KR20130085842A - 기판 처리 장치 및 기판 처리 방법 - Google Patents

기판 처리 장치 및 기판 처리 방법 Download PDF

Info

Publication number
KR20130085842A
KR20130085842A KR1020120006951A KR20120006951A KR20130085842A KR 20130085842 A KR20130085842 A KR 20130085842A KR 1020120006951 A KR1020120006951 A KR 1020120006951A KR 20120006951 A KR20120006951 A KR 20120006951A KR 20130085842 A KR20130085842 A KR 20130085842A
Authority
KR
South Korea
Prior art keywords
gas
gas injection
plasma
substrate
module
Prior art date
Application number
KR1020120006951A
Other languages
English (en)
Other versions
KR101954758B1 (ko
Inventor
한정훈
Original Assignee
주성엔지니어링(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주성엔지니어링(주) filed Critical 주성엔지니어링(주)
Priority to KR1020120006951A priority Critical patent/KR101954758B1/ko
Publication of KR20130085842A publication Critical patent/KR20130085842A/ko
Application granted granted Critical
Publication of KR101954758B1 publication Critical patent/KR101954758B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4408Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber by purging residual gases from the reaction chamber or gas lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]

Abstract

본 발명은 기판 상에 분사되는 소스 가스와 반응 가스를 공간적으로 분리하여 기판에 증착되는 박막의 증착 균일도를 증가시킬 수 있도록 한 기판 처리 장치 및 기판 처리 방법에 관한 것으로, 본 발명에 따른 기판 처리 장치는 공정 챔버; 복수의 기판을 지지하도록 상기 공정 챔버에 설치되어 소정 방향으로 회전하는 기판 지지부; 상기 기판 지지부에 대향되도록 상기 공정 챔버의 상부를 덮는 챔버 리드; 및 상기 챔버 리드에 설치되어 서로 상이한 제 1 및 제 2 가스를 공간적으로 분리하여 상기 복수의 기판으로 분사하는 가스 분사부를 포함하고, 상기 가스 분사부는 상기 챔버 리드에 설치되고, 복수의 접지 전극 부재 사이에 마련되는 가스 분사 공간에 공급되는 상기 제 1 가스를 분사하는 제 1 가스 분사 모듈; 및 상기 제 1 가스 분사 모듈과 이격되도록 상기 챔버 리드에 설치되고, 복수의 접지 전극 부재 사이에 마련되는 가스 분사 공간에 공급되는 상기 제 2 가스를 분사하는 제 2 가스 분사 모듈을 포함하여 구성될 수 있다.

