WO2016152447A1 - 固体高分子形燃料電池用の担体炭素材料及び触媒 - Google Patents

固体高分子形燃料電池用の担体炭素材料及び触媒 Download PDF

Info

Publication number
WO2016152447A1
WO2016152447A1 PCT/JP2016/056657 JP2016056657W WO2016152447A1 WO 2016152447 A1 WO2016152447 A1 WO 2016152447A1 JP 2016056657 W JP2016056657 W JP 2016056657W WO 2016152447 A1 WO2016152447 A1 WO 2016152447A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon material
catalyst
radius
pore volume
pore
Prior art date
Application number
PCT/JP2016/056657
Other languages
English (en)
French (fr)
Inventor
晋也 古川
孝 飯島
正孝 日吉
克公 松本
禰宜 教之
広幸 林田
Original Assignee
新日鐵住金株式会社
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社, 新日鉄住金化学株式会社 filed Critical 新日鐵住金株式会社
Priority to US15/561,440 priority Critical patent/US10103398B2/en
Priority to CA2979528A priority patent/CA2979528C/en
Priority to JP2017508157A priority patent/JP6391808B2/ja
Priority to EP16768350.7A priority patent/EP3276717B8/en
Priority to CN201680008785.4A priority patent/CN107210449B/zh
Publication of WO2016152447A1 publication Critical patent/WO2016152447A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/342Preparation characterised by non-gaseous activating agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a carrier carbon material and a catalyst for a polymer electrolyte fuel cell, and in particular, a carrier carbon material for a polymer electrolyte fuel cell with little decrease in output voltage when power is generated with a large current, and
  • the present invention relates to a catalyst prepared using this support carbon material.
  • the polymer electrolyte fuel cell has a basic structure in which a catalyst layer serving as an anode and a cathode is disposed across a proton conductive electrolyte membrane, a gas diffusion layer is disposed outside, and a separator is disposed outside.
  • the unit cell is normally configured by concatenating (stacking) a plurality of unit cells according to the required output.
  • the power generation principle of such a polymer electrolyte fuel cell is based on the gas flow path of the separator disposed at both ends of the anode and the cathode, reducing gas such as hydrogen in the anode catalyst layer, and the cathode side.
  • Oxidizing gas such as oxygen or air is supplied to the catalyst layer via the gas diffusion layer, respectively.
  • hydrogen gas and oxygen gas are used as these raw material gases, for example, the following occurs on the catalyst metal of the catalyst layer on the anode side: The energy difference (potential difference) between the reaction 1 and the reaction 2 while generating water molecules by the reaction 1 (oxidation reaction) of the above and the following reaction 2 (reduction reaction) occurring on the catalyst metal of the catalyst layer on the cathode side ) To generate electricity.
  • reaction 2 As a characteristic of the polymer electrolyte fuel cell, one index is how much the voltage is maintained when the current is taken out to the outside. Normally, when a higher current is taken out, the voltage is further lowered. It tends to go.
  • platinum (Pt) or a platinum alloy mainly containing platinum (Pt alloy) is usually used as the catalyst metal.
  • a conductive carbon material is used as a catalyst carrier.
  • the catalyst metal there is an appropriate size for durability and high-efficiency reaction of the catalyst metal.
  • a radius of 1.5 nm or more and 5 nm or less is preferable. It is said to be ideal.
  • the catalyst metal in order for the catalyst metal to exist in the form of fine particles with the optimum size as described above, the catalyst metal needs to be supported on the support carbon material in a highly dispersed state maintaining a certain distance from each other. is there. In order to create such an ideal state in a catalyst in which a catalyst metal is supported on a support carbon material, the support carbon material needs to have a sufficient specific surface area.
  • the catalyst layer serving as the anode and the cathode usually contains a proton conductive resin (ionomer, hereinafter referred to as “ionomer”) that conducts hydrogen ions in addition to the catalyst metal fine particles and the carrier carbon material.
  • ionomer proton conductive resin
  • both anode and cathode catalyst layers are used. It is important to increase proton conductivity in the middle and in the proton conducting electrolyte membrane.
  • the hydrogen ions generated in the anode catalyst layer move from the catalyst metal to the anode catalyst layer through the water and ionomer in the catalyst layer, pass through the proton conductive electrolyte membrane, and further on the cathode side of the counter electrode. It moves in the catalyst layer and moves onto the catalyst metal in the cathode side catalyst layer. It is important to increase the proton conductivity.
  • the proton conductivity is remarkably lowered in the dry portion.
  • the inside of the cell is in a low humidified state, the wet state of the proton conductive electrolyte membrane and the ionomer deteriorates, and high proton conductivity cannot be ensured.
  • the conductivity of hydrogen ions required for the electrochemical reaction described above is deteriorated, and the power generation efficiency is reduced.
  • the polymer electrolyte fuel cell is operated while a humidifier is installed in the system, and is humidified by the humidifier to maintain an appropriate wet state.
  • “large current” refers to the case where the current value per apparent area of the electrode is about 1.5 A / cm 2 or more, and the flow rate of oxygen gas flowing to the cathode Depending on the concentration, 1.5 A / cm 2 is also a measure of the limiting current density in common-sense operating conditions, and in terms of the pore size in the support carbon material of the catalyst that forms the catalyst layer, , Mesopores, and macropores, and in accordance with IUPAC, pores having a pore radius of 1 nm or less are referred to as micropores, and pores having a pore radius of 1 to 25 nm are referred to as mesopores, and A pore having a pore radius of 25 nm or more is referred to as a macropore.
  • Patent Document 1 as a carrier carbon material that is superior in gas diffusibility compared to conventional carbon black, the primary particle diameter is 10 to 17 nm in radius, and the secondary particles in which the primary particles are continuous have voids, 10 total volume of pores of ⁇ 30 nm is 0.40 cm 3 / g or more 2.0 cm 3 / g has been proposed in which carbon black or less, further disadvantageous carrier inside the large carbon black gas diffusibility of the surface area Therefore, the BET specific surface area is preferably 250 to 400 m 2 / g.
  • Such a support carbon material has a specific surface area of about 400 m 2 / g and is too small to achieve a practical catalyst metal loading of 40 to 70% by mass. Aggregation of fine particles of the catalyst metal is likely to occur, and as a result, it is difficult to prevent the decrease in power generation performance due to the particle size of the supported catalyst metal becoming coarse.
  • % of porous carbon material has been proposed as an electrode material for electric double layer capacitors.
  • the mesopores are supported in the mesopores because they have excellent gas diffusibility.
  • the fine particles of the catalytic metal exhibit a sufficient catalytic action, and therefore it is expected to improve the large current characteristics.
  • the micropores have a volume of about several tens of percent, the fine particles of the catalyst metal in the micropores are easily clogged by the flooding phenomenon. As a result, the output is reduced.
  • the carbon material for catalyst support proposed in Patent Document 3 is a material composed of so-called dendritic particles in which rod-like or annular unit structures are linked in three dimensions, and the length of this dendritic portion is The diameter of the dendritic part is 50 to 300 nm and the diameter of the dendritic part is 30 to 150 nm.
  • the void formed by the dendritic particles in the catalyst layer contributes to the diffusibility of the reaction gas and reaction product (water).
  • the BET specific surface area By setting the BET specific surface area to 200 to 1300 m 2 / g, the catalyst metal can be dispersed in a highly dispersed state, and high power generation performance can be obtained.
  • the carbon material for catalyst support in Patent Document 3 has a pore volume of 0.2 to 1.5 cc / g in a radius of 0.1 to 10 nm, and is easily clogged with water of the reaction product. Since the holes are present at a certain ratio, it is difficult to completely prevent the flooding phenomenon.
  • At least the carbon material in the cathode-side catalyst layer gives a relatively stable power generation performance even in a dry state, and has a relatively excellent gas diffusibility with the catalyst-supporting carbon material A carrying the catalyst component.
  • Catalyst carrier carbon material B having a catalyst component supported thereon, a conductive auxiliary agent carbon material not supporting the catalyst component, and a gas diffusion carbon material having a low water vapor adsorption characteristic and hydrophobic and not supporting the catalyst component
  • the catalyst agglomerated phase in which the catalyst support carbon material A, the conductive auxiliary agent carbon material and the electrolyte material (ionomer) are agglomerated
  • the gas diffusion carbon in which the gas diffusion carbon material is agglomerated It has a two-phase mixed structure with a material aggregated phase, and the outer layer on the side not in contact with the proton conductive electrolyte membrane is a catalyst carrier carbon material B,
  • the catalyst layer structure is composed of a two-phase mixed structure of a catalyst agglomerated phase in which the electrolyte material (ionomer) is agglomerated and a gas diffusion carbon material agglomerated phase in which the gas diffusion carbon material is agglomerated, and the gas diffusion carbon material agglomerated phase exists Accordingly, there has been proposed a fuel cell that not only has excellent gas diffusibility but also does not easily cause a flooding phenomenon regardless of humidification conditions or load conditions, and can exhibit high cell performance. In the fuel cell of Patent Document 1, excellent gas diffusibility is achieved and generation of flooding phenomenon is considerably suppressed. However, the catalyst support carbon material A has micropores, and the catalyst metal.
  • JP2003-201,417 Japanese Patent Laid-Open No. 2014-001,093 WO 2014/129597 A1 JP 2010-123,572 A
  • Patent Documents 1 to 3 the pore design of the support carbon material focused on the diffusion of the oxygen gas which is the reaction gas is performed (Patent Documents 1 to 3), and the catalyst focused on the suppression of the flooding phenomenon
  • Patent Document 4 the layer design is performed (Patent Document 4)
  • the flooding phenomenon generated in the carrier carbon material is not necessarily sufficiently suppressed, and the carrier carbon is generated during high current power generation under high humidification conditions.
  • the utilization rate of the catalyst metal supported on the material was lowered, and there were still problems such as insufficient power generation performance.
  • the present inventors have studied in detail the mechanism by which flooding phenomenon occurs during high-current power generation under high humidification conditions, which are the operating conditions, in a polymer electrolyte fuel cell, and considered as follows.
  • the flooding phenomenon occurs in the catalyst layer on the cathode side where water is generated in the power generation reaction, and is the following phenomenon.
  • water molecules generated by reaction 2 of the catalytic reaction are separated from the surface of the catalyst metal in a gaseous state, diffused in the catalyst layer using a concentration gradient as a driving force, and a separator disposed on the cathode electrode Of oxygen gas (air in practical use) is discharged out of the system.
  • oxygen gas air in practical use
  • the diffusion path of water molecules in the catalyst layer includes interparticle pores formed inside the particles of the support carbon material and interparticle pores formed between the particles of each support carbon material outside the support carbon material. It is roughly divided into two.
  • the former is a fine pore of several nanometers or less that the carrier carbon material made of a porous carbon material has within the material, and catalyst metal fine particles (platinum fine particles) are supported in the pores in the particles, and the catalyst layer It plays an important function when the reaction 2 of the catalytic reaction is performed.
  • the latter interparticle pores are the main factors that form the size of the support carbon material and its dendritic structure. In general, the size of the interparticle pores in the catalyst layer is typical of the support carbon material.
  • the present representative carbon material is Ketjen Black (manufactured by Lion Corporation), and the primary particle constituting the dendritic structure is about 40 nm, and the average size of the dendritic structure is about 100 nm.
  • the interparticle pores formed in the layer are about several tens nm to 100 nm.
  • carrier carbon material was important for suppression of a flooding phenomenon. Specifically, it is control of pore diameter, pore length, hydrophilicity of pore walls, and the like.
  • the pore size is about several water molecules, the pressure (water molecule density) that condenses (liquefies) due to van der Waals force (attraction) between the wall surface and water molecules decreases, and as a result, the current density is reduced.
  • the pores of this size begin to block, and when the wall surface forming the pores is highly hydrophilic, water molecules are adsorbed on the wall surface and the substantial pore diameter is reduced.
  • the pressure to condense is reduced, that is, water is easily condensed due to a large current. Further, in the catalyst layer, in the vicinity of the ionomer resin or the hydrophilic carrier carbon material, an environment in which water molecules are easily condensed is likely to cause a flooding phenomenon.
  • the present inventors have improved the power generation characteristics at the time of large current power generation, particularly under high humidification conditions, under a completely new viewpoint of suppressing the flooding phenomenon occurring inside the carrier carbon material that has not been studied conventionally.
  • the pore structure inside the support carbon material was intensively studied, and in the process, the following facts were found and the present invention was completed.
  • Intra-particle pores catalyst-carrying pores required to support catalyst metal fine particles are formed inside the particles of the support carbon material, and at the same time, the conventional inter-particle pores in the catalyst layer required for gas diffusion By forming pores of the same size (gas diffusion pores), the flooding phenomenon that has occurred in the fine pores inside the carrier carbon material until now is suppressed as much as possible. It has been found that almost all the catalytic metal fine particles supported on the catalyst can be involved in the catalytic reaction, and the present invention has been completed.
  • the object of the present invention is to support the catalyst metal in a highly dispersed state based on the above basic guideline, hardly cause flooding phenomenon even during large current power generation under high humidification conditions, and large It is an object of the present invention to provide a support carbon material and a catalyst using the same, in which voltage drop during current power generation is small.
  • the present invention has the following configuration.
  • a polymer electrolyte fuel cell which is a porous carbon material, and satisfies the following conditions regarding the pore volume and pore area determined by the BJH analysis method from the nitrogen adsorption isotherm during the adsorption process Support carbon material for use.
  • the pore volume VA having a radius of 2 nm to 50 nm is 1 ml / g to 5 ml / g
  • the pore area S 2-50 having a radius of 2 nm to 50 nm is 300 m 2 / g to 1500 m 2 / g.
  • the radius 5nm or 25nm or less of pore volume V 5-25 ratio of (ml / g) (V 5-25 / V A) is 0.4 or more 0
  • the ratio (V 2-5 / V A ) of the pore volume V 2-5 (ml / g) having a radius of 2 nm or more and 5 nm or less is 0.2 or more and 0.5 or less.
  • the carbon support material of the present invention is not only excellent in the gas diffusibility of the raw material gas in the catalyst layer but also formed inside the particles of the support carbon material in the polymer electrolyte fuel cell produced using this.
  • the generated gas diffusion pores and catalyst-supported pores can suppress the occurrence of flooding as much as possible, and the supported catalyst metal can be efficiently involved in the catalytic reaction. A voltage drop at the time of large current power generation under humidified conditions can be prevented, and good power generation characteristics can be obtained.
  • FIG. 1 is an explanatory view schematically showing the pore structure of the carrier carbon material of the present invention.
  • the carrier carbon material of the present invention has a pore structure designed based on the following basic guidelines.
