WO2015033872A1 - 電磁波透過性積層体 - Google Patents
電磁波透過性積層体 Download PDFInfo
- Publication number
- WO2015033872A1 WO2015033872A1 PCT/JP2014/072757 JP2014072757W WO2015033872A1 WO 2015033872 A1 WO2015033872 A1 WO 2015033872A1 JP 2014072757 W JP2014072757 W JP 2014072757W WO 2015033872 A1 WO2015033872 A1 WO 2015033872A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electromagnetic wave
- metal particles
- mass
- layer
- particle
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/0816—Multilayer mirrors, i.e. having two or more reflecting layers
- G02B5/085—Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal
- G02B5/0858—Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal the reflecting layers comprising a single metallic layer with one or more dielectric layers
- G02B5/0866—Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal the reflecting layers comprising a single metallic layer with one or more dielectric layers incorporating one or more organic, e.g. polymeric layers
Definitions
- the present invention relates to an electromagnetic wave transmissive laminate, and more particularly, to an electromagnetic wave transmissive laminate having a metal particle-containing layer in which the filling rate and area ratio of metal particles are predetermined values.
- a high-reflective heat ray shielding material with low visible light transmittance has been demanded for application to the rear window or rear side window of automobiles and window glass of office buildings.
- Such a heat ray shielding material is expected to have a blinding effect due to low visible light transmittance while exhibiting high heat ray shielding properties.
- it is also required to have excellent electromagnetic wave (especially, 0.1 to 1000 MHz radio wave) permeability so as not to hinder communication such as cellular phones, digital terrestrial broadcasting, and RFID.
- the heat ray shielding material is also required to be an electromagnetic wave permeable laminate exhibiting excellent electromagnetic wave permeability.
- Patent Document 1 has a problem that the metal sputter layer easily interferes with electromagnetic waves and easily causes communication failure.
- Patent Documents 2 and 3 are originally adjusted to an optimum form in order to provide high heat shielding performance in a scene where high visible light transmittance is required.
- the present inventors made a laminate having a low visible light transmittance (generally showing a visible light transmittance of less than 60%) using the heat ray shielding materials described in Patent Documents 2 and 3, and evaluated the properties thereof. However, it has been found that the desired effect is inferior.
- the metal particles specifically described in the Examples section of Patent Documents 2 and 3 are used, and the heat ray shielding material is viewed from above when viewed from above.
- the area ratio [(B / A) ⁇ 100] which is the ratio of the total area B of the flat metal particles to the area A
- heat ray shielding performance was inferior and haze was increased.
- the haze value indicates the degree of scattering of transmitted light, and the higher the haze value, the greater the scattering.
- problems such as blurred scenery or difficult to read characters occur.
- an object of the present invention is to provide an electromagnetic wave transmissive laminate having relatively low visible light transmittance, high heat shielding performance, low haze value, and excellent electromagnetic wave permeability. .
- the present inventors have found that the above-mentioned problems can be solved by controlling the filling rate and area ratio of the metal particles in the metal particle-containing layer, and have completed the present invention. . That is, the present inventors have found that the above problem can be solved by the following configuration.
- An electromagnetic wave transmissive laminate having a substrate and a metal particle-containing layer containing at least one kind of metal particles disposed on the substrate,
- the metal particles have 60% by number or more of hexagonal or circular tabular metal particles,
- the area ratio [(B / A) ⁇ 100] which is the ratio of the total area B of the metal particles to the area A of the substrate when the electromagnetic wave transmissive laminate is viewed from above the metal particle-containing layer, is 70% or more.
- the surface of the flat metal particles is coated with a polymer, and the ratio of the mass of the polymer to the mass of the flat metal particles ⁇ (the mass of the polymer / the mass of the flat metal particles) ⁇ 100 ⁇ is 65% by mass.
- the electromagnetic wave permeable laminate according to (1) which is: (3) The electromagnetic wave transparent laminate according to (1) or (2), wherein the electromagnetic wave shielding property at 0.1 to 1000 MHz measured by the KEC method is 1 dB or less.
- permeability is comparatively low, heat insulation performance is high, haze value is low, Furthermore, the electromagnetic wave transmission laminated body which is excellent in electromagnetic wave transmission property can be provided.
- the electromagnetic wave transmission laminated body of this invention can also be used suitably as a film mirror which can be used for sunlight condensing.
- the flat metal particles 20 overlap each other in the thickness direction because of the special shape of the flat metal particles 20. However, it tends to be parallel to each other, and as a result, it is assumed that a reduction in haze value has been achieved.
- the amount of the polymer covering the surface of the metal particles is controlled in the present invention. More specifically, as shown in FIG. 2, the amount of the polymer layer 22 covering the surface of the flat metal particles 20 is reduced, that is, by thinning the polymer layer 22, The filling rate is increased.
- the electromagnetic wave transmissive laminate 10 includes a substrate 12 and a metal particle-containing layer 14 in this order.
- light such as sunlight, is incident from the metal particle-containing layer 14 side and reflected on the surface of the metal particle-containing layer 14.
- each layer which comprises the electromagnetic wave transparent laminated body 10 is explained in full detail.
- ⁇ Board> As a board
- the substrate can be appropriately selected according to the purpose, and is preferably a resin substrate (resin film) from the viewpoint of use as a film mirror.
- resin substrate resin film
- Polyolefin resins such as polyethylene terephthalate, polyethylene naphthalate, etc .
- polycarbonate resins polyvinyl chloride resins, polyphenylene sulfide resins, polyether sulfone resins, polyethylene sulfide resins, polyphenylene ether resins
- examples thereof include a film made of a styrene resin, an acrylic resin, a polyamide resin, a polyimide resin, a cellulose resin such as cellulose acetate, or a laminated film thereof.
- a polyethylene terephthalate film is particularly preferable as the substrate.
- the thickness of the substrate is not particularly limited and can be appropriately selected according to the purpose of use, and is usually preferably 10 to 500 ⁇ m, more preferably 12 to 400 ⁇ m, and further preferably 16 to 300 ⁇ m.
- the thickness of the substrate is too thin, the effect of preventing secondary scattering that occurs when it is bonded to glass is lowered, and the crime prevention property is lowered.
- the thickness of the substrate is too thick, the workability at the time of laminating the laminate is poor, air residue and wrinkles remain, and the appearance after pasting deteriorates.
- the substrate may contain an ultraviolet absorber. Moreover, you may contain the antioxidant and radical scavenger which prevent deterioration of board
- the metal particle-containing layer is disposed on the substrate and has excellent heat shielding performance, but has a low haze value and excellent electromagnetic wave permeability.
- the metal particle-containing layer contains at least one metal particle.
- the metal particles are not particularly limited as long as they contain metal tabular grains (tabular metal grains), and can be appropriately selected according to the purpose. For example, in addition to tabular metal grains, granular, cubic shapes , Hexahedron, octahedron, rod and the like.
- the presence form of the metal particles is preferably unevenly distributed substantially horizontally with respect to the substrate plane.
- the form in which the substrate and the metal particles are substantially in contact, and the substrate and the metal particles are electromagnetic waves.
- positioned by the fixed distance in the depth direction of the transparent laminated body is mentioned.
- metal particle there is no restriction
- the material of the metal particles is not particularly limited and may be appropriately selected depending on the intended purpose. However, silver, gold, aluminum, copper, rhodium are high in terms of high reflectivity from visible rays to heat rays (near infrared rays). Nickel and platinum are preferred.
- the area A of the substrate (relative to the metal particle containing layer)
- the area ratio [(B / A) ⁇ 100] which is the ratio of the total value B of the area of the metal particles to the total projected area A) of the metal particle-containing layer when viewed from the vertical direction, is 70% or more, Preferably it is 80% or more. If the area ratio is less than 70%, the maximum reflectivity of the heat rays is lowered, and a sufficient heat shielding effect cannot be obtained.
- the area ratio is less than 70%, the effect of increasing the filling ratio as defined in the present invention cannot be exhibited to the maximum. That is, when the area ratio is low, there is a form in which the arrangement state of particles (roughness and overlapping of particles) deteriorates when the filling rate is high.
- the area ratio can be measured, for example, by performing image processing on an image obtained by SEM observation of the electromagnetic wave transmissive laminate from above or an image obtained by AFM (atomic force microscope) observation. .
- the filling rate of the metal particles in the metal particle-containing layer is 50 to 90% by mass. Among these, 60 to 90% by mass is preferable, and 70 to 90% by mass is more preferable in that the balance between the heat shielding performance and the electromagnetic wave permeability is more excellent.
- a method for measuring the filling rate a thin slice is produced from the produced electromagnetic wave transmissive laminate using a FIB (focused ion beam) or the like in the cross-sectional direction, and the cross-section is observed by TEM, The area ratio of the surrounding metal particle-containing layer is determined by image processing. This value is calculated by multiplying the specific gravity of the metal particles and the material of the metal particle-containing layer, and calculating the mass ratio of the metal particles to the total value.
- the flat metal particles are not particularly limited as long as they are particles composed of two main planes (see FIGS. 3A and 3B), and can be appropriately selected according to the purpose, for example, hexagonal shape, circular shape, triangular shape Examples include shape. Among these, in terms of high visible light transmittance, a polygonal shape or a circular shape having a hexagonal shape or more is more preferable, and a hexagonal shape or a circular shape is particularly preferable.
- the circular shape means a length of 50% or more of the average equivalent circle diameter on the main plane when the irregularities of 10% or less of the average equivalent circle diameter of the flat metal particles described later are ignored. This refers to a shape in which the number of sides is 0 per flat metal particle.
- the circular flat metal particles are not particularly limited as long as the flat metal particles have no corners and are round when viewed from above the main plane with a transmission electron microscope (TEM). Can be selected as appropriate.
- the hexagonal shape means a length of 20% or more of the average equivalent circle diameter on the main plane when the irregularities of 10% or less of the average equivalent circle diameter of the flat metal particles described later are ignored. This refers to a shape having six sides per flat metal particle.
- the hexagonal flat metal particles are not particularly limited as long as the flat metal particles are hexagonal when observed from above the main plane with a transmission electron microscope (TEM), and are appropriately selected according to the purpose.
- the hexagonal corners may be acute or dull, but the corners are preferably dull in that the absorption in the visible light region can be reduced.
- the tabular metal particles preferably contain at least silver.
- the hexagonal or circular plate-like metal particles are 60% by number or more, preferably 65% by number or more, and 70% by number with respect to the total number of metal particles.
- the above is more preferable.
- the upper limit is not particularly limited, but is preferably 100% by number. If the proportion of the flat metal particles is less than 60% by number, the visible light transmittance may be lowered.
- the number% is calculated by observing at least 200 metal particles in the metal particle-containing layer with an electron microscope (for example, TEM or SEM) and calculating the ratio of hexagonal or circular plate-like metal particles.
- the average particle diameter (average equivalent circle diameter) of the flat metal particles is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 70 to 500 nm, and more preferably 100 to 400 nm.
- the average particle diameter (average equivalent circle diameter) is 70 nm or more, the contribution of the absorption of the plate-like metal particles is smaller than the reflection, so that more excellent heat ray reflectivity is obtained, and when it is 500 nm or less, haze (scattering) ) Becomes smaller.
- the particle diameter (equivalent circle diameter) corresponds to the particle diameter D as shown in FIGS. 3A and 3B.
- the average particle diameter (average equivalent circle diameter) is an average value of main plane diameters (maximum lengths) of 200 tabular metal particles arbitrarily selected from images obtained by observing particles with a TEM. means.
- the metal particle-containing layer can contain two or more kinds of metal particles having different average particle diameters (average equivalent circle diameter).
- the peak of the average particle diameter (average equivalent circle diameter) of the metal particles is 2 It may have two or more, that is, two average particle diameters (average circle equivalent diameter).
- the variation coefficient in the particle size distribution of the flat metal particles is preferably 30% or less, and more preferably 20% or less. If the variation coefficient is within 30%, the reflection wavelength region of the heat rays in the electromagnetic wave transmissive laminate becomes sharper and the visible light transmittance increases.
- the coefficient of variation in the particle size distribution of the tabular metal particles is, for example, a plot of the particle size distribution range of the 200 tabular metal particles used for the calculation of the average value obtained as described above, and a standard particle size distribution. The deviation is obtained and is a value (%) divided by the average value (average particle diameter (average equivalent circle diameter)) of the main plane diameter (maximum length) obtained as described above.
- the aspect ratio of the flat metal particles is not particularly limited and may be appropriately selected according to the purpose. However, since the reflectance in the infrared region with a wavelength of 800 nm to 1,800 nm is high, the aspect ratio is 8 to 40. Is preferable, 9 to 30 is more preferable, and 10 to 20 is more preferable. When the aspect ratio is 8 or more, the reflection peak wavelength is larger than 800 nm, and when it is 40 or less, the reflection peak wavelength is shorter than 1,800 nm and more excellent heat ray reflectivity can be obtained.
- the aspect ratio means a value obtained by dividing the average particle diameter (average circle equivalent diameter) of the flat metal particles by the average particle thickness of the flat metal particles.
- the particle thickness corresponds to the distance L between the main planes of the flat metal particles, and can be measured by an atomic force microscope (AFM).
- the thickness of the tabular metal particles is not particularly limited, but is preferably 5 to 14 nm.
- As a method for measuring the average particle thickness there is a method in which a particle dispersion containing tabular metal particles is dropped on a glass substrate, dried, the thickness of any 10 particles is measured, and arithmetically averaged. It is done.
- the surface of the tabular metal particles is coated with a polymer (polymer dispersant), and the ratio of the mass of the polymer to the mass of the tabular metal particles ⁇ (the mass of the polymer / the mass of the tabular metal particles) ⁇ 100 ⁇ Is preferably 65% by mass or less, more preferably 50% by mass or less, and still more preferably 40% by mass. If it is the said range, the filling rate of the flat metal particle in a metal particle content layer can be raised more.
- the lower limit of the ratio is not particularly limited, but is preferably 10% by mass or more from the viewpoint of dispersion stability of the flat metal particles.
- the polymer is a polymer containing a functional group that is directly adsorbed or bonded to the flat metal particles, and is mainly used to stabilize the dispersion of the flat metal particles when forming the flat metal particles. This corresponds to the polymer added for the purpose.
- the polymer forms a polymer layer (coating layer) that covers the surface of the flat metal particles.
- the method for controlling the mass of the polymer with respect to the flat metal particles is not particularly limited. For example, the molecular weight and the addition amount of the polymer used in the method for producing the flat metal particles described later are adjusted. And a method of removing excess polymer by centrifugal separation during the preparation of flat metal particles.
- Examples of the method for measuring the ratio include, for example, a method of calculating the high molecular weight in a flat metal particle coated with a polymer from the charged amount used when forming a metal particle-containing layer, or a coating with a polymer. And a method of measuring the high molecular weight by thermogravimetric analysis (TG-DTA) of the tabular metal particles formed.
- TG-DTA thermogravimetric analysis
- the kind of polymer used is not particularly limited, and a known polymer can be appropriately used depending on the purpose.
- examples include resins, (saturated) polyester resins, polyurethane resins, polymers such as natural polymers such as gelatin and cellulose, and gelatin is preferred from the viewpoint of dispersion stability of the flat metal particles.
- the method for synthesizing the flat metal particles is not particularly limited as long as it can synthesize hexagonal or circular flat metal particles, and can be appropriately selected according to the purpose.
- a chemical reduction method examples thereof include liquid phase methods such as a photochemical reduction method and an electrochemical reduction method.
- a liquid phase method such as a chemical reduction method or a photochemical reduction method is particularly preferable in terms of shape and size controllability.
- hexagonal to triangular tabular metal particles After synthesizing hexagonal to triangular tabular metal particles, for example, by performing etching treatment with a dissolved species that dissolves silver such as nitric acid and sodium sulfite, aging treatment by heating, etc., hexagonal to triangular tabular shapes are obtained. Hexagonal or circular flat metal particles may be obtained by blunting the corners of the metal particles.
- the metal particles for example, Ag
- the plate-like metal particles may be further processed in order to impart desired properties.
- the further treatment is not particularly limited and may be appropriately selected depending on the purpose.
- Examples thereof include formation of a high refractive index shell layer, addition of various additives such as a dispersant and an antioxidant. It is done.
- a predetermined polymer is used to form flat metal particles whose surfaces are coated with the polymer, and the obtained flat metal particles
- the dispersion can also be used as a composition for forming a metal particle-containing layer described later.
- the metal particle-containing layer may contain components other than the above-described metal particles, for example, a medium (binder).
- the type of the medium is not particularly limited and can be appropriately selected according to the purpose. Especially, it is more preferable that transparent polymer is included.
- the polymer include natural materials such as polyvinyl acetal resin, polyvinyl alcohol resin, polyvinyl butyral resin, polyacrylate resin, polymethyl methacrylate resin, polycarbonate resin, polyvinyl chloride resin, (saturated) polyester resin, polyurethane resin, gelatin, and cellulose. Examples thereof include polymers such as polymers.
- the main polymer of the polymer is preferably a polyvinyl alcohol resin, a polyvinyl butyral resin, a polyvinyl chloride resin, a (saturated) polyester resin, a polyurethane resin, and is preferably a polyester resin or a polyurethane resin. It is particularly preferable from the viewpoint of further improving the rub resistance of the electromagnetic wave transmissive laminate of the invention. Further, among polyester resins, a saturated polyester resin is particularly preferable from the viewpoint of imparting excellent weather resistance since it does not contain a double bond.
- the polymer a commercially available polymer can be preferably used.
- Plus Coat Z-687, Plus Coat Z-690 which is a water-soluble polyester resin manufactured by Kyoyo Chemical Industry Co., Ltd., or DIC Corporation.
- examples thereof include hydran HW-350 and HW-174, which are water-soluble polyurethane resins manufactured by the Company.
- the main polymer of the polymer contained in the metal particle-containing layer refers to a polymer component occupying 50% by mass or more of the polymer contained in the metal particle-containing layer.
- the content of the medium with respect to the metal particles contained in the metal particle-containing layer is preferably 1 to 10000% by mass, more preferably 10 to 1000% by mass, and particularly preferably 20 to 500% by mass. .
- the refractive index n of the medium is preferably 1.4 to 1.7.
- a surfactant is contained in the metal particle-containing layer from the viewpoint of suppressing generation of cissing and obtaining a good planar layer.
- a known surfactant such as an anionic or nonionic surfactant can be used.
- Specific examples of the surfactant include, for example, Lapisol A-90 (manufactured by NOF Corporation), NAROACTY HN-100 (manufactured by Sanyo Chemical Industries, Ltd.) and the like.
- the surfactant is preferably contained in an amount of 0.05 to 10% by weight, more preferably 0.1 to 5% by weight, based on the total binder in the metal particle-containing layer.
- the metal particles may adsorb an antioxidant such as mercaptotetrazole or ascorbic acid in order to prevent oxidation of metals such as silver constituting the metal particles.
- an oxidation sacrificial layer such as Ni may be formed on the surface of the flat metal particles.
- it may be covered with a metal oxide film such as SiO 2 for the purpose of blocking oxygen.
- the metal particles are, for example, dispersants such as quaternary ammonium salts, low molecular weight dispersants containing at least one of N elements such as amines, S elements, and P elements, and high molecular weight dispersants. May be added.
- the electromagnetic wave transmissive laminate of the present invention preferably has an adhesive layer.
- An adhesion layer is arrange
- the adhesion layer can contain a ultraviolet absorber.
- the material that can be used for forming the adhesive layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, polyvinyl butyral (PVB) resin, acrylic resin, styrene / acrylic resin, urethane resin, polyester resin And silicone resin. These may be used individually by 1 type and may use 2 or more types together. An adhesive layer made of these materials can be formed by coating. Furthermore, you may add an antistatic agent, a lubricant, an antiblocking agent, etc. to the adhesion layer.
- the thickness of the adhesive layer is preferably 0.1 to 10 ⁇ m.
- a hard coat layer may be included in the electromagnetic wave transparent laminate.
- the hard coat layer can contain metal oxide particles.
- the hard coat layer is not particularly limited, and the type and formation method can be appropriately selected according to the purpose.
- the thickness of the hard coat layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 to 50 ⁇ m.
- an antireflection layer and / or an antiglare layer are further formed on the hard coat layer, a functional film having antireflection properties and / or antiglare properties in addition to scratch resistance is preferably obtained. Moreover, you may contain a metal oxide particle in a hard-coat layer.
- the electromagnetic wave transparent laminate of the present invention is a hexagonal or circular flat plate in order to prevent oxidation / sulfurization of plate-like metal particles due to mass transfer and to impart scratch resistance.
- the electromagnetic wave transmissive laminate of the present invention prevents contamination of the production process due to the stripping of the tabular metal particles, and the arrangement of the tabular metal particles at the time of coating another layer
- An overcoat layer may be provided to prevent disturbance.
- the overcoat layer may contain an ultraviolet absorber, a light stabilizer, and an antioxidant.
- the overcoat layer is not particularly limited and may be appropriately selected depending on the intended purpose.For example, it contains a binder, a matting agent, and a surfactant, and further contains other components as necessary. Become.
- the binder is not particularly limited and can be appropriately selected depending on the purpose.
- thermosetting type such as an acrylic resin, a silicone resin, a melamine resin, a urethane resin, an alkyd resin, or a fluorine resin. Or a photocurable resin etc. are mentioned.
- the thickness of the overcoat layer is preferably 0.01 to 1,000 ⁇ m, more preferably 0.02 to 50 ⁇ m, and particularly preferably 0.03 to 10 ⁇ m.
- the electromagnetic wave transmissive laminate of the present invention preferably has a layer containing an ultraviolet absorber (ultraviolet absorber layer).
