays the first gas supplied from the gas supply means to the first gas injection region as it is. do.
  • the first gas injection module 330b includes a ground frame 410, a ground partition member 420, and a plurality of gas supply holes 430, as shown in FIG. 9.
  • the ground frame 410 is formed such that the bottom surface of the ground frame 410 has a plurality of gas injection spaces 412 separated by the ground partition member 420.
  • the ground frame 410 is inserted into and installed in the first module installation unit 115a of the chamber lead 115 to be electrically grounded through the chamber lead 115.
  • the ground frame 410 is composed of a top plate 410a and ground sidewalls 410b.
  • the upper plate 410a is formed in a rectangular shape and is coupled to the first module installation unit 115a of the chamber lid 115.
  • Each of the ground sidewalls 410b protrudes vertically from the long side and short side edge portions of the top plate 410a to provide a gas injection space 412 under the top plate 410a.
  • Each of these ground sidewalls 410b is electrically grounded through the chamber lid 115.
  • the long side ground sidewalls serve as ground electrodes.
  • the ground partition wall member 420 protrudes vertically from the center lower surface of the top plate 410a and is disposed in parallel with the long sides of the ground sidewalls 410b.
  • the ground partition wall member 420 is formed in the ground frame 410 to have a predetermined height to provide a plurality of gas injection spaces 412 that are spatially separated in the ground frame 410.
  • the ground partition member 420 is integrally or electrically coupled to the ground frame 410 to be electrically grounded through the ground frame 410 to serve as a ground electrode.
  • ground sidewalls 410b and the ground partition wall member 420 are disposed in parallel to the ground frame 420 at regular intervals to form a plurality of ground electrode members.
  • Each of the plurality of gas supply holes 430 is formed through the upper plate 410a of the ground frame 410 so as to communicate with each of the plurality of gas injection spaces 412.
  • Each of the plurality of gas supply holes 430 is connected to an external gas supply means through a gas supply pipe to receive the first gas from the gas supply means through the gas supply pipe.
  • the first gas injection module 330a injects the first gas supplied from the gas supply means to the gas injection space 412 directly into the first gas injection region without being converted into plasma. That is, since the plasma electrode member is not installed unlike the first gas injection module 130a illustrated in FIG. 2A, the first gas injection module 330a directly injects the first gas supplied to the gas injection space 412 as it is. do. As a result, the first gas supplied to the first gas injection module 330a includes a thin film material that can react with the second gas and be deposited on the substrate without being plasmalated by the plasma.
  • the second gas injection module 130b is inserted into the second module installation unit 115b overlapping the above-described first gas injection region and downwardly injects the plasma-formed second gas into the second gas injection region.
  • the second gas injection module 130b may include a ground frame 210, a ground partition member 220, a plurality of insulation members 230, and a plurality of plasma electrode members 240. ), And the description of these components will be replaced with the above description.
  • the second gas injection module 130b is electrically connected to the plasma power supply unit 140 through a feed cable, thereby depending on the plasma power supply supplied from the plasma power supply unit 140 to the plasma electrode member 240. Plasma is formed in the gas injection space 212, and the second gas supplied to the gas injection space 212 is converted into plasma to be injected downward into the second gas injection region.
  • the third gas injection module 330c is inserted into and installed in the third module installation unit 115c overlapping the third gas injection region described above, so that the third gas is supplied as it is without plasmaizing the first gas supplied from the gas supply means. Spray down into the spray area.
  • the third gas injection module 330c has the same configuration as the first gas injection module 330a shown in FIG. 9, the description thereof will be replaced with the description of the first gas injection module 330a. do.
  • the fourth gas injection module 130d is inserted into and installed in the fourth module installation unit 115d overlapping the fourth gas injection region, and injects the second gas plasmad downward into the fourth gas injection region.
  • the fourth gas injection module 130d may include a ground frame 210, a ground partition wall member 220, a plurality of insulation members 230, and a plurality of plasma electrode members 240. ), And the description of these components will be replaced with the above description.
  • the fourth gas injection module 130d may be electrically connected to the plasma power supply 140 through a feed cable, thereby depending on the plasma power supplied from the plasma power supply 140 to the plasma electrode member 240. Plasma is formed in the gas injection space 212, and the second gas supplied to the gas injection space 212 is converted into plasma to be injected downward into the second gas injection region.
  • FIG. 10 is a view for explaining a substrate processing method using the substrate processing apparatus according to the second embodiment of the present invention described above.
  • a substrate processing method using the substrate processing apparatus according to the second embodiment of the present invention will be described with reference to FIG. 10.
  • the plurality of substrates W are loaded on the substrate support 120 at regular intervals.
  • the substrate support part 120 loaded with the plurality of substrates W is rotated in a predetermined direction.
  • the first gas is supplied to the gas injection space 412 of each of the first and third gas injection modules 330a and 330c to downwardly inject the first gas G1 into each of the first and third gas injection regions. do.
  • the first gas G1 is continuously injected regardless of the process cycle period in which the substrate support 120 rotates once in a predetermined direction.
  • the second gas is supplied to the gas injection space 212 of each of the second and fourth gas injection modules 130b and 130d, and the plasma electrode member of each of the second and fourth gas injection modules 130b and 130d is provided.
  • the plasma power is applied to the 240 to continuously inject the plasmad second gas PG2 into the second and fourth gas injection regions on the substrate support 120.
  • the plasmaized second gas PG2 is continuously injected regardless of the process cycle period.
  • each of the plurality of substrates W seated on the substrate support part 120 passes through the first to fourth gas ejection regions in accordance with the rotation of the substrate support part 120.
  • each of the first to fourth gas injection modules 330a, 130b, 330c, and 130d may use the first gas G1 and the plasmalized second gas PG2.
  • the present invention is not limited thereto, and the first to fourth gas injection modules 330a and 130b according to the operation sequence shown in FIGS. 4B and 5A to 5D according to the control of the control module (not shown).
  • the first gas G1 and the plasmalized second gas PG2 may be spatially separated and injected into the first to fourth gas injection regions.
  • FIG. 11 is a schematic view of a substrate processing apparatus according to a third embodiment of the present invention.
  • the substrate processing apparatus 500 includes a process chamber 110, a chamber lid 115, a substrate support 120, and a gas injector 130. Since the other components except for the gas injection unit 130 are the same as those of the substrate processing apparatus 100 described above, the description of the same components will be replaced with the above description.
  • the gas injection unit 130 is inserted into each of the first to fourth module mounting units 115a, 115b, 115c, and 115d formed in the chamber lid 115, and the first gas that is not plasmaified and the second gas that is plasmaized are installed. And the third gas is spatially separated and injected downward toward the substrate support part 120.
  • the gas injection unit 130 is configured to include the first to fourth gas injection module (330a, 130b, 330c, 130d).
  • the first gas injection module 330a is inserted into and installed in the first module installation unit 115a overlapping the above-described first gas injection region, so that the first gas supplied from the gas supply means is not converted into plasma, and the first gas is supplied as it is. Spray down into the spray area.
  • the first gas injection module 330a includes a ground frame 410, a ground partition member 420, and a plurality of gas supply holes 430. Description of this will be replaced with the description of FIG. 9.
  • the second gas injection module 130b is inserted into and installed in the second module installation unit 115b overlapping the above-described second gas injection region, and injects the above-mentioned plasma-formed third gas downward into the second gas injection region.
  • the second gas injection module 130b may include a ground frame 210, a ground partition member 220, a plurality of insulation members 230, and a plurality of plasma electrode members 240. ), And the description of these components will be replaced with the above description.
  • the second gas injection module 130b is electrically connected to the plasma power supply unit 140 through a feed cable, so that the second gas injection module 130b is supplied in accordance with the plasma power supplied from the plasma power supply unit 140 to the plasma electrode member 240.
  • Plasma is formed in 212, and the third gas supplied to the gas injection space 212 is converted into plasma to be injected downward into the second gas injection region.
  • the third gas injection module 130c is inserted into and installed in the third module installation unit 115c overlapping the third gas injection region to inject the above-mentioned plasma-formed second gas downward into the third gas injection region.
  • the third gas injection module 130c may include a ground frame 210, a ground partition member 220, a plurality of insulation members 230, and a plurality of plasma electrode members 240. ), And the description of these components will be replaced with the above description.
  • the third gas injection module 130c is electrically connected to the plasma power supply unit 140 through a feed cable, thereby providing a gas injection space according to the plasma power supplied from the plasma power supply unit 140 to the plasma electrode member 240. Plasma is formed in 212, and the second gas supplied to the gas injection space 212 is converted into plasma to be injected downward into the third gas injection region.
  • the fourth gas injection module 130d is inserted into and installed in the fourth module installation unit 115d overlapping the fourth gas injection region to inject the above-mentioned plasma-formed third gas into the fourth gas injection region.
  • the fourth gas injection module 130d may include a ground frame 210, a ground partition wall member 220, a plurality of insulation members 230, and a plurality of plasma electrode members 240. ), And the description of these components will be replaced with the above description.
  • the fourth gas injection module 130d may be electrically connected to the plasma power supply 140 through a feed cable, and according to the plasma power supplied from the plasma power supply 140 to the plasma electrode member 240. Plasma is formed in the 212, and the third gas supplied to the gas injection space 212 is converted into plasma to be injected downward into the fourth gas injection region.
  • FIG. 12 is a view for explaining a substrate processing method using the substrate processing apparatus according to the third embodiment of the present invention described above.
  • a substrate processing method using the substrate processing apparatus according to the third embodiment of the present invention will be described with reference to FIG. 12.
  • the plurality of substrates W are loaded on the substrate support 120 at regular intervals.
  • the substrate support part 120 loaded with the plurality of substrates W is rotated in a predetermined direction.
  • the first gas is supplied to the first gas injection module 330a to inject the first gas G1 downward into the first gas injection region, and at the same time, the second gas is supplied to the third gas injection module 130c. And supplying plasma power to downwardly inject the plasmated second gas PG2 into the third gas injection region.
  • the first gas G1 and the plasmalized second gas PG2 are continuously sprayed regardless of the process cycle period in which the substrate support 120 rotates once in a predetermined direction.
  • each of the first gas G1 and the plasmated second gas PG2 simultaneously supplies a third gas and a plasma power supply to each of the second and fourth gas injection modules 130b and 130d, thereby providing a second power supply. And continuously plasma-discharge the third gas PG3 plasmated to each of the fourth gas injection regions. At this time, the plasmaized third gas PG3 is continuously injected regardless of the process cycle period.
  • each of the plurality of substrates W seated on the substrate support part 120 passes through the first to fourth gas ejection regions in accordance with the rotation of the substrate support part 120.
  • the plasmaized third gas PG3 prevents the first gas G1 and the plasmalized second gas PG2 from being mixed and reacted while being injected onto the substrate W, thereby preventing the first gas G1 from reacting.
  • the plasmalized second gas PG2 are injected onto the upper surface of the substrate W and then mixed with each other to react.
  • the substrate processing method using a substrate processing apparatus is the first to fourth gas injection module (330a, 130b) in accordance with the operation sequence shown in Figure 4b, 5a to 5d, 7 ,
  • the first gas G1 and the plasmalized second and third gases PG2 and PG3 may be spatially separated from each other, and the first gas G1 may be injected into the first to fourth gas injection regions. .
  • FIG. 13 is a schematic view of a substrate processing apparatus according to a fourth embodiment of the present invention.
  • the substrate processing apparatus 600 includes a process chamber 110, a chamber lid 115, a substrate support 120, and a gas injector 130. Since the other components except for the gas injection unit 130 are the same as those of the substrate processing apparatus 100 described above, the description of the same components will be replaced with the above description.
  • the gas injection unit 130 is inserted into each of the first to fourth module mounting units 115a, 115b, 115c, and 115d formed in the chamber lid 115, and the first gas that is not plasmaified and the second gas that is plasmaized are installed. And the third gas is spatially separated and injected downward toward the substrate support part 120.
  • the gas injection unit 130 is configured to include the first to fourth gas injection module (330a, 330b, 130c, 330d).
  • the first gas injection module 330a is inserted into and installed in the first module installation unit 115a overlapping the above-described first gas injection region, so that the first gas supplied from the gas supply means is not converted into plasma, and the first gas is supplied as it is. Spray down into the spray area.
  • the first gas injection module 330a includes a ground frame 410, a ground partition member 420, and a plurality of gas supply holes 430. Description of this will be replaced with the description of FIG. 9.
  • the second gas injection module 330b is inserted into the second module installation unit 115a overlapping the above-described second gas injection region, so that the second gas supplied from the gas supply means is not converted into plasma, and the second gas injection module 330b is provided as it is. Spray down into the spray area.
  • the second gas injection module 330b includes a ground frame 410, a ground partition member 420, and a plurality of gas supply holes 430. Description of this will be replaced with the description of FIG. 9.
  • the third gas injection module 130c is inserted into and installed in the third module installation unit 115c overlapping the third gas injection region to inject the above-mentioned plasma-formed second gas downward into the third gas injection region.
  • the third gas injection module 130c may include a ground frame 210, a ground partition member 220, a plurality of insulation members 230, and a plurality of plasma electrode members 240. ), And the description of these components will be replaced with the above description.
  • the third gas injection module 130c is electrically connected to the plasma power supply unit 140 through a feed cable, thereby providing a gas injection space according to the plasma power supplied from the plasma power supply unit 140 to the plasma electrode member 240. Plasma is formed in 212, and the second gas supplied to the gas injection space 212 is converted into plasma to be injected downward into the third gas injection region.
  • the fourth gas injection module 330d is inserted into and installed in the fourth module installation unit 115d overlapping the above-described fourth gas injection region, so that the fourth gas supplied from the gas supply means is not plasmatized, and the fourth gas injection module 330d is provided. Spray down into the spray area.
  • the fourth gas injection module 330d includes a ground frame 410, a ground partition member 420, and a plurality of gas supply holes 430, as shown in FIG. 9. Description of this will be replaced with the description of FIG. 9.
  • FIG. 14 is a view for explaining a substrate processing method using the substrate processing apparatus according to the fourth embodiment of the present invention described above.
  • the plurality of substrates W are loaded on the substrate support 120 at regular intervals.
  • the substrate support part 120 loaded with the plurality of substrates W is rotated in a predetermined direction.
  • the first gas is supplied to the first gas injection module 330a to inject the first gas G1 downward into the first gas injection region, and at the same time, the second gas is supplied to the third gas injection module 130c. And supplying plasma power to downwardly inject the plasmated second gas PG2 into the third gas injection region.
  • the first gas G1 and the plasmalized second gas PG2 are continuously sprayed regardless of the process cycle period in which the substrate support 120 rotates once in a predetermined direction.
  • each of the first gas G1 and the plasmaized second gas PG2 simultaneously supplies a third gas to each of the second and fourth gas injection modules 330b and 330d to supply the second and fourth gasses.
  • the third gas G3 that is not plasmated is continuously injected into each of the gas injection regions. At this time, the third gas G3 is continuously injected regardless of the process cycle period.
  • each of the plurality of substrates W seated on the substrate support part 120 passes through the first to fourth gas ejection regions in accordance with the rotation of the substrate support part 120.
  • the third gas G3 may be mixed with the first gas G1 and the plasmated second gas PG2 while being injected onto the substrate W to prevent the third gas G3 from reacting with the first gas G1.
  • Plasmaized second gas PG2 is injected onto the upper surface of the substrate W and then mixed to react.
  • the substrate processing method using a substrate processing apparatus is the first to fourth gas injection module (330a, 330b) according to the operation sequence shown in Figs. 4b, 5a to 5d, 7 , 130c and 330d, respectively, may spatially separate the above-described first and third gases G1 and G3 and the plasmaized second gas PG2 into the first to fourth gas injection regions. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Abstract