  • micropores with a radius of 1 nm or less tend to cause condensation of water vapor at a low relative pressure, which causes a flooding phenomenon.
  • gas diffusion is slow in the micropores, and it is considered that there is substantially no contribution to the power generation characteristics of a large current. Therefore, it is preferable that the volume and area of the micropores are small, but the micropores inherent to the manufacturing method and the raw material are allowed to some extent.
  • the relative ratio of the micropore volume and area is lowered by defining the volume and area of the mesopores.
  • the pores having a radius of 2 nm or more and 50 nm or less provide an adsorption site necessary for supporting the catalyst metal fine particles, and also provide a space necessary for diffusion of gas (oxygen and water vapor). Therefore, in the present invention, the lower limit and upper limit of the pore volume having a radius of 2 nm to 50 nm are defined.
  • the area of the pores having a radius of 2 nm or more and 50 nm or less provides a place for supporting the catalyst metal fine particles.
  • a practical support ratio of the catalyst metal fine particles is 30% by mass, preferably The lower limit of the area value for enabling 40% by mass or more is defined, and further, the substantial upper limit is defined.
  • the pores having a radius of 5 nm or more and 25 nm or less play a role of dramatically increasing the diffusion of gas (oxygen and water vapor) inside the particles of the carrier carbon material, and are the gas diffusion pores of the present invention.
  • the gas diffusion pores correspond to the interparticle pores in the conventional catalyst layer, and constitute a gas diffusion flow path that guides water molecules generated inside the particles of the carrier carbon material to the particle surface.
  • the volume of the pore diameter of the gas diffusion pores is a value that cannot exist in a carbon material having a size of several microns such as a conventional activated carbon.
  • activated carbon forms pores in powders such as coke, coconut shell, and phenol resin by chemical activation with zinc chloride, activation with water vapor, and the like.
  • the pores introduced by such a method have a pore structure mainly composed of pores having a pore radius of 1 nm or less in order to suit the purpose of adsorbing a substance having a relatively small molecular weight.
  • the pores of 5 nm or more and 25 nm or less as sought after are hardly present in conventional activated carbon and the like.
  • the numerical value of the pore structure of specific activated carbon is shown in the Example.
  • the pores having a radius of 2 nm or more and 5 nm or less are designed as sizes of pores having voids through which gas can diffuse after carrying catalytic metal fine particles with a radius of 1 to 3 nm, which is a practical size.
  • the lower limit and the upper limit of the ratio of the pore volume having a radius of 2 nm to 5 nm to the pore volume having a radius of 2 nm to 50 nm are defined.
  • ketjen black is used as a carrier carbon material of a polymer electrolyte fuel cell, and this material is produced by activating carbon black with water vapor.
  • the pores formed by this water vapor activation are formed with micropores having a radius of 1 nm or less from the material surface toward the inside at the initial stage of the reaction, and when the activation reaction further proceeds, the walls forming the micropores are eroded and the pore diameter is reduced. Gradually increases, and mesopores having a radius of 1 nm or more are formed. Although the ratio of micropores and mesopores formed varies depending on the degree of activation, there is an upper limit to the pore diameter of pores formed by this method if the surface area is kept at 500 m 2 / g.
  • ketjen black EC300 pores having a primary particle diameter of about 40 nm and a radius of 5 nm or more are substantially zero. Specific numerical values of the pore structure of Ketjen Black EC300 are shown in the examples.
  • the carrier carbon material of the present invention has a pore structure as shown in FIG. That is, in FIG. 1, inside the particles 1 of the support carbon material are pores (catalyst carrying pores) 2 having a radius of 2 to 5 nm as mesopores and pores having a radius of 5 to 25 nm (mesopores). Gas diffusion pores) 3 are present, and catalyst metal fine particles having a radius of 1 to 3 nm (not shown) are carried in the catalyst-carrying pores 2, and water generated on the catalyst metal fine particles in the catalyst-carrying pores 2 is formed.
  • the molecules immediately diffuse into the gas diffusion pores 3 leading to the catalyst-carrying pores 2, further diffuse to the outside of the particles 1, and are discharged to the outside of the catalyst layer through the interparticle pores in the catalyst layer. . Therefore, in the catalyst layer formed using the carrier carbon material of the present invention, a space (gas diffusion path) through which water vapor and oxygen gas can be sufficiently diffused is ensured, so that during high-current power generation under highly humidified conditions. Can effectively suppress the occurrence of the flooding phenomenon, and the supply of oxygen gas necessary for large current power generation is ensured.
  • the total pore volume with a radius of 2 nm to 50 nm is defined as the total pore volume V A To do.
  • the upper limit of the radius of the total pore volume is defined as 50 nm for the following reason. That is, since the practical thickness of the catalyst layer is about 10 ⁇ m, the particle diameter of the carrier carbon material is limited to about several ⁇ m, and the carrier carbon material having such a particle diameter is sufficiently fast. In order to maintain the gas diffusibility and maintain the physical strength of the particles required in the battery manufacturing process, the pore size is limited to a submicron pore size of at least 1/10 of the particle size.
  • the upper limit value of the reliable pore diameter in gas adsorption is about 50 nm, and 50 nm was selected as the upper limit of the substantially important pore diameter.
  • the pore volume V A formed within the particle and having a radius of 2 nm or more and 50 nm or less is 1 ml / g or more and 5 ml / g or less, more preferably, V A is 1.5 ml / g. It is above 4.5ml / g.
  • the pore area S 2-50 having a radius of 2 nm to 50 nm is 300 m 2 / g to 1500 m 2 / g. If the above pore volume V A is 1 ml / g or less, gas diffusion pores excellent in gas diffusibility cannot be formed inside the particles.
  • the pore volume V A exceeds 5 ml / g, Making a pore area S 2-50 with a radius of 2 nm or more and 50 nm or less to ensure 300 m 2 / g or more, the pore wall becomes too thin and the strength as particles becomes too small, and the catalyst preparation process for supporting the catalyst metal In addition, the pores may be crushed in the ink preparation process, and the carrier carbon material may be pulverized.
  • the pore area S 2-50 is smaller than 300 m 2 / g, the area necessary for supporting the catalytic metal fine particles at a practical loading rate of about 40% by mass cannot be secured. The power generation characteristics deteriorate due to aggregation of the catalyst metal fine particles.
  • this area index it is practically up to 1500 m 2 / g, and the carrier carbon material having a pore area S 2-50 larger than this is the mechanical strength of the particles. Is too low to be used.
  • the carrier carbon material of the present invention has a ratio (V 5-25 / V A ) of a pore volume V 5-25 (ml / g) having a radius of 5 nm to 25 nm with respect to the pore volume V A described above.
  • the ratio (V 5-25 / V A ) is larger than 0.7, the pore walls become thin and the strength as particles decreases as described above, so that the catalyst preparation process and ink preparation are performed. In the process, the pores may be crushed and the carrier carbon material may be pulverized.
  • the pore volume V 5-25 having a radius of 5 nm or more and 25 nm or less is preferably 0.7 ml / g or more and 2 ml / g or less. If the pore volume is less than 0.7 ml / g, the pore volume itself is too small and the particles are small. Gas diffusion pores with excellent gas diffusibility are not formed inside, and water molecules are likely to condense during large current power generation, and flooding phenomenon tends to occur. Conversely, if the particle size is larger than 2 ml / g, As a result, the strength is reduced and mechanically pulverized in the catalyst preparation process and the ink preparation process, and the particles may be broken and at the same time the pores may be crushed.
  • the ratio of the volume of pores V 2-5 radius 2nm or 5nm (V 2-5 / V A) is 0.2 or more It must be 0.5 or less, preferably 0.25 or more and 0.4 or less. If this ratio (V 2-5 / V A ) is smaller than 0.2, it is impossible to secure a volume necessary to secure a practical support ratio of the catalyst metal fine particles.
  • the surface area effective for the catalytic reaction is reduced due to aggregation and the like, and the power generation characteristics, particularly the power generation characteristics during large current power generation are reduced.
  • the ratio (V 2-5 / V A ) is larger than 0.5, the pore volume V 5-25 having a radius of 5 nm or more and 25 nm or less is relatively reduced, so that the catalytic metal is substantially reduced.
  • Sufficient oxygen gas cannot be supplied to the pore inlet of the catalyst-carrying pores with a radius of 2 nm or more and 5 nm or less supported on the catalyst, or water molecules generated in the catalyst-carrying pores cannot diffuse out of the particles, resulting in a large current. There is a risk that a flooding phenomenon will occur during power generation, and there is a risk that the power generation characteristics during high current power generation will deteriorate due to the rate limiting of the supply of oxygen gas.
  • the average particle radius of the support carbon material is preferably 0.1 ⁇ m (100 nm) to 5 ⁇ m (5000 nm), more preferably 0, compared to several tens of nm for the conventional support carbon material of this type. It is desirable that it is 6 ⁇ m or more and 3 ⁇ m or less.
  • the ratio of the pore volume V 5-25 (ml / g) to the pore volume V A for gas diffusion pores having a radius of 5 nm or more and 25 nm or less (V 5-25 / V A ) It is substantially difficult to form at 0.4 or more and 0.7 or less, and conversely, when the average particle radius is larger than 5.0 ⁇ m, a practical catalyst layer having a thickness of 10 ⁇ m is formed. Asperities of the order of several ⁇ m are generated on the surface of the catalyst layer, and there is a possibility that the flow of the reaction gas becomes non-uniform and the power generation characteristics deteriorate.
  • Examples of the carrier carbon material made of the porous carbon material of the present invention include a carbon material made porous by so-called activation, activated carbon such as activated carbon fiber, magnesium represented by Patent Document 2, etc., zeolite, silica, alumina, etc.
  • activated carbon such as activated carbon fiber, magnesium represented by Patent Document 2, etc.
  • zeolite silica
  • alumina alumina
  • Examples thereof include porous carbon materials.
  • a carbon material that is made porous by further activating the porous carbon black or the porous carbon material may be used.
  • the carrier carbon material made of the porous carbon material of the present invention is applied to the carbon material positively by increasing the pore size by the activation treatment, making the through-holes, etc. optimal pores inside the carbon material particles. It can be manufactured by building a structure.
  • the activation method at this time include a gas activation method and a chemical activation method.
  • a gas activation method there is a method in which a carbonized raw material is reacted with water vapor, carbon dioxide, air, combustion gas, or the like at a temperature of 700 ° C. or more to make it porous.
  • the method of using the 1 type (s) or 2 or more types selected from the group which consists of phosphoric acid, a sulfuric acid, calcium chloride, zinc chloride, potassium sulfide, an alkali metal compound, etc. as an activator is mentioned.
  • These activators may be used as an activator aqueous solution as needed.
  • the alkali metal hydroxide used as the activator include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, alkali metal carbonates such as potassium carbonate and sodium carbonate, potassium sulfate, Examples thereof include alkali metal sulfates such as sodium sulfate.
  • the method for producing a catalyst for a polymer electrolyte fuel cell using the carrier carbon material of the present invention includes, for example, immersing the carrier carbon material in an aqueous solution of a catalytic metal compound such as chloroplatinic acid, A hydrogen peroxide solution is added under stirring at a temperature, and then a Na 2 S 2 O 4 aqueous solution is added to prepare a catalyst precursor. The catalyst precursor is filtered, washed with water, dried, and then 100% -H 2 stream A conventionally known method for producing this type of catalyst, such as a method of performing a reduction treatment at a predetermined temperature and time, can be applied.
  • a catalytic metal compound such as chloroplatinic acid
  • a catalyst layer for a polymer electrolyte fuel cell is formed in the same manner as conventionally known methods.
  • a polymer electrolyte fuel cell can be produced using this catalyst layer.
  • the catalyst metal supported on the support carbon material is not particularly limited as long as it has a function of promoting a necessary chemical reaction in the catalyst layer on the anode side or the cathode side.
  • a metal such as platinum, palladium, ruthenium, gold, rhodium, osmium, iridium, tungsten, lead, iron, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, or two or more of these metals Examples include composites and alloys, and other catalyst metals and promoter metals may be used in combination.
  • platinum (Pt) or a platinum alloy containing platinum as a main component (Pt alloy) is particularly preferable as the catalyst metal.
  • the carrier carbon material and the catalyst for the polymer electrolyte fuel cell of the present invention will be described based on Examples and Comparative Examples.
  • the pore volume and pore area of the pores and the average particle radius were measured by the following methods.
  • the pore diameter of the present invention was determined by analysis. Specifically, BELSORPmini manufactured by Microtrac Bell was used. The distribution of mesopores was calculated by the BJH method using analysis software attached to the apparatus. From the numerical table, the pore volume V A having a radius of 2 nm to 50 nm, the pore area S 2-50 having a radius of 2 nm to 50 nm, the pore volume V 5-25 having a radius of 5 nm to 25 nm, and the radius of the present invention. The pore volume V 2-5 between 2 nm and 5 nm was calculated.
  • a laser diffraction particle size distribution measuring device (SALD-3000S) manufactured by Shimadzu Corporation was used to measure the particle size distribution of the carrier carbon material.
  • the average particle diameter (average value calculated based on the frequency with respect to the particle diameter obtained by logarithmic display) by the particle size distribution analysis software attached to the apparatus was used as the average particle radius of the present invention.
  • Method A Preparation of support carbon material using alumina particles as template
  • gamma-type alumina particles [4N nano alumina (gamma) manufactured by SI Science Co., Ltd.] having a particle size (diameter) of 10 nm, 20 nm, and 50 nm
  • polyvinyl alcohol powder (fully saponified type, An average degree of polymerization of 1000) was mixed at a weight ratio of 1: 2, held in an inert gas atmosphere at 600 ° C. for 2 hours, further heated and held at 900 ° C. for 1 hour for firing.
  • the obtained alumina-carbon composite was treated in a 10% by mass-aqueous sodium hydroxide solution at 60 ° C. for 5 hours or longer to dissolve and remove the alumina. Further, filtration and redispersion in pure water were repeated three times for washing, and the solid obtained by filtration was dried at 90 ° C. for 4 hours to obtain a carbon material.
  • Each carbon material thus obtained was pulverized using a planetary ball mill (French Japan Premium Line P7) under the processing conditions of 50 to 200 rpm for 10 minutes, and a particle diameter (diameter) of 10 nm.
  • the support carbon material A10 obtained using the above, the support carbon material A20 obtained using the 20 nm raw material, and the support carbon material A50 obtained using the 50 nm raw material were obtained. Furthermore, using the carbon material obtained by using the raw material having a particle diameter (diameter) of 10 nm, the pulverization conditions were changed to prepare four types of carrier carbon materials (A10S, A10SS, A10L, A10LL).
  • each gamma-type alumina particle having a particle size (diameter) of 10 nm and 20 nm was blended at a mass mixing ratio of 2: 1, 1: 1, or 1: 2, and each obtained by thoroughly mixing in a mortar.
  • a carbon material is prepared using the mixed raw material under the same conditions as described above, and pulverized under the same conditions as described above, and the carrier carbon material A21 obtained using the mixed raw material having a mass mixing ratio of 2: 1, and the mass mixing ratio
