WO2015034000A1 - イムノグロブリン結合ドメイン多量体 - Google Patents

イムノグロブリン結合ドメイン多量体 Download PDF

Info

Publication number
WO2015034000A1
WO2015034000A1 PCT/JP2014/073325 JP2014073325W WO2015034000A1 WO 2015034000 A1 WO2015034000 A1 WO 2015034000A1 JP 2014073325 W JP2014073325 W JP 2014073325W WO 2015034000 A1 WO2015034000 A1 WO 2015034000A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
domain
immunoglobulin
lysine
binding
Prior art date
Application number
PCT/JP2014/073325
Other languages
English (en)
French (fr)
Inventor
英司 真島
厚志 島
Original Assignee
プロテノバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by プロテノバ株式会社 filed Critical プロテノバ株式会社
Priority to JP2015535514A priority Critical patent/JP6456831B2/ja
Priority to US14/916,316 priority patent/US10208094B2/en
Priority to EP14842570.5A priority patent/EP3042912A4/en
Publication of WO2015034000A1 publication Critical patent/WO2015034000A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/305Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F)
    • C07K14/31Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F) from Staphylococcus (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/12Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
    • C07K16/1267Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria
    • C07K16/1271Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria from Micrococcaceae (F), e.g. Staphylococcus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues

Definitions

  • the present invention relates to a protein having affinity for immunoglobulin, an insoluble carrier on which the protein is immobilized, and a method for separating and purifying immunoglobulin using the insoluble carrier, and more specifically, affinity affinity chromatography.
  • the present invention relates to a multimer of immunoglobulin-binding proteins having improved properties as a sex ligand, that is, a multimer linked to immunoglobulin-binding domains.
  • the present invention further relates to a carrier for immobilizing a multimer of immunoglobulin-binding protein whose orientation is controlled and to use for affinity-separation of immunoglobulin.
  • the present inventors have so far selected a C domain having high alkali stability from the five immunoglobulin binding domains of the protein A gene of Staphylococcus, and partially changing the amino acid sequence thereof to change the lysine residue.
  • Immunoglobulin binding that includes an immunoglobulin binding domain that can be controlled in orientation so that it does not inhibit immunoglobulin binding by positioning the immunoglobulin binding site so that it is not blocked by the immobilization.
  • Patent Document 1 Invented a protein (Patent Document 1).
  • cysteine is introduced at the C-terminus of the protein, and orientation-controlled immobilization at one position is performed by a gel carrier and a disulfide bond (Non-patent Document 1) or a thioether bond (Patent Document 2). It has been broken. There is also an attempt to control immobilization using the N-terminal ⁇ -amino group (Patent Document 3) or C-terminal carboxyl group (Patent Document 5) of an immunoglobulin-binding protein in which the lysine residue of the protein is substituted with another amino acid. Has been made.
  • Non-Patent Document 1 a cysteine is introduced into the C-terminal of the Z domain obtained by modifying the B domain of protein A, and the monomer is fixed to thiopropyl sepharose at one position via an SS bond.
  • dimers and pentamers are prepared, it is described that the carrier on which the pentamer is immobilized has the same IgG binding amount as the dimer-immobilized carrier.
  • Non-Patent Document 2 a multimer in which four B domains of protein A are linked is prepared, but the activity is equivalent to that of natural protein A (SPA) consisting of five binding domains. Tetramer and pentamer are reported to be equivalent. In this paper, the amount of precipitate of the formed complex is measured, but immobilization on a gel carrier and evaluation of its binding ability are not made.
  • SPA natural protein A
  • Non-Patent Document 3 a Z-domain monomer, dimer, pentamer, and 10-mer have been prepared, but although they have been confirmed to have IgG binding activity, they are immobilized on a gel carrier. Neither is it performed, nor is the IgG binding measurement of the immobilized carrier.
  • Patent Document 4 the C-terminal carboxyl group is orientation-controlled and immobilized.
  • a dimer in which two domains are linked has almost the same strength of binding as a heteropentamer native protein A. It is said that there is.
  • Patent Document 2 a cysteine is introduced into the C-terminal of the amino acid sequence of a native protein A pentamer, and a carrier having high immunoglobulin binding ability is prepared by orientation control immobilization via the thiol group.
  • Patent Document 2 describes that the pentameric IgG molar binding ratio is 2 to 3.
  • Patent Documents 3 and 5 describe 2 to 5 repetitions of the binding domain, but the optimal number of repetitions is not clarified.
  • Patent Document 6 it is described in paragraph [0033] that the tetramer is the best embodiment among the dimers to pentamers of the alkali-stabilized Z domain variant.
  • Japanese Patent No. 4179517 Japanese Patent No. 4117903 JP 2008-266219 A Japanese Patent Laid-Open No. 2005-112827 Japanese Patent No. 5004165 Japanese Patent No. 4391830
  • the present invention is the result of grasping the beginning of solving the problems in the prior art through the following thought process and finding the solution. That is, it is considered that the amount of immobilized immunoglobulin-binding protein increases by immobilizing with orientation control, and the amount of IgG binding increases in proportion to the number of IgG-binding domains. Then, it is considered that the amount of IgG binding can be increased by increasing the amount of immobilized immunoglobulin-binding protein multimer in which the binding domains are repeatedly linked. Although it has been studied in the range of 2 to 5 mer, the number of monomers to be linked and the amount of IgG bound thereto are sufficient for immobilization by controlling the orientation of multimers exceeding 5 mer. There is no examination.
  • IgG binding domains can be immobilized by controlling the orientation, it is considered that more IgG can be bound.
  • IgG having a molecular weight of about 150,000
  • the immunoglobulin binding amount of the immunoglobulin binding protein immobilized on the carrier is proportional to the amount of the binding domain, but is greatly affected by the carrier structure such as pore size, space volume, and effective surface area.
  • the carrier structure such as pore size, space volume, and effective surface area.
  • the binding domain In a multimer that has been immobilized by orientation control, the binding domain extends into the space and becomes a highly mobile structure, which increases the chance of contact with immunoglobulin and increases binding, but it is affected by the pore size of the carrier. For this reason, the number of binding domains of a multimer and the amount of immunoglobulin binding are not necessarily in a proportional relationship.
  • the amount of the multimer immobilized on the carrier is increased, the amount of binding decreases due to steric hindrance in which immunoglobulin molecules are spatially adjacent and interfere with each other. It is to be. Since such various factors affect the binding ability of the immunoglobulin-binding protein-immobilized carrier, the relationship between the repeating structure of the binding domain of the multimer and the amount of immunoglobulin binding has not been clear.
  • the object of the present invention is to bind the binding domain of a multimer of immunoglobulin-binding protein that is orientation-controlled and immobilized on the carrier in order to maximize the amount of immunoglobulin binding of the affinity-gel carrier used for immunoglobulin purification. Is to find an optimal multimeric structure showing the maximum amount of immunoglobulin binding with a small amount of immobilization.
  • an immunoglobulin-binding domain that is located at the N-terminus or C-terminus and contains an amino acid residue that is covalently bound to a carrier by an immobilization reaction on an insoluble carrier;
  • an immunoglobulin binding domain that does not contain an amino acid residue that reduces the immunoglobulin binding activity of the carrier obtained by the immobilization reaction, and that consists of an amino acid sequence that goes to the C-terminal side with the left side as the N-terminus formula: (R1) n- (R2) m or (R2) m- (R1) n
  • n (R1) domains may or may not have the same sequence.
  • the total number of domains (n + m) is 6 to 10, An immunoglobulin binding protein characterized by satisfying the above conditions and having the property of being immobilized on an insoluble carrier via an amino acid residue of the (R2) domain.
  • the lysine residue is an amino acid sequence obtained by substituting a lysine residue that decreases the immunoglobulin binding activity of the amino acid with an amino acid other than lysine, and the (R2) domain is covalently bonded to the carrier by an immobilization reaction to an insoluble carrier.
  • the immunoglobulin binding protein according to (1) above which is an amino acid sequence containing a group.
  • the (R2) domain of the above structural formula reduces the immunoglobulin binding activity of the carrier obtained by the immobilization reaction compared to the case where it does not exist due to the presence in the sequence having the same characteristics as the (R1) domain.
  • (R1) In addition to the amino acid sequence not containing an amino acid residue, (R1) consisting of a sequence in which an amino acid sequence containing two or more lysine residues is added to the end to which the domain is not linked (1) or ( The immunoglobulin binding protein according to 2).
  • the (R2) domain of the above structural formula is an amino acid sequence of an immunoglobulin binding protein, or an amino acid sequence in which some lysine residues in the amino acid sequence of an immunoglobulin binding protein are substituted with amino acids other than lysine, or
  • the amino acid sequence of an immunoglobulin binding protein consists of an amino acid sequence in which some lysine residues are substituted with amino acids other than lysine, and in addition, some amino acid residues other than lysine are substituted with lysine.
  • the immunoglobulin binding protein according to (1) or (2).
  • Each of the immunoglobulin binding domains represented by (R1) and (R2) in the above structural formula is composed of a domain modified based on the amino acid sequence of the Staphylococcus protein A immunoglobulin binding domain.
  • the immunoglobulin binding protein according to any one of (1) to (4) above.
  • (6) the structural formula of (R2) domain, based on the amino acid sequence of the immunoglobulin binding domain of Staphylococcus (Staphylococcus) Protein A, in addition to the 35-position only, or 35 out of position 4,7,35
  • the immunoglobulin binding protein according to (5) above comprising an immunoglobulin binding domain in which an original lysine residue is substituted with an amino acid other than lysine at one or more other positions.
  • the (R1) domain of the above structural formula is based on the amino acid sequence of the immunoglobulin binding domain of Staphylococcus protein A at positions 1 to 3 of positions 4, 7, and 35.
  • a protein having a multimeric structure for example, a modified protein A
  • monomers (domains) of immunoglobulin binding proteins are linked
  • an insoluble carrier by controlling the orientation
  • a small amount of immobilization is achieved.
  • An optimal multimeric structure showing the maximum amount of immunoglobulin binding has been found. So far, the improved immunoglobulin-binding protein has been made by linking the binding domains in the range of 2-5, and a large amount was immobilized on the carrier to such an extent that the immunoglobulin activity was not inhibited.
  • the maximum immunoglobulin binding can be achieved with a certain amount of carrier by using a carrier on which a small amount of immunoglobulin binding protein is immobilized, without being limited to the type of immobilization reaction to the carrier.
  • a carrier on which a small amount of immunoglobulin binding protein is immobilized without being limited to the type of immobilization reaction to the carrier.
  • it contributes to reduction of antibody production cost and efficiency.
  • the present invention is an immunoglobulin-binding domain (R2) that is located at the N-terminus or C-terminus and contains an amino acid residue that is covalently bound to a carrier by an immobilization reaction on an insoluble carrier, and when it does not exist by being present in the sequence
  • R2 consists of an immunoglobulin binding domain (R1) that does not contain an amino acid residue that reduces the immunoglobulin binding activity of the carrier obtained by the immobilization reaction, and consists of an amino acid sequence that goes to the C-terminal side with the left side as the N-terminus.
  • R2 domains arranged at the terminal are immobilized on an insoluble carrier, and 5 to 9 linked (R1) domains are not immobilized and are insoluble.
  • It is an immunoglobulin-binding protein consisting of a total of 6 to 10 immunoglobulin-binding domains, characterized by a highly mobile structure on the carrier.
  • highly selective immobilization is achieved by utilizing a reaction with amino acids such as highly reactive lysine residues and cysteine residues. The reaction becomes possible.
  • (R1) domains construct multimers as amino acid sequences that do not contain active amino acids
  • (R2) domains as amino acid sequences that contain active amino acids.
  • an immobilization reaction via an amino group is used for immobilization on the carrier, immobilization on the carrier from among the lysine residues contained in the amino acid sequence of the immunoglobulin binding domain used for the (R2) domain
  • An (R2) domain capable of globulin binding and enhanced immobilization reaction can be produced.
  • Such an (R1) domain linked to the (R2) domain has an immobilization reaction with an insoluble carrier, compared to the case where the original lysine residue in the amino acid sequence is not present when present in the sequence.
  • the present invention can be carried out by using an immunoglobulin binding domain comprising a sequence in which a lysine residue that decreases the immunoglobulin binding activity of the obtained carrier is substituted with an amino acid other than lysine.
  • a peptide containing a plurality of lysines at the end of an amino acid sequence to which (R1) domain is not bonded to (R2) domain, in which the original lysine residue is substituted with an amino acid other than lysine as in (R1) domain By adding, it is possible to immobilize a multimer with controlled orientation via an lysine residue on an insoluble carrier.
  • the present invention can be carried out by newly introducing a cysteine residue into the immunoglobulin binding domain used as the (R2) domain.
  • the linked (R1) domain consists of a sequence not containing cysteine.
  • An immobilization reaction on a carrier with a disulfide bond or maleimide group having high selectivity for a thiol group can be used for immobilization of a multimer introduced with cysteine.
  • an epoxy group often used industrially can easily form a thioether bond with cysteine, and thus may be used for immobilizing a cysteine-introduced multimer on a carrier.
  • a method of fixing a thiol group described in Patent Literature 5 to an amino group-containing immobilization carrier by cyanation for immobilization of a cysteine residue or a method described in Patent Literature 2
  • a method of immobilizing a multimer having a cysteine residue on an amino group-containing carrier using 4- (N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC) as a cross-linking agent can also be used.
  • the immunoglobulin binding domain (R1) of the above structural formula is immobilized on an insoluble carrier as compared with the case where the immunoglobulin binding domain (R1) in the amino acid sequence is not present when it is present in the sequence. It is an amino acid sequence obtained by substituting lysine residues that reduce the immunoglobulin binding activity of the carrier obtained by the reaction with amino acid residues other than lysine and cysteine, and the immobilized binding domain (R2) becomes an insoluble carrier.
  • each immunoglobulin binding domain represented by (R1) and (R2) Staphylococcus protein A binding domain It can consist of a domain modified based on the no acid sequence.
  • the immunoglobulin binding domain (R1) in this case may be included as long as it is a lysine residue that does not have a difference in immunoglobulin binding activity when it is originally substituted in the immobilization reaction.
  • the immunoglobulin-binding domain (R1) is based on the amino acid sequence of the immunoglobulin-binding domain of Staphylococcus protein A, and lysine other than lysine is present at one or more of positions 4, 7, and 35. Immobilization of (R1) by comprising an immunoglobulin-binding domain substituted with an amino acid, or by substituting one to four of the original lysine residues at positions 42, 49, 50, and 58 with amino acids other than lysine By reducing the number of lysine residues involved in the formation, the immobilized binding of (R2) to the carrier can be enhanced.
  • R2 is based on the amino acid sequence of the immunoglobulin binding domain of Staphylococcus protein A, only position 35 of positions 4, 7, and 35, or one or more positions in addition to position 35 Or an immunoglobulin-binding domain in which lysine is substituted with an amino acid other than lysine, or 1 to 6 amino acids among amino acids 40, 43, 46, 53, 54 and 56 Is substituted with lysine, whereby the binding to the carrier can be enhanced.
  • the present invention includes the following immunoglobulin-binding protein multimers.
  • the immunoglobulin binding domain (R1) consists of an amino acid sequence that does not contain lysine, and the immobilized binding domain (R2) replaces all lysine residues in the amino acid sequence of the immunoglobulin binding protein with amino acids other than lysine.
  • a multimer of immunoglobulin binding proteins comprising a sequence in which an amino acid sequence containing two or more lysine residues is added to the terminal of the amino acid sequence to which (R1) is not linked in addition to the amino acid sequence thus formed.
  • the immunoglobulin binding domain (R1) consists of an amino acid sequence that does not contain lysine
  • the amino acid sequence that contains the lysine residue of the immobilized binding domain (R2) to the carrier is the amino acid sequence of an immunoglobulin binding protein
  • an immunoglobulin binding protein comprising an amino acid sequence in which some lysine residues in the amino acid sequence are substituted with amino acids other than lysine, or an amino acid sequence in which some amino acid residues other than lysine are substituted with lysine Multimers.
  • the present invention also provides an insoluble carrier at the N-terminal or C-terminal of a multimer having 5 or more monomers (R1) having one immunoglobulin-binding site but not involved in immobilization.
  • the present invention relates to an insoluble carrier on which a multimer in which a monomer (R2) having 1 to 2 immunoglobulin binding domains to be immobilized is arranged is immobilized.
  • the general formula is (R1) n- (R2) m or (R2) m- (R1) n.
  • the lysine residue at the position where the immunoglobulin binding activity of the carrier obtained by the immobilization reaction to the insoluble carrier is reduced is replaced with an amino acid other than lysine to control the orientation.
  • the (R2) domain is only the 35th position among the 4, 7, and 35 positions of the protein A domain by the same method as the method already invented by the present inventors (Patent Document 1), or the 35th position.
  • Patent Document 1 a modified form in which an original lysine residue is substituted with an amino acid other than lysine at one or more positions, or a 3 ⁇ -helix that is not directly involved in immunoglobulin binding in addition to the modification. It is possible to prepare and arrange a variant in which 1 to 6 of amino acids at positions 40, 43, 46, 53, 54 and 56 are substituted with lysine.
  • cysteine is introduced into the (R2) domain.
  • R2 Any amino acid in the immunoglobulin binding domain used as a domain may be substituted with cysteine, but in the case of an immunoglobulin binding domain of protein A, the amino acid of the third ⁇ -helix that is not directly involved in immunoglobulin binding It is more preferable to substitute cysteine.
  • a method of adding a cysteine or a peptide containing cysteine to the N-terminal or C-terminal is preferred.
  • All of the linking domains consist of (R1) and may have a structure in which a cysteine or a peptide containing cysteine is added to the N-terminus or C-terminus. In this case, a sequence containing cysteine is added (R1)
  • the domain used for immobilization is included in the meaning of (R2) domain.
  • a lysine residue may be included in the amino acid sequence of (R1) and (R2).
  • the domain may contain a lysine residue, but the epoxy group is not as high as the thiol group but has a relatively high reactivity with the amino group.
  • Staphylococcus protein A binding domains E, D, A, B and C can be used as the immunoglobulin binding domain immobilized on the carrier of the present invention.
  • any domain may be used. However, when immobilization via a lysine residue is performed, it is stable to alkali among the five domains. It is preferable to use a C domain with a large number of lysine residues after position 39, and a Z domain sequence that has been used as an affinity ligand for immunoglobulin may be used, but it is already known that chemical stability is increased. It is most preferable to adopt the C domain sequence (shown in SEQ ID NO: 1 in the sequence listing) in which the glycine at position 29 is substituted with alanine.
  • substitution with arginine a basic amino acid of the same nature as lysine
  • substitution with arginine is a commonly used technique.
  • the object can be achieved by substitution with other amino acids other than lysine including arginine.
  • Standard techniques for producing the immunoglobulin binding proteins of the present invention include, for example, Frederick M. et al.
  • Known gene recombination techniques described in Ausubel et al., Current Protocols In Molecular Biology, etc. can be used. That is, by transforming an expression vector containing a nucleic acid sequence encoding the target modified protein into a host such as Escherichia coli and culturing the cells in an appropriate liquid medium, a larger amount than the cultured cells. Can be acquired economically.
  • one immunoglobulin-binding domain of protein A is a small protein consisting of about 60 amino acids, for example, a DNA encoding a desired amino acid sequence is converted into a synthetic oligonucleotide consisting of several tens of bases.