본 발명의 일 예에 따른 판 처리장치는 공정 챔버, 복수의 기판을 지지하도록 상기 공정 챔버에 설치되어 소정 방향으로 회전하는 기판 지지부, 상기 기판 지지부에 대향되도록 상기 공정 챔버의 상부를 덮는 챔버 리드; 및 상기 챔버 리드에 설치되어 서로 상이한 제 1 및 제 2 가스를 공간적으로 분리하여 상기 복수의 기판으로 분사하는 가스 분사부를 포함하며, 상기 기판 지지부는 자전 가능하도록 구비되는 제 1 디스크, 및 상기 제 1 디스크에 배치되어 상기 기판이 안착되며, 상기 제 1 디스크가 자전함에 따라 자전 및 상기 제 1 디스크의 중심을 축으로 공전하는 적어도 하나의 제 2 디스크를 포함할 수 있다.

Description

기판 처리 장치 및 기판 처리 방법
본 발명은 기판 처리 장치 및 기판 처리 방법에 관한 것이다.
이 부분에 기술된 내용은 단순히 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.
일반적으로, 태양전지(Solar Cell), 반도체 소자, 평판 디스플레이 등을 제조하기 위해서는 기판 표면에 소정의 박막층, 박막 회로 패턴, 또는 광학적 패턴을 형성하여야 하며, 이를 위해서는 기판에 특정 물질의 박막을 증착하는 박막 증착 공정, 감광성 물질을 사용하여 박막을 선택적으로 노출시키는 포토 공정, 선택적으로 노출된 부분의 박막을 제거하여 패턴을 형성하는 식각 공정 등의 반도체 제조공정을 수행하게 된다.
이러한 반도체 제조 공정은 해당 공정을 위해 최적의 환경으로 설계된 기판 처리 장치의 내부에서 진행되며, 최근에는 플라즈마를 이용하여 증착 또는 식각 공정을 수행하는 기판 처리 장치가 많이 사용되고 있다.
플라즈마를 이용한 기판 처리 장치에는 플라즈마를 이용하여 박막을 형성하는 PECVD(Plasma Enhanced Chemical Vapor Deposition) 장치, 박막을 식각하여 패터닝하는 플라즈마 식각장치 등이 있다.
도 1은 일반적인 기판 처리 장치를 개략적으로 설명하기 위한 도면이다.
도 1을 참조하면, 일반적인 기판 처리 장치는 챔버(10), 플라즈마 전극(20), 서셉터(30), 및 가스 분사 수단(40)을 구비한다.
챔버(10)는 기판 처리 공정을 위한 반응 공간을 제공한다. 이때, 챔버(10)의 일측 바닥면은 반응 공간을 배기시키기 위한 배기구(12)에 연통된다.
플라즈마 전극(20)은 반응 공간을 밀폐하도록 챔버(10)의 상부에 설치된다.
플라즈마 전극(20)의 일측은 정합 부재(22)를 통해 RF(Radio Frequency) 전원(24)에 전기적으로 접속된다. 이때, RF 전원(24)은 RF 전력을 생성하여 플라즈마 전극(20)에 공급한다.
또한, 플라즈마 전극(20)의 중앙 부분은 기판 처리 공정을 위한 소스 가스를 공급하는 가스 공급관(26)에 연통된다.
정합 부재(22)는 플라즈마 전극(20)과 RF 전원(24) 간에 접속되어 RF 전원(24)으로부터 플라즈마 전극(20)에 공급되는 RF 전력의 부하 임피던스와 소스 임피던스를 정합시킨다.
서셉터(30)는 챔버(10)의 내부에 설치되어 외부로부터 로딩되는 복수의 기판(W)을 지지한다. 이러한 서셉터(30)는 플라즈마 전극(20)에 대향되는 대향 전극으로써, 서셉터(30)를 승강시키는 승강축(32)을 통해 전기적으로 접지된다.
승강축(32)은 승강 장치(미도시)에 의해 상하 방향으로 승강된다. 이때, 승강축(32)은 승강축(32)과 챔버(10)의 바닥면을 밀봉하는 벨로우즈(34)에 의해 감싸여진다.
가스 분사 수단(40)은 서셉터(30)에 대향되도록 플라즈마 전극(20)의 하부에 설치된다. 이때, 가스 분사 수단(40)과 플라즈마 전극(20) 사이에는 플라즈마 전극(20)을 관통하는 가스 공급관(26)으로부터 공급되는 소스 가스가 확산되는 가스 확산 공간(42)이 형성된다. 이러한, 가스 분사 수단(40)은 가스 확산 공간(42)에 연통된 복수의 가스 분사홀(44)을 통해 소스 가스를 반응 공간의 전 부분에 균일하게 분사한다.
이와 같은, 일반적인 기판 처리 장치는 기판(W)을 서셉터(30)에 로딩시킨 다음, 챔버(10)의 반응 공간에 소정의 소스 가스를 분사함과 아울러 플라즈마 전극(20)에 RF 전력을 공급해 반응 공간에 전자기장을 형성함으로써 상기 전자기장에 의해 기판(W) 상에 형성되는 플라즈마를 이용해 기판(W) 상의 소정의 박막을 형성하게 된다.
그러나, 일반적인 기판 처리 장치는 소스 가스가 분사 공간과 플라즈마 공간이 동일하기 때문에 반응 공간에 형성되는 플라즈마 밀도의 균일도에 따라 기판(W)에 증착되는 박막 물질의 균일도가 결정되고, 이로 인해 박막 물질의 막질 제어에 어려움이 있다.
본 발명은 상술한 문제점을 해결하기 위한 것으로서, 기판 상에 분사되는 소스 가스와 반응 가스를 공간적으로 분리하고, 제 1 디스크 및 제 2 디스크를 각각 공전과 자전시켜 기판에 증착되는 박막의 증착 균일도를 증가시키고, 박막의 막질 제어를 용이하게 할 수 있으며, 챔버 내에 증착되는 누적 두께를 최소화하여 파티클을 개선할 수 있도록 한 기판 처리 장치 및 기판 처리 방법을 제공하는 것을 기술적 과제로 한다.
실시예가 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 실시예가 속하는 기술분야에서 통상의 지식을 가진자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 예에 따른 기판 처리 장치는 공정 챔버; 복수의 기판을 지지하도록 상기 공정 챔버에 설치되어 소정 방향으로 회전하는 기판 지지부; 상기 기판 지지부에 대향되도록 상기 공정 챔버의 상부를 덮는 챔버 리드; 및 상기 챔버 리드에 설치되어 서로 상이한 제 1 및 제 2 가스를 공간적으로 분리하여 상기 복수의 기판으로 분사하는 가스 분사부를 포함하고, 상기 기판 지지부는 자전 가능하도록 구비되는 제 1 디스크; 및 상기 제 1 디스크에 배치되어 상기 기판이 안착되며, 상기 제 1 디스크가 자전함에 따라 자전 및 상기 제 1 디스크의 중심을 축으로 공전하는 적어도 하나의 제 2 디스크를 포함하고, 상기 제 1 디스크의 자전 속도와 상기 제 2 디스크의 자전 속도가 상이할 수 있다.
상기 제 1 디스크와 제 2 디스크의 자전 비율은 1:0.1 이상에서 1:1 미만일 수 있다.
상기 가스 분사부는 상기 챔버 리드에 설치되고, 복수의 접지 전극 부재 사이에 마련되는 가스 분사 공간에 공급되는 상기 제 1 가스를 분사하는 제 1 가스 분사 모듈; 및 상기 제 1 가스 분사 모듈과 이격되도록 상기 챔버 리드에 설치되고, 복수의 접지 전극 부재 사이에 마련되는 가스 분사 공간에 공급되는 상기 제 2 가스를 분사하는 제 2 가스 분사 모듈을 포함할 수 있다.
상기 제 1 및 제 2 가스 분사 모듈 중 적어도 하나의 가스 분사 모듈은 접지 전극 부재들 사이에 배치되어 가스 분사 공간에 플라즈마를 형성하는 플라즈마 전극 부재를 포함할 수 있다.
본 발명의 일 예에 따른 기판 처리 장치는 공정 챔버; 복수의 기판을 지지하도록 상기 공정 챔버에 설치되어 소정 방향으로 회전하는 기판 지지부; 상기 기판 지지부에 대향되도록 상기 공정 챔버의 상부를 덮는 챔버 리드; 및 상기 기판 지지부 상의 제 1 가스 분사 영역에 중첩되도록 상기 챔버 리드에 설치되어 상기 제 1 가스 분사 영역에 제 1 가스를 분사하는 제 1 가스 분사 모듈, 및 상기 제 1 가스 분사 영역과 공간적으로 분리되는 제 2 가스 분사 영역에 중첩되도록 상기 챔버 리드에 설치되어 상기 제 2 가스 분사 영역에 제 2 가스를 분사하는 제 2 가스 분사 모듈을 포함하는 가스 분사부를 포함하며, 상기 기판 지지부는 자전 가능하도록 구비되는 제 1 디스크, 및 상기 제 1 디스크에 배치되어 상기 기판이 안착되며, 상기 제 1 디스크가 자전함에 따라 자전 및 상기 제 1 디스크의 중심을 축으로 공전하는 적어도 하나의 제 2 디스크를 포함하고, 상기 제 2 가스 분사 모듈은 복수의 접지 전극 부재와 교대로 배치된 플라즈마 전극 부재에 공급되는 플라즈마 전원에 따라 상기 제 2 가스를 플라즈마화하여 분사할 수 있다.
상기 제 1 가스 분사 모듈은 복수의 접지 전극 부재 사이에 공급되는 상기 제 1 가스를 그대로 분사하거나, 상기 복수의 접지 전극 부재와 교대로 배치된 플라즈마 전극 부재에 공급되는 플라즈마 전원에 따라 상기 제 1 가스를 플라즈마화하여 분사할 수 있다.
상기 제 1 및 제 2 가스 분사 모듈 각각은 복수로 구성되고, 상기 복수의 제 2 가스 분사 모듈 각각은 복수의 제 1 가스 분사 모듈과 교대로 배치될 수 있다.
상기 가스 분사부는 상기 제 1 및 제 2 가스 분사 모듈 사이에 배치되도록 상기 챔버 리드에 설치되어 제 3 가스를 상기 복수의 기판으로 분사하는 제 3 및 제 4 가스 분사 모듈을 더 포함할 수 있다.
본 발명의 일 예에 따른 기판 처리 장치는 공정 챔버; 복수의 기판을 지지하도록 상기 공정 챔버에 설치되어 소정 방향으로 회전하는 기판 지지부; 상기 기판 지지부에 대향되도록 상기 공정 챔버의 상부를 덮는 챔버 리드; 및 복수의 접지 전극 부재 사이에 마련된 가스 분사 공간을 포함하도록 형성되어 상기 챔버 리드에 일정한 간격으로 설치된 복수의 가스 분사 모듈을 포함하는 가스 분사부를 가지며, 상기 복수의 가스 분사 모듈 중 적어도 하나는 상기 접지 전극 부재와 교대로 배치된 플라즈마 전극 부재에 인가되는 플라즈마 전원에 따라 상기 가스 분사 공간에 플라즈마를 형성하며, 상기 기판 지지부는 자전 가능하도록 구비되는 제 1 디스크, 및 상기 제 1 디스크에 배치되어 상기 기판이 안착되며, 상기 제 1 디스크가 자전함에 따라 자전 및 상기 제 1 디스크의 중심을 축으로 공전하는 적어도 하나의 제 2 디스크를 포함할 수 있다.
본 발명의 일 예에 따른 기판 처리 방법은 공정 챔버에 설치된 기판 지지부에 복수의 기판들을 일정한 간격으로 안착시키는 단계(A); 상기 복수의 기판들이 안착된 기판 지지부를 회전시켜 제 1 디스크가 중심축을 기준으로 회전함에 따라서 제 2 디스크가 자전 및 공전하는 단계(B); 및 상기 기판 지지부에 대향되도록 상기 공정 챔버의 상부를 덮는 챔버 리드에 일정한 간격으로 배치된 제 1 및 제 2 가스 분사 모듈 각각을 통해 서로 상이한 제 1 및 제 2 가스를 공간적으로 분리하여 상기 복수의 기판으로 분사하는 단계(C)를 포함하여 이루어지고, 상기 단계(C)에서, 상기 제 1 가스 분사 모듈은 복수의 접지 전극 부재 사이의 가스 분사 공간에 공급되는 상기 제 1 가스를 상기 복수의 기판으로 분사하고, 상기 제 2 가스 분사 모듈은 복수의 접지 전극 부재 사이의 가스 분사 공간에 공급되는 상기 제 2 가스를 상기 제 1 가스와 공간적으로 분리되도록 상기 복수의 기판으로 분사할 수 있다.
상기 제 1 디스크와 제 2 디스크의 자전 비율은 1:0.1 이상에서 1:1 미만일 수 있다.
상기 단계(C)는 상기 제 1 가스 분사 모듈을 통해 상기 제 1 가스를 분사하는 제 1 가스 분사 단계와 상기 제 2 가스 분사 모듈을 통해 상기 제 2 가스를 분사하는 제 2 가스 분사 단계를 동시에 수행하거나 순차적으로 수행할 수 있다.
상기 제 1 가스는 상기 제 1 가스 분사 모듈의 가스 분사 공간에 형성되는 플라즈마에 의해 플라즈마화되어 상기 복수의 기판으로 분사될 수 있다.
상기 과제의 해결 수단에 의하면, 본 발명에 따른 기판 처리 장치 및 기판 처리 방법은 기판 지지부 상에 공간적으로 분리되어 배치된 복수의 가스 분사 모듈을 통해 소스 가스와 반응 가스를 공간적으로 분리하여 기판 상에 분사함으로써 각 기판에 증착되는 박막의 증착 균일도를 증가시키고, 박막의 막질 제어를 용이하게 할 수 있으며, 공정 챔버 내에 증착되는 누적 두께를 최소화하여 파티클을 개선할 수 있다.
또한, 본 발명에 따른 기판 처리 장치와 이를 이용한 기판 처리 방법은 퍼지가스를 통해 소스 가스와 반응 가스가 기판으로 분사되는 도중에 반응하는 것을 방지함으로써 박막 물질의 균일도 및 박막 물질의 막질 제어를 더욱 용이하게 할 수 있다.
실시 예에서, 공기 또는 가스를 이용한 별도의 제 2 디스크 회전장비를 사용하지 않고, 제 2 디스크를 자전시킬 수 있으므로 기판 처리장치의 구조를 간소화하고, 기판 가공에 사용되는 전력, 에너지의 소비량을 줄일 수 있는 효과가 있다.
또한, 공기 또는 가스를 이용한 회전장비를 사용할 경우, 공기 또는 가스에 함유된 이물질이 웨이퍼 등의 기판에 흡착되어 발생하는 제품불량을 현저히 줄일 수 있는 효과가 있다.
또한, 제 2 디스크의 회전시 발생하는 진동, 소음을 억제하여 제 2 디스크 상면에 안착되는 기판의 흔들림, 상기 기판에 불균일한 증착, 식각의 발생을 억제할 수 있다.
또한, 제 1 디스크의 자전속도와 제 2 디스크의 자전속도를 달리하여, 속도의 비율을 일정하게 다르게 유지하면 박막 물질의 균일도 및 박막 물질의 막질 제어를 더욱 용이하게 할 수 있다.
도 1은 일반적인 기판 처리 장치를 개략적으로 설명하기 위한 도면이다.
도 2a는 본 발명의 제 1 실시 예에 따른 기판 처리 장치를 개략적으로 나타내는 도면이다.
도 2b는 본 발명의 실시 예에 따른 기판 처리장치를 나타낸 단면 사시도이다.
도 3은 도 2a에 도시된 가스 분사 모듈의 단면을 개략적으로 나타내는 단면도이다.
도 4a는 전술한 본 발명의 제 1 실시 예에 따른 기판 처리 장치를 이용한 기판 처리 방법을 설명하기 위한 도면이다.
도 4b는 도 4a에 도시된 제 1 내지 제 4 가스 분사 모듈의 동작 순서를 설명하기 위한 파형도이다.
도 5a 내지 도 5d는 도 2에 도시된 제 1 내지 제 4 가스 분사 모듈을 통한 기판 처리 방법의 변형 예들을 설명하기 위한 파형도들이다.
도 6은 본 발명의 제 1 실시 예에 따른 기판 처리 장치의 변형 실시 예를 설명하기 위한 도면이다.
도 7은 도 6에 도시된 제 1 내지 제 4 가스 분사 모듈의 동작 순서를 설명하기 위한 파형도이다.
도 8은 본 발명의 제 2 실시 예에 따른 기판 처리 장치를 개략적으로 나타내는 도면이다.
