WO2015033643A1 - 多孔質炭素、調湿吸着材、吸着式ヒートポンプ、及び燃料電池 - Google Patents

多孔質炭素、調湿吸着材、吸着式ヒートポンプ、及び燃料電池 Download PDF

Info

Publication number
WO2015033643A1
WO2015033643A1 PCT/JP2014/065925 JP2014065925W WO2015033643A1 WO 2015033643 A1 WO2015033643 A1 WO 2015033643A1 JP 2014065925 W JP2014065925 W JP 2014065925W WO 2015033643 A1 WO2015033643 A1 WO 2015033643A1
Authority
WO
WIPO (PCT)
Prior art keywords
water vapor
porous carbon
adsorption amount
vapor adsorption
adsorption
Prior art date
Application number
PCT/JP2014/065925
Other languages
English (en)
French (fr)
Inventor
貴典 河野
森下 隆広
広典 折笠
Original Assignee
東洋炭素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋炭素株式会社 filed Critical 東洋炭素株式会社
Priority to EP14842926.9A priority Critical patent/EP3042877B1/en
Priority to US14/911,593 priority patent/US10137405B2/en
Priority to CA2922942A priority patent/CA2922942C/en
Priority to CN201480046082.1A priority patent/CN105531224B/zh
Priority to MX2016001521A priority patent/MX2016001521A/es
Priority to KR1020167008945A priority patent/KR102328148B1/ko
Publication of WO2015033643A1 publication Critical patent/WO2015033643A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/28Selection of materials for use as drying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28073Pore volume, e.g. total pore volume, mesopore volume, micropore volume being in the range 0.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28076Pore volume, e.g. total pore volume, mesopore volume, micropore volume being more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28088Pore-size distribution
    • B01J20/28092Bimodal, polymodal, different types of pores or different pore size distributions in different parts of the sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/08Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/04Heat pumps of the sorption type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8807Gas diffusion layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/31Pore size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention relates to porous carbon and the like, and more particularly to porous carbon and the like that can sufficiently adsorb water vapor on the high humidity side.
  • Non-Patent Documents 1 to 3 activated carbon and silica gel, which are evaluated as general adsorbents, have sufficient adsorption performance (adsorption amount, adsorption / desorption rate) required at present. There is no material to fill. In particular, there was no material capable of sufficiently adsorbing water vapor on the high humidity side.
  • an object of the present invention is to provide porous carbon or the like that can sufficiently adsorb water vapor on the high humidity side.
  • the porous carbon of the present invention has mesopores and micropores, and is characterized in that the water vapor adsorption amount ratio shown in the following formula (1) is 1.8 or more.
  • Water vapor adsorption amount ratio water vapor adsorption amount when the relative humidity is 90% / water vapor adsorption amount when the relative humidity is 70% (1)
  • porous carbon or the like that can sufficiently adsorb water vapor on the high humidity side can be provided.
  • the figure (a) is explanatory drawing which shows the state which mixed the polyamic acid resin and magnesium oxide
  • the figure (b) is explanatory drawing which shows the state which heat-processed the mixture
  • the figure (c) is an explanatory view showing porous carbon.
  • the graph which shows the relationship between the relative humidity and water vapor
  • the porous carbon of the present invention has mesopores and micropores, and is characterized in that the water vapor adsorption amount ratio shown in the following formula (1) is 1.8 or more.
  • Water vapor adsorption amount ratio water vapor adsorption amount when the relative humidity is 90% / water vapor adsorption amount when the relative humidity is 70% (1)
  • the water vapor adsorption amount ratio is less than 1.8, there is almost no water vapor adsorption capacity of porous carbon when the relative humidity is 70% (specifically, the pores of the porous carbon are substantially filled with water. State).
  • the relative humidity exceeds 70%, it is difficult to adsorb water vapor more than that, making it difficult to control the amount of water vapor adsorption.
  • the water vapor adsorption amount ratio is 1.8 or more
  • the porous carbon has sufficient water vapor adsorption capacity (specifically, the porous carbon The hole is not filled with water). For this reason, even when the relative humidity exceeds 70%, more water vapor can be adsorbed, and the water vapor adsorption amount can be sufficiently controlled.
  • the water vapor adsorption amount ratio is desirably 2.0 or more.
  • water vapor adsorption amount ratio is 2.0 or more, water vapor can be further adsorbed in a high humidity atmosphere, so that the function as an adsorbent can be further exhibited.
  • the water vapor adsorption amount when the relative humidity is 70% is preferably 50 mg / g or more.
  • the amount of water vapor adsorption when the relative humidity is 70% is less than 50 mg / g, the amount of water vapor that can be adsorbed decreases. For this reason, the function as an adsorbent is not fully exhibited, and the field
  • the water vapor adsorption amount when the relative humidity is 90% is 300 mg / g or more and 700 mg / g or less.
  • the water vapor adsorption amount when the relative humidity is 90% exceeds 700 mg / g, it is difficult to control the adsorption behavior because almost all of the micropores in which the adsorption phenomenon occurs are mainly filled with water vapor. It may become.
  • the water vapor adsorption phenomenon mainly occurs in the micropores, but the amount of water vapor adsorption on the high humidity side is affected by the mesopore capacity.
  • the mesopore has a pore diameter of 3 nm or more and 50 nm or less, and the mesopore capacity is preferably 0.9 ml / g or more and 2.0 ml / g or less.
  • the mesopore has a pore diameter of 4.5 nm or more and 50 nm or less.
  • the following is desirable. It may be difficult to produce a mesopore having a smaller pore diameter than the mesopore diameter of 3 nm or more (particularly 4.5 nm or more).
  • the reason why the volume of the mesopores is regulated to 0.9 ml / g or more and 2.0 ml / g or less is as follows.
  • the mesopore capacity is less than 0.9 ml / g, the specific surface area is small and water vapor may not be sufficiently adsorbed on the high humidity side.
  • the mesopore volume exceeds 2.0 ml / g, the micropore volume (ratio) in all the pores becomes very small, so that a sufficient specific surface area for adsorbing water vapor may not be ensured. .
  • Micropore volume Total pore volume-Mesopore volume (2)
  • the micropore volume is desirably 0.3 ml / g or more and 0.7 ml / g or less. If the micropore volume is less than 0.3 ml / g, it may be difficult to secure a specific surface area and water vapor may not be sufficiently adsorbed. On the other hand, when the micropore volume exceeds 0.7 ml / g, the response speed (adsorption rate) as an adsorbent decreases due to the micropore volume affecting the water vapor diffusion rate into the micropores. There is.
  • the above-mentioned porous carbon is used as an adsorbent for a humidity-adsorbing adsorbent. Further, the porous carbon described above is used as an adsorbent for an adsorption heat pump. Further, the porous carbon described above is used as a carbon-based support for a fuel cell electrode.