  • a support carbon material A11 obtained using a 1: 1 mixed raw material and a support carbon material A12 obtained using a mixed raw material having a mass mixing ratio of 1: 2 were obtained.
  • the above-mentioned gamma-type alumina particles having a particle diameter (diameter) of 10 nm and 50 nm are blended at a mass mixing ratio of 1: 1 and mixed thoroughly in a mortar, and the particle diameter (diameter).
  • the carrier carbon material AA11 obtained by pulverizing under the same conditions and using gamma-type alumina particles having a particle diameter (diameter) of 10 nm and 50 nm, and gamma-type alumina particles having a particle diameter (diameter) of 20 nm and 50 nm is obtained.
  • a support carbon material AB11 was obtained.
  • Each carrier carbon material obtained as described above was subjected to the following activation treatment for the purpose of further enlarging the pores, to obtain carrier carbon materials after the activation treatment.
  • Activation treatment C Each carrier carbon material obtained above was weighed 2 to 3 g on an alumina boat, set in a horizontal tubular electric furnace, heated to 1100 ° C. while flowing nitrogen gas at 100 ml / min, and then carbon dioxide was circulated at a rate of 100 ml / min, and an activation treatment for 1 hour (-C1) or 3 hours (-C3) was carried out to prepare each support carbon material after the activation treatment.
  • carrier carbon material after the activation process obtained in this way the support
  • A10-C1 the carrier carbon material after activation treatment obtained by subjecting the carrier carbon material A10 to activation treatment for 3 hours (-C3) is denoted as A10-C3.
  • A10-C1 the carrier carbon material after activation treatment obtained by subjecting the carrier carbon material A10 to activation treatment for 3 hours
  • Activation treatment K As the activation treatment, so-called alkali activation using an alkali as an activator was also examined.
  • this alkali activation about 2 g of each carrier carbon material obtained above and 5 to 10 g of KOH powder are mixed in a mortar, and the obtained mixed powder is packed in a nickel cylindrical container and 450 ° C. in an inert gas atmosphere. Then, activation treatment is performed for 1 hour (-K1) or 3 hours (-K3), and then ethanol is placed in a nickel cylinder after cooling in the glove box, and the alkali metal is dissolved and filtered. Then, the obtained solid was washed with pure water, and then vacuum-dried at 90 ° C. for 4 hours to prepare each support carbon material after the activation treatment.
  • Each carrier carbon material obtained after the activation treatment is represented by adding “-K1” or “-K3” to the end of the symbol of each carrier carbon material as in the case of activation treatment C.
  • Method B Preparation of carrier carbon material by calcination of Mg gluconate
  • Magnesium gluconate n-hydrate (C 12 H 22 MgO 14 ⁇ nH 2 O) was filled in a quartz tube boat and set in a horizontal tubular electric furnace. The temperature is raised to 500 ° C. at a rate of 10 ° C. per minute, held at this temperature for 2 hours, then heated to 900 ° C., further held at this temperature for 1 hour, and baking of magnesium gluconate n-hydrate Went. During firing, 200 ml / min of argon gas was passed through the tubular furnace to remove volatile components generated during firing. The magnesium compound was dissolved and removed from the carbon-magnesium composite obtained in this firing step with dilute sulfuric acid, washed with pure water, filtered and dried to obtain a carrier carbon material B.
  • the carrier carbon material B obtained above was subjected to the activation treatment C or the activation treatment K, and the carrier carbon material after the activation treatment was obtained.
  • carrier carbon material after the activation process similarly to the case of said method A, it attaches
  • Carbon material B-C1, carrier carbon material B-C3, carrier carbon material B-K1, and carrier carbon material B-K3 are indicated.
  • Method C Preparation of carrier carbon material using mesoporous silica as template
  • Mesoporous aluminate silica Aldrich MCM41; aluminum 3%) and sucrose (C 12 H 22 O 11 ) are mixed, concentrated sulfuric acid is added thereto, and the mixture is kept at 200 ° C. for 2 hours, and then at 1200 ° C. for 1 hour.
  • the resulting silica-carbon composite was washed with hydrogen fluoride to obtain a support carbon material C.
  • the carrier carbon material C was treated according to the activation treatment C except that the flow rate of carbon dioxide was 30 ml / min, to obtain a carrier carbon material after the activation treatment.
  • the carrier carbon material C was treated according to the activation treatment K except that it was heated to 500 ° C. in an inert gas atmosphere to obtain a carrier carbon material after the activation treatment.
  • “-K1” or “-K3” is added to the end, and the support carbon material C-K1 and the support carbon material C- Displayed as K3.
  • Method D Preparation of carrier carbon material using zeolite as template
  • the porous carbon material using zeolite as a template was prepared according to the literature of Kyotani et al. (Carbon, 2008 No.235, p307-316).
  • a powder Na-Y type zeolite (HZS-320NAA manufactured by Tosoh Corporation) as a template a porous carbon material having a few 3D periodic structure regularity was synthesized according to the following procedure. Na-Y zeolite powder previously dried at 150 ° C. was placed in a quartz reaction tube, and furfuryl alcohol was added to such an extent that the zeolite was immersed, and impregnated with stirring.
  • the furfuryl alcohol impregnated in the pores of the zeolite was polymerized by heating to 150 ° C., and a heat treatment at 900 ° C. was performed to carbonize the polymer in the pores to synthesize a carbon-zeolite composite.
  • the obtained carbon-zeolite composite was treated with hydrofluoric acid and hydrochloric acid, and the zeolite was dissolved and removed to obtain a carrier carbon material D made of a porous carbon material.
  • the carrier carbon material D was treated according to the activation treatment C except that the flow rate of carbon dioxide was 30 ml / min, to obtain a carrier carbon material after the activation treatment.
  • the carrier carbon material D was treated according to the activation treatment K except that it was heated to 500 ° C. in an inert gas atmosphere to obtain a carrier carbon material after the activation treatment.
  • “-K1” or “-K3” is added to the end, and the support carbon material D-K1 and the support carbon material D- Displayed as K3.
  • carbon black ketjen black (EC300 manufactured by Lion), which is currently used as a standard catalyst carrier for polymer electrolyte fuel cells, was used.
  • This material was designated as a support carbon material E.
  • activated carbon “YP80F” manufactured by Kuraray Chemical Co., Ltd. was used, and the average particle radius was adjusted to 1.2 ⁇ m using a pulverizer.
  • This material was designated as a support carbon material F.
  • acetylene black (AB; Denka Black powder form, manufactured by Denki Kagaku Kogyo Co., Ltd.) was used.
  • This material was used as a carrier carbon material G.
  • a carbon material (MCND) was produced according to the method described in Example 1 of Patent Document 3. This material was designated as a support carbon material H.
  • pore volume V A (ml / g) with a radius of 2 nm to 50 nm
  • pore area S 2-50 m 2 / g with a radius of 2 nm to 50 nm
  • radius 5 nm Measure pore volume V 5-25 (ml / g) of 25 nm or less, pore volume V 2-5 (ml / g) of radius 2 nm or more and 5 nm or less, and average particle radius ( ⁇ m) (V 5-25 / V A ) and ratio (V 2-5 / V A ) were calculated, and the pore structure of each carrier carbon material was examined. The results are shown in Tables 1 and 2.
  • the Pt catalyst is placed in a container under an Ar gas atmosphere, and an electrolyte resin manufactured by Dupont (registered trademark: Nafion) is added to the container as an electrolyte material. The material was crushed. Further, ethanol is added under stirring to adjust the total solid concentration of the Pt catalyst and the persulfonic acid ion exchange resin to 1% by mass to prepare a catalyst-coated ink in which the Pt catalyst and the electrolyte resin are mixed. did.
  • an electrolyte resin manufactured by Dupont registered trademark: Nafion
  • catalyst layer Preparation of catalyst layer Then, in a predetermined amount of the catalyst-coated ink prepared as described above, ethanol was added with stirring to adjust the platinum concentration to 0.5% by mass, and then the catalyst of the catalyst metal component (platinum) Spray conditions are adjusted so that the mass per unit area of the layer (hereinafter referred to as the basis weight of the catalyst metal component) is 0.2 mg / cm 2, and the catalyst-coated ink is spray-coated on a Teflon (registered trademark) sheet. Then, a drying process was performed in an Ar gas atmosphere at 120 ° C. for 60 minutes to prepare a catalyst layer.
  • platinum platinum
  • an MEA membrane electrode assembly
  • a square electrolyte membrane having a side of 6 cm was cut out from a Nafion membrane (NR211 manufactured by Dupont). Further, each of the anode and cathode catalyst layers coated on the Teflon (registered trademark) sheet was cut into a square shape having a side of 2.5 cm with a cutter knife. Next, the catalyst layers are sandwiched between the cut catalyst layers of the anode and the cathode so that the catalyst layers are in contact with each other with the center portion of the electrolyte membrane interposed therebetween and are not displaced from each other.
  • a pair of square carbon paper having a side of 2.5 cm is cut out from carbon paper (35BC manufactured by SGL Carbon Co.), and the catalyst layers of the anode and the cathode are sandwiched between these carbon papers.
  • the catalyst layer-electrolyte membrane assembly was sandwiched and pressed under the conditions of 120 ° C., 50 kg / cm 2, and 10 minutes, so that no deviation occurred.
  • the basis weight of each component of the catalytic metal component (platinum), carbon material, and electrolyte material in each MEA produced was the mass of the Teflon (registered trademark) sheet with the catalyst layer before pressing and the Teflon peeled after pressing (The mass of the catalyst layer fixed on the Nafion membrane (electrolyte membrane) was determined from the difference from the mass of the registered trademark sheet, and was calculated from the mass ratio of the composition of the catalyst layer.
  • the carbon material A-60-1400 is commonly used for the anode, and only the performance of the cathode catalyst layer can be evaluated from the evaluation result of the power generation characteristics.
  • the output characteristics at the time of large current power generation were evaluated using a highly humidified gas in which a flooding phenomenon is likely to occur.
  • the cell temperature was set to 80 ° C., and the supplied air and pure hydrogen were humidified by bubbling in distilled water kept at 85 ° C. and 80 ° C., respectively. Under this condition, air and hydrogen are fed into the cell in a state where water vapor is saturated. Under the above-mentioned conditions, the influence of the used carrier carbon material appears remarkably, that is, the cell voltage at 1200 mA / cm 2 in the region where the gas diffusion resistance increases is measured and evaluated.
  • carrier carbon material evaluated by the above-mentioned method is shown as "output voltage (V)" at the time of high humidification.
  • the carbon support material A10 prepared by Method A has a pore volume V A that is too small, and a particle with a radius of 5 nm is used as a template, so that the pore volume V 2-5 is relatively On the other hand, the pore volume V 5-25 is reduced, the gas diffusion pores inside the particle are small, and the desired output voltage (0.60 V or more) does not appear during large current power generation under high humidification conditions. It was.
  • A20 and A50 have a pore volume V A that is too small, the particle size of the template is 5 nm or more, so the pore volume V 2-5 is small, the dispersion of Pt fine particles is poor, and the reaction gas oxygen The desired output voltage was not achieved due to poor diffusion within the particles.
  • A10-C1 and A20-C1 activated with CO 2 for 1 hour increased the pore volume V A due to activation, and the balance between the pore volume V 2-5 and the pore volume V 5-25 was improved.
  • the pore area S 2-50 was sufficiently large, and all of them showed a good output voltage during high current power generation under high humidification conditions.
  • A50-C1 increased the pore volume V A , but did not increase the pore volume V 2-5 and did not achieve the desired output voltage.
  • the absolute value of the pore volume V 5-25 was slightly smaller, and the output voltage was slightly inferior to the others.
  • All of A21, A11, and A12 had a pore area S 2-50 of less than 300 m 2 / g, and the output voltage during high-current power generation under high humidification conditions was low.
  • A11 and A12 have a good balance between the pore volume V 2-5 and the pore volume V 5-25 , and exhibit good power generation characteristics if the activation treatment is performed to increase the pore area S 2-50.
  • A21-C1, A11-C1, A12-C1, A21-C3, A11-C3, and A12- obtained by activating the above-mentioned three types of support carbon materials with CO 2 for 1 hour or 3 hours. All C3 exhibited good power generation characteristics during high-current power generation under high humidification conditions.
  • both AA11 and AB11 have a good balance between the pore volume V 2-5 and the pore volume V 5-25 , but the total volume of the pore volume V A is small, and large current generation under high humidification conditions.
  • the output voltage at that time was low.
  • AA11-C3 and AB11-C3 obtained by subjecting AA11 and AB11 to CO 2 activation treatment both had good output characteristics during high-current power generation under high humidification conditions.
  • A10S-C3, A10SS-C3, A10L-C3, and A10LL-C3 all have a pore structure (pore volume V A , ratio V 2-5 / V A , ratio V 5-25 / V A , pore Excellent volume V 5-25 and pore area S 2-50 ), especially A10S-C3 and A10L-C3 have average particle radii of 0.63 ⁇ m and 4.2 ⁇ m, respectively, under high humidification conditions. It showed good power generation characteristics during high current power generation.
  • Carrier carbon material prepared by method B The carrier carbon material B obtained by method B is excellent in pore volume V A , but has a high ratio of pore volume V 2-5 and is relatively In addition, the ratio of the pore volume V 5-25 was low, and the output voltage during high-current power generation under humidified conditions was low.
  • the carrier carbon material obtained by carrying out the activation treatment C or the activation treatment K using the carrier carbon material B as a raw material has a pore structure (pore volume V A , ratio V 2-5 / V A , The ratio V 5-25 / V A , the pore volume V 5-25 , and the pore area S 2-50 ) were excellent, and good power generation characteristics were exhibited during large current power generation under highly humidified conditions.
  • Support carbon material prepared by Method C The support carbon material C prepared by Method C is excellent in the pore volume V A , but has a high ratio of the pore volume V 2-5 and is relatively high. In addition, the ratio of the pore volume V 5-25 was low, and the output voltage during high-current power generation under high humidification conditions was low.
  • the carrier carbon material obtained by carrying out the activation treatment C or the activation treatment K using the carrier carbon material C as a raw material has a pore structure (pore volume V A , ratio V 2-5 / V A , The ratio V 5-25 / V A , the pore volume V 5-25 , and the pore area S 2-50 ) were excellent, and good power generation characteristics were exhibited during large current power generation under highly humidified conditions.
  • Support carbon material prepared by method D The support carbon material D prepared by method D has almost all pores having a radius of 1 nm or less and substantially no pores having a radius of 2 nm or more. It was inferior in power generation characteristics during large current power generation under high humidification conditions when used as a catalyst carrier.
  • the carrier carbon material D-C1 obtained by subjecting the carrier carbon material D to the activation treatment C for 1 hour is insufficient in the formation of pores of 2 nm or more at the time of high current power generation under high humidification conditions.
  • the carrier carbon material D-C3 obtained by performing the activation treatment C for 3 hours showed good power generation characteristics during large current power generation under high humidification conditions.
  • the support carbon material H used as a carrier has a pore structure (pore volume V A , ratio V 2-5 / V A , ratio V 5-25 / V A , pore volume V 5-25 , and pores.
  • the area S2-50 ) was inferior, and the desired output voltage was not achieved during large current generation under high humidification conditions.
  • particles of carbon support material 2 ... pores with a radius of 2nm to 5nm 3 ... pores with a radius of 5 nm to 25 nm (gas diffusion pores)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