도 9는 도 8에 도시된 제 1 및 제 3 가스 분사 모듈의 단면을 개략적으로 나타내는 단면도이다.
도 10은 전술한 본 발명의 제 2 실시 예에 따른 기판 처리 장치를 이용한 기판 처리 방법을 설명하기 위한 도면이다.
도 11은 본 발명의 제 3 실시 예에 따른 기판 처리 장치를 개략적으로 나타내는 도면이다.
도 12는 전술한 본 발명의 제 3 실시 예에 따른 기판 처리 장치를 이용한 기판 처리 방법을 설명하기 위한 도면이다.
도 13은 본 발명의 제 4 실시 예에 따른 기판 처리 장치를 개략적으로 나타내는 도면이다.
도 14는 전술한 본 발명의 제 4 실시 예에 따른 기판 처리 장치를 이용한 기판 처리 방법을 설명하기 위한 도면이다.
도 15는 2b에 도시된 전술한 기판처리 장치를 이용한 기판 처리 장치 및 방법을 설명하기 위한 도면이다.
이하, 첨부된 도면들을 참조하여 실시예를 상세히 설명한다. 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 실시예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 실시예의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 이 과정에서 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의상 과장되게 도시될 수 있다.
"제1", "제2" 등의 용어는 다양한 구성요소들을 설명하는 데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 또한, 실시예의 구성 및 작용을 고려하여 특별히 정의된 용어들은 실시예를 설명하기 위한 것일 뿐이고, 실시예의 범위를 한정하는 것이 아니다.
실시예의 설명에 있어서, 각 element의 "상(위)" 또는 "하(아래)(on or under)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두개의 element가 서로 직접(directly)접촉되거나 하나 이상의 다른 element가 상기 두 element사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 “상(위)" 또는 "하(아래)(on or under)”로 표현되는 경우 하나의 element를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
또한, 이하에서 이용되는 "상/상부/위" 및 "하/하부/아래" 등과 같은 관계적 용어들은, 그런 실체 또는 요소들 간의 어떠한 물리적 또는 논리적 관계 또는 순서를 반드시 요구하거나 내포하지는 않으면서, 어느 한 실체 또는 요소를 다른 실체 또는 요소와 구별하기 위해서만 이용될 수도 있다.
이하, 도면을 참조로 본 발명에 따른 바람직한 실시 예에 대해서 상세히 설명하기로 한다.
도 2a는 본 발명의 제 1 실시 예에 따른 기판 처리 장치를 개략적으로 나타내는 도면이고, 도 3은 도 2a에 도시된 가스 분사 모듈의 단면을 개략적으로 나타내는 단면도이다.
도 2a 및 도 3을 참조하면, 본 발명의 제 1 실시 예에 따른 기판 처리 장치(100)는 공정 챔버(110), 챔버 리드(Chamber Lid; 115), 기판 지지부(120), 및 가스 분사부(130)를 포함하여 구성된다.
공정 챔버(110)는 기판 처리 공정, 예를 들어 박막 증착 공정을 위한 반응공간을 제공한다. 상기의 공정 챔버(110)의 바닥면 또는 측면은 반응 공간의 가스 등을 배기시키기 위한 배기관(미도시)에 연통된다.
챔버 리드(115)는 공정 챔버(110)의 상부를 덮도록 공정 챔버(110)의 상부에 설치되어 전기적으로 접지된다. 이러한 챔버 리드(115)는 가스 분사부(130)를 지지하는 것으로, 가스 분사부(130)가 삽입 설치되는 복수의 모듈 설치부(115a,115b, 115c, 115d)를 포함하여 이루어진다. 이때, 복수의 모듈 설치부(115a,115b, 115c, 115d)은 챔버 리드(115)의 중심점을 기준으로 대각선 방향으로 대칭되도록 90도 단위로 이격되도록 챔버 리드(115)에 형성될 수 있다.
도 2a에서, 챔버 리드(115)는 4개의 모듈 설치부(115a, 115b, 115c, 115d)를 구비하는 것으로 도시되었지만, 이에 한정되지 않고, 챔버 리드(115)는 중심점을 기준으로 서로 대칭되는 2N(단, N은 자연수)개의 모듈 설치부를 구비할 수 있다. 이때, 복수의 모듈 설치부 각각은 챔버 리드(115)의 중심점을 기준으로 대각선 방향으로 상호 대칭되도록 구비된다. 이하, 챔버 리드(115)는 제 1 내지 제 4 모듈 설치부(115a, 115b, 115c, 115d)를 구비하는 것으로 가정하여 설명하기로 한다.
전술한 상기 챔버 리드(115)에 의해 밀폐되는 공정 챔버(110)의 반응 공간은 챔버 리드(115)에 설치된 펌핑 관(117)을 통해 외부의 펌핑 수단(미도시)에 연결된다.
상기 펌핑 관(117)은 챔버 리드(115)의 중심부에 형성된 핌핑 홀(115e)을 통해 공정 챔버(110)의 반응 공간에 연통된다. 이에 따라, 펌핑 관(117)을 통한 펌핑 수단의 펌핑 동작에 따라 공정 챔버(110)의 내부는 진공 상태 또는 대기압 상태가 된다.
기판 지지부(120)는 공정 챔버(110) 내부에 회전 가능하게 설치된다. 이러한 기판 지지부(120)는 공정 챔버(110)의 중앙 바닥면을 관통하는 회전축(미도시)에 의해 지지된다. 상기 회전축은 축 구동 부재(미도시)의 구동에 따라 회전됨으로써 기판 지지부(120)를 소정 방향으로 회전시킨다. 그리고, 공정 챔버(110)의하면 외부로 노출되는 상기의 회전축은 공정 챔버(110)의 하면에 설치되는 벨로우즈(미도시)에 의해 밀폐된다.
상기 기판 지지부(120)는 외부의 기판 로딩 장치(미도시)로부터 로딩되는 복수의 기판(W)을 지지한다. 이때, 기판 지지부(120)은 원판 형태를 가지는 것으로, 복수의 기판(W), 예를 들어 반도체 기판 또는 웨이퍼가 일정한 간격을 가지도록 원형태로 배치된다.
도 2b는 일 실시 예에 따른 기판 처리장치에서 상기 기판 지지부(120)를 더욱 상세히 나타낸 단면 사시도이다. 실시 예의 기판 처리장치는 제 1 디스크(1000), 제 2 디스크(2000), 금속링(3000), 베어링(6000) 및 프레임(5000)을 포함할 수 있다.
제 1 디스크(1000)는 상기 프레임(5000)에 구비되는 수용부(5100)에 수용되어 상기 프레임(5000)에 대해 제1회전 즉, 자전 가능하도록 구비될 수 있다. 제 1 디스크(1000)에는 후술하는 제 2 디스크(2000)가 제 1 디스크(1000)의 중심을 기준으로 서로 대칭되도록 구비될 수 있다.
제 1 디스크(1000)는, 도 2b에 도시된 바와 같이, 상기 프레임(5000)에 장착될 수 있다. 이때, 상기 프레임(5000)에는 제 1 디스크(1000)의 형상 및 면적에 대응하는 면적 및 형상으로 함몰 형성되어 상기 제 1 디스크(1000)가 안착할 수 있는 수용부(5100)가 구비될 수 있다.
한편, 제 2 디스크(2000)는 제 1 디스크(1000)상에 구비될 경우, 그 크기에 따라 제 1 디스크(1000) 상에 다양한 개수로 방사상으로 배치될 수 있다. 또한, 상기 제 1 디스크(1000)의 상부에 상기 제 2 디스크(2000)의 형상 및 면적에 대응하는 면적 및 형상으로 함몰형성되어 상기 제 2 디스크(2000)가 안착할 수 있도록 하는 디스크안착 부위가 구비될 수 있다.
제 2 디스크(2000)는 상기 제 1 디스크(1000) 상에 배치되고, 상면에 기판이 안착되며, 상기 제 1 디스크(1000)가 자전함에 따라 자전 및 상기 제 1 디스크(1000)의 중심을 축으로 제2회전 즉, 공전할 수 있다.
상기 제 2 디스크(2000)의 상면에는 기판(미도시)이 안착될 수 있다. 이때, 실시 예처럼 제 2 디스크(2000)가 원형인 경우, 상기 기판은 예를 들어, 원형인 웨이퍼일 수 있다. 따라서, 상기 제 2 디스크(2000)의 상면에 안착되는 웨이퍼 등의 기판에 소스물질 등이 포함된 공정가스를 분사하여 기판 가공을 수행할 수 있다.
또한, 상기 제 2 디스크(2000)는, 제1기판의 중심을 기준으로 공전과 동시에 상기 제 2 디스크(2000)의 중심을 기준으로 자전을 하므로, 상기 제 2 디스크(2000)에 안착되는 원형의 기판은 그 중심을 기준으로 직경방향으로 상호 대칭되는 증착막 또는 식각 형상이 형성될 수 있다.
또한, 상기 제 2 디스크(2000)는, 제 1 디스크(1000)의 중심을 기준으로 공전과 동시에 상기 제 2 디스크(2000)의 중심을 기준으로 자전을 하는데, 그 제 1 디스크(1000)의 자전 속도와 제 2 디스크(2000)의 자전 속도를 같이 않게 할 수 있다. 이렇게 제 1 디스크(1000)의 자전 속도와 제 2 디스크(2000)의 자전 속도를 같지 않게 하면, 제 2 디스크(2000) 상의 기판(미도시)에서 증착공정시에 기판(미도시)의 증착 균일도(Uniformity)를 일정하게 유지할 수 있다.
제 1 디스크(1000)의 자전 속도와 제 2 디스크(2000)의 자전속도의 비율은 도 15에서 알 수 있듯이, 제 1 디스크(1000)의 자전 속도를 1로 하였을 때 제 2 디스크(2000)의 자전속도의 비율은 0.1 이상에서 1 미만의 속도에서 기판상의 증착 균일도(Uniformity)를 1 %(퍼센트)에서 2 %(퍼센트)의 사이로 유지할 수 있다.
제 1 디스크(1000)의 자전 속도와 제 2 디스크(2000)의 자전속도의 비율이 1:0.1 미만 및 1:1 이상에서는 분사되는 공정 가스가 공정 공간에서의 유동이 자전속도로부터 영향을 받아 기판에서의 증착 균일도(uniformity)가 일정하게 되지 않을 수 있다.
한편, 제 2 디스크(2000) 하부에는 제 1 지지부(2100)가 형성될 수 있다. 상기 제 1 지지부(2100)는 상기 제 2 디스크(2000) 하부에 돌출형성 될 수 있다.
가스 분사부(130)는 챔버 리드(115)에 형성된 제 1 내지 제 4 모듈 설치부(115a, 115b, 115c, 115d) 각각에 삽입 설치된다. 이러한 가스 분사부(130)는 기판 지지부(120)의 회전에 따라 회전되는 복수의 기판(W) 상에 제 1 및 제 2 가스를 공간적으로 분리하여 분사한다.
상기 제 1 가스는 기판(W) 상에 증착될 박막 물질을 포함하는 소스 가스(Source Gas)가 될 수 있다. 상기 소스 가스는 실리콘(Si), 티탄족 원소(Ti,Zr, Hf 등), 알루미늄(Al) 등을 함유하여 이루어질 수 있다. 예를 들어, 실리콘(Si)을 함유하여 이루어진 소스 가스는 실란(Silane; SiH4), 디실란(Disilane;Si2H6), 트리실란(Trisilane; Si3H8), TEOS(Tetraethylorthosilicate), DCS(Dichlorosilane), HCD(Hexachlorosilane), TriDMAS(Tri-dimethylaminosilane) 및 TSA(Trisilylamine) 등이 될 수 있다.
상기 제 2 가스는 전술한 소스 가스와 반응하여 소스 가스에 함유된 박막 물질이 기판(W) 상에 증착되도록 하는 반응 가스(Reactant Gas)로 이루어질 수 있다. 예를 들어, 상기 반응 가스는 질소(N2), 산소(O2), 이산화질소(N2O), 및 오존(O3) 중 적어도 어느 한 종류의 가스로 이루어질 수 있다.
가스 분사부(130)는 제 1 내지 제 4 모듈 설치부(115a, 115b, 115c, 115d) 각각에 삽입 설치되어 기판 지지부(120) 상에 공간적으로 분리되도록 정의된 제 1 내지 제 4 가스 분사 영역에 제 1 및 제 2 가스를 공간적으로 분리하여 분사하는 제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d)을 포함하여 구성된다.
제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d) 각각은 챔버 리드(115)의 제 1 내지 제 4 모듈 설치부(115a, 115b, 115c, 115d) 각각에 삽입 설치되어 기판 지지부(120)의 중심점을 기준으로 X축 및 Y축 방향으로 서로 대칭되도록 배치된다.
제 1 가스 분사 모듈(130a)은 기판 지지부(120) 상에 정의된 제 1 가스 분사 영역에 중첩되는 제 1 모듈 설치부(115a)에 삽입 설치되어 제 1 가스 분사 영역에 플라즈마화된 제 1 가스를 하향 분사한다. 이를 위해, 제 1 가스 분사 모듈(130a)은 접지 프레임(210), 접지 격벽 부재(220), 복수의 절연 부재(230), 및 복수의 플라즈마 전극 부재(240)를 포함하여 구성된다.
접지 프레임(210)은 접지 격벽 부재(220)에 의해 분리된 복수의 가스 분사 공간(212)을 가지도록 하면이 개구되도록 형성된다. 이러한 접지 프레임(210)은 챔버 리드(115)의 제 1 모듈 설치부(115a)에 삽입 설치되어 챔버 리드(115)를 통해 전기적으로 접지된다. 이를 위해, 접지 프레임(210)은 상면 플레이트(210a) 및 접지 측벽들(210b)로 이루어진다.
상면 플레이트(210a)는 직사각 형태로 형성되어 챔버 리드(115)의 제 1 모듈 설치부(115a)에 결합된다. 이러한 상면 플레이트(210a)에는 복수의 절연 부재 지지 홀(214), 및 복수의 가스 공급 홀(216)이 형성된다.
복수의 절연 부재 지지 홀(214) 각각은 복수의 가스 분사 공간(212) 각각에 연통되도록 상면 플레이트(210a)를 관통하여 형성된다. 이러한 복수의 절연 부재 지지 홀(214) 각각은 직사각 형태의 평면을 가지도록 형성된다.
복수의 가스 공급 홀(216) 각각은 복수의 가스 분사 공간(212) 각각에 연통되도록 상면 플레이트(210a)를 관통하여 형성된다. 이러한 복수의 가스 공급홀(216) 각각은 가스 공급 관을 통해 외부의 가스 공급 수단(미도시)에 연결됨으로써 가스 공급 수단(미도시)으로부터 가스 공급 관을 통해 제 1 가스를 공급받는다.