  • the target expression vector can be obtained by dividing and synthesizing them, ligating them by a ligation reaction with DNA ligase, and inserting them into a plasmid vector.
  • a nucleic acid sequence using an optimal codon of Escherichia coli is generally used by those skilled in the art.
  • the DNA sequence mutation to achieve the desired amino acid substitution is performed by using a synthetic oligo DNA incorporating a mismatched base pair as a primer for polymerase chain reaction, using the unmodified DNA as a template. It can be easily introduced into the intended site using a wrap extension method or a cassette mutation method.
  • a cDNA encoding a multimeric protein was prepared by linking a cDNA encoding one (R1) immunoglobulin binding domain and a cDNA encoding one (R2) amino acid sequence.
  • R1 immunoglobulin binding domain
  • R2 a cDNA encoding one
  • any vector such as a plasmid, fuzzy, virus, etc. that can be replicated in a host cell can be used.
  • commercially available expression vectors include pQE vectors (Qiagen), pDR540, pRIT2T (GE Healthcare Biosciences), pET vectors (Merck).
  • the expression vector should be used by selecting an appropriate combination with the host cell. For example, when E. coli is used as a host cell, a combination of a pET vector and a BL21 (DE3) E. coli strain or a combination of a pDR540 vector and a JM109 E. coli strain is preferable.
  • the modified protein of the present invention can be recovered in a soluble fraction by collecting cultured cells by centrifugation or the like and crushing them by treatment using ultrasonic waves, a French press or the like.
  • Purification of the modified protein can be performed by appropriately combining known separation and purification techniques. Specifically, in addition to separation techniques such as salting out, dialysis, and ultrafiltration, purification methods such as hydrophobic chromatography, gel filtration chromatography, ion exchange chromatography, affinity-chromatography, and reverse phase chromatography can be used.
  • the material of the insoluble carrier for immobilizing the immunoglobulin binding domain multimeric protein of the present invention is not particularly limited. Examples thereof include naturally derived polymer materials such as chitosan, dextran, cellulose and agarose, and synthetic polymers such as vinyl alcohol, polyimide and methacrylate. In another form, an inorganic carrier such as silica may be used.
  • the shape of the insoluble carrier is not particularly limited, and for example, a hollow fiber membrane shape, a monolith shape, or a bead shape can be used. The beads are generally suitable for affinity carriers having a high immunoglobulin-binding ability because the surface area per volume is larger than that of the membrane.
  • the carrier used for immobilization for example, a porous one having a plurality of pores is used. Since the multimer has a large space occupying volume, the pore size or network structure of the porous carrier requires a space volume that allows immunoglobulins to easily approach and bind to the immobilized multimer.
  • the protein exclusion limit molecular weight of the porous carrier is preferably 1,000,000 to 200,000,000, and more preferably 4,000,000 to 100,000,000.
  • the average particle size of the carrier is preferably 20 to 200 ⁇ m, more preferably 30 to 100 ⁇ m.
  • the protein when making an affinity carrier, can be coupled with a coupling agent such as cyanogen bromide, epichlorohydrin, N-hydroxysuccinimide, tosyl / tresyl chloride, carbodiimide, glutaraldehyde, hydrazine or carboxyl.
  • a coupling agent such as cyanogen bromide, epichlorohydrin, N-hydroxysuccinimide, tosyl / tresyl chloride, carbodiimide, glutaraldehyde, hydrazine or carboxyl.
  • a coupling agent such as cyanogen bromide, epichlorohydrin, N-hydroxysuccinimide, tosyl / tresyl chloride, carbodiimide, glutaraldehyde, hydrazine or carboxyl.
  • it is immobilized on a carrier using a thiol activated carrier.
  • Such coupling reactions are well known in the art
  • the immunoglobulin-binding domain multimeric protein of the present invention is characterized in that it is bound to a carrier via an amino acid residue arranged so that its orientation can be controlled, and can be immobilized via an amino group.
  • a carrier having an active group that can react with an amino group to form a covalent bond such as a tresyl group, an epoxy group, a carboxyl group, or a formyl group can be used.
  • Toyopar AF-Tresyl-650 Commercially available carriers include Toyopar AF-Tresyl-650, Toyopar AF-Epoxy-650, Toyopar AF-carboxy-650, Toyopar AF-Formyl-650 (above, Tosoh Corporation) , NHS-activated cephalose, cyanogen bromide-activated cephalose, epoxy-activated cephalose (GE Healthcare Biosciences), Profinity epoxide (Bio-Rad), glyoxal-agaro -Sugar (Agaroo Bee Technologies Co., Ltd.), Cellufine Formyl (JNC Corporation), etc.
  • thiopropyl cephalose For immobilization of cysteine residues via thiol groups, thiopropyl cephalose, epoxy-activated cephalose (GE Healthcare Bioscience Co., Ltd.), Profinity epoxide (Bio-Rad Co., Ltd.) Can be used.
  • the thus prepared affinity carrier of the present invention is packed in an appropriate column and used for affinity chromatography in the process of isolating and purifying immunoglobulins such as IgA, IgG and IgM.
  • Patent Document 1 describes a specific method for producing a modified protein in which an amino acid residue at a specific position is substituted with a lysine residue, or a lysine residue at a specific position is substituted or deleted. .
  • a (R1) domain a modified form in which all lysine residues at positions 4, 7, 35, 42, 49, 50 and 58 of the C ′ domain are substituted with amino acids other than lysine.
  • PN-95f SEQ ID NO: 2
  • PCR was performed using a DNA fragment encoding the C ′ domain as a template, and a synthetic oligonucleotide corresponding to each modified portion as a primer DNA, and PN-95f A cDNA fragment encoding the amino acid sequence was prepared.
  • the lysine residues at positions 4, 7 and 35 of the C ′ domain are all replaced with amino acids other than lysine as the (R2) domain, and positions 40, 43 and 46 are also substituted.
  • a modified PN-26f (SEQ ID NO: 3) in which lysine residues are accumulated in the non-IgG binding region by substituting each amino acid residue at positions 53 and 53 with the lysine residue.
  • a cDNA fragment was prepared.
  • the first sequence of PN-95f has a translation initiation codon including a recognition sequence (CATATG) of the restriction enzyme NdeI, and glutamine-alanine-proline at positions 55-57 is encoded.
  • a synthetic oligonucleotide (SEQ ID NO: 6) having a first sequence common to PN-26f and PN-95f following the last sequence of PN-95f including the recognition sequence of restriction enzyme EcoO109I (AGGCCCCC) is a forward primer.
  • the 55-57 position sequence does not include the recognition sequence of EcoO109I, and the DNA sequence coding for the last amino acid is followed by a translation stop codon, followed by the restriction enzyme BamHI.
  • a cDNA fragment encoding the amino acid sequence of PN-26f was prepared by PCR using reverse synthetic oligonucleotides (SEQ ID NO: 7) each having a recognition sequence of.
  • SEQ ID NO: 7 reverse synthetic oligonucleotides
  • the thus-prepared two DNA fragments encoding PN-95f and PN-26f were cut with the restriction enzyme EcoO109I and then ligated, thereby ligating with the recognition sequence of EcoO109I [PN-95f. ]-[PN-26f] dimer cDNA was prepared. This dimeric cDNA fragment was subcloned on the pUC19 plasmid from which the EcoO109I recognition sequence had been deleted in advance.
  • a cDNA fragment encoding PN-95f was used as a template DNA, and a cDNA fragment of PN-95f containing the recognition sequence of restriction enzyme EcoO109I was obtained by PCR using the synthetic oligonucleotides of SEQ ID NO: 5 and SEQ ID NO: 6. Created.
  • the plasmid encoding the [PN-95f]-[PN-26f] dimer linked by the EcoO109I recognition sequence obtained earlier was digested with EcoO109I, and the cleavage site was used with alkaline phosphatase.
  • a PN-95f cDNA fragment containing the EcoO109I recognition sequence before and after was cleaved with EcoO109I, and the obtained fragment was inserted by ligation reaction.
  • Escherichia coli DH-5 ⁇ transformed with this ligation reaction product was spread on an agar medium containing ampicillin, and each clone was cultured from the colonies that appeared, and the plasmids of each clone were analyzed. did.
  • the 4, 5, 6, 8, 10 and 12 dimers thus obtained were named PN-421, PN-521, PN-621, PN-821, PN-1021 and PN-1221, respectively.
  • the cDNA of hexamer PN-623 [PN-95f] 5- [PN-99f]) in which the last PN-26f is replaced with PN-99f in which a lysine residue is located only at position 58 of PN-95f
  • a cDNA encoding the [PN-95f]-[PN-99f] dimer ligated with the EcoO109I recognition sequence was first converted into the pUC19 plasmid from which the EcoO109I recognition sequence had been deleted.
  • the PN-95f cDNA fragment having EcoO109I recognition sequence before and after was obtained by subcloning the above and the EcoO109I recognition between [PN-95f]-[PN-99f].
  • Four clones inserted at the site were selected. Further, a hexamer in which only one domain variant PN-26f in which lysine residues are accumulated is arranged at the N-terminus, and five domain variants PN-95f not containing lysine residues are linked to the C-terminal side,
  • the [PN-26f]-[PN-95f] dimer first linked by the recognition sequence of EcoO109I CDNA was previously subcloned on the pUC19 plasmid from which the EcoO109I recognition sequence had been deleted, and the EcoO109I recognition sequence was added to the EcoO109I recognition site in the same manner as described above.
  • the pUC19 plasmid obtained by subcloning each multimeric cDNA obtained as described above was treated with restriction enzymes NdeI and BamHI to cut out each cDNA fragment, which was then inserted into the E. coli expression vector pET9a and expressed as an expression plasmid.
  • the nucleic acid sequence of each expression plasmid was analyzed using a CEQ8000 type DNA sequencer (Beckman Coulter, Inc.) to confirm that the sequence was as designed.
  • BL21 (DE3) competent cells (Merck Co., Ltd.) were transformed with each expression plasmid to obtain an expression strain for each multimeric protein.
  • E. coli strain was seed-cultured for 12 hours in LB medium containing 25 mg / L kanamycin and 2.0% glucose, and this seed culture was mixed with 25 mg / L kanamycin and 0.8 mg. After inoculating 2 ⁇ TY medium containing% glucose and culturing at 37 ° C. for 16 hours to express the target protein, E. coli was collected by centrifugation. Next, the collected E. coli was suspended in 50 mM MES buffer (pH 6.0), sonicated to disrupt the E. coli, and the target protein was recovered in the supernatant by centrifugation.
  • 50 mM MES buffer pH 6.0
  • FIG. 2 shows the amount of immunoglobulin binding (mg) per mL of gel of each multimer.
  • a modified product ((R2) m- (R1) n) in which the (R2) domain is arranged on the N-terminal side of the multimer ((R1) n) in which the (R1) domain is repeated is prepared in the same manner.
  • -Immobilized on ru AF-formyl-650 gel carrier When the human IgG binding ability of the immobilized gel carrier was measured by the same method, an increase in the binding amount similar to that of the multimer in which the (R2) domain was arranged at the C-terminus could be confirmed.
  • hexamer PN-613 in which six (R2) domains are linked hexamer PN-621 in which (R2) domain is arranged at the C-terminal
  • hexamer PN in which (R2) domain is arranged at the N-terminal The comparison result of human IgG binding ability of -651 is shown in FIG. It is clear that the binding ability of multimers arranged at either the C-terminus or N-terminus is increased.
  • the modified multimer of the 4, 5, 6, 8, 10, 12 mer of the present invention and, as a comparison, a 6% cross-linked agarose gel carrier in which PN-413 is activated with a formyl group comprising a natural polymer material.
  • PN-413 a cross-linked agarose gel carrier in which PN-413 is activated with a formyl group comprising a natural polymer material.
  • FIG. 4 shows the results of measuring the amount of human IgG bound (mg) per mL of gel using these immobilized gel carriers.
  • the multimer having the terminal of the present invention as an immobilization domain showed a high binding amount as in the case of Toyopar AF-formyl-650 gel carrier.
  • Hexamer (PN-621) shows 1.37 times the binding amount of PN-413, and the binding amount of octamer (PN-821) and 10-mer (PN-1021) is equivalent to that of hexamer.
  • the 12-mer (PN-1221) had a binding amount of 94% of the binding amount of the hexamer (PN-621).
  • the pentamer (PN-521) was 1.05 times that of the tetramer (PN-421), and the 6, 8, and 10-mers showed a binding amount 1.13 times that of the tetramer.
  • the immobilization rate of each variant on the gel carrier was almost constant at 95% or more, in order to produce a gel carrier showing the highest IgG binding amount, hexamer, octamer, 10 amount It is preferable to fix the body.
  • the 10 mg / mL gel multimer used for immobilization is 1.45 ⁇ mol domain / mL gel for all multimers when converted to the amount of immunoglobulin binding domain.
  • the amount of immobilization domain of the hexamer was 1.38 ⁇ mol domain / mL gel, and the amount of human IgG bound in that case was 0.7 ⁇ mol / mL gel.
  • the IgG binding amount ratio is 0.51. That is, this shows that 3 molecules of IgG bind to 1 molecule of hexamer, and it was confirmed that 1 molecule of IgG binds per 2 domains.
  • the amount of immobilization reaction of each variant of 4, 6, 8, 10, 12-mer was formyl-activated 6% cross-linked at a concentration different from 5, 10, 15, 20 mg / mL gel. Immobilized on an agarose gel carrier, the amount of multimer immobilized and the amount of human IgG bound to each immobilized gel carrier were measured (FIG. 5). As a comparison, the measured value of PN-413 is shown in FIG. All modified multimers showed higher binding than PN-413 at 5 and 10 mg / mL gel concentrations, and increased immunoglobulin binding in proportion to the amount immobilized on the gel carrier.
  • PN-1021 and 12-mer (PN-1221) showed maximum values at 10 mg / mL gel, and the binding amount decreased at concentrations of 15 mg / mL gel and higher.
  • the octamer (PN-821) was the maximum at approximately the same value at 10 mg / mL and 15 mg / mL, and the hexamer (PN-621) increased to 15 mg / mL and showed the maximum value.
  • tetramer PN-421
  • the amount of binding gradually increased to 20 mg / mL.
  • the hexamer (PN-621) showed the maximum amount of binding with the smallest amount of immobilization.
  • hexamer, octamer, and 10mer can produce a gel carrier having a higher antibody binding ability than tetramer by immobilization at a gel concentration of 10 mg / mL.
  • the monomer (PN-621) is immobilized on a gel carrier at a gel amount of 15 mg / mL to produce an affinity-gel carrier having an excellent binding amount 1.15 times that of the tetramer (PN-421). I confirmed that I was able to.
  • each cDNA fragment was excised by treating with restriction enzymes NdeI and BamHI, and inserted into pET9a, which is an E. coli expression vector, to construct respective hexamer expression plasmids.
  • An expression plasmid is constructed for each multimeric cDNA obtained as described above in the same manner as in Example 1, and each nucleic acid sequence is analyzed using a DNA sequencer to confirm that the sequence is as designed. confirmed.
  • each expression plasmid was transformed into a BL21 (DE3) competent cell to obtain an expression strain for each multimeric protein.
  • Each expression strain was cultured by the same method as in Example 1 to express the target protein. After disrupting the resulting Escherichia coli cells, it was confirmed by SDS-polyacrylamide gel electrophoresis that the target protein was produced at each molecular weight.
  • PN-663 and PN-664 in which the lysine residue at position 4 was replaced with alanine and the lysine residues at positions 4 and 7 were replaced with alanine and threonine were compared with PN-661.
  • the amount of binding increased by 1.20 times and 1.42 times, respectively.
  • the binding amount was 1.63 times that of PN-661.
  • PN-613 in which six domains PN-26f are linked, exhibits an immunoglobulin binding activity of about 65% of that of PN-621.
  • the immobilization on the gel carrier is not controlled in orientation. Since PN-661 showed a binding amount of about 62% of PN-621, it can be judged that the orientation control of PN-661 has not been achieved at the time of immobilization. That is, in order to use the C domain as the (R1) domain, 1 to 3 of the 4, 7, and 35 positions originally existing in the sequence can be obtained without replacing all lysine residues with other amino acids. By substitution, it is possible to achieve immobilization that enhances immunoglobulin binding activity.
  • (R1) is a domain in which all lysine residues in the C domain are substituted with other amino acids, and in addition to (R2) in Example 1, lysine residues are substituted at positions 54 and 56.
  • a hexamer PN-667 was prepared using (R2) a domain in which a total of 6 lysines were introduced. Therefore, in addition to PN-26f used in Example 1, PN-28f in which residues 54 and 56 were newly substituted with lysine was prepared. This PN-28f (SEQ ID NO: 9) was placed at the C-terminus, and hexamer PN-667 was prepared by linking PN-95f described in Example 1 with (R1) in five.
  • lysine residues at the 4th, 7th and 35th positions from the C domain only the 35th position is substituted with another amino acid, and the 40th, 43rd, 46th and 53rd positions are replaced with lysine.
  • SEQ ID NO: 11) was prepared, and hexamer PN-669 was constructed using this as (R2).
  • the (R1) domain of PN-669 is the same as PN-621.
  • the variant was designed and constructed in the same manner as described in Example 1. That is, in preparing the cDNA of [PN-95f] 5- [PN-28f] (PN-667), 2 of [PN-95f]-[PN-28f] first ligated with the recognition sequence of EcoO109I was used.
  • the cDNA encoding the mer is obtained by subcloning on the pUC19 plasmid from which the EcoO109I recognition sequence has been deleted in advance, and the cDNA fragment of [PN-95f] having the EcoO109I recognition sequence before and after the cDNA fragment [ Four clones inserted at the EcoO109I recognition site between PN-95f] and [PN-28f] were selected.
  • An expression plasmid is constructed for each multimeric cDNA obtained as described above in the same manner as in Example 1, and each nucleic acid sequence is analyzed using a DNA sequencer to confirm that the sequence is as designed. confirmed.
  • each expression plasmid was transformed into a BL21 (DE3) competent cell to obtain an expression strain for each multimeric protein.
  • Each expression strain was cultured by the same method as in Example 1 to express the target protein. After disrupting the resulting Escherichia coli body, it was confirmed by SDS-polyacrylamide gel electrophoresis that the target protein was produced at each molecular weight.
  • PN-667 showed the same binding amount as human IgG binding amount 102 mg / mL of PN-621.
  • PN-669 also showed the same binding ability as PN-621.
  • PN-621 PN-669> PN-667.
  • the (R2) domain has IgG binding activity even when all six amino acid residues at positions 40, 43, 46, 53, 54 and 56 of the C domain are replaced with lysine.
  • PN-667 showed a high immobilization rate of 97% compared to 95% of PN-621 for the immobilization rate on the gel carrier.
  • the larger the number of substitutionally introduced lysines, the more the (R2) domain It can be seen that it is advantageous for immobilization.
  • “Comparative Example 1" The human IgG binding ability of the gel carrier on which the multimeric protein was immobilized by controlling the commercially available orientation and the gel carrier on which the multimer of the present invention was immobilized were compared.
  • a gel carrier rProtein A-sepharose FF, GE Healthcare Science Co., Ltd.
  • protein A having a natural type sequence is immobilized on an epoxy-activated cross-linked agarose gel carrier
  • 4 quantities As an example of a body, a gel carrier (MabSelect SuRe, GE) in which a tetramer having a cysteine residue introduced at the C-terminus of a tetramer in which four Z domains of protein A are linked is immobilized on an epoxy-activated crosslinked agarose gel carrier.
  • the agarose gel carrier on which the hexamer (PN-621) of the present invention is immobilized shows higher IgG binding ability than these commercially available products. It was confirmed. Since rProtein A-sepharose FF has immobilized multimers at a concentration of 6 mg / mL, Table 3 shows a comparison of binding amounts when PN-621 was immobilized on the same amount of 6 mg / mL gel.
  • PN-623 with one lysine residue at the C-terminus showed a human IgG binding amount of 34.5% of PN-621. Therefore, it is preferable to introduce two or more lysine residues into the (R2) domain. Since it has been confirmed that the ⁇ -amino group at the N-terminus has low reactivity and that the acetylation reaction of the ⁇ -amino group does not affect the immobilization of the variant, this comparative example is involved in the immobilization. The amino group is judged to be a C-terminal lysine residue.
  • (R1) is a modified domain in which 5 lysine residues in the C domain are substituted with other amino acids (R1), and (R2) is all except the C-terminal lysine of the C domain.
  • R2 is a modified domain in which lysine was added to the C-terminus.
  • R2 of PN-666 is the same sequence as (R1) except for the sequence added to the C-terminus.
  • the multimer was purified from the cell extract of the modified multimer in the same manner as in Example 1, and the purity was confirmed by SDS-polyacrylamide gel electrophoresis. As a result, the multimer was single at the theoretical molecular weight position. I confirmed that it was a band.
  • the purified multimer was immobilized on a formyl-activated 6% cross-linked agarose gel carrier at a gel concentration of 10 mg / mL in the same manner as in Example 1.
  • the amount of the multimer immobilized and the amount of human IgG bound to the immobilized gel carrier was measured.
  • the immobilization rate of the multimers showed a high immobilization rate of 95% or more.
  • PN-666 showed almost the same binding amount as 102 mg human IgG / mL gel binding amount of PN-621.
  • orientation-controllable immobilization can be achieved by adding a plurality of lysine residues that are used for immobilization at the C-terminus of the (R2) domain and adding a sequence that accumulates lysine. It was.
  • the carrier on which a multimer of the general formula (R1) n- (R2) m or (R2) m- (R1) n according to the present invention is immobilized provides an immunoglobulin-binding affinity-carrier having high binding ability at low cost. It can be used for the production of immunoglobulins in the field of antibody drugs and antibody diagnostics, removal of immunoglobulins from biological components, component analysis, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