Description

기판 처리 장치 및 기판 처리 방법{SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD}
본 발명은 기판 처리 장치에 관한 것으로, 보다 구체적으로, 기판 상에 분사되는 소스 가스와 반응 가스를 공간적으로 분리하여 기판에 증착되는 박막의 증착 균일도를 증가시킬 수 있도록 한 기판 처리 장치 및 기판 처리 방법에 관한 것이다.
일반적으로, 태양전지(Solar Cell), 반도체 소자, 평판 디스플레이 등을 제조하기 위해서는 기판 표면에 소정의 박막층, 박막 회로 패턴, 또는 광학적 패턴을 형성하여야 하며, 이를 위해서는 기판에 특정 물질의 박막을 증착하는 박막 증착 공정, 감광성 물질을 사용하여 박막을 선택적으로 노출시키는 포토 공정, 선택적으로 노출된 부분의 박막을 제거하여 패턴을 형성하는 식각 공정 등의 반도체 제조 공정을 수행하게 된다.
이러한 반도체 제조 공정은 해당 공정을 위해 최적의 환경으로 설계된 기판 처리 장치의 내부에서 진행되며, 최근에는 플라즈마를 이용하여 증착 또는 식각 공정을 수행하는 기판 처리 장치가 많이 사용되고 있다.
플라즈마를 이용한 기판 처리 장치에는 플라즈마를 이용하여 박막을 형성하는 PECVD(Plasma Enhanced Chemical Vapor Deposition) 장치, 박막을 식각하여 패터닝하는 플라즈마 식각장치 등이 있다.
도 1은 일반적인 기판 처리 장치를 개략적으로 설명하기 위한 도면이다.
도 1을 참조하면, 일반적인 기판 처리 장치는 챔버(10), 플라즈마 전극(20), 서셉터(30), 및 가스 분사 수단(40)을 구비한다.
챔버(10)는 기판 처리 공정을 위한 반응 공간을 제공한다. 이때, 챔버(10)의 일측 바닥면은 반응 공간을 배기시키기 위한 배기구(12)에 연통된다.
플라즈마 전극(20)은 반응 공간을 밀폐하도록 챔버(10)의 상부에 설치된다.
플라즈마 전극(20)의 일측은 정합 부재(22)를 통해 RF(Radio Frequency) 전원(24)에 전기적으로 접속된다. 이때, RF 전원(24)은 RF 전력을 생성하여 플라즈마 전극(20)에 공급한다.
또한, 플라즈마 전극(20)의 중앙 부분은 기판 처리 공정을 위한 소스 가스를 공급하는 가스 공급관(26)에 연통된다.
정합 부재(22)는 플라즈마 전극(20)과 RF 전원(24) 간에 접속되어 RF 전원(24)으로부터 플라즈마 전극(20)에 공급되는 RF 전력의 부하 임피던스와 소스 임피던스를 정합시킨다.
서셉터(30)는 챔버(10)의 내부에 설치되어 외부로부터 로딩되는 복수의 기판(W)을 지지한다. 이러한 서셉터(30)는 플라즈마 전극(20)에 대향되는 대향 전극으로써, 서셉터(30)를 승강시키는 승강축(32)을 통해 전기적으로 접지된다.
승강축(32)은 승강 장치(미도시)에 의해 상하 방향으로 승강된다. 이때, 승강축(32)은 승강축(32)과 챔버(10)의 바닥면을 밀봉하는 벨로우즈(34)에 의해 감싸여진다.
가스 분사 수단(40)은 서셉터(30)에 대향되도록 플라즈마 전극(20)의 하부에 설치된다. 이때, 가스 분사 수단(40)과 플라즈마 전극(20) 사이에는 플라즈마 전극(20)을 관통하는 가스 공급관(26)으로부터 공급되는 소스 가스가 확산되는 가스 확산 공간(42)이 형성된다. 이러한, 가스 분사 수단(40)은 가스 확산 공간(42)에 연통된 복수의 가스 분사홀(44)을 통해 소스 가스를 반응 공간의 전 부분에 균일하게 분사한다.
이와 같은, 일반적인 기판 처리 장치는 기판(W)을 서셉터(30)에 로딩시킨 다음, 챔버(10)의 반응 공간에 소정의 소스 가스를 분사함과 아울러 플라즈마 전극(20)에 RF 전력을 공급해 반응 공간에 전자기장을 형성함으로써 상기 전자기장에 의해 기판(W) 상에 형성되는 플라즈마를 이용해 기판(W) 상의 소정의 박막을 형성하게 된다.
그러나, 일반적인 기판 처리 장치는 소스 가스가 분사 공간과 플라즈마 공간이 동일하기 때문에 반응 공간에 형성되는 플라즈마 밀도의 균일도에 따라 기판(W)에 증착되는 박막 물질의 균일도가 결정되고, 이로 인해 박막 물질의 막질 제어에 어려움이 있다.
본 발명은 상술한 문제점을 해결하기 위한 것으로서, 기판 상에 분사되는 소스 가스와 반응 가스를 공간적으로 분리하여 기판에 증착되는 박막의 증착 균일도를 증가시키고, 박막의 막질 제어를 용이하게 할 수 있으며, 챔버 내에 증착되는 누적 두께를 최소화하여 파티클을 개선할 수 있도록 한 기판 처리 장치 및 기판 처리 방법을 제공하는 것을 기술적 과제로 한다.
전술한 기술적 과제를 달성하기 위한 본 발명에 따른 기판 처리 장치는 공정 챔버; 복수의 기판을 지지하도록 상기 공정 챔버에 설치되어 소정 방향으로 회전하는 기판 지지부; 상기 기판 지지부에 대향되도록 상기 공정 챔버의 상부를 덮는 챔버 리드; 및 상기 챔버 리드에 설치되어 서로 상이한 제 1 및 제 2 가스를 공간적으로 분리하여 상기 복수의 기판으로 분사하는 가스 분사부를 포함하고, 상기 가스 분사부는 상기 챔버 리드에 설치되고, 복수의 접지 전극 부재 사이에 마련되는 가스 분사 공간에 공급되는 상기 제 1 가스를 분사하는 제 1 가스 분사 모듈; 및 상기 제 1 가스 분사 모듈과 이격되도록 상기 챔버 리드에 설치되고, 복수의 접지 전극 부재 사이에 마련되는 가스 분사 공간에 공급되는 상기 제 2 가스를 분사하는 제 2 가스 분사 모듈을 포함하여 구성될 수 있다.
상기 제 1 및 제 2 가스 분사 모듈 중 적어도 하나의 가스 분사 모듈은 접지 전극 부재들 사이에 배치되어 가스 분사 공간에 플라즈마를 형성하는 플라즈마 전극 부재를 포함하여 구성될 수 있다.
전술한 기술적 과제를 달성하기 위한 본 발명에 따른 기판 처리 장치는 공정 챔버; 복수의 기판을 지지하도록 상기 공정 챔버에 설치되어 소정 방향으로 회전하는 기판 지지부; 상기 기판 지지부에 대향되도록 상기 공정 챔버의 상부를 덮는 챔버 리드; 및 상기 기판 지지부 상의 제 1 가스 분사 영역에 중첩되도록 상기 챔버 리드에 설치되어 상기 제 1 가스 분사 영역에 제 1 가스를 분사하는 제 1 가스 분사 모듈, 및 상기 제 1 가스 분사 영역과 공간적으로 분리되는 제 2 가스 분사 영역에 중첩되도록 상기 챔버 리드에 설치되어 상기 제 2 가스 분사 영역에 제 2 가스를 분사하는 제 2 가스 분사 모듈을 포함하여 이루어지는 가스 분사부를 포함하고, 상기 제 2 가스 분사 모듈은 복수의 접지 전극 부재와 교대로 배치된 플라즈마 전극 부재에 공급되는 플라즈마 전원에 따라 상기 제 2 가스를 플라즈마화하여 분사할 수 있다.
상기 제 1 가스 분사 모듈은 복수의 접지 전극 부재 사이에 공급되는 상기 제 1 가스를 그대로 분사하거나, 상기 복수의 접지 전극 부재와 교대로 배치된 플라즈마 전극 부재에 공급되는 플라즈마 전원에 따라 상기 제 1 가스를 플라즈마화하여 분사할 수 있다.
상기 제 1 및 제 2 가스 분사 모듈 각각은 복수로 구성되고, 상기 복수의 제 2 가스 분사 모듈 각각은 복수의 제 1 가스 분사 모듈과 교대로 배치될 수 있다.
상기 가스 분사부는 상기 제 1 및 제 2 가스 분사 모듈 사이에 배치되도록 상기 챔버 리드에 설치되어 제 3 가스를 상기 복수의 기판으로 분사하는 제 3 및 제 4 가스 분사 모듈을 더 포함하여 구성될 수 있다.
상기 제 3 및 제 4 가스 분사 모듈 각각은 복수의 접지 전극 부재 사이에 공급되는 상기 제 3 가스를 그대로 분사하거나, 상기 복수의 접지 전극 부재와 교대로 배치된 플라즈마 전극 부재에 공급되는 플라즈마 전원에 따라 상기 제 3 가스를 플라즈마화하여 분사할 수 있다.
상기 제 1 가스는 상기 기판에 형성될 박막 물질을 포함하는 소스 가스이고, 상기 제 2 가스는 상기 기판에 분사된 제 1 가스와 반응하여 상기 기판에 박막을 형성하기 위한 반응 가스이며, 상기 제 3 가스는 상기 제 1 및 제 2 가스를 퍼지하기 위한 퍼지 가스일 수 있다.
전술한 기술적 과제를 달성하기 위한 본 발명에 따른 기판 처리 장치는 공정 챔버; 복수의 기판을 지지하도록 상기 공정 챔버에 설치되어 소정 방향으로 회전하는 기판 지지부; 상기 기판 지지부에 대향되도록 상기 공정 챔버의 상부를 덮는 챔버 리드; 및 복수의 접지 전극 부재 사이에 마련된 가스 분사 공간을 포함하도록 형성되어 상기 챔버 리드에 일정한 간격으로 설치된 복수의 가스 분사 모듈을 포함하여 이루어지는 가스 분사부를 포함하고, 상기 복수의 가스 분사 모듈 중 적어도 하나는 상기 접지 전극 부재와 교대로 배치된 플라즈마 전극 부재에 인가되는 플라즈마 전원에 따라 상기 가스 분사 공간에 플라즈마를 형성한다.
상기 플라즈마는 상기 가스 분사 공간에 공급되는 가스를 플라즈마화하고, 상기 플라즈마화된 가스는 상기 기판 지지부의 소정 영역에만 분사된다. 이때, 상기 가스는 소스 가스, 반응 가스 및 퍼지 가스 중 어느 한 종류의 가스일 수 있다.
전술한 기술적 과제를 달성하기 위한 본 발명에 따른 기판 처리 방법은 공정 챔버에 설치된 기판 지지부에 복수의 기판들을 일정한 간격으로 안착시키는 단계(A); 상기 복수의 기판들이 안착된 기판 지지부를 회전시키는 단계(B); 및 상기 기판 지지부에 대향되도록 상기 공정 챔버의 상부를 덮는 챔버 리드에 일정한 간격으로 배치된 제 1 및 제 2 가스 분사 모듈 각각을 통해 서로 상이한 제 1 및 제 2 가스를 공간적으로 분리하여 상기 복수의 기판으로 분사하는 단계(C)를 포함하여 이루어지고, 상기 단계(C)에서 상기 제 1 가스 분사 모듈은 복수의 접지 전극 부재 사이의 가스 분사 공간에 공급되는 상기 제 1 가스를 상기 복수의 기판으로 분사하고, 상기 제 2 가스 분사 모듈은 복수의 접지 전극 부재 사이의 가스 분사 공간에 공급되는 상기 제 2 가스를 상기 제 1 가스와 공간적으로 분리되도록 상기 복수의 기판으로 분사한다.
상기 기판 처리 방법은 상기 챔버 리드의 중심부에 설치된 펌핑 관을 통해 상기 공정 챔버 내부를 펌핑하는 단계를 더 포함하여 이루어질 수 있다.
상기 단계(C)는 상기 제 1 가스 분사 모듈을 통해 상기 제 1 가스를 분사하는 제 1 가스 분사 단계와 상기 제 2 가스 분사 모듈을 통해 상기 제 2 가스를 분사하는 제 2 가스 분사 단계를 동시에 수행하거나 순차적으로 수행할 수 있다.
상기 제 1 가스 분사 단계는 상기 제 1 가스 분사 모듈의 가스 분사 공간에 플라즈마를 형성해 상기 플라즈마에 의해 플라즈마화된 제 1 가스를 상기 복수의 기판으로 분사한다.
상기 제 1 가스 분사 단계는 상기 제 1 가스 분사 모듈의 가스 분사 공간에 플라즈마를 형성해 상기 플라즈마에 의해 플라즈마화된 제 1 가스를 상기 복수의 기판으로 분사하고, 상기 제 2 가스 분사 단계는 상기 제 2 가스 분사 모듈의 가스 분사 공간에 플라즈마를 형성해 상기 플라즈마에 의해 플라즈마화된 제 2 가스를 상기 복수의 기판으로 분사한다.
전술한 기술적 과제를 달성하기 위한 본 발명에 따른 기판 처리 방법은 공정 챔버에 설치된 기판 지지부에 복수의 기판들을 일정한 간격으로 안착시키는 단계(A); 상기 복수의 기판들이 안착된 기판 지지부를 회전시키는 단계(B); 및 상기 기판 지지부 상에 공간적으로 분리되는 제 1 및 제 2 가스 분사 영역에 중첩되도록 배치된 제 1 및 제 2 가스 분사 모듈 각각을 통해 상기 제 1 가스 분사 영역에 제 1 가스를 분사하고, 상기 제 2 가스 분사 영역에 제 2 가스를 분사하는 단계(C)를 포함하여 이루어지고, 상기 단계(C)에서, 상기 제 2 가스 분사 모듈은 복수의 접지 전극 부재 사이에 마련되어 상기 제 2 가스가 공급되는 가스 분사 공간에 플라즈마를 형성하여 상기 플라즈마에 의해 플라즈마화된 제 2 가스를 상기 제 2 가스 분사 영역에 분사할 수 있다.
상기 단계(C)에서, 상기 제 1 가스 분사 모듈은 복수의 접지 전극 부재 사이에 공급되는 상기 제 1 가스를 상기 제 1 가스 분사 영역에 분사하거나, 복수의 접지 전극 부재 사이에 공급되는 상기 제 1 가스를 플라즈마화하여 상기 제 1 가스 분사 영역에 분사할 수 있다.
상기 단계(C)는 상기 제 1 가스 분사 모듈을 통해 상기 제 1 가스 또는 상기 플라즈마화된 제 1 가스를 분사하는 제 1 가스 분사 단계와 상기 제 2 가스 분사 모듈을 통해 상기 플라즈마화된 제 2 가스를 분사하는 제 2 가스 분사 단계를 동시에 수행하거나 순차적으로 수행할 수 있다.
상기 제 1 및 제 2 가스 분사 영역 각각은 상기 기판 지지부 상에 교대로 배치되고, 상기 단계(C)는 상기 제 1 가스 분사 모듈을 통해 상기 제 1 가스 또는 상기 플라즈마화된 제 1 가스를 분사하는 제 1 가스 분사 단계와 상기 제 2 가스 분사 모듈을 통해 상기 플라즈마화된 제 2 가스를 분사하는 제 2 가스 분사 단계를 동시에 수행하거나 순차적으로 수행할 수 있다.
상기 제 1 및 제 2 가스 분사 영역 각각은 상기 기판 지지부 상에 교대로 배치되고, 상기 단계(C)는 상기 제 1 가스 분사 모듈을 통해 상기 제 1 가스 또는 상기 플라즈마화된 제 1 가스를 분사하는 제 1 가스 분사 단계와 상기 제 2 가스 분사 모듈을 통해 상기 플라즈마화된 제 2 가스를 분사하는 제 2 가스 분사 단계를 포함하고, 상기 제 1 가스 분사 단계 또는 상기 제 2 가스 분사 단계는 소정 구간마다 가스를 분사할 수 있다.
상기 단계(C)는 상기 제 1 및 제 2 가스 분사 모듈 사이에 배치된 제 3 및 제 4 가스 분사 모듈 각각을 통해 제 3 가스를 상기 복수의 기판으로 분사하는 제 3 가스 분사 단계를 더 포함하여 이루어질 수 있다.