  • the porous carbon can be produced, for example, as follows. First, the porous carbon of the present invention is prepared by wet or dry mixing of a fluid material containing an organic resin and an oxide (template particles) in a solution or powder state. Next, this mixture is carbonized at a temperature of, for example, 500 ° C. or higher in a non-oxidizing atmosphere or a reduced pressure atmosphere. Finally, the template particles are removed by washing, and thereby porous carbon can be produced.
  • the porous carbon thus produced has a large number of pores (mesopores and micropores). However, the arrangement of the pores is not regular but has a structure in which they are randomly arranged.
  • the pore diameter, the pore distribution of the porous carbon, and the thickness of the carbonaceous wall can be adjusted by changing the diameter of the template particles and the type of the organic resin. Therefore, it becomes possible to produce porous carbon having a larger pore volume by appropriately selecting the diameter of the template particles and the type of the organic resin.
  • a polyimide containing at least one nitrogen or fluorine atom in the unit structure is preferably used as the organic resin.
  • the polyimide can be obtained by polycondensation of an acid component and a diamine component. However, in this case, it is necessary that one or both of the acid component and the diamine component contain one or more nitrogen atoms or fluorine atoms.
  • a polyamic acid film which is a polyimide precursor is formed, and the solvent is removed by heating to obtain a polyamic acid film.
  • a polyimide can be manufactured by thermally imidating the obtained polyamic acid film at 200 ° C. or higher.
  • diamine examples include 2,2-bis (4-aminophenyl) hexafluoropropane [2,2-Bis (4-aminophenyl) hexafluoropropane], 2,2-bis (trifluoromethyl) -benzidine [2,2 ′.
  • the acid component includes 4,4-hexafluoroisopropylidenediphthalic anhydride (6FDA) containing a fluorine atom and 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride containing no fluorine atom.
  • 6FDA 4,4-hexafluoroisopropylidenediphthalic anhydride
  • BPDA 4,4-hexafluoroisopropylidenediphthalic anhydride
  • PMDA pyromellitic dianhydride
  • the organic solvent used as a solvent for the polyimide precursor include N-methyl-2-pyrrolidone and dimethylformamide.
  • the imidization method is shown in a known method (for example, see “New Polymer Experimental Science” edited by the Society of Polymer Science, Kyoritsu Shuppan, March 28, 1996, Volume 3, Synthesis and Reaction of Polymers (2), page 158). Thus, either heating or chemical imidization may be followed, and the present invention is not affected by this imidization method. Furthermore, as the resin other than polyimide, petroleum-based tar pitch, acrylic resin, or the like can be used.
  • the raw material used as the oxide is a metal organic acid (magnesium citrate, Magnesium oxalate, calcium citrate, calcium oxalate, etc.), chlorides, nitrates, sulfates can also be used.
  • a general inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid, citric acid, acetic acid, formic acid is used, and it is preferably used as a dilute acid of 2 mol / l or less. It is also possible to use hot water of 80 ° C. or higher.
  • the carbonization of the mixture is preferably performed at a temperature of 500 ° C. or higher and 1500 ° C. or lower in a non-oxidizing atmosphere or a reduced pressure atmosphere. Since the resin with a high carbon yield is a polymer, the carbonization may be insufficient at less than 500 ° C. and the pores may not be sufficiently developed. On the other hand, the shrinkage is large at 1500 ° C. or more, and the oxide is sintered and coarse. This is because the pore size is reduced and the specific surface area is reduced.
  • the non-oxidizing atmosphere is an argon atmosphere or a nitrogen atmosphere
  • the reduced pressure atmosphere is an atmosphere of 133 Pa (1 torr) or less.
  • the bulk density of the porous carbon is preferably 0.1 g / cc or more and 1.0 g / cc or less.
  • the bulk density is less than 0.1 g / cc, it is difficult to secure a specific surface area, and the shape of the carbonaceous wall may not be maintained.
  • the bulk density exceeds 1.0 g / cc, It is difficult to form a three-dimensional network structure, and pore formation may be insufficient.
  • Example 1 First, as shown in FIG. 1 (a), a magnesium oxide powder (MgO, average particle diameter is 5 nm) 2 as a template particle and an organic resin (polyvinyl alcohol) 1 as a carbon precursor are in a 3: 2 ratio. Mixed by weight. Next, as shown in FIG.1 (b), this mixture was heat-processed at 900 degreeC by inert atmosphere for 2 hours, and polyvinyl alcohol was thermally decomposed, and the baked product provided with the carbonaceous wall 3 was obtained. . Next, as shown in FIG. 1C, the obtained fired product was washed with a sulfuric acid solution added at a rate of 1 mol / l to completely elute MgO. As a result, amorphous porous carbon 5 having a large number of pores 4 was obtained.
  • the porous carbon material thus produced is hereinafter referred to as material A1.
  • Example 2 Porous carbon was produced in the same manner as in Example 1 except that magnesium oxide powder having an average particle diameter of 20 nm was used as the template particle.
  • the porous carbon material thus produced is hereinafter referred to as material A2.
  • Example 3 Porous carbon was produced in the same manner as in Example 1 except that magnesium salt (magnesium acetate) was used as the template particle and organic resin (polyvinyl alcohol) was used as the carbon precursor.
  • the porous carbon produced in this way is hereinafter referred to as material A3.
  • Comparative Example 3 A commercially available synthetic zeolite-based adsorbent (synthetic zeolite A-3 (product number 269-00555) manufactured by Wako Pure Chemical Industries, Ltd.) was used. Such a material is hereinafter referred to as material Z3.
  • the materials A1 to A3 and Z1 to Z5 were placed in a sealed glass cell for adsorption measurement, and then degassed at 300 ° C. for 2 hours under vacuum.
  • DR Dubinin-Radushkevitch
  • mesopore diameter was determined by the BJH (Berret-Joyner-Halenda) method, and the micropore diameter was determined by the HK (Horvath-Kawazoe) method.
  • the water vapor adsorption amount when the water vapor relative pressure P / P 0 at 25 ° C. 0.70 (meaning that the relative humidity is 70%, hereinafter may be referred to as RH70),
  • the water vapor adsorption amount at the time of P / P 0 0.90 (meaning that the relative humidity is 90%.
  • RH90 water vapor adsorption amount shown in the following formula (1) The ratio was calculated.
  • Water vapor adsorption amount ratio water vapor adsorption amount when RH90 / water vapor adsorption amount when RH70 (1)
  • the value of the water vapor adsorption amount at RH90 / the water vapor adsorption amount at RH70 (hereinafter sometimes referred to as RH90 / RH70) is 1.0.
  • the values of RH90 / RH70 are 2.3 to 7.8. From this, it can be seen that the values of RH90 / RH70 are higher in the materials A1 to A3 than in the materials Z1 to Z5. Therefore, since the materials Z1 to Z5 have almost no water vapor adsorption capacity of porous carbon at the time of RH70, when it becomes RH90, water vapor can hardly be adsorbed.
  • the materials A1 to A3 the water vapor adsorption capacity of the porous carbon is sufficiently high at the time of RH70, so that even when it becomes RH90, the water vapor can be sufficiently adsorbed. .
  • the present invention can be used as a humidity conditioning / adsorbing material, an adsorption heat pump, a fuel cell electrode carrier, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Drying Of Gases (AREA)
  • Inert Electrodes (AREA)