접지 측벽들(210b) 각각은 상면 플레이트(210a)의 장변 및 단변 가장자리 부분으로부터 수직하게 돌출되어 상면 플레이트(210a)의 하부에 가스 분사 공간(212)을 마련한다. 이러한 접지 측벽들(210b) 각각은 챔버 리드(115)를 통해 전기적으로 접지된다. 이때, 상기 장변 접지 측벽들은 접지 전극의 역할을 한다.
접지 격벽 부재(220)는 상면 플레이트(210a)의 중앙 하면으로부터 수직하게 돌출되어 접지 측벽들(210b)의 장변들과 나란하게 배치된다. 이러한 접지 격벽 부재(220)는 소정 높이를 가지도록 접지 프레임(210)의 내부에 형성됨으로써 접지 프레임(210)의 내부에 공간적으로 분리되는 복수의 가스 분사 공간(212)을 마련한다. 상기 접지 격벽 부재(220)는 접지 프레임(210)에 일체화되거나 전기적으로 결합되어 접지 프레임(210)을 통해 전기적으로 접지됨으로써 접지 전극의 역할을 한다.
전술한, 접지 측벽들(210b)의 장변들과 접지 격벽 부재(220)는 접지 프레임(220)에 일정한 간격으로 나란하게 배치되어 복수의 접지 전극 부재를 형성한다.
복수의 절연 부재(230) 각각은 절연 물질로 이루어져 접지 프레임(210)에 형성된 절연 부재 지지 홀(214)에 삽입됨과 아울러 체결 부재(미도시)에 의해 접지 프레임(210)의 상면에 결합된다.
복수의 플라즈마 전극 부재(240) 각각은 도전성 물질로 이루어져 절연 부재(230)에 관통 삽입되어 접지 프레임(210)의 하면으로부터 소정 높이로 돌출됨으로써 가스 분사 공간(212)에 배치된다. 이때, 복수의 플라즈마 전극 부재(240) 각각은 접지 격벽 부재(220) 및 접지 프레임(210)의 측벽들(210b) 각각과 동일한 높이로 돌출되는 것이 바람직하다. 이에 따라, 복수의 플라즈마 전극 부재(240)는 전술한 접지 전극 부재와 소정 간격으로 나란하도록 교대로 배치된다.
상기 플라즈마 전극 부재(240)는 급전 케이블을 통해 플라즈마 전원 공급부(140)에 전기적으로 접속됨으로써 플라즈마 전원 공급부(140)로부터 공급되는 플라즈마 전원에 따라 가스 분사 공간(212)에 플라즈마를 형성한다. 이에 따라, 상기 플라즈마는 가스 분사 공간(212)에 공급되는 제 1 가스는 플라즈마화 하고, 플라즈마화된 제 1 가스는 상기 제 1 가스 분사 영역에 하향 분사된다. 상기 플라즈마화된 제 1 가스는 가스 분사 공간(212)에 공급되는 제 1 가스의 유속(또는 흐름)에 의해 가스 분사 공간(212)으로부터 하향 분사될 수 있다.
플라즈마 전원 공급부(140)는 소정의 주파수를 가지는 플라즈마 전원을 발생하고, 급전 케이블을 통해 플라즈마 전원을 제 1 내지 제 4 가스 분사 모듈(130a,130b, 130c, 130d) 각각에 공통적으로 공급하거나 개별적으로 공급한다. 이때, 플라즈마 전원은 고주파(예를 들어, HF(High Frequency) 전력 또는 VHF(Very High Frequency) 전력이 공급된다. 예를 들어, HF 전력은 3㎒ ~ 30㎒ 범위의 주파수를 가지며, VHF 전력은 30㎒ ~ 300㎒ 범위의 주파수를 가질 수 있다.
한편, 상기 급전 케이블에는 임피던스 매칭 회로(미도시)가 접속된다.
상기 임피던스 매칭 회로는 플라즈마 전원 공급부(140)로부터 제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d) 각각에 공급되는 플라즈마 전원의 부하 임피던스와 소스 임피던스를 정합시킨다. 이러한 임피던스 매칭 회로는 가변 커패시터 및 가변 인덕터 중 적어도 하나로 구성되는 적어도 2개의 임피던스 소자(미도시)로 이루어질 수 있다.
이와 같은 제 1 가스 분사 모듈(130a)은 플라즈마 전원 공급부(140)로부터 플라즈마 전극 부재(240)에 공급되는 플라즈마 전원에 따라 가스 분사 공간(212)에 플라즈마를 형성하여 가스 분사 공간(212)에 공급되는 제 1 가스를 플라즈마화하여 상기 제 1 가스 분사 영역에 하향 분사한다.
제 2 가스 분사 모듈(130b)은 전술한 제 1 가스 분사 영역과 공간적으로 분리되도록 기판 지지부(120) 상에 정의된 제 2 가스 분사 영역에 중첩되는 제 2 모듈 설치부(115b)에 삽입 설치되어 제 2 가스 분사 영역에 플라즈마화된 제 2 가스를 하향 분사한다. 이를 위해, 제 2 가스 분사 모듈(130b)은, 도 3에 도시된 바와 같이, 접지 프레임(210), 접지 격벽 부재(220), 복수의 절연 부재(230), 및 복수의 플라즈마 전극 부재(240)를 포함하여 구성되는 것으로, 이러한 구성들에 대한 설명은 전술한 설명으로 대신하기로 한다. 이와 같은 구성들을 통해, 제 2 가스 분사모듈(130b)은 급전 케이블을 통해 플라즈마 전원 공급부(140)에 전기적으로 접속됨으로써 플라즈마 전원 공급부(140)로부터 플라즈마 전극 부재(240)에 공급되는 플라즈마 전원에 따라 가스 분사 공간(212)에 플라즈마를 형성하여 가스 분사 공간(212)에 공급되는 제 2 가스를 플라즈마화하여 상기 제 2 가스 분사 영역에 하향 분사한다.
제 3 가스 분사 모듈(130c)은 전술한 제 2 가스 분사 영역과 공간적으로 분리되도록 기판 지지부(120) 상에 정의된 제 3 가스 분사 영역에 중첩되는 제 3 모듈 설치부(115c)에 삽입 설치되어 제 3 가스 분사 영역에 플라즈마화된 제 1 가스를 하향 분사한다. 이를 위해, 제 3 가스 분사 모듈(130c)은, 도 3에 도시된 바와 같이, 접지 프레임(210), 접지 격벽 부재(220), 복수의 절연 부재(230), 및 복수의 플라즈마 전극 부재(240)를 포함하여 구성되는 것으로, 이러한 구성들에 대한 설명은 전술한 설명으로 대신하기로 한다. 이와 같은 구성들을 통해, 제 3 가스 분사 모듈(130c)은 급전 케이블을 통해 플라즈마 전원 공급부(140)에 전기적으로 접속됨으로써 플라즈마 전원 공급부(140)로부터 플라즈마 전극 부재(240)에 공급되는 플라즈마 전원에 따라 가스 분사 공간(212)에 플라즈마를 형성하여 가스 분사 공간(212)에 공급되는 제 1 가스를 플라즈마화하여 상기 제 3 가스 분사 영역에 하향 분사한다.
제 4 가스 분사 모듈(130b)은 전술한 제 1 및 제 3 가스 분사 영역과 공간적으로 분리되도록 제 1 및 제 3 가스 분사 영역 사이의 기판 지지부(120) 상에 정의된 제 4 가스 분사 영역에 중첩되는 제 4 모듈 설치부(115d)에 삽입 설치되어 제 4 가스 분사 영역에 플라즈마화된 제 2 가스를 하향 분사한다. 이를 위해, 제 4 가스 분사 모듈(130d)은, 도 3에 도시된 바와 같이, 접지 프레임(210), 접지 격벽 부재(220), 복수의 절연 부재(230), 및 복수의 플라즈마 전극 부재(240)를 포함하여 구성되는 것으로, 이러한 구성들에 대한 설명은 전술한 설명으로 대신하기로 한다. 이와 같은 구성들을 통해, 제 4 가스 분사 모듈(130d)은 급전 케이블을 통해 플라즈마 전원 공급부(140)에 전기적으로 접속됨으로써 플라즈마 전원 공급부(140)로부터 플라즈마 전극 부재(240)에 공급되는 플라즈마 전원에 따라 가스 분사 공간(212)에 플라즈마를 형성하여 가스 분사 공간(212)에 공급되는 제 2 가스를 플라즈마화하여 상기 제 4 가스 분사 영역에 하향 분사한다.
이상과 같은 본 발명의 제 1 실시 예에 따른 기판 처리 장치(100)는 기판 지지부(120) 상에 공간적으로 분리하여 제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d)을 배치하고, 제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d) 각각을 통해 플라즈마화된 제 1 및 제 2 가스를 공간적으로 분리하여 회전되는 기판 지지부(120) 상에 분사함으로써 플라즈마화된 제 1 및 제 2 가스의 상호 반응을 통해 각 기판(W)에 증착되는 박막의 증착 균일도를 증가시키고, 박막의 막질 제어를 용이하게 할 수 있으며, 공정 챔버(110) 내에 증착되는 누적 두께를 최소화하여 파티클을 개선할 수 있다.
도 4a는 전술한 본 발명의 제 1 실시 예에 따른 기판 처리 장치를 이용한 기판 처리 방법을 설명하기 위한 도면이고, 도 4b는 도 4a에 도시된 제 1 내지 제 4 가스 분사 모듈의 동작 순서를 설명하기 위한 파형도이다.
도 4a 및 도 4b를 도 3과 결부하여 본 발명의 제 1 실시 예에 따른 기판 처리 장치를 이용한 기판 처리 방법을 개략적으로 설명하면 다음과 같다.
먼저, 복수의 기판(W)을 기판 지지부(120)에 일정한 간격으로 로딩시킨다.
그런 다음, 복수의 기판(W)이 로딩된 기판 지지부(120)를 소정 방향으로 회전시킨다.
이어서, 제 1 및 제 3 가스 분사 모듈(130a, 130c) 각각의 가스 분사 공간(212)에 제 1 가스를 공급함과 아울러 제 1 및 제 3 가스 분사 모듈(130a, 130c) 각각의 플라즈마 전극 부재(240)에 플라즈마 전원을 인가함으로써 기판 지지부(120) 상의 제 1 및 제 3 가스 분사 영역 각각에 플라즈마화된 제 1 가스(PG1)를 하향 분사한다. 이때, 플라즈마화된 제 1 가스(PG1)는 기판 지지부(120)가 소정 방향으로 1 회전하는 공정 싸이클 주기에 상관없이 지속적으로 분사된다.
이와 동시에, 제 2 및 제 4 가스 분사 모듈(130b, 130d) 각각의 가스 분사 공간(212)에 제 2 가스를 공급함과 아울러 제 2 및 제 4 가스 분사 모듈(130b, 130d) 각각의 플라즈마 전극 부재(240)에 플라즈마 전원을 인가함으로써 기판 지지부(120) 상의 제 2 및 제 4 가스 분사 영역 각각에 플라즈마화된 제 2 가스(PG2)를 지속적으로 하향 분사한다. 이때, 플라즈마화된 제 2 가스(PG2)는 상기 공정 싸이클 주기에 상관없이 지속적으로 분사된다.
이에 따라, 기판 지지부(120) 상에 안착된 복수의 기판(W) 각각은 기판 지지부(120)의 회전에 따라 상기 제 1 내지 제 4 가스 분사 영역을 통과하게 되고, 이에 따라, 복수의 기판(W) 각각 상에는 제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d) 각각으로부터 공간적으로 분리되어 분사되는 플라즈마화된 제 1 및 제 2 가스(PG1, PG2)의 상호 반응에 의해 소정의 박막 물질이 증착되게 된다.
전술한 기판 처리 장치 및 기판 처리 방법에서는 제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d) 각각은 전술한 바와 같이 플라즈마화된 제 1 및 제 2 가스(PG1, PG2)를 동시에 분사하는 것으로 설명하였으나, 이에 한정되지 않고, 제어 모듈(미도시)의 제어에 따른 동작 순서에 따라 플라즈마화된 제 1 및 제 2 가스(PG1, PG2)를 분사할 수도 있다.
도 5a 내지 도 5d는 도 2a에 도시된 제 1 내지 제 4 가스 분사 모듈을 통한 기판 처리 방법의 변형 예들을 설명하기 위한 파형도들이다.
도 5a에서 알 수 있듯이, 제 1 변형 예에 따른 기판 처리 방법은 각 공정 싸이클마다 제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d) 각각의 동작을 순차적으로 수행하여 플라즈마화된 제 1 및 제 2 가스(PG1, PG2)를 순차적으로 분사한다. 이때, 각 공정 싸이클은 제 1 내지 제 4 구간으로 이루어질 수 있다. 이러한 제 1 변형 예에 따른 기판 처리 방법을 구체적으로 설명하면 다음과 같다.
먼저, 각 공정 싸이클의 제 1 구간에서는 제 1 가스 분사 모듈(130a)만을 통해 플라즈마화된 제 1 가스(PG1)를 상기 제 1 가스 분사 영역에 분사한다.
이어, 각 공정 싸이클의 제 2 구간에서는 제 1 가스 분사 모듈(130a)을 통한 가스 분사를 중단하고, 제 2 가스 분사 모듈(130b)만을 통해 플라즈마화된 제 2 가스(PG2)를 상기 제 2 가스 분사 영역에 분사된다.
이어, 각 공정 싸이클의 제 3 구간에서는 제 2 가스 분사 모듈(130b)을 통한 가스 분사를 중단하고, 제 3 가스 분사 모듈(130c)만을 통해 플라즈마화된 제 1 가스(PG1)를 상기 제 3 가스 분사 영역에 분사된다.
그런 다음, 각 공정 싸이클의 제 4 구간에서는 제 3 가스 분사 모듈(130c)을 통한 가스 분사를 중단하고, 제 4 가스 분사 모듈(130d)만을 통해 플라즈마화된 제 2 가스(PG2)를 상기 제 4 가스 분사 영역에 분사된다.
도 5b에서 알 수 있듯이, 제 2 변형 예에 따른 기판 처리 방법은 각 공정 싸이클마다 제 1 및 제 3 가스 분사 모듈(130a, 130c)의 동작과 제 2 및 제 4 가스 분사 모듈(130b, 130d)의 동작을 교대로 수행하여 플라즈마화된 제 1 및 제 2 가스(PG1, PG2)를 교대로 분사할 수 있다. 이때, 각 공정 싸이클은 제 1 내지 제 4 구간으로 이루어질 수 있다. 이러한 제 2 변형 예에 따른 기판 처리 방법을 구체적으로 설명하면 다음과 같다.
먼저, 각 공정 싸이클의 제 1 구간에서는 제 1 및 제 3 가스 분사 모듈(130a, 130c)만을 통해 플라즈마화된 제 1 가스(PG1)를 상기 제 1 및 제 3 가스 분사 영역에 동시에 분사한다.
이어, 각 공정 싸이클의 제 2 구간에서는 제 1 및 제 3 가스 분사 모듈(130a, 130c)을 통한 가스 분사를 중단하고, 제 2 및 제 4 가스 분사 모듈(130b, 130d)만을 통해 플라즈마화된 제 2 가스(PG2)를 상기 제 2 및 제 4 가스 분사 영역에 동시에 분사한다.
이어, 각 공정 싸이클의 제 3 구간에서는 제 2 및 제 4 가스 분사 모듈(130b, 130d)을 통한 가스 분사를 중단하고, 제 1 및 제 3 가스 분사 모듈(130a, 130c)만을 통해 플라즈마화된 제 1 가스(PG1)를 상기 제 1 및 제 3 가스 분사 영역에 동시에 분사한다.
그런 다음, 각 공정 싸이클의 제 2 구간에서는 제 1 및 제 3 가스 분사 모듈(130a, 130c)을 통한 가스 분사를 중단하고, 제 2 및 제 4 가스 분사 모듈(130b, 130d)만을 통해 플라즈마화된 제 2 가스(PG2)를 상기 제 2 및 제 4 가스 분사 영역에 동시에 분사한다.