課題:アフィニティ-クロマトグラフィ用の親和性リガンドとしての性質が改良されたイムノグロブリン結合タンパク質の多量体とその多量体を固定化してなる不溶性担体を提供する。 解決手段:不溶性担体への固定化反応によって担体と共有結合するアミノ酸残基を含むイムノグロブリン結合ドメイン(R2)と、配列中に存在することにより存在しない場合と比べて、固定化反応によって得られる担体のイムノグロブリン結合活性を減少させるアミノ酸残基を含まないイムノグロブリン結合ドメイン(R1)からなり、下記一般式: (R1)-(R2) 又は(R2)-(R1)で表され、(1)nは5以上9以下の整数である、(2)mは1又は2の整数である、(3)n個の(R1)ドメインは互いに同一の配列であってもなくてもよい、(4)ドメイン総数(n+m)が6乃至10個である、の各条件を満たすイムノグロブリン結合タンパク質。

Description

イムノグロブリン結合ドメイン多量体
 本発明は、イムノグロブリンに親和性のあるタンパク質、このタンパク質を固定化した不溶性担体、及びこの不溶性担体を利用したイムノグロブリンの分離精製方法に関するものであり、より詳しくは、アフィニティ-クロマトグラフィ用の親和性リガンドとしての性質が改良されたイムノグロブリン結合タンパク質の多量体、すなわち、イムノグロブリン結合ドメインを連結した多量体に関する。本発明は、さらに固定化を配向制御したイムノグロブリン結合タンパク質の多量体の固定化担体、及び、イムノグロブリンのアフィニティ-分離への使用に関する。
 近年、抗体医薬の急速な発展に伴った抗体の需要拡大により、抗体精製効率を高めるためにイムノグロブリン結合タンパク質を固定化した抗体精製用アフィニティ-ゲル担体の高い抗体結合能への要求が増大してきている。イムノグロブリン結合タンパク質の担体への固定化は、構成アミノ酸側鎖の反応性を利用して不溶性担体に固定化されるが、イムノグロブリン結合量を増加する方法としてタンパク質の配向性を制御した種々の固定化が試みられてきた。
本発明者らはこれまでに、スタフィロコッカスのプロテインA遺伝子の5個あるイムノグロブリン結合ドメインからアルカリ安定性が高いCドメインを選び、そのアミノ酸配列を部分的に改変することでリジン残基を介した担体への固定化に際して、イムノグロブリン結合部位が固定化で塞がれないように配置することでイムノグロブリンの結合を阻害しないように配向制御が可能なイムノグロブリン結合ドメインを含むイムノグロブリン結合タンパク質を発明している(特許文献1)。
他の試みとしては、タンパク質のC末端にシステインを導入し、ゲル担体とジスルフィド結合(非特許文献1)又はチオエ-テル結合(特許文献2)により1箇所での配向制御された固定化が行われている。またタンパク質のリジン残基を他のアミノ酸へ置換したイムノグロブリン結合タンパク質のN末端α-アミノ基(特許文献3)又はC末端カルボキシル基(特許文献5)を利用して固定化を制御する試みもなされている。
これまでに報告されているC末端に導入したシステイン残基、C末端カルボキシル基、N末端アミノ基を利用した1箇所の配向制御した固定化に関しては、イムノグロブリンG(IgG)結合量の増加を達成しているが、イムノグロブリン結合ドメインの多量体を構築する際の連結する単量体(ドメイン)の最適な連結個数はこれまでに必ずしも明らかとなってはいない。例えば、非特許文献1では、プロテインAのBドメインを改変したZドメインのC末端にシステインを導入してチオプロピルセファロ-スへS-S結合を介して1箇所で固定化される単量体、2量体と5量体を作成しているが、5量体を固定化した担体は2量体固定化担体と同じIgG結合量であったと記載されている。さらに、非特許文献2では、プロテインAのBドメインを4個連結した多量体を作成しているが、5個の結合ドメインからなる天然型プロテインA(SPA)と同等の活性であったことから、4量体と5量体は同等である、と報告されている。この論文では、形成した複合体の沈殿の量は測定しているが、ゲル担体への固定化ならびにその結合能の評価はなされていない。非特許文献3では、Zドメインの単量体、2量体、5量体、10量体を作成しているが、IgG結合活性のあることは確認しているもののゲル担体への固定化は実施されておらず、固定化担体のIgG結合測定も実施されていない。
また、特許文献4では、C末端カルボキシル基を配向制御固定化しているが、ドメインを2つ連結した2量体は、ヘテロ5量体の天然型プロテインAとほぼ同程度の結合の強さであると述べている。特許文献2では、天然型プロテインAの5量体のアミノ酸配列のC末端にシステインを導入して、そのチオ-ル基を介した配向制御固定化により高いイムノグロブリン結合能を有する担体の作製に成功しているが、5量体を超える多量体についての検討はなされていない。また特許文献2には、5量体のIgGモル結合比は2~3と記載されている。特許文献3と5では、結合ドメインの2から5個までの繰り返しを記載しているが、最適な繰り返し回数は明らかにされていない。特許文献6ではアルカリ安定化したZドメイン改変体で2量体から5量体までの多量体のなかで、4量体が最良の実施形態であるとその段落[0033]に記載されている。
これまでの報告では、イムノグロブリン結合ドメインの繰り返し個数は2個~5個の範囲が適しているとの記載はあるが、天然型プロテインAの5個を超える多量体の有用性は示されていない。即ち、複数個の結合ドメインからなる多量体をその末端部分で担体へ固定化した際に、固定化に利用される化学反応の種類にかかわらず、イムノグロブリン結合活性を最大にする多量体の結合ドメインの最適な連結個数は明らかにされていない。
特許第4179517号公報 特許第4117903号公報 特開2008-266219号公報 特開2005-112827号公報 特許第5004165号公報 特許第4391830号公報
Eur.J.Biochem. 1989(186)557-561 Protein Engineering 1989(2)481-487 Protein Engineering 1987(1)107-1413
[現状の問題点とその解決法]
本発明は、次の思考過程により従来技術における問題点を解決する端緒を把握し、その解決策を見出した結果である。すなわち、配向制御して固定化することによりイムノグロブリン結合タンパク質の固定化量は増大し、IgG結合量は、IgG結合ドメインの数に比例して増加すると考えられる。そうすると、結合ドメインを繰り返し連結したイムノグロブリン結合タンパク質多量体の固定化量を増加することによりIgG結合量が増大することができると考えられるが、これまでの例では、天然のプロテインAが5量体であることから、2~5量体の範囲で検討されているものの、5量体を超える多量体の配向制御による固定化に際して、連結する単量体の数とそのIgG結合量の十分な検討はなされていない。より多くのIgG結合ドメインを配向制御して固定化することができれば、より多くのIgGを結合することが可能になると考えられるが、実際には分子量約15万のIgGが結合するためには、結合ドメイン数だけではなく、結合ドメインに結合したIgGが近傍の他のIgG分子の接近と結合を妨害しないような空間が必要となる。そこには、最大のIgG結合量を達成するための最適なIgG結合ドメインの固定化量が存在するはずである。さらに、IgG結合ドメインを連結した多量体では、IgG分子の結合を妨害しない最適な長さと固定化量が存在するはずである。
 これまでに、担体に固定化したイムノグロブリン結合タンパク質のイムノグロブリン結合量は、その結合ドメインの個数が4個以上となってもイムノグロブリン結合量は増加しないことから、4個までの結合ドメインの繰り返しが最良の構造と考えられていた。担体に固定化したイムノグロブリン結合タンパク質のイムノグロブリン結合量は、その結合ドメインの量に比例するが、ポアサイズ、空間容積、有効表面積といった担体の構造にも大きく影響を受ける。特に、小さく折りたたまれた球状タンパク質よりも結合ドメインの繰り返し構造からなる多量体では占有体積が大きくなるので、イムノグロブリンとの結合は担体の構造の影響を受けやすい。配向制御して固定化した多量体では、結合ドメインが空間に伸びて可動性の高い構造となるためにイムノグロブリンとの接触機会が増大し結合性が高くなるが、担体のポアサイズの影響を受けるために多量体の結合ドメインの数とイムノグロブリン結合量が必ずしも比例関係にはならない。さらに、多量体の担体への固定化量を増加すると、イムノグロブリン分子同士が空間的に隣接して相互の結合を妨害する立体障害により結合量が低下することもアフィニティ-担体の使用ではよく経験することである。このようなさまざま要因が、イムノグロブリン結合タンパク質固定化担体の結合能に影響を及ぼすことから、多量体の結合ドメインの繰り返し構造とイムノグロブリン結合量との関係が明瞭ではなかった。
本発明の目的は、イムノグロブリンの精製に利用されるアフィニティ-ゲル担体のイムノグロブリン結合量を最大にするために、配向制御されて担体に固定化されるイムノグロブリン結合タンパク質の多量体の結合ドメインの繰り返し構造を最適化し、少ない固定化量で最大のイムノグロブリン結合量を示す最適な多量体構造を見出すことにある。
上記目的を達成するために、遺伝子工学的手法により種々の配向制御可能なイムノグロブリン結合タンパク質の多量体を作成し、各形質転換体から精製したのちに、それらを固定化した担体のイムノグロブリン結合量を詳細に比較検討することより、以下のように本発明を完成させるに至った。
(1)N末端又はC末端に位置し、不溶性担体への固定化反応によって担体と共有結合するアミノ酸残基を含むイムノグロブリン結合ドメイン(R2)と、配列中に存在することにより存在しない場合と比べて、固定化反応によって得られる担体のイムノグロブリン結合活性を減少させるアミノ酸残基を含まないイムノグロブリン結合ドメイン(R1)からなり、左側をN末端としてC末端側へ向かうアミノ酸配列からなる下記一般式:
(R1)n-(R2)m 又は(R2)m-(R1)n
で表されるイムノグロブリン結合ドメインの多量体であって、
 1)nは5以上9以下の整数である、
 2)mは1又は2の整数である、
 3)n個の(R1)ドメインは互いに同一の配列であってもなくてもよい、
 4)ドメイン総数(n+m)が6乃至10個である、
の各条件を満たし、(R2)ドメインのアミノ酸残基を介して不溶性担体に固定化される性質を有することを特徴とするイムノグロブリン結合タンパク質。
(2)上記構造式の (R1)ドメインが、アミノ酸配列中に元からあるリジン残基のうち、配列に存在する場合に存在しない場合と比べて、不溶性担体への固定化反応により得られる担体のイムノグロブリン結合活性を減少させるリジン残基を、リジン以外のアミノ酸に置換することにより得られるアミノ酸配列であり、かつ(R2)ドメインが不溶性担体への固定化反応によって担体と共有結合するリジン残基を含むアミノ酸配列である上記(1)に記載のイムノグロブリン結合タンパク質。
(3)上記構造式の(R2)ドメインが、(R1)ドメインと同じ特徴の配列中に存在することにより存在しない場合と比べて、固定化反応によって得られる担体のイムノグロブリン結合活性を減少させるアミノ酸残基を含まないアミノ酸配列に加えて、(R1)ドメインが連結されていない側の末端に2個以上のリジン残基を含むアミノ酸配列が付加された配列からなる、上記(1)又は(2)に記載のイムノグロブリン結合タンパク質。
(4)上記構造式の(R2)ドメインが、イムノグロブリン結合タンパク質のアミノ酸配列、又はイムノグロブリン結合タンパク質のアミノ酸配列中の一部のリジン残基がリジン以外のアミノ酸に置換されたアミノ酸配列、又はイムノグロブリン結合タンパク質のアミノ酸配列中の一部のリジン残基がリジン以外のアミノ酸に置換され、かつ、それに加えて一部のリジン以外のアミノ酸残基がリジンに置換されたアミノ酸配列からなる、上記(1)又は(2)に記載のイムノグロブリン結合タンパク質。
(5)上記構造式の (R1)及び(R2)で示される各イムノグロブリン結合ドメインが、スタフィロコッカス(Staphylococcus)プロテインAのイムノグロブリン結合ドメインのアミノ酸配列をもとに改変されたドメインからなる上記(1)から(4)のいずれかに記載のイムノグロブリン結合タンパク質。
(6)上記構造式の(R2)ドメインが、スタフィロコッカス(Staphylococcus)プロテインAのイムノグロブリン結合ドメインのアミノ酸配列を元に、4、7、35位のうち35位のみ、又は35位に加えてそれ以外の1以上の位置に元からあるリジン残基をリジン以外のアミノ酸へ置換したイムノグロブリン結合ドメインからなる上記(5)に記載のイムノグロブリン結合タンパク質。
(7)プロテインA由来の (R2)ドメインにおいて、さらに、40位、43位、46位、53位、54位及び56位のアミノ酸残基のうちの1個ないし6個がリジンに置換されている上記(6)に記載のイムノグロブリン結合タンパク質。
(8)上記構造式の(R1)ドメインが、スタフィロコッカス(Staphylococcus)プロテインAのイムノグロブリン結合ドメインのアミノ酸配列を元に、4、7、35位のうち1個ないし3個の位置に元からあるリジン残基をリジン以外のアミノ酸へ置換した配列からなる上記(5)から(7)のいずれかに記載のイムノグロブリン結合タンパク質。
(9)上記構造式の(R1)ドメインにおいて、さらに42,49,50,58位の元からあるリジン残基のうち1個ないし4個をリジン以外のアミノ酸に置換した配列からなる上記(8)に記載のイムノグロブリン結合タンパク質。
(10)上記(1)から(9)のいずれかに記載のイムノグロブリン結合タンパク質を不溶性担体に固定化したことを特徴とするイムノグロブリン結合用固定化担体。
(11)上記(10)に記載のイムノグロブリン結合用固定化担体を用いることを特徴とするイムノグロブリンの分離精製方法。
 本発明は、イムノグロブリン結合タンパク質の単量体(ドメイン)を連結した多量体構造のタンパク質(例、プロテインA改変体)を配向制御して不溶性担体に固定化した際に、少ない固定化量で最大のイムノグロブリン結合量を示す最適な多量体構造を見出したものである。これまでイムノグロブリン結合タンパク質改良型は結合ドメインを2~5個の範囲で連結することでなされており、担体へはイムノグロブリン活性を阻害しない程度に多くの量を固定化していた。本発明により、担体への固定化反応の種類に限定されることなく少ない量のイムノグロブリン結合タンパク質を固定化した担体を使用することにより、一定量の担体で最大のイムノグロブリン結合が達成可能となり、抗体利用の分野において抗体製造コストの低減と効率化に寄与するものである。
各種多量体の精製品のSDS-ポリアクリルアミドゲル電気泳動 各種多量体を固定化したトヨパ-ルAF-ホルミル-650のヒトIgG結合能の比較 異なる6量体PN-613、621、651を固定化したトヨパ-ルAF-ホルミル-650のヒトIgG結合能の比較 各種多量体を10mg/mLで固定化したアガロ-スの固定化率とヒトIgG結合能の比較 各種多量体の異なった固定化量とその担体のヒトIgG結合量の比較
 本発明は、N末端又はC末端に位置し、不溶性担体への固定化反応によって担体と共有結合するアミノ酸残基を含むイムノグロブリン結合ドメイン(R2)と、配列中に存在することにより存在しない場合と比べて、固定化反応によって得られる担体のイムノグロブリン結合活性を減少させるアミノ酸残基を含まないイムノグロブリン結合ドメイン(R1)からなり、左側をN末端としてC末端側へ向かうアミノ酸配列からなる下記一般式:
(R1)n-(R2)m 又は(R2)m-(R1)n
で表されるイムノグロブリン結合ドメインの多量体であって、(1)nは5以上9以下の整数である、(2)mは1又は2の整数である、(3)n個の(R1)ドメインは互いに同一の配列であってもなくてもよい、(4)ドメイン総数(n+m)が6乃至10個である、