Abstract

 本発明は、高湿度側で水蒸気を十分に吸着することができる多孔質炭素を提供することを目的としている。 メソ孔とミクロ孔とを備え、下記(1)式に示す水蒸気吸着量比率が1.8以上であることを特徴とする多孔質炭素であって、特に、下記(1)式に示す水蒸気吸着量比率が2.0以上であることが好ましい。又、相対湿度が70%のときの水蒸気吸着量が50mg/g以上であることが好ましい。 水蒸気吸着量比率=相対湿度が90%のときの水蒸気吸着量/相対湿度が70%のときの水蒸気吸着量・・・(1)

Description

多孔質炭素、調湿吸着材、吸着式ヒートポンプ、及び燃料電池
 本発明は多孔質炭素等に関し、特に、高湿度側で水蒸気を十分に吸着することができる多孔質炭素等に関するものである。
 自動車用吸着式冷凍機をはじめとするヒートポンプ等においては、溶媒の吸着量の多さ、吸脱着速度の速さ、印加圧力に対する応答性の高さが求められている。また、高温に暴露されるため、一定の化学的安定性も求められている。しかしながら、下記非特許文献1~3に示されるように、一般的な吸着材として評価されている活性炭やシリカゲル等では、現状必要とされている吸着性能(吸着量、吸脱着速度)を十分に満たす材料はない。特に、高湿度側で水蒸気を十分に吸着することができる材料がなかった。
 また、石油コークスを650~800℃で乾留して得られる調湿材用炭素材であって、気孔を20容量%以上、30容量%以下の範囲で有することを特徴とする調湿材用炭素材が提案されている(下記特許文献1)。
特開2007-209844号公報
デンソーテクニカルレビューVol.11 No.1 2006 Adsorption News Vol.10,NO.3、p12-16(July 1996)(日本吸着学会) 化学工学論文集15(1),p38-43
 しかしながら、上記特許文献1に示した調湿材用炭素材を用いた場合であっても、高湿度側で水蒸気を十分に吸着することができないという課題があった。
 そこで本発明は、高湿度側で水蒸気を十分に吸着することができる多孔質炭素等を提供することを目的としている。
 上記目的を達成するために本発明の多孔質炭素は、メソ孔とミクロ孔とを備え、下記(1)式に示す水蒸気吸着量比率が1.8以上であることを特徴とする。
 水蒸気吸着量比率=相対湿度が90%のときの水蒸気吸着量/相対湿度が70%のときの水蒸気吸着量・・・(1)
 本発明によれば、高湿度側で水蒸気を十分に吸着することができる多孔質炭素等を提供できるといった優れた効果を奏する。
本発明の製造工程を示す図であって、同図(a)はポリアミック酸樹脂と酸化マグネシウムとを混合した状態を示す説明図、同図(b)は混合物を熱処理した状態を示す説明図、同図(c)は多孔質炭素を示す説明図。 炭素A1~A3、Z1~Z5における相対湿度と水蒸気吸着量との関係を示すグラフ。
 上記目的を達成するために本発明の多孔質炭素は、メソ孔とミクロ孔とを備え、下記(1)式に示す水蒸気吸着量比率が1.8以上であることを特徴とする。
 水蒸気吸着量比率=相対湿度が90%のときの水蒸気吸着量/相対湿度が70%のときの水蒸気吸着量・・・(1)
 上記水蒸気吸着量比率が1.8未満の場合、相対湿度が70%の時点において、多孔質炭素の水蒸気吸着余力がほとんどない状態(具体的には、多孔質炭素の細孔に水が略充満している状態)となっている。このため、相対湿度が70%を超えた場合には、それ以上の水蒸気をほとんど吸着できず、水蒸気吸着量の制御が困難となる。これに対して、上記水蒸気吸着量比率が1.8以上の場合、相対湿度が70%の時点において、多孔質炭素の水蒸気吸着余力が十分にある状態(具体的には、多孔質炭素の細孔に水が充満していない状態)となっている。このため、相対湿度が70%を超えた場合であっても、それ以上の水蒸気を吸着でき、水蒸気吸着量の制御を十分に行うことが可能となる。
 上記水蒸気吸着量比率が2.0以上であることが望ましい。
 水蒸気吸着量比率が2.0以上であると、高湿度雰囲気下で水蒸気を一層吸着できるので、吸着材としての機能をより発揮できる。
 上記相対湿度が70%のときの水蒸気吸着量が50mg/g以上であることが望ましい。
 相対湿度が70%のときの水蒸気吸着量が50mg/g未満の場合には、吸着できる水蒸気量が少なくなる。このため、吸着材としての機能が十分に発揮されず、利用出来る分野が限定される場合がある。
 上記相対湿度が90%のときの水蒸気吸着量が300mg/g以上700mg/g以下であることが望ましい。
 相対湿度が90%のときの水蒸気吸着量が300mg/g未満の場合、吸着材としての機能が低く、利用出来る分野が限定される場合がある。一方、相対湿度が90%のときの水蒸気吸着量が700mg/gを超えている場合、主として吸着現象が生じるミクロ孔のほぼ全てが水蒸気によって満たされた状態となるため、吸着挙動の制御が困難となる場合がある。
 尚、上述の如く、主として水蒸気の吸着現象が生じるのはミクロ孔であるが、高湿度側における水蒸気の吸着量はメソ孔容量に影響される。
 上記メソ孔の孔径が3nm以上50nm以下であり、上記メソ孔の容量が0.9ml/g以上2.0ml/g以下であることが望ましく、特に、上記メソ孔の孔径が4.5nm以上50nm以下であることが望ましい。