도 5c에서 알 수 있듯이, 제 3 변형 예에 따른 기판 처리 방법은 각 공정 싸이클마다 제 1 및 제 3 가스 분사 모듈(130a, 130c)을 통해 플라즈마화된 제 1 가스(PG1)를 제 1 및 제 3 가스 분사 영역에 소정 구간마다 동시에 분사하고, 제 2 및 제 4 가스 분사 모듈(130b, 130d)을 통해 플라즈마화된 제 2 가스(PG2)를 상기 제 2 및 제 4 가스 분사 영역에 지속적으로 동시에 분사할 수 있다.
도 5d에서 알 수 있듯이, 제 4 변형 예에 따른 기판 처리 방법은 각 공정 싸이클마다 제 1 및 제 3 가스 분사 모듈(130a, 130c)을 통해 플라즈마화된 제 1 가스(PG1)를 제 1 및 제 3 가스 분사 영역에 지속적으로 동시에 분사하고, 제 2 및 제 4 가스 분사 모듈(130b, 130d)을 통해 플라즈마화된 제 2 가스(PG2)를 상기 제 2 및 제 4 가스 분사 영역에 소정 구간마다 동시에 분사할 수 있다.
도 6은 본 발명의 제 1 실시 예에 따른 기판 처리 장치의 변형 실시 예를 설명하기 위한 도면이다.
도 6을 참조하면, 본 발명의 제 1 실시 예의 변형 예에 따른 기판 처리 장치는 제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d) 각각에서 분사되는 가스의 종류를 제외하고는 도 2a에 도시된 기판 처리 장치와 동일하기 때문에, 이하에서는 제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d) 각각에서 분사되는 가스의 종류에 대해서만 설명하기로 한다.
제 1 가스 분사 모듈(130a)은 가스 공급 수단으로부터 전술한 제 1 가스를 공급받아 플라즈마화된 제 1 가스를 제 1 가스 분사 영역에 하향 분사한다.
제 2 가스 분사 모듈(130b)은 가스 공급 수단으로부터 제 3 가스를 공급받아 플라즈마화된 제 3 가스(PG3)를 제 2 가스 분사 영역에 하향 분사한다. 이때, 제 3 가스는 전술한 제 1 및 제 2 가스를 퍼지(Purge)하기 위한 퍼지 가스가 될 수 있다. 상기 제 3 가스는 기판(W)에 증착되지 않고 남은 제 1 가스 및/또는 제 1 가스와 반응하지 않고 잔존하는 제 2 가스를 퍼지하기 위한 것으로, 질소(N2), 아르곤(Ar), 제논(Ze), 및 헬륨(He) 중 적어도 어느 한 종류의 가스로 이루어질 수 있다.
제 3 가스 분사 모듈(130c)은 가스 공급 수단으로부터 전술한 제 2 가스를 공급받아 플라즈마화된 제 2 가스를 제 3 가스 분사 영역에 하향 분사한다.
제 4 가스 분사 모듈(130d)은 가스 공급 수단으로부터 제 3 가스를 공급받아 플라즈마화된 제 3 가스(PG3)를 제 4 가스 분사 영역에 하향 분사한다.
도 7은 도 6에 도시된 제 1 내지 제 4 가스 분사 모듈의 동작 순서를 설명하기 위한 파형도이다.
도 6과 도 7을 참조하여 본 발명의 제 1 실시 예의 변형 예에 따른 기판 처리 장치를 이용한 기판 처리 방법을 개략적으로 설명하면 다음과 같다.
먼저, 복수의 기판(W)을 기판 지지부(120)에 일정한 간격으로 로딩시킨다.
그런 다음, 복수의 기판(W)이 로딩된 기판 지지부(120)를 소정 방향으로 회전시킨다.
이어서, 제 1 및 제 3 가스 분사 모듈(130a, 130c) 각각을 통해 제 1 및 제 2 가스(G1, G2)를 공간적으로 분리하여 소정 구간마다 교대로 분사함과 아울러 제 2 및 제 4 가스 분사 모듈(130b, 130d)을 통해 플라즈마화된 제 3 가스(PG3)를 지속적으로 분사한다.
이에 따라, 회전하는 기판 지지부(120) 상에 안착된 복수의 기판(W) 각각 상에는 제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d) 각각으로부터 공간적으로 분리되어 분사되는 플라즈마화된 제 1 및 제 2 가스(PG1, PG2)의 상호 반응에 의해 소정의 박막 물질이 증착되게 된다. 이때, 플라즈마화된 제 3 가스(PG3)는 플라즈마화된 제 1 및 제 2 가스(PG1, PG2)가 기판(W) 상으로 분사되는 도중에 혼합되어 반응하는 것을 방지하여 플라즈마화된 제 1 및 제 2 가스(PG1, PG2)가 기판(W)의 상면에 분사된 후 상호 혼합되어 반응되도록 한다.
이상과 같은, 본 발명의 제 1 실시 예의 변형 예에 따른 기판 처리 장치 및 기판 처리 방법은 제 3 가스(G3)를 통해 기판(W) 상으로 분사되는 플라즈마화된 제 1 및 제 2 가스(PG1, PG2)의 혼합을 방지함으로써 각 기판(W)에 증착되는 박막의 증착 균일도 및 막질을 더욱 증가시킬 수 있다.
한편, 본 발명의 제 1 실시 예의 변형 예에 따른 기판 처리 장치를 이용한 기판 처리 방법은 도 4b, 도 5a 내지 도 5d에 도시된 동작 순서에 따라 제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d) 각각을 동작시킴으로써 전술한 플라즈마화된 제 1 내지 제 3 가스(PG1, PG2, PG3)를 공간적으로 분리하여 제 1 내지제 4 가스 분사 영역에 분사할 수도 있다.
도 8은 본 발명의 제 2 실시 예에 따른 기판 처리 장치를 개략적으로 나타내는 도면이다.
도 8을 참조하면, 본 발명의 제 2 실시 예에 따른 기판 처리 장치(200)는 공정 챔버(110), 챔버 리드(115), 기판 지지부(120), 및 가스 분사부(130)를 포함하여 구성되는 것으로, 가스 분사부(130)를 제외한 다른 구성들은 전술한 기판 처리 장치(100)와 동일하므로 동일한 구성들에 대한 설명은 전술한 설명으로 대신하기로 한다.
가스 분사부(130)는 챔버 리드(115)에 형성된 제 1 내지 제 4 모듈 설치부(115a, 115b, 115c, 115d) 각각에 삽입 설치되어 플라즈마화되지 않은 제 1 가스와 플라즈마화된 제 2 가스를 공간적으로 분리하여 기판 지지부(120) 쪽으로 하향 분사한다. 이를 위해, 가스 분사부(130)는 제 1 내지 제 4 가스 분사 모듈(330a,130b, 330c, 130d)을 포함하여 구성된다.
제 1 가스 분사 모듈(330a)은 전술한 제 1 가스 분사 영역에 중첩되는 제 2 모듈 설치부(115b)에 삽입 설치되어 가스 공급 수단으로부터 공급되는 제 1 가스를 그대로 제 1 가스 분사 영역에 하향 분사한다. 이를 위해, 제 1 가스 분사 모듈(330b)은, 도 9에 도시된 바와 같이, 접지 프레임(410), 접지 격벽 부재(420),및 복수의 가스 공급 홀(430)을 포함하여 구성된다.
접지 프레임(410)은 접지 격벽 부재(420)에 의해 분리된 복수의 가스 분사 공간(412)을 가지도록 하면이 개구되도록 형성된다. 이러한 접지 프레임(410)은 챔버 리드(115)의 제 1 모듈 설치부(115a)에 삽입 설치되어 챔버 리드(115)를 통해 전기적으로 접지된다. 이를 위해, 접지 프레임(410)은 상면 플레이트(410a) 및 접지 측벽들(410b)로 이루어진다.
상면 플레이트(410a)는 직사각 형태로 형성되어 챔버 리드(115)의 제 1 모듈 설치부(115a)에 결합된다.
접지 측벽들(410b) 각각은 상면 플레이트(410a)의 장변 및 단변 가장자리 부분으로부터 수직하게 돌출되어 상면 플레이트(410a)의 하부에 가스 분사 공간(412)을 마련한다. 이러한 접지 측벽들(410b) 각각은 챔버 리드(115)를 통해 전기적으로 접지된다. 이때, 상기 장변 접지 측벽들은 접지 전극의 역할을 한다.
접지 격벽 부재(420)는 상면 플레이트(410a)의 중앙 하면으로부터 수직하게 돌출되어 접지 측벽들(410b)의 장변들과 나란하게 배치된다. 이러한 접지 격벽 부재(420)는 소정 높이를 가지도록 접지 프레임(410)의 내부에 형성됨으로써 접지 프레임(410)의 내부에 공간적으로 분리되는 복수의 가스 분사 공간(412)을 마련한다. 상기 접지 격벽 부재(420)는 접지 프레임(410)에 일체화되거나 전기적으로 결합되어 접지 프레임(410)을 통해 전기적으로 접지됨으로써 접지 전극의 역할을 한다.
전술한, 접지 측벽들(410b)의 장변들과 접지 격벽 부재(420)는 접지 프레임(420)에 일정한 간격으로 나란하게 배치되어 복수의 접지 전극 부재를 형성한다.
복수의 가스 공급 홀(430) 각각은 복수의 가스 분사 공간(412) 각각에 연통되도록 접지 프레임(410)의 상면 플레이트(410a)를 관통하여 형성된다. 이러한 복수의 가스 공급 홀(430) 각각은 가스 공급 관을 통해 외부의 가스 공급 수단에 연결됨으로써 가스 공급 수단으로부터 가스 공급 관을 통해 제 1 가스를 공급받는다.
이와 같은, 제 1 가스 분사 모듈(330a)은 가스 공급 수단으로부터 가스 분사 공간(412)에 공급되는 제 1 가스를 플라즈마화하지 않고 그대로 상기 제 1 가스 분사 영역에 하향 분사한다. 즉, 제 1 가스 분사 모듈(330a)은 도 2a에 도시된 제 1 가스 분사 모듈(130a)과 달리 플라즈마 전극 부재가 설치되지 않기 때문에 가스 분사 공간(412)에 공급되는 제 1 가스를 그대로 하향 분사한다. 이로 인하여, 제 1 가스 분사 모듈(330a)에 공급되는 제 1 가스는 플라즈마에 의해 플라즈마화되지 않고도 제 2 가스와 반응하여 기판 상에 증착될 수 있는 박막 물질을 포함하여 이루어진다.
제 2 가스 분사 모듈(130b)은 전술한 제 1 가스 분사 영역에 중첩되는 제 2 모듈 설치부(115b)에 삽입 설치되어 제 2 가스 분사 영역에 플라즈마화된 제 2 가스를 하향 분사한다. 이를 위해, 제 2 가스 분사 모듈(130b)은, 도 3에 도시된 바와 같이, 접지 프레임(210), 접지 격벽 부재(220), 복수의 절연 부재(230), 및 복수의 플라즈마 전극 부재(240)를 포함하여 구성되는 것으로, 이러한 구성들에 대한 설명은 전술한 설명으로 대신하기로 한다. 이와 같은 구성들을 통해, 제 2 가스 분사 모듈(130b)은 급전 케이블을 통해 플라즈마 전원 공급부(140)에 전기적으로 접속됨으로써 플라즈마 전원 공급부(140)로부터 플라즈마 전극 부재(240)에 공급되는 플라즈마 전원에 따라 가스 분사 공간(212)에 플라즈마를 형성하여 가스 분사 공간(212)에 공급되는 제 2 가스를 플라즈마화하여 상기 제 2 가스 분사 영역에 하향 분사한다.
제 3 가스 분사 모듈(330c)은 전술한 제 3 가스 분사 영역에 중첩되는 제 3 모듈 설치부(115c)에 삽입 설치되어 가스 공급 수단으로부터 공급되는 제 1 가스를 플라즈마화하지 않고 그대로 상기 제 3 가스 분사 영역에 하향 분사한다. 이를 위해, 제 3 가스 분사 모듈(330c)은 도 9에 도시된 제 1 가스 분사 모듈(330a)과 동일한 구성을 가지므로 이에 대한 설명은 제 1 가스 분사 모듈(330a)에 대한 설명으로 대신하기로 한다.
제 4 가스 분사 모듈(130d)은 전술한 제 4 가스 분사 영역에 중첩되는 제 4 모듈 설치부(115d)에 삽입 설치되어 제 4 가스 분사 영역에 플라즈마화된 제 2 가스를 하향 분사한다. 이를 위해, 제 4 가스 분사 모듈(130d)은, 도 3에 도시된 바와 같이, 접지 프레임(210), 접지 격벽 부재(220), 복수의 절연 부재(230), 및 복수의 플라즈마 전극 부재(240)를 포함하여 구성되는 것으로, 이러한 구성들에 대한 설명은 전술한 설명으로 대신하기로 한다. 이와 같은 구성들을 통해, 제 4 가스 분사 모듈(130d)은 급전 케이블을 통해 플라즈마 전원 공급부(140)에 전기적으로 접속됨으로써 플라즈마 전원 공급부(140)로부터 플라즈마 전극 부재(240)에 공급되는 플라즈마 전원에 따라 가스 분사 공간(212)에 플라즈마를 형성하여 가스 분사 공간(212)에 공급되는 제 2 가스를 플라즈마화하여 상기 제 2 가스 분사 영역에 하향 분사한다.
도 10은 전술한 본 발명의 제 2 실시 예에 따른 기판 처리 장치를 이용한 기판 처리 방법을 설명하기 위한 도면이다.
도 10을 참조하여 본 발명의 제 2 실시 예에 따른 기판 처리 장치를 이용한 기판 처리 방법을 설명하면 다음과 같다.
먼저, 복수의 기판(W)을 기판 지지부(120)에 일정한 간격으로 로딩시킨다.
그런 다음, 복수의 기판(W)이 로딩된 기판 지지부(120)를 소정 방향으로 회전시킨다.
이어서, 제 1 및 제 3 가스 분사 모듈(330a, 330c) 각각의 가스 분사 공간(412)에 제 1 가스를 공급하여 상기 제 1 및 제 3 가스 분사 영역 각각에 제 1 가스(G1)를 하향 분사한다. 이때, 제 1 가스(G1)는 기판 지지부(120)가 소정 방향으로 1 회전하는 공정 싸이클 주기에 상관없이 지속적으로 분사된다.
이와 동시에, 제 2 및 제 4 가스 분사 모듈(130b, 130d) 각각의 가스 분사 공간(212)에 제 2 가스를 공급함과 아울러 제 2 및 제 4 가스 분사 모듈(130b, 130d) 각각의 플라즈마 전극 부재(240)에 플라즈마 전원을 인가함으로써 기판 지지부(120) 상의 제 2 및 제 4 가스 분사 영역 각각에 플라즈마화된 제 2 가스(PG2)를 지속적으로 하향 분사한다. 이때, 플라즈마화된 제 2 가스(PG2)는 상기 공정 싸이클 주기에 상관없이 지속적으로 분사된다.
이에 따라, 기판 지지부(120) 상에 안착된 복수의 기판(W) 각각은 기판 지지부(120)의 회전에 따라 상기 제 1 내지 제 4 가스 분사 영역을 통과하게 되고, 이에 따라, 복수의 기판(W) 각각 상에는 제 1 내지 제 4 가스 분사 모듈(330a, 130b, 330c, 130d) 각각으로부터 공간적으로 분리되어 분사되는 제 1 가스(G1)와 플라즈마화된 제 2 가스(PG2)의 상호 반응에 의해 소정의 박막 물질이 증착되게 된다.