- the ultraviolet absorber layer can be appropriately selected depending on the purpose, and may be an adhesive layer, or a layer (for example, an overcoat layer) between the adhesive layer and the metal particle-containing layer. Alternatively, an overcoat layer may be provided on the ultraviolet absorber layer.
- the ultraviolet absorber is preferably added to the layer disposed on the side irradiated with sunlight with respect to the metal particle-containing layer.
- the ultraviolet absorber is not particularly limited and may be appropriately selected depending on the intended purpose.
- benzophenone ultraviolet absorber benzotriazole ultraviolet absorber, triazine ultraviolet absorber, salicylate ultraviolet absorber, cyano
- benzotriazole ultraviolet absorber triazine ultraviolet absorber
- salicylate ultraviolet absorber cyano
- acrylate ultraviolet absorbers These may be used individually by 1 type and may use 2 or more types together. Examples of the ultraviolet absorber include compounds described in paragraphs 0051 to 0055 of JP2013-80222A.
- the ultraviolet absorber layer formed between the heat ray source and the flat metal particles is 450 to 1,500 nm. It is preferable to select a material that does not absorb in the region, or to reduce the thickness of the ultraviolet absorber layer.
- the thickness of the ultraviolet absorber layer is preferably 0.01 to 1,000 ⁇ m, more preferably 0.02 to 500 ⁇ m.
- the thickness is 0.01 ⁇ m or more, the absorption of ultraviolet rays is more excellent, and when it is 1,000 ⁇ m or less, the visible light transmittance is further improved.
- the content of the ultraviolet absorber layer varies depending on the ultraviolet absorber layer to be used and cannot be generally defined. However, the content that gives the desired ultraviolet transmittance in the electromagnetic wave transmissive laminate of the present invention is appropriately selected. Is preferred.
- the ultraviolet transmittance is preferably 5% or less, and more preferably 2% or less. When the ultraviolet transmittance exceeds 5%, the color of the metal particle-containing layer may change due to the ultraviolet rays of sunlight.
- the electromagnetic wave transmissive laminate of the present invention is preferable from the viewpoint of balance between heat ray shielding and production cost even if it contains at least one metal oxide particle in order to absorb long-wave infrared rays.
- the above-described hard coat layer contains metal oxide particles.
- the hard coat layer may be laminated with the metal particle-containing layer via the substrate.
- the hard coat layer absorbs a part of the heat rays, and is directly received inside the electromagnetic wave transmissive laminate due to the heat rays transmitted through the electromagnetic wave transmissive laminate without being absorbed by the metal oxide particle-containing layer. It is possible to reduce the amount of heat as the sum of the amount of heat and the amount of heat absorbed by the metal oxide particle-containing layer of the electromagnetic wave transmissive laminate and indirectly transmitted to the inside of the electromagnetic wave transmissive laminate.
- the material of the metal oxide particles is not particularly limited and can be appropriately selected according to the purpose. For example, tin-doped indium oxide (hereinafter abbreviated as “ITO”), tin-doped antimony oxide (hereinafter, referred to as “ITO”).
- ATO Abbreviation “ATO”), zinc oxide, titanium oxide, indium oxide, tin oxide, antimony oxide, glass ceramics, tungsten oxide (hereinafter abbreviated as “CWO”), and the like.
- ITO, ATO, zinc oxide, and CWO are more preferable in that they have excellent heat ray absorption ability and can produce an electromagnetic wave transmissive laminate having a wide range of heat ray absorption ability when combined with flat metal particles.
- ITO is particularly preferable because it shields the above infrared rays by 90% or more and has a visible light transmittance of 90% or more.
- the volume average particle size of the primary particles of the metal oxide particles is preferably 0.1 ⁇ m or less in order not to reduce the visible light transmittance.
- limiting in particular as a shape of a metal oxide particle According to the objective, it can select suitably, For example, spherical shape, needle shape, plate shape, etc. are mentioned.
- the content of the metal oxide particles in the metal oxide particle-containing layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1 to 20 g / m 2 , preferably 0.5 to 10 g. / M 2 is more preferable, and 1.0 to 4.0 g / m 2 is more preferable.
- the content is 0.1 g / m 2 or more, the amount of solar radiation felt on the skin is further reduced, and when it is 20 g / m 2 or less, the visible light transmittance is further improved.
- the content of the metal oxide particles in the metal oxide particle-containing layer is, for example, from the observation of the super foil slice TEM image and the surface SEM image of the metal oxide particle-containing layer, It can be calculated by measuring the average particle diameter and dividing the mass (g) calculated based on the number and average particle diameter and the specific gravity of the metal oxide particles by a certain area (m 2 ). Also, metal oxide particles in a certain area of the metal oxide particle-containing layer are eluted in methanol, and the mass (g) of the metal oxide particles measured by fluorescent X-ray measurement is divided by the constant area (m 2 ). Can also be calculated.
- ⁇ Method for producing electromagnetic wave transmissive laminate> There is no restriction
- the dispersion liquid which has a metal particle on the surface of a board
- a dip coater a die coater, a slit coater, a bar coater, a gravure coater, or the like, or may be subjected to surface orientation by a method such as an LB film method, a self-organization method, or spray coating.
- the composition for metal particle content layer formation may contain the solvent as needed.
- the overcoat layer is preferably formed by coating.
- the application method at this time is not particularly limited, and a known method can be used.
- a dispersion containing an ultraviolet absorber can be used by a dip coater, a die coater, a slit coater, a bar coater, a gravure coater, or the like.
- coating etc. are mentioned.
- the hard coat layer is preferably formed by coating.
- the application method at this time is not particularly limited, and a known method can be used.
- a dispersion containing an ultraviolet absorber can be used by a dip coater, a die coater, a slit coater, a bar coater, a gravure coater, or the like.
- coating etc. are mentioned.
- the adhesive layer is preferably formed by coating.
- it can laminate
- the coating method at this time A well-known method can be used.
- the electromagnetic wave shielding property at 0.1 to 1000 MHz measured by the KEC method of the electromagnetic wave transparent laminate of the present invention is not particularly limited, but is preferably 1 dB or less, more preferably 0.5 dB or less, in terms of better electromagnetic wave transmission.
- the electromagnetic shielding property measurement method uses an electromagnetic shielding effect measuring device manufactured by KEC, and measures the electromagnetic wave intensity when nothing is sandwiched between jigs for radio waves and magnetic waves. The attenuation of electromagnetic wave intensity when the sample is sandwiched can be measured in dB.
- the haze value of the electromagnetic wave transmissive laminate of the present invention is not particularly limited, but is preferably 5% or less, and more preferably 2% or less.
- the haze value can be measured using a D65 light source with a haze meter (“NDH2000”, manufactured by Nippon Denshoku Industries Co., Ltd. or an equivalent model) according to JIS K7165: 1981.
- the visible light transmittance of the electromagnetic wave transmissive laminate of the present invention is preferably a low to medium transmittance, more specifically, less than 60%. If it is in the said range, sufficient blinding effect and heat shielding effect can be made compatible. Visible light transmittance was measured by using a UV-Vis near-infrared spectrometer (V-670, manufactured by JASCO Corporation) and the like, and JIS A 5759 was obtained from the obtained reflection / transmission spectrum. Accordingly, the visible light transmittance and the shielding coefficient can be calculated.
- a coating solution containing a pressure-sensitive adhesive When laminating the pressure-sensitive adhesive layer on the surface of the metal particle-containing layer, it is possible to apply a coating solution containing a pressure-sensitive adhesive directly on the surface, but various additives, plasticizers and solvents used in the pressure-sensitive adhesive However, in some cases, the arrangement of the metal particle-containing layer may be disturbed, or the metal particles themselves may be altered. In order to minimize such adverse effects, a pressure-sensitive adhesive is previously applied on a release film and dried, and then the pressure-sensitive adhesive surface of the film and the metal particle-containing layer surface of the film of the present invention are prepared. It is effective to laminate in a dry state.
- the electromagnetic wave transparent laminated body of this invention manufactured as mentioned above is glass or plastics for vehicles, such as a motor vehicle. And a method of bonding to glass or plastic for building materials.
- the electromagnetic wave transmissive laminate of the present invention is not particularly limited as long as it is an embodiment used for selectively reflecting or absorbing heat rays (near infrared rays), and may be appropriately selected according to the purpose.
- Examples thereof include a film for a vehicle and a laminated structure, a film for a building material, a laminated structure, and an agricultural film.
- a vehicle film and a laminated structure, a building material film and a laminated structure are preferable.
- the electromagnetic wave transmission laminated body of this invention can be used also as a reflecting mirror from the high reflective characteristic in visible region, and can be used as a film mirror especially when a board
- the film mirror for example, it can be used as a film mirror for collecting sunlight.
- application mode for example, application to a sunlight reflecting plate can be mentioned.
- the film mirror of this invention as a mirror for lighting. Since the film mirror has flexibility, it has good followability to a surface having a curvature, so that it is also preferable to install it on such a surface.
- heat rays near infrared rays
- a film mirror may be used as a backlight mirror for LCD. Since the film mirror of the present invention has electromagnetic wave transparency, it does not interfere with radio waves such as a wireless LAN, and has a high degree of freedom in installation.
- the precipitated silver tabular grains were transferred to a desktop homogenizer (Mitsui Denki Seiki Co., Ltd., SpinMix08), 360 mL of 0.2 mmol / L NaOH aqueous solution was added, and dispersed at 12000 rpm for 20 minutes. This was designated as silver tabular grain dispersion liquid B1 of Production Example 1. Gelatin is adsorbed on the surface of the obtained silver tabular grains, and the ratio of gelatin mass to silver tabular grain mass (gelatin mass / silver tabular grain mass) (hereinafter also referred to as ratio X) is 0. 650.
- composition M1 having the composition shown below was prepared.
- Polyurethane aqueous solution Hydran HW-350 (Manufactured by DIC Corporation, solid content concentration: 30% by mass) 0.126 parts by mass
- Surfactant A F Ripar 8780P (Lion Corporation, solid content 1% by mass) 0.96 parts by mass
- Surfactant B Naroacty CL-95 (Sanyo Chemical Industries, Ltd., solid content 1% by mass) 1.19 parts by mass Silver tabular particle dispersion B7 17.15 parts by mass Mercaptotetrazole (Wako Pure Chemical Industries, Ltd., solid content 2% by mass) 61 parts by weight Water 49.96 parts by weight Methanol 30 parts by weight
- the metal particle-containing layer forming composition M1 has a wet coating thickness of 10.6 ⁇ m. It was applied to. Then, it heated at 130 degreeC for 1 minute, was made to dry and solidify, the metal particle content layer was formed, and the electromagnetic wave transmission laminated body C2 was obtained.
- composition M2 having the composition shown below was prepared.
- Polyurethane aqueous solution Hydran HW-350 (DIC Co., Ltd., solid content concentration 30% by mass) 0.673 parts by mass
- Surfactant A F Ripar 8780P (Lion Corporation, solid content 1% by mass) 0.96 parts by mass
- Surfactant B Naroacty CL-95 (Manufactured by Sanyo Chemical Industries, Ltd., solid content 1% by mass) 1.19 parts by mass Silver tabular particle dispersion B4 42.88 parts by mass Mercaptotetrazole (manufactured by Wako Pure Chemical Industries, Ltd., solid content 2% by mass) 61 parts by weight water 23.69 parts by weight methanol 30 parts by weight
- the metal particle-containing layer forming composition M2 has a wet coating thickness of 10.6 ⁇ m. It was applied to. Then, it heated at 130 degreeC for 1 minute, was made to dry and solidify, the metal particle content layer was formed, and the electromagnetic wave transmission laminated body C6 was obtained.
- Example 1 A metal particle-containing layer forming composition M3 having the composition shown below was prepared.
- Polyurethane aqueous solution Hydran HW-350 (DIC Co., Ltd., solid content concentration 30% by mass) 0.018 parts by mass
- Surfactant A F Ripar 8780P (Lion Corporation, solid content 1% by mass) 0.96 parts by mass
- Surfactant B Naroacty CL-95 (Sanyo Chemical Industries, Ltd., solid content 1% by mass) 1.19 parts by mass Silver tabular particle dispersion B1 48.03 parts by mass Mercaptotetrazole (manufactured by Wako Pure Chemical Industries, Ltd., solid content 2% by mass) 61 parts by weight water 19.192 parts by weight methanol 30 parts by weight
- the metal particle-containing layer forming composition M3 is wet coated to 10.6 ⁇ m using a wire bar. It was applied to. Then, it heated at 130 degreeC for 1 minute, was made to dry and solidify, the metal particle content layer was formed, and the electromagnetic wave transmission laminated body E1 was obtained.
- Example 2 In place of the silver tabular grain dispersion liquid B1, the silver tabular grain dispersion liquid B2 is used, and the aqueous solution of polyurethane in the preparation of the metal particle-containing layer forming composition: Hydrane HW-350 is added in an amount of 0.251 parts by mass (the total is An electromagnetic wave transmissive laminate E2 was obtained according to the same procedure as in Example 1 except that the amount of water added was adjusted so as to be 100 parts by mass).
- Example 3 In place of the silver tabular grain dispersion B1, the silver tabular grain dispersion B3 is used, and an aqueous polyurethane solution used for preparing the metal particle-containing layer forming composition: 0.440 parts by mass of hydran HW-350 is added (total is 100). An electromagnetic wave transmissive laminate E3 was obtained according to the same procedure as in Example 1 except that the amount of water added was adjusted so as to be part by mass).
- Example 4 A metal particle-containing layer forming composition M4 having the composition shown below was prepared.
- Polyurethane aqueous solution Hydran HW-350 (DIC Co., Ltd., solid content concentration 30% by mass) 0.673 parts by mass
- Surfactant A F Ripar 8780P (Lion Corporation, solid content 1% by mass) 0.96 parts by mass
- Surfactant B Naroacty CL-95 (Manufactured by Sanyo Chemical Industries, Ltd., solid content 1% by mass) 1.19 parts by mass Silver tabular particle dispersion B2 (3-fold concentrated solution) 42.88 parts by mass Mercaptotetrazole (manufactured by Wako Pure Chemical Industries, Ltd., solid content) 2 mass%) 0.61 mass part water 23.69 mass parts methanol 30 mass parts
- the metal particle-containing layer forming composition M4 has a wet coating thickness of 10.6 ⁇ m. It was applied to. Then, it heated at 130 degreeC for 1 minute, was made to dry and solidify, the metal particle content layer was formed, and the electromagnetic wave transmission laminated body E4 was obtained.
- Example 5 Polyurethane aqueous solution in preparing the metal particle-containing layer forming composition: except that the amount of hydran HW-350 added was 1.347 parts by mass (the amount of water added was adjusted so that the total would be 100 parts by mass), According to the same procedure as in Example 4, an electromagnetic wave transmissive laminate E5 was obtained.
- Example 6 Polyurethane aqueous solution for preparing metal particle-containing layer forming composition: Example except that the amount of hydran HW-350 added is 0 parts by mass (the amount of water added is also adjusted so that the total is 100 parts by mass) According to the same procedure as in Example 4, an electromagnetic wave transmissive laminate E6 was obtained.
- Example 7 An electromagnetic wave transmissive laminate E7 was obtained according to the same procedure as in Example 6 except that the silver tabular grain dispersion B3 was used instead of the silver tabular grain dispersion B2.
- Example 8 An electromagnetic wave transmissive laminate E8 was obtained according to the same procedure as in Example 4 except that the silver tabular grain dispersion B5 was used instead of the silver tabular grain dispersion B2.
- Example 9 An electromagnetic wave transmissive laminate E9 was obtained according to the same procedure as in Example 4 except that the silver tabular grain dispersion B6 was used instead of the silver tabular grain dispersion B2.
- the other heavy release separator (silicone-coated PET) of PD-S1 is peeled off, and a soda-lime silicate glass (sheet glass) using a 0.5% by weight diluted solution of Real Perfect (manufactured by Lintec Co., Ltd.), which is a film construction solution. (Thickness: 3 mm) and optical characteristics were evaluated.
- the plate glass used was naturally dried after wiping off dirt with isopropyl alcohol, and was bonded with a surface pressure of 0.5 kg / cm 2 using a rubber roller in an environment of 25 ° C. and 65% RH at the time of bonding. .
- the bonding structure body which bonded the electromagnetic wave transparent laminated body obtained by each Example and the comparative example to glass was produced.
- such a structure is the form which simulated the construction to an actual building material.
- the shape uniformity of the silver tabular grains is the shape of 200 grains arbitrarily extracted from the observed SEM image, the hexagonal to circular tabular metal grains are A, an irregular shape such as a teardrop shape, and a substantially hexagonal shape.
- Image analysis was carried out by assuming that polygonal particles of less than B were B, and the ratio (number%) of the number of particles corresponding to A was obtained.
- the obtained dispersion containing silver tabular grains is dropped on a glass substrate and dried, and the thickness of 10 metal tabular grains corresponding to A is measured by an atomic force microscope (AFM) (Nanocute II, manufactured by Seiko Instruments Inc.). ).
- the measurement conditions using the AFM were a self-detecting sensor, DFM mode, a measurement range of 5 ⁇ m, a scanning speed of 180 seconds / frame, and a data point of 256 ⁇ 256.
- the average value of the obtained data is defined as the average grain thickness of tabular grains A, and the main plane diameter (maximum length) of 200 tabular metal grains corresponding to A is similarly measured with a digital caliper.
- the average particle diameter (average circle equivalent diameter) is determined from the average particle diameter (average circle equivalent diameter) and the average particle thickness of the metal tabular grains corresponding to A obtained by averaging the average value as the average equivalent circle diameter.
- the aspect ratio of tabular grain A was calculated by dividing by. The respective values are shown in Table 1.
- the reflection spectrum and the transmission spectrum were measured using an ultraviolet-visible near-infrared spectrometer (manufactured by JASCO Corporation, V -670).
- an absolute reflectance measurement unit ARV-474, manufactured by JASCO Corporation
- the incident light passed through a 45 ° polarizing plate and was regarded as incident light that can be regarded as non-polarized light. From the reflection / transmission spectrum thus obtained, the visible light transmittance and the shielding coefficient were calculated according to JIS A 5759.
- the electromagnetic wave permeability is 0.1 to 1000 MHz by cutting the sheet sample prepared in each Example / Comparative Example into 15 cm square and using Agilent 4396B of Tokyo Metropolitan Industrial Technology Center by KEC method (Kansai Electronics Industry Promotion Center method). was measured in the range. Specifically, the attenuation of the electromagnetic wave intensity is measured in dB when sandwiching a measurement sample against the electromagnetic wave intensity when nothing is sandwiched between jigs dedicated for radio waves and magnetic waves, and 1 dB as a reference The following evaluation (“A” or “B”) was performed. “A”: less than 1 dB “B”: 1 dB or more
- ratio X intends the above-described ratio (gelatin mass / silver tabular grain mass).
- area ratio is an area ratio [(B / B / A] which is a ratio of the total value B of the area of the metal particles to the area A of the substrate when the electromagnetic wave transmissive laminate is viewed from above the metal particle-containing layer. A) ⁇ 100]. More specifically, an image obtained when the electromagnetic wave transmissive laminate was observed with a scanning microscope from above (from the metal particle-containing layer side) was subjected to image processing.
- the “filling rate” intends the filling rate (%) of the metal particles in the metal particle-containing layer.
- a thin slice is prepared by scanning FIB (focused ion beam) in the cross-sectional direction of the produced electromagnetic wave transmissive laminate, and this slice is observed by TEM.
- the area ratio between the metal particles and the surrounding metal particle-containing layer is obtained by image processing, and the obtained values are multiplied by the specific gravity of the metal particles and the substance (organic matter) of the metal particle-containing layer, respectively.
- the filling rate (% by mass) was calculated.
- the specific gravity of the organic substance required for calculation used the value measured using the dry-type automatic densimeter (Accumic made from SHIMADZU) in the solid state.
- the electromagnetic wave permeable laminate of the present invention exhibits excellent heat shielding performance, haze value, and electromagnetic wave permeability.
- the shielding coefficient was smaller when the area ratio was 80% or more.
- the shielding coefficient was smaller when the aspect ratio was 8 to 40.
- Comparative Examples 1 to 6 that do not satisfy the requirements of the electromagnetic wave transmissive laminate of the present invention, any of the above items was inferior.
- the silver tabular grain dispersion liquid was heated and concentrated to 50 mL to obtain a silver tabular grain dispersion liquid B8 of Production Example 8. Gelatin was adsorbed on the surface of the silver tabular grains in the obtained silver tabular grain dispersion liquid B8, and the ratio X was 0.130.
- Example 10 A metal particle-containing layer forming composition M5 having the composition shown below was prepared.
- Surfactant A F Ripar 8780P (Lion Corporation, solid content 1% by mass) 0.95 parts by mass
- Surfactant B NAROACTY CL-95 (Manufactured by Sanyo Chemical Industries, Ltd., solid content 1% by mass) 1.15 parts by mass
- the metal particle-containing layer-forming composition M5 On the surface of a PET film (A4300, manufactured by Toyobo Co., Ltd., thickness: 250 ⁇ m, refractive index 1.66), using a wire bar, the metal particle-containing layer-forming composition M5 has a wet coating thickness of 35.3 ⁇ m. It was applied to. Then, it heated at 170 degreeC for 2 minute (s), dried and solidified, and formed the metal particle content layer. Next, an electromagnetic wave transmissive laminate E10 was obtained by applying an ultraviolet absorber layer and an overcoat layer on the metal particle-containing layer by the following procedure.