 上記メソ孔の孔径を3nm以上(特に、4.5nm以上)に規制するのは、それより小さな孔径のものを作製するのは、困難な場合がある。また、メソ孔の容量を0.9ml/g以上2.0ml/g以下に規制するのは、以下に示す理由による。メソ孔の容量が0.9ml/g未満の場合、比表面積が小さく、高湿度側で水蒸気を十分に吸着出来ない場合がある。一方、メソ孔の容量が2.0ml/gを超えると、全細孔におけるミクロ孔の容量(割合)が非常に小さくなるため、水蒸気を吸着するための十分な比表面積を確保できない場合がある。
 尚、全細孔容量と、ミクロ孔容量と、メソ孔容量との関係は下記(2)式に示す通りである。
 ミクロ孔容量=全細孔容量-メソ孔容量・・・(2)
 上記ミクロ孔容量が0.3ml/g以上0.7ml/g以下であることが望ましい。
 ミクロ孔容量が0.3ml/g未満であると、比表面積を確保することが困難となって、水蒸気を十分に吸着出来ない場合がある。一方、ミクロ孔容量が0.7ml/gを超えると、ミクロ孔容量はミクロ孔への水蒸気拡散速度に影響を与えることに起因して、吸着材としての応答速度(吸着速度)が低下する場合がある。
 上述の多孔質炭素を調湿吸着材の吸着材として用いることを特徴とする。また、上述の多孔質炭素を吸着式ヒートポンプの吸着材として用いることを特徴とする。更に、上述の多孔質炭素を燃料電池用電極の炭素系担体として用いることを特徴とする。
 以下、具体的な実施形態を以下に説明する。
 上記多孔質炭素は、例えば、以下のようにして作製できる。先ず、本発明の多孔質炭素は、有機質樹脂を含む流動性材料と酸化物(鋳型粒子)とを、溶液または粉末状態において湿式もしくは乾式混合して混合物を作製する。次に、この混合物を非酸化雰囲気或いは減圧雰囲気の下、例えば500℃以上の温度で炭化させる。最後に、洗浄処理することで鋳型粒子を取り除き、これによって、多孔質炭素を作製できる。このようにして作製した多孔質炭素は、多数の細孔(メソ孔とミクロ孔)を有している。但し、細孔の配置は規則的ではなく、ランダムに配置される構造となっている。
 ここで、鋳型粒子の径や有機質樹脂の種類を変えることによって、細孔径、多孔質炭素の細孔分布、及び、炭素質壁の厚みを調整することができる。したがって、鋳型粒子の径と有機質樹脂の種類とを適宜選択することによって、より大きな細孔容量を有する多孔質炭素を作製することも可能となる。
 具体的に、上記有機質樹脂としては、単位構造中に少なくとも一つ以上の窒素もしくはフッ素原子を含むポリイミドが好ましく用いられる。当該ポリイミドは、酸成分とジアミン成分との重縮合により得ることができる。但し、この場合、酸成分及びジアミン成分のいずれか一方又は両方に、一つ以上の窒素原子もしくはフッ素原子を含む必要がある。
 具体的には、ポリイミドの前駆体であるポリアミド酸を成膜し、溶媒を加熱除去することによりポリアミド酸膜を得る。次に、得られたポリアミド酸膜を200℃以上で熱イミド化することによりポリイミドを製造することができる。
 前記ジアミンとしては、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン〔2,2-Bis(4-aminophenyl)hexafluoropropane〕、2,2-ビス(トリフルオロメチル)-ベンジジン〔2,2’-Bis(trifluoromethyl)-benzidine〕、4,4’-ジアミノオクタフルオロビフェニルや、3,3’-ジフルオロ-4,4’-ジアミノジフェニルメタン,3,3’-ジフルオロ-4,4’-ジアミノジフェニルエーテル、3,3’-ジ(トリフルオロメチル)-4,4’-ジアミノジフェニルエーテル、3,3’-ジフルオロ-4,4’-ジアミノジフェニルプロパン、3,3’-ジフルオロ-4,4’-ジアミノジフェニルヘキサフルオロプロパン、3,3’-ジフルオロ-4,4’-ジアミノベンゾフェノン、3,3’,5,5’-テトラフルオロ-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラ(トリフルオロメチル)-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラフルオロ-4,4’-ジアミノジフェニルプロパン、3,3’,5,5’-テトラ(トリフルオロメチル)-4,4’-ジアミノジフェニルプロパン、3,3’,5,5’-テトラフルオロ-4,4-ジアミノジフェニルヘキサフルオロプロパン、1,3-ジアミノ-5-(パーフルオロノネニルオキシ)ベンゼン、1,3-ジアミノ-4-メチル-5-(パーフルオロノネニルオキシ)ベンゼン、1,3-ジアミノ-4-メトキシ-5-(パーフルオロノネニルオキシ)ベンゼン、1,3-ジアミノ-2,4,6-トリフロオロー5-(パ-フルオロノネニルオキシ)ベンゼン、1,3-ジアミノ-4-クロロ-5-(パーフルオロノネニルオキシ)ベンゼン、1,3-ジアミノ-4-プブロモ-5-(パーフルオロノネニルオキシ)ベンゼン、1,2-ジアミノ-4-(パーフルオロノネニルオキシ)ベンゼン、1,2-ジアミノ-4-メチル-5-(パーフルオロノネニルオキシ)ベンゼン、1,2-ジアミノ-4-メトキシ-5-(パーフルオロノネニルオキシ)ベンゼン、1,2-ジアミノ-3,4,6-トリフルオロ-5-(パーフルオロノネニルオキシ)ベンゼン、1,2-ジアミノ-4-クロロ-5-(パーフルオロノネニルオキシ)ベンゼン、1,2一ジアミノ-4-ブロモ-5-(パーフルオロノネニルオキシ)ベンゼン、1,4-ジアミノ-3-(パーフルオロノネニルオキシ)ベンゼン、1,4-ジアミノ-2-メチル-5-(パーフルオロノネニルオキシ)ベンゼン、1,4-ジアミノ-2-メトキシ-5-(パーフルオロノネニルオキシ)ベンゼン、1,4-ジアミノ-2,3,6-トリフルオロ-5-(パーフルオロノネニルオキシ)ベンゼン、1,4-ジアミノ-2-クロロ-5-(パーフルオロノネニルオキシ)ベンゼン、1,4一ジアミノ-2-プブロモ-5-(パーフルオロノネニルオキシ)ベンゼン、1,3-ジアミノ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,3-ジアミノ-4-メチル-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,3-ジアミノ-4-メトキシ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,3-ジアミノ-2,4,6-トリフルオロ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,3-ジアミノ-4-クロロ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,3-ジアミノ-4-ブロモ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,2-ジアミノ-4-(パーフルオロヘキセニルオキシ)ベンゼン、1,2-ジアミノ-4-メチル-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,2-ジアミノ-4-メトキシ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,2-ジアミノ-3,4,6-トリフルオロ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,2-ジアミノ-4-クロロ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,2-ジアミノ-4-ブロモ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,4-ジアミノ-3-(パーフルオロヘキセニルオキシ)ベンゼン、1,4-ジアミノ-2-メチル-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,4-ジアミノ-2-メトキシ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,4-ジアミノ-2,3,6-トリフルオロ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,4-ジアミノ-2-クロロ-5-(パーフルオロヘキセニルオキシ)ベンゼン、1,4-ジアミノ-2-プロモ-5-(パーフルオロヘキセニルオキシ)ベンゼンやフッ素原子を含まないp-フェニレンジアミン(PPD)、ジオキシジアニリン等の芳香族ジアミンが例示できる。また、上記ジアミン成分は上記各芳香族ジアミンを2種以上組み合わせて使用してもよい。
 一方、酸成分としては、フッ素原子を含む4,4-ヘキサフルオロイソプロピリデンジフタル酸無水物(6FDA)、及びフッ素原子を含まない3,4,3’,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、ピロメリット酸二無水物(PMDA)等が挙げられる。
 また、ポリイミド前駆体の溶媒として用いる有機溶媒は、N-メチル-2-ピロリドン、ジメチルホルムアミド等が挙げられる。
 イミド化の手法としては公知の方法〔例えば高分子学会編「新高分子実験学」共立出版、1996年3月28日、第3巻高分子の合成・反応(2)158頁参照〕に示されるように、加熱あるいは化学イミド化のどちらの方法に従ってもよく、本発明はこのイミド化の方法には左右されない。
 更に、ポリイミド以外の樹脂としては、石油系タールピッチ、アクリル樹脂などが使用できる。
 一方、上記酸化物として用いる原料はアルカリ土類金属酸化物(酸化マグネシウム、酸化カルシウム等)の他に、熱処理により熱分解過程で酸化マグネシウムへと状態が変化する、金属有機酸(クエン酸マグネシウム、シュウ酸マグネシウム、クエン酸カルシウム、シュウ酸カルシウム等)、塩化物、硝酸塩、硫酸塩を使用することもできる。
 また、酸化物を取り除く洗浄液としては、塩酸、硫酸、硝酸、クエン酸、酢酸、ギ酸など一般的な無機酸を使用し、2mol/l以下の希酸として用いるのが好ましい。また、80℃以上の熱水を使用することも可能である。
 更に、前記混合物の炭化は、非酸化雰囲気或いは減圧雰囲気で、500℃以上、1500℃以下の温度で行うことが好ましい。高炭素収率の樹脂は高分子であるため、500℃未満では炭素化が不十分で細孔の発達が十分でない場合がある一方、1500℃以上では収縮が大きく、酸化物が焼結し粗大化するため、細孔のサイズが小さくなって比表面積が小さくなるからである。非酸化性雰囲気とは、アルゴン雰囲気或いは窒素雰囲気等であり、減圧雰囲気とは133Pa(1torr)以下の雰囲気である。
 尚、上記多孔質炭素の嵩密度は0.1g/cc以上1.0g/cc以下であることが望ましい。嵩密度が0.1g/cc未満であると、比表面積を確保することが困難であり、炭素質壁の形状が保てなくなることがある一方、嵩密度が1.0g/ccを超えると、三次元網目構造を形成し難く、細孔の形成が不十分となることがある。
(実施例1)