触媒金属を高分散状態で担持することができ、高加湿条件下の大電流発電時でもフラッディング現象を起こし難く、電圧低下が少ない担体炭素材料及びこれを用いた触媒を提供する。 多孔質炭素材料であって、吸着過程の窒素吸着等温線からBJH解析法で求められる細孔容積及び細孔面積に関して、半径2nm以上50nm以下の細孔容積VAが1ml/g以上5ml/g以下であり、半径2nm以上50nm以下の細孔面積S2-50が300m2/g以上1500m2/g以下であり、前記細孔容積VA(ml/g)に対して、半径5nm以上25nm以下の細孔容積V5-25(ml/g)の比率(V5-25/VA)が0.4以上0.7以下であると共に、半径2nm以上5nm以下の細孔容積V2-5(ml/g)の比率(V2-5/VA)が0.2以上0.5以下である固体高分子形燃料電池用の担体炭素材料及びこれを用いた触媒である。

Description

固体高分子形燃料電池用の担体炭素材料及び触媒
 本発明は、固体高分子形燃料電池用の担体炭素材料及び触媒に関するものであり、特に、大電流で発電した際の出力電圧の低下が少ない固体高分子形燃料電池用の担体炭素材料、及びこの担体炭素材料を用いて調製された触媒に関する。
 固体高分子形燃料電池は、プロトン伝導性電解質膜を挟んで、アノードとカソードとなる触媒層が配置され、更に外側にガス拡散層が配置され、更に外側にはセパレータが配置された基本構造(単位セル)で構成されており、通常、必要な出力に応じて複数の単位セルを連結(スタック)して構成されている。
 このような固体高分子形燃料電池の発電原理は、アノードとカソードの両端に配置されたセパレータのガス流路から、アノード側の触媒層には水素等の還元性ガスを、また、カソード側の触媒層には酸素あるいは空気等の酸化性ガスを、それぞれガス拡散層を介して供給し、これら原料ガスとして例えば水素ガスと酸素ガスを用いる場合、アノード側の触媒層の触媒金属上で起こる下記の反応1(酸化反応)とカソード側の触媒層の触媒金属上で起こる下記の反応2(還元反応)とにより、水分子を生成しながらこれら反応1と反応2との間のエネルギー差(電位差)を利用して発電をする。
 H2 → 2H+ + 2e- (E0=0V)…(反応1)
 O2 + 4H+ + 4e- → 2H2O (E0=1.23V)…(反応2)
 そして、固体高分子形燃料電池の特性としては、外部へ電流を取り出す際に、どれだけ電圧が維持されるかが1つの指標であり、通常、より高い電流を取りだすと電圧がより低下していく傾向になる。
 また、固体高分子形燃料電池のアノード及びカソードの触媒層を形成する触媒においては、通常、触媒金属として白金(Pt)や白金を主成分とする白金合金(Pt合金)が用いられ、また、このような触媒金属の微粒子を担持し、また、発生した電流を外部回路へ取り出すために、触媒担体として導電性の炭素材料が用いられる。
 ところで、近年、貴金属価格の高騰により、固体高分子形燃料電池の分野においても、触媒金属を如何に長寿命にかつ効率良く反応させるかについて様々な検討がされているが、そのためには、反応に寄与する触媒金属の単位重量当りの表面積を高くすることが必要であり、またそのために、触媒金属を微粒子化すると共に高分散状態で担体炭素材料に担持させることが必要である。しかしながら、この触媒金属を微粒子化し過ぎると、担体炭素材料との間の接触面積が小さくなり、燃料電池作動条件中に担体炭素表面からの脱落や、溶解・析出、凝集等の耐久性の観点での問題が発生し、結果として表面積が小さくなり、効率良く反応に寄与できなくなる。つまり、触媒金属の耐久性と高効率な反応のためには、適切なサイズが存在し、例えば白金金属では、半径1.5nm以上5nm以下が好ましいとされており、実際には半径3nm程度が理想的であるとされている。また、触媒金属が、上記のような最適なサイズのまま微粒子の状態で存在するためには、触媒金属同士が互いに一定の距離を保った高分散状態で担体炭素材料に担持されている必要がある。そして、担体炭素材料に触媒金属が担持された触媒において、このような理想的な状態を創り出すために、担体炭素材料については、十分な比表面積を有していることが必要である。
 また、アノード及びカソードとなる触媒層には、前述の触媒金属微粒子と担体炭素材料の他に、通常、水素イオンを伝導させるプロトン伝導性樹脂(アイオノマー、以下「アイオノマー」と記述する。)が含まれており、固体高分子形燃料電池に高い電池特性を付与するためには、上記反応1及び2を可及的に効率良く進行させることが必要であり、そのためにはアノード、カソード両触媒層中及びプロトン伝導性電解質膜中でのプロトン伝導性を高くすることが重要である。即ち、アノード側触媒層で生成した水素イオンは、この触媒層中の水やアイオノマーを介して触媒金属上からアノード側触媒層中を移動し、プロトン伝導性電解質膜を経て、更に対極のカソード側触媒層中を移動し、カソード側触媒層の触媒金属上まで移動するが、このプロトン伝導性を高くすることが重要である。
 ところで、一般的に、プロトン伝導性電解質膜及びアイオノマーは、乾燥状態になると、その乾燥部分においてプロトン伝導性が著しく低下する。固体高分子形燃料電池の運転条件において、セル内が低加湿状態では、プロトン伝導性電解質膜及びアイオノマーの湿潤状態が悪くなり、高いプロトン伝導性を確保できなくなる。その結果、前述した電気化学反応に必要な水素イオンの伝導性が悪くなり、発電効率が低下する。例えば、小電流放電時においては、セル内の生成水の発生が少ないため、セル内が低加湿状態になり易く、出力電圧が低くなることがある。そのため、固体高分子形燃料電池は、そのシステム中に加湿器が設置され、この加湿器により加湿されて適度な湿潤状態を保持しながら運転される。
 更に、固体高分子形燃料電池において、高い電池特性を実現するためには、プロトン伝導性と同時に、原料ガス(還元性ガス及び酸化性ガス)が触媒層中を拡散して触媒金属まで一定量輸送され続けることが必要である。この触媒層中における原料ガスのガス拡散性は、固体高分子形燃料電池の実用化において高出力(大電流)運転での性能向上(出力電圧を高める)を図る上で、重要な課題の一つである。即ち、大電流放電時においては、カソード側触媒層内で上記の反応2が激しく起こり、水蒸気が発生し、高加湿状態になるが、この際に、発生した水蒸気が凝集し、生成した凝縮水が原料ガスを触媒金属まで輸送する経路である触媒層内の細孔を閉塞し、閉塞された細孔内に担持された触媒金属は酸素ガスの供給を得られなくなり、このために電気化学反応に寄与し得なくなって、結果として発電効率が低下する、いわゆるフラッディング現象が発生する。この大電流運転条件下での性能向上のためには、実用化の上で、高加湿環境下でのフラッディング現象の抑制が重要な課題になっている。
 なお、以下の説明において、「大電流」とは、電極の見かけの面積当りの電流値が1.5A/cm2程度以上である場合を指すものであって、カソードに流す酸素ガスの流量・濃度によるが、1.5A/cm2は常識的な運転条件における限界的な電流密度の一つの目安でもあり、また、触媒層を形成する触媒の担体炭素材料における細孔のサイズに関して、ミクロ孔、メソ孔、及びマクロ孔という用語を用いるが、各々IUPACに従って細孔半径が1nm以下の細孔をミクロ孔と称すると共に細孔半径が1~25nmの細孔をメソ孔と称することとし、また、細孔半径が25nm以上の細孔をマクロ孔と称する。
 そこで、従来において、上述した触媒層中における原料ガスのガス拡散性を改善することを目的とした幾つかの取り組みがなされており、担体炭素材料に対する取り組みについても幾つかの提案がなされている。
 例えば、特許文献1においては、従来のカーボンブラックに比べてガス拡散性に優れる担体炭素材料として、一次粒子径が半径10~17nmで、一次粒子が連なった二次粒子が空隙を有し、半径10~30nmの細孔の合計容積が0.40cm3/g以上2.0cm3/g以下であるカーボンブラックが提案されており、更に、表面積の大きなカーボンブラックはガス拡散性に不利な担体内部の細孔が増えるため、担体炭素材料には適さず、BET比表面積は250~400m2/gであるのが好ましいとしている。しかしながら、このような担体炭素材料は、その比表面積が400m2/g程度であって、実用上の触媒金属の担持率である40~70質量%を達成させるには小さ過ぎ、このために、触媒金属の微粒子同士の凝集が発生し易く、結果として担持された触媒金属の粒子径が粗大化して発電性能の低下を防止することは困難である。
 また、特許文献2では、全細孔容積が1ml/g以上で、メソ孔〔=全細孔容積-ミクロ孔容積(HK法で算出)〕の細孔容積が全細孔容積に対して50%以上である多孔質炭素材
料が電気二重層キャパシタ用電極材料として提案されている。ここで、電気二重層キャパシタにおいて電解質イオンの拡散性に優れた上記の多孔質炭素材料を燃料電池へ適用することを想定すると、メソ孔はガス拡散性に優れているため、メソ孔内に担持される触媒金属の微粒子が十分に触媒作用を発揮し、従って大電流特性の向上が期待される。しかしながら、他方で、ミクロ孔も数10%程度の容積を持つので、このミクロ孔内の触媒金属の微粒子はミクロ孔がフラッディング現象で閉塞され易いので、相当量の触媒金属が大電流時に触媒反応に寄与し得なくなり、結果として、出力の低下を生じる。
 更に、特許文献3で提案されている触媒担体用炭素材料は、棒状又は環状の単位構造が三次元に連なった、いわゆる樹状形状の粒子からなる材料であり、この樹状部の長さが50~300nmであって樹状部の直径が30~150nmであり、触媒層中においてこの樹状粒子で形成される空隙が反応ガスや反応生成物(水)の拡散性に寄与し、また、BET比表面積を200~1300m2/gとすることにより触媒金属を高分散状態で分散させることができ、高い発電性能が得られるとしている。しかしながら、特許文献3における触媒担体用炭素材料は、半径0.1~10nm領域に0.2~1.5cc/gの細孔容積を有しており、反応生成物の水により閉塞し易いミクロ孔が一定の割合で存在するため、フラッディング現象の発生を完全に防止することは困難である。
 更に、特許文献4においては、少なくともカソード側触媒層中の炭素材料について、乾燥状態でも比較的安定した発電性能を与えると共に触媒成分を担持した触媒担体炭素材料Aと、比較的ガス拡散性に優れていると共に触媒成分を担持した触媒担体炭素材料Bと、触媒成分を担持していない導電助剤炭素材料と、水蒸気吸着特性が低く疎水性であって触媒成分を担持していないガス拡散炭素材料とを用い、プロトン伝導性電解質膜に接する側の内層については触媒担体炭素材料A、導電助剤炭素材料及び電解質材料(アイオノマー)が凝集した触媒凝集相とガス拡散炭素材料が凝集したガス拡散炭素材料凝集相との2相混合構造とし、また、プロトン伝導性電解質膜に接しない側の外層については触媒担体炭素材料B、導電助剤炭素材料及び電解質材料(アイオノマー)が凝集した触媒凝集相とガス拡散炭素材料が凝集したガス拡散炭素材料凝集相との2相混合構造とする触媒層構造を構成し、ガス拡散炭素材料凝集相を存在させることにより、ガス拡散性に優れているだけでなく、加湿条件や負荷条件によらずフラッディング現象が起こり難く、高い電池性能を発揮できる燃料電池が提案されている。この特許文献1の燃料電池においては、優れたガス拡散性が達成されているほか、フラッディング現象の発生もかなり抑制されているが、上記の触媒担体炭素材料Aがミクロ孔を有し、触媒金属を担持したミクロ孔内で生成した水を迅速に除去することは困難であり、このミクロ孔は水により閉塞され、また、このミクロ孔内の触媒金属は反応に関与せず、結果としてミクロ孔内の触媒金属に対応する分だけ反応効率の低下、即ち、電圧低下を防止することは困難である。
特開2003-201,417号公報 特開2014-001,093号公報 WO 2014/129597 A1公報 特開2010-123,572号公報
 上述のように、従来の技術では、反応ガスである酸素ガスの拡散に注目した担体炭素材料の細孔設計が行われ(特許文献1~3)、また、フラッディング現象の抑制についても着眼した触媒層設計が行われているものの(特許文献4)、いずれの場合も担体炭素材料中で発生するフラッディング現象を必ずしも十分には抑制できておらず、高加湿条件下の大電流発電時において担体炭素材料に担持された触媒金属の利用率が低下し、十分な発電性能を発揮できていない等の課題が残されていた。
 そこで、本発明者らは、固体高分子形燃料電池において、その運転条件である高加湿条件下での大電流発電時にフラッディング現象が発生する機構について詳細に検討し、以下のように考察した。
 先ず、フラッディング現象が起きるのは、発電反応において水が生成するカソード側の触媒層であり、次のような現象である。このカソード側触媒層において、触媒反応の反応2により生成した水分子は、気体状態で触媒金属の表面から乖離し、濃度勾配を駆動力として触媒層中を拡散し、カソード極に配置されたセパレータの酸素ガス(実用では空気)の流路を通って系外へ排出されるが、この際に水分子が触媒層中で液相化し、これによって生じた凝縮水が酸素ガスのガス拡散路を閉塞する現象である。