상기 제 3 및 제 4 가스 분사 모듈 각각은 복수의 접지 전극 부재 사이에 공급되는 상기 제 3 가스를 상기 복수의 기판으로 분사하거나, 복수의 접지 전극 부재 사이에 공급되는 상기 제 3 가스를 플라즈마화하여 상기 복수의 기판으로 분사할 수 있다.
상기 단계(C)는 상기 제 1 내지 제 4 가스 분사 모듈을 통해 상기 제 1 내지 제 3 가스를 동시에 분사하거나, 상기 제 1 내지 제 4 가스 분사 모듈 각각을 통해 상기 제 1 가스와 상기 제 3 가스와 상기 제 2 가스 및 상기 제 3 가스의 순서로 분사할 수 있다.
상기 단계(C)는 상기 제 1 및 제 2 가스 분사 모듈 각각을 통해 상기 제 1 및 제 2 가스를 동시 또는 교대로 분사하고, 상기 제 3 및 제 4 가스 분사 모듈 각각을 통해 상기 제 3 가스를 지속적으로 분사할 수 있다.
전술한 기술적 과제를 달성하기 위한 본 발명에 따른 기판 처리 방법은 공정 챔버에 설치된 기판 지지부에 복수의 기판들을 일정한 간격으로 안착시키는 단계(A); 상기 복수의 기판들이 안착된 기판 지지부를 회전시키는 단계(B); 및 복수의 접지 전극 부재 사이에 마련된 가스 분사 공간을 포함하도록 형성되어 상기 기판 지지부 상에 일정한 간격으로 배치된 복수의 가스 분사 모듈 각각을 통해 상기 기판 지지부 상에 가스를 분사하는 단계(C)를 포함하여 이루어지고, 상기 단계(C)에서, 상기 복수의 가스 분사 모듈 중 적어도 하나는 상기 접지 전극 부재와 교대로 배치된 플라즈마 전극 부재에 인가되는 플라즈마 전원에 따라 상기 가스 분사 공간에 플라즈마를 형성할 수 있다.
상기 플라즈마는 상기 가스 분사 공간에 공급되는 가스를 플라즈마화하고, 상기 플라즈마화된 가스는 상기 기판 지지부의 소정 영역에만 분사된다. 이때, 상기 가스는 소스 가스, 반응 가스 및 퍼지 가스 중 어느 한 종류의 가스일 수 있다.
상기 과제의 해결 수단에 의하면, 본 발명에 따른 기판 처리 장치 및 기판 처리 방법은 기판 지지부 상에 공간적으로 분리되어 배치된 복수의 가스 분사 모듈을 통해 소스 가스와 반응 가스를 공간적으로 분리하여 기판 상에 분사함으로써 각 기판에 증착되는 박막의 증착 균일도를 증가시키고, 박막의 막질 제어를 용이하게 할 수 있으며, 공정 챔버 내에 증착되는 누적 두께를 최소화하여 파티클을 개선할 수 있다.
또한, 본 발명에 따른 기판 처리 장치와 이를 이용한 기판 처리 방법은 퍼지 가스를 통해 소스 가스와 반응 가스가 기판으로 분사되는 도중에 반응하는 것을 방지함으로써 박막 물질의 균일도 및 박막 물질의 막질 제어를 더욱 용이하게 할 수 있다.
도 1은 일반적인 기판 처리 장치를 개략적으로 설명하기 위한 도면이다.
도 2는 본 발명의 제 1 실시 예에 따른 기판 처리 장치를 개략적으로 나타내는 도면이다.
도 3은 도 2에 도시된 가스 분사 모듈의 단면을 개략적으로 나타내는 단면도이다.
도 4a는 전술한 본 발명의 제 1 실시 예에 따른 기판 처리 장치를 이용한 기판 처리 방법을 설명하기 위한 도면이다.
도 4b는 도 4a에 도시된 제 1 내지 제 4 가스 분사 모듈의 동작 순서를 설명하기 위한 파형도이다.
도 5a 내지 도 5d는 도 2에 도시된 제 1 내지 제 4 가스 분사 모듈을 통한 기판 처리 방법의 변형 예들을 설명하기 위한 파형도들이다.
도 6은 본 발명의 제 1 실시 예에 따른 기판 처리 장치의 변형 실시 예를 설명하기 위한 도면이다.
도 7은 도 6에 도시된 제 1 내지 제 4 가스 분사 모듈의 동작 순서를 설명하기 위한 파형도이다.
도 8은 본 발명의 제 2 실시 예에 따른 기판 처리 장치를 개략적으로 나타내는 도면이다.
도 9는 도 8에 도시된 제 1 및 제 3 가스 분사 모듈의 단면을 개략적으로 나타내는 단면도이다.
도 10은 전술한 본 발명의 제 2 실시 예에 따른 기판 처리 장치를 이용한 기판 처리 방법을 설명하기 위한 도면이다.
도 11은 본 발명의 제 3 실시 예에 따른 기판 처리 장치를 개략적으로 나타내는 도면이다.
도 12는 전술한 본 발명의 제 3 실시 예에 따른 기판 처리 장치를 이용한 기판 처리 방법을 설명하기 위한 도면이다.
도 13은 본 발명의 제 4 실시 예에 따른 기판 처리 장치를 개략적으로 나타내는 도면이다.
도 14는 전술한 본 발명의 제 4 실시 예에 따른 기판 처리 장치를 이용한 기판 처리 방법을 설명하기 위한 도면이다.
이하, 도면을 참조로 본 발명에 따른 바람직한 실시 예에 대해서 상세히 설명하기로 한다.
도 2는 본 발명의 제 1 실시 예에 따른 기판 처리 장치를 개략적으로 나타내는 도면이고, 도 3은 도 2에 도시된 가스 분사 모듈의 단면을 개략적으로 나타내는 단면도이다.
도 2 및 도 3을 참조하면, 본 발명의 제 1 실시 예에 따른 기판 처리 장치(100)는 공정 챔버(110), 챔버 리드(Chamber Lid; 115), 기판 지지부(120), 및 가스 분사부(130)를 포함하여 구성된다.
공정 챔버(110)는 기판 처리 공정, 예를 들어 박막 증착 공정을 위한 반응 공간을 제공한다. 상기의 공정 챔버(110)의 바닥면 또는 측면은 반응 공간의 가스 등을 배기시키기 위한 배기관(미도시)에 연통된다.
챔버 리드(115)는 공정 챔버(110)의 상부를 덮도록 공정 챔버(110)의 상부에 설치되어 전기적으로 접지된다. 이러한 챔버 리드(115)는 가스 분사부(130)를 지지하는 것으로, 가스 분사부(130)가 삽입 설치되는 복수의 모듈 설치부(115a, 115b, 115c, 115d)를 포함하여 이루어진다. 이때, 복수의 모듈 설치부(115a, 115b, 115c, 115d)은 챔버 리드(115)의 중심점을 기준으로 대각선 방향으로 대칭되도록 90도 단위로 이격되도록 챔버 리드(115)에 형성될 수 있다.
도 2에서, 챔버 리드(115)는 4개의 모듈 설치부(115a, 115b, 115c, 115d)를 구비하는 것으로 도시되었지만, 이에 한정되지 않고, 챔버 리드(115)는 중심점을 기준으로 서로 대칭되는 2N(단, N은 자연수)개의 모듈 설치부를 구비할 수 있다. 이때, 복수의 모듈 설치부 각각은 챔버 리드(115)의 중심점을 기준으로 대각선 방향으로 상호 대칭되도록 구비된다. 이하, 챔버 리드(115)는 제 1 내지 제 4 모듈 설치부(115a, 115b, 115c, 115d)를 구비하는 것으로 가정하여 설명하기로 한다.
전술한 상기 챔버 리드(115)에 의해 밀폐되는 공정 챔버(110)의 반응 공간은 챔버 리드(115)에 설치된 펌핑 관(117)을 통해 외부의 펌핑 수단(미도시)에 연결된다.
상기 펌핑 관(117)은 챔버 리드(115)의 중심부에 형성된 핌핑 홀(115e)을 통해 공정 챔버(110)의 반응 공간에 연통된다. 이에 따라, 펌핑 관(117)을 통한 펌핑 수단의 펌핑 동작에 따라 공정 챔버(110)의 내부는 진공 상태 또는 대기압 상태가 된다.
기판 지지부(120)는 공정 챔버(110) 내부에 회전 가능하게 설치된다. 이러한 기판 지지부(120)는 공정 챔버(110)의 중앙 바닥면을 관통하는 회전축(미도시)에 의해 지지된다. 상기 회전축은 축 구동 부재(미도시)의 구동에 따라 회전됨으로써 기판 지지부(120)를 소정 방향으로 회전시킨다. 그리고, 공정 챔버(110)의 하면 외부로 노출되는 상기의 회전축은 공정 챔버(110)의 하면에 설치되는 벨로우즈(미도시)에 의해 밀폐된다.
상기 기판 지지부(120)는 외부의 기판 로딩 장치(미도시)로부터 로딩되는 복수의 기판(W)을 지지한다. 이때, 기판 지지부(120)은 원판 형태를 가지는 것으로, 복수의 기판(W), 예를 들어 반도체 기판 또는 웨이퍼가 일정한 간격을 가지도록 원 형태로 배치된다.
가스 분사부(130)는 챔버 리드(115)에 형성된 제 1 내지 제 4 모듈 설치부(115a, 115b, 115c, 115d) 각각에 삽입 설치된다. 이러한 가스 분사부(130)는 기판 지지부(120)의 회전에 따라 회전되는 복수의 기판(W) 상에 제 1 및 제 2 가스를 공간적으로 분리하여 분사한다.
상기 제 1 가스는 기판(W) 상에 증착될 박막 물질을 포함하는 소스 가스(Source Gas)가 될 수 있다. 상기 소스 가스는 실리콘(Si), 티탄족 원소(Ti, Zr, Hf 등), 알루미늄(Al) 등을 함유하여 이루어질 수 있다. 예를 들어, 실리콘(Si)을 함유하여 이루어진 소스 가스는 실란(Silane; SiH4), 디실란(Disilane; Si2H6), 트리실란(Trisilane; Si3H8), TEOS(Tetraethylorthosilicate), DCS(Dichlorosilane), HCD(Hexachlorosilane), TriDMAS(Tri-dimethylaminosilane) 및 TSA(Trisilylamine) 등이 될 수 있다.
상기 제 2 가스는 전술한 소스 가스와 반응하여 소스 가스에 함유된 박막 물질이 기판(W) 상에 증착되도록 하는 반응 가스(Reactant Gas)로 이루어질 수 있다. 예를 들어, 상기 반응 가스는 질소(N2), 산소(O2), 이산화질소(N2O), 및 오존(O3) 중 적어도 어느 한 종류의 가스로 이루어질 수 있다.
가스 분사부(130)는 제 1 내지 제 4 모듈 설치부(115a, 115b, 115c, 115d) 각각에 삽입 설치되어 기판 지지부(120) 상에 공간적으로 분리되도록 정의된 제 1 내지 제 4 가스 분사 영역에 제 1 및 제 2 가스를 공간적으로 분리하여 분사하는 제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d)을 포함하여 구성된다.
제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d) 각각은 챔버 리드(115)의 제 1 내지 제 4 모듈 설치부(115a, 115b, 115c, 115d) 각각에 삽입 설치되어 기판 지지부(120)의 중심점을 기준으로 X축 및 Y축 방향으로 서로 대칭되도록 배치된다.
제 1 가스 분사 모듈(130a)은 기판 지지부(120) 상에 정의된 제 1 가스 분사 영역에 중첩되는 제 1 모듈 설치부(115a)에 삽입 설치되어 제 1 가스 분사 영역에 플라즈마화된 제 1 가스를 하향 분사한다. 이를 위해, 제 1 가스 분사 모듈(130a)은 접지 프레임(210), 접지 격벽 부재(220), 복수의 절연 부재(230), 및 복수의 플라즈마 전극 부재(240)를 포함하여 구성된다.
접지 프레임(210)은 접지 격벽 부재(220)에 의해 분리된 복수의 가스 분사 공간(212)을 가지도록 하면이 개구되도록 형성된다. 이러한 접지 프레임(210)은 챔버 리드(115)의 제 1 모듈 설치부(115a)에 삽입 설치되어 챔버 리드(115)를 통해 전기적으로 접지된다. 이를 위해, 접지 프레임(210)은 상면 플레이트(210a) 및 접지 측벽들(210b)로 이루어진다.
상면 플레이트(210a)는 직사각 형태로 형성되어 챔버 리드(115)의 제 1 모듈 설치부(115a)에 결합된다. 이러한 상면 플레이트(210a)에는 복수의 절연 부재 지지 홀(214), 및 복수의 가스 공급 홀(216)이 형성된다.
복수의 절연 부재 지지 홀(214) 각각은 복수의 가스 분사 공간(212) 각각에 연통되도록 상면 플레이트(210a)를 관통하여 형성된다. 이러한 복수의 절연 부재 지지 홀(214) 각각은 직사각 형태의 평면을 가지도록 형성된다.
복수의 가스 공급 홀(216) 각각은 복수의 가스 분사 공간(212) 각각에 연통되도록 상면 플레이트(210a)를 관통하여 형성된다. 이러한 복수의 가스 공급 홀(216) 각각은 가스 공급 관을 통해 외부의 가스 공급 수단(미도시)에 연결됨으로써 가스 공급 수단(미도시)으로부터 가스 공급 관을 통해 제 1 가스를 공급받는다.
접지 측벽들(210b) 각각은 상면 플레이트(210a)의 장변 및 단변 가장자리 부분으로부터 수직하게 돌출되어 상면 플레이트(210a)의 하부에 가스 분사 공간(212)을 마련한다. 이러한 접지 측벽들(210b) 각각은 챔버 리드(115)를 통해 전기적으로 접지된다. 이때, 상기 장변 접지 측벽들은 접지 전극의 역할을 한다.
접지 격벽 부재(220)는 상면 플레이트(210a)의 중앙 하면으로부터 수직하게 돌출되어 접지 측벽들(210b)의 장변들과 나란하게 배치된다. 이러한 접지 격벽 부재(220)는 소정 높이를 가지도록 접지 프레임(210)의 내부에 형성됨으로써 접지 프레임(210)의 내부에 공간적으로 분리되는 복수의 가스 분사 공간(212)을 마련한다. 상기 접지 격벽 부재(220)는 접지 프레임(210)에 일체화되거나 전기적으로 결합되어 접지 프레임(210)을 통해 전기적으로 접지됨으로써 접지 전극의 역할을 한다.
전술한, 접지 측벽들(210b)의 장변들과 접지 격벽 부재(220)는 접지 프레임(220)에 일정한 간격으로 나란하게 배치되어 복수의 접지 전극 부재를 형성한다.
복수의 절연 부재(230) 각각은 절연 물질로 이루어져 접지 프레임(210)에 형성된 절연 부재 지지 홀(214)에 삽입됨과 아울러 체결 부재(미도시)에 의해 접지 프레임(210)의 상면에 결합된다.
복수의 플라즈마 전극 부재(240) 각각은 도전성 물질로 이루어져 절연 부재(230)에 관통 삽입되어 접지 프레임(210)의 하면으로부터 소정 높이로 돌출됨으로써 가스 분사 공간(212)에 배치된다. 이때, 복수의 플라즈마 전극 부재(240) 각각은 접지 격벽 부재(220) 및 접지 프레임(210)의 측벽들(210b) 각각과 동일한 높이로 돌출되는 것이 바람직하다. 이에 따라, 복수의 플라즈마 전극 부재(240)는 전술한 접지 전극 부재와 소정 간격으로 나란하도록 교대로 배치된다.