の各条件を満たし、(R2)ドメインのアミノ酸残基を介して不溶性担体に固定化される性質を有することを特徴とするイムノグロブリン結合タンパク質、このタンパク質を担体結合したイムノグロブリン結合用固定化担体、及びこの担体を用いたアフィニティ-クロマトグラフィ-によりイムノグロブリンを分離精製する方法に関する。
本発明の多量体は、末端に配置される1から2個の(R2)ドメインが不溶性担体へ固定化されて、5個から9個の連結された(R1)ドメインが固定化されずに不溶性担体上で可動性の高い構造であることを特徴として、合計6から10個のイムノグロブリン結合ドメインからなるイムノグロブリン結合タンパク質である。この(R2)ドメインのみを担体へ選択的に共有結合を介して固定化するために、反応性の高いリジン残基やシステイン残基といったアミノ酸に対する反応を利用することにより、選択性の高い固定化反応が可能となる。固定化に利用される化学反応に対して、(R1)ドメインは活性なアミノ酸を含まないアミノ酸配列、そして(R2)ドメインは活性なアミノ酸を有するアミノ酸配列として多量体を構築する。
担体への固定化にアミノ基を介した固定化反応を利用する場合には、(R2)ドメインに使用されるイムノグロブリン結合ドメインのアミノ酸配列に含まれるリジン残基の中から担体への固定化によりイムノグロブリンの結合を妨害する位置のリジン残基をリジン以外のアミノ酸に置換するとともに、イムノグロブリンの結合に関与しないリジン以外のアミノ酸残基の一部のアミノ酸をリジンに置換することにより、イムノグロブリンの結合が可能で固定化反応が増進した(R2)ドメインを作製することができる。このような(R2)ドメインに連結する(R1)ドメインは、アミノ酸配列中に元からあるリジン残基のうち、配列に存在する場合に存在しない場合と比べて、不溶性担体への固定化反応により得られる担体のイムノグロブリン結合活性を減少させるリジン残基をリジン以外のアミノ酸に置換した配列からなるイムノグロブリン結合ドメインを利用することで、本発明を実施することができる。
また、(R1)ドメインと同様に元からあるリジン残基をリジン以外のアミノ酸に置換した(R2)ドメインに、(R1)ドメインが結合していないアミノ酸配列末端に複数個のリジンを含むペプチドを付加することにより、リジン残基を介して配向を制御した多量体の不溶性担体への固定化が可能である。
チオ-ル基を介した固定化反応を利用する場合には、(R2)ドメインとして利用するイムノグロブリン結合ドメインに新たにシステイン残基を導入することで本発明を実施することができる。この場合の連結する(R1)ドメインはシステインを含まない配列からなる。チオ-ル基に対して選択性の高いジスルフィド結合やマレイミド基による担体への固定化反応は、システインを導入した多量体の固定化に利用することができる。さらに安価で化学的安定性が高いことから工業的によく使用されるエポキシ基は容易にシステインとチオエ-テル結合を形成するのでシステイン導入多量体の担体への固定化に利用してよい。
その他の方法として、システイン残基の固定化利用のために特許文献5に記載されたチオ-ル基をシアノ化することによるアミノ基含有固定化担体へ固定する方法や、特許文献2に記載の4-(N-maleimidomethyl)cyclohexane-1-carboxylate(SMCC)を架橋剤として利用してシステイン残基を有する多量体をアミノ基含有担体へ固定化する方法も利用できる。
 さらに詳しく説明すると、上記構造式のイムノグロブリン結合ドメイン(R1)が、アミノ酸配列中に元からあるリジン残基のうち、配列に存在する場合に存在しない場合と比べて、不溶性担体への固定化反応により得られる担体のイムノグロブリン結合活性を減少させるリジン残基を、リジン及びシステイン以外のアミノ酸残基に置換することにより得られるアミノ酸配列であり、かつ固定化結合ドメイン(R2)が不溶性担体への固定化反応によって担体と共有結合するリジン残基及び/又はシステイン残基を含むアミノ酸配列であるドメインからなることが好ましく、例えば、(R1)及び(R2)で示される各イムノグロブリン結合ドメインがスタフィロコッカス(Staphylococcus)プロテインAの結合ドメインのアミノ酸配列をもとに改変されたドメインからなることができる。この場合のイムノグロブリン結合ドメイン(R1)は、固定化反応において元から存在する場合と置換した場合でイムノグロブリン結合活性に違いがないリジン残基であれば含まれていてもよい。
 イムノグロブリン結合ドメイン(R1)は、スタフィロコッカス(Staphylococcus)プロテインAのイムノグロブリン結合ドメインのアミノ酸配列を元に、4、7、35位のうち1以上の位置に元からあるリジンをリジン以外のアミノ酸へ置換したイムノグロブリン結合ドメインからなるか、さらに、42,49,50,58位の元からあるリジン残基のうち1個ないし4個をリジン以外のアミノ酸へ置換して(R1)の固定化に関与するリジン残基を減じることで(R2)の担体への固定化結合を増進することができる。
 (R2)は、スタフィロコッカス(Staphylococcus)プロテインAのイムノグロブリン結合ドメインのアミノ酸配列を元に、4、7、35位のうち35位のみ、又は35位に加えてそれ以外の1以上の位置に元からあるリジンをリジン以外のアミノ酸へ置換したイムノグロブリン結合ドメインからなるか、さらに、40位、43位、46位、53位、54位及び56位のアミノ酸のうちの1個ないし6個がリジンに置換されていることにより担体との結合を増進することができる。
 さらに、本発明は以下のイムノグロブリン結合タンパク質の多量体を包含する。
 (1)イムノグロブリン結合ドメイン(R1)がリジンを含まないアミノ酸配列からなり、固定化結合ドメイン(R2)が、イムノグロブリン結合タンパク質のアミノ酸配列中のすべてのリジン残基をリジン以外のアミノ酸に置換されたアミノ酸配列に加えてそのアミノ酸配列の(R1)が連結されていない側の末端に2個以上のリジン残基を含むアミノ酸配列が付加された配列からなるイムノグロブリン結合タンパク質の多量体。
 (2)イムノグロブリン結合ドメイン(R1)がリジンを含まないアミノ酸配列からなり、担体への固定化結合ドメイン(R2)のリジン残基を含むアミノ酸配列が、イムノグロブリン結合タンパク質のアミノ酸配列であるか又はそのアミノ酸配列中の一部のリジン残基がリジン以外のアミノ酸に置換されたアミノ酸配列又はそれに加えて一部のリジン以外のアミノ酸残基がリジンに置換されたアミノ酸配列からなるイムノグロブリン結合タンパク質の多量体。
 (3)イムノグロブリン結合ドメイン(R1)がシステインを含まないアミノ酸配列からなり、固定化結合ドメイン(R2)がシステインを含むアミノ酸配列からなるイムノグロブリン結合タンパク質の多量体。
 また、本発明は、1個のイムノグロブリン結合部位を有するが固定化には関与しない単量体(R1)を5個又はそれ以上を連結した多量体のN末端又はC末端に、不溶性担体へ固定化される1から2個のイムノグロブリン結合ドメインを有する単量体(R2)を配置する多量体を固定化した不溶性担体に関するものである。その一般式は、(R1)n-(R2)m又は(R2)m-(R1)nとなる。不溶性担体への固定化のために、(R2)に配置するリジン残基のアミノ基を介する場合、(R1)のアミノ酸配列に元からあるリジン残基のうち、配列に存在する場合に配列に存在しない場合と比べて、不溶性担体への固定化反応により得られる担体のイムノグロブリン結合活性を減少させる位置のリジン残基をリジン以外の他のアミノ酸に置換することで配向を制御した固定化を達成することができる。その際に、(R2)ドメインは、既に本発明者らが発明した方法(特許文献1)と同様の方法により、プロテインAのドメインの4、7、35位のうち35位のみ、又は35位に加えてそれ以外の1以上の位置に元からあるリジン残基をリジン以外のアミノ酸に置換した改変体又は、その改変に加えてイムノグロブリンの結合に直接関与しない第3α-へリックスに位置する40、43、46、53、54位及び56位のアミノ酸のうちの1個乃至6個をリジンに置換した改変体を作製して配置することが可能である。
(R2)のイムノグロブリン結合ドメインのアミノ酸配列の固定化反応で共有結合に関与するすべてのリジン残基をリジン以外のアミノ酸に置換した場合には、このドメインの(R1)が連結されていない末端に2個以上のリジン残基を含むアミノ酸配列を付加したアミノ酸配列からなる(R2)を構築することで、同様のアミノ基を介した配向制御固定化を達成することができる。この場合、付加するリジン残基は1個でもよいが、好ましくは2個以上のリジン残基を付加することにより固定化率を向上させることができる。末端に付加したアミノ酸配列を除いた配列部分が(R1)のアミノ酸配列と同じになる場合があるが、配向制御した固定化には支障はない。
さらに、多量体をシステインのチオ-ル基を介して配向を制御して固定化する場合には、(R2)ドメインにシステインを導入する。(R2)ドメインとして利用するイムノグロブリン結合ドメインのいずれかのアミノ酸をシステインに置換してよいが、プロテインAのイムノグロブリン結合ドメインの場合、イムノグロブリン結合に直接関与しない第3α-へリックスのアミノ酸をシステインに置換することがより好ましい。またシステイン残基を付加する場合には、N末端又はC末端にシステイン又はシステインを含むペプチドを付加する方法が好ましい。すべての連結ドメインが(R1)からなり、N末端又はC末端にシステイン又はシステインを含むペプチドが付加された構造となることがあるが、この場合、システインを含む配列が付加された(R1)は固定化に利用されるドメインとして(R2)ドメインの意味に含まれる。
 チオ-ル基を有する担体とジスルフィド結合を介して固定化する場合には、(R1)と(R2)のアミノ酸配列中にリジン残基が含まれていてよい。チオ-ル基をエポキシ基で固定化する場合にはドメインにリジン残基は含まれていてもよいが、エポキシ基はチオ-ル基ほどではないがアミノ基に比較的高い反応性を示すことから、段落[0030]の(1)と(2)に記述したリジン改変多量体の(R2)ドメインに段落[0030]の(3)のようにシステイン残基を導入する方法を組み合わせれば、エポキシ活性化担体への固定化により好ましい多量体を作製することができる。
 本発明の担体に固定化するイムノグロブリン結合ドメインは、スタフィロコッカス(Staphylococcus)プロテインAの結合ドメインE、D、A、B、Cを使用することができる。
 スタフィロコッカス由来のプロテインAの結合ドメインのアミノ酸配列としては、いずれのドメインを用いてもよいが、リジン残基を介した固定化を実施する場合には、5つのドメインのうちアルカリに安定で39位以降にリジン残基が多いCドメインを用いるのが好ましく、イムノグロブリンに対する親和性リガンドとしての使用実績の多いZドメインの配列を用いてもよいが、化学的安定性が増すことが既に知られている29位のグリシンのアラニンへの置換を施したCドメインの配列(配列表の配列番号1に表示)を採用するのが最も好ましい。
 イムノグロブリン結合ドメインの配向を制御した固定化を可能にする目的でリジン残基を他のアミノ酸に置換する場合、リジンと同じ性質の塩基性アミノ酸であるアルギニンへの置換は、通常よく用いられる手法であるが、固定化反応に関与しうるε-アミノ基をなくすることが条件であるので、アルギニンを含むリジン以外の他のアミノ酸への置換で目的を達成することができる。
 本発明は、下記の方法が共通して用いられている。
〔イムノグロブリン結合タンパク質の製造の概要〕
 本発明のイムノグロブリン結合タンパク質を製造するための標準技術としては、例えばFrederick M. AusubelらによるCurrent Protocols In Molecular Biologyなどに記載されている公知の遺伝子組換え技術を利用できる。すなわち、目的の改変タンパク質をコ-ドする核酸配列を含有させた発現ベクタ-を大腸菌などの宿主に形質転換し、該細胞を適切な液体培地で培養することにより、培養後の細胞より大量かつ経済的に取得することができる。具体的には、プロテインAの1個のイムノグロブリン結合ドメインは約60個のアミノ酸からなる小さなタンパク質であるので、例えば所望のアミノ酸配列をコ-ドするDNAを数十塩基からなる合成オリゴヌクレオチドに分割して合成し、それらをDNAリガ-ゼによるライゲ-ション反応によって繋げてプラスミドベクタ-に挿入することで、目的の発現ベクタ-を取得することができる。その際に、該タンパク質を大腸菌で効率よく発現させる目的で、大腸菌の至適コドンを用いた核酸配列を採用することは、当業者によって一般的に行われている。目的のアミノ酸置換を実現するためのDNA配列の変異は、改変前のクロ-ンDNAを鋳型として、ミスマッチ塩基対を組み込む合成オリゴDNAをポリメラ-ゼチェインリアクションのプライマ-として利用するオ-バ-ラップ伸長法や、カセット変異法などを用いて意図した部位に容易に導入することができる。
 多量体タンパク質をコ-ドするcDNAは、一個の(R1)のイムノグロブリン結合ドメインをコ-ドするcDNAと1個の(R2)のアミノ酸配列をコ-ドするcDNAを連結することにより作成した2量体のcDNAのドメイン間の連結部分に非パリンドロ-ム配列を認識する制限酵素の認識配列を導入し、ここに同配列で(R1)をコ-ドするcDNA断片をライゲ-ション反応により挿入すると容易に作成することができる。こうして作成したcDNAを適切な発現プラスミド上に挿入して利用することで、イムノグロブリン結合ドメインの単位が6個又はそれ以上連結された多量体タンパク質を容易に製造することが可能である。
 本発明の改変タンパク質をコ-ドする核酸配列が挿入される発現ベクタ-としては、宿主細胞において複製可能であるプラスミド、ファ-ジ、ウイルスなどいかなるベクタ-をも用いることができる。例えば、商業的に入手可能な発現ベクタ-としては、pQE系ベクタ-(株式会社キアゲン)、pDR540、pRIT2T(GEヘルスケアバイオサイエンス株式会社)、pET系ベクタ-(メルク株式会社)などが挙げられる。発現ベクタ-は宿主細胞との適切な組み合わせを選んで使用するのがよい。例えば大腸菌を宿主細胞とする場合には、pET系ベクタ-とBL21(DE3)大腸菌株の組み合わせ又はpDR540ベクタ-とJM109大腸菌株の組み合わせなどが好ましく挙げられる。
 本発明の改変タンパク質は、培養された細胞を遠心分離などにより集め、これを超音波やフレンチプレスなどを用いた処理にて破砕することで、可溶性画分中に回収することができる。該改変タンパク質の精製は、公知の分離、精製技術を適切に組み合わせて行なうことができる。具体的には、塩析法、透析法、限外濾過法などの分離技術に加え、疎水性クロマトグラフィ、ゲル濾過クロマトグラフィ、イオン交換クロマトグラフィ、アフィニティ-クロマトグラフィ、逆相クロマトグラフィなどの精製方法が挙げられる。
[イムノグロブリン結合タンパク質の固定化の概要]
 本発明のイムノグロブリン結合ドメイン多量体タンパク質を固定化する不溶性担体の材料は、特に限定されるものではない。例えば、キトサン、デキストラン、セルロ-ス、アガロ-スなどの天然由来の高分子材料、ビニルアルコ-ル、ポリイミド、メタクリレ-トなどの合成ポリマ-類などが挙げられる。また別の形態ではシリカなどの無機担体でもよい。不溶性担体の形状は、特に限定されるものではなく、例えば中空糸膜状、モノリス状、やビ-ズ状のものを用いることができる。ビ-ズ状のものは一般的に、体積あたりの表面積が膜状のものと比較して大きいので、イムノグロブリン結合能の高いアフィニティ-担体に適している。
固定化に使用する担体は、例えば複数の細孔を有する多孔質のものが用いられる。多孔質担体の細孔径又は網目構造は多量体が大きな空間占有体積を有することから、固定化された多量体にイムノグロブリンが容易に近づいて結合できるだけの空間容積が必要である。多孔質担体のタンパク質排除限界分子量は1,000,000~200,000,000がよく、4,000,000~100,000,000がさらに好ましい。担体の平均粒子径は、好ましくは20~200μm、より好ましくは30~100μmの範囲のビ-ズ状がよい。