 先ず、図1(a)に示すように、鋳型粒子としての酸化マグネシウム粉末(MgO、平均粒径は5nm)2と、炭素前駆体としての有機物樹脂(ポリビニルアルコール)1とを、3:2の重量比で混合した。次に、図1(b)に示すように、この混合物を不活性雰囲気下900℃で2時間熱処理して、ポリビニルアルコールを熱分解させることにより、炭素質壁3を備えた焼成物を得た。次いで、図1(c)に示すように、得られた焼成物を1mol/lの割合で添加された硫酸溶液で洗浄して、MgOを完全に溶出させた。これにより多数の細孔4を有する非晶質の多孔質炭素5を得た。
 このようにして作製した多孔質炭素材料を、以下、材料A1と称する。
(実施例2)
 鋳型粒子として、平均粒径が20nmの酸化マグネシウム粉末を用いた以外は、上記実施例1と同様にして多孔質炭素を作製した。
 このようにして作製した多孔質炭素材料を、以下、材料A2と称する。
(実施例3)
 鋳型粒子としてマグネシウム塩(酢酸マグネシウム)を用い、炭素前駆体としての有機物樹脂(ポリビニルアルコール)を用いた以外は、上記実施例1と同様にして多孔質炭素を作製した。
 このようにして作製した多孔質炭素を、以下、材料A3と称する。
(比較例1)
 市販の活性炭(和光純薬工業株式会社製 活性炭(製品番号037-02115))を用いた。
 このような活性炭を、以下、材料Z1と称する。
(比較例2)
 ポリイミドからなるフィルムを窒素雰囲気下、900℃で熱処理することにより炭素材料を作製した。
 このようにして作製した材料を、以下、材料Z2と称する。
(比較例3)
 市販の合成ゼオライト系吸着材(和光純薬工業株式会社製 合成ゼオライトA-3(製品番号269-00555)を用いた。
 このような材料を、以下、材料Z3と称する。
(比較例4)
 市販の合成ゼオライト系吸着材(和光純薬工業株式会社製 合成ゼオライトF-9(製品号261-00635))を用いた。
 このような材料を、以下、材料Z4と称する。
(比較例5)
 市販の二酸化ケイ素(Sigma-Aldrich社製 MCM-41type 643645)を用いた。
 このような材料を、以下、材料Z5と称する。
(実験)
 上記、材料A1~A3、Z1~Z5におけるBET比表面積等について、下記の方法で調べたので、それらの結果を表1に示す。
(1)先ず、密閉された吸着測定用ガラスセル内に材料A1~A3、Z1~Z5を配置した後、真空下、300℃2時間の脱気処理を行った。
(2)窒素を吸着ガスとして用い、77K(-196℃)で測定して窒素吸着等温線を求めた。当該測定には、日本ベル株式会社製の自動ガス/蒸気吸着量測定装置BELSORP-18を用いた。BET比表面積は、相対圧(P/P)=0.05~2.20の範囲の測定点より算出した。
 全細孔容量は相対圧(P/P)0.95における吸着量から求め、ミクロ孔の容量はDubinin-Radushkevitch(DR)法によって求めた。また、メソ孔容量は上記全細孔容量と上記ミクロ孔の容量との差から求めた。
(3)メソ孔径及びミクロ孔径の導出
 メソ孔径はBJH(Berret-Joyner-Halenda)法で求め、ミクロ孔径はHK(Horvath-Kawazoe)法で求めた。
(4)水蒸気吸着測定
 水蒸気吸着測定は日本ベル株式会社製の自動ガス/蒸気吸着量測定装置BELSORP-18を用いて行った。測定条件は,吸着温度を25℃とし相対圧(P/P)0~0.9の範囲で行った。また、吸着質となる水としては、凍結および脱泡処理を4~5回繰り返すことにより高純度化した蒸留水を用いた。得られた吸着等温線は横軸を水蒸気相対圧(P/P)とし、縦軸を試料1gあたりに吸着した水蒸気の量(mg/g)として描画した。その結果を、図2に示す。
 そして、図2から、25℃における水蒸気相対圧P/Pが0.70(相対湿度が70%であることを意味する。以下、RH70と称することがある)の時の水蒸気吸着量と、P/P=0.90(相対湿度が90%であることを意味する。以下、RH90と称することがある)の時の水蒸気吸着量とを調べ、下記(1)式に示す水蒸気吸着量比率を算出した。
 水蒸気吸着量比率=RH90のときの水蒸気吸着量/RH70のときの水蒸気吸着量・・・(1)
Figure JPOXMLDOC01-appb-T000001
 表1及び図2から明らかなように、材料Z1~Z5では、RH90のときの水蒸気吸着量/RH70のときの水蒸気吸着量(以下、RH90/RH70と称することがある)の値が1.0~1.7であるのに対して、材料A1~A3では、RH90/RH70の値が2.3~7.8である。このことから、材料A1~A3は材料Z1~Z5に比べて、RH90/RH70の値が大きくなっていることが分かる。したがって、材料Z1~Z5では、RH70の時点で多孔質炭素の水蒸気吸着余力がほとんどない状態となっているため、RH90となった場合に水蒸気をほとんど吸着できなくなる。これに対して、材料A1~A3では、RH70の時点において、多孔質炭素の水蒸気吸着余力が十分にある状態となっているため、RH90となった場合であっても、水蒸気を十分に吸着できる。
 このような結果となったのは、高湿度における水蒸気吸着量はメソ孔容量に依存することによるものと考えられる。即ち、材料A1~A3ではメソ孔容量が0.834~1.861ml/gであって、非常に大きくなっているのに対して、材料Z1~Z5ではメソ孔が存在しないか、存在していてもその容量が0.024~0.455ml/gであって、非常に小さくなっている。このため、上述の実験結果となったものと考えられる。
 本発明は調湿・吸着材、吸着式ヒートポンプ、燃料電池用電極担体等として用いることができる。
 1:ポリアミック酸樹脂
 2:酸化マグネシウム
 3:炭素質壁
 4:細孔
 5:多孔質炭素

Claims (10)

  1.  メソ孔とミクロ孔とを備え、下記(1)式に示す水蒸気吸着量比率が1.8以上であることを特徴とする多孔質炭素。
     水蒸気吸着量比率=相対湿度が90%のときの水蒸気吸着量/相対湿度が70%のときの水蒸気吸着量・・・(1)
  2.  上記水蒸気吸着量比率が2.0以上である、請求項1に記載の多孔質炭素。
  3.  上記相対湿度が70%のときの水蒸気吸着量が50mg/g以上である、請求項1又は2に記載の多孔質炭素。
  4.  上記相対湿度が90%のときの水蒸気吸着量が300mg/g以上700mg/g以下である、請求項1~3の何れか1項に記載の多孔質炭素。
  5.  上記メソ孔の孔径が3nm以上50nm以下であり、上記メソ孔の容量が0.9ml/g以上2.0ml/g以下である、請求項1~4の何れか1項に記載の多孔質炭素。
  6.  上記メソ孔の孔径が4.5nm以上50nm以下である、請求項5に記載の多孔質炭素。
  7.  上記ミクロ孔容量が0.3ml/g以上0.7ml/g以下である、請求項1~6の何れか1項に記載の多孔質炭素。
  8.  請求項1~7の何れか1項に記載の多孔質炭素を吸着材として用いることを特徴とする調湿吸着材。
  9.  請求項1~7の何れか1項に記載の多孔質炭素を吸着材として用いることを特徴とする吸着式ヒートポンプ。
  10.  請求項1~7の何れか1項に記載の多孔質炭素を電極の炭素系担体として用いることを特徴とする燃料電池。
PCT/JP2014/065925 2013-09-06 2014-06-16 多孔質炭素、調湿吸着材、吸着式ヒートポンプ、及び燃料電池 WO2015033643A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP14842926.9A EP3042877B1 (en) 2013-09-06 2014-06-16 Porous carbon and its use as humidity-controlling adsorbent material, as adsorbent in a heat pump or as electrode in a fuel cell
US14/911,593 US10137405B2 (en) 2013-09-06 2014-06-16 Porous carbon, humidity control adsorbent, adsorption heat pump, and fuel cell
CA2922942A CA2922942C (en) 2013-09-06 2014-06-16 Porous carbon, humidity control adsorbent, adsorption heat pump, and fuel cell
CN201480046082.1A CN105531224B (zh) 2013-09-06 2014-06-16 多孔碳、调湿吸附材料、吸附式热泵和燃料电池
MX2016001521A MX2016001521A (es) 2013-09-06 2014-06-16 Carbón poroso, adsorbente para control de humedad, bomba de calor para adsorción y celda de combustible.
KR1020167008945A KR102328148B1 (ko) 2013-09-06 2014-06-16 다공질 탄소, 조습 흡착재, 흡착식 히트 펌프 및 연료 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-184729 2013-09-06
JP2013184729A JP5695147B2 (ja) 2013-09-06 2013-09-06 多孔質炭素、調湿吸着材、吸着式ヒートポンプ、及び燃料電池

Publications (1)

Publication Number Publication Date
WO2015033643A1 true WO2015033643A1 (ja) 2015-03-12

Family

ID=52628132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065925 WO2015033643A1 (ja) 2013-09-06 2014-06-16 多孔質炭素、調湿吸着材、吸着式ヒートポンプ、及び燃料電池

Country Status (9)

Country Link
US (1) US10137405B2 (ja)
EP (1) EP3042877B1 (ja)
JP (1) JP5695147B2 (ja)
KR (1) KR102328148B1 (ja)
CN (1) CN105531224B (ja)
CA (1) CA2922942C (ja)
MX (1) MX2016001521A (ja)
TW (1) TWI638771B (ja)
WO (1) WO2015033643A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152447A1 (ja) * 2015-03-26 2016-09-29 新日鐵住金株式会社 固体高分子形燃料電池用の担体炭素材料及び触媒

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6671719B2 (ja) * 2015-11-16 2020-03-25 アイシン精機株式会社 バイオ燃料電池用のガス拡散電極材、及び、ガス拡散電極材の作製方法、ガス拡散電極材を備えるバイオ燃料電池
TWI647175B (zh) * 2017-10-25 2019-01-11 台灣中油股份有限公司 生質油製作多重孔洞碳材之方法
JP7125892B2 (ja) * 2018-11-20 2022-08-25 株式会社クレハ アミロイドβ除去器具、生体由来液浄化システム、アミロイドβ除去方法およびアミロイドβ除去用吸着材
JP6861370B1 (ja) * 2019-09-27 2021-04-21 パナソニックIpマネジメント株式会社 触媒、触媒層、膜/電極接合体、電気化学デバイス、触媒の製造方法
KR20230079099A (ko) 2020-09-29 2023-06-05 엔.이. 켐캣 가부시키가이샤 전극용 촉매, 가스 확산 전극 형성용 조성물, 가스 확산 전극, 막-전극 접합체 및 연료 전지 스택
JPWO2022071321A1 (ja) 2020-09-29 2022-04-07
FR3122585A1 (fr) * 2021-05-04 2022-11-11 Universite Claude Bernard Lyon 1 Solide mésoporeux pour réguler l’humidité dans les espaces clos
CN118715636A (zh) * 2022-10-21 2024-09-27 宁德时代新能源科技股份有限公司 碳质材料及其制备方法、以及含有其的二次电池和用电装置
WO2024202884A1 (ja) * 2023-03-31 2024-10-03 日鉄ケミカル&マテリアル株式会社 固体高分子型燃料電池の触媒担体用炭素材料、固体高分子型燃料電池用触媒層、燃料電池、及び固体高分子型燃料電池の触媒担体用炭素材料の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187127A (ja) * 1989-01-14 1990-07-23 Osaka Gas Co Ltd 除湿材
JP2000072426A (ja) * 1998-08-21 2000-03-07 Daikyo Kensetsu Kk 活性炭製造方法、調湿用活性炭及び調湿用建材
JP2002080213A (ja) * 2000-09-07 2002-03-19 Mitsubishi Chemicals Corp 炭素質多孔材
JP2005041769A (ja) * 2003-07-07 2005-02-17 Toyo Tanso Kk 炭素化物及びその製造方法
JP2006297341A (ja) * 2005-04-25 2006-11-02 Takuma Co Ltd 含塩有機物を用いた蒸気吸放出材料
JP2007209844A (ja) 2006-02-07 2007-08-23 Nippon Oil Corp 調湿用炭素材およびその製造方法
JP2010241648A (ja) * 2009-04-07 2010-10-28 National Institute Of Advanced Industrial Science & Technology 親水性炭素微細孔体およびその製造方法
JP2012508094A (ja) * 2008-11-04 2012-04-05 ドナルドソン カンパニー,インコーポレイティド カスタム水吸着材料