 ここで、触媒層中における水分子の拡散路は、担体炭素材料の粒子内部に存在する粒子内細孔と、担体炭素材料の外の各担体炭素材料の粒子間に形成される粒子間細孔の2つに大別される。前者は、多孔質炭素材料からなる担体炭素材料がその材料内部に有する数nm以下の微細な細孔であり、触媒金属の微粒子(白金微粒子)がこの粒子内細孔内に担持され、触媒層において触媒反応の反応2が行われる際に重要な機能を担うことになる。
 他方、後者の粒子間細孔は、担体炭素材料のサイズとその樹状構造が主たる形成要因であり、一般的に、触媒層中の粒子間細孔のサイズは、担体炭素材料の典型的なサイズスケールと同程度となる。現在の代表的な担体炭素材料はケッチェンブラック(ライオン社製)であり、樹状構造を構成する一次粒子が40nm程度であって、樹状構造の平均的な大きさが100nm程度なので、触媒層中に形成される粒子間細孔は数10nmから100nm程度である。
 そして、フラッディング現象の抑制には、前者の担体炭素材料内部に存在する細孔の制御が重要であると考えた。具体的には、細孔径、細孔長、細孔壁の親水性等の制御である。細孔径が水分子数個程度の大きさになると、壁面と水分子の間のファンデルワールス力(引力)により凝縮(液化)する圧力(水分子密度)が低下し、その結果、電流密度が高まると先ずこのサイズの細孔から閉塞が始まり、また、細孔を形成する壁面の親水性が高いと、壁面には水分子が吸着して実質の細孔径が減少し、また、水分子からなる壁面のために凝縮する圧力が低下する、即ち、大電流による水の凝縮が発生し易くなる。
 また、触媒層中において、アイオノマー樹脂や親水性の担体炭素材料の付近では、水分子が凝縮し易い環境になるため、フラッディング現象が生じ易くなる。
 そこで、本発明者らは、従来は検討されて来なかった担体炭素材料内部で生じるフラッディング現象を抑制するという全く新たな観点の下に、大電流発電時の発電特性の改善、特に高加湿条件下での大電流発電時の発電特性を改善する目的で、担体炭素材料内部の細孔構造について鋭意検討し、その過程で以下の事実を突き止め、本発明を完成した。
 即ち、高加湿条件下の大電流発電時のようなフラッディング現象を発生し易い条件下において、担体炭素材料の粒子内部に担持された触媒金属の微粒子を充分に反応に関与させるためには、この担体炭素材料の粒子内部に、触媒金属の微粒子を担持させるのに必要な粒子内細孔(触媒担持細孔)を形成すると同時に、ガス拡散に必要な触媒層中の従来の粒子間細孔と同程度の大きさの細孔(ガス拡散細孔)を形成することにより、これまで担体炭素材料内部の微細な細孔で発生していたフラッディング現象を可及的に抑制し、担体炭素材料内部に担持されている殆ど全ての触媒金属微粒子を触媒反応に関与させることができることを見出し、本発明を完成したものである。
 従って、本発明の目的は、上述の基本的な指針に基づき、触媒金属を高分散状態で担持することができ、高加湿条件下での大電流発電時でもフラッディング現象を起こし難く、かつ、大電流発電時の電圧低下が少ない担体炭素材料及びこれを用いた触媒を提供することにある。
 即ち、本発明は、以下の構成よりなるものである。
 (1) 多孔質炭素材料であって、吸着過程の窒素吸着等温線からBJH解析法により求められる細孔容積及び細孔面積に関して、下記の条件を満たすことを特徴とする固体高分子形燃料電池用の担体炭素材料。
 半径2nm以上50nm以下の細孔容積VAが1ml/g以上5ml/g以下であって、半径2nm以上50nm以下の細孔面積S2-50が300m2/g以上1500m2/g以下であること、及び、
 前記細孔容積VA(ml/g)に対して、半径5nm以上25nm以下の細孔容積V5-25(ml/g)の比率(V5-25/VA)が0.4以上0.7以下であると共に半径2nm以上5nm以下の細孔容積V2-5(ml/g)の比率(V2-5/VA)が0.2以上0.5以下であること。
 (2) 前記細孔容積V5-25が0.7ml/g以上2ml/g以下であることを特徴とする前記(1)に記載の固体高分子形燃料電池用の担体炭素材料。
 (3) 平均粒子半径が0.1μm以上5μm以下であることを特徴とする前記(1)又は(2)に記載の固体高分子形燃料電池用の担体炭素材料。
 (4) 前記1~3のいずれかに記載の固体高分子形燃料電池用の担体炭素材料に、Pt又はPtを主成分とするPt合金からなる触媒金属微粒子が担持されていることを特徴とする固体高分子形燃料電池用の触媒。
 本発明の担体炭素材料は、これを用いて製造された固体高分子形燃料電池において、単に触媒層中の原料ガスのガス拡散性に優れているだけでなく、担体炭素材料の粒子内部に形成されたガス拡散細孔と触媒担持細孔とにより、可及的にフラッディング現象の発生を抑制できると共に担持された触媒金属を効率良く触媒反応に関与させることができ、大電流発電時、特に高加湿条件下での大電流発電時における電圧低下を防ぐことができ、良好な発電特性を得ることができる。
図1は、本発明の担体炭素材料の細孔構造を模式的に示す説明図である。
 以下、本発明の実施の形態を具体的に説明する。
 本発明において最も重要なことは、担体炭素材料の粒子内部に、触媒金属の微粒子を担持させるのに必要な触媒担持細孔(従来の粒子内細孔に相当)と共に、ガス拡散性を発現させるのに必要なガス拡散細孔(従来の触媒層中の粒子間細孔に相当)を作り込むことである。より具体的には、本発明の担体炭素材料は、以下の基本的な指針に基づいて設計された細孔構造を有するものである。
 (1) 半径1nm以下のいわゆるミクロ孔は、低相対圧で水蒸気の凝縮が起き易くフラッディング現象の要因となるものである。また、ミクロ孔内ではガスの拡散も遅く、大電流の発電特性に対する寄与は実質的にないと考えられる。従って、ミクロ孔の容積、面積は小さい方が好ましいが、製法、原材料由来の材料固有のミクロ孔はある程度は許容するものである。本発明においては、メソ孔の容積・面積を規定することによりミクロ孔容積・面積の相対的比率を下げている。
 (2) 半径2nm以上50nm以下の細孔は、触媒金属微粒子を担持するのに必要な吸着部位を提供し、また、ガス(酸素と水蒸気)の拡散に必要な空間を提供する。そこで、本発明においては、半径2nm以上50nm以下の細孔容積の下限と上限を規定する。
 (3) 半径2nm以上50nm以下の細孔の面積は、触媒金属微粒子の担持場所を提供するものであり、本発明においては、実用的な触媒金属微粒子の担持率である30質量%、好ましくは40質量%以上を可能にするための面積値の下限を定め、更に、実質的な上限を規定する。
 (4) 半径5nm以上25nm以下の細孔が、担体炭素材料の粒子内部におけるガス(酸素と水蒸気)の拡散を飛躍的に高める役割を果たすものであり、本発明のガス拡散細孔である。このガス拡散細孔は、従来の触媒層中の粒子間細孔に相当し、担体炭素材料の粒子内部で生成した水分子を粒子表面へと導くガス拡散流路を構成する。このガス拡散細孔の細孔径の容積は従来の活性炭等の数ミクロンサイズの炭素材料では存在しえない値である。
 一般に、活性炭は、コークス、ヤシ殻、フェノール樹脂などの紛体を、塩化亜鉛による化学賦活、水蒸気による賦活等により、細孔を形成するものである。このような方法で導入される細孔は、比較的分子量の小さい物質を吸着させる目的に合わせるため、細孔半径1nm以下の細孔を主体とするような細孔構造になっており、本発明が求めるような5nm以上25nm以下の細孔は、従来の活性炭等においては殆ど存在しないものである。なお、具体的な活性炭の細孔構造の数値が実施例に示されている。
 (5) 半径2nm以上5nm以下の細孔は、実用的なサイズである半径1~3nmの触媒金属微粒子を担持した上で、ガスが拡散できる空隙を持つ細孔のサイズとして設計されており、半径2nm以上50nm以下の細孔容積に対する半径2nm以上5nm以下の細孔容積の比率についてその下限と上限を規定する。
 一般に固体高分子形燃料電池の担体炭素材料としてケッチェンブラックが用いられるが、この材料は、カーボンブラックを水蒸気で賦活して製造されている。この水蒸気賦活により形成される細孔は、反応初期に半径1nm以下のミクロ孔が材料表面から内部に向かって形成され、更に賦活反応が進むと、ミクロ孔を形成する壁が浸食され、細孔径が徐々に大きくなり、半径1nm以上のメソ孔が形成される。賦活の程度により形成されるミクロ孔とメソ孔の比率は異なるが、表面積を500m2/gに保とうとするとこの方法で形成される細孔の細孔径には上限があり、担体炭素材料として現在最も一般的に用いられているケッチェンブラックEC300についてみると、1次粒子径が40nm程度であって半径5nm以上の細孔は実質的にはほとんどゼロである。なお、ケッチェンブラックEC300の細孔構造の具体的な数値が実施例に示されている。
 本発明の担体炭素材料は、これを模式図で示すと、図1に示すような細孔構造を有する。すなわち、図1において、担体炭素材料の粒子1の内部には、メソ孔である半径2nm以上5nm以下の細孔(触媒担持細孔)2とメソ孔である半径5nm以上25nm以下の細孔(ガス拡散細孔)3とが存在し、触媒担持細孔2内には図示外の半径1~3nmの触媒金属微粒子が担持され、この触媒担持細孔2内の触媒金属微粒子上で生成した水分子は直ちに触媒担持細孔2に通じるガス拡散細孔3内へと拡散し、更に粒子1の外部へと拡散し、触媒層中の粒子間細孔を経て触媒層の外部へと排出される。従って、本発明の担体炭素材料を用いて形成された触媒層においては、水蒸気と酸素ガスが十分に拡散できる空隙(ガス拡散路)が確保され、これにより高加湿条件下での大電流発電時においても効果的にフラッディング現象の発生を抑制することができ、また、大電流発電に必要な酸素ガスの供給が確保される。
 ここで、担体炭素材料の粒子内部に形成される細孔(触媒担持細孔及びガス拡散細孔)については、半径2nm以上50nm以下の細孔の容積の合計を全細孔容積VAと定義する。この全細孔容積の半径の上限を50nmと規定するのは以下の理由による。即ち、実用上の触媒層の厚みが10μm程度であることから、担体炭素材料の粒子についてはその粒子径が数μm程度に制約され、このような粒子径を有する担体炭素材料において十分な速さのガス拡散性を保ち、かつ、電池製造工程において必要とされる粒子の物理的強度を維持するためには少なくとも粒子径の1/10以下のサブミクロンの細孔径に限定される。他方、ガス吸着において信頼性のある細孔径の上限値は50nm程度であり、実質的に重要な細孔径の上限として50nmを選定した。
 本発明の担体炭素材料において、その粒子内部に形成される半径2nm以上50nm以下の細孔容積VAは1ml/g以上5ml/g以下であり、より好ましくは、VAは1.5ml/g以上4.5ml/g以下である。また、半径2nm以上50nm以下の細孔面積S2-50は300m2/g以上1500m2/g以下である。
 上記の細孔容積VAが1ml/g以下では、粒子内部にガス拡散性に優れたガス拡散細孔を作ることができず、反対に、細孔容積VAが5ml/gを超えると、半径2nm以上50nm以下の細孔面積S2-50について300m2/g以上を確保しようとすると、細孔壁が薄くなり過ぎて粒子としての強度が小さくなり過ぎ、触媒金属を担持させる触媒作成工程やインク作成工程で細孔が潰れて担体炭素材料の微粉化が生じる虞がある。また、上記の細孔面積S2-50が300m2/gより小さいと、触媒金属微粒子を実用的な担持率の40質量%程度で担持するのに必要な面積を確保できず、その結果、触媒金属微粒子同士が凝集する等して発電特性が低下してしまう。また、この面積指標には本質的には上限がないが、実質的には1500m2/gまでであり、これより細孔面積S2-50の大きい担体炭素材料は、その粒子の機械的強度が低くて使用することができない。
 また、本発明の担体炭素材料は、上記の細孔容積VAに対して、半径5nm以上25nm以下の細孔容積V5-25(ml/g)の比率(V5-25/VA)が0.4以上0.7以下、好ましくは0.5以上0.65以下である必要がある。この比率(V5-25/VA)が0.4よりも小さいと、粒子内部にガス拡散性に優れたガス拡散細孔が形成されず、大電流発電時に水分子の凝縮が生じ易くなり、フラッディング現象が発生し易くなり、結果として酸素ガスの拡散が不十分になり、大電流発電時の電圧低下が大きくなって発電特性が低下する。反対に、上記の比率(V5-25/VA)が0.7よりも大きいと、上述のように、細孔壁が薄くなり、粒子としての強度が低下して触媒作成工程やインク作成工程で細孔が潰れて担体炭素材料の微粉化が生じる虞がある。
 この半径5nm以上25nm以下の細孔容積V5-25については、好ましくは0.7ml/g以上2ml/g以下であり、0.7ml/gより小さいと、細孔容積そのものが少な過ぎて粒子内部にガス拡散性に優れたガス拡散細孔が形成されず、大電流発電時に水分子の凝縮が生じ易くなり、フラッディング現象が発生し易くなり、反対に、2ml/gよりも大きいと、粒子としての強度が低下して触媒作成工程やインク作成工程で機械的に粉砕され、粒子が壊れると同時に細孔が潰れてしまう虞がある。