通常、アフィニティ-担体を作製する場合に、タンパク質を、シアノゲンブロミド、エピクロロヒドリン、N-ヒドロキシスクシンイミド、トシル/トレシルクロリド、カルボジイミド、グルタ-ルアルデヒド、ヒドラジンのようなカップリング剤やカルボキシル又はチオ-ル活性化担体を利用して、担体上に固定する。このようなカップリング反応は、当該技術分野において周知であり、文献に広く記載されている(例えば、Janson, J.-C., 編集[Protein purification]、第3版、221-258頁、ISBN 978-0-471-74661-4)。本発明のイムノグロブリン結合ドメイン多量体タンパク質は、その配向性を制御できるように配置されたアミノ酸残基を介して担体に結合させることを特徴とするものであり、アミノ基を介した固定化にはトレシル基、エポキシ基、カルボキシル基、ホルミル基など、アミノ基と反応して共有結合を形成できる活性基を有する担体を用いることができる。市販の担体としては、トヨパ-ルAF-トレシル-650、トヨパ-ルAF-エポキシ-650、トヨパ-ルAF-カルボキシ-650、トヨパ-ルAF-ホルミル-650(以上、東ソ-株式会社)、NHS活性化セファロ-ス、臭化シアン活性化セファロ-ス、エポキシ活性化セファロ-ス(以上、GEヘルスケアバイオサイエンス株式会社)、プロフィニティエポキシド(バイオラッド株式会社)、グリオキサ-ル-アガロ-ス(アガロ-スビ-ズテクノロジ-ズ株式会社)、セルファインホルミル(JNC株式会社)などが挙げられる。システイン残基のチオ-ル基を介しての固定化には、チオプロピルセファロ-スやエポキシ活性化セファロ-ス(以上、GEヘルスケアバイオサイエンス株式会社)、プロフィニティエポキシド(バイオラッド株式会社)を利用することができる。
 このようにして作成された本発明のアフィニティ-担体は適切なカラムにつめてIgA、IgG、IgMなどイムノグロブリンを単離、精製する過程におけるアフィニティ-クロマトグラフィに利用される。
 次に、本発明について実施例に基づき詳細に説明するが、これらの実施例により本発明が限定されるものではない。
[スタフィロコッカス由来プロテインAのリジン残基を置換したCドメインを利用する多量体の製造]
[設計と改変体の構築]
本発明者らは、プロテインAのドメインの4、7、35位のうち35位のみ、又は35位に加えてそれ以外の1以上の位置に元からあるリジン残基をリジン以外のアミノ酸に置換した改変体又は、その改変に加えてイムノグロブリンの結合に直接関与しない第3α-へリックスに位置する40、43、46、53、54及び56位のアミノ酸のうちの1個乃至6個をリジンに置換することにより配向を制御した多点での固定化を可能とする単量体タンパク質を作製する方法を確立している(特許文献1)ので、同様の方法により改変体の設計と構築を実施した。
基本設計のアミノ酸配列をコ-ドするDNA断片を鋳型DNAとし、Polymerase Chain Reaction(PCR)によって特定の部位の配列を異なるアミノ酸をコ-ドする配列に置換する方法は、同業者らによって成される一般的な方法であり、この方法による置換を繰り返すことで、複数の箇所の配列を置換したcDNA断片を容易に得ることができる。特許文献1には、特定の位置のアミノ酸残基をリジン残基に置換し、又は特定の位置のリジン残基を置換・欠失させた改変タンパク質を作製する具体的な方法が記載されている。本出願人がすでに保有しているプロテインAのCドメインの29位のグリシンをアラニンに置換した改変体であるC’ドメイン(配列番号1)を基本設計として、全てのリジン残基を別のアミノ酸に置換したドメイン改変体(R1)をn回繰り返した構造の多量体((R1)n)のC末端又はN末端にリジン残基を特定の位置に配置した固定化結合ドメイン(R2)を連結した多量体の構築方法を以下に述べる。
まず(R1)ドメインとして、C’ドメインの4位、7位、35位、42位、49位、50位及び58位にもとからあるリジン残基をすべてリジン以外のアミノ酸に置換した改変体PN-95f(配列番号2)を設計し、C’ドメインをコ-ドするDNA断片を鋳型として、それぞれの改変部分に相当する合成オリゴヌクレオチドをプライマ-DNAとして用いるPCRをおこなって、PN-95fのアミノ酸配列をコ-ドするcDNA断片を作成した。またこれと同様の手法を用いて、(R2)ドメインとしてC’ドメインの4位、7位及び35位のリジン残基をすべてリジン以外のアミノ酸に置換し、かつ40位、43位、46位及び53位の各アミノ酸残基をそれぞれリジン残基に置換することにより非IgG結合領域にリジン残基を集積した改変体PN-26f(配列番号3)を設計し、そのアミノ酸配列をコ-ドするcDNA断片を作成した。
多量体をコ-ドするDNAの構築に際し、PN-95fの最初の配列には制限酵素NdeIの認識配列(CATATG)を含む翻訳開始コドンをもたせ、55-57位のグルタミン-アラニン-プロリンをコ-ドする部分の核酸配列に制限酵素 EcoO109Iの認識配列(AGGCCCC)を含む様に設計し、フォア-ドプライマ-として配列番号4の合成オリゴヌクレオチドを、リバ-スプライマ-として配列番号5の合成オリゴヌクレオチドをそれぞれ用いてPCRによりcDNA断片を調製した。また制限酵素 EcoO109Iの認識配列(AGGCCCC)を含むPN-95fの最後尾の配列に続けてPN-26fとPN-95fに共通の最初の配列を持つ合成オリゴヌクレオチド(配列番号6)をフォア-ドプライマ-として用い、リバ-スプライマ-としては55-57位の配列にEcoO109Iの認識配列を含まず、且つ最後のアミノ酸をコ-ドするDNA配列の後に翻訳終止コドンを、続けて最後に制限酵素BamHIの認識配列をもたせた逆向きの合成オリゴヌクレオチド(配列番号7)をそれぞれ用いてPCRによりPN-26fのアミノ酸配列をコ-ドするcDNA断片を作成した。次に、こうして作成したPN-95f及びPN-26fをコ-ドする2個のDNA断片を制限酵素EcoO109Iにて切断した後に連結することで、EcoO109Iの認識配列にて連結された[PN-95f]-[PN-26f]の2量体をコ-ドするcDNAを調製した。この2量体cDNA断片を予めEcoO109Iの認識配列を欠失させたpUC19プラスミド上にサブクロ-ニングした。
 次にPN-95fをコ-ドするcDNA断片を鋳型DNAとし、配列番号5及び配列番号6の合成オリゴヌクレオチドを用いたPCRにより制限酵素EcoO109Iの認識配列を前後に含むPN-95fのcDNA断片を作成した。
先に得たEcoO109Iの認識配列にて連結された[PN-95f]-[PN-26f]の2量体をコ-ドするプラスミドをEcoO109Iで切断し、切断部位をアルカリフォスファタ-ゼを用いて脱リン酸化した後、ここにEcoO109Iの認識配列を前後に含むPN-95fのcDNA断片をEcoO109Iで切断し、得たフラグメントをライゲ-ション反応にて挿入した。このライゲ-ション反応物を用いて形質転換された大腸菌DH-5αをアンピシリン含有の寒天培地上に撒き、出現したコロニ-から各クロ-ンを培養してそれぞれのクロ-ンが持つプラスミドを解析した。その結果、前後にEcoO109Iの認識配列をもつPN-95fのcDNA断片が[PN-95f]-[PN-26f]の間のEcoO109I認識配列部分に2個挿入されたものが[PN-95f]-[PN-95f]-[PN-95f]-[PN-26f]([PN-95f]-[PN-26f])の形の4量体のcDNAとしてクロ-ニングされ、3個挿入されたものが([PN-95f]-[PN-26f])の5量体cDNAとして、さらに4個、6個、8個及び10個挿入されたものがそれぞれC末端にだけPN-26fが配置された6量体、8量体、10量体及び12量体のcDNAとしてそれぞれクロ-ニングされた。この様にして得られた4、5、6、8、10及び12量体を各々PN-421、PN-521、PN-621、PN-821、PN-1021及びPN-1221と命名した。
 また最後尾のPN-26fをPN-95fの58位にのみリジン残基を配置したPN-99fに入れ替えた6量体PN-623([PN-95f]-[PN-99f])のcDNAの作成にあたっては、最初にEcoO109Iの認識配列にて連結された[PN-95f]-[PN-99f]の2量体をコ-ドするcDNAを予めEcoO109Iの認識配列を欠失させたpUC19プラスミド上にサブクロ-ニングして得ておき、上述の方法と同様の方法により前後にEcoO109Iの認識配列をもつPN-95fのcDNA断片が[PN-95f]-[PN-99f]の間のEcoO109I認識部位に4個挿入されたクロ-ンを選択した。
さらに、リジン残基を集積したドメイン改変体PN-26fを1個だけN末端に配置し、そのC末端側にリジン残基を含まないドメイン改変体PN-95fを5個連結した6量体、PN-651([PN-26f]-[PN-95f])のcDNAの作成にあたっては、最初にEcoO109Iの認識配列にて連結された[PN-26f]-[PN-95f]の2量体をコ-ドするcDNAを予めEcoO109Iの認識配列を欠失させたpUC19プラスミド上にサブクロ-ニングして得ておき、このEcoO109I認識部位に上述の方法と同様の方法により前後にEcoO109Iの認識配列をもつPN-95fのcDNA断片が4個挿入されたクロ-ンを選択した。
以上の様にして得た各多量体cDNAをサブクロ-ニングしたpUC19プラスミドを制限酵素 NdeI及びBamHIで処理して各cDNA断片を切り出し、これを大腸菌発現ベクタ-であるpET9a上に挿入して発現プラスミドを構築し、それぞれの発現プラスミドの核酸配列を、CEQ8000型DNAシ-クエンサ-(ベックマンコ-ルタ-株式会社)を用いて解析し、設計どおりの配列であることを確認した。次に各発現プラスミドにてBL21(DE3)コンピ-テントセル(メルク株式会社)を形質転換することで、各多量体タンパク質の発現株を得た。
それぞれの多量体タンパク質の発現大腸菌株を、25mg/Lのカナマイシンと2.0%グルコ-スを含むLB培地にて12時間種培養し、この種培養液を25mg/Lのカナマイシンと0.8%グルコ-スを含む2×TY培地に接種し、37℃にて16時間培養して目的とするタンパク質を発現させた後、遠心分離によって大腸菌を集めた。次に集めた大腸菌を50mM MES緩衝液(pH 6.0)に懸濁し、超音波処理して大腸菌を破砕し、さらに遠心分離によって目的のタンパク質を上清に回収した。得られた各上清を菌体抽出液としてドデシル硫酸ナトリウム(SDS)-ポリアクリルアミドゲル電気泳動に供したところ、それぞれの分子量の位置に目的タンパク質が生産されていることが確認できた。
[改変多量体の精製と純度検定]
 各改変多量体の菌体抽出液をpH 5.2に調整したのちに、陽イオン交換体SP-セファロ-スファストフロ-(GEヘルスケアバイオサイエンス株式会社)カラムにアプライした。20mM リン酸バッファ-(pH 6.0)にて洗浄後、NaCl濃度を段階的に高めて溶出した。各多量体は0.1から0.2M NaClで溶出することを確認した。次に、各多量体を含む同溶出液のpHを9に調整したのちに陰イオン交換体ギガキャップQ(東ソ-株式会社)カラムに添加した。20mM リン酸バッファ-(pH 7.8)にて洗浄後、0.3M NaCl濃度にて多量体をそれぞれ溶出した。各溶出液をSDS-ポリアクリルアミドゲル電気泳動に供して純度を確認した結果、各多量体は理論値の分子量の位置に単一バンドとして精製されていることを確認した(図1)。
[ゲル担体への固定化とイムノグロブリン結合量測定による評価]
 精製された本発明のイムノグロブリン結合タンパク質の各溶液とすべてのドメインが固定化に関与する4個のPN-26fを連結した、即ち(R2)ドメインが4個連結した4量体(PN-413)の同様に精製した溶液を、化学合成ポリマ-ゲル担体のトヨパ-ルAF-ホルミル-650(東ソ-株式会社)に10mg/mLゲルの濃度で常法に従って、それぞれ固定化した。固定化後の反応溶液を回収し、固定化率を測定したところ、すべての多量体の固定化効率が90%以上であった。さらに固定化反応後のゲル担体をPBS溶液で洗浄後、40mg/mLのヒトIgGを含むPBS溶液を加えて1時間振とうしたのちに、PBSで洗浄したゲル担体から0.1M グリシン塩酸バッファ-(pH 2.8)でゲル担体に結合したヒトIgGを溶出した。その溶出液を分光光度計にて280nmの吸収を測定し、13.8(1g^(-1)×cm^(-1))の比吸光係数をもとに結合したイムノグロブリン量を求めた。各多量体のゲル1mLあたりのイムノグロブリン結合量(mg)を図2に示す。配向制御されていない4量体PN-413と比較して、C末端に(R2)ドメインを配置した多量体はいずれも高い結合能を示した。C末端に(R2)ドメインを有する4量体(PN-421)と比べると、5量体(PN-521)、6量体(PN-621)、8量体(PN-821)、10量体(PN-1021)、12量体(PN-1221)の結合量は、それぞれ1.06倍、1.18倍、1.25倍、1.29倍、1.28倍の結合量を示した。この結果から、担体と固定化する部位をC末端の1個のドメインに集積して配向を制御した固定化がなされる多量体は繰り返しドメイン数の増加に伴ってイムノグロブリン結合量が増加することが明らかになった。
 次に、(R1)ドメインを繰り返した多量体((R1)n)のN末端側に(R2)ドメインを配置した改変体((R2)m-(R1)n)を同様に作製し、トヨパ-ルAF-ホルミル-650ゲル担体へ固定化した。固定化ゲル担体のヒトIgG結合能を同様の方法で測定したところ、C末端に(R2)ドメインを配置した多量体と同様の結合量の増加を確認することができた。例として、(R2)ドメインを6個連結した6量体PN-613、C末端に(R2)ドメインを配置した6量体PN-621とN末端に(R2)ドメインを配置した6量体PN-651のヒトIgG結合能の比較結果を図3に示す。C末端とN末端のいずれに配置した多量体も結合能が増加していることが明らかである。
 さらに、本発明の4、5、6、8、10、12量体の改変多量体と、比較としてPN-413を天然の高分子材料より成るホルミル基で活性化した6%架橋アガロ-スゲル担体に各10mg/mLゲル濃度で常法に従って固定化を実施した。固定化後の反応液中の各多量体量を測定した結果、各多量体の固定化率はすべて95%以上であった(図4)。これらの固定化ゲル担体を用いて、ゲル1mLあたりのヒトIgG結合量(mg)を測定した結果を図4に示す。PN-413と比較して、本発明の末端を固定化用ドメインとした多量体はいずれもトヨパ-ルAF-ホルミル-650ゲル担体の場合と同様に高い結合量を示した。6量体(PN-621)でPN-413の1.37倍の結合量を示し、8量体(PN-821)と10量体(PN-1021)の結合量は6量体と同等であったが、12量体(PN-1221)は6量体(PN-621)の結合量の94%の結合量となった。5量体(PN-521)は、4量体(PN-421)の1.05倍となり、6、8、10量体は4量体の1.13倍の結合量を示した。各改変体のゲル担体への固定化率は95%以上でほぼ一定であったことから、最高のIgG結合量を示すゲル担体を作製するためには、6量体、8量体、10量体を固定化することが好ましい。固定化に使用した10mg/mLゲル濃度の多量体は、イムノグロブリン結合ドメイン量に換算すると、すべての多量体で1.45μmolドメイン/mLゲルとなる。固定化率に基づいて計算すると6量体の固定化ドメイン量は、1.38μmolドメイン/mLゲルとなり、その場合のヒトIgG結合量は0.7μmol/mLゲルであったことから、結合ドメインあたりのIgG結合量比は0.51となる。即ち、6量体1分子に3分子のIgGが結合することを示すものであり、ドメイン2個あたりに1分子のIgGが結合することを確認できた。