상기 플라즈마 전극 부재(240)는 급전 케이블을 통해 플라즈마 전원 공급부(140)에 전기적으로 접속됨으로써 플라즈마 전원 공급부(140)로부터 공급되는 플라즈마 전원에 따라 가스 분사 공간(212)에 플라즈마를 형성한다. 이에 따라, 상기 플라즈마는 가스 분사 공간(212)에 공급되는 제 1 가스는 플라즈마화 하고, 플라즈마화된 제 1 가스는 상기 제 1 가스 분사 영역에 하향 분사된다. 상기 플라즈마화된 제 1 가스는 가스 분사 공간(212)에 공급되는 제 1 가스의 유속(또는 흐름)에 의해 가스 분사 공간(212)으로부터 하향 분사될 수 있다.
플라즈마 전원 공급부(140)는 소정의 주파수를 가지는 플라즈마 전원을 발생하고, 급전 케이블을 통해 플라즈마 전원을 제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d) 각각에 공통적으로 공급하거나 개별적으로 공급한다. 이때, 플라즈마 전원은 고주파(예를 들어, HF(High Frequency) 전력 또는 VHF(Very High Frequency) 전력이 공급된다. 예를 들어, HF 전력은 3㎒ ~ 30㎒ 범위의 주파수를 가지며, VHF 전력은 30㎒ ~ 300㎒ 범위의 주파수를 가질 수 있다.
한편, 상기 급전 케이블에는 임피던스 매칭 회로(미도시)가 접속된다.
상기 임피던스 매칭 회로는 플라즈마 전원 공급부(140)로부터 제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d) 각각에 공급되는 플라즈마 전원의 부하 임피던스와 소스 임피던스를 정합시킨다. 이러한 임피던스 매칭 회로는 가변 커패시터 및 가변 인덕터 중 적어도 하나로 구성되는 적어도 2개의 임피던스 소자(미도시)로 이루어질 수 있다.
이와 같은 제 1 가스 분사 모듈(130a)은 플라즈마 전원 공급부(140)로부터 플라즈마 전극 부재(240)에 공급되는 플라즈마 전원에 따라 가스 분사 공간(212)에 플라즈마를 형성하여 가스 분사 공간(212)에 공급되는 제 1 가스를 플라즈마화하여 상기 제 1 가스 분사 영역에 하향 분사한다.
제 2 가스 분사 모듈(130b)은 전술한 제 1 가스 분사 영역과 공간적으로 분리되도록 기판 지지부(120) 상에 정의된 제 2 가스 분사 영역에 중첩되는 제 2 모듈 설치부(115b)에 삽입 설치되어 제 2 가스 분사 영역에 플라즈마화된 제 2 가스를 하향 분사한다. 이를 위해, 제 2 가스 분사 모듈(130b)은, 도 3에 도시된 바와 같이, 접지 프레임(210), 접지 격벽 부재(220), 복수의 절연 부재(230), 및 복수의 플라즈마 전극 부재(240)를 포함하여 구성되는 것으로, 이러한 구성들에 대한 설명은 전술한 설명으로 대신하기로 한다. 이와 같은 구성들을 통해, 제 2 가스 분사 모듈(130b)은 급전 케이블을 통해 플라즈마 전원 공급부(140)에 전기적으로 접속됨으로써 플라즈마 전원 공급부(140)로부터 플라즈마 전극 부재(240)에 공급되는 플라즈마 전원에 따라 가스 분사 공간(212)에 플라즈마를 형성하여 가스 분사 공간(212)에 공급되는 제 2 가스를 플라즈마화하여 상기 제 2 가스 분사 영역에 하향 분사한다.
제 3 가스 분사 모듈(130c)은 전술한 제 2 가스 분사 영역과 공간적으로 분리되도록 기판 지지부(120) 상에 정의된 제 3 가스 분사 영역에 중첩되는 제 3 모듈 설치부(115c)에 삽입 설치되어 제 3 가스 분사 영역에 플라즈마화된 제 1 가스를 하향 분사한다. 이를 위해, 제 3 가스 분사 모듈(130c)은, 도 3에 도시된 바와 같이, 접지 프레임(210), 접지 격벽 부재(220), 복수의 절연 부재(230), 및 복수의 플라즈마 전극 부재(240)를 포함하여 구성되는 것으로, 이러한 구성들에 대한 설명은 전술한 설명으로 대신하기로 한다. 이와 같은 구성들을 통해, 제 3 가스 분사 모듈(130c)은 급전 케이블을 통해 플라즈마 전원 공급부(140)에 전기적으로 접속됨으로써 플라즈마 전원 공급부(140)로부터 플라즈마 전극 부재(240)에 공급되는 플라즈마 전원에 따라 가스 분사 공간(212)에 플라즈마를 형성하여 가스 분사 공간(212)에 공급되는 제 1 가스를 플라즈마화하여 상기 제 3 가스 분사 영역에 하향 분사한다.
제 4 가스 분사 모듈(130b)은 전술한 제 1 및 제 3 가스 분사 영역과 공간적으로 분리되도록 제 1 및 제 3 가스 분사 영역 사이의 기판 지지부(120) 상에 정의된 제 4 가스 분사 영역에 중첩되는 제 4 모듈 설치부(115d)에 삽입 설치되어 제 4 가스 분사 영역에 플라즈마화된 제 2 가스를 하향 분사한다. 이를 위해, 제 4 가스 분사 모듈(130d)은, 도 3에 도시된 바와 같이, 접지 프레임(210), 접지 격벽 부재(220), 복수의 절연 부재(230), 및 복수의 플라즈마 전극 부재(240)를 포함하여 구성되는 것으로, 이러한 구성들에 대한 설명은 전술한 설명으로 대신하기로 한다. 이와 같은 구성들을 통해, 제 4 가스 분사 모듈(130d)은 급전 케이블을 통해 플라즈마 전원 공급부(140)에 전기적으로 접속됨으로써 플라즈마 전원 공급부(140)로부터 플라즈마 전극 부재(240)에 공급되는 플라즈마 전원에 따라 가스 분사 공간(212)에 플라즈마를 형성하여 가스 분사 공간(212)에 공급되는 제 2 가스를 플라즈마화하여 상기 제 4 가스 분사 영역에 하향 분사한다.
이상과 같은 본 발명의 제 1 실시 예에 따른 기판 처리 장치(100)는 기판 지지부(120) 상에 공간적으로 분리하여 제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d)을 배치하고, 제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d) 각각을 통해 플라즈마화된 제 1 및 제 2 가스를 공간적으로 분리하여 회전되는 기판 지지부(120) 상에 분사함으로써 플라즈마화된 제 1 및 제 2 가스의 상호 반응을 통해 각 기판(W)에 증착되는 박막의 증착 균일도를 증가시키고, 박막의 막질 제어를 용이하게 할 수 있으며, 공정 챔버(110) 내에 증착되는 누적 두께를 최소화하여 파티클을 개선할 수 있다.
도 4a는 전술한 본 발명의 제 1 실시 예에 따른 기판 처리 장치를 이용한 기판 처리 방법을 설명하기 위한 도면이고, 도 4b는 도 4a에 도시된 제 1 내지 제 4 가스 분사 모듈의 동작 순서를 설명하기 위한 파형도이다.
도 4a 및 도 4b를 도 3과 결부하여 본 발명의 제 1 실시 예에 따른 기판 처리 장치를 이용한 기판 처리 방법을 개략적으로 설명하면 다음과 같다.
먼저, 복수의 기판(W)을 기판 지지부(120)에 일정한 간격으로 로딩시킨다.
그런 다음, 복수의 기판(W)이 로딩된 기판 지지부(120)를 소정 방향으로 회전시킨다.
이어서, 제 1 및 제 3 가스 분사 모듈(130a, 130c) 각각의 가스 분사 공간(212)에 제 1 가스를 공급함과 아울러 제 1 및 제 3 가스 분사 모듈(130a, 130c) 각각의 플라즈마 전극 부재(240)에 플라즈마 전원을 인가함으로써 기판 지지부(120) 상의 제 1 및 제 3 가스 분사 영역 각각에 플라즈마화된 제 1 가스(PG1)를 하향 분사한다. 이때, 플라즈마화된 제 1 가스(PG1)는 기판 지지부(120)가 소정 방향으로 1 회전하는 공정 싸이클 주기에 상관없이 지속적으로 분사된다.
이와 동시에, 제 2 및 제 4 가스 분사 모듈(130b, 130d) 각각의 가스 분사 공간(212)에 제 2 가스를 공급함과 아울러 제 2 및 제 4 가스 분사 모듈(130b, 130d) 각각의 플라즈마 전극 부재(240)에 플라즈마 전원을 인가함으로써 기판 지지부(120) 상의 제 2 및 제 4 가스 분사 영역 각각에 플라즈마화된 제 2 가스(PG2)를 지속적으로 하향 분사한다. 이때, 플라즈마화된 제 2 가스(PG2)는 상기 공정 싸이클 주기에 상관없이 지속적으로 분사된다.
이에 따라, 기판 지지부(120) 상에 안착된 복수의 기판(W) 각각은 기판 지지부(120)의 회전에 따라 상기 제 1 내지 제 4 가스 분사 영역을 통과하게 되고, 이에 따라, 복수의 기판(W) 각각 상에는 제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d) 각각으로부터 공간적으로 분리되어 분사되는 플라즈마화된 제 1 및 제 2 가스(PG1, PG2)의 상호 반응에 의해 소정의 박막 물질이 증착되게 된다.
전술한 기판 처리 장치 및 기판 처리 방법에서는 제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d) 각각은 전술한 바와 같이 플라즈마화된 제 1 및 제 2 가스(PG1, PG2)를 동시에 분사하는 것으로 설명하였으나, 이에 한정되지 않고, 제어 모듈(미도시)의 제어에 따른 동작 순서에 따라 플라즈마화된 제 1 및 제 2 가스(PG1, PG2)를 분사할 수도 있다.
도 5a 내지 도 5d는 도 2에 도시된 제 1 내지 제 4 가스 분사 모듈을 통한 기판 처리 방법의 변형 예들을 설명하기 위한 파형도들이다.
도 5a에서 알 수 있듯이, 제 1 변형 예에 따른 기판 처리 방법은 각 공정 싸이클마다 제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d) 각각의 동작을 순차적으로 수행하여 플라즈마화된 제 1 및 제 2 가스(PG1, PG2)를 순차적으로 분사한다. 이때, 각 공정 싸이클은 제 1 내지 제 4 구간으로 이루어질 수 있다. 이러한 제 1 변형 예에 따른 기판 처리 방법을 구체적으로 설명하면 다음과 같다.
먼저, 각 공정 싸이클의 제 1 구간에서는 제 1 가스 분사 모듈(130a)만을 통해 플라즈마화된 제 1 가스(PG1)를 상기 제 1 가스 분사 영역에 분사한다.
이어, 각 공정 싸이클의 제 2 구간에서는 제 1 가스 분사 모듈(130a)을 통한 가스 분사를 중단하고, 제 2 가스 분사 모듈(130b)만을 통해 플라즈마화된 제 2 가스(PG2)를 상기 제 2 가스 분사 영역에 분사된다.
이어, 각 공정 싸이클의 제 3 구간에서는 제 2 가스 분사 모듈(130b)을 통한 가스 분사를 중단하고, 제 3 가스 분사 모듈(130c)만을 통해 플라즈마화된 제 1 가스(PG1)를 상기 제 3 가스 분사 영역에 분사된다.
그런 다음, 각 공정 싸이클의 제 4 구간에서는 제 3 가스 분사 모듈(130c)을 통한 가스 분사를 중단하고, 제 4 가스 분사 모듈(130d)만을 통해 플라즈마화된 제 2 가스(PG2)를 상기 제 4 가스 분사 영역에 분사된다.
도 5b에서 알 수 있듯이, 제 2 변형 예에 따른 기판 처리 방법은 각 공정 싸이클마다 제 1 및 제 3 가스 분사 모듈(130a, 130c)의 동작과 제 2 및 제 4 가스 분사 모듈(130b, 130d)의 동작을 교대로 수행하여 플라즈마화된 제 1 및 제 2 가스(PG1, PG2)를 교대로 분사할 수 있다. 이때, 각 공정 싸이클은 제 1 내지 제 4 구간으로 이루어질 수 있다. 이러한 제 2 변형 예에 따른 기판 처리 방법을 구체적으로 설명하면 다음과 같다.
먼저, 각 공정 싸이클의 제 1 구간에서는 제 1 및 제 3 가스 분사 모듈(130a, 130c)만을 통해 플라즈마화된 제 1 가스(PG1)를 상기 제 1 및 제 3 가스 분사 영역에 동시에 분사한다.
이어, 각 공정 싸이클의 제 2 구간에서는 제 1 및 제 3 가스 분사 모듈(130a, 130c)을 통한 가스 분사를 중단하고, 제 2 및 제 4 가스 분사 모듈(130b, 130d)만을 통해 플라즈마화된 제 2 가스(PG2)를 상기 제 2 및 제 4 가스 분사 영역에 동시에 분사한다.
이어, 각 공정 싸이클의 제 3 구간에서는 제 2 및 제 4 가스 분사 모듈(130b, 130d)을 통한 가스 분사를 중단하고, 제 1 및 제 3 가스 분사 모듈(130a, 130c)만을 통해 플라즈마화된 제 1 가스(PG1)를 상기 제 1 및 제 3 가스 분사 영역에 동시에 분사한다.
그런 다음, 각 공정 싸이클의 제 2 구간에서는 제 1 및 제 3 가스 분사 모듈(130a, 130c)을 통한 가스 분사를 중단하고, 제 2 및 제 4 가스 분사 모듈(130b, 130d)만을 통해 플라즈마화된 제 2 가스(PG2)를 상기 제 2 및 제 4 가스 분사 영역에 동시에 분사한다.
도 5c에서 알 수 있듯이, 제 3 변형 예에 따른 기판 처리 방법은 각 공정 싸이클마다 제 1 및 제 3 가스 분사 모듈(130a, 130c)을 통해 플라즈마화된 제 1 가스(PG1)를 제 1 및 제 3 가스 분사 영역에 소정 구간마다 동시에 분사하고, 제 2 및 제 4 가스 분사 모듈(130b, 130d)을 통해 플라즈마화된 제 2 가스(PG2)를 상기 제 2 및 제 4 가스 분사 영역에 지속적으로 동시에 분사할 수 있다.
도 5d에서 알 수 있듯이, 제 4 변형 예에 따른 기판 처리 방법은 각 공정 싸이클마다 제 1 및 제 3 가스 분사 모듈(130a, 130c)을 통해 플라즈마화된 제 1 가스(PG1)를 제 1 및 제 3 가스 분사 영역에 지속적으로 동시에 분사하고, 제 2 및 제 4 가스 분사 모듈(130b, 130d)을 통해 플라즈마화된 제 2 가스(PG2)를 상기 제 2 및 제 4 가스 분사 영역에 소정 구간마다 동시에 분사할 수 있다.
도 6은 본 발명의 제 1 실시 예에 따른 기판 처리 장치의 변형 실시 예를 설명하기 위한 도면이다.