전술한 제 2 실시 예의 기판 처리 장치 및 기판 처리 방법에서는 제 1 내지 제 4 가스 분사 모듈(330a, 130b, 330c, 130d) 각각은 제 1 가스(G1)와 플라즈마화된 제 2 가스(PG2)를 동시에 분사하는 것으로 설명하였으나, 이에 한정되지 않고, 제어 모듈(미도시)의 제어에 따른 도 4b, 도 5a 내지 도 5d에 도시된 동작 순서에 따라 제 1 내지 제 4 가스 분사 모듈(330a, 130b, 330c, 130d) 각각을 동작시킴으로써 전술한 제 1 가스(G1)와 플라즈마화된 제 2 가스(PG2)를 공간적으로 분리하여 제 1 내지 제 4 가스 분사 영역에 분사할 수도 있다.
도 11은 본 발명의 제 3 실시 예에 따른 기판 처리 장치를 개략적으로 나타내는 도면이다.
도 11을 참조하면, 본 발명의 제 3 실시 예에 따른 기판 처리 장치(500)는 공정 챔버(110), 챔버 리드(115), 기판 지지부(120), 및 가스 분사부(130)를 포함하여 구성되는 것으로, 가스 분사부(130)를 제외한 다른 구성들은 전술한 기판 처리 장치(100)와 동일하므로 동일한 구성들에 대한 설명은 전술한 설명으로 대신하기로 한다.
가스 분사부(130)는 챔버 리드(115)에 형성된 제 1 내지 제 4 모듈 설치부(115a, 115b, 115c, 115d) 각각에 삽입 설치되어 플라즈마화되지 않은 제 1 가스와 플라즈마화된 제 2 가스 및 제 3 가스를 공간적으로 분리하여 기판 지지부(120) 쪽으로 하향 분사한다. 이를 위해, 가스 분사부(130)는 제 1 내지 제 4 가스 분사 모듈(330a, 130b, 330c, 130d)을 포함하여 구성된다.
제 1 가스 분사 모듈(330a)은 전술한 제 1 가스 분사 영역에 중첩되는 제 1 모듈 설치부(115a)에 삽입 설치되어 가스 공급 수단으로부터 공급되는 제 1 가스를 플라즈마화하지 않고 그대로 상기 제 1 가스 분사 영역에 하향 분사한다. 이를 위해, 제 1 가스 분사 모듈(330a)은, 도 9에 도시된 바와 같이, 접지 프레임(410), 접지 격벽 부재(420), 및 복수의 가스 공급 홀(430)을 포함하여 구성되는 것으로, 이에 대한 설명은 도 9에 대한 설명으로 대신하기로 한다.
제 2 가스 분사 모듈(130b)은 전술한 제 2 가스 분사 영역에 중첩되는 제 2 모듈 설치부(115b)에 삽입 설치되어 전술한 플라즈마화된 제 3 가스를 상기 제 2 가스 분사 영역에 하향 분사한다. 이를 위해, 제 2 가스 분사 모듈(130b)은, 도 3에 도시된 바와 같이, 접지 프레임(210), 접지 격벽 부재(220), 복수의 절연 부재(230), 및 복수의 플라즈마 전극 부재(240)를 포함하여 구성되는 것으로, 이러한 구성들에 대한 설명은 전술한 설명으로 대신하기로 한다. 이와 같은, 제 2 가스 분사 모듈(130b)은 급전 케이블을 통해 플라즈마 전원 공급부(140)에 전기적으로 접속됨으로써 플라즈마 전원 공급부(140)로부터 플라즈마 전극 부재(240)에 공급되는 플라즈마 전원에 따라 가스 분사 공간(212)에 플라즈마를 형성하여 가스 분사 공간(212)에 공급되는 제 3 가스를 플라즈마화하여 상기 제 2 가스 분사 영역에 하향 분사한다.
제 3 가스 분사 모듈(130c)은 전술한 제 3 가스 분사 영역에 중첩되는 제 3 모듈 설치부(115c)에 삽입 설치되어 전술한 플라즈마화된 제 2 가스를 상기 제 3 가스 분사 영역에 하향 분사한다. 이를 위해, 제 3 가스 분사 모듈(130c)은, 도 3에 도시된 바와 같이, 접지 프레임(210), 접지 격벽 부재(220), 복수의 절연 부재(230), 및 복수의 플라즈마 전극 부재(240)를 포함하여 구성되는 것으로, 이러한 구성들에 대한 설명은 전술한 설명으로 대신하기로 한다. 이와 같은, 제 3 가스 분사 모듈(130c)은 급전 케이블을 통해 플라즈마 전원 공급부(140)에 전기적으로 접속됨으로써 플라즈마 전원 공급부(140)로부터 플라즈마 전극 부재(240)에 공급되는 플라즈마 전원에 따라 가스 분사 공간(212)에 플라즈마를 형성하여 가스 분사 공간(212)에 공급되는 제 2 가스를 플라즈마화하여 상기 제 3 가스 분사 영역에 하향 분사한다.
제 4 가스 분사 모듈(130d)은 전술한 제 4 가스 분사 영역에 중첩되는 제 4 모듈 설치부(115d)에 삽입 설치되어 전술한 플라즈마화된 제 3 가스를 상기 제 4 가스 분사 영역에 하향 분사한다. 이를 위해, 제 4 가스 분사 모듈(130d)은, 도 3에 도시된 바와 같이, 접지 프레임(210), 접지 격벽 부재(220), 복수의 절연 부재(230), 및 복수의 플라즈마 전극 부재(240)를 포함하여 구성되는 것으로, 이러한 구성들에 대한 설명은 전술한 설명으로 대신하기로 한다. 이와 같은, 제 4 가스 분사 모듈(130d)은 급전 케이블을 통해 플라즈마 전원 공급부(140)에 전기적으로 접속됨으로써 플라즈마 전원 공급부(140)로부터 플라즈마 전극 부재(240)에 공급되는 플라즈마 전원에 따라 가스 분사 공간(212)에 플라즈마를 형성하여 가스 분사 공간(212)에 공급되는 제 3 가스를 플라즈마화하여 상기 제 4 가스 분사 영역에 하향 분사한다.
도 12는 전술한 본 발명의 제 3 실시 예에 따른 기판 처리 장치를 이용한 기판 처리 방법을 설명하기 위한 도면이다.
도 12를 참조하여 본 발명의 제 3 실시 예에 따른 기판 처리 장치를 이용한 기판 처리 방법을 설명하면 다음과 같다.
먼저, 복수의 기판(W)을 기판 지지부(120)에 일정한 간격으로 로딩시킨다.
그런 다음, 복수의 기판(W)이 로딩된 기판 지지부(120)를 소정 방향으로 회전시킨다.
이어서, 제 1 가스 분사 모듈(330a)에 제 1 가스를 공급하여 상기 제 1 가스 분사 영역에 제 1 가스(G1)를 하향 분사하고, 이와 동시에, 제 3 가스 분사 모듈(130c)에 제 2 가스 및 플라즈마 전원을 공급하여 제 3 가스 분사 영역에 플라즈마화된 제 2 가스(PG2)를 하향 분사한다. 이때, 상기 제 1 가스(G1) 및 플라즈마화된 제 2 가스(PG2)는 기판 지지부(120)가 소정 방향으로 1 회전하는 공정 싸이클 주기에 상관없이 지속적으로 분사된다.
상기 제 1 가스(G1) 및 플라즈마화된 제 2 가스(PG2) 각각의 동시 분사와 동시에, 제 2 및 제 4 가스 분사 모듈(130b, 130d) 각각에 제 3 가스 및 플라즈마 전원을 공급하여 제 2 및 제 4 가스 분사 영역 각각에 플라즈마화된 제 3 가스(PG3)를 지속적으로 하향 분사한다. 이때, 플라즈마화된 제 3 가스(PG3)는 상기 공정 싸이클 주기에 상관없이 지속적으로 분사된다.
이에 따라, 기판 지지부(120) 상에 안착된 복수의 기판(W) 각각은 기판 지지부(120)의 회전에 따라 상기 제 1 내지 제 4 가스 분사 영역을 통과하게 되고, 이에 따라, 복수의 기판(W) 각각 상에는 제 1 내지 제 4 가스 분사 모듈(330a, 130b, 130c, 130d) 각각으로부터 공간적으로 분리되어 분사되는 제 1 가스(G1)와 플라즈마화된 제 2 가스(PG2)의 상호 반응에 의해 소정의 박막 물질이 증착되게 된다. 이때, 플라즈마화된 제 3 가스(PG3)는 제 1 가스(G1)와 플라즈마화된 제 2 가스(PG2)가 기판(W) 상으로 분사되는 도중에 혼합되어 반응하는 것을 방지하여 제 1 가스(G1)와 플라즈마화된 제 2 가스(PG2)가 기판(W)의 상면에 분사된 후 상호 혼합되어 반응되도록 한다.
한편, 본 발명의 제 3 실시 예에 따른 기판 처리 장치를 이용한 기판 처리방법은 도 4b, 도 5a 내지 도 5d, 도 7에 도시된 동작 순서에 따라 제 1 내지 제 4 가스 분사 모듈(330a, 130b, 130c, 130d) 각각을 동작시킴으로써 전술한 제 1 가스(G1)와 플라즈마화된 제 2 및 제 3 가스(PG2, PG3)를 공간적으로 분리하여 제 1 내지 제 4 가스 분사 영역에 분사할 수도 있다.
도 13은 본 발명의 제 4 실시 예에 따른 기판 처리 장치를 개략적으로 나타내는 도면이다.
도 13을 참조하면, 본 발명의 제 4 실시 예에 따른 기판 처리 장치(600)는 공정 챔버(110), 챔버 리드(115), 기판 지지부(120), 및 가스 분사부(130)를 포함하여 구성되는 것으로, 가스 분사부(130)를 제외한 다른 구성들은 전술한 기판 처리 장치(100)와 동일하므로 동일한 구성들에 대한 설명은 전술한 설명으로 대신하기로 한다.
가스 분사부(130)는 챔버 리드(115)에 형성된 제 1 내지 제 4 모듈 설치부(115a, 115b, 115c, 115d) 각각에 삽입 설치되어 플라즈마화되지 않은 제 1 가스와 플라즈마화된 제 2 가스 및 제 3 가스를 공간적으로 분리하여 기판 지지부(120) 쪽으로 하향 분사한다. 이를 위해, 가스 분사부(130)는 제 1 내지 제 4 가스 분사 모듈(330a, 330b, 130c, 330d)을 포함하여 구성된다.
제 1 가스 분사 모듈(330a)은 전술한 제 1 가스 분사 영역에 중첩되는 제 1 모듈 설치부(115a)에 삽입 설치되어 가스 공급 수단으로부터 공급되는 제 1 가스를 플라즈마화하지 않고 그대로 상기 제 1 가스 분사 영역에 하향 분사한다. 이를 위해, 제 1 가스 분사 모듈(330a)은, 도 9에 도시된 바와 같이, 접지 프레임(410),접지 격벽 부재(420), 및 복수의 가스 공급 홀(430)을 포함하여 구성되는 것으로, 이에 대한 설명은 도 9에 대한 설명으로 대신하기로 한다.
제 2 가스 분사 모듈(330b)은 전술한 제 2 가스 분사 영역에 중첩되는 제 2 모듈 설치부(115a)에 삽입 설치되어 가스 공급 수단으로부터 공급되는 제 3 가스를 플라즈마화하지 않고 그대로 상기 제 2 가스 분사 영역에 하향 분사한다. 이를 위해, 제 2 가스 분사 모듈(330b)은, 도 9에 도시된 바와 같이, 접지 프레임(410), 접지 격벽 부재(420), 및 복수의 가스 공급 홀(430)을 포함하여 구성되는 것으로, 이에 대한 설명은 도 9에 대한 설명으로 대신하기로 한다.
제 3 가스 분사 모듈(130c)은 전술한 제 3 가스 분사 영역에 중첩되는 제 3 모듈 설치부(115c)에 삽입 설치되어 전술한 플라즈마화된 제 2 가스를 상기 제 3 가스 분사 영역에 하향 분사한다. 이를 위해, 제 3 가스 분사 모듈(130c)은, 도 3에 도시된 바와 같이, 접지 프레임(210), 접지 격벽 부재(220), 복수의 절연 부재(230), 및 복수의 플라즈마 전극 부재(240)를 포함하여 구성되는 것으로, 이러한 구성들에 대한 설명은 전술한 설명으로 대신하기로 한다. 이와 같은, 제 3 가스 분사 모듈(130c)은 급전 케이블을 통해 플라즈마 전원 공급부(140)에 전기적으로 접속됨으로써 플라즈마 전원 공급부(140)로부터 플라즈마 전극 부재(240)에 공급되는 플라즈마 전원에 따라 가스 분사 공간(212)에 플라즈마를 형성하여 가스 분사 공간(212)에 공급되는 제 2 가스를 플라즈마화하여 상기 제 3 가스 분사 영역에 하향 분사한다.
제 4 가스 분사 모듈(330d)은 전술한 제 4 가스 분사 영역에 중첩되는 제 4 모듈 설치부(115d)에 삽입 설치되어 가스 공급 수단으로부터 공급되는 제 3 가스를 플라즈마화하지 않고 그대로 상기 제 4 가스 분사 영역에 하향 분사한다. 이를 위해, 제 4 가스 분사 모듈(330d)은, 도 9에 도시된 바와 같이, 접지 프레임(410), 접지 격벽 부재(420), 및 복수의 가스 공급 홀(430)을 포함하여 구성되는 것으로, 이에 대한 설명은 도 9에 대한 설명으로 대신하기로 한다.
도 14는 전술한 본 발명의 제 4 실시 예에 따른 기판 처리 장치를 이용한 기판 처리 방법을 설명하기 위한 도면이다.
도 14를 참조하여 본 발명의 제 4 실시 예에 따른 기판 처리 장치를 이용한 기판 처리 방법을 설명하면 다음과 같다.
먼저, 복수의 기판(W)을 기판 지지부(120)에 일정한 간격으로 로딩시킨다.
그런 다음, 복수의 기판(W)이 로딩된 기판 지지부(120)를 소정 방향으로 회전시킨다.
이어서, 제 1 가스 분사 모듈(330a)에 제 1 가스를 공급하여 상기 제 1 가스 분사 영역에 제 1 가스(G1)를 하향 분사하고, 이와 동시에, 제 3 가스 분사 모듈(130c)에 제 2 가스 및 플라즈마 전원을 공급하여 제 3 가스 분사 영역에 플라즈마화된 제 2 가스(PG2)를 하향 분사한다. 이때, 상기 제 1 가스(G1) 및 플라즈마화된 제 2 가스(PG2)는 기판 지지부(120)가 소정 방향으로 1 회전하는 공정 싸이클 주기에 상관없이 지속적으로 분사된다.
상기 제 1 가스(G1) 및 플라즈마화된 제 2 가스(PG2) 각각의 동시 분사와 동시에, 제 2 및 제 4 가스 분사 모듈(330b, 330d) 각각에 제 3 가스를 공급하여 제 2 및 제 4 가스 분사 영역 각각에 플라즈마화되지 않은 제 3 가스(G3)를 지속적으로 하향 분사한다. 이때, 제 3 가스(G3)는 상기 공정 싸이클 주기에 상관없이 지속적으로 분사된다.
이에 따라, 기판 지지부(120) 상에 안착된 복수의 기판(W) 각각은 기판 지지부(120)의 회전에 따라 상기 제 1 내지 제 4 가스 분사 영역을 통과하게 되고, 이에 따라, 복수의 기판(W) 각각 상에는 제 1 내지 제 4 가스 분사 모듈(330a, 330b, 130c, 330d) 각각으로부터 공간적으로 분리되어 분사되는 제 1 가스(G1)와 플라즈마화된 제 2 가스(PG2)의 상호 반응에 의해 소정의 박막 물질이 증착되게 된다. 이때, 상기 제 3 가스(G3)는 제 1 가스(G1)와 플라즈마화된 제 2 가스(PG2)가 기판(W) 상으로 분사되는 도중에 혼합되어 반응하는 것을 방지하여 제 1 가스(G1)와 플라즈마화된 제 2 가스(PG2)가 기판(W)의 상면에 분사된 후 상호 혼합되어 반응되도록 한다.
한편, 본 발명의 제 4 실시 예에 따른 기판 처리 장치를 이용한 기판 처리 방법은 도 4b, 도 5a 내지 도 5d, 도 7에 도시된 동작 순서에 따라 제 1 내지 제 4 가스 분사 모듈(330a, 330b, 130c, 330d) 각각을 동작시킴으로써 전술한 제 1 및 제 3 가스(G1, G3)와 플라즈마화된 제 2 가스(PG2)를 공간적으로 분리하여 제 1 내지 제 4 가스 분사 영역에 분사할 수도 있다.
본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (13)