 詳細に比較するために、4、6、8、10、12量体の各改変体の固定化反応の量を5、10、15、20mg/mLゲルと異なった濃度でホルミル活性化6%架橋アガロ-スゲル担体へ固定化し、多量体の固定化量と各固定化ゲル担体のヒトIgG結合量を測定した(図5)。比較としてPN-413の測定値を図5に示す。すべての改変多量体は、5と10mg/mLゲル濃度ではPN-413よりも高い結合量を示し、ゲル担体への固定化量に比例してイムノグロブリン結合量が増加したが、10量体(PN-1021)と12量体(PN-1221)は10mg/mLゲルで最大値を示し、15mg/mLゲル以上の濃度では結合量は低下した。8量体(PN-821)は10mg/mLと15mg/mLでほぼ同等の値で最大となり、6量体(PN-621)は15mg/mLまで増加して最大値を示した。4量体(PN-421)では20mg/mLまで徐々に結合量は増加した。このなかで、6量体(PN-621)は最も少ない固定化量で最大の結合量を示した。これらの結果より、6量体、8量体、10量体は、10mg/mLゲル濃度での固定化により4量体よりも高い抗体結合能のゲル担体を作成することが可能で、特に6量体(PN-621)は15mg/mLゲル量でゲル担体へ固定化することにより、4量体(PN-421)の1.15倍の結合量の優れたアフィニティ-ゲル担体を作成することができることを確認した。
〔4位、7位、35位リジン残基を置換したCドメインを(R1)に利用する多量体の製造〕
〔設計と改変多量体の構築〕 
実施例1では、(R1)ドメインとして利用するC’ドメインのすべてのリジン残基を置換したが、本実施例では、C’ドメインに元から存在する7個のリジン残基のうち、4、7と35位のリジン残基に注目し、それぞれをリジン以外のアミノ酸に置換したC’ドメインをそれぞれ(R1)として利用する多量体を作成し、固定化反応により得られた担体のイムノグロブリン結合活性に対する影響を比較した。そのために、置換した各C’ドメインを(R1)として5回繰り返して連結し、(R2)としてC末端側にPN-26fを連結した6量体の構築方法を以下に述べる。
実施例1に記載した同様の方法により改変体の設計と構築を実施した。すなわち、[C’]-[PN-26f](PN-661)のcDNAの作成にあたっては、最初にEcoO109Iの認識配列にて連結された[C’]-[PN-26f]の2量体をコ-ドするcDNAを予めEcoO109Iの認識配列を欠失させたpUC19プラスミド上にサブクロ-ニングして得ておき、前後にEcoO109Iの認識配列をもつ[C’]のcDNA断片が[C’]-[PN-26f]の間のEcoO109I認識部位に4個挿入されたクロ-ンを選択した。同様に[K35R-C’(PN-23f)]-[PN-26f]、[K4A,K35R-C’ (PN-87f)]-[PN-26f]、[K4A,K7T,K35R-C’ (PN-61f)]-[PN-26f]の2量体をコ-ドするcDNAのEcoO109I認識部位にそれぞれ前後にEcoO109Iの認識配列をもつ[PN-23f](配列番号8)、[PN-87f](配列番号12)、[PN-61f](配列番号10)のcDNA断片が4個挿入されたクロ-ンを選択し、PN-662、PN-663およびPN-664のcDNAを作成した。
次に制限酵素 NdeI及びBamHIで処理して各cDNA断片を切り出し、これを大腸菌発現ベクタ-であるpET9a上に挿入してそれぞれの6量体発現プラスミドを構築した。 
 以上のようにして得た各多量体cDNAを実施例1と同様の方法で発現プラスミドを構築し、それぞれの核酸配列をDNAシ-クエンサ-を用いて解析し、設計どおりの配列であることを確認した。次に各発現プラスミドをBL21(DE3)コンピ-テントセルを形質転換することで、各多量体タンパク質の発現株を得た。それぞれの発現株は、実施例1と同様の方法により培養し、目的タンパク質を発現させた。得られた大腸菌菌体を破砕後に、SDS-ポリアクリルアミドゲル電気泳動にて、それぞれの分子量の位置に目的のタンパク質が生産されていることを確認した。
〔改変多量体の精製と純度検定〕
 各改変多量体の菌体抽出液から実施例1と同様の方法で多量体を精製し、SDS-ポリアクリルアミドゲル電気泳動にて純度を確認した結果、各多量体は理論値の分子量の位置に単一バンドであることを確認した。
〔ゲル担体への固定化とイムノグロブリン結合量測定による評価〕
 精製された各多量体を実施例1と同様の方法でホルミル活性化6%架橋アガロ-スゲル担体へ10mg/mLゲル濃度で固定化し、各多量体の固定化量と各固定化ゲル担体のヒトIgG結合量を測定した。固定化後の反応液中の各多量体量を測定した結果、各多量体の固定化率は95%以上と良好な固定化を示した。ヒトIgGを40mg/mL濃度で各多量体固定化ゲル担体と反応したのちに、結合したIgGをゲル担体より溶出して結合量を測定した(表1)。その結果、リジン残基を置換していない天然型のC’ドメインを(R1)ドメインとするPN-661の結合量を基準として、35位のリジン残基をアルギニンに置換したPN-662はPN-661の1.07倍の結合量を示した。次に、PN-662に加えて、4位リジン残基をアラニンに、4位と7位のリジン残基をアラニンとスレオニンにそれぞれ置換したPN-663とPN-664は、PN-661と比較して1.20倍と1.42倍に結合量がそれぞれ増加した。Cドメインのすべてのリジン残基を別アミノ酸に置換したPN-621では、PN-661の1.63倍の結合量であった。実際のヒトIgG精製に際して使用される濃度域に近い8mg/mL濃度のヒトIgGと各多量体固定化ゲル担体を反応したところ、PN-664はPN-621とほぼ同等の結合量を示すことが明らかとなった(表1)。これらの結果から、(R1)ドメインへの利用に際して、Cドメインに存在する7個のリジン残基をすべてリジン以外のアミノ酸に置換したドメインは、ゲル担体への配向制御した固定化により、IgG結合能が増大することはすでに実施例1から明らかであるが、Cドメインに元から存在するリジン残基のうち4、7及び/又は35位のリジン残基の別アミノ酸への置換がIgG結合量の増加に有効であることを見いだした。Cドメインのこれらのリジン残基の別アミノ酸への置換は、多量体の配向制御された固定化を増強し、結合量を増加したと考えられる。実施例1に記載した4位,7位と35位をリジン以外のアミノ酸に置換し、第3α-へリックスにリジン残基を置換導入することで固定化能を増大した(R2)に利用されるドメインPN-26fを6連結したPN-613はPN-621の約65%のイムノグロブリン結合活性を示し、このときゲル担体への固定化は配向制御されていない。PN-661がPN-621の約62%の結合量を示したことから、PN-661は固定化に際して配向制御が達成されていないと判断できる。すなわち、(R1)ドメインとしてCドメインを利用するために、すべてのリジン残基を別アミノ酸に置換しなくても、元から配列に存在する4、7、35位のうちの1から3個を置換することによりイムノグロブリン結合活性を増強する固定化を達成することが可能である。
Figure JPOXMLDOC01-appb-T000001
〔Cドメインのリジン残基導入置換体を(R2)に利用する多量体の製造〕
〔設計と改変多量体の構築〕
 実施例1に記載したと同様に(R1)としてCドメインのリジン残基をすべて別アミノ酸に置換したドメインと実施例1の(R2)に加えて54及び56位にリジン残基を置換して合計6個のリジンを導入したドメインを(R2)として利用する6量体PN-667を作成した。そのために実施例1に使用したPN-26fに加えて54位と56位の残基を新たにリジンに置換したPN-28fを作成した。このPN-28f(配列番号9)をC末端に配置し、実施例1に記載したPN-95fを(R1)として5連結した6量体PN-667を作成した。
 Cドメインの元からある4位、7位、35位のリジン残基のうち、35位のみを別アミノ酸に置換し、40、43、46、53位をリジンに置換導入したドメインPN-83f(配列番号11)を作成し、これを(R2)として利用した6量体PN-669を構築した。PN-669の(R1)ドメインは、PN-621と同様である。
実施例1に記載した方法と同様の方法により改変体の設計と構築を実施した。すなわち、[PN-95f]-[PN-28f](PN-667)のcDNAの作成にあたっては、最初にEcoO109Iの認識配列にて連結された[PN-95f]-[PN-28f]の2量体をコ-ドするcDNAを予めEcoO109Iの認識配列を欠失させたpUC19プラスミド上にサブクロ-ニングして得ておき、前後にEcoO109Iの認識配列をもつ[PN-95f]のcDNA断片が[PN-95f]-[PN-28f]の間のEcoO109I認識部位に4個挿入されたクロ-ンを選択した。同様に[PN-95f]-[PN-83f]の2量体をコ-ドするcDNAのEcoO109I認識部位に前後にEcoO109Iの認識配列をもつ[PN-95f]のcDNA断片が4個挿入されたクロ-ンを選択し、PN-669のcDNAを作成した。
 以上のようにして得た各多量体cDNAを実施例1と同様の方法で発現プラスミドを構築し、それぞれの核酸配列をDNAシ-クエンサ-を用いて解析し、設計どおりの配列であることを確認した。次に各発現プラスミドをBL21(DE3)コンピ-テントセルを形質転換することで、各多量体タンパク質の発現株を得た。それぞれの発現株は、実施例1と同様の方法により培養し、目的タンパク質を発現させた。得られた大腸菌体を破砕後に、SDS-ポリアクリルアミドゲル電気泳動にて、それぞれの分子量の位置に目的のタンパク質が生産されていることを確認した。
〔改変多量体の精製と純度検定〕
 各改変多量体の菌体抽出液から実施例1と同様の方法で多量体を精製し、SDS-ポリアクリルアミドゲル電気泳動にて純度を確認した結果、各多量体は理論値の分子量の位置に単一バンドであることを確認した。
〔ゲル担体への固定化とイムノグロブリン結合量測定による評価〕 
精製された各多量体を実施例1と同様の方法でホルミル活性化6%架橋アガロ-スゲル担体へ10mg/mLゲル濃度で固定化し、多量体の固定化量と各固定化ゲル担体のヒトIgG結合量を測定した。固定化後の反応液中の各多量体量を測定した結果、各多量体の固定化率は95%以上と高い固定化率を示した。ヒトIgGを40mg/mL濃度で各多量体固定化ゲル担体と反応したのちに、結合したIgGをゲル担体より溶出して結合量を測定した(表2)。その結果、PN-667はPN-621のヒトIgG結合量102mg/mLゲルと同じ結合量を示した。また、PN-669においても、PN-621と同等の結合能を示した。次にヒトIgG濃度を8mg/mLとして各多量体固定化ゲル担体と反応したところ、PN-621=PN-669>PN-667の順に高い結合能を示した。これらの結果より、(R2)ドメインは、Cドメインの40位、43位、46位、53位、54位及び56位の6個のアミノ酸残基のすべてをリジンに置換してもIgG結合活性は阻害されず、40位、43位、46位及び53位の4個の残基をリジンに置換したPN-621と同じIgG結合量を示すことがわかった。なお、PN-667は、ゲル担体への固定化率がPN-621の95%に対して97%と高い固定化率を示したことは、置換導入したリジンの数が多いほうが(R2)ドメインの固定化に有利であることがわかる。一方で、8mg/mLの低濃度IgGの結合試験から、PN-667の6個よりもPN-621の4個のリジン置換が低濃度IgGの結合にはより好ましいことがわかった。さらに、表2に示すPN-621とPN-669の結果より、Cドメインのリジン置換導入改変ドメインが元からある4位と7位のリジン残基を別アミノ酸に置換するか又は置換することなくリジン残基であっても、(R2)ドメインとして配向制御された固定化に同様に利用することが可能である。
Figure JPOXMLDOC01-appb-T000002
「比較例1」
 市販の配向を制御して多量体タンパク質を固定化したゲル担体と本発明の多量体を固定化したゲル担体のヒトIgG結合能を比較した。C末端にシステインを導入した5量体の例として天然型配列のプロテインAをエポキシ活性化架橋アガロ-スゲル担体に固定化したゲル担体(rProtein A-sepharose FF、GEヘルスケアサイエンス社)と4量体の例としてプロテインAのZドメインを4個連結した4量体のC末端にシステイン残基を導入した4量体をエポキシ活性化架橋アガロ-スゲル担体に固定化したゲル担体(MabSelect SuRe、GEヘルスケアサイエンス社)との比較から、表3に示すように本発明の6量体(PN-621)を固定化したアガロ-スゲル担体は、これらの市販品よりも高いIgG結合能を示すことを確認した。rProtein A-sepharose FFは6mg/mL濃度で多量体を固定化しているので、PN-621を同じ量の6mg/mLゲルで固定化したときの結合量の比較を表3に示す。
Figure JPOXMLDOC01-appb-T000003
「比較例2」
<固定化ドメインの末端をリジン残基1個にした場合>
 実施例1に記載したすべてのリジン残基を別アミノ酸に置換したPN-95fを6連結して、その多量体のC末端を元からある配列のリジン残基1個だけを残した6量体(PN-623)を作製し、本発明の6量体(PN-621)を比較として、各6量体をホルミル活性化6%架橋アガロ-スゲル担体に10mg/mLゲル量で固定化したゲル担体のそれぞれのヒトIgG結合量を測定した。表4に示す比較結果より、リジン残基がC末端に1個のPN-623はPN-621の34.5%のヒトIgG結合量であった。このことより、(R2)ドメインには2個以上のリジン残基を導入することが好ましい。N末端のα-アミノ基は反応性が低いことと、α-アミノ基のアセチル化反応は改変体の固定化に影響を及ぼさないことを確認しているので、この比較例では固定化に関与しているアミノ基はC末端のリジン残基であると判断した。
Figure JPOXMLDOC01-appb-T000004
〔CドメインのC末端にリジン付加したドメインを(R2)に利用する多量体の製造〕
〔設計と改変多量体の構築〕
 実施例1に記載したと同様に(R1)としてCドメインのリジン残基を別アミノ酸に置換した(R1)を5個連結した改変ドメインと(R2)としてCドメインのC末端リジンを除くすべてのリジン残基を別アミノ酸に置換したことに加えてC末端にリジンを付加した改変ドメインを(R2)として利用した6量体PN-666を作成した。PN-666の(R2)はC末端に付加した配列以外は、(R1)と同じ配列となる。
〔改変多量体の精製と純度検定〕
 改変多量体の菌体抽出液から実施例1と同様の方法で多量体を精製し、SDS-ポリアクリルアミドゲル電気泳動にて純度を確認した結果、多量体は理論値の分子量の位置に単一バンドであることを確認した。
〔ゲル担体への固定化とイムノグロブリン結合量測定による評価〕 
精製された多量体を実施例1と同様の方法でホルミル活性化6%架橋アガロ-スゲル担体へ10mg/mLゲル濃度で固定化し、多量体の固定化量と固定化ゲル担体のヒトIgG結合量を測定した。固定化後の反応液中の多量体量を測定した結果、多量体の固定化率は95%以上と高い固定化率を示した。ヒトIgGを40mg/mL濃度で多量体固定化ゲル担体と反応したのちに、結合したIgGをゲル担体より溶出して結合量を測定した。その結果、PN-666はPN-621の102mgヒトIgG/mLゲル結合量とほぼ同じ結合量を示した。次にヒトIgG濃度を8mg/mLとして多量体固定化ゲル担体と反応したところ、イムノグロブリン結合量は、PN-621=PN-669>PN-667>PN-666の順であった。これらの結果より、固定化に利用されるリジン残基を(R2)ドメインのC末端に複数個配置してリジンを集積した配列を付加することで、配向制御可能な固定化を達成できることを見出した。
 本発明による一般式(R1)n-(R2)m又は(R2)m-(R1)nの多量体を固定化した担体は、低コストで高い結合能のイムノグロブリン結合アフィニティ-担体を提供することが可能で、抗体医薬や抗体診断薬分野におけるイムノグロブリンの製造、生体成分からのイムノグロブリン除去、成分分析等に利用することができる。