- UV absorber layer As an ultraviolet absorber layer coating solution, an acrylate polymer (Unidic EKS-675, manufactured by DIC Corporation) (30 parts by mass as a solid content), a benzotriazole ultraviolet absorber (TINUVIN405, manufactured by BASF Corporation) (1. 5 parts by mass), hindered amine light stabilizer (TINUVIN292, manufactured by BASF Corp.) (0.3 parts by mass), cyclohexanone (3 parts by mass), methyl isobutyl ketone (55 parts by mass), fluorosurfactant (Mega) A mixed solution of Facks F-780-F (manufactured by DIC Corporation) (0.01 parts by mass as a solid content) was prepared.
- a benzotriazole ultraviolet absorber TINUVIN405, manufactured by BASF Corporation
- hindered amine light stabilizer TINUVIN292, manufactured by BASF Corp.
- cyclohexanone 3 parts by mass
- methyl isobutyl ketone 55 parts by mass
- the obtained UV absorber layer coating solution was applied onto the metal particle-containing layer by a bar coating method so that the film thickness after drying was 15 ⁇ m, dried at 130 ° C. for 2 minutes, and then irradiated with a UV irradiation device ( UV exposure was carried out at a wavelength of 254 nm at 500 mJ / cm 2 using a UV lamp (metal halide lamp) manufactured by GS Yuasa Co., Ltd. to form an ultraviolet absorber layer.
- a UV lamp metal halide lamp
- a fluorine-based UV curable resin (Defenser FH-700, manufactured by DIC Corporation) (22 parts by mass as a solid content), cyclohexanone (5 parts by mass), methyl ethyl ketone (72 parts by mass) ), A fluorosurfactant (Megafac F-780-F, manufactured by DIC Corporation) (0.04 parts by mass as a solid content) was prepared.
- the obtained overcoat layer-forming coating solution was applied onto the UV absorber layer by a bar coating method so that the dry film thickness was 10 ⁇ m, dried at 130 ° C.
- An overcoat layer was formed by performing UV exposure at 500 mJ / cm 2 at a wavelength of 254 nm using a UV lamp (metal halide lamp) manufactured by GS Yuasa.
- an electromagnetic wave transmissive laminate E11 was obtained by applying an ultraviolet absorber layer and an overcoat layer on the metal particle-containing layer by the following procedure.
- a UV absorber layer coating solution butyral resin (ESREC BL-1, manufactured by Sekisui Chemical Co., Ltd., powder) (14.48 parts by mass), fluorine-based surfactant (Megafac F-780-F, DIC ( Co., Ltd., solid content 3% by mass, MEK dilution) (0.29 parts by mass), benzotriazole ultraviolet absorber (TINUVIN405, manufactured by BASF) (1.45 parts by mass), antioxidant (Irganox 1076, BASF Japan Ltd.) (0.14 parts by mass), methyl isobutyl ketone (58.63 parts by mass), 1-methoxy-2-propanol (20.00 parts by mass), cyclohexanone (5.00 parts by mass) A mixed solution was prepared.
- the obtained ultraviolet absorber layer coating solution was applied onto the metal particle-containing layer by a bar coating method so that the film thickness after drying was 8 ⁇ m, dried at 130 ° C. for 2 minutes, and then irradiated with a UV irradiation device ( UV exposure was carried out at a wavelength of 254 nm at 500 mJ / cm 2 using a UV lamp (metal halide lamp) manufactured by GS Yuasa Co., Ltd. to form an ultraviolet absorber layer.
- a UV irradiation device UV exposure was carried out at a wavelength of 254 nm at 500 mJ / cm 2 using a UV lamp (metal halide lamp) manufactured by GS Yuasa Co., Ltd. to form an ultraviolet absorber layer.
- a urethane resin composition (Pandex GW-3250, manufactured by DIC Corporation, solid content 70% by mass) (57.93 parts by mass), an initiator (IRGACURE127, BASF Japan) (Manufactured by Co., Ltd.) (0.85 parts by mass), fluorine-based surfactant (Megafac F-780-F, manufactured by DIC Corporation, solid content 3% by mass, MEK dilution) (0.42 parts by mass), Antioxidant (Irganox 1076, manufactured by BASF Japan Ltd.) (0.42 parts by mass), light stabilizer (TINUVIN292, manufactured by BASF Co., Ltd.) (0.42 parts by mass), methyl isobutyl ketone (34.7 parts by mass) ), A mixed solution of cyclohexanone (5.00 parts by mass) was prepared.
- the obtained overcoat layer-forming coating solution was applied onto the UV absorber layer by a bar coating method so that the dry film thickness was 15 ⁇ m, dried at 130 ° C. for 2 minutes, and then irradiated with a UV irradiation device ( An overcoat layer was formed by performing UV exposure at 500 mJ / cm 2 at a wavelength of 254 nm using a UV lamp (metal halide lamp) manufactured by GS Yuasa.
- Example 12 Before applying the ultraviolet absorber layer and the overcoat layer, the metal particle-containing layer was subjected to electromagnetic wave transmission according to the same procedure as in Example 10 except that the calendar treatment was performed at a calendar pressure of 160 kg / cm and a calendar temperature of 25 ° C. Conductive laminate E12 was obtained.
- Example 13 Before applying the ultraviolet absorber layer and the overcoat layer, the metal particle-containing layer was subjected to electromagnetic wave transmission according to the same procedure as in Example 11 except that the calendar treatment was performed at a calendar pressure of 160 kg / cm and a calendar temperature of 25 ° C. Conductive laminate E13 was obtained.
- the standard irradiance spectrum Si of sunlight on the ground surface is defined by ASTM G173-03, and when every 1 nm from a wavelength of 280 nm to a wavelength of 1700 nm is expressed as Si ( ⁇ ), sunlight
- the energy reflectance (Rtotal) was calculated by defining the following formula, and evaluated according to the following criteria. The results are shown in Table 2.
- Rtotal means the effective reflection efficiency of solar energy in consideration of the irradiation intensity at each wavelength of sunlight. ⁇ Evaluation criteria> A: Rtotal is 80% or more.
- C Rtotal is less than 70%.
- Electromagnetic wave permeability in Table 2 is a result measured by the above-mentioned “measurement of electromagnetic wave permeability”.
- the electromagnetic wave transmissive laminate of the present invention exhibited excellent solar energy reflectivity while functioning as a film mirror while having electromagnetic wave permeability.
- Electromagnetic wave transparent laminated body 12 Substrate 14 Metal particle content layer 20 Flat metal particle 22 Polymer layer
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Laminated Bodies (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
本発明は、可視光透過率が比較的低く、遮熱性能が高く、ヘイズ値が低く、さらに、電磁波透過性に優れる電磁波透過性積層体を提供する。本発明の電磁波透過性積層体は、基板と、基板上に配置された、少なくとも1種の金属粒子を含有する金属粒子含有層とを有する電磁波透過性積層体であって、金属粒子が、六角形状乃至円形状の平板状金属粒子を60個数%以上有し、電磁波透過性積層体を金属粒子含有層の上から見たときの基板の面積Aに対する金属粒子の面積の合計値Bの割合である面積率〔(B/A)×100〕が70%以上であり、かつ、金属粒子含有層中の金属粒子の充填率が50~90質量%である。
Description
本発明は、電磁波透過性積層体に係り、特に、金属粒子の充填率および面積率が所定値である金属粒子含有層を有する電磁波透過性積層体に関する。
近年、二酸化炭素削減のための省エネルギー施策の一つとして、自動車や建物の窓に対する熱線遮蔽性付与材料が開発されている。熱線遮蔽性(日射熱取得率)の観点からは、吸収した光の室内への再放射(吸収した日射エネルギーの約1/3量)がある熱線吸収型より、再放射がない熱線反射型が望ましく、様々な提案がなされている。
例えば、特許文献1のように、金属スパッタにより形成される、金、銀、銅等からなる熱線遮蔽層を形成する方法が開示されている。
また、他には、特許文献2および3において、平板状金属粒子を所定量含む金属粒子含有層を備える熱線遮蔽材が開示されている。
例えば、特許文献1のように、金属スパッタにより形成される、金、銀、銅等からなる熱線遮蔽層を形成する方法が開示されている。
また、他には、特許文献2および3において、平板状金属粒子を所定量含む金属粒子含有層を備える熱線遮蔽材が開示されている。
一方、近年、自動車のリアウィンドウまたはリアサイドウィンドウや、オフィスビルの窓ガラスに適用すべく、低可視光透過率で高反射型の熱線遮蔽材が求められている。このような熱線遮蔽材は、高い熱線遮蔽性を示しつつ、かつ、可視光透過率が低いことによる目隠し効果も併せ持つことが期待できる。さらに、上記のような用途への応用を考慮すると、携帯電話、地上デジタル放送、RFIDなどの通信を阻害しないように、電磁波(特に0.1~1000MHzの電波)透過性が優れることも求められる。つまり、熱線遮蔽材は、優れた電磁波透過性を示す電磁波透過性積層体であることも求められている。
それに対して、特許文献1に記載されるような従来技術では、金属スパッタ層が、電磁波と干渉し、通信障害を発生しやすいという問題があった。
また、特許文献2および3は、そもそも、高い可視光透過率が要求される場面において高い遮熱性能を持たせるために最適な形態に調整されている。本発明者らが特許文献2および3に記載の熱線遮蔽材を用いて、低可視光透過率(一般的に可視光透過率60%未満を示す)の積層体を作り、その特性を評価したところ、所望の効果が劣ることが知見された。より具体的には、可視光透過率を低減させるために、特許文献2および3の実施例欄で具体的に記載される金属粒子を用いて、熱線遮蔽材を上から見た時の基板の面積Aに対する平板状金属粒子の面積の合計値Bの割合である面積率〔(B/A)×100〕を高めたところ、熱線遮蔽性能が劣ると共に、ヘイズが上昇することを知見した。なお、ヘイズ値は透過光の散乱度合いを示し、ヘイズ値が高いほど散乱が大きく、例えば、この特性を示す熱線遮蔽材を窓ガラスに貼った際に、部屋の内側から外を見た際の、景観がぼやける、または、文字が読みにくくなるなどの問題が発生する。
つまり、従来技術においては、可視光透過率が低~中程度の領域(可視光透過率60%未満)において、高い遮熱性能、低いヘイズ値、高い電磁波透過性を全て満足するものはなく、更なる改良が必要であることを見出した。
また、特許文献2および3は、そもそも、高い可視光透過率が要求される場面において高い遮熱性能を持たせるために最適な形態に調整されている。本発明者らが特許文献2および3に記載の熱線遮蔽材を用いて、低可視光透過率(一般的に可視光透過率60%未満を示す)の積層体を作り、その特性を評価したところ、所望の効果が劣ることが知見された。より具体的には、可視光透過率を低減させるために、特許文献2および3の実施例欄で具体的に記載される金属粒子を用いて、熱線遮蔽材を上から見た時の基板の面積Aに対する平板状金属粒子の面積の合計値Bの割合である面積率〔(B/A)×100〕を高めたところ、熱線遮蔽性能が劣ると共に、ヘイズが上昇することを知見した。なお、ヘイズ値は透過光の散乱度合いを示し、ヘイズ値が高いほど散乱が大きく、例えば、この特性を示す熱線遮蔽材を窓ガラスに貼った際に、部屋の内側から外を見た際の、景観がぼやける、または、文字が読みにくくなるなどの問題が発生する。
つまり、従来技術においては、可視光透過率が低~中程度の領域(可視光透過率60%未満)において、高い遮熱性能、低いヘイズ値、高い電磁波透過性を全て満足するものはなく、更なる改良が必要であることを見出した。
本発明は、上記実情に鑑みて、可視光透過率が比較的低く、遮熱性能が高く、ヘイズ値が低く、さらに、電磁波透過性に優れる電磁波透過性積層体を提供することを目的とする。
本発明者は、上記課題を達成すべく鋭意研究した結果、金属粒子含有層中での金属粒子の充填率および面積率を制御することにより上記課題を解決できることを見出し、本発明を完成させた。
すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
(1) 基板と、基板上に配置された、少なくとも1種の金属粒子を含有する金属粒子含有層とを有する電磁波透過性積層体であって、
金属粒子が、六角形状乃至円形状の平板状金属粒子を60個数%以上有し、
電磁波透過性積層体を金属粒子含有層の上から見たときの基板の面積Aに対する金属粒子の面積の合計値Bの割合である面積率〔(B/A)×100〕が70%以上であり、かつ、金属粒子含有層中の金属粒子の充填率が50~90質量%である、電磁波透過性積層体。
(2) 平板状金属粒子の表面が高分子で被覆され、平板状金属粒子の質量に対する高分子の質量の割合{(高分子の質量/平板状金属粒子の質量)×100}が65質量%以下である、(1)に記載の電磁波透過性積層体。
(3) KEC法によって測定した、0.1~1000MHzにおける電磁波シールド性が1dB以下である、(1)または(2)に記載の電磁波透過性積層体。
(4) ヘイズ値が5%以下である、(1)~(3)のいずれかに記載の電磁波透過性積層体。
(5) 平板状金属粒子のアスペクト比(平均粒子径/平均粒子厚み)が8~40である、(1)~(4)のいずれかに記載の電磁波透過性積層体。
(6) 平板状金属粒子が、少なくとも銀を含む、(1)~(5)のいずれかに記載の電磁波透過性積層体。
(7) 基板が樹脂基板であり、フィルムミラーに用いられる、(1)~(6)のいずれかに記載の電磁波透過性積層体。
金属粒子が、六角形状乃至円形状の平板状金属粒子を60個数%以上有し、
電磁波透過性積層体を金属粒子含有層の上から見たときの基板の面積Aに対する金属粒子の面積の合計値Bの割合である面積率〔(B/A)×100〕が70%以上であり、かつ、金属粒子含有層中の金属粒子の充填率が50~90質量%である、電磁波透過性積層体。
(2) 平板状金属粒子の表面が高分子で被覆され、平板状金属粒子の質量に対する高分子の質量の割合{(高分子の質量/平板状金属粒子の質量)×100}が65質量%以下である、(1)に記載の電磁波透過性積層体。
(3) KEC法によって測定した、0.1~1000MHzにおける電磁波シールド性が1dB以下である、(1)または(2)に記載の電磁波透過性積層体。
(4) ヘイズ値が5%以下である、(1)~(3)のいずれかに記載の電磁波透過性積層体。
(5) 平板状金属粒子のアスペクト比(平均粒子径/平均粒子厚み)が8~40である、(1)~(4)のいずれかに記載の電磁波透過性積層体。
(6) 平板状金属粒子が、少なくとも銀を含む、(1)~(5)のいずれかに記載の電磁波透過性積層体。
(7) 基板が樹脂基板であり、フィルムミラーに用いられる、(1)~(6)のいずれかに記載の電磁波透過性積層体。
本発明によれば、可視光透過率が比較的低く、遮熱性能が高く、ヘイズ値が低く、さらに、電磁波透過性に優れる電磁波透過性積層体を提供することができる。
なお、本発明の電磁波透過性積層体は、太陽光集光用などとして使用可能なフィルムミラーとして好適に使用することもできる。
なお、本発明の電磁波透過性積層体は、太陽光集光用などとして使用可能なフィルムミラーとして好適に使用することもできる。
以下に、本発明の電磁波透過性積層体の好適実施形態について説明する。
まず、本発明の従来技術と比較した特徴点としては、金属粒子含有層中の金属粒子の充填率および面積率を制御している点が挙げられる。本発明においては、電磁波透過性積層体を上から見た時の基板の面積Aに対する金属粒子の面積の合計値Bの割合である面積率〔(B/A)×100〕を高めることにより、可視光透過率を低減させている。その際、金属粒子含有層中における金属粒子(特に、平板状金属粒子)の充填率を高めることにより、遮熱性能の向上、および、ヘイズ値の低減が達成されている。特に、ヘイズ値に関しては、図2の金属粒子含有層14の拡大断面図に示すように、平板状金属粒子20がその特殊な形状のために、平板状金属粒子20同士が厚み方向に重なる場合でも互いに平行にならびやすく、結果としてヘイズ値の低減が達成されていると推測される。なお、金属粒子の充填率を高めるために、本発明においては金属粒子の表面を被覆する高分子の量を制御している。より具体的には、図2に示すように、平板状金属粒子20の表面を被覆する高分子層22の量を低減させる、つまり、高分子層22を薄くすることにより、金属粒子含有層中の充填率を高めている。