 更に、本発明の担体炭素材料は、上記の細孔容積VAに対して、半径2nm以上5nm以下の細孔容積V2-5の比率(V2-5/VA)が0.2以上0.5以下、好ましくは0.25以上0.4以下である必要がある。この比率(V2-5/VA)が0.2よりも小さいと、実用的な触媒金属微粒子の担持率を確保するのに必要な容積を確保できず、その結果、触媒金属微粒子同士が凝集する等して、触媒反応に有効な表面積が低下し、発電特性、特に大電流発電時の発電特性が低下してしまう。反対に、比率(V2-5/VA)が0.5よりも大きいと、相対的に半径5nm以上25nm以下の細孔容積V5-25が少なくなり、その結果、触媒金属を実質的に担持する半径2nm以上5nm以下の触媒担持細孔の細孔入口へ十分な酸素ガスを供給できず、あるいは、この触媒担持細孔内で発生した水分子を粒子外へ拡散できなくなって大電流発電時にフラッディング現象が発生する虞が生じ、また、酸素ガスの供給が律速となって大電流発電時の発電特性が低下する虞が生じる。
 本発明において、担体炭素材料の平均粒子半径は、従来のこの種の担体炭素材料が数10nmであるのに対して、好ましくは0.1μm(100nm)以上5μm(5000nm)以下、より好ましくは0.6μm以上3μm以下であることが望ましい。この平均粒子半径が0.1μmよりも小さいと、半径5nm以上25nm以下のガス拡散細孔を細孔容積VAに対する細孔容積V5-25(ml/g)の比率(V5-25/VA)0.4以上0.7以下で形成することが実質的に難しくなり、反対に、平均粒子半径が5.0μmよりも大きいと、実用的な厚み10μmの触媒層を形成した際にこの触媒層の表面に数μmオーダーの凹凸が生じ、反応ガスの流れが不均一になって発電特性が低下する虞がある。
 本発明の多孔質炭素材料からなる担体炭素材料としては、いわゆる賦活により多孔質化された炭素材料や、活性炭素繊維等の活性炭、特許文献2等に代表されるマグネシウム、ゼオライト、シリカ、アルミナ等を鋳型として形成された炭素材料、金属炭化物を塩素で高温処理して形成された炭素材料、ケッチェンブラック等に代表される多孔質カーボンブラックや、特許文献3等に代表される樹状構造を有する多孔質炭素材料等が挙げられる。また、これら多孔質カーボンブラックや多孔質炭素材料等を更に賦活処理して多孔質化された炭素材料であってもよい。
 本発明の多孔質炭素材料からなる担体炭素材料は、炭素材料に対して賦活処理による細孔の大孔径化や貫通孔化等を積極的に適用し、炭素材料の粒子内部に最適な細孔構造を作り込むことにより製造することができる。この際の賦活方法としては、例えばガス賦活法や薬品賦活法等が挙げられる。ガス賦活法としては、炭化した原料を水蒸気、二酸化炭素、空気、燃焼ガス等と700℃以上の温度で反応させて多孔質化させる方法がある。また、薬品賦活法としては、賦活剤としてリン酸、硫酸、塩化カルシウム、塩化亜鉛、硫化カリウム、及びアルカリ金属化合物等からなる群から選ばれた1種又は2種以上を用いる方法が挙げられる。これらの賦活剤は、必要に応じて、賦活剤水溶液として使用される場合がある。また、賦活剤として使用されるアルカリ金属水酸化物としては、例えば、水酸化カリウム、水酸化ナトリウム等のアルカリ金属水酸化物や、炭酸カリウム、炭酸ナトリウム等のアルカリ金属炭酸塩や、硫酸カリウム、硫酸ナトリウム等のアルカリ金属硫酸塩等が挙げられる。
 また、本発明の担体炭素材料を用いて固体高分子形燃料電池用の触媒を製造する方法については、例えば、塩化白金酸等の触媒金属化合物の水溶液中に担体炭素材料を浸漬し、所定の温度で撹拌下に過酸化水素水を加え、次いでNa224水溶液を添加して触媒前駆体を調製し、この触媒前駆体を濾過、水洗、乾燥した後に、100%-H2気流中所定の温度及び時間の還元処理を行う方法等、従来から知られているこの種の触媒の製造方法を適用することができる。
 更に、このようにして得られた本発明の固体高分子形燃料電池用の触媒を用いて、従来から知られている方法と同様の方法で、固体高分子形燃料電池用の触媒層を形成し、また、この触媒層を用いて固体高分子形燃料電池を製造することができる。
 ここで、前記担体炭素材料に担持させる触媒金属としては、アノード側又はカソード側の触媒層において必要な化学反応を促進する機能を有するものであれば、特に限定されるものではなく、具体例としては、白金、パラジウム、ルテニウム、金、ロジウム、オスミウム、イリジウム、タングステン、鉛、鉄、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム等の金属、又は、これら金属の2種類以上が複合化した複合体や合金等が挙げられ、更には他の触媒金属や助触媒金属等が併用されてもよい。本発明において、特に触媒金属として好ましいものは、白金(Pt)又は白金を主成分とする白金合金(Pt合金)である。
 以下、本発明の固体高分子形燃料電池用の担体炭素材料及び触媒について、実施例及び比較例に基づいて説明する。
 なお、以下の実施例及び比較例において、細孔の細孔容積及び細孔面積の測定及び平均粒子半径の測定は下記の方法で行った。
〔細孔容積及び細孔面積の測定〕
 液体窒素温度における窒素ガスの吸着等温線から、解析により、本発明の細孔径を求めた。具体的には、マイクロトラック・ベル社製のBELSORPminiを用いた。装置に付属の解析ソフトにより、BJH法によりメソ孔の分布を算出した。その数値表から、本発明の半径2nm以上50nm以下の細孔容積VA、半径2nm以上50nm以下の細孔面積S2-50、半径5nm以上25nm以下の細孔容積V5-25、及び半径2nm以上5nm以下の細孔容積V2-5を算出した。
〔平均粒子半径の測定〕
 担体炭素材料の粒度分布の測定には、島津製作所社製のレーザー回折式粒度分布測定装置(SALD-3000S)を用いた。その装置に付属の粒度分布の解析ソフトによる平均粒子径(対数表示で求めた粒子径に対する頻度に基づき計算した平均値)を本発明の平均粒子半径とした。
 1.担体炭素材料の調製
〔方法A:アルミナ粒子を鋳型とした担体炭素材料の調製〕
 粒径(直径)が10nm、20nm、及び50nmのガンマ型アルミナ粒子〔SIサイエンス社製4N nano alumina(gamma)〕を用い、これら各ガンマ型アルミナ粒子に対して、ポリビニルアルコール粉末(完全けん化型、平均重合度1000)を重量比1:2の割合で混合し、不活性ガス雰囲気中600℃及び2時間の条件で保持した後、更に昇温して900℃で1時間保持して焼成した。その後、得られたアルミナ-炭素複合物を10質量%-水酸化ナトリウム水溶液中60℃で5時間以上処理し、アルミナを溶解して除去した。更に、濾過と純水への再分散とを3回繰り返して洗浄し、濾過して得られた固体を90℃で4時間乾燥し炭素材料を得た。
 このようにして得られた各炭素材料について、遊星ボールミル(フリッチュ・ジャパン社製プレミアムラインP7)を用い、回転数50~200rpm及び10分間の処理条件で粉砕し、粒径(直径)10nmの原料を用いて得られた担体炭素材料A10と、20nmの原料を用いて得られた担体炭素材料A20と、50nmの原料を用いて得られた担体炭素材料A50とを得た。
 更に、粒径(直径)10nmの原料を用いて得られた炭素材料を用い、粉砕条件を変更して4種類の担体炭素材料(A10S、A10SS、A10L、A10LL)を作成した。
 更に、粒径(直径)が10nmと20nmの上記ガンマ型アルミナ粒子を質量混合比2:1、1:1、又は1:2の割合で配合し、乳鉢で充分に混合して得られた各混合原料を用い、前述と同じ条件で炭素材料の調製を行い、上記と同様の条件で粉砕し、質量混合比2:1の混合原料を用いて得られた担体炭素材料A21と、質量混合比1:1の混合原料を用いて得られた担体炭素材料A11と、質量混合比1:2の混合原料を用いて得られた担体炭素材料A12とを得た。
 同様に、粒径(直径)が10nmと50nmの上記ガンマ型アルミナ粒子を質量混合比1:1の割合で配合し、乳鉢で充分に混合して得られた混合原料と、粒径(直径)が20nmと50nmの上記ガンマ型アルミナ粒子を質量混合比1:1の割合で配合し充分に混合して得られた混合原料とを用い、前述と同じ条件で炭素材料の調製を行い、上記と同様の条件で粉砕し、粒径(直径)10nmと50nmのガンマ型アルミナ粒子を用いて得られた担体炭素材料AA11と、粒径(直径)20nmと50nmのガンマ型アルミナ粒子を用いて得られた担体炭素材料AB11とを得た。
 以上のようにして得られた各担体炭素材料について、更に細孔を大きくする目的で以下の賦活処理を行い、それぞれ賦活処理後の担体炭素材料を得た。
〔賦活処理C〕
 上で得られた各担体炭素材料をアルミナボート上に2~3g秤量し、横型管状電気炉内にセットし、窒素ガスを100ml/分で流通しながら1100℃まで昇温させ、その後に二酸化炭素を100ml/分の速度で流通させながら処理時間1時間(-C1)又は処理時間3時間(-C3)の賦活処理を実施し、賦活処理後の各担体炭素材料を調製した。なお、このようにして得られた賦活処理後の各担体炭素材料については、例えば、担体炭素材料A10に1時間(-C1)の賦活処理を施して得られた賦活処理後の担体炭素材料をA10-C1と表記し、また、担体炭素材料A10に3時間(-C3)の賦活処理を施して得られた賦活処理後の担体炭素材料をA10-C3と表記するように、各担体炭素材料の記号の末尾に「-C1」又は「-C3」を付加して表す。
〔賦活処理K〕
 賦活処理として、賦活剤としてアルカリを用いたいわゆるアルカリ賦活についても検討した。このアルカリ賦活においては、上で得られた各担体炭素材料約2gとKOH粉末5~10gとを乳鉢で混合し、得られた混合粉をニッケル製円筒容器に詰め、不活性ガス雰囲気中450℃で、処理時間1時間(-K1)又は処理時間3時間(-K3)の賦活処理を行い、その後、グローブボックス中で冷却後のニッケル円筒容器内にエタノールを入れ、アルカリ金属を溶解させて濾過し、得られた固体を純水で洗浄した後、90℃で4時間真空乾燥を行って賦活処理後の各担体炭素材料を調製した。得られた賦活処理後の各担体炭素材料については、賦活処理Cの場合と同様に、各担体炭素材料の記号の末尾に「-K1」又は「-K3」を付加して表す。
〔方法B:グルコン酸Mgの焼成による担体炭素材料の調製〕
 グルコン酸マグネシウムn水和物(C12H22MgO14・nH2O)を石英管ボートに充填し、横型管状電気炉中にセットした。毎分10℃の昇温速度で500℃まで昇温し、この温度で2時間保持し、その後900℃まで昇温し、更にこの温度で1時間保持し、グルコン酸マグネシウムn水和物の焼成を行った。焼成中は管状炉内に200ml/minのアルゴンガスを流通させ、焼成中に生成する揮発成分を除去した。この焼成工程で得られた炭素-マグネシウム複合物から希硫酸によりマグネシウム化合物を溶解・除去し、純水で洗浄し、濾過して乾燥し、担体炭素材料Bを得た。
 上記で得られた担体炭素材料Bについて、上記の賦活処理C又は賦活処理Kを行い、それぞれ賦活処理後の担体炭素材料を得た。得られた賦活処理後の担体炭素材料について、上記の方法Aの場合と同様に、末尾に「-C1」、「-C3」、「-K1」、又は「-K3」を付してそれぞれ担体炭素材料B-C1、担体炭素材料B-C3、担体炭素材料B-K1、担体炭素材料B-K3と表示した。
〔方法C:メソポーラスシリカを鋳型とした担体炭素材料の調製〕
 メソポーラスなアルミネートシリカ(アルドリッチ社製MCM41;アルミニウム3%)とスクロース(C12H22O11)とを混合し、これに濃硫酸を加え、200℃で2時間保持し、その後1200℃で1時間保持して焼成し、得られたシリカ-炭素複合物をフッ化水素で洗浄し、担体炭素材料Cを得た。
 次に、二酸化炭素の流通速度を30ml/minとしたこと以外は、上記の賦活処理Cに従って上記の担体炭素材料Cを処理し、賦活処理後の担体炭素材料を得た。得られた賦活処理後の担体炭素材料について、上記の方法Aの場合と同様に、それぞれ末尾に「-C1」又は「-C3」を付して担体炭素材料C-C1、担体炭素材料C-C3と表示した。
 また同様に、不活性ガス雰囲気中500℃に加熱したこと以外は、上記の賦活処理Kに従って上記の担体炭素材料Cを処理し、賦活処理後の担体炭素材料を得た。得られた賦活処理後の担体炭素材料について、上記の方法Aの場合と同様に、それぞれ末尾に「-K1」又は「-K3」を付して担体炭素材料C-K1、担体炭素材料C-K3と表示した。
〔方法D:ゼオライトを鋳型とした担体炭素材料の調製〕
 ゼオライトを鋳型とした多孔質炭素材料は、京谷らの文献(炭素、2008年No.235、p307-316)に準じて作製した。鋳型として粉末Na-Y型ゼオライト(東ソー社製HZS-320NAA)を用い、下記の手順に従って数Åの3次元周期構造規則性を有する多孔質炭素材料を合成した。