Claims (11)

  1.  N末端又はC末端に位置し、不溶性担体への固定化反応によって担体と共有結合するアミノ酸残基を含むイムノグロブリン結合ドメイン(R2)と、配列中に存在することにより存在しない場合と比べて、固定化反応によって得られる担体のイムノグロブリン結合活性を減少させるアミノ酸残基を含まないイムノグロブリン結合ドメイン(R1)からなり、左側をN末端としてC末端側へ向かうアミノ酸配列からなる下記一般式:
    (R1)n-(R2)m 又は(R2)m-(R1)n
    で表されるイムノグロブリン結合ドメインの多量体であって、
    (1)nは5以上9以下の整数である、
    (2)mは1又は2の整数である、
    (3)n個の(R1)ドメインは互いに同一の配列であってもなくてもよい、
    (4)ドメイン総数(n+m)が6乃至10個である、
    の各条件を満たし、(R2)ドメインのアミノ酸残基を介して不溶性担体に固定化される性質を有することを特徴とするイムノグロブリン結合タンパク質。
  2.  上記構造式の (R1)ドメインが、アミノ酸配列中に元からあるリジン残基のうち、配列に存在する場合に存在しない場合と比べて、不溶性担体への固定化反応により得られる担体のイムノグロブリン結合活性を減少させるリジン残基を、リジン以外のアミノ酸に置換することにより得られるアミノ酸配列であり、かつ(R2)ドメインが不溶性担体への固定化反応によって担体と共有結合するリジン残基を含むアミノ酸配列である請求項1に記載のイムノグロブリン結合タンパク質。
  3.  上記構造式の(R2)ドメインが、(R1)ドメインと同じ特徴の配列中に存在することにより存在しない場合と比べて、固定化反応によって得られる担体のイムノグロブリン結合活性を減少させるアミノ酸残基を含まないアミノ酸配列に加えて、(R1)ドメインが連結されていない側の末端に2個以上のリジン残基を含むアミノ酸配列が付加された配列からなる、請求項1または2に記載のイムノグロブリン結合タンパク質。
  4.  上記構造式の(R2)ドメインが、イムノグロブリン結合タンパク質のアミノ酸配列、又はイムノグロブリン結合タンパク質のアミノ酸配列中の一部のリジン残基がリジン以外のアミノ酸に置換されたアミノ酸配列、又はイムノグロブリン結合タンパク質のアミノ酸配列中の一部のリジン残基がリジン以外のアミノ酸に置換され、かつ、それに加えて一部のリジン以外のアミノ酸残基がリジンに置換されたアミノ酸配列からなる、請求項1または2に記載のイムノグロブリン結合タンパク質。
  5.  上記構造式の (R1)及び(R2)で示される各イムノグロブリン結合ドメインが、スタフィロコッカス(Staphylococcus)プロテインAのイムノグロブリン結合ドメインのアミノ酸配列をもとに改変されたドメインからなる請求項1から4のいずれかに記載のイムノグロブリン結合タンパク質。
  6.  上記構造式の(R2)ドメインが、スタフィロコッカス(Staphylococcus)プロテインAのイムノグロブリン結合ドメインのアミノ酸配列を元に、4、7、35位のうち35位のみ、又は35位に加えてそれ以外の1以上の位置に元からあるリジン残基をリジン以外のアミノ酸へ置換したイムノグロブリン結合ドメインからなる請求項5に記載のイムノグロブリン結合タンパク質。
  7.  プロテインA由来の (R2)ドメインにおいて、さらに、40位、43位、46位、53位、54位及び56位のアミノ酸残基のうちの1個ないし6個がリジンに置換されている請求項6に記載のイムノグロブリン結合タンパク質。
  8.  上記構造式の(R1)ドメインが、スタフィロコッカス(Staphylococcus)プロテインAのイムノグロブリン結合ドメインのアミノ酸配列を元に、4、7、35位のうち1個ないし3個の位置に元からあるリジン残基をリジン以外のアミノ酸へ置換した配列からなる請求項5から7のいずれかに記載のイムノグロブリン結合タンパク質。
  9.  上記構造式の(R1)ドメインにおいて、さらに42,49,50,58位の元からあるリジン残基のうち1個ないし4個をリジン以外のアミノ酸に置換した配列からなる請求項8に記載のイムノグロブリン結合タンパク質。
  10.  請求項1から9のいずれかに記載のイムノグロブリン結合タンパク質を不溶性担体に固定化したことを特徴とするイムノグロブリン結合用固定化担体。
  11.  請求項10に記載のイムノグロブリン結合用固定化担体を用いることを特徴とするイムノグロブリンの分離精製方法。
     