  1. 공정 챔버;
    복수의 기판을 지지하도록 상기 공정 챔버에 설치되어 소정 방향으로 회전하는 기판 지지부;
    상기 기판 지지부에 대향되도록 상기 공정 챔버의 상부를 덮는 챔버 리드; 및
    상기 챔버 리드에 설치되어 서로 상이한 제 1 및 제 2 가스를 공간적으로 분리하여 상기 복수의 기판으로 분사하는 가스 분사부를 포함하고,
    상기 기판 지지부는,
    자전 가능하도록 구비되는 제 1 디스크; 및
    상기 제 1 디스크에 배치되어 상기 기판이 안착되며, 상기 제 1 디스크가 자전함에 따라 자전 및 상기 제 1 디스크의 중심을 축으로 공전하는 적어도 하나의 제 2 디스크를 포함하고,
    상기 제 1 디스크의 자전 속도와 상기 제 2 디스크의 자전 속도가 상이한 것을 특징으로 하는 기판 처리 장치.
  2. 제 1 항에 있어서,
    상기 제 1 디스크와 제 2 디스크의 자전 비율은 1:0.1 이상에서 1:1 미만인 것을 특징으로 하는 기판 처리 장치.
  3. 제 1 항에 있어서,
    상기 가스 분사부는,
    상기 챔버 리드에 설치되고, 복수의 접지 전극 부재 사이에 마련되는 가스 분사 공간에 공급되는 상기 제 1 가스를 분사하는 제 1 가스 분사 모듈; 및
    상기 제 1 가스 분사 모듈과 이격되도록 상기 챔버 리드에 설치되고, 복수의 접지 전극 부재 사이에 마련되는 가스 분사 공간에 공급되는 상기 제 2 가스를 분사하는 제 2 가스 분사 모듈을 포함하여 구성되는 것을 특징으로 하는 기판 처리 장치.
  4. 제 3 항에 있어서,
    상기 제 1 및 제 2 가스 분사 모듈 중 적어도 하나의 가스 분사 모듈은 접지 전극 부재들 사이에 배치되어 가스 분사 공간에 플라즈마를 형성하는 플라즈마 전극 부재를 포함하여 구성되는 것을 특징으로 하는 기판 처리 장치.
  5. 공정 챔버;
    복수의 기판을 지지하도록 상기 공정 챔버에 설치되어 소정 방향으로 회전하는 기판 지지부;
    상기 기판 지지부에 대향되도록 상기 공정 챔버의 상부를 덮는 챔버 리드; 및
    상기 기판 지지부 상의 제 1 가스 분사 영역에 중첩되도록 상기 챔버 리드에 설치되어 상기 제 1 가스 분사 영역에 제 1 가스를 분사하는 제 1 가스 분사 모듈, 및 상기 제 1 가스 분사 영역과 공간적으로 분리되는 제 2 가스 분사 영역에 중첩되도록 상기 챔버 리드에 설치되어 상기 제 2 가스 분사 영역에 제 2 가스를 분사하는 제 2 가스 분사 모듈을 포함하는 가스 분사부를 포함하며,
    상기 기판 지지부는 자전 가능하도록 구비되는 제 1 디스크, 및 상기 제 1 디스크에 배치되어 상기 기판이 안착되며, 상기 제 1 디스크가 자전함에 따라 자전 및 상기 제 1 디스크의 중심을 축으로 공전하는 적어도 하나의 제 2 디스크를 포함하고,
    상기 제 2 가스 분사 모듈은 복수의 접지 전극 부재와 교대로 배치된 플라즈마 전극 부재에 공급되는 플라즈마 전원에 따라 상기 제 2 가스를 플라즈마화하여 분사하는 것을 특징으로 하는 기판 처리 장치.
  6. 제 5 항에 있어서,
    상기 제 1 가스 분사 모듈은 복수의 접지 전극 부재 사이에 공급되는 상기 제 1 가스를 그대로 분사하거나, 상기 복수의 접지 전극 부재와 교대로 배치된 플라즈마 전극 부재에 공급되는 플라즈마 전원에 따라 상기 제 1 가스를 플라즈마화하여 분사하는 것을 특징으로 하는 기판 처리 장치.
  7. 제 6 항에 있어서,
    상기 제 1 및 제 2 가스 분사 모듈 각각은 복수로 구성되고, 상기 복수의 제 2 가스 분사 모듈 각각은 복수의 제 1 가스 분사 모듈과 교대로 배치된 것을 특징으로 하는 기판 처리 장치.
  8. 제 1 항 또는 제 5 항에 있어서,
    상기 가스 분사부는 상기 제 1 및 제 2 가스 분사 모듈 사이에 배치되도록 상기 챔버 리드에 설치되어 제 3 가스를 상기 복수의 기판으로 분사하는 제 3 및 제 4 가스 분사 모듈을 더 포함하여 구성되는 것을 특징으로 하는 기판 처리 장치.
  9. 공정 챔버;
    복수의 기판을 지지하도록 상기 공정 챔버에 설치되어 소정 방향으로 회전하는 기판 지지부;
    상기 기판 지지부에 대향되도록 상기 공정 챔버의 상부를 덮는 챔버 리드; 및
    복수의 접지 전극 부재 사이에 마련된 가스 분사 공간을 포함하도록 형성되어 상기 챔버 리드에 일정한 간격으로 설치된 복수의 가스 분사 모듈을 포함하는 가스 분사부를 가지며,
    상기 복수의 가스 분사 모듈 중 적어도 하나는 상기 접지 전극 부재와 교대로 배치된 플라즈마 전극 부재에 인가되는 플라즈마 전원에 따라 상기 가스 분사 공간에 플라즈마를 형성하며,
    상기 기판 지지부는 자전 가능하도록 구비되는 제 1 디스크, 및 상기 제 1 디스크에 배치되어 상기 기판이 안착되며, 상기 제 1 디스크가 자전함에 따라 자전 및 상기 제 1 디스크의 중심을 축으로 공전하는 적어도 하나의 제 2 디스크를 포함하는 것을 특징으로 하는 기판 처리 장치.
  10. 공정 챔버에 설치된 기판 지지부에 복수의 기판들을 일정한 간격으로 안착시키는 단계(A);
    상기 복수의 기판들이 안착된 기판 지지부를 회전시켜 제 1 디스크가 중심축을 기준으로 회전함에 따라서 제 2 디스크가 자전 및 공전하는 단계(B); 및
    상기 기판 지지부에 대향되도록 상기 공정 챔버의 상부를 덮는 챔버 리드에 일정한 간격으로 배치된 제 1 및 제 2 가스 분사 모듈 각각을 통해 서로 상이한 제 1 및 제 2 가스를 공간적으로 분리하여 상기 복수의 기판으로 분사하는 단계(C)를 포함하여 이루어지고,
    상기 단계(C)에서,
    상기 제 1 가스 분사 모듈은 복수의 접지 전극 부재 사이의 가스 분사 공간에 공급되는 상기 제 1 가스를 상기 복수의 기판으로 분사하고,
    상기 제 2 가스 분사 모듈은 복수의 접지 전극 부재 사이의 가스 분사 공간에 공급되는 상기 제 2 가스를 상기 제 1 가스와 공간적으로 분리되도록 상기 복수의 기판으로 분사하는 것을 특징으로 하는 기판 처리 방법.
  11. 제 10 항에 있어서,
    상기 제 1 디스크와 제 2 디스크의 자전 비율은 1:0.1 이상에서 1:1 미만인 것을 특징으로 하는 기판 처리 방법.
  12. 제 11 항에 있어서,
    상기 단계(C)는 상기 제 1 가스 분사 모듈을 통해 상기 제 1 가스를 분사하는 제 1 가스 분사 단계와 상기 제 2 가스 분사 모듈을 통해 상기 제 2 가스를 분사하는 제 2 가스 분사 단계를 동시에 수행하거나 순차적으로 수행하는 것을 특징으로 하는 기판 처리 방법.
  13. 제 10 항에 있어서,
    상기 제 1 가스는 상기 제 1 가스 분사 모듈의 가스 분사 공간에 형성되는 플라즈마에 의해 플라즈마화되어 상기 복수의 기판으로 분사되는 것을 특징으로 하는 기판 처리 방법.
PCT/KR2016/009179 2015-08-20 2016-08-19 기판 처리 장치 및 기판 처리 방법 WO2017030414A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018507690A JP2018527749A (ja) 2015-08-20 2016-08-19 基板処理装置及び基板処理方法
US15/753,967 US20180269078A1 (en) 2015-08-20 2016-08-19 Substrate treatment device and substrate treatment method
CN201680061579.XA CN108352295A (zh) 2015-08-20 2016-08-19 基板处理装置和基板处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0117464 2015-08-20
KR1020150117464A KR20170022459A (ko) 2015-08-20 2015-08-20 기판 처리 장치 및 기판 처리 방법