 予め150℃で乾燥したNa-Y型ゼオライトの粉末を石英製反応管に入れ、これにゼオライトが浸る程度にフルフリルアルコールを加え、撹拌しながら含浸させた。その後、150℃に加熱してゼオライトの空孔中に含浸させたフルフリルアルコールを重合させ、更に900℃の熱処理を行って空孔中の重合物を炭化させ、炭素-ゼオライト複合体を合成した。次に、得られた炭素-ゼオライト複合物をフッ化水素酸及び塩酸で処理し、ゼオライトを溶解し除去して多孔質炭素材料からなる担体炭素材料Dを得た。
 また、二酸化炭素の流通速度を30ml/minとしたこと以外は、上記の賦活処理Cに従って上記の担体炭素材料Dを処理し、賦活処理後の担体炭素材料を得た。得られた賦活処理後の担体炭素材料について、上記の方法Aの場合と同様に、それぞれ末尾に「-C1」又は「-C3」を付して担体炭素材料D-C1、担体炭素材料D-C3と表示した。
 更に、不活性ガス雰囲気中500℃に加熱したこと以外は、上記の賦活処理Kに従って上記の担体炭素材料Dを処理し、賦活処理後の担体炭素材料を得た。得られた賦活処理後の担体炭素材料について、上記の方法Aの場合と同様に、それぞれ末尾に「-K1」又は「-K3」を付して担体炭素材料D-K1、担体炭素材料D-K3と表示した。
〔その他の炭素材料:カーボンブラック、活性炭、MCND〕
 カーボンブラックの例として、現在固体高分子型燃料電池の触媒担体として標準的に用いられているケッチェンブラック(ライオン社製EC300)を用いた。この材料を担体炭素材料Eとした。
 活性炭の例として、クラレケミカル社製の「YP80F」を用い、粉砕機を用いて平均粒子半径1.2μmに調整した。この材料を担体炭素材料Fとした。
 多孔質化していない炭素材料の例として、アセチレンブラック(AB;電気化学工業社製、デンカブラック粉状)を用いた。この材料を担体炭素材料Gとした。
 特許文献3の実施例1に記載された方法に準じて炭素材料(MCND)を製造した。この材料を担体炭素材料Hとした。
 上で準備した各種の炭素材料について、それぞれ半径2nm以上50nm以下の細孔容積VA(ml/g)、半径2nm以上50nm以下の細孔面積S2-50(m2/g)、半径5nm以上25nm以下の細孔容積V5-25(ml/g)、半径2nm以上5nm以下の細孔容積V2-5(ml/g)、及び平均粒子半径(μm)を測定し、また、比率(V5-25/VA)及び比率(V2-5/VA)を算出し、各担体炭素材料の細孔構造を調べた。
 結果を表1及び表2に示す。
〔燃料電池の調製とその電池性能の評価〕
 1.触媒及び触媒塗布インクの作製
 表1及び表2に示す各担体炭素材料について、塩化白金酸、水、及びエタノールを所定比率で配合した混合溶液中に分散させ、その後脱気処理して混合溶液中に担体炭素材料が分散した分散液を調製した。次に、この分散液中に沈殿剤(還元剤)としてアンモニア水をゆっくり滴下し、1時間撹拌した。アンモニア水を用いて得られた沈殿物の洗浄と瀘過を行った。得られた固形分をHeガス雰囲気中350℃及び3時間の条件で焼成し、白金
担持量50質量%の白金担持炭素材料(Pt触媒)を得た。
 次に、上記Pt触媒をArガス雰囲気下で容器に取り、これに電解質材料としてDupont社製の電解質樹脂〔登録商標:ナフィオン(Nafion)〕を加えて軽く撹拌した後、超音波で白金担持炭素材料を解砕した。更に、撹拌下にエタノールを加え、Pt触媒とパースルホン酸系イオン交換樹脂との合計固形分濃度が1質量%となるように調整し、Pt触媒と電解質樹脂とが混合した触媒塗布インクを調製した。
 2.触媒層の調製
 その後、上記のようにして作製した所定量の触媒塗布インク中に、攪拌下にエタノールを加えて白金濃度を0.5質量%に調整した後、触媒金属成分(白金)の触媒層単位面積当りの質量(以下、触媒金属成分の目付量という。)が0.2mg/cm2となるようにスプレー条件を調節し、上記触媒塗布インクをテフロン(登録商標)シート上にスプレー塗布し、次いでArガス雰囲気中120℃及び60分間の条件で乾燥処理を行い、触媒層を作製した。
 3.MEAの作製
 作製した上記の触媒層を用いて、以下の方法でMEA(膜電極複合体)を作製した。ナフィオン膜(Dupont社製NR211)から一辺6cmの正方形状の電解質膜を切り出した。また
、テフロン(登録商標)シート上に塗布されたアノード及びカソードの各触媒層については、それぞれカッターナイフで一辺2.5cmの正方形状に切り出した。次に、切り出されたアノード及びカソードの各触媒層の間に、各触媒層が電解質膜の中心部を挟んでそれぞれ接すると共に互いにずれが生じないように、この電解質膜を挟み込み、120℃、100kg/cm2及び10分間の条件でプレスし、次いで室温まで冷却した後、アノード及びカソード共にテフロン(登録商標)シートのみを注意深く剥ぎ取り、アノード及びカソードの各触媒層が電解質膜に定着した触媒層-電解質膜接合体を調製した。
 次に、ガス拡散層として、カーボンペーパー(SGLカーボン社製35BC)から一辺2.5cmの大きさで一対の正方形状カーボンペーパーを切り出し、これらのカーボンペーパーの間に、アノード及びカソードの各触媒層が一致してずれが生じないように、上記触媒層-電解質膜接合体を挟み込み、120℃、50kg/cm2及び10分間の条件でプレスしてMEAを作製した。
 なお、作製された各MEAにおける触媒金属成分(白金)、炭素材料、電解質材料の各成分の目付量については、プレス前の触媒層付テフロン(登録商標)シートの質量とプレス後に剥がしたテフロン(登録商標)シートの質量との差からナフィオン膜(電解質膜)に定着させた触媒層の質量を求め、触媒層の組成の質量比より算出した。また、アノードには、炭素材料A-60-1400を共通して用い発電特性の評価結果からカソード触媒層の性能のみを評価できるようにした。
 4.燃料電池の評価試験
 作製した各MEAについて、それぞれセルに組み込み、燃料電池測定装置を用いて以下の手順で燃料電池としての性能評価を行った。
 供給ガスとして、カソードに空気を、また、アノードに純水素を、利用率がそれぞれ40%と70%となるように供給した。この際に、それぞれのガス圧については、セル下流に設けられた背圧弁で0.1MPaに圧力調整し、設定した。
 燃料電池としての性能評価については、フラッディング現象が発生し易い高加湿のガスを用い、大電流発電時の出力特性を評価した。具体的には、セル温度を80℃に設定し、また、供給する空気と純水素については、それぞれ85℃と80℃に保温された蒸留水中でバブリングを行って加湿した。この条件により、水蒸気が飽和した状態で空気と水素とがセルに送り込まれる。
 上記の条件において、用いられた担体炭素材料の影響が顕著に表れる、即ち、ガス拡散抵抗が大きくなる領域の1200mA/cm2におけるセル電圧を測定して評価した。
 表1及び表2中に、上述の方法で評価した各担体炭素材料のセル電圧を高加湿時の「出力電圧(V)」として示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 5.燃料電池の評価結果
 (1) 方法Aで調製された担体炭素材料
 A10は細孔容積VAが小さ過ぎ、かつ、半径5nmの粒子を鋳型とするために細孔容積V2-5が相対的に大きくなり、反対に細孔容積V5-25が小さくなって、粒子内部のガス拡散細孔が小さく、高加湿条件下の大電流発電時に所望の出力電圧(0.60V以上)が発現しなかった。また、A20とA50は、細孔容積VAが小さ過ぎ、鋳型の粒子径が5nm以上のため細孔容積V2-5が小さく、Pt微粒子の分散が悪く、かつ、反応ガスである酸素の粒子内拡散が悪くて所望の出力電圧が達成されなかった。
〔賦活処理Cの効果〕
 CO2で1時間賦活処理したA10-C1とA20-C1は、賦活により細孔容積VAが増大し、かつ、細孔容積V2-5と細孔容積V5-25のバランスがよくなり、また、細孔面積S2-50も十分に大きく、いずれも高加湿条件下の大電流発電時に良好な出力電圧を示した。他方、A50-C1は、細孔容積VAは増大したが、細孔容積V2-5の増加が少なく、所望の出力電圧を達成しなかった。 また、CO2で3時間賦活処理したA10-C3、A20-C3及びA50-C3は、共に賦活処理により細孔容積VAが増大し、かつ、細孔容積V2-5と細孔容積V5-25のバランスがよくなり、また、細孔面積S2-50も十分に大きく、いずれも高加湿条件下の大電流発電時に良好な出力電圧を示した。ただ、A50-C3は細孔容積V5-25の絶対値が若干小さく、出力電圧が他よりも少し劣る結果となった。
 A21、A11、及びA12は、いずれも、細孔面積S2-50が300m2/g未満であり、高加湿条件下の大電流発電時における出力電圧が低かった。その中でもA11とA12は、細孔容積V2-5と細孔容積V5-25のバランスがよく、細孔面積S2-50を大きくする賦活処理をすれば、良好な発電特性を発揮するものと期待される。
 また、上記の3種類の担体炭素材料を、CO2で1時間又は3時間賦活処理して得られたA21-C1、A11-C1、A12-C1、A21-C3、A11-C3、及びA12-C3は、いずれも高加湿条件下の大電流発電時において良好な発電特性を発揮した。
 更に、AA11及びAB11は、何れも細孔容積V2-5と細孔容積V5-25のバランスがよいが、総容量である細孔容積VAが少なく、高加湿条件下の大電流発電時における出力電圧が低かった。AA11及びAB11に対してCO2賦活処理を行って得られたAA11-C3とAB11-C3は、共に高加湿条件下の大電流発電時における出力特性が良好であった。
〔賦活処理Kの効果〕
 A10、A20、A50、A21、A11、及びA12に対して、KOHで1時間又は3時間の賦活処理を行って得られた担体炭素材料において、鋳型の粒子径が50nm直径のA50の場合には、1時間の処理では細孔径の小さい細孔容積V2-5を作ることができなかったが、3時間の処理では細孔容積V2-5と細孔容積V5-25のバランスがよくて細孔面積S2-50が大きい所望の細孔構造になり、また、鋳型の粒子径が10nm直径又は20nm直径の担体炭素材料の場合には、何れも所望の細孔構造となり、高加湿条件下の大電流発電時に良好な発電特性を示した。
〔平均粒子半径の効果〕
 A10S-C3、A10SS-C3、A10L-C3、及びA10LL-C3は、何れも細孔構造(細孔容積VA、比率V2-5/VA、比率V5-25/VA、細孔容積V5-25、及び細孔面積S2-50)に優れており、特にA10S-C3とA10L-C3は、平均粒子半径がそれぞれ0.63μmと4.2μmであって、高加湿条件下の大電流発電時に良好な発電特性を示した。
 (2) 方法Bで調製された担体炭素材料
 方法Bで得られた担体炭素材料Bは、細孔容積VAには優れているが、細孔容積V2-5の比率が高くて相対的に細孔容積V5-25の比率が低くなり、加湿条件下の大電流発電時における出力電圧が低かった。一方、担体炭素材料Bを原料として、賦活処理C又は賦活処理Kを実施して得られた担体炭素材料は、何れも細孔構造(細孔容積VA、比率V2-5/VA、比率V5-25/VA、細孔容積V5-25、及び細孔面積S2-50)に優れており、高加湿条件下の大電流発電時に良好な発電特性を発揮した。
 (3) 方法Cで調製された担体炭素材料
 方法Cで調製された担体炭素材料Cは、細孔容積VAには優れているが、細孔容積V2-5の比率が高くて相対的に細孔容積V5-25の比率が低くなり、高加湿条件下の大電流発電時における出力電圧が低かった。一方、担体炭素材料Cを原料として、賦活処理C又は賦活処理Kを実施して得られた担体炭素材料は、いずれも細孔構造(細孔容積VA、比率V2-5/VA、比率V5-25/VA、細孔容積V5-25、及び細孔面積S2-50)に優れており、高加湿条件下の大電流発電時に良好な発電特性を発揮した。
 (4) 方法Dで調製された担体炭素材料
 方法Dで調製された担体炭素材料Dは、ほとんど全ての細孔が半径1nm以下であり、半径2nm以上の細孔が実質的に存在せず、触媒担体として用いた際の高加湿条件下の大電流発電時における発電特性に劣るものであった。一方、担体炭素材料Dに対して、1時間の賦活処理Cを行って得られた担体炭素材料D-C1は、2nm以上の細孔形成が不十分で高加湿条件下の大電流発電時における出力電圧が低かったが、3時間の賦活処理Cを行って得られた担体炭素材料D-C3は、高加湿条件下の大電流発電時に良好な発電特性を示した。
 (4) その他の炭素材料
 カーボンブラックの例として用いた担体炭素材料E、活性炭の例として用いた担体炭素材料F、多孔質化していない炭素材料の例として用いた担体炭素材料G、MCNDの例として用いた担体炭素材料Hは、何れも細孔構造(細孔容積VA、比率V2-5/VA、比率V5-25/VA、細孔容積V5-25、及び細孔面積S2-50)において劣るものであり、高加湿条件下の大電流発電時に所望の出力電圧を達成しなかった。
 1…担体炭素材料の粒子
 2…半径2nm以上5nm以下の細孔(触媒担持細孔)
 3…半径5nm以上25nm以下の細孔(ガス拡散細孔)