まず、本発明の従来技術と比較した特徴点としては、金属粒子含有層中の金属粒子の充填率および面積率を制御している点が挙げられる。本発明においては、電磁波透過性積層体を上から見た時の基板の面積Aに対する金属粒子の面積の合計値Bの割合である面積率〔(B/A)×100〕を高めることにより、可視光透過率を低減させている。その際、金属粒子含有層中における金属粒子(特に、平板状金属粒子)の充填率を高めることにより、遮熱性能の向上、および、ヘイズ値の低減が達成されている。特に、ヘイズ値に関しては、図2の金属粒子含有層14の拡大断面図に示すように、平板状金属粒子20がその特殊な形状のために、平板状金属粒子20同士が厚み方向に重なる場合でも互いに平行にならびやすく、結果としてヘイズ値の低減が達成されていると推測される。なお、金属粒子の充填率を高めるために、本発明においては金属粒子の表面を被覆する高分子の量を制御している。より具体的には、図2に示すように、平板状金属粒子20の表面を被覆する高分子層22の量を低減させる、つまり、高分子層22を薄くすることにより、金属粒子含有層中の充填率を高めている。
以下に、本発明の電磁波透過性積層体について図面を参照して説明する。図1に、本発明の電磁波透過性積層体の一例の断面図を示す。
電磁波透過性積層体10は、基板12と、金属粒子含有層14とをこの順で有する。なお、太陽光などの光は、金属粒子含有層14側から入射されて金属粒子含有層14表面上で反射する。
以下に、電磁波透過性積層体10を構成する各層について詳述する。
電磁波透過性積層体10は、基板12と、金属粒子含有層14とをこの順で有する。なお、太陽光などの光は、金属粒子含有層14側から入射されて金属粒子含有層14表面上で反射する。
以下に、電磁波透過性積層体10を構成する各層について詳述する。
<基板>
基板としては、後述する金属粒子含有層を支持できる基板であれば、特に制限されず、光学的に透明な基板が好ましい。より具体的には、可視光透過率が70%以上の基板が好ましく、80%以上の基板がより好ましい。
基板の形状、構造、大きさ、および材料などについては、特に制限はなく、目的に応じて適宜選択することができる。形状としては、例えば、平板状などが挙げられ、構造としては、単層構造であってもよいし、積層構造であってもよく、大きさとしては、電磁波透過性積層体の大きさなどに応じて適宜選択することができる。
基板としては、目的に応じて適宜選択することができ、フィルムミラーとしての用途の点からは樹脂基板(樹脂フィルム)が好ましく、例えば、ポリエチレン、ポリプロピレン、ポリ4-メチルペンテン-1、ポリブテン-1等のポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリカーボネート系樹脂、ポリ塩化ビニル系樹脂、ポリフェニレンサルファイド系樹脂、ポリエーテルサルフォン系樹脂、ポリエチレンサルファイド系樹脂、ポリフェニレンエーテル系樹脂、スチレン系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、セルロースアセテート等のセルロース系樹脂などからなるフィルムまたはこれらの積層フィルムが挙げられる。これらの中で、特に、基板としては、ポリエチレンテレフタレートフィルムが好適である。
基板の厚みは特に制限されず、使用目的に応じて適宜選択することができ、通常は10~500μmが好ましく、12~400μmがより好ましく、16~300μmがさらに好ましい。
特に、熱線遮蔽材としての使用であれば、基板の厚みが薄すぎるとガラスに貼り合わせた際に副次的に生じる飛散防止効果が低くなり、防犯性が低下する。一方で基板の厚みが厚すぎると、積層体を貼り合わせる際の施工性が悪く、空気残りやシワが残ってしまい、貼り合わせ後の外観が悪化してしまう。
基板には、紫外線吸収剤を含んでもよい。また、基板自体の劣化を防ぐ酸化防止剤やラジカル補足剤を含んでもよい。
基板としては、後述する金属粒子含有層を支持できる基板であれば、特に制限されず、光学的に透明な基板が好ましい。より具体的には、可視光透過率が70%以上の基板が好ましく、80%以上の基板がより好ましい。
基板の形状、構造、大きさ、および材料などについては、特に制限はなく、目的に応じて適宜選択することができる。形状としては、例えば、平板状などが挙げられ、構造としては、単層構造であってもよいし、積層構造であってもよく、大きさとしては、電磁波透過性積層体の大きさなどに応じて適宜選択することができる。
基板としては、目的に応じて適宜選択することができ、フィルムミラーとしての用途の点からは樹脂基板(樹脂フィルム)が好ましく、例えば、ポリエチレン、ポリプロピレン、ポリ4-メチルペンテン-1、ポリブテン-1等のポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリカーボネート系樹脂、ポリ塩化ビニル系樹脂、ポリフェニレンサルファイド系樹脂、ポリエーテルサルフォン系樹脂、ポリエチレンサルファイド系樹脂、ポリフェニレンエーテル系樹脂、スチレン系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、セルロースアセテート等のセルロース系樹脂などからなるフィルムまたはこれらの積層フィルムが挙げられる。これらの中で、特に、基板としては、ポリエチレンテレフタレートフィルムが好適である。
基板の厚みは特に制限されず、使用目的に応じて適宜選択することができ、通常は10~500μmが好ましく、12~400μmがより好ましく、16~300μmがさらに好ましい。
特に、熱線遮蔽材としての使用であれば、基板の厚みが薄すぎるとガラスに貼り合わせた際に副次的に生じる飛散防止効果が低くなり、防犯性が低下する。一方で基板の厚みが厚すぎると、積層体を貼り合わせる際の施工性が悪く、空気残りやシワが残ってしまい、貼り合わせ後の外観が悪化してしまう。
基板には、紫外線吸収剤を含んでもよい。また、基板自体の劣化を防ぐ酸化防止剤やラジカル補足剤を含んでもよい。
<金属粒子含有層>
金属粒子含有層は、基板上に配置され、遮熱性能に優れる一方で、ヘイズ値が低く、電磁波透過性にも優れる。金属粒子含有層は、少なくとも1種の金属粒子を含有する。
金属粒子含有層は、基板上に配置され、遮熱性能に優れる一方で、ヘイズ値が低く、電磁波透過性にも優れる。金属粒子含有層は、少なくとも1種の金属粒子を含有する。
(金属粒子)
金属粒子としては、金属の平板粒子(平板状金属粒子)を含むものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、平板状金属粒子の他、粒状、立方体状、六面体状、八面体状、ロッド状などが挙げられる。
金属粒子含有層において、金属粒子の存在形態としては、基板平面に対して略水平に偏在していることが好ましく、例えば、基板と金属粒子とが略接触する形態、基板と金属粒子とが電磁波透過性積層体の深さ方向に一定の距離で配置されている形態が挙げられる。
金属粒子の大きさとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、500nm以下の平均円相当径を有するものであってもよい。
金属粒子の材料としては、特に制限はなく、目的に応じて適宜選択することができるが、可視光線~熱線(近赤外線)の反射率が高いという点で、銀、金、アルミニウム、銅、ロジウム、ニッケル、白金が好適である。
金属粒子としては、金属の平板粒子(平板状金属粒子)を含むものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、平板状金属粒子の他、粒状、立方体状、六面体状、八面体状、ロッド状などが挙げられる。
金属粒子含有層において、金属粒子の存在形態としては、基板平面に対して略水平に偏在していることが好ましく、例えば、基板と金属粒子とが略接触する形態、基板と金属粒子とが電磁波透過性積層体の深さ方向に一定の距離で配置されている形態が挙げられる。
金属粒子の大きさとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、500nm以下の平均円相当径を有するものであってもよい。
金属粒子の材料としては、特に制限はなく、目的に応じて適宜選択することができるが、可視光線~熱線(近赤外線)の反射率が高いという点で、銀、金、アルミニウム、銅、ロジウム、ニッケル、白金が好適である。
(金属粒子の面積率)
電磁波透過性積層体を上から見た時(電磁波透過性積層体の金属粒子含有層の法線方向から電磁波透過性積層体を見た時)の基板の面積A(金属粒子含有層に対して垂直方向から見たときの金属粒子含有層の全投影面積A)に対する金属粒子の面積の合計値Bの割合である面積率〔(B/A)×100〕としては、70%以上であり、好ましくは80%以上である。面積率が70%未満であると、熱線の最大反射率が低下してしまい、遮熱効果が十分に得られない。また、面積率が70%未満であると、本発明で規定するところの充填率を高める効果を最大限に発揮できない。つまり面積率が低い場合、充填率が高いと粒子の配列状態(粒子同士の粗密や重なり具合)が悪くなる形態が存在する。
ここで、面積率は、例えば、電磁波透過性積層体を上からSEM観察で得られた画像や、AFM(原子間力顕微鏡)観察で得られた画像を画像処理することにより測定することができる。
電磁波透過性積層体を上から見た時(電磁波透過性積層体の金属粒子含有層の法線方向から電磁波透過性積層体を見た時)の基板の面積A(金属粒子含有層に対して垂直方向から見たときの金属粒子含有層の全投影面積A)に対する金属粒子の面積の合計値Bの割合である面積率〔(B/A)×100〕としては、70%以上であり、好ましくは80%以上である。面積率が70%未満であると、熱線の最大反射率が低下してしまい、遮熱効果が十分に得られない。また、面積率が70%未満であると、本発明で規定するところの充填率を高める効果を最大限に発揮できない。つまり面積率が低い場合、充填率が高いと粒子の配列状態(粒子同士の粗密や重なり具合)が悪くなる形態が存在する。
ここで、面積率は、例えば、電磁波透過性積層体を上からSEM観察で得られた画像や、AFM(原子間力顕微鏡)観察で得られた画像を画像処理することにより測定することができる。
(金属粒子の充填率)
金属粒子含有層中の金属粒子の充填率は、50~90質量%である。なかでも、遮熱性能と電磁波透過性とのバランスがより優れる点で、60~90質量%が好ましく、70~90質量%がより好ましい。
充填率の測定方法としては、作製した電磁波透過性積層体から、断面方向に対してFIB(集束イオンビーム)などを用いて、薄い切片を作製し、断面をTEM観察することによって、金属粒子と周囲の金属粒子含有層の面積比を画像処理によって求める。この値にそれぞれ金属粒子、および金属粒子含有層の物質の比重をかけ、その合計値に対する金属粒子の質量比を計算することで算出される。
金属粒子含有層中の金属粒子の充填率は、50~90質量%である。なかでも、遮熱性能と電磁波透過性とのバランスがより優れる点で、60~90質量%が好ましく、70~90質量%がより好ましい。
充填率の測定方法としては、作製した電磁波透過性積層体から、断面方向に対してFIB(集束イオンビーム)などを用いて、薄い切片を作製し、断面をTEM観察することによって、金属粒子と周囲の金属粒子含有層の面積比を画像処理によって求める。この値にそれぞれ金属粒子、および金属粒子含有層の物質の比重をかけ、その合計値に対する金属粒子の質量比を計算することで算出される。
(平板状金属粒子)
平板状金属粒子としては、2つの主平面からなる粒子(図3Aおよび図3B参照)であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、六角形状、円形状、三角形状などが挙げられる。これらの中でも、可視光透過率が高い点で、六角形状以上の多角形状~円形状であることがより好ましく、六角形状乃至円形状であることが特に好ましい。
本明細書中、円形状とは、後述する平板状金属粒子の平均円相当径の10%以下の凹凸を無視したときに、主平面上において、平均円相当径の50%以上の長さを有する辺の個数が1個の平板状金属粒子当たり0個である形状のことを言う。円形状の平板状金属粒子としては、透過型電子顕微鏡(TEM)で平板状金属粒子を主平面の上方から観察した際に、角が無く、丸い形状であれば特に制限はなく、目的に応じて適宜選択することができる。
本明細書中、六角形状とは、後述する平板状金属粒子の平均円相当径の10%以下の凹凸を無視したときに、主平面上において、平均円相当径の20%以上の長さを有する辺の個数が1個の平板状金属粒子当たり6個である形状のことを言う。六角形状の平板状金属粒子としては、透過型電子顕微鏡(TEM)で平板状金属粒子を主平面の上方から観察した際に、六角形状であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、六角形状の角が鋭角のものでも、鈍っているものでもよいが、可視光域の吸収を軽減し得る点で、角が鈍っているものであることが好ましい。角の鈍りの程度としては、特に制限はなく、目的に応じて適宜選択することができる。
平板状金属粒子の材料としては、特に制限はなく、金属粒子と同じものを目的に応じて適宜選択することができる。平板状金属粒子は、少なくとも銀を含むことが好ましい。
平板状金属粒子としては、2つの主平面からなる粒子(図3Aおよび図3B参照)であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、六角形状、円形状、三角形状などが挙げられる。これらの中でも、可視光透過率が高い点で、六角形状以上の多角形状~円形状であることがより好ましく、六角形状乃至円形状であることが特に好ましい。
本明細書中、円形状とは、後述する平板状金属粒子の平均円相当径の10%以下の凹凸を無視したときに、主平面上において、平均円相当径の50%以上の長さを有する辺の個数が1個の平板状金属粒子当たり0個である形状のことを言う。円形状の平板状金属粒子としては、透過型電子顕微鏡(TEM)で平板状金属粒子を主平面の上方から観察した際に、角が無く、丸い形状であれば特に制限はなく、目的に応じて適宜選択することができる。
本明細書中、六角形状とは、後述する平板状金属粒子の平均円相当径の10%以下の凹凸を無視したときに、主平面上において、平均円相当径の20%以上の長さを有する辺の個数が1個の平板状金属粒子当たり6個である形状のことを言う。六角形状の平板状金属粒子としては、透過型電子顕微鏡(TEM)で平板状金属粒子を主平面の上方から観察した際に、六角形状であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、六角形状の角が鋭角のものでも、鈍っているものでもよいが、可視光域の吸収を軽減し得る点で、角が鈍っているものであることが好ましい。角の鈍りの程度としては、特に制限はなく、目的に応じて適宜選択することができる。
平板状金属粒子の材料としては、特に制限はなく、金属粒子と同じものを目的に応じて適宜選択することができる。平板状金属粒子は、少なくとも銀を含むことが好ましい。
金属粒子含有層に存在する金属粒子のうち、六角形状乃至円形状の平板状金属粒子は、金属粒子の全個数に対して、60個数%以上であり、65個数%以上が好ましく、70個数%以上がさらに好ましい。上限は特に制限されないが、100個数%が好ましい。平板状金属粒子の割合が、60個数%未満であると、可視光透過率が低くなってしまうことがある。
上記個数%は、電子顕微鏡(例えば、TEMまたはSEM)により金属粒子含有層中の金属粒子を少なくとも200個観察して、六角形状乃至円形状の平板状金属粒子の割合を計算する。
上記個数%は、電子顕微鏡(例えば、TEMまたはSEM)により金属粒子含有層中の金属粒子を少なくとも200個観察して、六角形状乃至円形状の平板状金属粒子の割合を計算する。
(平均粒子径(平均円相当径)および平均粒子径(平均円相当径)の粒度分布)
平板状金属粒子の平均粒子径(平均円相当径)としては特に制限はなく、目的に応じて適宜選択することができるが、70~500nmが好ましく、100~400nmがより好ましい。平均粒子径(平均円相当径)が、70nm以上であると、平板状金属粒子の吸収の寄与が反射より小さくなるためより優れた熱線反射能が得られ、500nm以下であると、ヘイズ(散乱)がより小さくなる。なお、粒子径(円相当径)は、図3Aおよび図3Bに示す通り、粒子径Dに相当する。
ここで、平均粒子径(平均円相当径)とは、TEMで粒子を観察して得た像から任意に選んだ200個の平板状金属粒子の主平面直径(最大長さ)の平均値を意味する。
金属粒子含有層中には平均粒子径(平均円相当径)が異なる2種以上の金属粒子を含有することができ、この場合、金属粒子の平均粒子径(平均円相当径)のピークが2つ以上、即ち2つの平均粒子径(平均円相当径)を有していてもよい。
平板状金属粒子の平均粒子径(平均円相当径)としては特に制限はなく、目的に応じて適宜選択することができるが、70~500nmが好ましく、100~400nmがより好ましい。平均粒子径(平均円相当径)が、70nm以上であると、平板状金属粒子の吸収の寄与が反射より小さくなるためより優れた熱線反射能が得られ、500nm以下であると、ヘイズ(散乱)がより小さくなる。なお、粒子径(円相当径)は、図3Aおよび図3Bに示す通り、粒子径Dに相当する。
ここで、平均粒子径(平均円相当径)とは、TEMで粒子を観察して得た像から任意に選んだ200個の平板状金属粒子の主平面直径(最大長さ)の平均値を意味する。
金属粒子含有層中には平均粒子径(平均円相当径)が異なる2種以上の金属粒子を含有することができ、この場合、金属粒子の平均粒子径(平均円相当径)のピークが2つ以上、即ち2つの平均粒子径(平均円相当径)を有していてもよい。
電磁波透過性積層体において、平板状金属粒子の粒度分布における変動係数としては、30%以下が好ましく、20%以下がより好ましい。変動係数が30%以内であれば、電磁波透過性積層体における熱線の反射波長域がよりシャープとなり、可視光透過率が上昇する。ここで、平板状金属粒子の粒度分布における変動係数は、例えば、上述の通り得た平均値の算出に用いた200個の平板状金属粒子の粒子径の分布範囲をプロットし、粒度分布の標準偏差を求め、上述の通り得た主平面直径(最大長さ)の平均値(平均粒子径(平均円相当径))で割った値(%)である。
(平板状金属粒子の厚み・アスペクト比)
平板状金属粒子のアスペクト比としては特に制限はなく、目的に応じて適宜選択することができるが、波長800nm~1,800nmの赤外光領域での反射率が高くなる点から、8~40が好ましく、9~30がより好ましく、10~20がさらに好ましい。アスペクト比が8以上であると反射ピーク波長が800nmより大きくなり、40以下であると、反射ピーク波長が1,800nmより短い、より優れた熱線反射能が得られる。
アスペクト比は、平板状金属粒子の平均粒子径(平均円相当径)を平板状金属粒子の平均粒子厚みで除算した値を意味する。粒子厚みは、例えば、図3Aおよび図3Bに示す通り、平板状金属粒子の主平面間距離Lに相当し、原子間力顕微鏡(AFM)により測定することができる。
平板状金属粒子の厚みは特に制限されないが、5~14nmであることが好ましい。
平均粒子厚みの測定方法としては、ガラス基板に平板状金属粒子を含有する粒子分散液を滴下し、乾燥させて、任意の10個の粒子の厚みを測定し、それらを算術平均する方法が挙げられる。
平板状金属粒子のアスペクト比としては特に制限はなく、目的に応じて適宜選択することができるが、波長800nm~1,800nmの赤外光領域での反射率が高くなる点から、8~40が好ましく、9~30がより好ましく、10~20がさらに好ましい。アスペクト比が8以上であると反射ピーク波長が800nmより大きくなり、40以下であると、反射ピーク波長が1,800nmより短い、より優れた熱線反射能が得られる。
アスペクト比は、平板状金属粒子の平均粒子径(平均円相当径)を平板状金属粒子の平均粒子厚みで除算した値を意味する。粒子厚みは、例えば、図3Aおよび図3Bに示す通り、平板状金属粒子の主平面間距離Lに相当し、原子間力顕微鏡(AFM)により測定することができる。
平板状金属粒子の厚みは特に制限されないが、5~14nmであることが好ましい。
平均粒子厚みの測定方法としては、ガラス基板に平板状金属粒子を含有する粒子分散液を滴下し、乾燥させて、任意の10個の粒子の厚みを測定し、それらを算術平均する方法が挙げられる。
(平板状金属粒子を被覆する高分子)
平板状金属粒子はその表面が高分子(高分子分散剤)で被覆され、平板状金属粒子の質量に対する高分子の質量の割合{(高分子の質量/平板状金属粒子の質量)×100}が65質量%以下であることが好ましく、上記割合は50質量%以下がより好ましく、40質量%がさらに好ましい。上記範囲であれば、金属粒子含有層中における平板状金属粒子の充填率をより高めることができる。また、上記割合の下限は特に制限されないが、平板状金属粒子の分散安定性の点から、10質量%以上が好ましい。なお、高分子としては、平板状金属粒子と直接吸着または結合している官能基を含む高分子であり、主に、平板状金属粒子を形成する際に、平板状金属粒子の分散安定化のために添加される高分子に相当する。高分子は、平板状金属粒子表面を被覆する高分子層(被覆層)を形成する。
また、上記高分子の平板状金属粒子に対する質量を制御する方法としては、特に限定されないが、例えば、後述する平板状金属粒子の製造方法の際に使用される高分子の分子量や添加量を調整する方法や、平板状金属粒子の調製の際に、遠心分離操作により余分な高分子を除去する方法などがある。
平板状金属粒子はその表面が高分子(高分子分散剤)で被覆され、平板状金属粒子の質量に対する高分子の質量の割合{(高分子の質量/平板状金属粒子の質量)×100}が65質量%以下であることが好ましく、上記割合は50質量%以下がより好ましく、40質量%がさらに好ましい。上記範囲であれば、金属粒子含有層中における平板状金属粒子の充填率をより高めることができる。また、上記割合の下限は特に制限されないが、平板状金属粒子の分散安定性の点から、10質量%以上が好ましい。なお、高分子としては、平板状金属粒子と直接吸着または結合している官能基を含む高分子であり、主に、平板状金属粒子を形成する際に、平板状金属粒子の分散安定化のために添加される高分子に相当する。高分子は、平板状金属粒子表面を被覆する高分子層(被覆層)を形成する。
また、上記高分子の平板状金属粒子に対する質量を制御する方法としては、特に限定されないが、例えば、後述する平板状金属粒子の製造方法の際に使用される高分子の分子量や添加量を調整する方法や、平板状金属粒子の調製の際に、遠心分離操作により余分な高分子を除去する方法などがある。
上記割合の測定方法としては、例えば、金属粒子含有層の形成の際に使用される、高分子で被覆された平板状金属粒子中の高分子量を仕込み量から計算する方法や、高分子で被覆された平板状金属粒子の熱重量分析(TG-DTA)により高分子量を測定する方法などが挙げられる。
使用される高分子の種類は特に制限されず、目的に応じて公知の高分子を適宜使用でき、例えば、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂、ポリアクリレート樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート樹脂、(飽和)ポリエステル樹脂、ポリウレタン樹脂、ゼラチンやセルロース等の天然高分子等の高分子などが挙げられ、平板状金属粒子の分散安定性の点から、ゼラチンが好ましい。
(平板状金属粒子の合成方法)
平板状金属粒子の合成方法としては、六角形状乃至円形状の平板状金属粒子を合成し得るものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、化学還元法、光化学還元法、電気化学還元法等の液相法などが挙げられる。これらの中でも、形状とサイズ制御性の点で、化学還元法、光化学還元法などの液相法が特に好ましい。六角形~三角形状の平板状金属粒子を合成後、例えば、硝酸、亜硫酸ナトリウム等の銀を溶解する溶解種によるエッチング処理、加熱によるエージング処理などを行うことにより、六角形~三角形状の平板状金属粒子の角を鈍らせて、六角形状乃至円形状の平板状金属粒子を得てもよい。
平板状金属粒子の合成方法としては、上記の他、予めフィルム、ガラスなどの透明基材の表面に種晶を固定後、平板状に金属粒子(例えばAg)を結晶成長させてもよい。
平板状金属粒子は、所望の特性を付与するために、更なる処理を施してもよい。更なる処理としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、高屈折率シェル層の形成、分散剤、酸化防止剤等の各種添加剤を添加することなどが挙げられる。
なお、上述したように、平板状金属粒子を合成する際に、所定の高分子を使用して、高分子で表面が被覆された平板状金属粒子を形成し、得られた平板状金属粒子の分散液を後述する金属粒子含有層形成用組成物として用いることもできる。
平板状金属粒子の合成方法としては、六角形状乃至円形状の平板状金属粒子を合成し得るものであれば特に制限はなく、目的に応じて適宜選択することができ、例えば、化学還元法、光化学還元法、電気化学還元法等の液相法などが挙げられる。これらの中でも、形状とサイズ制御性の点で、化学還元法、光化学還元法などの液相法が特に好ましい。六角形~三角形状の平板状金属粒子を合成後、例えば、硝酸、亜硫酸ナトリウム等の銀を溶解する溶解種によるエッチング処理、加熱によるエージング処理などを行うことにより、六角形~三角形状の平板状金属粒子の角を鈍らせて、六角形状乃至円形状の平板状金属粒子を得てもよい。
平板状金属粒子の合成方法としては、上記の他、予めフィルム、ガラスなどの透明基材の表面に種晶を固定後、平板状に金属粒子(例えばAg)を結晶成長させてもよい。
平板状金属粒子は、所望の特性を付与するために、更なる処理を施してもよい。更なる処理としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、高屈折率シェル層の形成、分散剤、酸化防止剤等の各種添加剤を添加することなどが挙げられる。
なお、上述したように、平板状金属粒子を合成する際に、所定の高分子を使用して、高分子で表面が被覆された平板状金属粒子を形成し、得られた平板状金属粒子の分散液を後述する金属粒子含有層形成用組成物として用いることもできる。
(金属粒子含有層の媒質)
金属粒子含有層には、上述した金属粒子以外の他の成分が含まれていてもよく、例えば、媒質(バインダー)が含まれていてもよい。
媒質の種類は特に制限はなく、目的に応じて適宜選択することができる。なかでも、透明ポリマーを含むことがより好ましい。ポリマーとしては、例えば、ポリビニルアセタール樹脂、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリアクリレート樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート樹脂、ポリ塩化ビニル樹脂、(飽和)ポリエステル樹脂、ポリウレタン樹脂、ゼラチンやセルロース等の天然高分子等の高分子などが挙げられる。その中でも、本発明では、ポリマーの主ポリマーがポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリ塩化ビニル樹脂、(飽和)ポリエステル樹脂、ポリウレタン樹脂であることが好ましく、ポリエステル樹脂およびポリウレタン樹脂であることが、本発明の電磁波透過性積層体のこすり耐性をより改善する観点から特に好ましい。
また、ポリエステル樹脂の中でも、飽和ポリエステル樹脂であることが二重結合を含まないために優れた耐候性を付与できる観点からより特に好ましい。また、分子末端に水酸基またはカルボキシル基を持つことが、水溶性・水分散性の硬化剤等で硬化させることで高い硬度・耐久性・耐熱性を得られる観点から、より好ましい。
ポリマーとしては、商業的に入手できるものを好ましく用いることもでき、例えば、互応化学工業株式会社製の水溶性ポリエステル樹脂である、プラスコートZ-687、プラスコートZ-690、または、DIC株式会社製の水溶性ポリウレタン樹脂である、ハイドランHW-350、HW-174などを挙げることができる。
また、本明細書中、金属粒子含有層に含まれるポリマーの主ポリマーとは、金属粒子含有層に含まれるポリマーの50質量%以上を占めるポリマー成分のことをいう。
金属粒子含有層には、上述した金属粒子以外の他の成分が含まれていてもよく、例えば、媒質(バインダー)が含まれていてもよい。
媒質の種類は特に制限はなく、目的に応じて適宜選択することができる。なかでも、透明ポリマーを含むことがより好ましい。ポリマーとしては、例えば、ポリビニルアセタール樹脂、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリアクリレート樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート樹脂、ポリ塩化ビニル樹脂、(飽和)ポリエステル樹脂、ポリウレタン樹脂、ゼラチンやセルロース等の天然高分子等の高分子などが挙げられる。その中でも、本発明では、ポリマーの主ポリマーがポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリ塩化ビニル樹脂、(飽和)ポリエステル樹脂、ポリウレタン樹脂であることが好ましく、ポリエステル樹脂およびポリウレタン樹脂であることが、本発明の電磁波透過性積層体のこすり耐性をより改善する観点から特に好ましい。
また、ポリエステル樹脂の中でも、飽和ポリエステル樹脂であることが二重結合を含まないために優れた耐候性を付与できる観点からより特に好ましい。また、分子末端に水酸基またはカルボキシル基を持つことが、水溶性・水分散性の硬化剤等で硬化させることで高い硬度・耐久性・耐熱性を得られる観点から、より好ましい。
ポリマーとしては、商業的に入手できるものを好ましく用いることもでき、例えば、互応化学工業株式会社製の水溶性ポリエステル樹脂である、プラスコートZ-687、プラスコートZ-690、または、DIC株式会社製の水溶性ポリウレタン樹脂である、ハイドランHW-350、HW-174などを挙げることができる。
また、本明細書中、金属粒子含有層に含まれるポリマーの主ポリマーとは、金属粒子含有層に含まれるポリマーの50質量%以上を占めるポリマー成分のことをいう。
金属粒子含有層に含まれる金属粒子に対する媒質の含有量は、1~10000質量%であることが好ましく、10~1000質量%であることがより好ましく、20~500質量%であることが特に好ましい。金属粒子含有層に含まれる媒質を上記範囲以上とすることで、こすり耐性性等の物理特性を改善することができる。
媒質の屈折率nは、1.4~1.7であることが好ましい。
媒質の屈折率nは、1.4~1.7であることが好ましい。
<各種添加物の添加>
本発明の電磁波透過性積層体において、ハジキの発生を抑えて良好な面状な層が得られる観点から、金属粒子含有層中に界面活性剤が含まれることが好ましい。界面活性剤としては、アニオン系やノニオン系等の公知の界面活性剤を用いることができる。界面活性剤の具体例としては、例えば、ラピゾールA-90(日油株式会社製)、ナロアクティーHN-100(三洋化成工業株式会社製)などがある。
金属粒子含有層中の全バインダーに対して0.05~10質量%の界面活性剤を含有することが好ましく、より好ましくは0.1~5質量%である。
本発明の電磁波透過性積層体において、ハジキの発生を抑えて良好な面状な層が得られる観点から、金属粒子含有層中に界面活性剤が含まれることが好ましい。界面活性剤としては、アニオン系やノニオン系等の公知の界面活性剤を用いることができる。界面活性剤の具体例としては、例えば、ラピゾールA-90(日油株式会社製)、ナロアクティーHN-100(三洋化成工業株式会社製)などがある。
金属粒子含有層中の全バインダーに対して0.05~10質量%の界面活性剤を含有することが好ましく、より好ましくは0.1~5質量%である。
金属粒子は、金属粒子を構成する銀などの金属の酸化を防止するために、メルカプトテトラゾール、アスコルビン酸等の酸化防止剤を吸着していてもよい。また、酸化防止を目的として、Ni等の酸化犠牲層が平板状金属粒子の表面に形成されていてもよい。また、酸素を遮断することを目的として、SiO2などの金属酸化物膜で被覆されていてもよい。
金属粒子は、分散性付与を目的として、例えば、4級アンモニウム塩、アミン類等のN元素、S元素、およびP元素の少なくともいずれかを含む低分子量分散剤、高分子量分散剤などの分散剤を添加してもよい。
金属粒子は、分散性付与を目的として、例えば、4級アンモニウム塩、アミン類等のN元素、S元素、およびP元素の少なくともいずれかを含む低分子量分散剤、高分子量分散剤などの分散剤を添加してもよい。
<その他の層>
(粘着層)
本発明の電磁波透過性積層体は、粘着層を有することが好ましい。粘着層は、例えば、金属粒子含有層上に配置され、他の部材との密着性を担保する機能を有する。なお、粘着層は、紫外線吸収剤を含むことができる。
粘着層の形成に利用可能な材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリビニルブチラール(PVB)樹脂、アクリル樹脂、スチレン/アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、シリコーン樹脂等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの材料からなる粘着層は、塗布により形成することができる。
さらに、粘着層には帯電防止剤、滑剤、ブロッキング防止剤などを添加してもよい。粘着層の厚みとしては、0.1~10μmが好ましい。
(粘着層)
本発明の電磁波透過性積層体は、粘着層を有することが好ましい。粘着層は、例えば、金属粒子含有層上に配置され、他の部材との密着性を担保する機能を有する。なお、粘着層は、紫外線吸収剤を含むことができる。
粘着層の形成に利用可能な材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリビニルブチラール(PVB)樹脂、アクリル樹脂、スチレン/アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、シリコーン樹脂等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの材料からなる粘着層は、塗布により形成することができる。
さらに、粘着層には帯電防止剤、滑剤、ブロッキング防止剤などを添加してもよい。粘着層の厚みとしては、0.1~10μmが好ましい。
(ハードコート層)
本発明の電磁波透過性積層体に耐擦傷性を付加するために、ハードコート層が電磁波透過性積層体に含まれていてもよい。ハードコート層には金属酸化物粒子を含むことができる。
ハードコート層としては特に制限はなく、目的に応じて適宜その種類も形成方法も選択することができ、例えば、アクリル系樹脂、シリコーン系樹脂、メラミン系樹脂、ウレタン系樹脂、アルキド系樹脂、フッ素系樹脂等の熱硬化型または光硬化型樹脂などが挙げられる。
ハードコート層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、1~50μmが好ましい。ハードコート層上にさらに反射防止層および/または防眩層を形成すると、耐擦傷性に加え、反射防止性および/または防眩性を有する機能性フィルムが得られ好適である。また、ハードコート層に金属酸化物粒子を含有してもよい。
本発明の電磁波透過性積層体に耐擦傷性を付加するために、ハードコート層が電磁波透過性積層体に含まれていてもよい。ハードコート層には金属酸化物粒子を含むことができる。
ハードコート層としては特に制限はなく、目的に応じて適宜その種類も形成方法も選択することができ、例えば、アクリル系樹脂、シリコーン系樹脂、メラミン系樹脂、ウレタン系樹脂、アルキド系樹脂、フッ素系樹脂等の熱硬化型または光硬化型樹脂などが挙げられる。
ハードコート層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、1~50μmが好ましい。ハードコート層上にさらに反射防止層および/または防眩層を形成すると、耐擦傷性に加え、反射防止性および/または防眩性を有する機能性フィルムが得られ好適である。また、ハードコート層に金属酸化物粒子を含有してもよい。
(オーバーコート層)
本発明の電磁波透過性積層体において、物質移動による平板状金属粒子の酸化・硫化を防止し、耐擦傷性を付与するため、本発明の電磁波透過性積層体は、六角形状乃至円形状の平板状金属粒子が露出している方の金属粒子含有層の表面に密接するオーバーコート層を有していてもよい。また、金属粒子含有層と後述の紫外線吸収剤層との間にオーバーコート層を有していてもよい。本発明の電磁波透過性積層体は特に平板状金属粒子が金属粒子含有層の表面に偏在する場合は、平板状金属粒子の剥落による製造工程のコンタミ防止、別層塗布時の平板状金属粒子配列乱れの防止、などのため、オーバーコート層を有していてもよい。
オーバーコート層には紫外線吸収剤、光安定剤、酸化防止剤を含んでもよい。
オーバーコート層としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、バインダー、マット剤、および界面活性剤を含有し、さらに必要に応じてその他の成分を含有してなる。
バインダーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アクリル系樹脂、シリコーン系樹脂、メラミン系樹脂、ウレタン系樹脂、アルキド系樹脂、フッ素系樹脂等の熱硬化型または光硬化型樹脂などが挙げられる。
オーバーコート層の厚みとしては、0.01~1,000μmが好ましく、0.02~50μmがより好ましく、0.03~10μmが特に好ましい。
本発明の電磁波透過性積層体において、物質移動による平板状金属粒子の酸化・硫化を防止し、耐擦傷性を付与するため、本発明の電磁波透過性積層体は、六角形状乃至円形状の平板状金属粒子が露出している方の金属粒子含有層の表面に密接するオーバーコート層を有していてもよい。また、金属粒子含有層と後述の紫外線吸収剤層との間にオーバーコート層を有していてもよい。本発明の電磁波透過性積層体は特に平板状金属粒子が金属粒子含有層の表面に偏在する場合は、平板状金属粒子の剥落による製造工程のコンタミ防止、別層塗布時の平板状金属粒子配列乱れの防止、などのため、オーバーコート層を有していてもよい。
オーバーコート層には紫外線吸収剤、光安定剤、酸化防止剤を含んでもよい。
オーバーコート層としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、バインダー、マット剤、および界面活性剤を含有し、さらに必要に応じてその他の成分を含有してなる。
バインダーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アクリル系樹脂、シリコーン系樹脂、メラミン系樹脂、ウレタン系樹脂、アルキド系樹脂、フッ素系樹脂等の熱硬化型または光硬化型樹脂などが挙げられる。
オーバーコート層の厚みとしては、0.01~1,000μmが好ましく、0.02~50μmがより好ましく、0.03~10μmが特に好ましい。
(紫外線吸収剤層)
本発明の電磁波透過性積層体は、紫外線吸収剤が含まれている層(紫外線吸収剤層)を有することが好ましい。
紫外線吸収剤層は、目的に応じて適宜選択することができ、粘着層であってもよく、また、粘着層と金属粒子含有層との間の層(例えば、オーバーコート層など)であってもよく、紫外線吸収剤層の上にオーバーコート層を付与してもよい。いずれの場合も、紫外線吸収剤は、金属粒子含有層に対して、太陽光が照射される側に配置される層に添加されることが好ましい。
紫外線吸収剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤、サリチレート系紫外線吸収剤、シアノアクリレート系紫外線吸収剤などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
なお、紫外線吸収剤としては、例えば、特開2013-80222の段落0051~0055に記載の化合物が挙げられる。
本発明の電磁波透過性積層体は、紫外線吸収剤が含まれている層(紫外線吸収剤層)を有することが好ましい。
紫外線吸収剤層は、目的に応じて適宜選択することができ、粘着層であってもよく、また、粘着層と金属粒子含有層との間の層(例えば、オーバーコート層など)であってもよく、紫外線吸収剤層の上にオーバーコート層を付与してもよい。いずれの場合も、紫外線吸収剤は、金属粒子含有層に対して、太陽光が照射される側に配置される層に添加されることが好ましい。
紫外線吸収剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤、サリチレート系紫外線吸収剤、シアノアクリレート系紫外線吸収剤などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
なお、紫外線吸収剤としては、例えば、特開2013-80222の段落0051~0055に記載の化合物が挙げられる。
バインダーとしては、特に制限はなく、目的に応じて適宜選択することができるが、可視光透明性や日射透明性が高い方が好ましく、例えば、アクリル樹脂、ポリビニルブチラール、ポリビニルアルコールなどが挙げられる。なお、バインダーが熱線を吸収すると、平板状金属粒子による反射効果が弱まってしまうことから、熱線源と平板状金属粒子との間に形成される紫外線吸収剤層としては、450~1,500nmの領域に吸収を持たない材料を選択したり、紫外線吸収剤層の厚みを薄くしたりすることが好ましい。
紫外線吸収剤層の厚みとしては、0.01~1,000μmが好ましく、0.02~500μmがより好ましい。厚みが0.01μm以上であると、紫外線の吸収がより優れ、1,000μm以下であると、可視光の透過率がより向上する。
紫外線吸収剤層の含有量としては、用いる紫外線吸収剤層によって異なり、一概に規定することができないが、本発明の電磁波透過性積層体において所望の紫外線透過率を与える含有量を適宜選択することが好ましい。
紫外線透過率としては、5%以下が好ましく、2%以下がより好ましい。紫外線透過率が、5%を超えると、太陽光の紫外線により金属粒子含有層の色味が変化することがある。
紫外線吸収剤層の厚みとしては、0.01~1,000μmが好ましく、0.02~500μmがより好ましい。厚みが0.01μm以上であると、紫外線の吸収がより優れ、1,000μm以下であると、可視光の透過率がより向上する。
紫外線吸収剤層の含有量としては、用いる紫外線吸収剤層によって異なり、一概に規定することができないが、本発明の電磁波透過性積層体において所望の紫外線透過率を与える含有量を適宜選択することが好ましい。
紫外線透過率としては、5%以下が好ましく、2%以下がより好ましい。紫外線透過率が、5%を超えると、太陽光の紫外線により金属粒子含有層の色味が変化することがある。
(金属酸化物粒子)
本発明の電磁波透過性積層体は、長波赤外線を吸収するために、少なくとも1種の金属酸化物粒子を含有していても熱線遮蔽と製造コストのバランスの観点からは好ましい。この場合、例えば、上述したハードコート層に金属酸化物粒子を含むことが好ましい。ハードコート層は、基板を介して、金属粒子含有層と積層されていてもよい。金属粒子含有層が太陽光などの熱線の入射方向側となるように本発明の電磁波透過性積層体を配置したときに、金属粒子含有層で熱線の一部(または全部でもよい)を反射した後、ハードコート層で熱線の一部を吸収することとなり、金属酸化物粒子含有層で吸収されずに電磁波透過性積層体を透過した熱線に起因して電磁波透過性積層体の内側で直接受ける熱量と、電磁波透過性積層体の金属酸化物粒子含有層で吸収されて間接的に電磁波透過性積層体の内側に伝わる熱量の合計としての熱量を低減することができる。
金属酸化物粒子の材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、錫ドープ酸化インジウム(以下、「ITO」と略記する。)、錫ドープ酸化アンチモン(以下、「ATO」と略記する。)、酸化亜鉛、酸化チタン、酸化インジウム、酸化錫、酸化アンチモン、ガラスセラミックス、酸化タングステン(以下、「CWO」と略記する)などが挙げられる。これらの中でも、熱線吸収能力に優れ、平板状金属粒子と組み合わせることにより幅広い熱線吸収能を有する電磁波透過性積層体が製造できる点で、ITO、ATO、酸化亜鉛、CWOがより好ましく、1,200nm以上の赤外線を90%以上遮蔽し、可視光透過率が90%以上である点で、ITOが特に好ましい。
金属酸化物粒子の一次粒子の体積平均粒径としては、可視光透過率を低下させないため、0.1μm以下が好ましい。
金属酸化物粒子の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、球状、針状、板状などが挙げられる。
本発明の電磁波透過性積層体は、長波赤外線を吸収するために、少なくとも1種の金属酸化物粒子を含有していても熱線遮蔽と製造コストのバランスの観点からは好ましい。この場合、例えば、上述したハードコート層に金属酸化物粒子を含むことが好ましい。ハードコート層は、基板を介して、金属粒子含有層と積層されていてもよい。金属粒子含有層が太陽光などの熱線の入射方向側となるように本発明の電磁波透過性積層体を配置したときに、金属粒子含有層で熱線の一部(または全部でもよい)を反射した後、ハードコート層で熱線の一部を吸収することとなり、金属酸化物粒子含有層で吸収されずに電磁波透過性積層体を透過した熱線に起因して電磁波透過性積層体の内側で直接受ける熱量と、電磁波透過性積層体の金属酸化物粒子含有層で吸収されて間接的に電磁波透過性積層体の内側に伝わる熱量の合計としての熱量を低減することができる。
金属酸化物粒子の材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、錫ドープ酸化インジウム(以下、「ITO」と略記する。)、錫ドープ酸化アンチモン(以下、「ATO」と略記する。)、酸化亜鉛、酸化チタン、酸化インジウム、酸化錫、酸化アンチモン、ガラスセラミックス、酸化タングステン(以下、「CWO」と略記する)などが挙げられる。これらの中でも、熱線吸収能力に優れ、平板状金属粒子と組み合わせることにより幅広い熱線吸収能を有する電磁波透過性積層体が製造できる点で、ITO、ATO、酸化亜鉛、CWOがより好ましく、1,200nm以上の赤外線を90%以上遮蔽し、可視光透過率が90%以上である点で、ITOが特に好ましい。
金属酸化物粒子の一次粒子の体積平均粒径としては、可視光透過率を低下させないため、0.1μm以下が好ましい。
金属酸化物粒子の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、球状、針状、板状などが挙げられる。
金属酸化物粒子の金属酸化物粒子含有層における含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、0.1~20g/m2が好ましく、0.5~10g/m2がより好ましく、1.0~4.0g/m2がさらに好ましい。
含有量が、0.1g/m2以上であると、肌に感じる日射量がより低化し、20g/m2以下であると、可視光透過率がより向上する。
なお、金属酸化物粒子の金属酸化物粒子含有層における含有量は、例えば、金属酸化物粒子含有層の超箔切片TEM像および表面SEM像の観察から、一定面積における金属酸化物粒子の個数および平均粒子径を測定し、個数および平均粒子径と、金属酸化物粒子の比重とに基づいて算出した質量(g)を、一定面積(m2)で除することにより算出することができる。また、金属酸化物粒子含有層の一定面積における金属酸化物粒子をメタノールに溶出させ、蛍光X線測定により測定した金属酸化物粒子の質量(g)を、一定面積(m2)で除することにより算出することもできる。
含有量が、0.1g/m2以上であると、肌に感じる日射量がより低化し、20g/m2以下であると、可視光透過率がより向上する。
なお、金属酸化物粒子の金属酸化物粒子含有層における含有量は、例えば、金属酸化物粒子含有層の超箔切片TEM像および表面SEM像の観察から、一定面積における金属酸化物粒子の個数および平均粒子径を測定し、個数および平均粒子径と、金属酸化物粒子の比重とに基づいて算出した質量(g)を、一定面積(m2)で除することにより算出することができる。また、金属酸化物粒子含有層の一定面積における金属酸化物粒子をメタノールに溶出させ、蛍光X線測定により測定した金属酸化物粒子の質量(g)を、一定面積(m2)で除することにより算出することもできる。
<電磁波透過性積層体の製造方法>
本発明の電磁波透過性積層体の製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、塗布方法により、基板の表面に金属粒子含有層、さらに必要に応じてその他の層を形成する方法が挙げられる。
本発明の電磁波透過性積層体の製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、塗布方法により、基板の表面に金属粒子含有層、さらに必要に応じてその他の層を形成する方法が挙げられる。
(金属粒子含有層の形成方法)
金属粒子含有層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、基板の表面上に、金属粒子を有する分散液(金属粒子含有層形成用組成物)を、ディップコーター、ダイコーター、スリットコーター、バーコーター、グラビアコーター等により塗布する方法、LB膜法、自己組織化法、スプレー塗布などの方法で面配向させる方法が挙げられる。
なお、面配向を促進するために、金属粒子を塗布後、カレンダーローラーやラミローラーなどの圧着ローラーを通すことにより促進させてもよい。
なお、金属粒子含有層形成用組成物には、必要に応じて、溶媒が含まれていてもよい。
金属粒子含有層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、基板の表面上に、金属粒子を有する分散液(金属粒子含有層形成用組成物)を、ディップコーター、ダイコーター、スリットコーター、バーコーター、グラビアコーター等により塗布する方法、LB膜法、自己組織化法、スプレー塗布などの方法で面配向させる方法が挙げられる。
なお、面配向を促進するために、金属粒子を塗布後、カレンダーローラーやラミローラーなどの圧着ローラーを通すことにより促進させてもよい。
なお、金属粒子含有層形成用組成物には、必要に応じて、溶媒が含まれていてもよい。
(オーバーコート層の形成方法)
オーバーコート層は、塗布により形成することが好ましい。このときの塗布方法としては、特に限定はなく、公知の方法を用いることができ、例えば、紫外線吸収剤を含有する分散液を、ディップコーター、ダイコーター、スリットコーター、バーコーター、グラビアコーター等により塗布する方法などが挙げられる。
オーバーコート層は、塗布により形成することが好ましい。このときの塗布方法としては、特に限定はなく、公知の方法を用いることができ、例えば、紫外線吸収剤を含有する分散液を、ディップコーター、ダイコーター、スリットコーター、バーコーター、グラビアコーター等により塗布する方法などが挙げられる。
(ハードコート層の形成方法)
ハードコート層は、塗布により形成することが好ましい。このときの塗布方法としては、特に限定はなく、公知の方法を用いることができ、例えば、紫外線吸収剤を含有する分散液を、ディップコーター、ダイコーター、スリットコーター、バーコーター、グラビアコーター等により塗布する方法などが挙げられる。
ハードコート層は、塗布により形成することが好ましい。このときの塗布方法としては、特に限定はなく、公知の方法を用いることができ、例えば、紫外線吸収剤を含有する分散液を、ディップコーター、ダイコーター、スリットコーター、バーコーター、グラビアコーター等により塗布する方法などが挙げられる。
(粘着層の形成方法)
粘着層は、塗布により形成することが好ましい。例えば、基板、金属粒子含有層、などの下層の表面上に積層することができる。このときの塗布方法としては、特に限定はなく、公知の方法を用いることができる。
粘着層は、塗布により形成することが好ましい。例えば、基板、金属粒子含有層、などの下層の表面上に積層することができる。このときの塗布方法としては、特に限定はなく、公知の方法を用いることができる。
<電磁波透過性積層体の特性>
本発明の電磁波透過性積層体のKEC法によって測定した0.1~1000MHzにおける電磁波シールド性は特に制限されないが、電磁波透過性がより優れる点で、1dB以下が好ましく、0.5dB以下がより好ましい。
電磁波シールド性の測定方法(KEC法)は、一般社団法人KEC製の電磁波シールド効果測定装置を用い、電波用・磁波それぞれ専用の治具の間に、何もはさまない場合の電磁波強度に対する測定サンプルをはさんだ場合の電磁波強度の減衰量をdBで測定することができる。
本発明の電磁波透過性積層体のKEC法によって測定した0.1~1000MHzにおける電磁波シールド性は特に制限されないが、電磁波透過性がより優れる点で、1dB以下が好ましく、0.5dB以下がより好ましい。
電磁波シールド性の測定方法(KEC法)は、一般社団法人KEC製の電磁波シールド効果測定装置を用い、電波用・磁波それぞれ専用の治具の間に、何もはさまない場合の電磁波強度に対する測定サンプルをはさんだ場合の電磁波強度の減衰量をdBで測定することができる。
本発明の電磁波透過性積層体のヘイズ値は特に制限されないが、5%以下であることが好ましく、2%以下であることがより好ましい。
ヘイズ値は、JIS K7165:1981に準拠して、ヘイズメーター(「NDH2000」,日本電色工業(株)製もしくは相当機種)などでD65光源を用いて測定することができる。
ヘイズ値は、JIS K7165:1981に準拠して、ヘイズメーター(「NDH2000」,日本電色工業(株)製もしくは相当機種)などでD65光源を用いて測定することができる。
本発明の電磁波透過性積層体の可視光透過率としては低~中程度の透過率であることが好ましく、より具体的には、60%未満が好ましい。上記範囲内であれば、十分な目隠し効果と、遮熱効果を両立させることができる。
可視光透過率は、反射スペクトルおよび透過スペクトルを、紫外可視近赤外分光機(日本分光株式会社製、V-670)などを用いて測定し、得られた反射・透過スペクトルから、JIS A 5759に従って、可視光透過率、遮蔽係数を計算することで算出することができる。
可視光透過率は、反射スペクトルおよび透過スペクトルを、紫外可視近赤外分光機(日本分光株式会社製、V-670)などを用いて測定し、得られた反射・透過スペクトルから、JIS A 5759に従って、可視光透過率、遮蔽係数を計算することで算出することができる。
<貼合せ構造体の使用態様>
(ドライラミネーションによる粘着剤層積層)
本発明の電磁波透過性積層体を使って、既設窓ガラスに機能性付与する場合は、粘着剤を積層してガラスの室内側に貼り付ける。その際、反射層として機能する金属粒子含有層をなるべく太陽光側に向けた方が発熱を防ぐことになるので、金属粒子含有層の上に粘着剤層を積層し、その面から窓ガラスへ貼合するのが適切である。
金属粒子含有層表面への粘着剤層の積層に当っては、表面に直接粘着剤入りの塗布液を塗工することもできるが、粘着剤に含まれる各種添加剤、可塑剤や、使用溶剤などが、場合によっては金属粒子含有層の配列を乱したり、金属粒子自身を変質させたりすることがある。そうした弊害を最小限に留めるためには、粘着剤を予め離型フィルム上に塗工および乾燥させたフィルムを作製しておいて、このフィルムの粘着剤面と本発明フィルムの金属粒子含有層表面とをラミネートすることにより、ドライな状態のままの積層をすることが有効である。
(ドライラミネーションによる粘着剤層積層)
本発明の電磁波透過性積層体を使って、既設窓ガラスに機能性付与する場合は、粘着剤を積層してガラスの室内側に貼り付ける。その際、反射層として機能する金属粒子含有層をなるべく太陽光側に向けた方が発熱を防ぐことになるので、金属粒子含有層の上に粘着剤層を積層し、その面から窓ガラスへ貼合するのが適切である。
金属粒子含有層表面への粘着剤層の積層に当っては、表面に直接粘着剤入りの塗布液を塗工することもできるが、粘着剤に含まれる各種添加剤、可塑剤や、使用溶剤などが、場合によっては金属粒子含有層の配列を乱したり、金属粒子自身を変質させたりすることがある。そうした弊害を最小限に留めるためには、粘着剤を予め離型フィルム上に塗工および乾燥させたフィルムを作製しておいて、このフィルムの粘着剤面と本発明フィルムの金属粒子含有層表面とをラミネートすることにより、ドライな状態のままの積層をすることが有効である。
(貼合せ構造体)
本発明の電磁波透過性積層体と、ガラスおよびプラスチックのいずれかとを貼り合わせてなる貼合せ構造体を製造することができる。
貼合せ構造体の製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、上述のように製造した本発明の電磁波透過性積層体を、自動車等の乗り物用ガラスまたはプラスチックや、建材用ガラスまたはプラスチックに貼合せる方法などが挙げられる。
本発明の電磁波透過性積層体と、ガラスおよびプラスチックのいずれかとを貼り合わせてなる貼合せ構造体を製造することができる。
貼合せ構造体の製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、上述のように製造した本発明の電磁波透過性積層体を、自動車等の乗り物用ガラスまたはプラスチックや、建材用ガラスまたはプラスチックに貼合せる方法などが挙げられる。
本発明の電磁波透過性積層体は、熱線(近赤外線)を選択的に反射または吸収するために使用される態様であれば、特に制限はなく、目的に応じて適宜選択すればよく、例えば、乗り物用フィルムや貼合せ構造体、建材用フィルムや貼合せ構造体、農業用フィルムなどが挙げられる。これらの中でも、省エネルギー効果の点で、乗り物用フィルムや貼合せ構造体、建材用フィルムや貼合せ構造体であることが好ましい。
(フィルムミラーの利用)
また、本発明の電磁波透過性積層体は、可視光領域における高い反射特性から、反射鏡としても使用でき、特に、基板が樹脂基板の場合、フィルムミラーとして使用できる。フィルムミラーの用途としては、例えば、太陽光集光用のフィルムミラーとして使用できる。
その応用態様としては、例えば、太陽光反射板への適用が挙げられる。樹脂、金属、またはセラミックのいずれかからなる基板や枠体に、フィルムミラーを固定化することで、フィルムミラーによる鏡面を作製し、太陽光反射板を作製することができる。このようにして作製された複数のミラーユニットを配置して、太陽光を効率的に集光することが好ましい。また、ミラーユニットを太陽の日周運動に追尾させる太陽光追尾システムと、を備えることで、より効率的な太陽光の集光を実現できる。
また、本発明のフィルムミラーを採光用ミラーとして使用してもよい。フィルムミラーは柔軟性を有するため、曲率を有する表面への追従性がよいので、そのような表面上に設置することも好ましい。
なお、本発明において、熱線(近赤外線)とは、太陽光に約50%含まれる近赤外線(780nm~1,800nm)を意味する。
また、フィルムミラーをLCD用のバックライトミラーとして使用してもよい。本発明のフィルムミラーは電磁波透過性を有するため、無線LANなどの電波を妨害せず、設置の自由度が高い。
また、本発明の電磁波透過性積層体は、可視光領域における高い反射特性から、反射鏡としても使用でき、特に、基板が樹脂基板の場合、フィルムミラーとして使用できる。フィルムミラーの用途としては、例えば、太陽光集光用のフィルムミラーとして使用できる。
その応用態様としては、例えば、太陽光反射板への適用が挙げられる。樹脂、金属、またはセラミックのいずれかからなる基板や枠体に、フィルムミラーを固定化することで、フィルムミラーによる鏡面を作製し、太陽光反射板を作製することができる。このようにして作製された複数のミラーユニットを配置して、太陽光を効率的に集光することが好ましい。また、ミラーユニットを太陽の日周運動に追尾させる太陽光追尾システムと、を備えることで、より効率的な太陽光の集光を実現できる。
また、本発明のフィルムミラーを採光用ミラーとして使用してもよい。フィルムミラーは柔軟性を有するため、曲率を有する表面への追従性がよいので、そのような表面上に設置することも好ましい。
なお、本発明において、熱線(近赤外線)とは、太陽光に約50%含まれる近赤外線(780nm~1,800nm)を意味する。
また、フィルムミラーをLCD用のバックライトミラーとして使用してもよい。本発明のフィルムミラーは電磁波透過性を有するため、無線LANなどの電波を妨害せず、設置の自由度が高い。
以下、本発明の実施例および比較例を挙げて説明するが、本発明は、これらの実施例に何ら限定されるものではない。なお、比較例は、公知技術とは限らない。
以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
[製造例1:銀平板粒子分散液B1の調製]
―平板状金属粒子の合成―
2.5mmol/L(2.5mM)のクエン酸ナトリウム水溶液50mLに0.5g/Lのポリスチレンスルホン酸水溶液を2.5mL添加し、35℃まで加熱した。この溶液に10mmol/Lの水素化ほう素ナトリウム水溶液を3mL添加し、0.5mmol/Lの硝酸銀水溶液50mLを20mL/minで攪拌しながら添加した。この溶液を30分間攪拌し、種溶液を作製した。
反応釜中に2.5mmol/Lのクエン酸ナトリウム水溶液132.7mLにイオン交換水87.1mLを添加し、35℃まで加熱した。反応釜中の上記溶液に、10mmol/Lのアスコルビン酸水溶液を2mL添加し、上記種溶液を42.4mL添加し、0.5mmol/Lの硝酸銀水溶液79.6mLを10mL/minで攪拌しながら添加した。30分間攪拌した後、0.35mol/Lのヒドロキノンスルホン酸カリウム水溶液71.1mLを反応釜に添加し、7質量%ゼラチン水溶液200gを反応釜に添加した。反応釜中の上記溶液に、0.25mol/Lの亜硫酸ナトリウム水溶液107mLと、0.47mol/Lの硝酸銀水溶液107mLを混合してできた亜硫酸銀の白色沈殿物混合液を添加した。白色沈殿物混合液を添加した後すぐに、0.17mol/LのNaOH水溶液72mLを反応釜に添加した。このときpHが10を超えないように添加速度を調節しながらNaOH水溶液を添加した。これを300分間攪拌し、銀平板粒子分散液Aを得た。
この銀平板粒子分散液A中には、平均円相当径200nmの銀の六角平板粒子が生成していることを確認した。また、原子間力顕微鏡(NanocuteII、セイコーインスツル社製)で、六角平板粒子の厚みを測定したところ、平均12nmであり、アスペクト比が16.7の平板粒子が生成していることが分かった。
銀平板粒子分散液A(800mL)を40℃に保ち、1NのNaOHおよび/または1Nの硫酸を用いてpH=10に調整した。分散剤として非水溶性のフェニルメルカプトテトラゾール(和光純薬工業社製、商品名5-メルカプト-1-フェニルメルカプトテトラゾール)をさらに添加して、10分間撹拌を継続した。添加量は、銀に対するモル比率で1.0%とした。これを遠心分離器(日立工機社製himac CR-GIII、アングルローター)で、9000rpmで60分の遠心分離を行い、上澄みを760mL捨てた。沈殿した銀平板粒子を卓上型ホモジナイザー(三井電気精機社製、SpinMix08)の容器に移し、0.2mmol/LのNaOH水溶液を360mL加えて、12000rpmで20分間分散した。これを製造例1の銀平板粒子分散液B1とした。
なお、得られた銀平板粒子の表面にはゼラチンが吸着しており、ゼラチン質量と銀平板粒子質量との比率(ゼラチン質量/銀平板粒子質量)(以後、比率Xとも称する)は、0.650であった。
―平板状金属粒子の合成―
2.5mmol/L(2.5mM)のクエン酸ナトリウム水溶液50mLに0.5g/Lのポリスチレンスルホン酸水溶液を2.5mL添加し、35℃まで加熱した。この溶液に10mmol/Lの水素化ほう素ナトリウム水溶液を3mL添加し、0.5mmol/Lの硝酸銀水溶液50mLを20mL/minで攪拌しながら添加した。この溶液を30分間攪拌し、種溶液を作製した。
反応釜中に2.5mmol/Lのクエン酸ナトリウム水溶液132.7mLにイオン交換水87.1mLを添加し、35℃まで加熱した。反応釜中の上記溶液に、10mmol/Lのアスコルビン酸水溶液を2mL添加し、上記種溶液を42.4mL添加し、0.5mmol/Lの硝酸銀水溶液79.6mLを10mL/minで攪拌しながら添加した。30分間攪拌した後、0.35mol/Lのヒドロキノンスルホン酸カリウム水溶液71.1mLを反応釜に添加し、7質量%ゼラチン水溶液200gを反応釜に添加した。反応釜中の上記溶液に、0.25mol/Lの亜硫酸ナトリウム水溶液107mLと、0.47mol/Lの硝酸銀水溶液107mLを混合してできた亜硫酸銀の白色沈殿物混合液を添加した。白色沈殿物混合液を添加した後すぐに、0.17mol/LのNaOH水溶液72mLを反応釜に添加した。このときpHが10を超えないように添加速度を調節しながらNaOH水溶液を添加した。これを300分間攪拌し、銀平板粒子分散液Aを得た。
この銀平板粒子分散液A中には、平均円相当径200nmの銀の六角平板粒子が生成していることを確認した。また、原子間力顕微鏡(NanocuteII、セイコーインスツル社製)で、六角平板粒子の厚みを測定したところ、平均12nmであり、アスペクト比が16.7の平板粒子が生成していることが分かった。
銀平板粒子分散液A(800mL)を40℃に保ち、1NのNaOHおよび/または1Nの硫酸を用いてpH=10に調整した。分散剤として非水溶性のフェニルメルカプトテトラゾール(和光純薬工業社製、商品名5-メルカプト-1-フェニルメルカプトテトラゾール)をさらに添加して、10分間撹拌を継続した。添加量は、銀に対するモル比率で1.0%とした。これを遠心分離器(日立工機社製himac CR-GIII、アングルローター)で、9000rpmで60分の遠心分離を行い、上澄みを760mL捨てた。沈殿した銀平板粒子を卓上型ホモジナイザー(三井電気精機社製、SpinMix08)の容器に移し、0.2mmol/LのNaOH水溶液を360mL加えて、12000rpmで20分間分散した。これを製造例1の銀平板粒子分散液B1とした。
なお、得られた銀平板粒子の表面にはゼラチンが吸着しており、ゼラチン質量と銀平板粒子質量との比率(ゼラチン質量/銀平板粒子質量)(以後、比率Xとも称する)は、0.650であった。
[製造例2:銀平板粒子分散液B2の調製]
上澄みの廃棄量を760mLから784mLに変更し、その後添加する0.2mmol/LのNaOH水溶液の量を380mLにした以外は、製造例1と同様の手順に従い、銀平板粒子分散液B2を得た。
なお、得られた銀平板粒子分散液B2中の銀平板粒子の表面にはゼラチンが吸着しており、比率Xは0.429であった。
上澄みの廃棄量を760mLから784mLに変更し、その後添加する0.2mmol/LのNaOH水溶液の量を380mLにした以外は、製造例1と同様の手順に従い、銀平板粒子分散液B2を得た。
なお、得られた銀平板粒子分散液B2中の銀平板粒子の表面にはゼラチンが吸着しており、比率Xは0.429であった。
[製造例3:銀平板粒子分散液B3の調製]
上澄みの廃棄量を760mLから784mLに変更し、上澄みを廃棄した後に得られる銀平板粒子分散液を以下の手順Xによって処理した以外は、製造例1と同様の手順に従い、銀平板粒子分散液B3を得た。
なお、得られた銀平板粒子分散液B3中の銀平板粒子の表面にはゼラチンが吸着しており、比率Xは0.250であった。
上澄みの廃棄量を760mLから784mLに変更し、上澄みを廃棄した後に得られる銀平板粒子分散液を以下の手順Xによって処理した以外は、製造例1と同様の手順に従い、銀平板粒子分散液B3を得た。
なお、得られた銀平板粒子分散液B3中の銀平板粒子の表面にはゼラチンが吸着しており、比率Xは0.250であった。
(手順X)
銀平板粒子分散液800mLを遠心分離器(日立工機社製himac CR-GIII、アングルローター)で、9000rpmで60分の遠心分離を行い、上澄みを784mL捨てた。その後、沈殿した銀平板粒子を卓上型ホモジナイザー(三井電気精機社製、SpinMix08)の容器に移し、0.2mmol/LのNaOH水溶液を784mL加えて、12000rpmで20分間分散した。
銀平板粒子分散液800mLを遠心分離器(日立工機社製himac CR-GIII、アングルローター)で、9000rpmで60分の遠心分離を行い、上澄みを784mL捨てた。その後、沈殿した銀平板粒子を卓上型ホモジナイザー(三井電気精機社製、SpinMix08)の容器に移し、0.2mmol/LのNaOH水溶液を784mL加えて、12000rpmで20分間分散した。
[製造例4:銀平板粒子分散液B4の調製]
銀平板粒子分散液Aを得る過程で、加えるゼラチン水溶液の濃度を7質量%から3質量%にした以外は製造例3と同様の手順に従い、銀平板粒子分散液B4を得た。
なお、得られた銀平板粒子分散液B4中の銀平板粒子の表面にはゼラチンが吸着しており、比率Xは0.053であった。
銀平板粒子分散液Aを得る過程で、加えるゼラチン水溶液の濃度を7質量%から3質量%にした以外は製造例3と同様の手順に従い、銀平板粒子分散液B4を得た。
なお、得られた銀平板粒子分散液B4中の銀平板粒子の表面にはゼラチンが吸着しており、比率Xは0.053であった。
[製造例5:銀平板粒子分散液B5の調製]
銀平板粒子分散液Aを得る過程で、添加する亜硫酸銀の白色沈殿物混合液として、0.25mol/Lの亜硫酸ナトリウム水溶液27mLと、0.47mol/Lの硝酸銀水溶液27mL、およびイオン交換水を160mLを混合してできた亜硫酸銀の白色沈殿物混合液を使用した以外は製造例2と同様の手順に従い、銀平板粒子分散液B5を得た。
なお、得られた銀平板粒子分散液B5中の銀平板粒子の表面にはゼラチンが吸着しており、比率Xは0.429であった。
銀平板粒子分散液Aを得る過程で、添加する亜硫酸銀の白色沈殿物混合液として、0.25mol/Lの亜硫酸ナトリウム水溶液27mLと、0.47mol/Lの硝酸銀水溶液27mL、およびイオン交換水を160mLを混合してできた亜硫酸銀の白色沈殿物混合液を使用した以外は製造例2と同様の手順に従い、銀平板粒子分散液B5を得た。
なお、得られた銀平板粒子分散液B5中の銀平板粒子の表面にはゼラチンが吸着しており、比率Xは0.429であった。
[製造例6:銀平板粒子分散液B6の調製]
銀平板粒子分散液Aを得る過程で、添加する亜硫酸銀の白色沈殿物混合液として、0.25mol/Lの亜硫酸ナトリウム水溶液50mLと、0.47mol/Lの硝酸銀水溶液50mL、およびイオン交換水を114mLを混合してできた亜硫酸銀の白色沈殿物混合液を使用した以外は製造例2と同様の手順に従い、銀平板粒子分散液B6を得た。
なお、得られた銀平板粒子分散液B6中の銀平板粒子の表面にはゼラチンが吸着しており、比率Xは0.429であった。
銀平板粒子分散液Aを得る過程で、添加する亜硫酸銀の白色沈殿物混合液として、0.25mol/Lの亜硫酸ナトリウム水溶液50mLと、0.47mol/Lの硝酸銀水溶液50mL、およびイオン交換水を114mLを混合してできた亜硫酸銀の白色沈殿物混合液を使用した以外は製造例2と同様の手順に従い、銀平板粒子分散液B6を得た。
なお、得られた銀平板粒子分散液B6中の銀平板粒子の表面にはゼラチンが吸着しており、比率Xは0.429であった。
[製造例7:銀平板粒子分散液B7の調製]
上澄みの廃棄量を760mLから720mLに変更した以外は、製造例1と同様の手順に従い、銀平板粒子分散液B7を得た。
なお、得られた銀平板粒子分散液B7中の銀平板粒子の表面にはゼラチンが吸着しており、比率Xは1.000であった。
上澄みの廃棄量を760mLから720mLに変更した以外は、製造例1と同様の手順に従い、銀平板粒子分散液B7を得た。
なお、得られた銀平板粒子分散液B7中の銀平板粒子の表面にはゼラチンが吸着しており、比率Xは1.000であった。
<比較例1>
PETフィルム(東洋紡(株)製 A4300、厚み:75μm、屈折率1.66)の表面上に、ULVAC製小型実験用蒸着装置を用いて、可視光透過率が30%になるよう蒸着量を調整し、銀をスパッタし、電磁波透過性積層体C1を得た。
実際の可視光透過率は28%であった。
PETフィルム(東洋紡(株)製 A4300、厚み:75μm、屈折率1.66)の表面上に、ULVAC製小型実験用蒸着装置を用いて、可視光透過率が30%になるよう蒸着量を調整し、銀をスパッタし、電磁波透過性積層体C1を得た。
実際の可視光透過率は28%であった。
<比較例2>
下記に示す組成の、金属粒子含有層形成用組成物M1を調製した。
ポリウレタン水溶液:ハイドランHW-350
(DIC(株)製、固形分濃度30質量%) 0.126質量部
界面活性剤A:Fリパール8780P
(ライオン(株)製、固形分1質量%) 0.96質量部
界面活性剤B:ナロアクティーCL-95
(三洋化成工業(株)製、固形分1質量%) 1.19質量部
銀平板粒子分散液B7 17.15質量部
メルカプトテトラゾール
(和光純薬(株)製、固形分2質量%) 0.61質量部
水 49.96質量部
メタノール 30質量部
下記に示す組成の、金属粒子含有層形成用組成物M1を調製した。
ポリウレタン水溶液:ハイドランHW-350
(DIC(株)製、固形分濃度30質量%) 0.126質量部
界面活性剤A:Fリパール8780P
(ライオン(株)製、固形分1質量%) 0.96質量部
界面活性剤B:ナロアクティーCL-95
(三洋化成工業(株)製、固形分1質量%) 1.19質量部
銀平板粒子分散液B7 17.15質量部
メルカプトテトラゾール
(和光純薬(株)製、固形分2質量%) 0.61質量部
水 49.96質量部
メタノール 30質量部
PETフィルム(東洋紡(株)製 A4300、厚み:75μm、屈折率1.66)の表面上に、ワイヤーバーを用いて、金属粒子含有層形成用組成物M1をウェット塗布厚み10.6μmになるように塗布した。その後、130℃で1分間加熱し、乾燥および固化させ、金属粒子含有層を形成し、電磁波透過性積層体C2を得た。
<比較例3>
ウェット塗布厚みを10.6μmから21.2μmに変更した以外は、比較例2と同様の手順に従って、電磁波透過性積層体C3を得た。
ウェット塗布厚みを10.6μmから21.2μmに変更した以外は、比較例2と同様の手順に従って、電磁波透過性積層体C3を得た。
<比較例4>
ウェット塗布厚みを10.6μmから29.7μmに変更した以外は、比較例2と同様の手順に従って、電磁波透過性積層体C4を得た。
ウェット塗布厚みを10.6μmから29.7μmに変更した以外は、比較例2と同様の手順に従って、電磁波透過性積層体C4を得た。
<比較例5>
銀平板粒子分散液B7の代わりに、銀平板粒子分散液B2を使用した以外は、比較例2と同様の手順に従って、電磁波透過性積層体C5を得た。
銀平板粒子分散液B7の代わりに、銀平板粒子分散液B2を使用した以外は、比較例2と同様の手順に従って、電磁波透過性積層体C5を得た。
<比較例6>
下記に示す組成の、金属粒子含有層形成用組成物M2を調製した。
ポリウレタン水溶液:ハイドランHW-350
(DIC(株)製、固形分濃度30質量%) 0.673質量部
界面活性剤A:Fリパール8780P
(ライオン(株)製、固形分1質量%) 0.96質量部
界面活性剤B:ナロアクティーCL-95
(三洋化成工業(株)製、固形分1質量%) 1.19質量部
銀平板粒子分散液B4 42.88質量部
メルカプトテトラゾール
(和光純薬(株)製、固形分2質量%) 0.61質量部
水 23.69質量部
メタノール 30質量部
下記に示す組成の、金属粒子含有層形成用組成物M2を調製した。
ポリウレタン水溶液:ハイドランHW-350
(DIC(株)製、固形分濃度30質量%) 0.673質量部
界面活性剤A:Fリパール8780P
(ライオン(株)製、固形分1質量%) 0.96質量部
界面活性剤B:ナロアクティーCL-95
(三洋化成工業(株)製、固形分1質量%) 1.19質量部
銀平板粒子分散液B4 42.88質量部
メルカプトテトラゾール
(和光純薬(株)製、固形分2質量%) 0.61質量部
水 23.69質量部
メタノール 30質量部
PETフィルム(東洋紡(株)製 A4300、厚み:75μm、屈折率1.66)の表面上に、ワイヤーバーを用いて、金属粒子含有層形成用組成物M2をウェット塗布厚み10.6μmになるように塗布した。その後、130℃で1分間加熱し、乾燥および固化させ、金属粒子含有層を形成し、電磁波透過性積層体C6を得た。
<実施例1>
下記に示す組成の、金属粒子含有層形成用組成物M3を調製した。
ポリウレタン水溶液:ハイドランHW-350
(DIC(株)製、固形分濃度30質量%) 0.018質量部
界面活性剤A:Fリパール8780P
(ライオン(株)製、固形分1質量%) 0.96質量部
界面活性剤B:ナロアクティーCL-95
(三洋化成工業(株)製、固形分1質量%) 1.19質量部
銀平板粒子分散液B1 48.03質量部
メルカプトテトラゾール
(和光純薬(株)製、固形分2質量%) 0.61質量部
水 19.192質量部
メタノール 30質量部
下記に示す組成の、金属粒子含有層形成用組成物M3を調製した。
ポリウレタン水溶液:ハイドランHW-350
(DIC(株)製、固形分濃度30質量%) 0.018質量部
界面活性剤A:Fリパール8780P
(ライオン(株)製、固形分1質量%) 0.96質量部
界面活性剤B:ナロアクティーCL-95
(三洋化成工業(株)製、固形分1質量%) 1.19質量部
銀平板粒子分散液B1 48.03質量部
メルカプトテトラゾール
(和光純薬(株)製、固形分2質量%) 0.61質量部
水 19.192質量部
メタノール 30質量部
PETフィルム(東洋紡(株)製 A4300、厚み:75μm、屈折率1.66)の表面上に、ワイヤーバーを用いて、金属粒子含有層形成用組成物M3をウェット塗布厚み10.6μmになるように塗布した。その後、130℃で1分間加熱し、乾燥および固化させ、金属粒子含有層を形成し、電磁波透過性積層体E1を得た。
<実施例2>
銀平板粒子分散液B1の代わりに、銀平板粒子分散液B2を使用し、金属粒子含有層形成用組成物を作る際のポリウレタン水溶液:ハイドランHW-350添加量を0.251質量部(合計が100質量部となるように加える水の量も調整する)とする以外は、実施例1と同様の手順に従って、電磁波透過性積層体E2を得た。
銀平板粒子分散液B1の代わりに、銀平板粒子分散液B2を使用し、金属粒子含有層形成用組成物を作る際のポリウレタン水溶液:ハイドランHW-350添加量を0.251質量部(合計が100質量部となるように加える水の量も調整する)とする以外は、実施例1と同様の手順に従って、電磁波透過性積層体E2を得た。
<実施例3>
銀平板粒子分散液B1の代わりに、銀平板粒子分散液B3を使用、金属粒子含有層形成用組成物を作る際のポリウレタン水溶液:ハイドランHW-350添加量を0.440質量部(合計が100質量部となるように加える水の量も調整する)とする以外は、実施例1と同様の手順に従って、電磁波透過性積層体E3を得た。
銀平板粒子分散液B1の代わりに、銀平板粒子分散液B3を使用、金属粒子含有層形成用組成物を作る際のポリウレタン水溶液:ハイドランHW-350添加量を0.440質量部(合計が100質量部となるように加える水の量も調整する)とする以外は、実施例1と同様の手順に従って、電磁波透過性積層体E3を得た。
<実施例4>
下記に示す組成の、金属粒子含有層形成用組成物M4を調製した。
ポリウレタン水溶液:ハイドランHW-350
(DIC(株)製、固形分濃度30質量%) 0.673質量部
界面活性剤A:Fリパール8780P
(ライオン(株)製、固形分1質量%) 0.96質量部
界面活性剤B:ナロアクティーCL-95
(三洋化成工業(株)製、固形分1質量%) 1.19質量部
銀平板粒子分散液B2(3倍濃縮液) 42.88質量部
メルカプトテトラゾール
(和光純薬(株)製、固形分2質量%) 0.61質量部
水 23.69質量部
メタノール 30質量部
下記に示す組成の、金属粒子含有層形成用組成物M4を調製した。
ポリウレタン水溶液:ハイドランHW-350
(DIC(株)製、固形分濃度30質量%) 0.673質量部
界面活性剤A:Fリパール8780P
(ライオン(株)製、固形分1質量%) 0.96質量部
界面活性剤B:ナロアクティーCL-95
(三洋化成工業(株)製、固形分1質量%) 1.19質量部
銀平板粒子分散液B2(3倍濃縮液) 42.88質量部
メルカプトテトラゾール
(和光純薬(株)製、固形分2質量%) 0.61質量部
水 23.69質量部
メタノール 30質量部
PETフィルム(東洋紡(株)製 A4300、厚み:75μm、屈折率1.66)の表面上に、ワイヤーバーを用いて、金属粒子含有層形成用組成物M4をウェット塗布厚み10.6μmになるように塗布した。その後、130℃で1分間加熱し、乾燥および固化させ、金属粒子含有層を形成し、電磁波透過性積層体E4を得た。
<実施例5>
金属粒子含有層形成用組成物を作る際のポリウレタン水溶液:ハイドランHW-350添加量を1.347質量部(合計が100質量部となるように加える水の量も調整する)とした以外は、実施例4と同様の手順に従って、電磁波透過性積層体E5を得た。
金属粒子含有層形成用組成物を作る際のポリウレタン水溶液:ハイドランHW-350添加量を1.347質量部(合計が100質量部となるように加える水の量も調整する)とした以外は、実施例4と同様の手順に従って、電磁波透過性積層体E5を得た。
<実施例6>
金属粒子含有層形成用組成物を作る際のポリウレタン水溶液:ハイドランHW-350添加量を0質量部(合計が100質量部となるように加える水の量も調整する)とする以外は、実施例4と同様の手順に従って、電磁波透過性積層体E6を得た。
金属粒子含有層形成用組成物を作る際のポリウレタン水溶液:ハイドランHW-350添加量を0質量部(合計が100質量部となるように加える水の量も調整する)とする以外は、実施例4と同様の手順に従って、電磁波透過性積層体E6を得た。
<実施例7>
銀平板粒子分散液B2の代わりに、銀平板粒子分散液B3を使用する以外は、実施例6と同様の手順に従って、電磁波透過性積層体E7を得た。
銀平板粒子分散液B2の代わりに、銀平板粒子分散液B3を使用する以外は、実施例6と同様の手順に従って、電磁波透過性積層体E7を得た。
<実施例8>
銀平板粒子分散液B2の代わりに、銀平板粒子分散液B5を使用する以外は、実施例4と同様の手順に従って、電磁波透過性積層体E8を得た。
銀平板粒子分散液B2の代わりに、銀平板粒子分散液B5を使用する以外は、実施例4と同様の手順に従って、電磁波透過性積層体E8を得た。
<実施例9>
銀平板粒子分散液B2の代わりに、銀平板粒子分散液B6を使用する以外は、実施例4と同様の手順に従って、電磁波透過性積層体E9を得た。
銀平板粒子分散液B2の代わりに、銀平板粒子分散液B6を使用する以外は、実施例4と同様の手順に従って、電磁波透過性積層体E9を得た。
<貼合せ構造体の作製>
各実施例および比較例で作製した電磁波透過性積層体に対して、それぞれの金属粒子含有層を清浄にした後、粘着材(粘着層)を貼り合わせた。粘着材としてパナック(株)製パナクリーンPD-S1(粘着層25μm)を使用して、軽剥離セパレータ(シリコーンコートPET)を剥がして保護層表面に貼り合わせた。PD-S1の他方の重剥離セパレータ(シリコーンコートPET)を剥がし、フィルム施工液であるリアルパーフェクト(リンテック(株)製)の0.5質量%希釈液を使用してソーダ石灰珪酸塩ガラス(板ガラス厚み:3mm)と貼り合わせて光学特性の評価を行った。
なお、板ガラスはイソプロピルアルコールで汚れを拭き取って自然乾燥したものを使用し、貼り合わせ時、25℃65%RHの環境下で、ゴムローラーを用いて0.5kg/cm2の面圧で圧着した。
以上により、各実施例および比較例で得られた電磁波透過性積層体をガラスに貼り合わせた、貼り合わせ構造体を作製した。
なお、このような構成は、実際の建材への施工を模した形態である。
各実施例および比較例で作製した電磁波透過性積層体に対して、それぞれの金属粒子含有層を清浄にした後、粘着材(粘着層)を貼り合わせた。粘着材としてパナック(株)製パナクリーンPD-S1(粘着層25μm)を使用して、軽剥離セパレータ(シリコーンコートPET)を剥がして保護層表面に貼り合わせた。PD-S1の他方の重剥離セパレータ(シリコーンコートPET)を剥がし、フィルム施工液であるリアルパーフェクト(リンテック(株)製)の0.5質量%希釈液を使用してソーダ石灰珪酸塩ガラス(板ガラス厚み:3mm)と貼り合わせて光学特性の評価を行った。
なお、板ガラスはイソプロピルアルコールで汚れを拭き取って自然乾燥したものを使用し、貼り合わせ時、25℃65%RHの環境下で、ゴムローラーを用いて0.5kg/cm2の面圧で圧着した。
以上により、各実施例および比較例で得られた電磁波透過性積層体をガラスに貼り合わせた、貼り合わせ構造体を作製した。
なお、このような構成は、実際の建材への施工を模した形態である。
<評価(その1)>
―比率Xの算出―
作製した各分散液を10mL採取し、これを120℃のオーブンで12時間乾燥させ、10mgほどサンプリングした後、熱分析装置(TG/DTA6200セイコーインスツルメンツ(SII).製)で常温~900℃まで10℃/secで昇温し、TG-DTAを測定し、最終的な減少割合をAとした場合、比率X(ゼラチン質量/銀平板粒子質量)はX=A/(1-A)で算出した。この値を表1に示す。
―比率Xの算出―
作製した各分散液を10mL採取し、これを120℃のオーブンで12時間乾燥させ、10mgほどサンプリングした後、熱分析装置(TG/DTA6200セイコーインスツルメンツ(SII).製)で常温~900℃まで10℃/secで昇温し、TG-DTAを測定し、最終的な減少割合をAとした場合、比率X(ゼラチン質量/銀平板粒子質量)はX=A/(1-A)で算出した。この値を表1に示す。
-金属粒子の評価-
(平板粒子の割合、平均粒子径(平均円相当径)、アスペクト比)
銀平板粒子の形状均一性は、観察したSEM画像から任意に抽出した200個の粒子の形状を、六角形状乃至円形状の平板状金属粒子をA、涙型などの不定形形状および略六角形未満の多角形状の粒子をBとして画像解析を行い、Aに該当する粒子個数の割合(個数%)を求めた。
得られた銀平板粒子を含む分散液を、ガラス基板上に滴下して乾燥し、Aに該当する金属平板粒子10個の厚みを、原子間力顕微鏡(AFM)(NanocuteII、セイコーインスツル社製)を用いて測定した。なお、AFMを用いた測定条件としては、自己検知型センサー、DFMモード、測定範囲は5μm、走査速度は180秒/1フレーム、データ点数は256×256とした。得られたデータの平均値を平板粒子Aの平均粒子厚みとし、また、同様にAに該当する粒子200個の平板状金属粒子の主平面直径(最大長さ)をデジタルノギスで測定し、その平均値を平均円相当径とし、あわせて得られたAに該当する金属平板粒子の平均粒子径(平均円相当径)および平均粒子厚みから、平均粒子径(平均円相当径)を平均粒子厚みで除算して、平板粒子Aのアスペクト比を算出した。それぞれの値を表1に示す。
(平板粒子の割合、平均粒子径(平均円相当径)、アスペクト比)
銀平板粒子の形状均一性は、観察したSEM画像から任意に抽出した200個の粒子の形状を、六角形状乃至円形状の平板状金属粒子をA、涙型などの不定形形状および略六角形未満の多角形状の粒子をBとして画像解析を行い、Aに該当する粒子個数の割合(個数%)を求めた。
得られた銀平板粒子を含む分散液を、ガラス基板上に滴下して乾燥し、Aに該当する金属平板粒子10個の厚みを、原子間力顕微鏡(AFM)(NanocuteII、セイコーインスツル社製)を用いて測定した。なお、AFMを用いた測定条件としては、自己検知型センサー、DFMモード、測定範囲は5μm、走査速度は180秒/1フレーム、データ点数は256×256とした。得られたデータの平均値を平板粒子Aの平均粒子厚みとし、また、同様にAに該当する粒子200個の平板状金属粒子の主平面直径(最大長さ)をデジタルノギスで測定し、その平均値を平均円相当径とし、あわせて得られたAに該当する金属平板粒子の平均粒子径(平均円相当径)および平均粒子厚みから、平均粒子径(平均円相当径)を平均粒子厚みで除算して、平板粒子Aのアスペクト比を算出した。それぞれの値を表1に示す。
<評価(その2)>
-ヘイズの測定-
ヘイズメーター(NDH-5000、日本電色工業株式会社製)を用いて、各実施例および比較例で得られた電磁波透過性積層体のヘイズ(%)を測定し、以下の基準に従って評価した。
「A」:2%未満
「B」:2%以上5%未満
「C」:5%以上
-ヘイズの測定-
ヘイズメーター(NDH-5000、日本電色工業株式会社製)を用いて、各実施例および比較例で得られた電磁波透過性積層体のヘイズ(%)を測定し、以下の基準に従って評価した。
「A」:2%未満
「B」:2%以上5%未満
「C」:5%以上
-反射スペクトルおよび透過スペクトル測定-
各実施例および比較例で得られた電磁波透過性積層体を用いて得られた、貼り合わせ構造体について、反射スペクトルおよび透過スペクトルを、紫外可視近赤外分光機(日本分光株式会社製、V-670)を用いて測定した。反射スペクトル測定には、絶対反射率測定ユニット(ARV-474、日本分光株式会社製)を用い、入射光は45°偏光板を通し、無偏光とみなせる入射光とした。このようにして得られた反射・透過スペクトルから、JIS A 5759に従って、可視光透過率、遮蔽係数を計算した。
各実施例および比較例で得られた電磁波透過性積層体を用いて得られた、貼り合わせ構造体について、反射スペクトルおよび透過スペクトルを、紫外可視近赤外分光機(日本分光株式会社製、V-670)を用いて測定した。反射スペクトル測定には、絶対反射率測定ユニット(ARV-474、日本分光株式会社製)を用い、入射光は45°偏光板を通し、無偏光とみなせる入射光とした。このようにして得られた反射・透過スペクトルから、JIS A 5759に従って、可視光透過率、遮蔽係数を計算した。
―電磁波透過性の測定―
電磁波透過性は、各実施例・比較例で作製したシートサンプルを15cm角に切り出し、東京都立産業技術センターのAgilent4396Bを用いてKEC法(社団法人関西電子工業振興センター法)により0.1~1000MHzの範囲において測定した。具体的には、電波用・磁波それぞれ専用の治具の間に、何もはさまない場合の電磁波強度に対する測定サンプルをはさんだ場合の電磁波強度の減衰量をdBで測定し、1dBを基準として以下の評価(「A」または「B」)を実施した。
「A」:1dB未満
「B」:1dB以上
電磁波透過性は、各実施例・比較例で作製したシートサンプルを15cm角に切り出し、東京都立産業技術センターのAgilent4396Bを用いてKEC法(社団法人関西電子工業振興センター法)により0.1~1000MHzの範囲において測定した。具体的には、電波用・磁波それぞれ専用の治具の間に、何もはさまない場合の電磁波強度に対する測定サンプルをはさんだ場合の電磁波強度の減衰量をdBで測定し、1dBを基準として以下の評価(「A」または「B」)を実施した。
「A」:1dB未満
「B」:1dB以上
表1中、「比率X」は、上述した比率(ゼラチン質量/銀平板粒子質量)を意図する。
また、「面積率」は、上述した電磁波透過性積層体を金属粒子含有層の上から見たときの基板の面積Aに対する金属粒子の面積の合計値Bの割合である面積率〔(B/A)×100〕である。より具体的には、電磁波透過性積層体を上から(金属粒子含有層側から)走査型顕微鏡で観察した際に得られる画像を、画像処理することにより実施した。
また、「充填率」は、金属粒子含有層中の金属粒子の充填率(%)を意図する。充填率の具体的な測定方法としては、作製した電磁波透過性積層体の断面方向に対してFIB(集束イオンビーム)を走査して、薄い切片を作製し、この切片をTEM観察することによって、金属粒子と周囲の金属粒子含有層の面積比を画像処理によって求め、得られた値に、それぞれ金属粒子、および金属粒子含有層の物質(有機物)の比重をかけ、その合計値に対する金属粒子の質量比を計算することで、充填率(質量%)が算出した。なお、計算に必要な有機物の比重は、固形状態で乾式自動密度計(SHIMADZU製アキュピック)を用いて測定した値を用いた。
また、「面積率」は、上述した電磁波透過性積層体を金属粒子含有層の上から見たときの基板の面積Aに対する金属粒子の面積の合計値Bの割合である面積率〔(B/A)×100〕である。より具体的には、電磁波透過性積層体を上から(金属粒子含有層側から)走査型顕微鏡で観察した際に得られる画像を、画像処理することにより実施した。
また、「充填率」は、金属粒子含有層中の金属粒子の充填率(%)を意図する。充填率の具体的な測定方法としては、作製した電磁波透過性積層体の断面方向に対してFIB(集束イオンビーム)を走査して、薄い切片を作製し、この切片をTEM観察することによって、金属粒子と周囲の金属粒子含有層の面積比を画像処理によって求め、得られた値に、それぞれ金属粒子、および金属粒子含有層の物質(有機物)の比重をかけ、その合計値に対する金属粒子の質量比を計算することで、充填率(質量%)が算出した。なお、計算に必要な有機物の比重は、固形状態で乾式自動密度計(SHIMADZU製アキュピック)を用いて測定した値を用いた。
表1に示すように、本発明の電磁波透過性積層体は、優れた遮熱性能、ヘイズ値、電磁波透過性を示すことが確認された。
なかでも、実施例2と4との比較より、面積率が80%以上の場合、遮蔽係数がより小さいことが確認された。
また、実施例4と6との比較より、アスペクト比が8~40であれば、遮蔽係数がより小さいことが確認された。
一方、本発明の電磁波透過性積層体の要件を満たさない比較例1~6においては、上記いずれかの項目が劣っていた。
なかでも、実施例2と4との比較より、面積率が80%以上の場合、遮蔽係数がより小さいことが確認された。
また、実施例4と6との比較より、アスペクト比が8~40であれば、遮蔽係数がより小さいことが確認された。
一方、本発明の電磁波透過性積層体の要件を満たさない比較例1~6においては、上記いずれかの項目が劣っていた。
[製造例8:銀平板粒子分散液B8の調製]
銀平板粒子分散液B3(800mL)を遠心分離器(日立工機社製himac CR-GIII、アングルローター)で、9000rpmで60分の遠心分離を行い、上澄みを784mL捨てた。その後、沈殿した銀平板粒子を卓上型ホモジナイザー(三井電気精機社製、SpinMix08)の容器に移し、0.2mmol/LのNaOH水溶液を184mL加えて、12000rpmで20分間分散した。この銀平板粒子分散液を加熱し50mLまで濃縮することで、製造例8の銀平板粒子分散液B8を得た。
なお、得られた銀平板粒子分散液B8中の銀平板粒子の表面にはゼラチンが吸着しており、比率Xは0.130であった。
銀平板粒子分散液B3(800mL)を遠心分離器(日立工機社製himac CR-GIII、アングルローター)で、9000rpmで60分の遠心分離を行い、上澄みを784mL捨てた。その後、沈殿した銀平板粒子を卓上型ホモジナイザー(三井電気精機社製、SpinMix08)の容器に移し、0.2mmol/LのNaOH水溶液を184mL加えて、12000rpmで20分間分散した。この銀平板粒子分散液を加熱し50mLまで濃縮することで、製造例8の銀平板粒子分散液B8を得た。
なお、得られた銀平板粒子分散液B8中の銀平板粒子の表面にはゼラチンが吸着しており、比率Xは0.130であった。
<実施例10>
下記に示す組成の、金属粒子含有層形成用組成物M5を調製した。
界面活性剤A:Fリパール8780P
(ライオン(株)製、固形分1質量%) 0.95質量部
界面活性剤B:ナロアクティーCL-95
(三洋化成工業(株)製、固形分1質量%) 1.15質量部
銀平板粒子分散液B8 64.5質量部
メルカプトテトラゾール
(和光純薬(株)製、固形分2質量%) 0.5質量部
水 2.9質量部
メタノール 30質量部
下記に示す組成の、金属粒子含有層形成用組成物M5を調製した。
界面活性剤A:Fリパール8780P
(ライオン(株)製、固形分1質量%) 0.95質量部
界面活性剤B:ナロアクティーCL-95
(三洋化成工業(株)製、固形分1質量%) 1.15質量部
銀平板粒子分散液B8 64.5質量部
メルカプトテトラゾール
(和光純薬(株)製、固形分2質量%) 0.5質量部
水 2.9質量部
メタノール 30質量部
PETフィルム(東洋紡(株)製 A4300、厚み:250μm、屈折率1.66)の表面上に、ワイヤーバーを用いて、金属粒子含有層形成用組成物M5をウェット塗布厚み35.3μmになるように塗布した。その後、170℃で2分間加熱し、乾燥および固化させ、金属粒子含有層を形成した。
次に、以下の手順によって、金属粒子含有層上に紫外線吸収剤層およびオーバーコート層を付与することで、電磁波透過性積層体E10を得た。
次に、以下の手順によって、金属粒子含有層上に紫外線吸収剤層およびオーバーコート層を付与することで、電磁波透過性積層体E10を得た。
(紫外線吸収剤層)
紫外線吸収剤層塗布液として、アクリレートポリマー(ユニディックEKS-675、DIC(株)製)(固形分として30質量部)、ベンゾトリアゾール系紫外線吸収剤(TINUVIN405、BASF(株)製)(1.5質量部)、ヒンダードアミン系光安定剤(TINUVIN292、BASF(株)製)(0.3質量部)、シクロヘキサノン(3質量部)、メチルイソブチルケトン(55質量部)、フッ素系界面活性剤(メガファックF-780-F、DIC(株)製)(固形分として0.01質量部)の混合溶液を調製した。得られた紫外線吸収剤層塗布液を、金属粒子含有層上に、乾燥後の膜厚が15μmとなるように、バーコート法により塗布し、130℃で2分間乾燥した後、UV照射装置(GSユアサ社製、UVランプ:メタルハライドランプ)により、254nmの波長において500mJ/cm2にて紫外線露光を行い、紫外線吸収剤層を形成した。
紫外線吸収剤層塗布液として、アクリレートポリマー(ユニディックEKS-675、DIC(株)製)(固形分として30質量部)、ベンゾトリアゾール系紫外線吸収剤(TINUVIN405、BASF(株)製)(1.5質量部)、ヒンダードアミン系光安定剤(TINUVIN292、BASF(株)製)(0.3質量部)、シクロヘキサノン(3質量部)、メチルイソブチルケトン(55質量部)、フッ素系界面活性剤(メガファックF-780-F、DIC(株)製)(固形分として0.01質量部)の混合溶液を調製した。得られた紫外線吸収剤層塗布液を、金属粒子含有層上に、乾燥後の膜厚が15μmとなるように、バーコート法により塗布し、130℃で2分間乾燥した後、UV照射装置(GSユアサ社製、UVランプ:メタルハライドランプ)により、254nmの波長において500mJ/cm2にて紫外線露光を行い、紫外線吸収剤層を形成した。
(オーバーコート層)
次に、オーバーコート層形成用塗布液として、フッ素系UV硬化樹脂(ディフェンサFH-700、DIC(株)製)(固形分として22質量部)、シクロヘキサノン(5質量部)、メチルエチルケトン(72質量部)、フッ素系界面活性剤(メガファックF-780-F、DIC(株)製)(固形分として0.04質量部)の混合溶液を調製した。得られたオーバーコート層形成用塗布液を、上記紫外線吸収剤層の上に、乾燥膜厚が10μmとなるようにバーコート法により塗布し、130℃で2分間乾燥した後、UV照射装置(GSユアサ社製、UVランプ:メタルハライドランプ)により、254nmの波長において500mJ/cm2にて紫外線露光を行い、オーバーコート層を形成した。
次に、オーバーコート層形成用塗布液として、フッ素系UV硬化樹脂(ディフェンサFH-700、DIC(株)製)(固形分として22質量部)、シクロヘキサノン(5質量部)、メチルエチルケトン(72質量部)、フッ素系界面活性剤(メガファックF-780-F、DIC(株)製)(固形分として0.04質量部)の混合溶液を調製した。得られたオーバーコート層形成用塗布液を、上記紫外線吸収剤層の上に、乾燥膜厚が10μmとなるようにバーコート法により塗布し、130℃で2分間乾燥した後、UV照射装置(GSユアサ社製、UVランプ:メタルハライドランプ)により、254nmの波長において500mJ/cm2にて紫外線露光を行い、オーバーコート層を形成した。
(実施例11)
実施例10に記載の金属粒子含有層を作製した後、以下の手順によって、金属粒子含有層上に紫外線吸収剤層およびオーバーコート層を付与することで、電磁波透過性積層体E11を得た。
紫外線吸収剤層塗布液として、ブチラール樹脂(エスレックBL-1、積水化学工業(株)製、粉末)(14.48質量部)、フッ素系界面活性剤(メガファックF-780-F、DIC(株)製、固形分3質量%、MEK希釈)(0.29質量部)、ベンゾトリアゾール系紫外線吸収剤(TINUVIN405、BASF(株)製)(1.45質量部)、酸化防止剤(Irganox1076、BASFジャパン(株)製)(0.14質量部)、メチルイソブチルケトン(58.63質量部)、1-メトキシ-2-プロパノール(20.00質量部)、シクロヘキサノン(5.00質量部)の混合溶液を作製した。得られた紫外線吸収剤層塗布液を、金属粒子含有層上に、乾燥後の膜厚が8μmとなるように、バーコート法により塗布し、130℃で2分間乾燥した後、UV照射装置(GSユアサ社製、UVランプ:メタルハライドランプ)により、254nmの波長において500mJ/cm2にて紫外線露光を行い、紫外線吸収剤層を形成した。
次に、オーバーコート層形成用塗布液として、ウレタン樹脂構成物(パンデックスGW-3250、DIC(株)製、固形分70質量%)(57.93質量部)、開始剤(IRGACURE127、BASFジャパン(株)製)(0.85質量部)、フッ素系界面活性剤(メガファックF-780-F、DIC(株)製、固形分3質量%、MEK希釈)(0.42質量部)、酸化防止剤(Irganox1076、BASFジャパン(株)製)(0.42質量部)、光安定剤(TINUVIN292、BASF(株)製)(0.42質量部)、メチルイソブチルケトン(34.7質量部)、シクロヘキサノン(5.00質量部)の混合溶液を調製した。得られたオーバーコート層形成用塗布液を、上記紫外線吸収剤層の上に、乾燥膜厚が15μmとなるようにバーコート法により塗布し、130℃で2分間乾燥した後、UV照射装置(GSユアサ社製、UVランプ:メタルハライドランプ)により、254nmの波長において500mJ/cm2にて紫外線露光を行い、オーバーコート層を形成した。
実施例10に記載の金属粒子含有層を作製した後、以下の手順によって、金属粒子含有層上に紫外線吸収剤層およびオーバーコート層を付与することで、電磁波透過性積層体E11を得た。
紫外線吸収剤層塗布液として、ブチラール樹脂(エスレックBL-1、積水化学工業(株)製、粉末)(14.48質量部)、フッ素系界面活性剤(メガファックF-780-F、DIC(株)製、固形分3質量%、MEK希釈)(0.29質量部)、ベンゾトリアゾール系紫外線吸収剤(TINUVIN405、BASF(株)製)(1.45質量部)、酸化防止剤(Irganox1076、BASFジャパン(株)製)(0.14質量部)、メチルイソブチルケトン(58.63質量部)、1-メトキシ-2-プロパノール(20.00質量部)、シクロヘキサノン(5.00質量部)の混合溶液を作製した。得られた紫外線吸収剤層塗布液を、金属粒子含有層上に、乾燥後の膜厚が8μmとなるように、バーコート法により塗布し、130℃で2分間乾燥した後、UV照射装置(GSユアサ社製、UVランプ:メタルハライドランプ)により、254nmの波長において500mJ/cm2にて紫外線露光を行い、紫外線吸収剤層を形成した。
次に、オーバーコート層形成用塗布液として、ウレタン樹脂構成物(パンデックスGW-3250、DIC(株)製、固形分70質量%)(57.93質量部)、開始剤(IRGACURE127、BASFジャパン(株)製)(0.85質量部)、フッ素系界面活性剤(メガファックF-780-F、DIC(株)製、固形分3質量%、MEK希釈)(0.42質量部)、酸化防止剤(Irganox1076、BASFジャパン(株)製)(0.42質量部)、光安定剤(TINUVIN292、BASF(株)製)(0.42質量部)、メチルイソブチルケトン(34.7質量部)、シクロヘキサノン(5.00質量部)の混合溶液を調製した。得られたオーバーコート層形成用塗布液を、上記紫外線吸収剤層の上に、乾燥膜厚が15μmとなるようにバーコート法により塗布し、130℃で2分間乾燥した後、UV照射装置(GSユアサ社製、UVランプ:メタルハライドランプ)により、254nmの波長において500mJ/cm2にて紫外線露光を行い、オーバーコート層を形成した。
(実施例12)
紫外線吸収剤層およびオーバーコート層を付与する前に、金属粒子含有層に対して、カレンダ圧力160kg/cm、カレンダ温度25℃でカレンダ処理した以外は、実施例10と同様の手順に従って、電磁波透過性積層体E12を得た。
紫外線吸収剤層およびオーバーコート層を付与する前に、金属粒子含有層に対して、カレンダ圧力160kg/cm、カレンダ温度25℃でカレンダ処理した以外は、実施例10と同様の手順に従って、電磁波透過性積層体E12を得た。
(実施例13)
紫外線吸収剤層およびオーバーコート層を付与する前に、金属粒子含有層に対して、カレンダ圧力160kg/cm、カレンダ温度25℃でカレンダ処理した以外は、実施例11と同様の手順に従って、電磁波透過性積層体E13を得た。
紫外線吸収剤層およびオーバーコート層を付与する前に、金属粒子含有層に対して、カレンダ圧力160kg/cm、カレンダ温度25℃でカレンダ処理した以外は、実施例11と同様の手順に従って、電磁波透過性積層体E13を得た。
(評価:太陽光エネルギー反射率)
作製した電磁波透過性積層体について、紫外可視近赤外分光光度計UV-3100(島津製作所社製)を用いて、電磁波透過性積層体の波長280nmから波長1700nmの範囲の反射率を1nm間隔で測定し、得られた反射率のスペクトルをRs(λ)として表した(λ:波長)。地表(エアマス1.5)における太陽光の基準放射照度スペクトルSiは、ASTMG173-03により定義されており、波長280nmから波長1700nmまでの1nmおきのSiをSi(λ)として表した際、太陽光エネルギー反射率(Rtotal)を下記式で定義して算出し、以下の基準に沿って評価した。結果を表2に示す。
なお、Rtotalは太陽光の各波長における照射強度を加味した、実効的な太陽光エネルギーの反射効率を意味する。
<評価基準>
A:Rtotalが80%以上である。
B:Rtotalが70%以上80%未満である。
C:Rtotalが70%未満である。
作製した電磁波透過性積層体について、紫外可視近赤外分光光度計UV-3100(島津製作所社製)を用いて、電磁波透過性積層体の波長280nmから波長1700nmの範囲の反射率を1nm間隔で測定し、得られた反射率のスペクトルをRs(λ)として表した(λ:波長)。地表(エアマス1.5)における太陽光の基準放射照度スペクトルSiは、ASTMG173-03により定義されており、波長280nmから波長1700nmまでの1nmおきのSiをSi(λ)として表した際、太陽光エネルギー反射率(Rtotal)を下記式で定義して算出し、以下の基準に沿って評価した。結果を表2に示す。
なお、Rtotalは太陽光の各波長における照射強度を加味した、実効的な太陽光エネルギーの反射効率を意味する。
<評価基準>
A:Rtotalが80%以上である。
B:Rtotalが70%以上80%未満である。
C:Rtotalが70%未満である。
なお、表2中の「電磁波透過性」は、上述した「電磁波透過性の測定」によって測定した結果である。
表2に示すように、本発明の電磁波透過性積層体は、電磁波透過性を有しながら、優れた太陽光エネルギー反射率を示し、フィルムミラーとして好適に機能することが確認された。
10 電磁波透過性積層体
12 基板
14 金属粒子含有層
20 平板状金属粒子
22 高分子層
12 基板
14 金属粒子含有層
20 平板状金属粒子
22 高分子層
Claims (7)
- 基板と、前記基板上に配置された、少なくとも1種の金属粒子を含有する金属粒子含有層とを有する電磁波透過性積層体であって、
前記金属粒子が、六角形状乃至円形状の平板状金属粒子を60個数%以上有し、
前記電磁波透過性積層体を前記金属粒子含有層の上から見たときの基板の面積Aに対する前記金属粒子の面積の合計値Bの割合である面積率〔(B/A)×100〕が70%以上であり、かつ、金属粒子含有層中の前記金属粒子の充填率が50~90質量%である、電磁波透過性積層体。 - 前記平板状金属粒子の表面が高分子で被覆され、前記平板状金属粒子の質量に対する前記高分子の質量の割合{(高分子の質量/平板状金属粒子の質量)×100}が65質量%以下である、請求項1に記載の電磁波透過性積層体。
- KEC法によって測定した、0.1~1000MHzにおける電磁波シールド性が1dB以下である、請求項1または2に記載の電磁波透過性積層体。
- ヘイズ値が5%以下である、請求項1~3のいずれか1項に記載の電磁波透過性積層体。
- 前記平板状金属粒子のアスペクト比(平均粒子径/平均粒子厚み)が8~40である、請求項1~4のいずれか1項に記載の電磁波透過性積層体。
- 前記平板状金属粒子が、少なくとも銀を含む、請求項1~5のいずれか1項に記載の電磁波透過性積層体。
- 前記基板が樹脂基板であり、フィルムミラーに用いられる、請求項1~3のいずれか1項に記載の電磁波透過性積層体。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-186499 | 2013-09-09 | ||
JP2013186499A JP6063846B2 (ja) | 2013-09-09 | 2013-09-09 | 電磁波透過性積層体 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015033872A1 true WO2015033872A1 (ja) | 2015-03-12 |
Family
ID=52628346
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/072757 WO2015033872A1 (ja) | 2013-09-09 | 2014-08-29 | 電磁波透過性積層体 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6063846B2 (ja) |
WO (1) | WO2015033872A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023007697A1 (ja) * | 2021-07-30 | 2023-02-02 | 日産自動車株式会社 | 塗膜および塗装物 |
WO2024202132A1 (ja) * | 2023-03-31 | 2024-10-03 | 株式会社イクヨ | 装飾部材 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6739628B2 (ja) * | 2017-03-28 | 2020-08-12 | 富士フイルム株式会社 | 高屈折率膜、及び、光学干渉膜 |
WO2019198589A1 (ja) * | 2018-04-12 | 2019-10-17 | 富士フイルム株式会社 | 遠赤外線反射膜、遮熱フィルム及び遮熱ガラス |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009262466A (ja) * | 2008-04-28 | 2009-11-12 | Toray Ind Inc | 成形体または積層フィルム |
JP2011118347A (ja) * | 2009-11-06 | 2011-06-16 | Fujifilm Corp | 熱線遮蔽材 |
JP2011180562A (ja) * | 2010-03-04 | 2011-09-15 | Konica Minolta Holdings Inc | 熱線遮断用基材 |
JP2011253093A (ja) * | 2010-06-03 | 2011-12-15 | Fujifilm Corp | 熱線遮蔽材 |
JP2011253094A (ja) * | 2010-06-03 | 2011-12-15 | Fujifilm Corp | 熱線遮蔽材 |
WO2013035802A1 (ja) * | 2011-09-06 | 2013-03-14 | 富士フイルム株式会社 | 熱線遮蔽材 |
JP2013080156A (ja) * | 2011-10-05 | 2013-05-02 | Fujifilm Corp | 分散物および熱線遮蔽材 |
-
2013
- 2013-09-09 JP JP2013186499A patent/JP6063846B2/ja active Active
-
2014
- 2014-08-29 WO PCT/JP2014/072757 patent/WO2015033872A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009262466A (ja) * | 2008-04-28 | 2009-11-12 | Toray Ind Inc | 成形体または積層フィルム |
JP2011118347A (ja) * | 2009-11-06 | 2011-06-16 | Fujifilm Corp | 熱線遮蔽材 |
JP2011180562A (ja) * | 2010-03-04 | 2011-09-15 | Konica Minolta Holdings Inc | 熱線遮断用基材 |
JP2011253093A (ja) * | 2010-06-03 | 2011-12-15 | Fujifilm Corp | 熱線遮蔽材 |
JP2011253094A (ja) * | 2010-06-03 | 2011-12-15 | Fujifilm Corp | 熱線遮蔽材 |
WO2013035802A1 (ja) * | 2011-09-06 | 2013-03-14 | 富士フイルム株式会社 | 熱線遮蔽材 |
JP2013080156A (ja) * | 2011-10-05 | 2013-05-02 | Fujifilm Corp | 分散物および熱線遮蔽材 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023007697A1 (ja) * | 2021-07-30 | 2023-02-02 | 日産自動車株式会社 | 塗膜および塗装物 |
WO2024202132A1 (ja) * | 2023-03-31 | 2024-10-03 | 株式会社イクヨ | 装飾部材 |
Also Published As
Publication number | Publication date |
---|---|
JP6063846B2 (ja) | 2017-01-18 |
JP2015051608A (ja) | 2015-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012070477A1 (ja) | 熱線遮蔽材 | |
JP5878139B2 (ja) | 熱線遮蔽材および貼合せ構造体 | |
JP5703156B2 (ja) | 熱線遮蔽材 | |
JP5956291B2 (ja) | 多層構造および貼合せ構造体 | |
JP6013252B2 (ja) | 熱線遮蔽材、合わせガラス用中間膜および合わせガラス | |
WO2013137373A1 (ja) | 赤外線遮蔽フィルム | |
WO2013146447A1 (ja) | 銀粒子含有膜およびその製造方法、ならびに、熱線遮蔽材 | |
WO2014156528A1 (ja) | 熱線遮蔽材ならびに熱線遮蔽材を用いた窓ガラス、合わせガラス用中間膜および合わせガラス | |
JP5833518B2 (ja) | 熱線遮蔽材 | |
JP5878059B2 (ja) | 赤外線遮蔽フィルム | |
WO2013047771A1 (ja) | 熱線遮蔽材 | |
WO2013035802A1 (ja) | 熱線遮蔽材 | |
US20140004338A1 (en) | Heat ray-shielding material | |
JP6063846B2 (ja) | 電磁波透過性積層体 | |
WO2014038457A1 (ja) | 赤外線遮蔽フィルム | |
WO2012157655A1 (ja) | 熱線遮蔽材、貼合せ構造体及び合わせガラス | |
JP5833516B2 (ja) | 遠赤外線遮蔽材 | |
JP5922919B2 (ja) | 熱線遮蔽材および貼合せ構造体 | |
JP6012527B2 (ja) | 熱線遮蔽材、合わせガラス用中間膜および合わせガラス | |
JP6166528B2 (ja) | 熱線遮蔽材、遮熱ガラス、合わせガラス用中間膜および合わせガラス | |
WO2013039215A1 (ja) | 熱線遮蔽材 | |
JP5878050B2 (ja) | 熱線遮蔽材 | |
JP2013210573A (ja) | 熱線遮蔽材 | |
JP2014048515A (ja) | 熱線遮蔽材、合わせガラス、自動車用ガラス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14842585 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14842585 Country of ref document: EP Kind code of ref document: A1 |