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0506278D0 (en) * 2005-03-29 2005-05-04 British American Tobacco Co Porous carbon materials and smoking articles and smoke filters therefor incorporating such materials
JP2007099612A (ja) * 2005-09-06 2007-04-19 National Institute Of Advanced Industrial & Technology 均一な粒子径を有するメソ多孔性炭素ビーズ、その製造方法および製造装置、ならびに該メソ多孔性炭素ビーズを担体とする水処理用触媒、該触媒の性能評価装置と、該触媒を用いた実廃水処理装置
JP5013503B2 (ja) * 2006-02-16 2012-08-29 国立大学法人埼玉大学 疎水性活性炭の製造方法
JP4875562B2 (ja) * 2007-07-20 2012-02-15 クラレケミカル株式会社 スピーカ装置用材料およびこれを用いたスピーカ装置
JP2010208887A (ja) 2009-03-10 2010-09-24 Toyo Tanso Kk 多孔質炭素及びその製造方法
GB0904196D0 (en) 2009-03-11 2009-04-22 British American Tobacco Co Methods for increasing mesopores in adsorbents
JP5485734B2 (ja) * 2010-02-05 2014-05-07 株式会社実践環境研究所 活性炭の製造方法及び活性炭
GB201007667D0 (en) * 2010-05-07 2010-06-23 British American Tobacco Co Method of preparing porous carbon
JP5935039B2 (ja) * 2012-02-23 2016-06-15 地方独立行政法人青森県産業技術センター 活性炭製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02187127A (ja) * 1989-01-14 1990-07-23 Osaka Gas Co Ltd 除湿材
JP2000072426A (ja) * 1998-08-21 2000-03-07 Daikyo Kensetsu Kk 活性炭製造方法、調湿用活性炭及び調湿用建材
JP2002080213A (ja) * 2000-09-07 2002-03-19 Mitsubishi Chemicals Corp 炭素質多孔材
JP2005041769A (ja) * 2003-07-07 2005-02-17 Toyo Tanso Kk 炭素化物及びその製造方法
JP2006297341A (ja) * 2005-04-25 2006-11-02 Takuma Co Ltd 含塩有機物を用いた蒸気吸放出材料
JP2007209844A (ja) 2006-02-07 2007-08-23 Nippon Oil Corp 調湿用炭素材およびその製造方法
JP2012508094A (ja) * 2008-11-04 2012-04-05 ドナルドソン カンパニー,インコーポレイティド カスタム水吸着材料
JP2010241648A (ja) * 2009-04-07 2010-10-28 National Institute Of Advanced Industrial Science & Technology 親水性炭素微細孔体およびその製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Experimental Polymer Science", vol. 3, 28 March 1996, KYORITSU SHUPPAN, article "Shin Kobunshi Jikkengaku, Vol. 3, Kobunshi no Gosei-Hanno (2", pages: 158
ADSORPTION NEWS, vol. 10, no. 3, July 1996 (1996-07-01), pages 12 - 16
DENSO TECHNICAL REVIEW, vol. 11, no. 1, 2006
KAGAKU KOGAKU RONBUNSHU, vol. 15, no. 1, pages 38 - 43
See also references of EP3042877A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152447A1 (ja) * 2015-03-26 2016-09-29 新日鐵住金株式会社 固体高分子形燃料電池用の担体炭素材料及び触媒
CN107210449A (zh) * 2015-03-26 2017-09-26 新日铁住金株式会社 固体高分子型燃料电池用载体碳材料以及催化剂
JPWO2016152447A1 (ja) * 2015-03-26 2018-01-25 新日鐵住金株式会社 固体高分子形燃料電池用の担体炭素材料及び触媒
CN107210449B (zh) * 2015-03-26 2020-08-14 日铁化学材料株式会社 固体高分子型燃料电池用载体碳材料以及催化剂

Also Published As

Publication number Publication date
US10137405B2 (en) 2018-11-27
JP5695147B2 (ja) 2015-04-01
CA2922942A1 (en) 2015-03-12
EP3042877A4 (en) 2017-05-10
CN105531224A (zh) 2016-04-27
CN105531224B (zh) 2018-10-16
EP3042877A1 (en) 2016-07-13
TWI638771B (zh) 2018-10-21
TW201515993A (zh) 2015-05-01
CA2922942C (en) 2022-09-13
US20160199809A1 (en) 2016-07-14
KR20160051879A (ko) 2016-05-11
EP3042877B1 (en) 2021-02-17
KR102328148B1 (ko) 2021-11-18
MX2016001521A (es) 2017-01-11
JP2015051891A (ja) 2015-03-19

Similar Documents

Publication Publication Date Title
JP5695147B2 (ja) 多孔質炭素、調湿吸着材、吸着式ヒートポンプ、及び燃料電池
US9156694B2 (en) Porous carbon and method of manufacturing same
CN103429531B (zh) 多孔碳及其制造方法
JP5860600B2 (ja) 多孔質炭素
Li et al. Preparation and characterization of polyurethane foam/activated carbon composite adsorbents
JP5860602B2 (ja) 多孔質炭素
JP6350918B2 (ja) 吸着/脱離剤
JP5860601B2 (ja) 多孔質炭素
JP5688321B2 (ja) 多孔質炭素及びその製造方法
JP2016160170A (ja) 炭素多孔体、その製法及びアンモニア吸着材
Meng et al. Investigation of narrow pore size distribution on carbon dioxide capture of nanoporous carbons
JP2016028014A (ja) 多孔質炭素
JP2016041656A (ja) 多孔質炭素
EP3130561A1 (en) Porous carbon, method for producing same, and adsorption/desorption device using porous carbon
WO2015137107A1 (ja) 多孔質炭素シート
US20150344316A1 (en) Porous carbon and method of manufacturing same
KR20120103886A (ko) 메조 기공이 발달된 입상 활성탄의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480046082.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842926

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/001521

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 14911593

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2922942

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016004525

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20167008945

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014842926

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014842926

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112016004525

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160229