도 6을 참조하면, 본 발명의 제 1 실시 예의 변형 예에 따른 기판 처리 장치는 제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d) 각각에서 분사되는 가스의 종류를 제외하고는 도 2에 도시된 기판 처리 장치와 동일하기 때문에, 이하에서는 제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d) 각각에서 분사되는 가스의 종류에 대해서만 설명하기로 한다.
제 1 가스 분사 모듈(130a)은 가스 공급 수단으로부터 전술한 제 1 가스를 공급받아 플라즈마화된 제 1 가스를 제 1 가스 분사 영역에 하향 분사한다.
제 2 가스 분사 모듈(130b)은 가스 공급 수단으로부터 제 3 가스를 공급받아 플라즈마화된 제 3 가스(PG3)를 제 2 가스 분사 영역에 하향 분사한다. 이때, 제 3 가스는 전술한 제 1 및 제 2 가스를 퍼지(Purge)하기 위한 퍼지 가스가 될 수 있다. 상기 제 3 가스는 기판(W)에 증착되지 않고 남은 제 1 가스 및/또는 제 1 가스와 반응하지 않고 잔존하는 제 2 가스를 퍼지하기 위한 것으로, 질소(N2), 아르곤(Ar), 제논(Ze), 및 헬륨(He) 중 적어도 어느 한 종류의 가스로 이루어질 수 있다.
제 3 가스 분사 모듈(130c)은 가스 공급 수단으로부터 전술한 제 2 가스를 공급받아 플라즈마화된 제 2 가스를 제 3 가스 분사 영역에 하향 분사한다.
제 4 가스 분사 모듈(130d)은 가스 공급 수단으로부터 제 3 가스를 공급받아 플라즈마화된 제 3 가스(PG3)를 제 4 가스 분사 영역에 하향 분사한다.
도 7은 도 6에 도시된 제 1 내지 제 4 가스 분사 모듈의 동작 순서를 설명하기 위한 파형도이다.
도 6과 도 7을 참조하여 본 발명의 제 1 실시 예의 변형 예에 따른 기판 처리 장치를 이용한 기판 처리 방법을 개략적으로 설명하면 다음과 같다.
먼저, 복수의 기판(W)을 기판 지지부(120)에 일정한 간격으로 로딩시킨다.
그런 다음, 복수의 기판(W)이 로딩된 기판 지지부(120)를 소정 방향으로 회전시킨다.
이어서, 제 1 및 제 3 가스 분사 모듈(130a, 130c) 각각을 통해 제 1 및 제 2 가스(G1, G2)를 공간적으로 분리하여 소정 구간마다 교대로 분사함과 아울러 제 2 및 제 4 가스 분사 모듈(130b, 130d)을 통해 플라즈마화된 제 3 가스(PG3)를 지속적으로 분사한다.
이에 따라, 회전하는 기판 지지부(120) 상에 안착된 복수의 기판(W) 각각 상에는 제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d) 각각으로부터 공간적으로 분리되어 분사되는 플라즈마화된 제 1 및 제 2 가스(PG1, PG2)의 상호 반응에 의해 소정의 박막 물질이 증착되게 된다. 이때, 플라즈마화된 제 3 가스(PG3)는 플라즈마화된 제 1 및 제 2 가스(PG1, PG2)가 기판(W) 상으로 분사되는 도중에 혼합되어 반응하는 것을 방지하여 플라즈마화된 제 1 및 제 2 가스(PG1, PG2)가 기판(W)의 상면에 분사된 후 상호 혼합되어 반응되도록 한다.
이상과 같은, 본 발명의 제 1 실시 예의 변형 예에 따른 기판 처리 장치 및 기판 처리 방법은 제 3 가스(G3)를 통해 기판(W) 상으로 분사되는 플라즈마화된 제 1 및 제 2 가스(PG1, PG2)의 혼합을 방지함으로써 각 기판(W)에 증착되는 박막의 증착 균일도 및 막질을 더욱 증가시킬 수 있다.
한편, 본 발명의 제 1 실시 예의 변형 예에 따른 기판 처리 장치를 이용한 기판 처리 방법은 도 4b, 도 5a 내지 도 5d에 도시된 동작 순서에 따라 제 1 내지 제 4 가스 분사 모듈(130a, 130b, 130c, 130d) 각각을 동작시킴으로써 전술한 플라즈마화된 제 1 내지 제 3 가스(PG1, PG2, PG3)를 공간적으로 분리하여 제 1 내지 제 4 가스 분사 영역에 분사할 수도 있다.
도 8은 본 발명의 제 2 실시 예에 따른 기판 처리 장치를 개략적으로 나타내는 도면이다.
도 8을 참조하면, 본 발명의 제 2 실시 예에 따른 기판 처리 장치(200)는 공정 챔버(110), 챔버 리드(115), 기판 지지부(120), 및 가스 분사부(130)를 포함하여 구성되는 것으로, 가스 분사부(130)를 제외한 다른 구성들은 전술한 기판 처리 장치(100)와 동일하므로 동일한 구성들에 대한 설명은 전술한 설명으로 대신하기로 한다.
가스 분사부(130)는 챔버 리드(115)에 형성된 제 1 내지 제 4 모듈 설치부(115a, 115b, 115c, 115d) 각각에 삽입 설치되어 플라즈마화되지 않은 제 1 가스와 플라즈마화된 제 2 가스를 공간적으로 분리하여 기판 지지부(120) 쪽으로 하향 분사한다. 이를 위해, 가스 분사부(130)는 제 1 내지 제 4 가스 분사 모듈(330a, 130b, 330c, 130d)을 포함하여 구성된다.
제 1 가스 분사 모듈(330a)은 전술한 제 1 가스 분사 영역에 중첩되는 제 2 모듈 설치부(115b)에 삽입 설치되어 가스 공급 수단으로부터 공급되는 제 1 가스를 그대로 제 1 가스 분사 영역에 하향 분사한다. 이를 위해, 제 1 가스 분사 모듈(330b)은, 도 9에 도시된 바와 같이, 접지 프레임(410), 접지 격벽 부재(420), 및 복수의 가스 공급 홀(430)을 포함하여 구성된다.
접지 프레임(410)은 접지 격벽 부재(420)에 의해 분리된 복수의 가스 분사 공간(412)을 가지도록 하면이 개구되도록 형성된다. 이러한 접지 프레임(410)은 챔버 리드(115)의 제 1 모듈 설치부(115a)에 삽입 설치되어 챔버 리드(115)를 통해 전기적으로 접지된다. 이를 위해, 접지 프레임(410)은 상면 플레이트(410a) 및 접지 측벽들(410b)로 이루어진다.
상면 플레이트(410a)는 직사각 형태로 형성되어 챔버 리드(115)의 제 1 모듈 설치부(115a)에 결합된다.
접지 측벽들(410b) 각각은 상면 플레이트(410a)의 장변 및 단변 가장자리 부분으로부터 수직하게 돌출되어 상면 플레이트(410a)의 하부에 가스 분사 공간(412)을 마련한다. 이러한 접지 측벽들(410b) 각각은 챔버 리드(115)를 통해 전기적으로 접지된다. 이때, 상기 장변 접지 측벽들은 접지 전극의 역할을 한다.
접지 격벽 부재(420)는 상면 플레이트(410a)의 중앙 하면으로부터 수직하게 돌출되어 접지 측벽들(410b)의 장변들과 나란하게 배치된다. 이러한 접지 격벽 부재(420)는 소정 높이를 가지도록 접지 프레임(410)의 내부에 형성됨으로써 접지 프레임(410)의 내부에 공간적으로 분리되는 복수의 가스 분사 공간(412)을 마련한다. 상기 접지 격벽 부재(420)는 접지 프레임(410)에 일체화되거나 전기적으로 결합되어 접지 프레임(410)을 통해 전기적으로 접지됨으로써 접지 전극의 역할을 한다.
전술한, 접지 측벽들(410b)의 장변들과 접지 격벽 부재(420)는 접지 프레임(420)에 일정한 간격으로 나란하게 배치되어 복수의 접지 전극 부재를 형성한다.
복수의 가스 공급 홀(430) 각각은 복수의 가스 분사 공간(412) 각각에 연통되도록 접지 프레임(410)의 상면 플레이트(410a)를 관통하여 형성된다. 이러한 복수의 가스 공급 홀(430) 각각은 가스 공급 관을 통해 외부의 가스 공급 수단에 연결됨으로써 가스 공급 수단으로부터 가스 공급 관을 통해 제 1 가스를 공급받는다.
이와 같은, 제 1 가스 분사 모듈(330a)은 가스 공급 수단으로부터 가스 분사 공간(412)에 공급되는 제 1 가스를 플라즈마화하지 않고 그대로 상기 제 1 가스 분사 영역에 하향 분사한다. 즉, 제 1 가스 분사 모듈(330a)은 도 2에 도시된 제 1 가스 분사 모듈(130a)과 달리 플라즈마 전극 부재가 설치되지 않기 때문에 가스 분사 공간(412)에 공급되는 제 1 가스를 그대로 하향 분사한다. 이로 인하여, 제 1 가스 분사 모듈(330a)에 공급되는 제 1 가스는 플라즈마에 의해 플라즈마화되지 않고도 제 2 가스와 반응하여 기판 상에 증착될 수 있는 박막 물질을 포함하여 이루어진다.
제 2 가스 분사 모듈(130b)은 전술한 제 1 가스 분사 영역에 중첩되는 제 2 모듈 설치부(115b)에 삽입 설치되어 제 2 가스 분사 영역에 플라즈마화된 제 2 가스를 하향 분사한다. 이를 위해, 제 2 가스 분사 모듈(130b)은, 도 3에 도시된 바와 같이, 접지 프레임(210), 접지 격벽 부재(220), 복수의 절연 부재(230), 및 복수의 플라즈마 전극 부재(240)를 포함하여 구성되는 것으로, 이러한 구성들에 대한 설명은 전술한 설명으로 대신하기로 한다. 이와 같은 구성들을 통해, 제 2 가스 분사 모듈(130b)은 급전 케이블을 통해 플라즈마 전원 공급부(140)에 전기적으로 접속됨으로써 플라즈마 전원 공급부(140)로부터 플라즈마 전극 부재(240)에 공급되는 플라즈마 전원에 따라 가스 분사 공간(212)에 플라즈마를 형성하여 가스 분사 공간(212)에 공급되는 제 2 가스를 플라즈마화하여 상기 제 2 가스 분사 영역에 하향 분사한다.
제 3 가스 분사 모듈(330c)은 전술한 제 3 가스 분사 영역에 중첩되는 제 3 모듈 설치부(115c)에 삽입 설치되어 가스 공급 수단으로부터 공급되는 제 1 가스를 플라즈마화하지 않고 그대로 상기 제 3 가스 분사 영역에 하향 분사한다. 이를 위해, 제 3 가스 분사 모듈(330c)은 도 9에 도시된 제 1 가스 분사 모듈(330a)과 동일한 구성을 가지므로 이에 대한 설명은 제 1 가스 분사 모듈(330a)에 대한 설명으로 대신하기로 한다.
제 4 가스 분사 모듈(130d)은 전술한 제 4 가스 분사 영역에 중첩되는 제 4 모듈 설치부(115d)에 삽입 설치되어 제 4 가스 분사 영역에 플라즈마화된 제 2 가스를 하향 분사한다. 이를 위해, 제 4 가스 분사 모듈(130d)은, 도 3에 도시된 바와 같이, 접지 프레임(210), 접지 격벽 부재(220), 복수의 절연 부재(230), 및 복수의 플라즈마 전극 부재(240)를 포함하여 구성되는 것으로, 이러한 구성들에 대한 설명은 전술한 설명으로 대신하기로 한다. 이와 같은 구성들을 통해, 제 4 가스 분사 모듈(130d)은 급전 케이블을 통해 플라즈마 전원 공급부(140)에 전기적으로 접속됨으로써 플라즈마 전원 공급부(140)로부터 플라즈마 전극 부재(240)에 공급되는 플라즈마 전원에 따라 가스 분사 공간(212)에 플라즈마를 형성하여 가스 분사 공간(212)에 공급되는 제 2 가스를 플라즈마화하여 상기 제 2 가스 분사 영역에 하향 분사한다.
도 10은 전술한 본 발명의 제 2 실시 예에 따른 기판 처리 장치를 이용한 기판 처리 방법을 설명하기 위한 도면이다.
도 10을 참조하여 본 발명의 제 2 실시 예에 따른 기판 처리 장치를 이용한 기판 처리 방법을 설명하면 다음과 같다.
먼저, 복수의 기판(W)을 기판 지지부(120)에 일정한 간격으로 로딩시킨다.
그런 다음, 복수의 기판(W)이 로딩된 기판 지지부(120)를 소정 방향으로 회전시킨다.
이어서, 제 1 및 제 3 가스 분사 모듈(330a, 330c) 각각의 가스 분사 공간(412)에 제 1 가스를 공급하여 상기 제 1 및 제 3 가스 분사 영역 각각에 제 1 가스(G1)를 하향 분사한다. 이때, 제 1 가스(G1)는 기판 지지부(120)가 소정 방향으로 1 회전하는 공정 싸이클 주기에 상관없이 지속적으로 분사된다.
이와 동시에, 제 2 및 제 4 가스 분사 모듈(130b, 130d) 각각의 가스 분사 공간(212)에 제 2 가스를 공급함과 아울러 제 2 및 제 4 가스 분사 모듈(130b, 130d) 각각의 플라즈마 전극 부재(240)에 플라즈마 전원을 인가함으로써 기판 지지부(120) 상의 제 2 및 제 4 가스 분사 영역 각각에 플라즈마화된 제 2 가스(PG2)를 지속적으로 하향 분사한다. 이때, 플라즈마화된 제 2 가스(PG2)는 상기 공정 싸이클 주기에 상관없이 지속적으로 분사된다.
이에 따라, 기판 지지부(120) 상에 안착된 복수의 기판(W) 각각은 기판 지지부(120)의 회전에 따라 상기 제 1 내지 제 4 가스 분사 영역을 통과하게 되고, 이에 따라, 복수의 기판(W) 각각 상에는 제 1 내지 제 4 가스 분사 모듈(330a, 130b, 330c, 130d) 각각으로부터 공간적으로 분리되어 분사되는 제 1 가스(G1)와 플라즈마화된 제 2 가스(PG2)의 상호 반응에 의해 소정의 박막 물질이 증착되게 된다.
전술한 제 2 실시 예의 기판 처리 장치 및 기판 처리 방법에서는 제 1 내지 제 4 가스 분사 모듈(330a, 130b, 330c, 130d) 각각은 제 1 가스(G1)와 플라즈마화된 제 2 가스(PG2)를 동시에 분사하는 것으로 설명하였으나, 이에 한정되지 않고, 제어 모듈(미도시)의 제어에 따른 도 4b, 도 5a 내지 도 5d에 도시된 동작 순서에 따라 제 1 내지 제 4 가스 분사 모듈(330a, 130b, 330c, 130d) 각각을 동작시킴으로써 전술한 제 1 가스(G1)와 플라즈마화된 제 2 가스(PG2)를 공간적으로 분리하여 제 1 내지 제 4 가스 분사 영역에 분사할 수도 있다.
도 11은 본 발명의 제 3 실시 예에 따른 기판 처리 장치를 개략적으로 나타내는 도면이다.
도 11을 참조하면, 본 발명의 제 3 실시 예에 따른 기판 처리 장치(500)는 공정 챔버(110), 챔버 리드(115), 기판 지지부(120), 및 가스 분사부(130)를 포함하여 구성되는 것으로, 가스 분사부(130)를 제외한 다른 구성들은 전술한 기판 처리 장치(100)와 동일하므로 동일한 구성들에 대한 설명은 전술한 설명으로 대신하기로 한다.
가스 분사부(130)는 챔버 리드(115)에 형성된 제 1 내지 제 4 모듈 설치부(115a, 115b, 115c, 115d) 각각에 삽입 설치되어 플라즈마화되지 않은 제 1 가스와 플라즈마화된 제 2 가스 및 제 3 가스를 공간적으로 분리하여 기판 지지부(120) 쪽으로 하향 분사한다. 이를 위해, 가스 분사부(130)는 제 1 내지 제 4 가스 분사 모듈(330a, 130b, 330c, 130d)을 포함하여 구성된다.
제 1 가스 분사 모듈(330a)은 전술한 제 1 가스 분사 영역에 중첩되는 제 1 모듈 설치부(115a)에 삽입 설치되어 가스 공급 수단으로부터 공급되는 제 1 가스를 플라즈마화하지 않고 그대로 상기 제 1 가스 분사 영역에 하향 분사한다. 이를 위해, 제 1 가스 분사 모듈(330a)은, 도 9에 도시된 바와 같이, 접지 프레임(410), 접지 격벽 부재(420), 및 복수의 가스 공급 홀(430)을 포함하여 구성되는 것으로, 이에 대한 설명은 도 9에 대한 설명으로 대신하기로 한다.
제 2 가스 분사 모듈(130b)은 전술한 제 2 가스 분사 영역에 중첩되는 제 2 모듈 설치부(115b)에 삽입 설치되어 전술한 플라즈마화된 제 3 가스를 상기 제 2 가스 분사 영역에 하향 분사한다. 이를 위해, 제 2 가스 분사 모듈(130b)은, 도 3에 도시된 바와 같이, 접지 프레임(210), 접지 격벽 부재(220), 복수의 절연 부재(230), 및 복수의 플라즈마 전극 부재(240)를 포함하여 구성되는 것으로, 이러한 구성들에 대한 설명은 전술한 설명으로 대신하기로 한다. 이와 같은, 제 2 가스 분사 모듈(130b)은 급전 케이블을 통해 플라즈마 전원 공급부(140)에 전기적으로 접속됨으로써 플라즈마 전원 공급부(140)로부터 플라즈마 전극 부재(240)에 공급되는 플라즈마 전원에 따라 가스 분사 공간(212)에 플라즈마를 형성하여 가스 분사 공간(212)에 공급되는 제 3 가스를 플라즈마화하여 상기 제 2 가스 분사 영역에 하향 분사한다.
제 3 가스 분사 모듈(130c)은 전술한 제 3 가스 분사 영역에 중첩되는 제 3 모듈 설치부(115c)에 삽입 설치되어 전술한 플라즈마화된 제 2 가스를 상기 제 3 가스 분사 영역에 하향 분사한다. 이를 위해, 제 3 가스 분사 모듈(130c)은, 도 3에 도시된 바와 같이, 접지 프레임(210), 접지 격벽 부재(220), 복수의 절연 부재(230), 및 복수의 플라즈마 전극 부재(240)를 포함하여 구성되는 것으로, 이러한 구성들에 대한 설명은 전술한 설명으로 대신하기로 한다. 이와 같은, 제 3 가스 분사 모듈(130c)은 급전 케이블을 통해 플라즈마 전원 공급부(140)에 전기적으로 접속됨으로써 플라즈마 전원 공급부(140)로부터 플라즈마 전극 부재(240)에 공급되는 플라즈마 전원에 따라 가스 분사 공간(212)에 플라즈마를 형성하여 가스 분사 공간(212)에 공급되는 제 2 가스를 플라즈마화하여 상기 제 3 가스 분사 영역에 하향 분사한다.
제 4 가스 분사 모듈(130d)은 전술한 제 4 가스 분사 영역에 중첩되는 제 4 모듈 설치부(115d)에 삽입 설치되어 전술한 플라즈마화된 제 3 가스를 상기 제 4 가스 분사 영역에 하향 분사한다. 이를 위해, 제 4 가스 분사 모듈(130d)은, 도 3에 도시된 바와 같이, 접지 프레임(210), 접지 격벽 부재(220), 복수의 절연 부재(230), 및 복수의 플라즈마 전극 부재(240)를 포함하여 구성되는 것으로, 이러한 구성들에 대한 설명은 전술한 설명으로 대신하기로 한다. 이와 같은, 제 4 가스 분사 모듈(130d)은 급전 케이블을 통해 플라즈마 전원 공급부(140)에 전기적으로 접속됨으로써 플라즈마 전원 공급부(140)로부터 플라즈마 전극 부재(240)에 공급되는 플라즈마 전원에 따라 가스 분사 공간(212)에 플라즈마를 형성하여 가스 분사 공간(212)에 공급되는 제 3 가스를 플라즈마화하여 상기 제 4 가스 분사 영역에 하향 분사한다.
도 12는 전술한 본 발명의 제 3 실시 예에 따른 기판 처리 장치를 이용한 기판 처리 방법을 설명하기 위한 도면이다.
도 12를 참조하여 본 발명의 제 3 실시 예에 따른 기판 처리 장치를 이용한 기판 처리 방법을 설명하면 다음과 같다.
먼저, 복수의 기판(W)을 기판 지지부(120)에 일정한 간격으로 로딩시킨다.
그런 다음, 복수의 기판(W)이 로딩된 기판 지지부(120)를 소정 방향으로 회전시킨다.
이어서, 제 1 가스 분사 모듈(330a)에 제 1 가스를 공급하여 상기 제 1 가스 분사 영역에 제 1 가스(G1)를 하향 분사하고, 이와 동시에, 제 3 가스 분사 모듈(130c)에 제 2 가스 및 플라즈마 전원을 공급하여 제 3 가스 분사 영역에 플라즈마화된 제 2 가스(PG2)를 하향 분사한다. 이때, 상기 제 1 가스(G1) 및 플라즈마화된 제 2 가스(PG2)는 기판 지지부(120)가 소정 방향으로 1 회전하는 공정 싸이클 주기에 상관없이 지속적으로 분사된다.
상기 제 1 가스(G1) 및 플라즈마화된 제 2 가스(PG2) 각각의 동시 분사와 동시에, 제 2 및 제 4 가스 분사 모듈(130b, 130d) 각각에 제 3 가스 및 플라즈마 전원을 공급하여 제 2 및 제 4 가스 분사 영역 각각에 플라즈마화된 제 3 가스(PG3)를 지속적으로 하향 분사한다. 이때, 플라즈마화된 제 3 가스(PG3)는 상기 공정 싸이클 주기에 상관없이 지속적으로 분사된다.
이에 따라, 기판 지지부(120) 상에 안착된 복수의 기판(W) 각각은 기판 지지부(120)의 회전에 따라 상기 제 1 내지 제 4 가스 분사 영역을 통과하게 되고, 이에 따라, 복수의 기판(W) 각각 상에는 제 1 내지 제 4 가스 분사 모듈(330a, 130b, 130c, 130d) 각각으로부터 공간적으로 분리되어 분사되는 제 1 가스(G1)와 플라즈마화된 제 2 가스(PG2)의 상호 반응에 의해 소정의 박막 물질이 증착되게 된다. 이때, 플라즈마화된 제 3 가스(PG3)는 제 1 가스(G1)와 플라즈마화된 제 2 가스(PG2)가 기판(W) 상으로 분사되는 도중에 혼합되어 반응하는 것을 방지하여 제 1 가스(G1)와 플라즈마화된 제 2 가스(PG2)가 기판(W)의 상면에 분사된 후 상호 혼합되어 반응되도록 한다.
한편, 본 발명의 제 3 실시 예에 따른 기판 처리 장치를 이용한 기판 처리 방법은 도 4b, 도 5a 내지 도 5d, 도 7에 도시된 동작 순서에 따라 제 1 내지 제 4 가스 분사 모듈(330a, 130b, 130c, 130d) 각각을 동작시킴으로써 전술한 제 1 가스(G1)와 플라즈마화된 제 2 및 제 3 가스(PG2, PG3)를 공간적으로 분리하여 제 1 내지 제 4 가스 분사 영역에 분사할 수도 있다.
도 13은 본 발명의 제 4 실시 예에 따른 기판 처리 장치를 개략적으로 나타내는 도면이다.
도 13을 참조하면, 본 발명의 제 4 실시 예에 따른 기판 처리 장치(600)는 공정 챔버(110), 챔버 리드(115), 기판 지지부(120), 및 가스 분사부(130)를 포함하여 구성되는 것으로, 가스 분사부(130)를 제외한 다른 구성들은 전술한 기판 처리 장치(100)와 동일하므로 동일한 구성들에 대한 설명은 전술한 설명으로 대신하기로 한다.
가스 분사부(130)는 챔버 리드(115)에 형성된 제 1 내지 제 4 모듈 설치부(115a, 115b, 115c, 115d) 각각에 삽입 설치되어 플라즈마화되지 않은 제 1 가스와 플라즈마화된 제 2 가스 및 제 3 가스를 공간적으로 분리하여 기판 지지부(120) 쪽으로 하향 분사한다. 이를 위해, 가스 분사부(130)는 제 1 내지 제 4 가스 분사 모듈(330a, 330b, 130c, 330d)을 포함하여 구성된다.
제 1 가스 분사 모듈(330a)은 전술한 제 1 가스 분사 영역에 중첩되는 제 1 모듈 설치부(115a)에 삽입 설치되어 가스 공급 수단으로부터 공급되는 제 1 가스를 플라즈마화하지 않고 그대로 상기 제 1 가스 분사 영역에 하향 분사한다. 이를 위해, 제 1 가스 분사 모듈(330a)은, 도 9에 도시된 바와 같이, 접지 프레임(410), 접지 격벽 부재(420), 및 복수의 가스 공급 홀(430)을 포함하여 구성되는 것으로, 이에 대한 설명은 도 9에 대한 설명으로 대신하기로 한다.
제 2 가스 분사 모듈(330b)은 전술한 제 2 가스 분사 영역에 중첩되는 제 2 모듈 설치부(115a)에 삽입 설치되어 가스 공급 수단으로부터 공급되는 제 3 가스를 플라즈마화하지 않고 그대로 상기 제 2 가스 분사 영역에 하향 분사한다. 이를 위해, 제 2 가스 분사 모듈(330b)은, 도 9에 도시된 바와 같이, 접지 프레임(410), 접지 격벽 부재(420), 및 복수의 가스 공급 홀(430)을 포함하여 구성되는 것으로, 이에 대한 설명은 도 9에 대한 설명으로 대신하기로 한다.
제 3 가스 분사 모듈(130c)은 전술한 제 3 가스 분사 영역에 중첩되는 제 3 모듈 설치부(115c)에 삽입 설치되어 전술한 플라즈마화된 제 2 가스를 상기 제 3 가스 분사 영역에 하향 분사한다. 이를 위해, 제 3 가스 분사 모듈(130c)은, 도 3에 도시된 바와 같이, 접지 프레임(210), 접지 격벽 부재(220), 복수의 절연 부재(230), 및 복수의 플라즈마 전극 부재(240)를 포함하여 구성되는 것으로, 이러한 구성들에 대한 설명은 전술한 설명으로 대신하기로 한다. 이와 같은, 제 3 가스 분사 모듈(130c)은 급전 케이블을 통해 플라즈마 전원 공급부(140)에 전기적으로 접속됨으로써 플라즈마 전원 공급부(140)로부터 플라즈마 전극 부재(240)에 공급되는 플라즈마 전원에 따라 가스 분사 공간(212)에 플라즈마를 형성하여 가스 분사 공간(212)에 공급되는 제 2 가스를 플라즈마화하여 상기 제 3 가스 분사 영역에 하향 분사한다.
제 4 가스 분사 모듈(330d)은 전술한 제 4 가스 분사 영역에 중첩되는 제 4 모듈 설치부(115d)에 삽입 설치되어 가스 공급 수단으로부터 공급되는 제 3 가스를 플라즈마화하지 않고 그대로 상기 제 4 가스 분사 영역에 하향 분사한다. 이를 위해, 제 4 가스 분사 모듈(330d)은, 도 9에 도시된 바와 같이, 접지 프레임(410), 접지 격벽 부재(420), 및 복수의 가스 공급 홀(430)을 포함하여 구성되는 것으로, 이에 대한 설명은 도 9에 대한 설명으로 대신하기로 한다.
도 14는 전술한 본 발명의 제 4 실시 예에 따른 기판 처리 장치를 이용한 기판 처리 방법을 설명하기 위한 도면이다.
도 14를 참조하여 본 발명의 제 4 실시 예에 따른 기판 처리 장치를 이용한 기판 처리 방법을 설명하면 다음과 같다.
먼저, 복수의 기판(W)을 기판 지지부(120)에 일정한 간격으로 로딩시킨다.
그런 다음, 복수의 기판(W)이 로딩된 기판 지지부(120)를 소정 방향으로 회전시킨다.
이어서, 제 1 가스 분사 모듈(330a)에 제 1 가스를 공급하여 상기 제 1 가스 분사 영역에 제 1 가스(G1)를 하향 분사하고, 이와 동시에, 제 3 가스 분사 모듈(130c)에 제 2 가스 및 플라즈마 전원을 공급하여 제 3 가스 분사 영역에 플라즈마화된 제 2 가스(PG2)를 하향 분사한다. 이때, 상기 제 1 가스(G1) 및 플라즈마화된 제 2 가스(PG2)는 기판 지지부(120)가 소정 방향으로 1 회전하는 공정 싸이클 주기에 상관없이 지속적으로 분사된다.
상기 제 1 가스(G1) 및 플라즈마화된 제 2 가스(PG2) 각각의 동시 분사와 동시에, 제 2 및 제 4 가스 분사 모듈(330b, 330d) 각각에 제 3 가스를 공급하여 제 2 및 제 4 가스 분사 영역 각각에 플라즈마화되지 않은 제 3 가스(G3)를 지속적으로 하향 분사한다. 이때, 제 3 가스(G3)는 상기 공정 싸이클 주기에 상관없이 지속적으로 분사된다.
이에 따라, 기판 지지부(120) 상에 안착된 복수의 기판(W) 각각은 기판 지지부(120)의 회전에 따라 상기 제 1 내지 제 4 가스 분사 영역을 통과하게 되고, 이에 따라, 복수의 기판(W) 각각 상에는 제 1 내지 제 4 가스 분사 모듈(330a, 330b, 130c, 330d) 각각으로부터 공간적으로 분리되어 분사되는 제 1 가스(G1)와 플라즈마화된 제 2 가스(PG2)의 상호 반응에 의해 소정의 박막 물질이 증착되게 된다. 이때, 상기 제 3 가스(G3)는 제 1 가스(G1)와 플라즈마화된 제 2 가스(PG2)가 기판(W) 상으로 분사되는 도중에 혼합되어 반응하는 것을 방지하여 제 1 가스(G1)와 플라즈마화된 제 2 가스(PG2)가 기판(W)의 상면에 분사된 후 상호 혼합되어 반응되도록 한다.
한편, 본 발명의 제 4 실시 예에 따른 기판 처리 장치를 이용한 기판 처리 방법은 도 4b, 도 5a 내지 도 5d, 도 7에 도시된 동작 순서에 따라 제 1 내지 제 4 가스 분사 모듈(330a, 330b, 130c, 330d) 각각을 동작시킴으로써 전술한 제 1 및 제 3 가스(G1, G3)와 플라즈마화된 제 2 가스(PG2)를 공간적으로 분리하여 제 1 내지 제 4 가스 분사 영역에 분사할 수도 있다.
본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
110: 공정 챔버 115: 챔버 리드
117: 펌핑 관 120: 기판 지지부
130: 가스 분사부 130a: 제 1 가스 분사 모듈
130b: 제 2 가스 분사 모듈 130c: 제 3 가스 분사 모듈
130d: 제 4 가스 분사 모듈 140: 플라즈마 전원 공급부
210: 접지 프레임 220: 접지 격벽 부재
230: 절연 부재 240: 플라즈마 전극 부재

Claims (32)

  1. 공정 챔버;
    복수의 기판을 지지하도록 상기 공정 챔버에 설치되어 소정 방향으로 회전하는 기판 지지부;
    상기 기판 지지부에 대향되도록 상기 공정 챔버의 상부를 덮는 챔버 리드; 및
    상기 챔버 리드에 설치되어 서로 상이한 제 1 및 제 2 가스를 공간적으로 분리하여 상기 복수의 기판으로 분사하는 가스 분사부를 포함하고,
    상기 가스 분사부는,
    상기 챔버 리드에 설치되고, 복수의 접지 전극 부재 사이에 마련되는 가스 분사 공간에 공급되는 상기 제 1 가스를 분사하는 제 1 가스 분사 모듈; 및
    상기 제 1 가스 분사 모듈과 이격되도록 상기 챔버 리드에 설치되고, 복수의 접지 전극 부재 사이에 마련되는 가스 분사 공간에 공급되는 상기 제 2 가스를 분사하는 제 2 가스 분사 모듈을 포함하여 구성되는 것을 특징으로 하는 기판 처리 장치.
  2. 제 1 항에 있어서,
    상기 제 1 및 제 2 가스 분사 모듈 중 적어도 하나의 가스 분사 모듈은 접지 전극 부재들 사이에 배치되어 가스 분사 공간에 플라즈마를 형성하는 플라즈마 전극 부재를 포함하여 구성되는 것을 특징으로 하는 기판 처리 장치.
  3. 공정 챔버;
    복수의 기판을 지지하도록 상기 공정 챔버에 설치되어 소정 방향으로 회전하는 기판 지지부;
    상기 기판 지지부에 대향되도록 상기 공정 챔버의 상부를 덮는 챔버 리드; 및
    상기 기판 지지부 상의 제 1 가스 분사 영역에 중첩되도록 상기 챔버 리드에 설치되어 상기 제 1 가스 분사 영역에 제 1 가스를 분사하는 제 1 가스 분사 모듈, 및 상기 제 1 가스 분사 영역과 공간적으로 분리되는 제 2 가스 분사 영역에 중첩되도록 상기 챔버 리드에 설치되어 상기 제 2 가스 분사 영역에 제 2 가스를 분사하는 제 2 가스 분사 모듈을 포함하여 이루어지는 가스 분사부를 포함하고,
    상기 제 2 가스 분사 모듈은 복수의 접지 전극 부재와 교대로 배치된 플라즈마 전극 부재에 공급되는 플라즈마 전원에 따라 상기 제 2 가스를 플라즈마화하여 분사하는 것을 특징으로 하는 기판 처리 장치.
  4. 제 3 항에 있어서,
    상기 제 1 가스 분사 모듈은 복수의 접지 전극 부재 사이에 공급되는 상기 제 1 가스를 그대로 분사하거나, 상기 복수의 접지 전극 부재와 교대로 배치된 플라즈마 전극 부재에 공급되는 플라즈마 전원에 따라 상기 제 1 가스를 플라즈마화하여 분사하는 것을 특징으로 하는 기판 처리 장치.
  5. 제 4 항에 있어서,
    상기 제 1 및 제 2 가스 분사 모듈 각각은 복수로 구성되고,
    상기 복수의 제 2 가스 분사 모듈 각각은 복수의 제 1 가스 분사 모듈과 교대로 배치된 것을 특징으로 하는 기판 처리 장치.
  6. 제 2 항 내지 제 4 항 중 어느 한 항에 있어서,
    상기 접지 전극 부재와 상기 플라즈마 전극 부재는 일정한 간격을 가지도록 나란한 것을 특징으로 하는 기판 처리 장치.
  7. 제 1 항 또는 제 3 항에 있어서,
    상기 제 1 가스는 상기 기판에 형성될 박막 물질을 포함하는 소스 가스이고,
    상기 제 2 가스는 상기 기판에 분사된 제 1 가스와 반응하여 상기 기판에 박막을 형성하기 위한 반응 가스인 것을 특징으로 하는 기판 처리 장치.
  8. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    상기 가스 분사부는 상기 제 1 및 제 2 가스 분사 모듈 사이에 배치되도록 상기 챔버 리드에 설치되어 제 3 가스를 상기 복수의 기판으로 분사하는 제 3 및 제 4 가스 분사 모듈을 더 포함하여 구성되는 것을 특징으로 하는 기판 처리 장치.
  9. 제 8 항에 있어서,
    상기 제 3 및 제 4 가스 분사 모듈 각각은 복수의 접지 전극 부재 사이에 공급되는 상기 제 3 가스를 그대로 분사하거나, 상기 복수의 접지 전극 부재와 교대로 배치된 플라즈마 전극 부재에 공급되는 플라즈마 전원에 따라 상기 제 3 가스를 플라즈마화하여 분사하는 것을 특징으로 하는 기판 처리 장치.
  10. 제 8 항에 있어서,
    상기 제 1 가스는 상기 기판에 형성될 박막 물질을 포함하는 소스 가스이고,
    상기 제 2 가스는 상기 기판에 분사된 제 1 가스와 반응하여 상기 기판에 박막을 형성하기 위한 반응 가스이며,
    상기 제 3 가스는 상기 제 1 및 제 2 가스를 퍼지하기 위한 퍼지 가스인 것을 특징으로 하는 기판 처리 장치.
  11. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    상기 챔버 리드의 중심부에 설치되어 상기 공정 챔버 내부에 연통되는 펌핑 관을 더 포함하여 구성되는 것을 특징으로 하는 기판 처리 장치.
  12. 공정 챔버;
    복수의 기판을 지지하도록 상기 공정 챔버에 설치되어 소정 방향으로 회전하는 기판 지지부;
    상기 기판 지지부에 대향되도록 상기 공정 챔버의 상부를 덮는 챔버 리드; 및
    복수의 접지 전극 부재 사이에 마련된 가스 분사 공간을 포함하도록 형성되어 상기 챔버 리드에 일정한 간격으로 설치된 복수의 가스 분사 모듈을 포함하여 이루어지는 가스 분사부를 포함하고,
    상기 복수의 가스 분사 모듈 중 적어도 하나는 상기 접지 전극 부재와 교대로 배치된 플라즈마 전극 부재에 인가되는 플라즈마 전원에 따라 상기 가스 분사 공간에 플라즈마를 형성하는 것을 특징으로 하는 기판 처리 장치.
  13. 제 12 항에 있어서,
    상기 플라즈마는 상기 가스 분사 공간에 공급되는 가스를 플라즈마화하고,
    상기 플라즈마화된 가스는 상기 기판 지지부의 소정 영역에만 분사되는 것을 특징으로 하는 기판 처리 장치.
  14. 제 13 항에 있어서,
    상기 가스는 소스 가스, 반응 가스 및 퍼지 가스 중 어느 한 종류의 가스인 것을 특징으로 하는 기판 처리 장치.
  15. 공정 챔버에 설치된 기판 지지부에 복수의 기판들을 일정한 간격으로 안착시키는 단계(A);
    상기 복수의 기판들이 안착된 기판 지지부를 회전시키는 단계(B); 및
    상기 기판 지지부에 대향되도록 상기 공정 챔버의 상부를 덮는 챔버 리드에 일정한 간격으로 배치된 제 1 및 제 2 가스 분사 모듈 각각을 통해 서로 상이한 제 1 및 제 2 가스를 공간적으로 분리하여 상기 복수의 기판으로 분사하는 단계(C)를 포함하여 이루어지고,
    상기 단계(C)에서,
    상기 제 1 가스 분사 모듈은 복수의 접지 전극 부재 사이의 가스 분사 공간에 공급되는 상기 제 1 가스를 상기 복수의 기판으로 분사하고,
    상기 제 2 가스 분사 모듈은 복수의 접지 전극 부재 사이의 가스 분사 공간에 공급되는 상기 제 2 가스를 상기 제 1 가스와 공간적으로 분리되도록 상기 복수의 기판으로 분사하는 것을 특징으로 하는 기판 처리 방법.
  16. 제 15 항에 있어서,
    상기 챔버 리드의 중심부에 설치된 펌핑 관을 통해 상기 공정 챔버 내부를 펌핑하는 단계를 더 포함하여 이루어지는 것을 특징으로 하는 기판 처리 방법.
  17. 제 15 항에 있어서,
    상기 단계(C)는 상기 제 1 가스 분사 모듈을 통해 상기 제 1 가스를 분사하는 제 1 가스 분사 단계와 상기 제 2 가스 분사 모듈을 통해 상기 제 2 가스를 분사하는 제 2 가스 분사 단계를 동시에 수행하거나 순차적으로 수행하는 것을 특징으로 하는 기판 처리 방법.
  18. 제 17 항에 있어서,
    상기 제 1 가스 분사 단계는 상기 제 1 가스 분사 모듈의 가스 분사 공간에 플라즈마를 형성해 상기 플라즈마에 의해 플라즈마화된 제 1 가스를 상기 복수의 기판으로 분사하는 것을 특징으로 하는 기판 처리 방법.
  19. 제 17 항에 있어서,
    상기 제 1 가스 분사 단계는 상기 제 1 가스 분사 모듈의 가스 분사 공간에 플라즈마를 형성해 상기 플라즈마에 의해 플라즈마화된 제 1 가스를 상기 복수의 기판으로 분사하고,
    상기 제 2 가스 분사 단계는 상기 제 2 가스 분사 모듈의 가스 분사 공간에 플라즈마를 형성해 상기 플라즈마에 의해 플라즈마화된 제 2 가스를 상기 복수의 기판으로 분사하는 것을 특징으로 하는 기판 처리 방법.
  20. 공정 챔버에 설치된 기판 지지부에 복수의 기판들을 일정한 간격으로 안착시키는 단계(A);
    상기 복수의 기판들이 안착된 기판 지지부를 회전시키는 단계(B); 및
    상기 기판 지지부 상에 공간적으로 분리되는 제 1 및 제 2 가스 분사 영역에 중첩되도록 배치된 제 1 및 제 2 가스 분사 모듈 각각을 통해 상기 제 1 가스 분사 영역에 제 1 가스를 분사하고, 상기 제 2 가스 분사 영역에 제 2 가스를 분사하는 단계(C)를 포함하여 이루어지고,
    상기 단계(C)에서,
    상기 제 2 가스 분사 모듈은 복수의 접지 전극 부재 사이에 마련되어 상기 제 2 가스가 공급되는 가스 분사 공간에 플라즈마를 형성하여 상기 플라즈마에 의해 플라즈마화된 제 2 가스를 상기 제 2 가스 분사 영역에 분사하는 것을 특징으로 하는 기판 처리 방법.
  21. 제 20 항에 있어서,
    상기 단계(C)에서,
    상기 제 1 가스 분사 모듈은 복수의 접지 전극 부재 사이에 공급되는 상기 제 1 가스를 상기 제 1 가스 분사 영역에 분사하거나, 복수의 접지 전극 부재 사이에 공급되는 상기 제 1 가스를 플라즈마화하여 상기 제 1 가스 분사 영역에 분사하는 것을 특징으로 하는 기판 처리 방법.
  22. 제 21 항에 있어서,
    상기 단계(C)는 상기 제 1 가스 분사 모듈을 통해 상기 제 1 가스 또는 상기 플라즈마화된 제 1 가스를 분사하는 제 1 가스 분사 단계와 상기 제 2 가스 분사 모듈을 통해 상기 플라즈마화된 제 2 가스를 분사하는 제 2 가스 분사 단계를 동시에 수행하거나 순차적으로 수행하는 것을 특징으로 하는 기판 처리 방법.
  23. 제 21 항에 있어서,
    상기 제 1 및 제 2 가스 분사 영역 각각은 상기 기판 지지부 상에 교대로 배치되고,
    상기 단계(C)는 상기 제 1 가스 분사 모듈을 통해 상기 제 1 가스 또는 상기 플라즈마화된 제 1 가스를 분사하는 제 1 가스 분사 단계와 상기 제 2 가스 분사 모듈을 통해 상기 플라즈마화된 제 2 가스를 분사하는 제 2 가스 분사 단계를 동시에 수행하거나 순차적으로 수행하는 것을 특징으로 하는 기판 처리 방법.
  24. 제 21 항에 있어서,
    상기 제 1 및 제 2 가스 분사 영역 각각은 상기 기판 지지부 상에 교대로 배치되고,
    상기 단계(C)는 상기 제 1 가스 분사 모듈을 통해 상기 제 1 가스 또는 상기 플라즈마화된 제 1 가스를 분사하는 제 1 가스 분사 단계와 상기 제 2 가스 분사 모듈을 통해 상기 플라즈마화된 제 2 가스를 분사하는 제 2 가스 분사 단계를 포함하고,
    상기 제 1 가스 분사 단계 또는 상기 제 2 가스 분사 단계는 소정 구간마다 가스를 분사하는 것을 특징으로 하는 기판 처리 방법.
  25. 제 15 항 내지 제 24 항 중 어느 한 항에 있어서,
    상기 단계(C)는 상기 제 1 및 제 2 가스 분사 모듈 사이에 배치된 제 3 및 제 4 가스 분사 모듈 각각을 통해 제 3 가스를 상기 복수의 기판으로 분사하는 제 3 가스 분사 단계를 더 포함하여 이루어지는 것을 특징으로 하는 기판 처리 방법.
  26. 제 25 항에 있어서,
    상기 제 3 및 제 4 가스 분사 모듈 각각은 복수의 접지 전극 부재 사이에 공급되는 상기 제 3 가스를 상기 복수의 기판으로 분사하거나, 복수의 접지 전극 부재 사이에 공급되는 상기 제 3 가스를 플라즈마화하여 상기 복수의 기판으로 분사하는 것을 특징으로 하는 기판 처리 방법.
  27. 제 26 항에 있어서,
    상기 단계(C)는,
    상기 제 1 내지 제 4 가스 분사 모듈을 통해 상기 제 1 내지 제 3 가스를 동시에 분사하거나,
    상기 제 1 내지 제 4 가스 분사 모듈 각각을 통해 상기 제 1 가스와 상기 제 3 가스와 상기 제 2 가스 및 상기 제 3 가스의 순서로 분사하는 것을 특징으로 하는 기판 처리 방법.
  28. 제 26 항에 있어서,
    상기 단계(C)는,
    상기 제 1 및 제 2 가스 분사 모듈 각각을 통해 상기 제 1 및 제 2 가스를 동시 또는 교대로 분사하고,
    상기 제 3 및 제 4 가스 분사 모듈 각각을 통해 상기 제 3 가스를 지속적으로 분사하는 것을 특징으로 하는 기판 처리 방법.
  29. 제 25 항에 있어서,
    상기 제 1 가스는 상기 기판에 형성될 박막 물질을 포함하는 소스 가스이고,
    상기 제 2 가스는 상기 기판에 분사된 제 1 가스와 반응하여 상기 기판에 박막을 형성하기 위한 반응 가스이며,
    상기 제 3 가스는 상기 제 1 및 제 2 가스를 퍼지하기 위한 퍼지 가스인 것을 특징으로 하는 기판 처리 방법.
  30. 공정 챔버에 설치된 기판 지지부에 복수의 기판들을 일정한 간격으로 안착시키는 단계(A);
    상기 복수의 기판들이 안착된 기판 지지부를 회전시키는 단계(B); 및
    복수의 접지 전극 부재 사이에 마련된 가스 분사 공간을 포함하도록 형성되어 상기 기판 지지부 상에 일정한 간격으로 배치된 복수의 가스 분사 모듈 각각을 통해 상기 기판 지지부 상에 가스를 분사하는 단계(C)를 포함하여 이루어지고,
    상기 단계(C)에서, 상기 복수의 가스 분사 모듈 중 적어도 하나는 상기 접지 전극 부재와 교대로 배치된 플라즈마 전극 부재에 인가되는 플라즈마 전원에 따라 상기 가스 분사 공간에 플라즈마를 형성하는 것을 특징으로 하는 기판 처리 방법.
  31. 제 30 항에 있어서,
    상기 플라즈마는 상기 가스 분사 공간에 공급되는 가스를 플라즈마화하고,
    상기 플라즈마화된 가스는 상기 기판 지지부의 소정 영역에만 분사되는 것을 특징으로 하는 기판 처리 방법.
  32. 제 31 항에 있어서,
    상기 가스는 소스 가스, 반응 가스 및 퍼지 가스 중 어느 한 종류의 가스인 것을 특징으로 하는 기판 처리 방법.
KR1020120006951A 2012-01-20 2012-01-20 기판 처리 장치 및 기판 처리 방법 KR101954758B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120006951A KR101954758B1 (ko) 2012-01-20 2012-01-20 기판 처리 장치 및 기판 처리 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120006951A KR101954758B1 (ko) 2012-01-20 2012-01-20 기판 처리 장치 및 기판 처리 방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020190022982A Division KR102076512B1 (ko) 2019-02-27 2019-02-27 기판 처리 방법

Publications (2)

Publication Number Publication Date
KR20130085842A true KR20130085842A (ko) 2013-07-30
KR101954758B1 KR101954758B1 (ko) 2019-03-06

Family

ID=48995924

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120006951A KR101954758B1 (ko) 2012-01-20 2012-01-20 기판 처리 장치 및 기판 처리 방법

Country Status (1)

Country Link
KR (1) KR101954758B1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016526A1 (ko) * 2013-07-31 2015-02-05 주성엔지니어링(주) 기판 처리 장치
KR20150051834A (ko) * 2013-11-05 2015-05-13 주성엔지니어링(주) 기판 처리 장치
WO2017030414A1 (ko) * 2015-08-20 2017-02-23 주성엔지니어링(주) 기판 처리 장치 및 기판 처리 방법
CN109643641A (zh) * 2016-08-30 2019-04-16 周星工程股份有限公司 基板处理装置
KR102224709B1 (ko) * 2020-05-20 2021-03-08 주성엔지니어링(주) 기판 처리 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090008799A (ko) * 2007-07-19 2009-01-22 주식회사 아이피에스 박막증착장치, 박막증착방법 및 반도체 소자의 갭-필 방법
KR20100025699A (ko) * 2008-08-28 2010-03-10 다이나믹솔라디자인 주식회사 용량 결합 플라즈마 반응기 및 이를 이용한 플라즈마 처리 방법 및 이것에 의해 제조된 반도체 장치
KR20110072336A (ko) * 2009-12-22 2011-06-29 주식회사 아토 기판처리장치
KR20110133169A (ko) * 2010-06-04 2011-12-12 주성엔지니어링(주) 원료 물질 공급 장치 및 이를 구비하는 기판 처리 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090008799A (ko) * 2007-07-19 2009-01-22 주식회사 아이피에스 박막증착장치, 박막증착방법 및 반도체 소자의 갭-필 방법
KR20100025699A (ko) * 2008-08-28 2010-03-10 다이나믹솔라디자인 주식회사 용량 결합 플라즈마 반응기 및 이를 이용한 플라즈마 처리 방법 및 이것에 의해 제조된 반도체 장치
KR20110072336A (ko) * 2009-12-22 2011-06-29 주식회사 아토 기판처리장치
KR20110133169A (ko) * 2010-06-04 2011-12-12 주성엔지니어링(주) 원료 물질 공급 장치 및 이를 구비하는 기판 처리 장치

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016526A1 (ko) * 2013-07-31 2015-02-05 주성엔지니어링(주) 기판 처리 장치
CN105453224A (zh) * 2013-07-31 2016-03-30 周星工程股份有限公司 基板处理设备
CN105453224B (zh) * 2013-07-31 2018-05-22 周星工程股份有限公司 基板处理设备
CN108546931A (zh) * 2013-07-31 2018-09-18 周星工程股份有限公司 基板处理设备
KR20150051834A (ko) * 2013-11-05 2015-05-13 주성엔지니어링(주) 기판 처리 장치
WO2017030414A1 (ko) * 2015-08-20 2017-02-23 주성엔지니어링(주) 기판 처리 장치 및 기판 처리 방법
US20180269078A1 (en) * 2015-08-20 2018-09-20 Jusung Engineering Co., Ltd. Substrate treatment device and substrate treatment method
CN109643641A (zh) * 2016-08-30 2019-04-16 周星工程股份有限公司 基板处理装置
KR102224709B1 (ko) * 2020-05-20 2021-03-08 주성엔지니어링(주) 기판 처리 장치

Also Published As

Publication number Publication date
KR101954758B1 (ko) 2019-03-06

Similar Documents

Publication Publication Date Title
KR101503512B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR102014877B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR20170022459A (ko) 기판 처리 장치 및 기판 처리 방법
KR101954758B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR101690971B1 (ko) 기판 처리 장치
KR101561675B1 (ko) 기판 처리 장치
KR101929481B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR101863652B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR20130090287A (ko) 기판 처리 장치 및 기판 처리 방법
KR101854242B1 (ko) 기판 처리 장치 및 이를 이용한 기판 처리 방법
KR101834984B1 (ko) 기판 처리 장치 및 이를 이용한 기판 처리 방법
KR101977917B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR102076512B1 (ko) 기판 처리 방법
KR20140032466A (ko) 기판 처리 장치
KR20170131318A (ko) 기판 처리 장치
KR102046391B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR20140006505A (ko) 기판 처리 장치
KR20190051929A (ko) 기판 처리 장치
KR101987138B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR102405776B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR102567720B1 (ko) 기판 처리 장치
KR102051611B1 (ko) 기판 처리 장치
KR102029952B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR20130141409A (ko) 기판 처리 장치 및 기판 처리 방법
KR102176986B1 (ko) 기판 처리 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
A107 Divisional application of patent
GRNT Written decision to grant