WO2015030368A1 - 다중 모드 자동 광학 측정기 - Google Patents

다중 모드 자동 광학 측정기 Download PDF

Info

Publication number
WO2015030368A1
WO2015030368A1 PCT/KR2014/006535 KR2014006535W WO2015030368A1 WO 2015030368 A1 WO2015030368 A1 WO 2015030368A1 KR 2014006535 W KR2014006535 W KR 2014006535W WO 2015030368 A1 WO2015030368 A1 WO 2015030368A1
Authority
WO
WIPO (PCT)
Prior art keywords
well
tip
light
main body
optical
Prior art date
Application number
PCT/KR2014/006535
Other languages
English (en)
French (fr)
Inventor
김경남
Original Assignee
주식회사 마이크로디지탈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 마이크로디지탈 filed Critical 주식회사 마이크로디지탈
Publication of WO2015030368A1 publication Critical patent/WO2015030368A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/028Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having reaction cells in the form of microtitration plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N2035/1025Fluid level sensing

Definitions

  • the present invention relates to a multi-mode automated optical meter, and more particularly, to a multi-mode automating process for aspirating, dispensing, tip washing, reaction, incubating, luminescence measurement, absorbance measurement, and fluorescence measurement of a sample or reagent. It relates to an automatic optical meter.
  • conventional methods for diagnosing immunity by reacting a sample of whole blood, serum, plasma, etc. of a patient with a reagent to incubate pathogens or immune cells, and measuring the luminescence properties, absorbance properties, and fluorescence properties of the reactants
  • the operator may manually inject a sample or reagent directly into a syringe and dispense it into a well plate, incubate, or pass through a series of manual procedures, each measured using a luminometer, an absorbance meter, or a fluorimeter.
  • such a conventional optical measurement method is a manual operation by the operator, and the sample or reagent has to be directly inhaled and dispensed by the operator to the reaction site with a syringe, and after the dispensing, the syringe has to be washed one by one.
  • an operator has to inconveniently measure optical characteristics while moving a place or an apparatus by using a separate luminometer, an absorbance meter, a fluorescence meter, a flash meter, or the like.
  • the present invention can reduce the operation time and cost by automating the entire process of measurement, such as aspiration, dispensing, tip washing, reaction, incubating, luminescence measurement, absorbance measurement, fluorescence measurement of the sample or reagent, contamination of the sample, reagent, reactant It is an object of the present invention to provide a multi-mode automatic optical measuring device that can prevent damage or damage and greatly increase the reliability and precision of the measurement.
  • these problems are exemplary, and the scope of the present invention is not limited thereby.
  • the multi-mode automatic optical measuring device for solving the above problems, the main body; A sample tube holder mounted to the main body and having at least one sample tube seated thereon; A reagent bottle holder installed on the main body and having at least one reagent bottle seated thereon; A well plate installed in the main body and having at least one well formed therein for reacting a sample with a reagent; A first tip capable of drawing a sample from a sample tube seated in said sample tube holder and dispensing the sample into a well of said well plate; An optical measurement terminal capable of measuring optical properties of a reactant made in the well of the well plate; A movable head on which the first tip and the optical measuring terminal are installed; And a movable head transfer device installed in the main body and capable of transferring the movable head.
  • the optical measuring terminal is installed in one direction with respect to the first tip, and the emission and absorbance measurement that can measure the light emission and absorption characteristics of the reactants made in the well of the well plate terminal; And a fluorescence measurement terminal installed in the other direction based on the first tip and capable of measuring the fluorescence property of the reactant formed in the well of the well plate.
  • the light emission and absorption measurement terminal the first optical path is optically connected to the photo multiplier tube (PMT) that can detect the light emission characteristics generated in the well is formed, the optical guide A second optical path optically connected to the light source and the filter is formed using the light source, and the light irradiated to the well along the second optical path is first absorbed while passing through the well, and is reflected and reflected on a mirror surface.
  • the light may be a light emission and an absorption measurement block in which a third light path is optically connected to the PD so that light may be secondly absorbed while passing through the well, and then may be transmitted to a photo diode (PD).
  • the fluorescence measurement terminal is optically connected to the light source using an optical guide, and is primarily reflected by a reflecting mirror, and is secondary in the well direction by a beam splitter.
  • a fourth optical path that is reflected is formed, and a fifth optical path that is optically connected to the PMT so that fluorescence of light irradiated to the well along the fourth optical path can be transmitted to a photo multiplier tube (PMT) It may be a fluorescence measurement block formed.
  • PMT photo multiplier tube
  • the multi-mode automatic optical measuring device which is installed in the optical measuring terminal, the spraying reagent for the flash reaction to the well;
  • a first syringe pump installed in the main body and connected to the first tip;
  • a second syringe pump installed at the main body and connected to the second tip.
  • sample tube holder and the reagent bottle holder are integrally installed, and the sample tube holder and the reagent bottle holder are installed in a sliding drawer provided with a handle, A pressing member capable of pressing the side surface of the sample tube or the reagent bottle by a return force may be installed.
  • a tip cleaning module which is installed on the sample tube holder or the reagent bottle holder, and can clean the first tip
  • the cleaning solution tube may include: a cleaning liquid tube containing a cleaning liquid that can be sucked by the first tip to clean the inside of the first tip; A waste bottle containing a cleaning liquid used after internal cleaning; And a cleaning liquid spray nozzle installed in the first tip direction to clean the outside of the first tip.
  • the well plate at least one left well is formed on the upper left side, at least one right well is formed on the upper right side, a gas guide groove between the left well and the right well Is formed, the upper side is spaced apart from the well so as to cover the upper side of the well, the incubation lead is installed, the heating wire is installed, the incubating gas in the space between the gas guide groove and the well plate lead An incubating gas injection nozzle for supplying may be installed, and a shaking plate capable of shaking the well plate may be installed below.
  • the well plate adapter is installed below the well plate, the mirror surface that can reflect the light emitted from the optical measuring terminal; It may further include.
  • the mirror surface, the first mirror surface is installed at an angle of 45 degrees relative to the horizontal plane; And a second mirror surface installed at an angle of 134 degrees with respect to the horizontal surface.
  • a multi-mode automatic optical measuring device is installed between the first tip and the movable head, Z-axis actuator capable of raising and lowering the first tip in the Z-axis direction along the lifting rail It may further include;
  • the movable head transfer device an X-axis actuator capable of transferring the movable head to the X-axis; And a Y axis actuator capable of transferring the movable head to the Y axis.
  • the multi-mode automatic optical measuring device may further include a level sensor installed in the main body and capable of measuring a dispensing amount of the first tip dispensed into the test tube.
  • the multi-mode automatic optical measuring device may be installed in the main body instead of the well plate, at least one positioning light emitting device for positioning, at least one light detector for quality checking and the position And a test plate on which a charger for applying power to the confirmation corner light emitting device and the light detector quality checking light emitting device is installed.
  • the optical measuring terminal may be provided with an objective lens in the optical path.
  • FIG. 1 is an external perspective view illustrating a multi-mode automatic optical meter according to some embodiments of the present disclosure.
  • FIG. 2 is an internal perspective view of the multi-mode automatic optical meter of FIG. 1.
  • FIG. 3 is a plan view illustrating the multi-mode automatic optical meter of FIG. 2.
  • FIG. 4 is a plan view illustrating an incubator lid sliding state of the multi-mode automatic optical meter of FIG. 3.
  • FIG. 5 is an enlarged perspective view illustrating a well plate of the multi-mode automatic optical meter of FIG. 2.
  • FIG. 6 is an enlarged perspective view illustrating the well plate of FIG. 5.
  • FIG. 7 is an exploded perspective view of parts showing the movable head of FIG. 2.
  • FIG. 8 is a side view of FIG. 7.
  • FIG. 9 is a front view conceptually illustrating an operating state of a multi-mode automatic optical meter according to some embodiments of the present disclosure.
  • FIG. 10 is a partial cross-sectional view conceptually illustrating light emission and absorbance measurement states of the movable head of FIG. 2 in more detail.
  • FIG. 10 is a partial cross-sectional view conceptually illustrating light emission and absorbance measurement states of the movable head of FIG. 2 in more detail.
  • FIG. 11 is a partial cross-sectional view conceptually illustrating in detail the fluorescence measurement state of the movable head of FIG. 2.
  • FIG. 12 is a cross-sectional view illustrating a level sensor of a multi-mode automatic optical meter according to some embodiments of the present disclosure.
  • FIG. 13 is a perspective view illustrating a test plate of a multi-mode automatic optical meter according to some embodiments of the present disclosure.
  • first, second, etc. are used herein to describe various members, parts, regions, layers, and / or parts, these members, parts, regions, layers, and / or parts are defined by these terms. It is obvious that not. These terms are only used to distinguish one member, part, region, layer or portion from another region, layer or portion. Thus, the first member, part, region, layer or portion, which will be discussed below, may refer to the second member, component, region, layer or portion without departing from the teachings of the present invention.
  • top or “above” and “bottom” or “bottom” may be used herein to describe the relationship of certain elements to other elements as illustrated in the figures. It may be understood that relative terms are intended to include other directions of the device in addition to the direction depicted in the figures. For example, if the device is turned over in the figures, elements depicted as present on the face of the top of the other elements are oriented on the face of the bottom of the other elements. Thus, the exemplary term “top” may include both “bottom” and “top” directions depending on the particular direction of the figure. If the device faces in the other direction (rotated 90 degrees relative to the other direction), the relative descriptions used herein can be interpreted accordingly.
  • FIG. 1 is an external perspective view of a multi-mode automatic optical meter 1000 according to some embodiments of the present invention
  • FIG. 2 is an internal perspective view of the multi-mode automatic optical meter 1000 of FIG. 1
  • FIG. 2 is a plan view showing a multi-mode automatic optical measuring device 1000.
  • the multi-mode automatic optical meter 1000 includes a main body 10, a sample tube holder 20, and a reagent bottle holder. And the well plate 30, the first tip 40, the optical measuring terminal 50, the movable head 60, and the movable head conveying device 70.
  • the main body 10 forms an appearance of a product, and a door D may be installed to enable internal work.
  • sample tube holder 20 which is installed on the main body 10, may be a plate structure in which at least one sample tube 1 may be seated.
  • the reagent bottle holder is also installed on the main body 10, and may be a plate structure on which at least one reagent bottle 2 may be seated.
  • the sample tube holder 20 and the reagent bottle holder may be integrally installed, and the sample may be returned to the holder groove H by the return force of the spring S. It is also possible to provide a pressing member 23 capable of pressing the side surface of the tube 1 or the reagent bottle 2.
  • the sample tube holder 20 is installed in a sliding drawer 22 in which a handle 21 is installed so that an operator may have the sample tube 1 or the reagent.
  • the bottle 2 may be a structure that can be easily inserted into or withdrawn from the inside of the main body 10.
  • the well plate 30, which is installed in the main body 10, may be a plate-like structure in which at least one well (W) is formed to react the sample and the reagent.
  • FIG. 5 is an enlarged perspective view illustrating the well plate 30 of the multi-mode automatic optical meter 1000 of FIG. 2
  • FIG. 6 is an enlarged perspective view illustrating the well plate 30 of FIG. 5.
  • At least one left well W is formed on an upper left side, and at least one right well W is formed on an upper right side.
  • the gas guide groove 31 may be formed between the left well W and the right well W.
  • the number of installation of the well (W) can be very diverse, for example, 6 well plate, 12 well plate, 24 well plate, 48 well plate, 96 well plate and the like can be applied in various ways.
  • sliding is possible above the well plate 30 so as to cover the upper side of the well W to be spaced apart from the well W, and the heating wire 33 is installed.
  • the incubating lead 32 may be installed.
  • an incubating gas injection nozzle 34 for supplying an incubating gas to the space between the gas guide groove 31 and the well plate lid 32 may be installed.
  • a shaking plate 100 capable of shaking the well plate 30 may be installed.
  • the incubating lead 32 is slid above the well plate 30, and the incubating gas is supplied to the gas induction groove 31 to use the shaking plate 100.
  • the incubating gas is supplied to the gas induction groove 31 to use the shaking plate 100.
  • this incubation operation is capable of shaking, temperature control, and supplying 5% carbon dioxide to maintain cell sustainability of live cells. .
  • the first tip 40 sucks a sample from the sample tube 1 seated on the sample tube holder 20 to draw the well of the well plate 30.
  • a syringe-like structure capable of dispensing at (W) it may be installed in the movable head 60 together with the optical measuring terminal 50.
  • FIG. 7 is an exploded perspective view showing parts of the movable head 60 of FIG. 2, and FIG. 8 is a side view of FIG. 7.
  • the optical measuring terminal 50 is a terminal capable of measuring optical properties of a reactant formed in the well W of the well plate 30. And a fluorescence measurement terminal 52.
  • the emission and absorption measurement terminal 51 is installed at one side with respect to the first tip 40 and the well plate 30. It may be a block structure that can measure the light emission and absorption characteristics of the reactants made in the well (W).
  • FIG. 10 is a partial cross-sectional view conceptually illustrating in detail the emission and absorption measurement states of the emission and absorption measurement terminal 51 installed in the movable head 60 of FIG. 2.
  • the light emission and absorption measurement terminal 51 is optically connected to a PMT 51-1 (photo multiplier tube) capable of sensing the light emission characteristics generated in the well W.
  • the first optical path L1 is formed, and the second optical path L2 is optically connected to the light source 51-3 and the filter 51-4 by using the optical guide 51-2 such as an optical fiber.
  • the light irradiated to the well W along the second optical path L2 is first absorbed while passing through the well W, and the light reflected by the mirror surface M is reflected again.
  • a third optical path (L3) that is optically connected to the PD (51-5) is formed to be delivered to the PD (51-5) (photo diode) It may be a light emission and an absorbance measurement block.
  • the light source 51-3 may be a source that emits light in both visible and near infrared bands, such as a white LED, a xenon flash lamp, a halogen lamp, and the like.
  • absorption is performed by attaching a filter 51-4 that passes only light through a specific wavelength band to be measured in the visible and near infrared wavelength bands to the light source output terminal. Can be.
  • FIG. 11 is a partial cross-sectional view conceptually illustrating in detail the fluorescence measurement state of the fluorescence measurement terminal 52 provided in the movable head 60 of FIG. 2.
  • the fluorescence measurement terminal 52 is installed in the other direction with respect to the first tip 40 and the fluorescence of the reactant formed in the well W of the well plate 30. It may be a block structure capable of measuring properties.
  • the fluorescence measurement terminal 52 is optically connected to the light source 52-2 using an optical guide 52-1 such as an optical fiber, and a reflecting mirror.
  • a fourth optical path L4 which is firstly reflected by 52-3 and secondly reflected to the well W by a beam splitter 52-4, and the fourth A fifth optically connected to the PMT 52-5 such that fluorescence of light irradiated to the well W along the optical path L4 can be transmitted to the photo multiplier tube (PMT 52-5). It may be a fluorescence measurement block in which the optical path L5 is formed.
  • a blue LED blue LED, 480 nm band
  • the light guide 52-1 After passing the light of the light source 52-2 to the reflecting mirror 52-3, the light reflected through the reflecting mirror 52-3 is transmitted to the beam splitter 52-4 (e.g., 500 nm). After all of the following light is reflected and the beam splitter passes all the 500 nm or more, the fluorescence expressed in the reactant (for example, near 520 nm) is 500 nm or more due to the beam splitter 52-4. After only passing, for example, only light around 520 nm may be transmitted to the PMT 52-5 through a band pass filter.
  • each of the light emission and absorption measurement terminal 51 and the fluorescence measurement terminal 52 of the optical measurement terminal 50 has an objective in the optical path so as to increase the light sensitivity.
  • the lens 160 may be installed.
  • the movable head 60 includes a light emission and absorption measurement terminal 51 and a fluorescence measurement terminal of the first tip 40 and the optical measurement terminal 50. 52) may be installed.
  • the terminal and the light source are configured with various kinds of light sources, beam splitters, and band pass filters, the user can simply and easily remove the light source selection filter wheel or the emission filter wheel. Fluorescence measurements are possible.
  • the movable head conveying apparatus 70 is provided in the main body 10 and is capable of conveying the movable head 60.
  • the X-axis actuator 130 and the Y-axis actuator 140 are provided in the main body 10 and is capable of conveying the movable head 60.
  • the X-axis actuator 130 may be a kind of actuator capable of transferring the movable head 60 to the X-axis along the rail (R2), the Y-axis actuator 140, the movable head It may be a kind of actuator capable of transferring the 60 to the Y axis.
  • Such actuators may form various robots and devices, and may include power sources such as motors, hydraulic or pneumatic cylinders, as well as various power transmission devices such as cams, gears, screw rods, links, chains, and belts. .
  • the Y-axis actuator 140 includes a screw rod 142 and a screw rod 142 that are screwed through the movable table 141 that can be moved to the Y-axis. It may include a drive motor 143 for rotating the screw.
  • the multi-mode automatic optical measuring device 1000 is installed between the first tip 40 and the movable head 60. 1 may further include a Z-axis actuator 120 that can raise and lower the tip 40 in the Z-axis direction along the lifting rail (R1).
  • the Z-axis actuator 120 may be an actuator including a combination of the belt 121 and the pulley 122 rotated by the drive motor is installed long in the Z-axis direction.
  • Such actuators may form various robots and devices, and may include power sources such as motors, hydraulic or pneumatic cylinders, as well as various power transmission devices such as cams, gears, screw rods, links, chains, and belts. .
  • the multi-mode automatic optical measuring device 1000 according to some embodiments of the present invention, it is very easy to automatically measure the light emission characteristics, light absorption characteristics, and fluorescence characteristics of the reactants with one device.
  • FIG. 9 is a front view conceptually illustrating an operating state of the multi-mode automatic optical meter 1000 according to some embodiments of the present invention.
  • the multi-mode automatic optical measuring device 1000 is installed in the optical measuring terminal 50 and sprays a reagent for flash reaction into the well W.
  • FIG. A second tip 80, and a first syringe pump P1 connected to the first tip 40 and the main body 10, installed in the main body 10, and the second tip 80. It may further comprise a second syringe pump (P2) connected to the tip (80).
  • the "flash" sample can be measured during the luminescence measurement, and the flash sample may be a reagent showing a maximum value of the reaction within 0.1 seconds to several seconds as soon as the reagent is dispensed, and the reagent of the second tip 80 It may be necessary to detect the amount of light immediately after dispensing.
  • the first tip 40 and the second tip 80 connected to the first syringe pump P1 and the second syringe pump P2, respectively, may have different syringe capacities according to their purpose. have. For example, a 100 microliter syringe or a 1,000 microliter syringe can be used.
  • the multi-mode automatic optical meter 1000 is installed in the sample tube holder 20 or the reagent bottle holder, and the first tip ( 40 may further include a tip cleaning module 90 capable of cleaning.
  • the tip cleaning module 90 includes a cleaning liquid containing a cleaning liquid that can be sucked by the first tip 40 so as to clean the inside of the first tip 40.
  • a tube 91, a waste bottle 92 containing a cleaning liquid used after the internal cleaning, and a first bottle 40 are installed in the direction of the first tip 40 so as to clean the outside of the first tip 40.
  • the cleaning liquid spray nozzle 93 may be included. Therefore, the tip cleaning module 90 may be used to prevent cross contamination between samples, reagents, or reactants.
  • the multi-mode automatic optical measuring device 1000 is installed under the well plate 30, and the optical measurement on the surface thereof.
  • the display device may further include a well plate adapter 110 having a mirror surface M capable of reflecting light emitted from the terminal 50.
  • the mirror surface M may include a first mirror surface M1 installed at an angle A1 of 45 degrees with respect to a horizontal plane, and a 134 degree angle with respect to the horizontal plane.
  • A2) may include a second mirror surface (M2) installed.
  • the X-axis actuator 130 of the movable head conveying device 70 the movable head 60 is positioned above the sample tube 1 or the reagent bottle 2 by using the Y axis actuator 140, and then the Z axis actuator 120 is used to form the movable head 60.
  • the first tip 40 can be lowered in the direction of the sample tube 1 or the reagent bottle 2.
  • the first syringe pump P1 may be processed to suck the sample or reagent from the sample tube 1 or the reagent bottle 2, and after the suction is completed, the Z-axis actuator 120 may be used. To raise the first tip 40.
  • the movable head 60 is positioned above the well plate 30 using the X-axis actuator 130 or the Y-axis actuator 140 of the movable head transfer device 70, and then the Z-axis
  • the first tip 40 may be lowered in the well W direction of the well plate 30 using the actuator 120.
  • the first syringe pump P1 may be processed to dispense a sample or a reagent into the well W, and after the dispensing is completed, the first tip 40 using the Z-axis actuator 120. Can be raised again.
  • the incubating lead 32 is slid above the well plate 30, and the incubating gas is supplied to the gas induction groove 31 to shake the reactant by using the shaking plate 100 to move the inside of the reactant.
  • Pathogens and immune cells can be incubated.
  • the PMT 52-5 is optically connected to the light source 52-2 using the light guide 52-1 by using the fluorescence measurement terminal 52.
  • a fourth optical path L4 of light that is primarily reflected by the reflection mirror 52-3 and is secondly reflected by the beam splitter 52-4 toward the well W.
  • the fluorescence property of the light irradiated to the well W along the fourth optical path L4 may be measured through the fifth optical path L5.
  • optical properties may be measured by injecting the flash reaction reagent into the well W using the second tip 80, and using the tip cleaning module 90, the first tip 40. ) And the inside and outside of the second tip 80 may be automatically cleaned, followed by subsequent processing.
  • FIG. 12 is a cross-sectional view illustrating the level sensor S1 of the multi-mode automatic optical meter 1000 according to some embodiments of the present invention.
  • a multi-mode automatic optical meter 1000 is installed in the body 10 and has a first tip in a test tube 3. It may further include a level sensor (S1) that can measure the dispensing amount 40 is dispensed. Therefore, the operator uses the level sensor S1 to check whether the amount of the sample or reagent to be sucked or dispensed from the first tip 40 is correct or, if it is not correct, to adjust various valves, pumps or controllers. You can set it.
  • the amount of the dispensed liquid is measured by the water level detection function. It can be determined whether the amount is equal to.
  • the process of dispensing the amount of liquid again into the test tube 3, sensing the water level, and comparing the dispensing amount may be repeated.
  • the automatic dispensing function which is automatically dispensed without an external device such as a scale or an experienced operator, can be checked frequently.
  • FIG. 13 is a perspective view illustrating a test plate 150 of the multi-mode automatic optical meter 1000 according to some embodiments of the present disclosure.
  • the multi-mode automatic optical meter 1000 may be installed in the body 10 instead of the well plate 30, and at least one. Power supply to the position checking corner light emitting device 151, the at least one light detector quality checking light emitting device 152, and the positioning corner light emitting device 151 and the light detector quality checking light emitting device 152. It may further include a test plate 150 is installed charger 153 for applying a. Thus, the operator can use the test plate 150 to confirm that each of the above-described actuators, devices or other optical measuring instruments are operating correctly, or, if not correct, to calibrate and set various devices accurately.
  • the four light detectors for confirming the quality of the light detectors 152 positioned in the center of the test plate 150 may adjust the amount of light emitted to inspect the quality of the optical detectors.
  • PMT photo multiplier tube
  • RLU relative luminescence unit
  • the light detector for confirming the quality of the light sensor for checking the quality of the device is always set at a constant ratio regardless of the device so that the operation of the light sensor and the sensitivity and sensitivity of the light sensor and (Or connected light guide) Quality inspection is possible up to the distance of the measurement object (the amount of light emitted is inversely proportional to the distance).
  • the light detector for confirming the quality of the light sensor 152 may be installed in various numbers as well as four.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

본 발명은 샘플 또는 시약의 흡입, 분주, 팁 세척, 반응, 인큐베이팅, 발광 측정, 흡광 측정, 형광 측정 등의 전과정을 자동화할 수 있게 하는 다중 모드 자동 광학 측정기에 관한 것으로서, 본체; 상기 본체에 설치되고, 적어도 하나의 샘플 튜브가 안착되는 샘플 튜브 홀더; 상기 본체에 설치되고, 적어도 하나의 시약 보틀이 안착되는 시약 보틀 홀더; 상기 본체에 설치되고, 샘플과 시약의 반응이 이루어질 수 있는 적어도 하나의 웰이 형성되는 웰 플레이트; 상기 샘플 튜브 홀더에 안착된 샘플 튜브로부터 샘플을 흡입하여 상기 웰 플레이트의 웰에 분주할 수 있는 제 1 팁; 상기 웰 플레이트의 웰에서 이루어지는 반응물의 광학적 특성을 측정할 수 있는 광학 측정 단말기; 상기 제 1 팁 및 상기 광학 측정 단말기가 설치되는 가동 헤드; 및 상기 본체에 설치되고, 상기 가동 헤드를 이송시킬 수 있는 가동 헤드 이송 장치;를 포함할 수 있다.

Description

다중 모드 자동 광학 측정기
본 발명은 다중 모드 자동 광학 측정기에 관한 것으로서, 보다 상세하게는 샘플 또는 시약의 흡입, 분주, 팁 세척, 반응, 인큐베이팅, 발광 측정, 흡광 측정, 형광 측정 등의 전과정을 자동화할 수 있게 하는 다중 모드 자동 광학 측정기에 관한 것이다.
항원, 항체 반응으로 신장염이나 인플루엔자 등의 질병을 검사하기 위해서는, 환자로부터 샘플을 체취하여 샘플의 광학적인 특성을 확인할 필요가 있다.
예를 들어서, 환자의 전혈, 혈청, 플라스마 등의 샘플을 시약과 반응시켜서 병원체나 면역 세포 등을 인큐베이팅 하고, 반응물의 발광 특성, 흡광 특성, 형광 특성을 측정하여 면역을 진단하기 위한 종래의 방법은, 작업자가 수동으로 직접 샘플 또는 시약을 주사기로 흡입하여 웰 플레이트에 분주하거나, 인큐베이팅하거나, 발광 측정기, 흡광 측정기, 형광 측정기를 각각 사용하여 측정하는 일련의 수작업에 의한 과정들을 거칠 수 있다.
그러나, 이러한 종래의 광학 측정 방법은, 작업자가 수작업에 의존하는 것으로서, 샘플 또는 시약을 작업자가 직접 주사기로 반응 장소에 흡입 및 분주해야 하고, 분주 후에는 일일이 주사기를 세척하여야 하는 번거로움이 있었다.
또한, 종래에는 병원체나 면역 세포 등을 인큐베이팅하기 위해서 작업자는 별도의 인큐베이팅 가스 공급 장치나, 별도의 쉐이킹 장치나, 별도의 히터 등을 이용하여 수작업으로 반응물을 인큐베이팅해야 하는 불편함이 있었다.
또한, 종래에는, 작업자가 별도의 발광 측정기, 흡광 측정기, 형광 측정기, 플래쉬 측정기 등을 이용하여 장소나 장치를 옮겨가면서 광학적 특성을 측정해야 하는 불편함이 있었다.
그러므로, 작업의 시간이나 비용이 많이 소모되고, 이러한 수작업 도중, 샘플이나, 시약이나 반응물들이 공기 중이나 사람의 손에 의해 쉽게 노출되어 오렴되거나, 작업자의 숙련도나 집중도에 따라 분주시 수위나 반응 환경 등이 쉽게 달라져서 측정 결과의 균일도 및 정밀도가 크게 떨어지는 문제점이 있었다.
본 발명은 샘플 또는 시약의 흡입, 분주, 팁 세척, 반응, 인큐베이팅, 발광 측정, 흡광 측정, 형광 측정 등 측정의 전과정을 자동화하여 작업 시간 및 비용을 절감할 수 있고, 샘플, 시약, 반응물의 오염이나 파손을 방지할 수 있으며, 측정의 신뢰도와 정밀도를 크게 상승시킬 수 있게 하는 다중 모드 자동 광학 측정기를 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.
상기 과제를 해결하기 위한 본 발명의 사상에 따른 다중 모드 자동 광학 측정기는, 본체; 상기 본체에 설치되고, 적어도 하나의 샘플 튜브가 안착되는 샘플 튜브 홀더; 상기 본체에 설치되고, 적어도 하나의 시약 보틀이 안착되는 시약 보틀 홀더; 상기 본체에 설치되고, 샘플과 시약의 반응이 이루어질 수 있는 적어도 하나의 웰이 형성되는 웰 플레이트; 상기 샘플 튜브 홀더에 안착된 샘플 튜브로부터 샘플을 흡입하여 상기 웰 플레이트의 웰에 분주할 수 있는 제 1 팁; 상기 웰 플레이트의 웰에서 이루어지는 반응물의 광학적 특성을 측정할 수 있는 광학 측정 단말기; 상기 제 1 팁 및 상기 광학 측정 단말기가 설치되는 가동 헤드; 및 상기 본체에 설치되고, 상기 가동 헤드를 이송시킬 수 있는 가동 헤드 이송 장치;를 포함할 수 있다.
또한, 본 발명의 사상에 따르면, 상기 광학 측정 단말기는, 상기 제 1 팁을 기준으로 일측 방향에 설치되고, 상기 웰 플레이트의 웰에서 이루어지는 반응물의 발광 및 흡광 특성을 측정할 수 있는 발광 및 흡광 측정 단말기; 및 상기 제 1 팁을 기준으로 타측 방향에 설치되고, 상기 웰 플레이트의 웰에서 이루어지는 상기 반응물의 형광 특성을 측정할 수 있는 형광 측정 단말기;를 포함할 수 있다.
또한, 본 발명의 사상에 따르면, 상기 발광 및 흡광 측정 단말기는, 상기 웰에서 발생된 발광 특성을 감지할 수 있는 PMT(photo multiplier tube)와 광학적으로 연결되는 제 1 광경로가 형성되고, 광가이드를 이용하여 광원 및 필터와 광학적으로 연결되는 제 2 광경로가 형성되며, 상기 제 2 광경로를 따라 상기 웰에 조사된 빛이 상기 웰을 통과하면서 1차 흡광되고, 거울면에 반사되어 반사된 빛이 다시 상기 웰을 통과하면서 2차 흡광된 후, PD(photo diode)로 전달될 수 있도록 상기 PD와 광학적으로 연결되는 제 3 광경로가 형성되는 발광 및 흡광 측정 블록일 수 있다.
또한, 본 발명의 사상에 따르면, 상기 형광 측정 단말기는, 광가이드를 이용하여 광원과 광학적으로 연결되고, 반사 거울에 의해 1차 반사되며, 빔 스플리터(beam splitter)에 의해서 상기 웰 방향으로 2차 반사되는 제 4 광경로가 형성되고, 상기 제 4 광경로를 따라 상기 웰에 조사된 빛에 대한 형광이 PMT(photo multiplier tube)로 전달될 수 있도록 상기 PMT와 광학적으로 연결되는 제 5 광경로가 형성되는 형광 측정 블록일 수 있다.
또한, 본 발명의 사상에 따른 다중 모드 자동 광학 측정기는, 상기 광학 측정 단말기에 설치되고, 플래쉬 반응용 시약을 상기 웰에 분사할 수 있는 제 2 팁; 상기 본체에 설치되고, 상기 제 1 팁에 연결되는 제 1 주사기 펌프; 및 상기 본체에 설치되고, 상기 제 2 팁에 연결되는 제 2 주사기 펌프;를 더 포함할 수 있다.
또한, 본 발명의 사상에 따르면, 상기 샘플 튜브 홀더와 상기 시약 보틀 홀더는 일체를 이루어서 설치되고, 상기 샘플 튜브 홀더와 상기 시약 보틀 홀더는, 손잡이가 설치된 슬라이딩 서랍에 설치되고, 홀더 홈에 스프링의 복귀력에 의해 상기 샘플 튜브 또는 시약 보틀의 측면을 가압할 수 있는 가압 부재가 설치되는 것일 수 있다.
또한, 본 발명의 사상에 따른 다중 모드 자동 광학 측정기는, 상기 샘플 튜브 홀더 또는 상기 시약 보틀 홀더에 설치되고, 상기 제 1 팁을 세정할 수 있는 팁 세정 모듈;을 더 포함하고, 상기 팁 세정 모듈은, 상기 제 1 팁의 내부를 세정할 수 있도록 상기 제 1 팁이 흡입할 수 있는 세정액을 수용하는 세정액 튜브; 내부 세정 후 사용된 세정액을 수용하는 웨이스트 보틀(waste bottle); 및 상기 제 1 팁의 외부를 세정할 수 있도록 상기 제 1 팁 방향으로 설치되는 세정액 분사 노즐;을 포함할 수 있다.
또한, 본 발명의 사상에 따르면, 상기 웰 플레이트는, 좌측 상면에 적어도 하나의 좌측 웰이 형성되고, 우측 상면에 적어도 하나의 우측 웰이 형성되며, 상기 좌측 웰과 상기 우측 웰 사이에 가스 유도홈이 형성되고, 상방에 상기 웰과 이격되게 상기 웰의 상방을 덮을 수 있도록 슬라이딩이 가능하고, 열선이 설치되는 인큐베이팅 리드가 설치되고, 상기 가스 유도홈과 상기 웰 플레이트 리드 사이의 공간에 인큐베이팅 가스를 공급하는 인큐베이팅 가스 분사 노즐이 설치되며, 하방에 상기 웰 플레이트를 쉐이킹할 수 있는 쉐이킹 플레이트가 설치되는 것일 수 있다.
또한, 본 발명의 사상에 따른 다중 모드 자동 광학 측정기는, 상기 웰 플레이트의 하방에 설치되고, 그 표면에 상기 광학 측정 단말기에서 조사되는 빛을 반사시킬 수 있는 거울면이 형성되는 웰 플레이트 어답터;를 더 포함할 수 있다.
또한, 본 발명의 사상에 따르면, 상기 거울면은, 수평면을 기준으로 45도 각도로 설치되는 제 1 거울면; 및 상기 수평면을 기준으로 134도 각도로 설치되는 제 2 거울면;을 포함할 수 있다.
또한, 본 발명의 사상에 따른 다중 모드 자동 광학 측정기는, 상기 제 1 팁과 상기 가동 헤드 사이에 설치되고, 상기 제 1 팁을 승하강 레일을 따라 Z축 방향으로 승하강시킬 수 있는 Z축 액츄에이터;를 더 포함할 수 있다.
또한, 본 발명의 사상에 따르면, 상기 가동 헤드 이송 장치는, 상기 가동 헤드를 X축으로 이송시킬 수 있는 X축 액츄에이터; 및 상기 가동 헤드를 Y축으로 이송시킬 수 있는 Y축 액츄에이터;를 포함할 수 있다.
또한, 본 발명의 사상에 따른 다중 모드 자동 광학 측정기는, 상기 본체에 설치되고, 테스트용 튜브에 제 1 팁이 분주하는 분주량을 측정할 수 있는 레벨 센서;를 더 포함할 수 있다.
또한, 본 발명의 사상에 따른 다중 모드 자동 광학 측정기는, 상기 웰 플레이트 대신 상기 본체에 설치할 수 있고, 적어도 하나의 위치 확인용 코너 발광 소자와, 적어도 하나의 광 감지기 품질 확인용 발광 소자 및 상기 위치 확인용 코너 발광 소자와 상기 광 감지기 품질 확인용 발광 소자에 전원을 인가하는 충전기가 설치되는 테스트 플레이트;를 더 포함할 수 있다.
또한, 본 발명의 사상에 따르면, 상기 광학 측정 단말기는 광경로에 대물 렌즈가 설치되는 것일 수 있다.
상기한 바와 같이 이루어진 본 발명의 일부 실시예들에 따르면, 측정의 전과정을 자동화하여 작업의 효율성을 향상시킬 수 있고, 샘플, 시약, 반응물의 오염이나 파손을 방지할 수 있으며, 측정의 신뢰도와 정밀도를 크게 상승시킬 수 있는 효과를 갖는 것이다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.
도 1은 본 발명의 일부 실시예들에 따른 다중 모드 자동 광학 측정기를 나타내는 외관 사시도이다.
도 2는 도 1의 다중 모드 자동 광학 측정기를 나타내는 내부 사시도이다.
도 3은 도 2의 다중 모드 자동 광학 측정기를 나타내는 평면도이다.
도 4는 도 3의 다중 모드 자동 광학 측정기의 인큐베이터 리드 슬라이딩 상태를 나타내는 평면도이다.
도 5는 도 2의 다중 모드 자동 광학 측정기의 웰 플레이트를 나타내는 확대 사시도이다.
도 6은 도 5의 웰 플레이트를 나타내는 확대 사시도이다.
도 7은 도 2의 가동 헤드를 나타내는 부품 분해 사시도이다.
도 8은 도 7의 측면도이다.
도 9는 본 발명의 일부 실시예들에 따른 다중 모드 자동 광학 측정기의 작동 상태를 개념적으로 나타내는 정면도이다.
도 10은 도 2의 가동 헤드의 발광 및 흡광 측정 상태를 보다 상세하게 개념적으로 나타내는 부분 단면도이다.
도 11은 도 2의 가동 헤드의 형광 측정 상태를 보다 상세하게 개념적으로 나타내는 부분 단면도이다.
도 12는 본 발명의 일부 실시예들에 따른 다중 모드 자동 광학 측정기의 레벨 센서를 나타내는 단면도이다.
도 13은 본 발명의 일부 실시예들에 따른 다중 모드 자동 광학 측정기의 테스트 플레이트를 나타내는 사시도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 여러 실시예들을 상세히 설명하기로 한다.
본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려 이들 실시예들은 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다. 또한, 도면에서 각 층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장된 것이다.
명세서 전체에 걸쳐서, 막, 영역 또는 기판과 같은 하나의 구성요소가 다른 구성요소 "상에", "연결되어", "적층되어" 또는 "커플링되어" 위치한다고 언급할 때는, 상기 하나의 구성요소가 직접적으로 다른 구성요소 "상에", "연결되어", "적층되어" 또는 "커플링되어" 접촉하거나, 그 사이에 개재되는 또 다른 구성요소들이 존재할 수 있다고 해석될 수 있다. 반면에, 하나의 구성요소가 다른 구성요소 "직접적으로 상에", "직접 연결되어", 또는 "직접 커플링되어" 위치한다고 언급할 때는, 그 사이에 개재되는 다른 구성요소들이 존재하지 않는다고 해석된다. 동일한 부호는 동일한 요소를 지칭한다. 본 명세서에서 사용된 바와 같이, 용어 "및/또는"은 해당 열거된 항목 중 어느 하나 및 하나 이상의 모든 조합을 포함한다.
본 명세서에서 제 1, 제 2 등의 용어가 다양한 부재, 부품, 영역, 층들 및/또는 부분들을 설명하기 위하여 사용되지만, 이들 부재, 부품, 영역, 층들 및/또는 부분들은 이들 용어에 의해 한정되어서는 안됨은 자명하다. 이들 용어는 하나의 부재, 부품, 영역, 층 또는 부분을 다른 영역, 층 또는 부분과 구별하기 위하여만 사용된다. 따라서, 이하 상술할 제 1 부재, 부품, 영역, 층 또는 부분은 본 발명의 가르침으로부터 벗어나지 않고서도 제 2 부재, 부품, 영역, 층 또는 부분을 지칭할 수 있다.
또한, "상의" 또는 "위의" 및 "하의" 또는 "아래의"와 같은 상대적인 용어들은 도면들에서 도해되는 것처럼 다른 요소들에 대한 어떤 요소들의 관계를 기술하기 위해 여기에서 사용될 수 있다. 상대적 용어들은 도면들에서 묘사되는 방향에 추가하여 소자의 다른 방향들을 포함하는 것을 의도한다고 이해될 수 있다. 예를 들어, 도면들에서 소자가 뒤집어 진다면(turned over), 다른 요소들의 상부의 면 상에 존재하는 것으로 묘사되는 요소들은 상기 다른 요소들의 하부의 면 상에 방향을 가지게 된다. 그러므로, 예로써 든 "상의"라는 용어는, 도면의 특정한 방향에 의존하여 "하의" 및 "상의" 방향 모두를 포함할 수 있다. 소자가 다른 방향으로 향한다면(다른 방향에 대하여 90도 회전), 본 명세서에 사용되는 상대적인 설명들은 이에 따라 해석될 수 있다.
본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용된 바와 같이, 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise)" 및/또는 "포함하는(comprising)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.
이하, 본 발명의 실시예들은 본 발명의 이상적인 실시예들을 개략적으로 도시하는 도면들을 참조하여 설명한다. 도면들에 있어서, 예를 들면, 제조 기술 및/또는 공차(tolerance)에 따라, 도시된 형상의 변형들이 예상될 수 있다. 따라서, 본 발명 사상의 실시예는 본 명세서에 도시된 영역의 특정 형상에 제한된 것으로 해석되어서는 아니 되며, 예를 들면 제조상 초래되는 형상의 변화를 포함하여야 한다.
도 1은 본 발명의 일부 실시예들에 따른 다중 모드 자동 광학 측정기(1000)를 나타내는 외관 사시도이고, 도 2는 도 1의 다중 모드 자동 광학 측정기(1000)를 나타내는 내부 사시도이고, 도 3은 도 2의 다중 모드 자동 광학 측정기(1000)를 나타내는 평면도이다.
먼저, 도 1 내지 도 3에 도시된 바와 같이, 본 발명의 일부 실시예들에 따른 다중 모드 자동 광학 측정기(1000)는, 크게 본체(10)와, 샘플 튜브 홀더(20)와, 시약 보틀 홀더와, 웰 플레이트(30)와, 제 1 팁(40)과, 광학 측정 단말기(50)와, 가동 헤드(60) 및 가동 헤드 이송 장치(70)를 포함할 수 있다.
여기서, 도 1에 도시된 바와 같이, 상기 본체(10)는, 제품의 외관을 이루는 것으로서, 내부 작업이 가능하도록 도어(D)가 설치될 수 있다.
또한, 상기 샘플 튜브 홀더(20)는, 상기 본체(10)에 설치되는 것으로서, 적어도 하나의 샘플 튜브(1)가 안착될 수 있는 플레이트 구조물일 수 있다.
또한, 상기 시약 보틀 홀더 역시, 상기 본체(10)에 설치되는 것으로서, 적어도 하나의 시약 보틀(2)이 안착될 수 있는 플레이트 구조물일 수 있다.
예를 들어서, 도 9에 도시된 바와 같이, 상기 샘플 튜브 홀더(20)와 상기 시약 보틀 홀더는 일체를 이루어서 설치될 수 있고, 홀더 홈(H)에 스프링(S)의 복귀력에 의해 상기 샘플 튜브(1) 또는 시약 보틀(2)의 측면을 가압할 수 있는 가압 부재(23)가 설치되는 것도 가능하다.
더욱 구체적으로는, 도 1 내지 도 5에 도시된 바와 같이, 상기 샘플 튜브 홀더(20)는, 손잡이(21)가 설치된 슬라이딩 서랍(22)에 설치되어 작업자가 상기 샘플 튜브(1)나 상기 시약 보틀(2)을 상기 본체(10)의 내부로 쉽게 삽입하거나 인출시킬 수 있는 구조물일 수 있다.
한편, 상기 웰 플레이트(30)는, 상기 본체(10)에 설치되는 것으로서, 샘플과 시약의 반응이 이루어질 수 있는 적어도 하나의 웰(W)이 형성되는 플레이트 형태의 구조물일 수 있다.
도 5는 도 2의 다중 모드 자동 광학 측정기(1000)의 웰 플레이트(30)를 나타내는 확대 사시도이고, 도 6은 도 5의 웰 플레이트(30)를 나타내는 확대 사시도이다.
도 1 내지 도 6에 도시된 바와 같이, 예를 들어서, 상기 웰 플레이트(30)는, 좌측 상면에 적어도 하나의 좌측 웰(W)이 형성되고, 우측 상면에 적어도 하나의 우측 웰(W)이 형성되며, 상기 좌측 웰(W)과 상기 우측 웰(W) 사이에 가스 유도홈(31)이 형성될 수 있다.
여기서, 이러한 상기 웰(W)의 설치 개수는 매우 다양할 수 있는 것으로서, 예를 들어서, 6 well plate, 12 well plate, 24 well plate, 48 well plate, 96 well plate 등 매우 다양하게 적용될 수 있다.
또한, 도 6에 도시된 바와 같이, 상기 웰 플레이트(30)의 상방에 상기 웰(W)과 이격되게 상기 웰(W)의 상방을 덮을 수 있도록 슬라이딩이 가능하고, 열선(33)이 설치되는 인큐베이팅 리드(32)가 설치될 수 있다.
또한, 도 6에 도시된 바와 같이, 상기 가스 유도홈(31)과 상기 웰 플레이트 리드(32) 사이의 공간에 인큐베이팅 가스를 공급하는 인큐베이팅 가스 분사 노즐(34)이 설치될 수 있고, 도 5에 도시된 바와 같이, 하방에 상기 웰 플레이트(30)를 쉐이킹할 수 있는 쉐이킹 플레이트(100)가 설치될 수 있다.
따라서, 도 4에 도시된 바와 같이, 상기 웰 플레이트(30)의 상방으로 상기 인큐베이팅 리드(32)가 슬라이딩되고, 상기 가스 유도홈(31)으로 인큐베이팅 가스가 공급되면서 상기 쉐이킹 플레이트(100)를 이용하여 반응물을 흔들어 줌으로써 반응물 내부의 병원체나 면역 세포 등을 인큐베이팅 할 수 있다.
따라서, 이러한 인큐베이팅 작업으로, 흔들기 (shaking), 온도 조절(temperature control) 및 활 세포 (live cell)의 생장성 (cell sustainability) 유지를 위한 5% 이산화탄소(Carbon dioxide)의 공급 기능 등이 모두 가능하다.
한편, 도 2 및 도 5에 도시된 바와 같이, 상기 제 1 팁(40)은, 상기 샘플 튜브 홀더(20)에 안착된 샘플 튜브(1)로부터 샘플을 흡입하여 상기 웰 플레이트(30)의 웰(W)에 분주할 수 있는 주사기 형태의 구조체로서, 상기 광학 측정 단말기(50)와 함께 상기 가동 헤드(60)에 설치될 수 있다.
도 7은 도 2의 가동 헤드(60)를 나타내는 부품 분해 사시도이고, 도 8은 도 7의 측면도이다.
도 7 및 도 8에 도시된 바와 같이, 상기 광학 측정 단말기(50)는, 상기 웰 플레이트(30)의 웰(W)에서 이루어지는 반응물의 광학적 특성을 측정할 수 있는 단말기로서, 발광 및 흡광 측정 단말기(51) 및 형광 측정 단말기(52)를 포함할 수 있다.
여기서, 도 7 및 도 8에 도시된 바와 같이, 예를 들어서, 상기 발광 및 흡광 측정 단말기(51)는, 상기 제 1 팁(40)을 기준으로 일측 방향에 설치되고, 상기 웰 플레이트(30)의 웰(W)에서 이루어지는 반응물의 발광 및 흡광 특성을 측정할 수 있는 블록 구조물일 수 있다.
도 10은 도 2의 상기 가동 헤드(60)에 설치된 발광 및 흡광 측정 단말기(51)의 발광 및 흡광 측정 상태를 보다 상세하게 개념적으로 나타내는 부분 단면도이다.
도 10에 도시된 바와 같이, 상기 발광 및 흡광 측정 단말기(51)는, 상기 웰(W)에서 발생된 발광 특성을 감지할 수 있는 PMT(51-1)(photo multiplier tube)와 광학적으로 연결되는 제 1 광경로(L1)가 형성되고, 광섬유 등의 광가이드(51-2)를 이용하여 광원(51-3) 및 필터(51-4)와 광학적으로 연결되는 제 2 광경로(L2)가 형성되며, 상기 제 2 광경로(L2)를 따라 상기 웰(W)에 조사된 빛이 상기 웰(W)을 통과하면서 1차 흡광되고, 거울면(M)에 반사되어 반사된 빛이 다시 상기 웰(W)을 통과하면서 2차 흡광된 후, PD(51-5)(photo diode)로 전달될 수 있도록 상기 PD(51-5)와 광학적으로 연결되는 제 3 광경로(L3)가 형성되는 발광 및 흡광 측정 블록일 수 있다.
여기서, 상기 광원(51-3)은, 백색의 (white) LED나, 제논 플래쉬 램프(xenon flash lamp), 할로겐 램프 (halogen lamp)등 가시 광선 및 근적외선 대역에서 모두 빛을 내는 소스 (source)를 사용할 수 있고, 흡광은 특정 파장대역에서의 측정 대상 물질의 흡수 특성을 파악하기 위해서, 가시광선 및 근적외선 파장대에서 측정하고자 하는 특정 파장대을 빛만을 통과시키는 필터(51-4)를 광원 출력단에 부착하여 사용할 수 있다.
도 11은 도 2의 상기 가동 헤드(60)에 설치된 상기 형광 측정 단말기(52)의 형광 측정 상태를 보다 상세하게 개념적으로 나타내는 부분 단면도이다.
도 11에 도시된 바와 같이, 상기 형광 측정 단말기(52)는, 상기 제 1 팁(40)을 기준으로 타측 방향에 설치되고, 상기 웰 플레이트(30)의 웰(W)에서 이루어지는 상기 반응물의 형광 특성을 측정할 수 있는 블록 구조물일 수 있다.
즉, 도 11에 도시된 바와 같이, 예를 들어서, 상기 형광 측정 단말기(52)는, 광섬유 등의 광가이드(52-1)를 이용하여 광원(52-2)과 광학적으로 연결되고, 반사 거울(52-3)에 의해 1차 반사되며, 빔 스플리터(52-4)(beam splitter)에 의해서 상기 웰(W) 방향으로 2차 반사되는 제 4 광경로(L4)가 형성되고, 상기 제 4 광경로(L4)를 따라 상기 웰(W)에 조사된 빛에 대한 형광이 PMT(52-5)(photo multiplier tube)로 전달될 수 있도록 상기 PMT(52-5)와 광학적으로 연결되는 제 5 광경로(L5)가 형성되는 형광 측정 블록일 수 있다.
따라서, 예를 들어 480 nm의 광원을 활용하여 520 nm의 형광 발현을 측정하고자 하면 푸른 색 LED (blue LED, 480nm 대역)를 상기 광원(52-2)으로 채용하고, 상기 광가이드(52-1)로 상기 광원(52-2)의 빛을 상기 반사 거울(52-3)로 전달한 후 상기 반사 거울(52-3)을 통하여 반사된 빛은 상기 빔 스플리터(52-4)(예컨데, 500 nm 이하의 빛은 모두 반사 및 500nm 이상은 모두 통과시키는 빔 스플리터)로 인하여 반응물에 모두 인가된 후 상기 반응물에서 발현된 형광(예컨데, 520nm 부근)은 상기 빔 스플리터(52-4)로 인하여 500 nm 이상만 통과된 후, 예컨데, band pass filter를 통하여 520nm 부근의 빛만 상기 PMT(52-5)로 전달될 수 있다.
또한, 도 10 및 도 11에 도시된 바와 같이, 상기 광학 측정 단말기(50)의 상기 발광 및 흡광 측정 단말기(51) 및 상기 형광 측정 단말기(52) 각각은 광 민감도를 높일 수 있도록 광경로에 대물 렌즈(160)가 설치될 수 있다.
한편, 도 7 및 도 8에 도시된 바와 같이, 상기 가동 헤드(60)는, 상기 제 1 팁(40) 및 상기 광학 측정 단말기(50)의 발광 및 흡광 측정 단말기(51) 및 형광 측정 단말기(52)가 설치되는 구조물일 수 있다.
이외에도 사용자가 원하는 다양한 종류의 광원, beam splitter 및 band pass filter로 단말기 및 광원을 구성하면 통상 널리 사용되는 광원 선택용 필터 휠 (excitation filter wheel)이나, 광감지용 휠 (emission filter wheel) 없이 간단하게 형광 측정이 가능하다.
또한, 도 5에 도시된 바와 같이, 상기 가동 헤드 이송 장치(70)는, 상기 본체(10)에 설치되고, 상기 가동 헤드(60)를 이송시킬 수 있는 장치로서, 예를 들어서, X축 액츄에이터(130) 및 Y축 액츄에이터(140)를 포함할 수 있다.
여기서, 상기 X축 액츄에이터(130)는, 상기 가동 헤드(60)를 레일(R2)을 따라 X축으로 이송시킬 수 있는 액츄에이터의 일종일 수 있고, 상기 Y축 액츄에이터(140)는, 상기 가동 헤드(60)를 Y축으로 이송시킬 수 있는 액츄에이터의 일종일 수 있다.
이러한, 상기 액츄에이터들은, 각종 로봇 및 장치를 이룰 수 있고, 모터나 유압 또는 공압 실린더 등의 동력원은 물론, 캠, 기어, 나사봉, 링크, 체인, 밸트 등의 각종 동력전달장치들을 포함할 수 있다.
예를 들어서, 도 5에 도시된 바와 같이, 상기 Y축 액츄에이터(140)는, Y축으로 이동될 수 있는 가동대(141)에 나사 관통되는 나사봉(142) 및 상기 나사봉(142)을 나사 회전시키는 구동모터(143)를 포함할 수 있다.
또한, 도 7에 도시된 바와 같이, 본 발명의 일부 실시예들에 따른 다중 모드 자동 광학 측정기(1000)는, 상기 제 1 팁(40)과 상기 가동 헤드(60) 사이에 설치되고, 상기 제 1 팁(40)을 승하강 레일(R1)을 따라 Z축 방향으로 승하강시킬 수 있는 Z축 액츄에이터(120)를 더 포함할 수 있다.
여기서, 상기 Z축 액츄에이터(120)는, Z축 방향으로 길게 설치되는 벨트(121) 및 구동모터에 의해 회전되는 풀리(122) 조합을 포함하는 액츄에이터일 수 있다.
이러한, 상기 액츄에이터들은, 각종 로봇 및 장치를 이룰 수 있고, 모터나 유압 또는 공압 실린더 등의 동력원은 물론, 캠, 기어, 나사봉, 링크, 체인, 밸트 등의 각종 동력전달장치들을 포함할 수 있다.
따라서, 이러한 본 발명의 일부 실시예들에 따른 다중 모드 자동 광학 측정기(1000)를 이용하면, 하나의 장비로 반응물의 발광 특성, 흡광 특성, 형광 특성을 매우 간편하게 자동으로 측정할 수 있다.
도 9는 본 발명의 일부 실시예들에 따른 다중 모드 자동 광학 측정기(1000)의 작동 상태를 개념적으로 나타내는 정면도이다.
도 9에 도시된 바와 같이, 본 발명의 일부 실시예들에 따른 다중 모드 자동 광학 측정기(1000)는, 상기 광학 측정 단말기(50)에 설치되고, 플래쉬 반응용 시약을 상기 웰(W)에 분사할 수 있는 제 2 팁(80)과, 상기 본체(10)에 설치되고, 상기 제 1 팁(40)에 연결되는 제 1 주사기 펌프(P1) 및 상기 본체(10)에 설치되고, 상기 제 2 팁(80)에 연결되는 제 2 주사기 펌프(P2)를 더 포함할 수 있다.
따라서, 발광 측정 중 "flash" 샘플의 측정이 가능한 것으로, 플래시 샘플은 시약을 분주하자 마자 0.1 초 ~ 수 초 내에 그 반응의 최대 값을 나타내는 시약일 수 있고, 상기 제 2 팁(80)의 시약 분주 직후 그 발광량을 감지해야 할 수 있다.
그러므로, 이러한, 상기 제 1 주사기 펌프(P1) 및 상기 제 2 주사기 펌프(P2)와 각각 연결된 제 1 팁(40)과 제 2 팁(80)은 그 목적에 따라 주사기의 용량을 달리 구성할 수 있다. 예를 들어서, 100 마이크로 리터의 주사기나, 1,000 마이크로 리터 주사기를 사용할 수 있다.
또한, 도 9에 도시된 바와 같이, 본 발명의 일부 실시예들에 따른 다중 모드 자동 광학 측정기(1000)는, 상기 샘플 튜브 홀더(20) 또는 상기 시약 보틀 홀더에 설치되고, 상기 제 1 팁(40)을 세정할 수 있는 팁 세정 모듈(90)을 더 포함할 수 있다.
여기서, 도 9에 도시된 바와 같이, 상기 팁 세정 모듈(90)은, 상기 제 1 팁(40)의 내부를 세정할 수 있도록 상기 제 1 팁(40)이 흡입할 수 있는 세정액을 수용하는 세정액 튜브(91)와, 내부 세정 후 사용된 세정액을 수용하는 웨이스트 보틀(92)(waste bottle) 및 상기 제 1 팁(40)의 외부를 세정할 수 있도록 상기 제 1 팁(40) 방향으로 설치되는 세정액 분사 노즐(93)을 포함할 수 있다. 따라서, 이러한 상기 팁 세정 모듈(90)을 이용하여 샘플이나 시약이나 반응물 간의 교차 오염을 방지할 수 있다.
한편, 도 9 및 도 10에 도시된 바와 같이, 본 발명의 일부 실시예들에 따른 다중 모드 자동 광학 측정기(1000)는, 상기 웰 플레이트(30)의 하방에 설치되고, 그 표면에 상기 광학 측정 단말기(50)에서 조사되는 빛을 반사시킬 수 있는 거울면(M)이 형성되는 웰 플레이트 어답터(110)를 더 포함할 수 있다.
예를 들어서, 도 10에 도시된 바와 같이, 상기 거울면(M)은, 수평면을 기준으로 45도의 각도(A1)로 설치되는 제 1 거울면(M1) 및 상기 수평면을 기준으로 134도 각도(A2)로 설치되는 제 2 거울면(M2)을 포함할 수 있다.
따라서, 본 발명의 일부 실시예들에 따른 다중 모드 자동 광학 측정기(1000)의 작동 과정을 설명하면, 도 9에 도시된 바와 같이, 상기 가동 헤드 이송 장치(70)의 상기 X축 액츄에이터(130) 또는 Y축 액츄에이터(140)를 이용하여 상기 가동 헤드(60)를 상기 샘플 튜브(1)의 상방 또는 상기 시약 보틀(2)의 상방에 위치시킨 후, 상기 Z축 액츄에이터(120)를 이용하여 상기 제 1 팁(40)을 상기 샘플 튜브(1) 또는 상기 시약 보틀(2) 방향으로 하강시킬 수 있다.
이어서, 상기 제 1 주사기 펌프(P1)를 가공시켜서 상기 샘플 튜브(1) 또는 상기 시약 보틀(2)로부터 샘플 또는 시약을 흡입할 수 있고, 흡입을 마친 후, 상기 Z축 액츄에이터(120)를 이용하여 상기 제 1 팁(40)을 상승시킬 수 있다.
이어서, 상기 가동 헤드 이송 장치(70)의 상기 X축 액츄에이터(130) 또는 Y축 액츄에이터(140)를 이용하여 상기 가동 헤드(60)를 웰 플레이트(30)의 상방에 위치시킨 후, 상기 Z축 액츄에이터(120)를 이용하여 상기 제 1 팁(40)을 상기 웰 플레이트(30)의 웰(W) 방향으로 하강시킬 수 있다.
이어서, 상기 제 1 주사기 펌프(P1)를 가공시켜서 상기 웰(W)에 샘플 또는 시약을 분주할 수 있고, 분주를 마친 후, 상기 Z축 액츄에이터(120)를 이용하여 상기 제 1 팁(40)을 다시 상승시킬 수 있다.
이어서, 상기 웰 플레이트(30)의 상방으로 상기 인큐베이팅 리드(32)가 슬라이딩되고, 상기 가스 유도홈(31)으로 인큐베이팅 가스가 공급되면서 상기 쉐이킹 플레이트(100)를 이용하여 반응물을 흔들어 줌으로써 반응물 내부의 병원체나 면역 세포 등을 인큐베이팅 할 수 있다.
이어서, 도 10에 도시된 바와 같이, 상기 발광 및 흡광 측정 단말기(51)를 이용하여, 상기 PMT(51-1)가 상기 제 1 광경로(L1)를 통해서 상기 웰(W)에서 발생된 발광 특성을 감지할 수 있고, 상기 제 2 광경로(L2)를 통해서 상기 광원(51-3) 및 필터(51-4)를 통과한 빛을 상기 웰(W)에 조사하여 상기 웰(W)을 통과하면서 1차 흡광되고, 거울면(M)에 반사되어 반사된 빛이 다시 상기 웰(W)을 통과하면서 2차 흡광된 빛의 흡광 특성을 상기 PD(51-5)가 제 3 광경로(L3)를 통해 측정할 수 있다.
또한, 도 11에 도시된 바와 같이, 상기 형광 측정 단말기(52)를 이용하여 상기 PMT(52-5)는, 광가이드(52-1)를 이용하여 광원(52-2)과 광학적으로 연결되고, 반사 거울(52-3)에 의해 1차 반사되며, 빔 스플리터(52-4)(beam splitter)에 의해서 상기 웰(W) 방향으로 2차 반사되는 빛의 제 4 광경로(L4) 및 상기 제 4 광경로(L4)를 따라 상기 웰(W)에 조사된 빛에 대한 형광 특성을 상기 제 5 광경로(L5)를 통해서 측정할 수 있다.
이외에도, 상기 제 2 팁(80)을 이용하여 상기 플래쉬 반응용 시약을 상기 웰(W)에 분사하여 광학적 특성을 측정할 수도 있고, 상기 팁 세정 모듈(90)을 이용하여 상기 제 1 팁(40) 및 제 2 팁(80)의 내부 및 외부를 자동으로 세정한 후, 후속 공정을 수행할 수 있다.
도 12는 본 발명의 일부 실시예들에 따른 다중 모드 자동 광학 측정기(1000)의 레벨 센서(S1)를 나타내는 단면도이다.
도 12에 도시된 바와 같이, 예를 들어서, 본 발명의 일부 실시예들에 따른 다중 모드 자동 광학 측정기(1000)는, 상기 본체(10)에 설치되고, 테스트용 튜브(3)에 제 1 팁(40)이 분주하는 분주량을 측정할 수 있는 레벨 센서(S1)를 더 포함할 수 있다. 따라서, 작업자는 상기 레벨 센서(S1)를 이용하여 상기 제 1 팁(40)에서 흡입하거나 분주하는 샘플이나 시약의 양이 정확한 지를 확인하거나 정확하지 않은 경우, 각종 밸브나 펌프나 제어부를 조정하여 정확하게 세팅할 수 있다.
즉, 준비된 상기 테스트용 튜브(3)에 이미 알고 있는 양만큼의 액체를 분주하고, 상기 레벨 센서(S1)를 이용하여 수위를 감지한 후, 분주한 액체의 양이 수위 감지 기능으로 측정한 액체의 양과 동일한 지를 판단할 수 있다.
이어서, 다시 알고 있는 양만큼의 액체를 상기 테스트용 튜브(3) 내에 분주하고 수위를 감지하여 그 분주량의 비교하는 과정을 반복할 수 있다. 이러한 방법으로 저울 등의 외부 장치나 숙련된 작업자가 없이도 자동으로 분주되는 자동 분주 기능의 정상 작동 여부를 수시로 확인할 수 있다.
도 13은 본 발명의 일부 실시예들에 따른 다중 모드 자동 광학 측정기(1000)의 테스트 플레이트(150)를 나타내는 사시도이다.
도 12에 도시된 바와 같이, 예를 들어서, 본 발명의 일부 실시예들에 따른 다중 모드 자동 광학 측정기(1000)는, 상기 웰 플레이트(30) 대신 상기 본체(10)에 설치할 수 있고, 적어도 하나의 위치 확인용 코너 발광 소자(151)와, 적어도 하나의 광 감지기 품질 확인용 발광 소자(152) 및 상기 위치 확인용 코너 발광 소자(151)와 상기 광 감지기 품질 확인용 발광 소자(152)에 전원을 인가하는 충전기(153)가 설치되는 테스트 플레이트(150)를 더 포함할 수 있다. 따라서, 작업자는 상기 테스트 플레이트(150)를 이용하여 상술된 각각의 액츄에이터나 장치나 기타 광학 측정기들이 정확하게 작동하는 지를 확인하거나 정확하지 않은 경우, 각종 장치들을 교정하여 정확하게 세팅할 수 있다.
즉, 상기 테스트 플레이트(150) 중앙에 위치한 4 개의 광 감지기 품질 확인용 발광 소자(152)는 그 발광량을 조절하여 광학 감지기의 품질을 검사할 수 있다.
예를 들어, 광감지기로 "0" 에서 10,000,000 (천만) 까지의 RLU (relative luminescence unit - 상대적인 발광 발현 값, 수치 자체는 큰 의미가 없으며 상대적인 값이 의미가 있음) 대역을 가지는 PMT (photo multiplier tube)를 사용할 경우 각각의 상기 광 감지기 품질 확인용 발광 소자(152)에 수십, 수백, 수천, 수만, 혹은 수백, 수천, 수만, 수십만의 값을 정확하게 감지하여 광감지기의 품질 검사로 대체 가능하다.
또한, 광감지기로 PMT를 사용하여 장치에 관계 없이 항상 일정한 비율의 품질 확인용 상기 광 감지기 품질 확인용 발광 소자(152)를 설정하여 광감지기의 작동 및 광감지기의 감도(sensitivity) 및 광감지기와 (혹은 연결된 광가이드) 측정 대상물의 거리(발광 측정시 발광량은 거리에 반비례 함)까지 동시에 품질 검사가 가능하다. 이러한 상기 광 감지기 품질 확인용 발광 소자(152)는 4개 뿐만이 아니라 다양한 개수로 설치될 수 있다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
[부호의 설명]
D: 도어
1: 샘플 튜브
2: 시약 보틀
3: 테스트용 튜브
10: 본체
20: 샘플 튜브 홀더
W: 웰
30: 웰 플레이트
40: 제 1 팁
50: 광학 측정 단말기
60: 가동 헤드
70: 가동 헤드 이송 장치
1000: 다중 모드 자동 광학 측정기
51: 발광 및 흡광 측정 단말기
52: 형광 측정 단말기
51-1: PMT
L1: 제 1 광경로
51-2: 광가이드
51-3: 광원
51-4: 필터
L2: 제 2 광경로
51-5: PD
L3: 제 3 광경로
52-1: 광가이드
52-2: 광원
52-3: 반사 거울
52-4: 빔 스플리터
L4: 제 4 광경로
52-5: PMT
L5: 제 5 광경로
80: 제 2 팁
P1: 제 1 주사기 펌프
P2: 제 2 주사기 펌프
21: 손잡이
22: 슬라이딩 서랍
H: 홀더 홈
S: 스프링
23: 가압 부재
90: 팁 세정 모듈
91: 세정액 튜브
92: 웨이스트 보틀
93: 세정액 분사 노즐
31: 가스 유도홈
32: 인큐베이팅 리드
33: 열선
34: 인큐베이팅 가스 분사 노즐
100: 쉐이킹 플레이트
110: 웰 플레이트 어답터
M: 거울면
M1: 제 1 거울면
M2: 제 2 거울면
R1: 승하강 레일
120: Z축 액츄에이터
121: 벨트
122: 풀리
R2: 레일
130: X축 액츄에이터
140: Y축 액츄에이터
141: 가동대
142: 나사봉
143: 구동모터
S1: 레벨 센서
150: 테스트 플레이트
151: 확인용 코너 발광 소자
152: 광 감지기 품질 확인용 발광 소자
153: 충전기
160: 대물 렌즈

Claims (15)

  1. 본체;
    상기 본체에 설치되고, 적어도 하나의 샘플 튜브가 안착되는 샘플 튜브 홀더;
    상기 본체에 설치되고, 적어도 하나의 시약 보틀이 안착되는 시약 보틀 홀더;
    상기 본체에 설치되고, 샘플과 시약의 반응이 이루어질 수 있는 적어도 하나의 웰이 형성되는 웰 플레이트;
    상기 샘플 튜브 홀더에 안착된 샘플 튜브로부터 샘플을 흡입하여 상기 웰 플레이트의 웰에 분주할 수 있는 제 1 팁;
    상기 웰 플레이트의 웰에서 이루어지는 반응물의 광학적 특성을 측정할 수 있는 광학 측정 단말기;
    상기 제 1 팁 및 상기 광학 측정 단말기가 설치되는 가동 헤드; 및
    상기 본체에 설치되고, 상기 가동 헤드를 이송시킬 수 있는 가동 헤드 이송 장치;
    를 포함하는, 다중 모드 자동 광학 측정기.
  2. 제 1 항에 있어서,
    상기 광학 측정 단말기는,
    상기 제 1 팁을 기준으로 일측 방향에 설치되고, 상기 웰 플레이트의 웰에서 이루어지는 반응물의 발광 및 흡광 특성을 측정할 수 있는 발광 및 흡광 측정 단말기; 및
    상기 제 1 팁을 기준으로 타측 방향에 설치되고, 상기 웰 플레이트의 웰에서 이루어지는 상기 반응물의 형광 특성을 측정할 수 있는 형광 측정 단말기;
    를 포함하는, 다중 모드 자동 광학 측정기.
  3. 제 2 항에 있어서,
    상기 발광 및 흡광 측정 단말기는,
    상기 웰에서 발생된 발광 특성을 감지할 수 있는 PMT(photo multiplier tube)와 광학적으로 연결되는 제 1 광경로가 형성되고,
    광가이드를 이용하여 광원 및 필터와 광학적으로 연결되는 제 2 광경로가 형성되며,
    상기 제 2 광경로를 따라 상기 웰에 조사된 빛이 상기 웰을 통과하면서 1차 흡광되고, 거울면에 반사되어 반사된 빛이 다시 상기 웰을 통과하면서 2차 흡광된 후, PD(photo diode)로 전달될 수 있도록 상기 PD와 광학적으로 연결되는 제 3 광경로가 형성되는 발광 및 흡광 측정 블록인, 다중 모드 자동 광학 측정기.
  4. 제 2 항에 있어서,
    상기 형광 측정 단말기는,
    광가이드를 이용하여 광원과 광학적으로 연결되고, 반사 거울에 의해 1차 반사되며, 빔 스플리터(beam splitter)에 의해서 상기 웰 방향으로 2차 반사되는 제 4 광경로가 형성되고,
    상기 제 4 광경로를 따라 상기 웰에 조사된 빛에 대한 형광이 PMT(photo multiplier tube)로 전달될 수 있도록 상기 PMT와 광학적으로 연결되는 제 5 광경로가 형성되는 형광 측정 블록인, 다중 모드 자동 광학 측정기.
  5. 제 1 항에 있어서,
    상기 광학 측정 단말기에 설치되고, 플래쉬 반응용 시약을 상기 웰에 분사할 수 있는 제 2 팁;
    상기 본체에 설치되고, 상기 제 1 팁에 연결되는 제 1 주사기 펌프; 및
    상기 본체에 설치되고, 상기 제 2 팁에 연결되는 제 2 주사기 펌프;
    를 더 포함하는, 다중 모드 자동 광학 측정기.
  6. 제 1 항에 있어서,
    상기 샘플 튜브 홀더와 상기 시약 보틀 홀더는 일체를 이루어서 설치되고, 상기 샘플 튜브 홀더와 상기 시약 보틀 홀더는, 손잡이가 설치된 슬라이딩 서랍에 설치되고, 홀더 홈에 스프링의 복귀력에 의해 상기 샘플 튜브 또는 시약 보틀의 측면을 가압할 수 있는 가압 부재가 설치되는 것인, 다중 모드 자동 광학 측정기.
  7. 제 1 항에 있어서,
    상기 샘플 튜브 홀더 또는 상기 시약 보틀 홀더에 설치되고, 상기 제 1 팁을 세정할 수 있는 팁 세정 모듈;을 더 포함하고,
    상기 팁 세정 모듈은,
    상기 제 1 팁의 내부를 세정할 수 있도록 상기 제 1 팁이 흡입할 수 있는 세정액을 수용하는 세정액 튜브;
    내부 세정 후 사용된 세정액을 수용하는 웨이스트 보틀(waste bottle); 및
    상기 제 1 팁의 외부를 세정할 수 있도록 상기 제 1 팁 방향으로 설치되는 세정액 분사 노즐;을 포함하는, 다중 모드 자동 광학 측정기.
  8. 제 1 항에 있어서,
    상기 웰 플레이트는,
    좌측 상면에 적어도 하나의 좌측 웰이 형성되고, 우측 상면에 적어도 하나의 우측 웰이 형성되며, 상기 좌측 웰과 상기 우측 웰 사이에 가스 유도홈이 형성되고,
    상방에 상기 웰과 이격되게 상기 웰의 상방을 덮을 수 있도록 슬라이딩이 가능하고, 열선이 설치되는 인큐베이팅 리드가 설치되고,
    상기 가스 유도홈과 상기 웰 플레이트 리드 사이의 공간에 인큐베이팅 가스를 공급하는 인큐베이팅 가스 분사 노즐이 설치되며,
    하방에 상기 웰 플레이트를 쉐이킹할 수 있는 쉐이킹 플레이트가 설치되는 것인, 다중 모드 자동 광학 측정기.
  9. 제 1 항에 있어서,
    상기 웰 플레이트의 하방에 설치되고, 그 표면에 상기 광학 측정 단말기에서 조사되는 빛을 반사시킬 수 있는 거울면이 형성되는 웰 플레이트 어답터;
    를 더 포함하는, 다중 모드 자동 광학 측정기.
  10. 제 9 항에 있어서,
    상기 거울면은,
    수평면을 기준으로 45도 각도로 설치되는 제 1 거울면; 및
    상기 수평면을 기준으로 134도 각도로 설치되는 제 2 거울면;을 포함하는, 다중 모드 자동 광학 측정기.
  11. 제 1 항에 있어서,
    상기 제 1 팁과 상기 가동 헤드 사이에 설치되고, 상기 제 1 팁을 승하강 레일을 따라 Z축 방향으로 승하강시킬 수 있는 Z축 액츄에이터;
    를 더 포함하는, 다중 모드 자동 광학 측정기.
  12. 제 1 항에 있어서,
    상기 가동 헤드 이송 장치는,
    상기 가동 헤드를 X축으로 이송시킬 수 있는 X축 액츄에이터; 및
    상기 가동 헤드를 Y축으로 이송시킬 수 있는 Y축 액츄에이터;
    를 포함하는, 다중 모드 자동 광학 측정기.
  13. 제 1 항에 있어서,
    상기 본체에 설치되고, 테스트용 튜브에 제 1 팁이 분주하는 분주량을 측정할 수 있는 레벨 센서;
    를 더 포함하는, 다중 모드 자동 광학 측정기.
  14. 제 1 항에 있어서,
    상기 웰 플레이트 대신 상기 본체에 설치할 수 있고, 적어도 하나의 위치 확인용 코너 발광 소자와, 적어도 하나의 광 감지기 품질 확인용 발광 소자 및 상기 위치 확인용 코너 발광 소자와 상기 광 감지기 품질 확인용 발광 소자에 전원을 인가하는 충전기가 설치되는 테스트 플레이트;
    를 더 포함하는, 다중 모드 자동 광학 측정기.
  15. 제 1 항에 있어서,
    상기 광학 측정 단말기는 광경로에 대물 렌즈가 설치되는 것인, 다중 모드 자동 광학 측정기.
PCT/KR2014/006535 2013-08-30 2014-07-18 다중 모드 자동 광학 측정기 WO2015030368A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130104267A KR101505844B1 (ko) 2013-08-30 2013-08-30 다중 모드 자동 광학 측정기
KR10-2013-0104267 2013-08-30

Publications (1)

Publication Number Publication Date
WO2015030368A1 true WO2015030368A1 (ko) 2015-03-05

Family

ID=52586868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/006535 WO2015030368A1 (ko) 2013-08-30 2014-07-18 다중 모드 자동 광학 측정기

Country Status (2)

Country Link
KR (1) KR101505844B1 (ko)
WO (1) WO2015030368A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107817226A (zh) * 2016-09-10 2018-03-20 北京金恒祥仪器有限公司 三维自动石油荧光分析仪
US20210215608A1 (en) * 2017-05-01 2021-07-15 Wyatt Technology Corporation High throughput method and apparatus for measuring multiple optical properties of a liquid sample
WO2021175414A1 (de) * 2020-03-03 2021-09-10 Hombrechtikon Systems Engineering Ag Laborautomat und verfahren zur bearbeitung einer probe
US11162903B2 (en) * 2019-01-25 2021-11-02 Hitachi, Ltd. Apparatus, system, and method for luminescence measurement

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101953864B1 (ko) * 2017-09-18 2019-05-23 (주)바이오니아 회전 원통형 필터휠이 구비된 다채널 형광측정기
KR102185272B1 (ko) * 2018-12-10 2020-12-01 주식회사 이앤에스헬스케어 체외진단장치
KR102095747B1 (ko) * 2018-12-10 2020-04-20 주식회사 이앤에스헬스케어 Led단일광원과 제어부의 교체형 모듈을 갖는 체외진단장치
KR102152629B1 (ko) * 2018-12-10 2020-09-07 주식회사 이앤에스헬스케어 광진단부 교체 모듈을 구비한 체외진단장치
KR102157567B1 (ko) * 2018-12-10 2020-09-18 주식회사 이앤에스헬스케어 피펫장비 고정용 디바이스를 갖는 체외진단장치
KR102102988B1 (ko) * 2019-03-28 2020-04-22 주식회사 엘지화학 면역 검사 장치 및 면역 검사 방법
KR102105639B1 (ko) * 2019-03-28 2020-04-28 주식회사 엘지화학 면역 검사 장치 및 면역 검사 방법
EP4033251B1 (en) * 2019-09-19 2024-05-22 Hitachi High-Tech Corporation Automated analysis device and method for leveling same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735759A (ja) * 1993-07-20 1995-02-07 Aloka Co Ltd 液滴の検出方法及びその分注装置
JP2004514878A (ja) * 2000-06-15 2004-05-20 パッカード・インストルメント・カンパニー・インコーポレーテッド 万能型のマイクロプレート分析器
JP2005091093A (ja) * 2003-09-16 2005-04-07 Olympus Corp 吸光度測定用マイクロチップ
JP2007010690A (ja) * 2002-05-30 2007-01-18 Bayer Corp 自動体液分析装置における試料管破断検出器
JP2007526479A (ja) * 2004-03-02 2007-09-13 ダコ デンマーク アクティーゼルスカブ 生物学的染色装置のための試薬送達システム、分配デバイスおよび容器
KR20110084761A (ko) * 2010-01-18 2011-07-26 (주)마이크로디지탈 발광 측정장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10197449A (ja) * 1997-01-07 1998-07-31 Hamamatsu Photonics Kk 光測定装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735759A (ja) * 1993-07-20 1995-02-07 Aloka Co Ltd 液滴の検出方法及びその分注装置
JP2004514878A (ja) * 2000-06-15 2004-05-20 パッカード・インストルメント・カンパニー・インコーポレーテッド 万能型のマイクロプレート分析器
JP2007010690A (ja) * 2002-05-30 2007-01-18 Bayer Corp 自動体液分析装置における試料管破断検出器
JP2005091093A (ja) * 2003-09-16 2005-04-07 Olympus Corp 吸光度測定用マイクロチップ
JP2007526479A (ja) * 2004-03-02 2007-09-13 ダコ デンマーク アクティーゼルスカブ 生物学的染色装置のための試薬送達システム、分配デバイスおよび容器
KR20110084761A (ko) * 2010-01-18 2011-07-26 (주)마이크로디지탈 발광 측정장치

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107817226A (zh) * 2016-09-10 2018-03-20 北京金恒祥仪器有限公司 三维自动石油荧光分析仪
CN107817226B (zh) * 2016-09-10 2024-01-05 北京金恒祥仪器有限公司 三维自动石油荧光分析仪
US20210215608A1 (en) * 2017-05-01 2021-07-15 Wyatt Technology Corporation High throughput method and apparatus for measuring multiple optical properties of a liquid sample
US11892402B2 (en) * 2017-05-01 2024-02-06 Wyatt Technology, Llc High throughput method and apparatus for measuring multiple optical properties of a liquid sample
US11162903B2 (en) * 2019-01-25 2021-11-02 Hitachi, Ltd. Apparatus, system, and method for luminescence measurement
WO2021175414A1 (de) * 2020-03-03 2021-09-10 Hombrechtikon Systems Engineering Ag Laborautomat und verfahren zur bearbeitung einer probe
JP2023522547A (ja) * 2020-03-03 2023-05-31 ホンブレヒティコン システムズ エンジニアリング アクチェンゲゼルシャフト 自動実験室用装置及び試料を処理する方法

Also Published As

Publication number Publication date
KR20150026003A (ko) 2015-03-11
KR101505844B1 (ko) 2015-03-25

Similar Documents

Publication Publication Date Title
WO2015030368A1 (ko) 다중 모드 자동 광학 측정기
WO2018143680A1 (ko) 자동화된 액상 면역반응 분석 장치
WO2016088992A1 (en) Test apparatus and control method thereof
WO2016182382A1 (ko) 일체화된 반응 및 검출 수단을 구비한 시험 장치에 사용되는 스테이션
KR20130046373A (ko) 임프린트 장치, 임프린트 방법, 임프린트 시스템, 및 소자 제조 방법
KR100814062B1 (ko) 연속적으로 이동되는 투과 가능한 판재의 자동 결함 검사시스템 및 자동 결함 검사방법
KR20140055115A (ko) 글라스 기판 검사 장치
KR100691455B1 (ko) 듀얼 전자부품 검사 장치에서의 부품 정렬 장치
WO2015174562A1 (ko) 오염물질 모니터링 장치
WO2009119983A2 (ko) 중복 영상을 이용한 에프피디 기판 및 반도체 웨이퍼 검사시스템
WO2020231113A1 (ko) 치수 측정용 지그 및 그를 포함하는 치수 측정 장치
WO2024085437A1 (ko) 인-챔버 타입 박막 분석 장치
WO2018131936A1 (ko) 바이러스 비활성화 키트 및 바이러스 비활성화 장치
KR20040038783A (ko) 산업용 로봇
WO2020197193A1 (ko) 면역 검사 장치 및 면역 검사 방법
TW201447289A (zh) 光電透鏡檢測裝置及檢測方法
US7419836B2 (en) Device and method for observing reactions in samples
CN209027675U (zh) 一种非接触式分光测色仪
WO2022010037A1 (ko) 표면 플라즈몬 공명을 이용한 형광 증폭 장치 및 광 증폭 장치
WO2020153742A1 (ko) 검사 장치용 이송 기구, 검사 장치, 및 이를 이용하는 대상물 검사 방법
WO2020197182A1 (ko) 면역 검사 방법 및 면역 검사 장치
WO2018190693A2 (en) Glass processing apparatus and methods
WO2024090647A1 (ko) 탁도 측정 장치 및 방법
WO2023204359A1 (ko) 조리개를 이용하여 입사 각도 또는 개구수를 조절하는 편광 분석 장치 및 방법
TWI832136B (zh) 含金屬鍍膜半導體元件的檢測系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14839998

Country of ref document: EP

Kind code of ref document: A1