     
PCT/JP2014/073325 2013-09-04 2014-09-04 イムノグロブリン結合ドメイン多量体 WO2015034000A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015535514A JP6456831B2 (ja) 2013-09-04 2014-09-04 イムノグロブリン結合ドメイン多量体
US14/916,316 US10208094B2 (en) 2013-09-04 2014-09-04 Multimeric immunoglobulin-binding domain
EP14842570.5A EP3042912A4 (en) 2013-09-04 2014-09-04 Immunoglobulin-binding domain multimer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-183333 2013-09-04
JP2013183333 2013-09-04

Publications (1)

Publication Number Publication Date
WO2015034000A1 true WO2015034000A1 (ja) 2015-03-12

Family

ID=52628465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073325 WO2015034000A1 (ja) 2013-09-04 2014-09-04 イムノグロブリン結合ドメイン多量体

Country Status (4)

Country Link
US (1) US10208094B2 (ja)
EP (1) EP3042912A4 (ja)
JP (1) JP6456831B2 (ja)
WO (1) WO2015034000A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152946A1 (ja) * 2015-03-26 2016-09-29 Jsr株式会社 イムノグロブリン結合タンパク質およびそれを用いたアフィニティー担体
WO2017022672A1 (ja) * 2015-07-31 2017-02-09 株式会社カネカ 免疫グロブリン結合性改変型タンパク質
EP3333262A4 (en) * 2015-08-04 2019-04-03 Kaneka Corporation IMMUNOGLOBULIN BINDING MODIFIED PROTEINS
WO2020004671A1 (ja) * 2018-06-29 2020-01-02 国立大学法人京都工芸繊維大学 分離剤
WO2020004668A1 (ja) * 2018-06-29 2020-01-02 国立大学法人京都工芸繊維大学 分離剤
WO2020209318A1 (ja) * 2019-04-10 2020-10-15 中外製薬株式会社 Fc領域改変抗体の精製方法
US11359194B2 (en) 2008-04-11 2022-06-14 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding two or more antigen molecules repeatedly
US11454633B2 (en) 2014-12-19 2022-09-27 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies, polypeptides containing variant Fc regions, and methods of use
WO2023046886A1 (en) 2021-09-24 2023-03-30 Cytiva Bioprocess R&D Ab Fc binding polypeptides
WO2023174900A1 (en) 2022-03-14 2023-09-21 Cytiva Bioprocess R&D Ab Vh3 binding polypeptides
US11780912B2 (en) 2016-08-05 2023-10-10 Chugai Seiyaku Kabushiki Kaisha Composition for prophylaxis or treatment of IL-8 related diseases
US11891434B2 (en) 2010-11-30 2024-02-06 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to plurality of antigen molecules repeatedly

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105407905B (zh) * 2014-01-03 2020-03-03 生物辐射实验室股份有限公司 蛋白a洗脱产物中杂质的去除
JP6805831B2 (ja) * 2015-02-05 2020-12-23 三菱ケミカル株式会社 免疫グロブリンに親和性を有するタンパク質、およびそれを用いたアフィニティ分離剤、液体クロマトグラフィー用カラム
CA3046561A1 (en) * 2016-12-12 2018-06-21 Hurrah S.A R.L. Compositions and methods for increasing the immunoglobulin binding capacities of immunoglobulin-binding polypeptides and oligopeptides
CA3065171A1 (en) * 2017-06-05 2018-12-13 Janssen Biotech, Inc. Engineered multispecific antibodies and other multimeric proteins with asymmetrical ch2-ch3 region mutations

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005112827A (ja) 2003-10-10 2005-04-28 National Institute Of Advanced Industrial & Technology 抗体アフィニティ担体
JP2005538693A (ja) * 2002-03-25 2005-12-22 アメルシャム・バイオサイエンシーズ・アクチボラグ 変異免疫グロブリン結合タンパク質
JP2007252368A (ja) * 2006-02-21 2007-10-04 Protenova Co Ltd イムノグロブリン親和性リガンド
JP4117903B2 (ja) 1995-11-07 2008-07-16 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ IgG分離媒体および新規プロテインA変異体
JP2008266221A (ja) * 2007-04-20 2008-11-06 National Institute Of Advanced Industrial & Technology アミノ末端1箇所で配向制御固定化された固定化タンパク質
JP2008266219A (ja) 2007-04-20 2008-11-06 National Institute Of Advanced Industrial & Technology リジン及びシステイン残基を含まないタンパク質
JP5004165B2 (ja) 2006-10-10 2012-08-22 独立行政法人産業技術総合研究所 タンパク質の配向制御固定化に適したタンパク質
WO2012133349A1 (ja) * 2011-03-25 2012-10-04 株式会社カネカ アフィニティー分離マトリックス用タンパク質

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0863210A3 (en) * 1991-07-25 1999-09-22 Oriental Yeast Co., Ltd. Immunoglobulin-binding artificial protein
US7709209B2 (en) 2002-03-25 2010-05-04 Ge Healthcare Bio-Sciences Ab Protein ligands
WO2007019376A2 (en) * 2005-08-03 2007-02-15 Rq Bioscience, Inc. Methods and compositions for diagnosis of iga-and igm-mediated kidney diseases
US8674073B2 (en) 2006-02-21 2014-03-18 Protenova Co., Ltd. Immunoglobulin affinity ligand
AU2007300751B2 (en) * 2006-09-29 2012-01-19 Cytiva Bioprocess R&D Ab Chromatography ligand comprising Domain C from Staphyloccocus aureus protein A for antibody isolation

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4117903B2 (ja) 1995-11-07 2008-07-16 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ IgG分離媒体および新規プロテインA変異体
JP2005538693A (ja) * 2002-03-25 2005-12-22 アメルシャム・バイオサイエンシーズ・アクチボラグ 変異免疫グロブリン結合タンパク質
JP4391830B2 (ja) 2002-03-25 2009-12-24 ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ 変異免疫グロブリン結合タンパク質
JP2005112827A (ja) 2003-10-10 2005-04-28 National Institute Of Advanced Industrial & Technology 抗体アフィニティ担体
JP2007252368A (ja) * 2006-02-21 2007-10-04 Protenova Co Ltd イムノグロブリン親和性リガンド
JP4179517B2 (ja) 2006-02-21 2008-11-12 プロテノバ株式会社 イムノグロブリン親和性リガンド
JP5004165B2 (ja) 2006-10-10 2012-08-22 独立行政法人産業技術総合研究所 タンパク質の配向制御固定化に適したタンパク質
JP2008266221A (ja) * 2007-04-20 2008-11-06 National Institute Of Advanced Industrial & Technology アミノ末端1箇所で配向制御固定化された固定化タンパク質
JP2008266219A (ja) 2007-04-20 2008-11-06 National Institute Of Advanced Industrial & Technology リジン及びシステイン残基を含まないタンパク質
WO2012133349A1 (ja) * 2011-03-25 2012-10-04 株式会社カネカ アフィニティー分離マトリックス用タンパク質

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
EUR. J. BIOCHEM., 1989, pages 557 - 561
JANSON, J.-C.: "Protein purification, 3rd ed.", ISBN: 978-0-471-746, pages: 221 - 258
PROTEIN ENGINEERING, 1987, pages 107 - 113
PROTEIN ENGINEERING, 1989, pages 481 - 487
See also references of EP3042912A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11359194B2 (en) 2008-04-11 2022-06-14 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding two or more antigen molecules repeatedly
US11371039B2 (en) 2008-04-11 2022-06-28 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to two or more antigen molecules repeatedly
US11891434B2 (en) 2010-11-30 2024-02-06 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule capable of binding to plurality of antigen molecules repeatedly
US11454633B2 (en) 2014-12-19 2022-09-27 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies, polypeptides containing variant Fc regions, and methods of use
JPWO2016152946A1 (ja) * 2015-03-26 2018-01-18 Jsr株式会社 イムノグロブリン結合タンパク質およびそれを用いたアフィニティー担体
WO2016152946A1 (ja) * 2015-03-26 2016-09-29 Jsr株式会社 イムノグロブリン結合タンパク質およびそれを用いたアフィニティー担体
US10723769B2 (en) 2015-03-26 2020-07-28 Jsr Corporation Immunoglobulin-binding protein and affinity carrier using same
WO2017022672A1 (ja) * 2015-07-31 2017-02-09 株式会社カネカ 免疫グロブリン結合性改変型タンパク質
JPWO2017022672A1 (ja) * 2015-07-31 2018-07-05 株式会社カネカ 免疫グロブリン結合性改変型タンパク質
EP3333262A4 (en) * 2015-08-04 2019-04-03 Kaneka Corporation IMMUNOGLOBULIN BINDING MODIFIED PROTEINS
US11780912B2 (en) 2016-08-05 2023-10-10 Chugai Seiyaku Kabushiki Kaisha Composition for prophylaxis or treatment of IL-8 related diseases
CN112368302A (zh) * 2018-06-29 2021-02-12 国立大学法人京都工艺纤维大学 分离剂
WO2020004668A1 (ja) * 2018-06-29 2020-01-02 国立大学法人京都工芸繊維大学 分離剤
CN112368302B (zh) * 2018-06-29 2023-06-27 国立大学法人京都工艺纤维大学 分离剂
WO2020004671A1 (ja) * 2018-06-29 2020-01-02 国立大学法人京都工芸繊維大学 分離剤
KR20210149779A (ko) 2019-04-10 2021-12-09 추가이 세이야쿠 가부시키가이샤 Fc 영역 개변 항체의 정제 방법
WO2020209318A1 (ja) * 2019-04-10 2020-10-15 中外製薬株式会社 Fc領域改変抗体の精製方法
WO2023046886A1 (en) 2021-09-24 2023-03-30 Cytiva Bioprocess R&D Ab Fc binding polypeptides
WO2023174900A1 (en) 2022-03-14 2023-09-21 Cytiva Bioprocess R&D Ab Vh3 binding polypeptides

Also Published As

Publication number Publication date
EP3042912A1 (en) 2016-07-13
EP3042912A4 (en) 2017-05-03
JP6456831B2 (ja) 2019-01-23
JPWO2015034000A1 (ja) 2017-03-02
US10208094B2 (en) 2019-02-19
US20160215027A1 (en) 2016-07-28

Similar Documents

Publication Publication Date Title
JP6456831B2 (ja) イムノグロブリン結合ドメイン多量体
JP4179517B2 (ja) イムノグロブリン親和性リガンド
JP7015868B2 (ja) 変異免疫グロブリン結合ペプチド
US10112980B2 (en) Mutated immunoglobulin-binding polypeptides
JP2008214350A (ja) イムノグロブリン親和性リガンド
JP5974343B2 (ja) アフィニティークロマトグラフィーマトリックス
JP5974342B2 (ja) アフィニティークロマトグラフィーマトリックス
JP6950957B2 (ja) イムノグロブリン結合ポリペプチド
WO2014046278A1 (ja) アフィニティー分離マトリックス用タンパク質リガンド
JP2006304633A (ja) イムノグロブリン結合タンパク質
KR100960743B1 (ko) 신규 펩티드, 신규 흡착재, 흡착기 및 흡착방법
ES2914278T3 (es) Polipéptidos de unión a inmunoglobulina mutados
WO2012074463A1 (en) Affinity chromatography matrix
JPWO2016125811A1 (ja) 免疫グロブリンに親和性を有するタンパク質、およびそれを用いたアフィニティ分離剤、液体クロマトグラフィー用カラム
JP2019523215A (ja) 分離マトリックスを保存する方法
JP2584697B2 (ja) IgG精製用組換え型プロテインA
KR102578538B1 (ko) 친화성 담체 및 이뮤노글로불린을 단리하는 방법
WO2022111997A1 (en) Separation matrix
KR20230155212A (ko) 알칼리내성이 증가된 면역글로불린-결합 단백질 변이체 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842570

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015535514

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14916316

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014842570

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014842570

Country of ref document: EP