Publications (1)

Publication Number Publication Date
WO2017030414A1 true WO2017030414A1 (ko) 2017-02-23

Family

ID=58051646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/009179 WO2017030414A1 (ko) 2015-08-20 2016-08-19 기판 처리 장치 및 기판 처리 방법

Country Status (6)

Country Link
US (1) US20180269078A1 (ko)
JP (1) JP2018527749A (ko)
KR (1) KR20170022459A (ko)
CN (1) CN108352295A (ko)
TW (1) TW201724340A (ko)
WO (1) WO2017030414A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110914970A (zh) * 2017-07-28 2020-03-24 周星工程股份有限公司 基板处理设备的气体分配设备、基板处理设备及基板处理方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020035874A (ja) * 2018-08-29 2020-03-05 キオクシア株式会社 基板処理装置および半導体装置の製造方法
TWI781346B (zh) * 2018-09-29 2022-10-21 美商應用材料股份有限公司 具有精確溫度和流量控制的多站腔室蓋
CN114072897A (zh) 2019-07-12 2022-02-18 应用材料公司 用于同时基板传输的机械手
US11574826B2 (en) 2019-07-12 2023-02-07 Applied Materials, Inc. High-density substrate processing systems and methods
US11443973B2 (en) 2019-07-12 2022-09-13 Applied Materials, Inc. Robot for simultaneous substrate transfer
KR102417422B1 (ko) * 2020-07-09 2022-07-06 주식회사 한화 플라즈마 전극부를 구비한 기판 처리 장치
CN115046256B (zh) * 2021-03-08 2024-05-28 广东美的制冷设备有限公司 空调器及其控制方法、控制装置和计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240154A (ja) * 2000-01-06 2008-10-09 Tokyo Electron Ltd 成膜装置および成膜方法
KR101224541B1 (ko) * 2011-08-16 2013-01-22 엘아이지에이디피 주식회사 화학기상 증착장치 및 증착방법
KR20130085842A (ko) * 2012-01-20 2013-07-30 주성엔지니어링(주) 기판 처리 장치 및 기판 처리 방법
KR20140119182A (ko) * 2012-01-31 2014-10-08 어플라이드 머티어리얼스, 인코포레이티드 멀티-챔버 기판 프로세싱 시스템들
KR20140136911A (ko) * 2014-11-10 2014-12-01 주성엔지니어링(주) 기판 처리 장치

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130192761A1 (en) * 2012-01-31 2013-08-01 Joseph Yudovsky Rotary Substrate Processing System
KR101834984B1 (ko) * 2012-02-24 2018-04-19 주성엔지니어링(주) 기판 처리 장치 및 이를 이용한 기판 처리 방법
JP2013214581A (ja) * 2012-03-30 2013-10-17 Sumitomo Chemical Co Ltd 基板支持機構の制御方法、薄膜の形成方法およびプログラム
JP5447632B2 (ja) * 2012-11-29 2014-03-19 東京エレクトロン株式会社 基板処理装置
TWI769494B (zh) * 2013-08-16 2022-07-01 美商應用材料股份有限公司 用於高溫低壓環境中的延長的電容性耦合的電漿源
JP6330623B2 (ja) * 2014-10-31 2018-05-30 東京エレクトロン株式会社 成膜装置、成膜方法及び記憶媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240154A (ja) * 2000-01-06 2008-10-09 Tokyo Electron Ltd 成膜装置および成膜方法
KR101224541B1 (ko) * 2011-08-16 2013-01-22 엘아이지에이디피 주식회사 화학기상 증착장치 및 증착방법
KR20130085842A (ko) * 2012-01-20 2013-07-30 주성엔지니어링(주) 기판 처리 장치 및 기판 처리 방법
KR20140119182A (ko) * 2012-01-31 2014-10-08 어플라이드 머티어리얼스, 인코포레이티드 멀티-챔버 기판 프로세싱 시스템들
KR20140136911A (ko) * 2014-11-10 2014-12-01 주성엔지니어링(주) 기판 처리 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110914970A (zh) * 2017-07-28 2020-03-24 周星工程股份有限公司 基板处理设备的气体分配设备、基板处理设备及基板处理方法
CN110914970B (zh) * 2017-07-28 2023-10-10 周星工程股份有限公司 基板处理设备的气体分配设备、基板处理设备及基板处理方法

Also Published As

Publication number Publication date
KR20170022459A (ko) 2017-03-02
TW201724340A (zh) 2017-07-01
JP2018527749A (ja) 2018-09-20
US20180269078A1 (en) 2018-09-20
CN108352295A (zh) 2018-07-31

Similar Documents

Publication Publication Date Title
WO2017030414A1 (ko) 기판 처리 장치 및 기판 처리 방법
WO2013095030A1 (ko) 기판 처리 장치 및 기판 처리 방법
WO2014030973A1 (ko) 기판 처리 장치 및 기판 처리 방법
WO2013180451A1 (ko) 기판 처리 장치 및 기판 처리 방법
WO2013103194A1 (ko) 처리유닛을 포함하는 기판 처리 장치
WO2015016526A1 (ko) 기판 처리 장치
WO2017131404A1 (ko) 기판처리장치
WO2013180453A1 (ko) 기판 처리 장치 및 기판 처리 방법
WO2013180452A1 (ko) 기판 처리 장치 및 기판 처리 방법
WO2012047035A2 (ko) 대칭형 유입구 및 유출구를 통해 반응가스를 공급하는 기판 처리 장치
WO2023080368A1 (ko) 샤워 헤드 및 이를 포함하는 기판 처리 장치
WO2018048125A1 (ko) 기판 처리 장치용 가스 분사 장치 및 기판 처리 장치
WO2013115590A1 (ko) 기판 처리 장치 및 기판 처리 방법
KR101954758B1 (ko) 기판 처리 장치 및 기판 처리 방법
WO2014007572A1 (ko) 기판 처리 장치
WO2015037858A1 (ko) 스캔형 반응기를 가지는 원자층 증착 장치 및 방법
KR101834984B1 (ko) 기판 처리 장치 및 이를 이용한 기판 처리 방법
WO2014003434A1 (ko) 기판 처리 장치 및 기판 처리 방법
WO2012047034A2 (ko) 반원 형상의 안테나를 구비하는 기판 처리 장치
KR101854242B1 (ko) 기판 처리 장치 및 이를 이용한 기판 처리 방법
WO2013191471A1 (ko) 원자층 증착 장치 및 방법
WO2019022430A1 (ko) 기판처리장치의 가스분사장치, 기판처리장치, 및 기판처리방법
KR102051611B1 (ko) 기판 처리 장치
KR102076512B1 (ko) 기판 처리 방법
WO2020101375A1 (ko) 기판처리장치 및 기판처리방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16837356

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018507690

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15753967

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16837356

Country of ref document: EP

Kind code of ref document: A1