Claims (4)

  1.  多孔質炭素材料であって、吸着過程の窒素吸着等温線からBJH解析法により求められる細孔容積及び細孔面積に関して、下記の条件を満たすことを特徴とする固体高分子形燃料電池用の担体炭素材料。
     半径2nm以上50nm以下の細孔容積VAが1ml/g以上5ml/g以下であると共に、半径2nm以上50nm以下の細孔面積S2-50が300m2/g以上1500m2/g以下であること、及び、
     前記細孔容積VA(ml/g)に対して、半径5nm以上25nm以下の細孔容積V5-25(ml/g)の比率(V5-25/VA)が0.4以上0.7以下であると共に、半径2nm以上5nm以下の細孔容積V2-5(ml/g)の比率(V2-5/VA)が0.2以上0.5以下であること。
  2.  前記細孔容積V5-25が0.7ml/g以上2ml/g以下であることを特徴とする請求項1に記載の固体高分子形燃料電池用の担体炭素材料。
  3.  平均粒子半径が0.1μm以上5μm以下であることを特徴とする請求項1又は2に記載
    の固体高分子形燃料電池用の担体炭素材料。
  4.  請求項1~3のいずれかに記載の固体高分子形燃料電池用の担体炭素材料に、Pt又は
    Ptを主成分とするPt合金からなる触媒金属微粒子が担持されていることを特徴とする固体高分子形燃料電池用の触媒。
PCT/JP2016/056657 2015-03-26 2016-03-03 固体高分子形燃料電池用の担体炭素材料及び触媒 WO2016152447A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/561,440 US10103398B2 (en) 2015-03-26 2016-03-03 Support carbon material and catalyst for solid polymer type fuel cell use
CA2979528A CA2979528C (en) 2015-03-26 2016-03-03 Support carbon material and catalyst for solid polymer type fuel cell use
JP2017508157A JP6391808B2 (ja) 2015-03-26 2016-03-03 固体高分子形燃料電池用の担体炭素材料及び触媒
EP16768350.7A EP3276717B8 (en) 2015-03-26 2016-03-03 Carrier carbon material for solid polymer fuel cell and catalyst
CN201680008785.4A CN107210449B (zh) 2015-03-26 2016-03-03 固体高分子型燃料电池用载体碳材料以及催化剂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-064971 2015-03-26
JP2015064971 2015-03-26

Publications (1)

Publication Number Publication Date
WO2016152447A1 true WO2016152447A1 (ja) 2016-09-29

Family

ID=56977234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056657 WO2016152447A1 (ja) 2015-03-26 2016-03-03 固体高分子形燃料電池用の担体炭素材料及び触媒

Country Status (6)

Country Link
US (1) US10103398B2 (ja)
EP (1) EP3276717B8 (ja)
JP (1) JP6391808B2 (ja)
CN (1) CN107210449B (ja)
CA (1) CA2979528C (ja)
WO (1) WO2016152447A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019012601A (ja) * 2017-06-29 2019-01-24 新日鐵住金株式会社 燃料電池触媒担体用鋳型炭素材料、燃料電池触媒担体用鋳型炭素材料の製造方法、燃料電池用触媒層、及び燃料電池
KR20190090004A (ko) * 2016-12-09 2019-07-31 도요타지도샤가부시키가이샤 연료 전지용 전극 촉매, 그것의 제조 방법, 및 연료 전지
WO2019221168A1 (ja) * 2018-05-15 2019-11-21 エヌ・イー ケムキャット株式会社 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、及び、燃料電池スタック
US20210242471A1 (en) * 2019-09-27 2021-08-05 Panasonic Intellectual Property Management Co., Ltd. Catalyst, catalyst layer, membrane-electrode assembly, electrochemical device, and method for producing catalyst
EP4068434A2 (en) 2021-03-30 2022-10-05 Toyota Jidosha Kabushiki Kaisha Mesoporous carbon, electrode catalyst for fuel cell, catalyst layer, fuel cell, and method for producing mesoporous carbon
DE102023105721A1 (de) 2022-03-17 2023-09-21 Cataler Corporation Mesoporöser kohlenstoff, elektrodenkatalysator für brennstoffzelle, und katalysatorschicht

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108083255A (zh) * 2017-11-10 2018-05-29 山东大学 一种中空石墨化结构碳纳米笼材料的制备方法
JP7484650B2 (ja) * 2020-10-15 2024-05-16 トヨタ自動車株式会社 多孔質カーボン、触媒担体、及び多孔質カーボンの製造方法
CN115722271A (zh) * 2021-08-31 2023-03-03 姚光纯 催化剂载体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005332807A (ja) * 2004-04-22 2005-12-02 Nippon Steel Corp 燃料電池
JP2009080967A (ja) * 2007-09-25 2009-04-16 Sanyo Electric Co Ltd 膜電極接合体および燃料電池
WO2014129597A1 (ja) * 2013-02-21 2014-08-28 新日鉄住金化学株式会社 触媒担体用炭素材料
WO2014175097A1 (ja) * 2013-04-25 2014-10-30 日産自動車株式会社 触媒およびその製造方法ならびに当該触媒を用いる電極触媒層
WO2015033643A1 (ja) * 2013-09-06 2015-03-12 東洋炭素株式会社 多孔質炭素、調湿吸着材、吸着式ヒートポンプ、及び燃料電池
WO2015141810A1 (ja) * 2014-03-19 2015-09-24 新日鐵住金株式会社 固体高分子形燃料電池用の担体炭素材料及び触媒金属粒子担持炭素材料

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4300014B2 (ja) 2001-10-30 2009-07-22 エヌ・イーケムキャット株式会社 カーボンブラック、該カーボンブラックからなる電極触媒用担体、並びに該担体を用いる電極触媒および電気化学的装置
KR101473319B1 (ko) * 2007-10-16 2014-12-16 삼성에스디아이 주식회사 복합 중형 다공성 탄소, 그 제조방법 및 이를 이용한연료전지
WO2009105172A2 (en) * 2008-02-19 2009-08-27 Cabot Corporation Mesoporous carbon black and processes for making same
JP5458801B2 (ja) 2008-10-22 2014-04-02 新日鐵住金株式会社 燃料電池
EP2626131A1 (en) 2012-02-08 2013-08-14 Studiengesellschaft Kohle mbH Highly sinter-stable metal nanoparticles supported on mesoporous graphitic particles and their use
JP6071261B2 (ja) 2012-06-15 2017-02-01 東洋炭素株式会社 多孔質炭素材料およびその製造方法、並びにそれを用いた電気二重層キャパシタ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005332807A (ja) * 2004-04-22 2005-12-02 Nippon Steel Corp 燃料電池
JP2009080967A (ja) * 2007-09-25 2009-04-16 Sanyo Electric Co Ltd 膜電極接合体および燃料電池
WO2014129597A1 (ja) * 2013-02-21 2014-08-28 新日鉄住金化学株式会社 触媒担体用炭素材料
WO2014175097A1 (ja) * 2013-04-25 2014-10-30 日産自動車株式会社 触媒およびその製造方法ならびに当該触媒を用いる電極触媒層
WO2015033643A1 (ja) * 2013-09-06 2015-03-12 東洋炭素株式会社 多孔質炭素、調湿吸着材、吸着式ヒートポンプ、及び燃料電池
WO2015141810A1 (ja) * 2014-03-19 2015-09-24 新日鐵住金株式会社 固体高分子形燃料電池用の担体炭素材料及び触媒金属粒子担持炭素材料

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190090004A (ko) * 2016-12-09 2019-07-31 도요타지도샤가부시키가이샤 연료 전지용 전극 촉매, 그것의 제조 방법, 및 연료 전지
KR102239063B1 (ko) 2016-12-09 2021-04-12 도요타지도샤가부시키가이샤 연료 전지용 전극 촉매, 그것의 제조 방법, 및 연료 전지
JP2019012601A (ja) * 2017-06-29 2019-01-24 新日鐵住金株式会社 燃料電池触媒担体用鋳型炭素材料、燃料電池触媒担体用鋳型炭素材料の製造方法、燃料電池用触媒層、及び燃料電池
WO2019221168A1 (ja) * 2018-05-15 2019-11-21 エヌ・イー ケムキャット株式会社 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、及び、燃料電池スタック
JPWO2019221168A1 (ja) * 2018-05-15 2021-05-27 エヌ・イーケムキャット株式会社 電極用触媒、ガス拡散電極形成用組成物、ガス拡散電極、膜・電極接合体、及び、燃料電池スタック
US11271219B2 (en) 2018-05-15 2022-03-08 N.E. Chemcat Corporation Electrode catalyst, composition for forming gas diffusion electrode, gas diffusion electrode, membrane electrode assembly and fuel cell stack
US20210242471A1 (en) * 2019-09-27 2021-08-05 Panasonic Intellectual Property Management Co., Ltd. Catalyst, catalyst layer, membrane-electrode assembly, electrochemical device, and method for producing catalyst
US11784320B2 (en) * 2019-09-27 2023-10-10 Panasonic Intellectual Property Management Co., Ltd. Catalyst, catalyst layer, membrane-electrode assembly, electrochemical device, and method for producing catalyst
EP4068434A2 (en) 2021-03-30 2022-10-05 Toyota Jidosha Kabushiki Kaisha Mesoporous carbon, electrode catalyst for fuel cell, catalyst layer, fuel cell, and method for producing mesoporous carbon
DE102023105721A1 (de) 2022-03-17 2023-09-21 Cataler Corporation Mesoporöser kohlenstoff, elektrodenkatalysator für brennstoffzelle, und katalysatorschicht

Also Published As

Publication number Publication date
US10103398B2 (en) 2018-10-16
CA2979528C (en) 2019-09-17
EP3276717B8 (en) 2020-02-26
US20180123154A1 (en) 2018-05-03
EP3276717A4 (en) 2018-08-22
EP3276717A1 (en) 2018-01-31
JP6391808B2 (ja) 2018-09-19
EP3276717B1 (en) 2019-11-20
JPWO2016152447A1 (ja) 2018-01-25
CA2979528A1 (en) 2016-09-29
CN107210449A (zh) 2017-09-26
CN107210449B (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
JP6391808B2 (ja) 固体高分子形燃料電池用の担体炭素材料及び触媒
JP6387431B2 (ja) カーボン担持触媒
JP4933770B2 (ja) 燃料電池用触媒、その製造方法及びこれを含む膜−電極接合体、並びに燃料電池システム
JP4185064B2 (ja) 液体燃料型固体高分子燃料電池用カソード電極及び液体燃料型固体高分子燃料電池
WO2015141810A1 (ja) 固体高分子形燃料電池用の担体炭素材料及び触媒金属粒子担持炭素材料
JP2007137754A (ja) メソ細孔性炭素とその製造方法、それを利用した担持触媒及び燃料電池
JP2016100262A (ja) 固体高分子形燃料電池用触媒
JP2017091812A (ja) 固体高分子形燃料電池電極触媒
WO2019004472A1 (ja) 固体高分子形燃料電池触媒担体、固体高分子形燃料電池触媒担体の製造方法、固体高分子形燃料電池用触媒層、及び燃料電池
JP2017035685A (ja) 炭素担持型pgm系触媒における細孔構造の酸化制御
KR101013600B1 (ko) 콜로이달-임프린티드 탄소구조체, 그의 제조방법 및 이를이용한 연료전지 전극용 ci 탄소 담지 촉매
JP2017073310A (ja) 燃料電池用触媒層及び燃料電池
CN111788728B (zh) 燃料电池用电极催化剂和使用它的燃料电池
JP5561250B2 (ja) 固体高分子燃料電池用触媒層用担体炭素材料及びこれを用いた固体高分子型燃料電池
JP7192613B2 (ja) 触媒担体用炭素材料、触媒担体用炭素材料の製造方法、燃料電池用触媒層、及び燃料電池
JP2019012601A (ja) 燃料電池触媒担体用鋳型炭素材料、燃料電池触媒担体用鋳型炭素材料の製造方法、燃料電池用触媒層、及び燃料電池
WO2018198852A1 (ja) 多孔性触媒、燃料電池用触媒層、電極、膜電極接合体、及び燃料電池、並びに多孔性触媒の製造方法
JP2016126869A (ja) 固体高分子形燃料電池
JP5375623B2 (ja) 固体高分子型燃料電池用触媒及びこれを用いた固体高分子型燃料電池用電極
JP2020166941A (ja) 触媒担体用炭素材料、燃料電池用触媒層、及び燃料電池
JP6165359B2 (ja) 触媒担体及びその製造方法
JP7320159B1 (ja) 電極触媒及びその製造方法並びに燃料電池
JP7144378B2 (ja) 燃料電池触媒担体用の黒鉛化炭素多孔体、燃料電池触媒、及び燃料電池触媒層の製造方法
WO2023167199A1 (ja) 電極触媒及びその製造方法並びに燃料電池
JP2017091639A (ja) 固体高分子形燃料電池用の触媒粉末及びその製造方法、並びにこの触媒粉末を用いた固体高分子形燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768350

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2979528

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2017508157

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016768350

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15561440

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE