WO2015029857A1 - 十字軸式自在継手の製造方法 - Google Patents

十字軸式自在継手の製造方法 Download PDF

Info

Publication number
WO2015029857A1
WO2015029857A1 PCT/JP2014/071799 JP2014071799W WO2015029857A1 WO 2015029857 A1 WO2015029857 A1 WO 2015029857A1 JP 2014071799 W JP2014071799 W JP 2014071799W WO 2015029857 A1 WO2015029857 A1 WO 2015029857A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
universal joint
thrust piece
thrust
cross
Prior art date
Application number
PCT/JP2014/071799
Other languages
English (en)
French (fr)
Inventor
祥史 黒川
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to CN201480002391.9A priority Critical patent/CN104822957B/zh
Priority to JP2014555646A priority patent/JP5850181B2/ja
Priority to US14/900,254 priority patent/US10184525B2/en
Priority to EP14839006.5A priority patent/EP3001061B1/en
Publication of WO2015029857A1 publication Critical patent/WO2015029857A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/26Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected
    • F16D3/38Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another
    • F16D3/40Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another with intermediate member provided with two pairs of outwardly-directed trunnions on intersecting axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/26Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected
    • F16D3/38Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another
    • F16D3/40Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another with intermediate member provided with two pairs of outwardly-directed trunnions on intersecting axes
    • F16D3/41Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another with intermediate member provided with two pairs of outwardly-directed trunnions on intersecting axes with ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C21/00Combinations of sliding-contact bearings with ball or roller bearings, for exclusively rotary movement
    • F16C21/005Combinations of sliding-contact bearings with ball or roller bearings, for exclusively rotary movement the external zone of a bearing with rolling members, e.g. needles, being cup-shaped, with or without a separate thrust-bearing disc or ring, e.g. for universal joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/26Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected
    • F16D3/38Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another
    • F16D3/382Hooke's joints or other joints with an equivalent intermediate member to which each coupling part is pivotally or slidably connected with a single intermediate member with trunnions or bearings arranged on two axes perpendicular to one another constructional details of other than the intermediate member
    • F16D3/385Bearing cup; Bearing construction; Bearing seal; Mounting of bearing on the intermediate member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/12Mounting or assembling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining
    • Y10T29/49895Associating parts by use of aligning means [e.g., use of a drift pin or a "fixture"]

Definitions

  • the present invention relates to a method for manufacturing a cross shaft type universal joint for connecting, for example, rotating shafts constituting a steering apparatus for an automobile so that torque can be transmitted.
  • the automobile steering device is configured as shown in FIG.
  • the movement of the steering wheel 1 operated by the driver is transmitted to the input shaft 6 of the steering gear unit 5 via the steering shaft 2, the universal joint 3a, the intermediate shaft 4, and another universal joint 3b.
  • a pair of left and right tie rods 7 and 7 are pushed and pulled by a rack and pinion mechanism built in the steering gear unit 5, and an appropriate rudder angle corresponding to the amount of operation of the steering wheel 1 is applied to the pair of left and right steering wheels. It is configured to grant.
  • FIG. 13 shows an example of the structure of the intermediate shaft 4 incorporated in the steering device as described above.
  • the intermediate shaft 4 is telescopic in order to prevent the steering wheel 1 from being pushed up to the driver side in the event of a collision.
  • the intermediate shaft 4 has an inner shaft 9 provided with a male spline portion 8 on the outer peripheral surface of the tip portion (left end portion in FIG. 13), and a circular tube formed with a female spline portion 10 into which the male spline portion 8 can be inserted on the inner peripheral surface. Of the outer tube 11. Then, by engaging the male spline portion 8 and the female spline portion 10 by spline engagement, the inner shaft 9 and the outer tube 11 are combined in an extendable manner. Further, the base end portions of the yokes 12a and 12b constituting the universal joints 3a and 3b are welded and fixed to the base end portions of the inner shaft 9 and the outer tube 11, respectively.
  • FIGS. 14 to 15 show ones described in Patent Documents 1 and 2 as an example of conventionally known universal joints that can be used as the universal joints 3a and 3b.
  • the structures shown in FIGS. 14 to 15 are so-called vibration-proof joints that prevent transmission of vibration.
  • the universal joint that is the subject of the present invention does not necessarily have a vibration-proof structure. Therefore, in the following description, the structure of the main body portion of the universal joint 3 will be described with the vibration-proof structure omitted.
  • the universal joint 3 includes a pair of yokes 12a and 12b, each of which is formed in a bifurcated shape by a metal material having sufficient rigidity, via a cross shaft 13 made of a hard metal such as an alloy steel such as bearing steel. In this way, the torque is transmitted and coupled.
  • Each of the yokes 12a and 12b includes a base portion 14 and 14 and a pair of connecting arm portions 15 and 15 for each of the yokes 12a and 12b. Both base portions 14 and 14 transmit torque to the inner shaft 9 or the outer end of the outer tube 11 (or the front end of the steering shaft 2 or the rear end of the input shaft 6, see FIG. 12), which is a rotating shaft. Support and fix freely.
  • circular holes 16 and 16 are formed concentrically at the tips of the connecting arm portions 15 and 15 respectively for both yokes 12a and 12b. Then, the bearing cups 17 and 17 made of a hard metal plate material such as bearing steel and case-hardened steel are tightened in the circular holes 16 and 16 with the openings facing each other. The inner fitting is fixed by fitting.
  • the cross shaft 13 has a shape such that the middle portions of a pair of column portions are orthogonal to each other, and has four shaft portions 18 and 18 each having a cylindrical shape.
  • the axial direction intermediate part or tip part of the shaft parts 18 and 18 is inserted into the bearing cups 17 and 17, respectively.
  • a plurality of needles 20 and 20, each of which is a rolling element, are arranged between the inner peripheral surface of each bearing cup 17, 17 and the front half outer peripheral surface of each shaft portion 18, 18 to provide a radial bearing 21.
  • 21 and the yokes 12a and 12b are oscillated and displaced with a light force with respect to the cross shaft 13. With this configuration, even when the central axes of the yokes 12a and 12b do not coincide with each other, it is possible to transmit the rotational force between the yokes 12a and 12b while suppressing transmission loss.
  • the universal joint 3 as described above is configured so that each shaft portion 18, 18 has a bottomed insertion hole 22, 22 at the center of each shaft portion 18, 18. It forms in 18 axial directions. Then, synthetic resin pins 23 and 23 are inserted inside the respective insertion holes 22 and 22. The pins 23 and 23 are stretched between the bearing cups 17 and 17 and the shaft portions 18 and 18, so that the bearing cups 17 and 17 rattle against the shaft portions 18 and 18. While preventing the yokes 12a and 12b from rattling with respect to the cross shaft 13, the distance between the opening end portions of the bearing cups 17 and 17 and the coupling base portion 19 is prevented from being excessively reduced. That is, of the universal joints 3a and 3b constituting the steering device shown in FIG.
  • Seal rings 24 and 24 are provided between the base end portions of the shaft portions 18 and 18 and the opening portions of the bearing cups 17 and 17, respectively.
  • the seal rings 24 and 24 are excessively compressed, and the durability of the seal rings 24 and 24 is impaired. This prevents the amount of compression of the seal ring 24 from being excessively reduced and the sealing performance of the seal rings 24 and 24 from being impaired.
  • FIG. 16 to 17 show a second example of the conventional structure of a universal joint described in Patent Document 3.
  • FIG. 17 a substantially disk as shown in FIG. 17 is provided between the bottom inner surface of the bearing cup 17 constituting the radial bearing 21 and the tip end surface of the shaft portion 18a constituting the cross shaft 13a.
  • a thrust piece 25 made of synthetic resin having a shape and elasticity is sandwiched.
  • the thrust piece 25 is stretched between the bottom inner surface of the bearing cup 17 and the tip end surface of the shaft portion 18a, thereby preventing the yoke 12 from rattling with respect to the cross shaft 13a. .
  • the pin 23 or the thrust piece 25 is stretched between the bearing cup 17 and the shaft portions 18 and 18a to prevent the yokes 12, 12a and 12b from rattling against the cross shafts 13 and 13a. it can.
  • the rotational resistance (oscillation resistance) for each shaft portion increases.
  • the thrust piece (or pin and insertion hole) is formed with high accuracy and the assembly accuracy of the cross shaft and the yoke (the bearing cup of the shaft portion) The amount of insertion into the cross-shaft universal joint is increased.
  • the present invention was invented to realize a method for manufacturing a cross shaft universal joint that can improve the function of suppressing rattling of the yoke with respect to the cross shaft while suppressing an increase in manufacturing cost. Is.
  • a cross shaft universal joint of the present invention comprises a pair of yokes, a cross shaft, four radial bearings, and four thrust pieces,
  • Each of the pair of yokes extends in the axial direction from two positions on the diametrically opposite side of the rotating shaft, among a base portion for coupling and fixing an end portion of the rotating shaft and one axial end edge of the base portion.
  • the cross shaft is formed by radially fixing four shaft portions on the outer peripheral surface of the coupling base portion, Each of the radial bearings is disposed between an inner peripheral surface of a bottomed cylindrical bearing cup that is fitted and fixed inside each of the circular holes, and an outer peripheral surface of each of the shaft portions. And supporting the radial load applied between each shaft part, Each of the thrust pieces is made of a synthetic resin, and is disposed between the bottom inner surface of each bearing cup and each shaft portion.
  • a method of manufacturing a cross shaft universal joint When assembling the cross shaft universal joint, the dimension of the thrust piece in the axial direction of the shaft portion is adjusted by heating and deforming at least one of the thrust pieces.
  • the thrust piece in a state where the pair of yokes, the cross shaft, the radial bearings, and the thrust pieces are assembled, at least one of the thrust pieces is heated and deformed. Thereby, the dimension of the thrust piece in the axial direction of the shaft portion is adjusted.
  • the shaft portion where the thrust piece is disposed is heated, and the thrust piece is heated.
  • the bearing cup and the shaft portion are assembled, and the thrust piece is heated and deformed to adjust the dimension of the thrust piece in the axial direction of the shaft portion.
  • the thrust piece is provided with a margin for tightening the bearing cup and the shaft portion and the thrust piece is in a state before being heated.
  • the size of the tightening allowance is set larger than the size of the tightening allowance after heating.
  • a convex portion is provided at the center of one of the end face of the thrust piece and the face facing the end face, and a concave is provided at the center of the other face, and the convex It is preferable that the central axes of the shaft portion and the radial bearing coincide with each other on the basis of the engagement between the shaft portion and the concave portion.
  • one of the pair of yokes is oscillated and displaced with respect to the other yoke in a state where the thrust piece is heated and the convex portion and the concave portion are engaged.
  • the thrust piece is disposed between the inner surface of the bottom portion of the bearing cup and the front end surface of the shaft portion, and
  • the thrust piece has a substantially disk shape having a partially spherical outer surface along the bottom inner surface of the bearing cup and a conical inner surface inclined in a direction in which the outer diameter decreases toward the tip. Preferably it is formed.
  • the thrust piece is disposed between the bottom inner surface of the bearing cup provided with a convex portion at the center and the tip end surface of the shaft portion provided with a concave portion at the center, and
  • the thrust piece includes an outer surface having a concave portion that engages with a convex portion on the inner surface of the bottom portion of the bearing cup, and an inner surface having a convex portion that engages with a concave portion on the tip surface of the shaft portion.
  • the dimension of the thrust piece in the axial direction of the shaft portion is obtained by heating and deforming at least one of the thrust pieces. Adjust.
  • the shape accuracy and dimensional accuracy of the thrust piece and the assembly accuracy between the cross shaft and both yokes are not excessively increased, and the manufacturing cost is reduced, and the rattling of the pair of yokes with respect to the cross shaft is suppressed.
  • a cross shaft type universal joint can be provided.
  • FIG. 1 is an enlarged cross-sectional view showing a part II in a state where a pin is cut.
  • the figure similar to FIG. 2 which shows 2nd Embodiment of this invention in the state which does not cut
  • the figure similar to FIG. 2 which shows 3rd Embodiment of this invention.
  • the fragmentary sectional view which shows the manufacturing method of the universal joint in 3rd Embodiment of this invention in order of a process.
  • FIG. 2 which shows 4th Embodiment of this invention.
  • FIG. 2 which shows 5th Embodiment of this invention.
  • the figure similar to FIG. 2 which shows 6th Embodiment of this invention.
  • FIG. 17 is a plan view (A) showing the thrust piece of FIG. 16 taken out, and a cross-sectional view (B) taken along line XVII-XVII in FIG.
  • the universal joint 3c of the present embodiment has an insertion hole 22 at the center of each of the shaft portions 18 and 18 constituting the cross shaft 13 as in the case of the first example of the conventional structure shown in FIGS.
  • the pins 23a and 23a corresponding to the thrust pieces of the present invention are inserted inside the respective insertion holes 22.
  • the universal joint 3c is comprised.
  • each bearing cup 17, 17 is the most concave with respect to the axial direction of each shaft 18, 18 (the center of curvature is on the center axis of each bearing cup 17, 17.
  • the fastening allowance of each pin 23a, 23a with respect to the bottom inner surface of each bearing cup 17, 17 is about 1 to 500 ⁇ m.
  • the tightening allowance can be made smaller than 1 ⁇ m (for example, 0), or the bottom inner surfaces of the bearing cups 17 and 17 can be opposed to the tip surfaces of the pins 23a and 23a through a slight gap.
  • the value of the allowance in each state is a value in the state at the normal temperature that is the use state of the cross shaft type universal joint.
  • each pin 23a, 23a is heated and thermally expanded or plastically deformed so that the tightening margin can be adjusted, so that an appropriate thermal expansion coefficient (1 to 20 ⁇ 10 ⁇ 5 ) And a small friction coefficient with respect to the metal material constituting the cross shaft or each of the bearing cups 17 and 17 in order to suppress an increase in rotational resistance of the radial bearings 21 and 21 (friction coefficient with respect to the metal material).
  • PPS polyphenylene sulfide resin
  • PEEK polyetheretherketone
  • PAI polyamideimide resin
  • PI polyimide resin
  • the universal joint 3c of the present embodiment as described above is manufactured as follows. First, insertion holes 22 are formed in the central portions of the shaft portions 18 and 18 constituting the cross shaft 13, and synthetic resin pins 23 a and 23 a are inserted inside the insertion holes 22. Next, the shafts 18, 18 are inserted into the circular holes 16, 16 provided at the distal ends of the coupling arm portions 15, 15 constituting the yokes 12, 12. A plurality of needles 20, 20 are provided on the inner peripheral surfaces of the bearing cups 17, 17 made by stamping or bending a hard metal plate material such as bearing steel or case-hardened steel. Then, the bearing cups 17 and 17 are press-fitted into the circular holes 16 and 16 from the outside of the coupling arm portions 15 and 15 to be fitted and fixed.
  • the bottom inner surfaces of the bearing cups 17 and 17 and the tip surfaces of the pins 23a and 23a are brought into contact with each other (with the pins 23a and 23a elastically compressed in the axial direction).
  • the opening edge portions of the bearing cups 17 and 17 are bent inward in the radial direction, and inwardly directed to the opening portions of the bearing cups 17 and 17.
  • the collar portions 26 and 26 are formed to prevent the needles 20 and 20 from falling off.
  • the radial bearings 21 and 21 are provided between the shaft portions 18 and 18 and the coupling arm portions 15 and 15, respectively.
  • the fastening allowance of each pin 23a, 23a with respect to the inner surface of the bottom of each bearing cup 17, 17 is about 2 to 1000 ⁇ m, and is larger than the fastening allowance after completion.
  • each pin 23a, 23a is passed through the bottom of each bearing cup 17, 17 at about 40 to 250 ° C. ⁇ the melting point of the synthetic resin constituting each pin 23a, 23a (PPS: 275 ° C., PEEK : 334 ° C., PAI: 300 ° C.) or lower temperature ⁇ .
  • the bearing cups 17 and 17 are heated by high-frequency induction heating, the heated metal member is brought into contact with the bottom of the bearing cups 17 and 17 and heated by heat conduction, or the bearing cups 17 and 17 are heated.
  • the tip of each pin 23a, 23a is heated by plasma-heating the bottom of each pin. And the front-end
  • one of the two yokes 12 and 12 is oscillated and displaced with respect to the other yoke 12, so that the shaft portions 18 and 18 (pins 23 a and 23 a supported by the shaft portions 18 and 18) are connected to the bearing cups 17. , 17 to make the inner surface of the bottom of each bearing cup 17, 17 and the front end surface of each pin 23 a, 23 a slidably contact each other.
  • the tip of each pin 23a, 23a is plastically deformed, and the size of the tightening allowance is adjusted to an appropriate size, and the property of the tip surface of each pin 23a, 23a is adjusted (the tip surface is (Partial spherical shape is formed following the inner surface of the bottom of the bearing cups 17, 17).
  • the pins 23a and 23a are brought into sliding contact with the tip surfaces of the pins 23a and 23a.
  • the bearing cups 17 and 17 are guided by the inner bottom surfaces of the bearing cups 17 and 17, so that the center axes of the bearing cups 17 and 17 and the shaft portions 18 and 18 are aligned with each other. In this state, the tips of the pins 23a and 23a are cooled and solidified.
  • each pin 23a, 23a can be cooled slowly by allowing it to cool, but for example, it can be performed with a gaseous refrigerant such as low-temperature nitrogen gas obtained by evaporating liquid nitrogen, or cooling water can be circulated inside. It is preferable from the standpoint of facilitating the management of the cooling temperature and the cooling time that a jig or the like is brought into contact with the bottom of each bearing cup 17 and 17 to remove heat.
  • the temperature (heating temperature, cooling temperature) and time (heating time, cooling time) are adjusted so that the amount of deformation is appropriate. . That is, when the heating amount is large (the heating temperature is high or the heating time is long) and the cooling amount is small (the cooling temperature is high or the cooling time is short), the deformation amount of the tip of each pin 23a, 23a is It becomes excessively large, and the tightening allowance of each pin 23a, 23a with respect to the bottom inner surface of each bearing cup 17, 17 is reduced, and rattling may occur between each bearing cup 17, 17 and each pin 23a, 23a. There is sex.
  • each shaft part 18, 18 and each bearing cup 17, 17 can also be assembled.
  • the heated shaft portions 18 and 18 and the pins 23a and 23a are cooled in advance (if necessary).
  • the bearing cups 17 and 17 and the pins 23a and 23a are heated, and then the shafts 18 and 18 and the bearings.
  • the cups 17 and 17 can be assembled. Also in this case, similarly, by assembling the bearing cups 17 and 17 to the shaft portions 18 and 18, heat is taken away by the shaft portions 18 and 18, and the tip portions of the pins 23 a and 23 a may be cooled. . Further, only the pins 23a and 23a can be heated. Also in this case, after assembling the universal joint 3c, the tips of the pins 23a and 23a may be cooled by removing heat from other members constituting the universal joint 3c.
  • the manufacturing cost of the universal joint 3c can be reduced while suppressing the rattling of the yokes 12 and 12 with respect to the cross shaft 13. That is, the universal joint 3c of the present embodiment can be obtained by heating the tips of the synthetic resin pins 23a and 23a after assembling the members constituting the universal joint 3c, or by preliminarily connecting the pins 23a and 23a. After heating, by assembling the respective members, one of the yokes 12 and 12 is oscillated and displaced with respect to the other yoke 12 while the pins 23a and 23a are softened. The bottom inner surfaces of the bearing cups 17 and 17 constituting the bearings 21 and 21 are brought into sliding contact with the tip surfaces of the pins 23a and 23a.
  • each pin 23a, 23a is plastically deformed, the fastening allowance of each pin 23a, 23a with respect to each bearing cup 17, 17 is set to an appropriate size, and the properties of the tip surface of each pin 23a, 23a are set. Arrange. Accordingly, it is not necessary to excessively increase the shape accuracy and dimensional accuracy of each pin 23a, 23a and the assembly accuracy between the cross shaft 13 and the yokes 12, 12, and the manufacturing cost of the universal joint 3c can be suppressed from being increased. I can do things.
  • the frictional resistance of the sliding contact portions between the bottom inner surfaces of the bearing cups 17 and 17 and the pins 23a and 23a is kept low, and the rotational resistance of the radial bearings 21 and 21 (of the other yoke 12 with respect to one yoke 12). (Oscillation resistance) can be kept low.
  • the bearing cups 17, 17 are moved by moving the tips of the pins 23 a, 23 a along the inner surfaces of the bottoms of the bearing cups 17, 17 in accordance with the swinging displacement of the other yoke 12 with respect to the one yoke 12. And the shafts 18 and 18 can be aligned. Therefore, also from this surface, it is not necessary to make the assembly accuracy of the cross shaft 13 and the yokes 12 and 12 excessively high, and an increase in the manufacturing cost of the universal joint 3c can be suppressed.
  • FIG. 3 shows a second embodiment of the present invention.
  • the universal joint 3d of the present embodiment has a bowl-shaped recess 27 that is inclined in the direction in which the inner diameter increases toward the opening at the center of the inner surface of the bottom of the bearing cup 17a constituting the radial bearing 21 (see FIG. 1). Provided.
  • the respective recesses 27 are engaged with the tip portions of the pins 23a inserted into the insertion holes 22 of the shaft portion 18 constituting the cross shaft 13. I am letting.
  • FIGS. 4 to 5 show a third embodiment of the present invention.
  • the universal joint 3e of the present embodiment has a substantially disc-shaped thrust between the bottom inner surface of the bearing cup 17 constituting the radial bearing 21 (see FIG. 1) and the front end surface of the shaft portion 18a constituting the cross shaft 13a.
  • the piece 25a is clamped. That is, the outer side surface (upper side surface of FIG. 4) of the thrust piece 25a has a partial spherical shape along the inner surface of the bottom of the bearing cup 17, and the inner side surface of the thrust piece 25a has a smaller outer diameter toward the tip. It has an inclined truncated cone shape.
  • the thrust piece 25a has an appropriate coefficient of thermal expansion and a small friction coefficient, like the pin 23a (see FIGS. 1 and 2) according to the first embodiment described above.
  • Made of synthetic resin such as PEEK, PAI, PI.
  • the tip surface of the thrust piece 25a is plastically deformed so that the tightening margin of the thrust piece 25a with respect to the bearing cup 17 is set to an appropriate size, and the thrust piece 25a Adjust the properties of the tip surface of the.
  • the shaft portion 18a removes heat from the bearing cup 17 and the thrust piece 25a to cool the bearing cup 17 and the thrust piece 25a. In this case, the shaft portion 18a can be cooled in advance if necessary.
  • the bearing cup 17 and the shaft portion 18a may be heated in an assembled state, or the thrust piece 25a and the shaft portion 18a may be heated. it can. Since the configuration and operation of the other parts are the same as in the first embodiment, overlapping illustrations and descriptions are omitted.
  • FIG. 6 shows a fourth embodiment of the present invention.
  • the universal joint 3f of the present embodiment is provided with a mortar-shaped recess 27a inclined in a direction in which the inner diameter increases toward the opening at the center of the tip surface of the shaft portion 18b constituting the cross shaft 13b.
  • a substantially truncated cone-shaped convex portion 28 that is inclined in the direction of decreasing the outer diameter toward the tip is provided, and the concave portion 27a and the convex portion 28 are engaged with each other.
  • the thrust piece 25b When making the universal joint 3f as described above, the thrust piece 25b is supported at the center of the inner surface of the bottom of the bearing cup 17b, the shaft 18b is inserted inside the bearing cup 17b, and the recess 27a, the protrusion 28, Engage.
  • the thrust piece 25a is heated and one of the pair of yokes 12 and 12 (see FIG. 1) is oscillated and displaced with respect to the other yoke 12 to deform the thrust piece 25a. .
  • FIG. 7 shows a fifth embodiment of the present invention.
  • the universal joint 3g of the present embodiment has a concave portion 27a at the center of the tip surface of the shaft portion 18b constituting the cross shaft 13b and a convex portion 28a at the center of the inner surface of the thrust piece 25c.
  • a recess 27b is provided at the center of the outer surface of the thrust piece 25c
  • a protrusion 28b is provided at the center of the bottom inner surface of the bearing cup 17c constituting the radial bearing 21, respectively. 28b is engaged.
  • FIG. 8 shows a sixth embodiment of the present invention.
  • the universal joint 3h of the present embodiment also has a recess 27a at the center of the tip surface of the shaft portion 18b constituting the cross shaft 13b and a center of the inner surface of the thrust piece 25d.
  • the portions 28a are provided, and the concave portions 27a and the convex portions 28a are engaged with each other.
  • a convex portion 28b is provided at the central portion of the outer surface of the thrust piece 25d
  • a concave portion 27c is provided at the central portion of the bottom inner surface of the bearing cup 17c constituting the radial bearing 21 (see FIG. 1).
  • the concave portion 27c and the convex portion 28b are engaged. Since the configuration and operation of the other parts are the same as in the case of the fifth embodiment, overlapping illustrations and descriptions are omitted.
  • FIG. 9 shows a seventh embodiment of the present invention.
  • the universal joint 3i of the present embodiment has a convex portion 28b at the central portion of the outer surface of the thrust piece 25e and a concave portion at the central portion of the bottom inner surface of the bearing cup 17c constituting the radial bearing 21. 27c is provided, and the concave portion 27c and the convex portion 28b are engaged with each other.
  • a convex portion 28c is provided at the center of the tip surface of the shaft portion 18c constituting the cross shaft 13c, and a concave portion 27d is provided at the central portion of the inner surface of the thrust piece 25e. And are engaged. Since the configuration and operation of other parts are the same as in the case of the sixth embodiment, overlapping illustrations and descriptions are omitted.
  • FIG. 10 shows an eighth embodiment of the present invention.
  • the universal joint 3j of the present embodiment has a substantially disc-shaped thrust between the bottom inner surface of the bearing cup 17d constituting the radial bearing 21 (see FIG. 1) and the tip end surface of the shaft portion 18d constituting the cross shaft 13d.
  • the piece 25f is clamped. That is, the outer surface of the thrust piece 25f (upper side surface in FIG. 15) is a partially spherical convex portion 28b along the bottom inner surface of the bearing cup 17d, and the inner surface of the thrust piece 25f has an outer diameter toward the tip.
  • a truncated cone-shaped convex portion 28 inclined in a decreasing direction is formed.
  • a bowl-shaped recess 27a that is inclined in a direction in which the inner diameter increases toward the opening is provided at the center of the distal end surface of the shaft 18d, and is engaged with the protrusion 28.
  • the outer surface of the thrust piece 25f has a partial spherical shape along the inner surface of the bottom of the bearing cup 17d, it can be easily aligned by simply inserting the thrust piece 25f into the bearing cup 17d. .
  • the convex portion 28 and the concave portion 27a are inclined with each other, so that the fitting is facilitated. Therefore, the assembly work is facilitated.
  • FIG. 11 shows a ninth embodiment of the present invention.
  • the universal joint 3k of the present embodiment is not provided with the insertion hole 22 in the case of the first embodiment. Accordingly, the shape of the pin 23a is the shape of the thrust piece 25 from which the portion inserted into the insertion hole 22 of the pin 23a is deleted. Also in this embodiment, after the assembly of the universal joint 3k is completed, the tip of the thrust piece 25 is moved to about 40 to 250 ° C. through the bottoms of the bearing cups 17 and 17 ⁇ of the synthetic resin constituting each thrust piece 25.
  • the shaft portions 18 and 18 of the cross shaft 13 can be heated before the thrust pieces 25 are assembled, and then the shaft portions 18 and 18 and the bearing cups 17 and 17 can be assembled.
  • the bearing cups 17 and 17 and the thrust pieces 25 are heated before the bearing cups 17 and 17 are press-fitted into the circular holes 16 and 16, and then the shafts 18 and 18 and the bearing cups are heated. 17 and 17 can be assembled.
  • a mortar-shaped recess 27 is provided at the center of the inner surface of the bottom of the bearing cup 17a, and each member constituting the universal joint 3d is assembled, The recess 27 and the tip of the thrust piece 25 can be engaged with each other.
  • the tip portion of the thrust piece 25 is heated to expand the portion, adjust the tightening margin for each bearing cup 17a, and based on the engagement between the recess 27 and the thrust piece 25, the bearing cup It is possible to align the center of the shaft 17 with the shaft 17a.
  • the processing cost is reduced.
  • the radial bearing provided between the circular hole of the yoke and the shaft portion of the cross shaft is a radial needle bearing.
  • other types of radial rolling such as radial ball bearings, in which a plurality of balls are arranged between the outer peripheral surface of the shaft portion and the inner peripheral surface of the bearing cup that is fitted and fixed in the circular hole.
  • It can also be a bearing.
  • it can also be set as the radial sliding bearing which arrange
  • the universal joint according to the present invention when the universal joint is installed outside the passenger compartment, the base end portion of the shaft portion of the cross shaft and the opening edge portion of the bearing cup A seal ring can be provided between the two.
  • the method of the present invention for adjusting the dimensions of the thrust piece may be applied to all four thrust pieces, but is not limited thereto, and may be applied to at least one thrust piece.
  • the four thrust pieces one of the two thrust pieces disposed between the bearing cup and the shaft portion corresponding to one yoke and the other yoke.
  • the method of the present invention may be applied to any one of the two thrust pieces arranged between the bearing cup and the shaft portion.
  • the dimension of the thrust piece in the axial direction of the shaft portion is adjusted to an appropriate size by any of the following methods.
  • the shaft portion on which the thrust piece is disposed is heated to assemble the thrust piece and the shaft portion, and then the bearing cup. And the shaft portion are assembled, and the thrust piece is heated and deformed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding-Contact Bearings (AREA)
  • Steering Controls (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

 ピン(23a)を、適度な熱膨張率を有し、且つ、摩擦係数が小さい、合成樹脂製とする。十字軸式自在継手(3c)を構成する各部材を組み立てた状態で、ピン(23a)の先端部を加熱し軟化させ、一方のヨーク(12)を他方のヨーク(12)に対して揺動変位させる。これにより、ピン(23a)の軸受カップ(17)の底部内面に対する締め代を適切な大きさとすると共に、ピン(23a)の先端面の性状を整える。

Description

十字軸式自在継手の製造方法
 本発明は、例えば自動車用ステアリング装置を構成する回転軸同士をトルク伝達可能に接続する為の十字軸式自在継手の製造方法に関する。
 自動車のステアリング装置は、図12に示す様に構成している。運転者が操作するステアリングホイール1の動きは、ステアリングシャフト2、自在継手3a、中間シャフト4、別の自在継手3bを介して、ステアリングギヤユニット5の入力軸6に伝達される。そして、ステアリングギヤユニット5に内蔵したラックアンドピニオン機構により左右1対のタイロッド7、7を押し引きし、左右1対の操舵輪に、ステアリングホイール1の操作量に応じた、適切な舵角を付与する様に構成している。
 図13は、上述の様なステアリング装置に組み込む中間シャフト4の構造の1例を示している。図示の例の場合、中間シャフト4は、衝突事故の際にステアリングホイール1が運転者側に突き上げられる事を防止する為に、伸縮式としている。中間シャフト4は、先端部(図13の左端部)外周面に雄スプライン部8を設けたインナシャフト9と、内周面に雄スプライン部8を挿入可能な雌スプライン部10を形成した円管状のアウタチューブ11とから成る。そして、雄スプライン部8と雌スプライン部10とをスプライン係合する事で、インナシャフト9とアウタチューブ11とを、伸縮自在に組み合わせている。又、インナシャフト9とアウタチューブ11との基端部に、それぞれ自在継手3a、3bを構成する一方のヨーク12a、12bの基端部を溶接固定している。
 図14~15は、両自在継手3a、3bとして使用可能な、従来から知られている自在継手の1例として、特許文献1~2に記載されたものを示している。尚、図14~15に示した構造は、振動の伝達を防止する、所謂防振継手であるが、本発明の対象となる自在継手は、必ずしも防振構造を具備する必要はない。そこで、以下の説明は防振構造を省略して、自在継手3の本体部分の構造に就いて説明する。
 自在継手3は、十分な剛性を有する金属材によりそれぞれが二又状に形成された1対のヨーク12a、12bを、軸受鋼の如き合金鋼等の硬質金属により造られた十字軸13を介して、トルク伝達自在に結合して成る。両ヨーク12a、12bはそれぞれ、基部14、14と、両ヨーク12a、12b毎に1対ずつの結合腕部15、15とを備える。両基部14、14は、回転軸である、インナシャフト9若しくはアウタチューブ11の基端部(或いは、ステアリングシャフト2の前端部若しくは入力軸6の後端部、図12参照)をトルクの伝達を自在に支持固定する。又、各結合腕部15、15の先端にそれぞれ円孔16、16を、両ヨーク12a、12b毎に互いに同心に形成している。そして、各円孔16、16に、軸受鋼、肌焼鋼等の硬質金属製の板材により有底円筒状に造られた軸受カップ17、17を、互いの開口を対向させた状態で、締り嵌めにより内嵌固定している。又、十字軸13は、1対の柱部の中間部同士を互いに直交させた如き形状を有し、それぞれが円柱状である、4箇所の軸部18、18を有する。即ち、中心部に設けた結合基部19の円周方向等間隔4箇所位置に(隣り合う軸部18、18の中心軸同士が互いに直交する状態で)、それぞれ各軸部18、18の基端部を結合固定している。各軸部18、18の中心軸は、同一平面上に存在する。
 この様な軸部18、18の軸方向中間部乃至先端部は、各軸受カップ17、17内に挿入している。そして、各軸受カップ17、17の内周面と各軸部18、18の先半部外周面との間に、それぞれが転動体である複数個のニードル20、20を配置してラジアル軸受21、21を構成し、十字軸13に対して両ヨーク12a、12bが、軽い力で揺動変位する様にしている。この様に構成する為、両ヨーク12a、12bの中心軸同士が一致しない状態でも、両ヨーク12a、12bの間での回転力の伝達を、伝達ロスを抑えた状態で行える。
 上述の様な自在継手3は、各軸部18、18の中心部にそれぞれ有底の挿入孔22、22を、各軸部18、18の先端面に開口する状態で、各軸部18、18の軸方向に形成している。そして、各挿入孔22、22の内側に、合成樹脂製のピン23、23を挿入している。各ピン23、23は、各軸受カップ17、17と各軸部18、18との間で突っ張る事により、各軸部18、18に対する各軸受カップ17、17のがたつき、延いては、十字軸13に対する両ヨーク12a、12bのがたつきを防止すると共に、各軸受カップ17、17の開口端部と結合基部19との距離が縮まり過ぎる事を防止している。即ち、前述の図12に示したステアリング装置を構成する自在継手3a、3bのうち、車室外に設置する(図12の下側の)自在継手3bの場合には、十字軸13を構成する各軸部18、18の基端部と各軸受カップ17、17の開口部との間に、それぞれシールリング24、24を設けている。図示の例の場合、各ピン23、23を設ける事で、各シールリング24、24が過度に圧縮され、各シールリング24、24の耐久性が損なわれたり、反対に各シールリング24、24の圧縮量が低下し過ぎて、各シールリング24、24のシール性が損なわれる事を防止している。
 図16~17は、特許文献3に記載された、自在継手の従来構造の第2例を示している。この従来構造の第2例の場合、ラジアル軸受21を構成する軸受カップ17の底部内面と、十字軸13aを構成する軸部18aの先端面との間に、図17に示す様な、略円盤状で、且つ、弾性を有する合成樹脂製のスラストピース25を挟持している。この様な従来構造の第2例の場合、スラストピース25が軸受カップ17の底部内面と軸部18aの先端面との間で突っ張る事により、十字軸13aに対するヨーク12のがたつきを防止する。
 何れの構造の場合でも、軸受カップ17と軸部18、18aとの間で、ピン23若しくはスラストピース25が突っ張る事により、十字軸13、13aに対するヨーク12、12a、12bのがたつきを防止できる。但し、製造コストの増大を抑えつつ、十字軸に対する1対のヨークのがたつきを抑える機能を向上させる面からは、改良の余地がある。即ち、十字軸に対する両ヨークのがたつきを抑える為には、スラストピースの軸受カップ及び十字軸の軸部に対する締め代を大きくする事が考えられるが、単に締め代を大きくすると、両ヨークの各軸部に対する回転抵抗(揺動抵抗)が増大する。従って、がたつきを抑えつつ、回転抵抗の増大を防止する為には、スラストピース(或いはピン及び挿入孔)を精度良く形成すると共に、十字軸とヨークとの組み付け精度(軸部の軸受カップへの挿入量)を高くする必要があり、十字軸式自在継手の製造コストが増大する。
日本国特開平8-135674号公報 日本国特開平9-60650号公報 日本国特開2006-250197号公報
 本発明は、上述の様な事情に鑑み、製造コストの増大を抑えつつ、十字軸に対するヨークのがたつきを抑える機能を向上させられる、十字軸式自在継手の製造方法を実現すべく発明したものである。
 本発明の十字軸式自在継手の製造方法によれば、1対のヨークと、十字軸と、4個のラジアル軸受と、4個のスラストピースとを備え、
 前記1対のヨークはそれぞれ、回転軸の端部を結合固定する基部と、前記基部の軸方向一端縁のうちで、前記回転軸の直径方向反対側2箇所位置から軸方向に延出した1対の結合腕部と、前記1対の結合腕部の先端部に互いに同心に形成された1対の円孔とを備え、
 前記十字軸は、結合基部の外周面に4本の軸部を放射状に固設して成るものであり、
 前記各ラジアル軸受はそれぞれ、前記各円孔の内側に内嵌固定された有底円筒状の軸受カップの内周面と、前記各軸部の外周面との間に配置され、前記各軸受カップと前記各軸部との間に加わるラジアル荷重を支承し、
 前記各スラストピースはそれぞれ、合成樹脂製で、前記各軸受カップの底部内面と前記各軸部との間に配置される、
 十字軸式自在継手の製造方法であって、
 前記十字軸式自在継手を組み立てる際に、前記スラストピースの少なくとも一つを加熱し変形させる事により、前記軸部の軸方向に関する前記スラストピースの寸法を調整する。
 具体的に、第1の態様としては、前記1対のヨーク、前記十字軸、前記各ラジアル軸受、及び前記各スラストピースを組み立てた状態で、前記スラストピースの少なくとも一つを加熱し変形させる事により、前記軸部の軸方向に関する前記スラストピースの寸法を調整する。
 また、第2の態様としては、前記スラストピースの少なくとも一つを前記軸受カップと前記軸部との間に設ける以前の状態で、前記スラストピースが配置される前記軸部を加熱し、前記スラストピースと前記軸部とを組み立て、その後、前記軸受カップと前記軸部とを組み立てて、前記スラストピースを加熱し変形させる事により、前記軸部の軸方向に関する前記スラストピースの寸法を調整する。
 さらに、第3の態様としては、前記各軸受カップと前記十字軸とを組み立てる以前の状態で、前記スラストピースの少なくとも一つ及び前記スラストピースが配置される前記軸受カップを加熱し、その後、前記各軸受カップと前記十字軸とを組み立てて、前記スラストピースを変形させる事により、前記軸部の軸方向に関する前記スラストピースの寸法を調整する。
 上述の様な十字軸式自在継手の製造方法を実施する場合に、好ましくは、スラストピースに、前記軸受カップ及び前記軸部に対する締め代を持たせ、前記スラストピースを加熱する以前の状態に於ける前記締め代の大きさが、加熱した後の前記締め代の大きさよりも大きく設定される。
 また、前記スラストピースの端面と、前記端面に対向する面とのうちの何れか一方の面の中心部に凸部を、他方の面の中心部に凹部を、それぞれ設けており、前記凸部と前記凹部との係合に基づいて、前記軸部と前記ラジアル軸受との中心軸同士を一致させることが好ましい。
 さらに、前記スラストピースを加熱し、前記凸部と前記凹部とを係合させた状態で、前記1対のヨークのうちの一方のヨークを他方のヨークに対し揺動変位させることが好ましい。
 また、前記スラストピースは、前記軸受カップの底部内面と、前記軸部の先端面との間に配置され、且つ、
 前記スラストピースは、前記軸受カップの底部内面に沿った部分球面状の外側面と、先端に向かう程外径が小さくなる方向に傾斜した円すい台状の内側面と、を持った略円盤状に形成されることが好ましい。
 また、前記スラストピースは、中心部に凸部が設けられた前記軸受カップの底部内面と、中心部に凹部が設けられた前記軸部の先端面との間に配置され、且つ、
 前記スラストピースは、前記軸受カップの底部内面の凸部に係合する凹部を中心部に有する外側面と、前記軸部の先端面の凹部に係合する凸部を中心部に有する内側面と、を持った略円盤状に形成されることが好ましい。
 本発明の十字軸式自在継手の製造方法によれば、十字軸式自在継手を組み立てる際に、スラストピースの少なくとも一つを加熱し変形させる事により、軸部の軸方向に関する前記スラストピースの寸法を調整する。
 これにより、スラストピースの形状精度及び寸法精度や十字軸と両ヨークとの組み付け精度を過度に高くせずに、製造コストを抑えつつ、十字軸に対する1対のヨークのがたつきを抑えた良質の十字軸式自在継手を提供することができる。
本発明の第1実施形態を示す、自在継手の部分切断側面図。 図1のII部を、ピンを切断した状態で示す拡大断面図 本発明の第2実施形態を、ピンを切断しない状態で示す、図2と同様の図。 本発明の第3実施形態を示す、図2と同様の図。 本発明の第3実施形態における、自在継手の製造方法を工程順に示す部分断面図。 本発明の第4実施形態を示す、図2と同様の図。 本発明の第5実施形態を示す、図2と同様の図。 本発明の第6実施形態を示す、図2と同様の図。 本発明の第7実施形態を示す、図2と同様の図。 本発明の第8実施形態を示す、図2と同様の図。 本発明の第9実施形態を示す、図2と同様の図。 従来から知られているステアリング装置の1例を示す要部斜視図。 中間シャフトを取り出して示す部分切断側面図。 従来から知られている自在継手の第1例を示す、部分切断側面図。 一部を省略して示す、図14の拡大XV-XV断面図。 従来から知られている自在継手の第2例を示す、要部拡大断面図。 図16のスラストピースを取り出して示す、平面図(A)と、(A)のXVII-XVII断面図(B)。
 [第1実施形態]
 図1~2は、本発明の第1実施形態を示している。尚、以下の説明では、前述の図13~16に示した構造を含め、従来から知られている構造と同様である部分については、重複する図示並びに説明を省略若しくは簡略にし、以下、本実施形態の特徴部分を中心に説明する。
 本実施形態の自在継手3cは、前述の図14~15に示した従来構造の第1例の場合と同様に、十字軸13を構成する各軸部18、18の中心部にそれぞれ挿入孔22を形成し、各挿入孔22の内側に、本発明のスラストピースに相当する、ピン23a、23aを挿入している。そして、各軸部18、18を、両ヨーク12、12を構成する結合腕部15、15に設けた円孔16、16に、ラジアル軸受21、21を介して回転自在に支持する事により、自在継手3cを構成している。この状態で、各ピン23a、23aは、ラジアル軸受21、21を構成する各軸受カップ17、17と、各軸部18、18との間で突っ張る事により、十字軸13に対する両ヨーク12、12のがたつきを防止している。
 この為に、各軸受カップ17、17の底部内面を、各底部内面の中心部が各軸部18、18の軸方向に関して最も凹んだ(曲率中心が各軸受カップ17、17の中心軸上に存在する)部分球状の凹面とし、各ピン23a、23aの先端面(図2の上面)を、各先端面の中心部が各軸部18、18の軸方向に関して最も突出した、円すい状若しくは円すい台状の凸面としている。即ち、本実施形態の場合には、各軸受カップ17、17の底部内面全体が、本発明の凹部に、各ピン23a、23aの先端部が、本発明の凸部に、それぞれ相当する。そして、各軸受カップ17、17の底部内面と、各ピン23a、23aの先端面とを、締め代を持って(各ピン23a、23aを軸方向に弾性圧縮した状態で)当接させている。本実施形態の場合、各軸受カップ17、17の底部内面に対する各ピン23a、23aの締め代を1~500μm程度としている。但し、締め代を1μmより小さく(例えば0に)したり、各軸受カップ17、17の底部内面と各ピン23a、23aの先端面とを、若干の隙間を介して対向させる事もできる。尚、各状態での締め代の値は、十字軸式自在継手の使用状態である、常温時の状態での値である。
 又、本実施形態の場合、各ピン23a、23aは、加熱し、熱膨張乃至塑性変形させる事で、締め代の調整を可能にする為、適度な熱膨張率(1~20×10-5/℃)を有し、且つ、各ラジアル軸受21、21の回転抵抗の増大を抑えるべく、十字軸或いは各軸受カップ17、17を構成する金属材料に対する摩擦係数の小さい(この金属材料に対する摩擦係数が0.01~0.15程度である)、例えばポリフェニレンサルファイド樹脂(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリアミドイミド樹脂(PAI)、ポリイミド樹脂(PI)等の弾性及び熱可塑性を有する合成樹脂製としている。
 上述の様な本実施形態の自在継手3cは、次の様にして造る。先ず、十字軸13を構成する各軸部18、18の中心部にそれぞれ挿入孔22を形成し、各挿入孔22の内側に、合成樹脂製のピン23a、23aを挿入する。次に、各軸部18、18を、両ヨーク12、12を構成する各結合腕部15、15の先端部に設けた円孔16、16の内側に挿入する。そして、軸受鋼、肌焼鋼等の硬質金属製の板材に、プレス加工による打ち抜き加工や曲げ加工を施す事で造った各軸受カップ17、17の内周面に複数個のニードル20、20を配置し、各軸受カップ17、17を各円孔16、16に、各結合腕部15、15の外側から圧入して内嵌固定する。この時、各軸受カップ17、17の底部内面と各ピン23a、23aの先端面とを締め代を持って(各ピン23a、23aを軸方向に弾性圧縮した状態で)当接させる。尚、各軸受カップ17、17内に各ニードル20、20を配置した後、各軸受カップ17、17の開口縁部を径方向内方に折り曲げて、各軸受カップ17、17の開口部に内向鍔部26、26を形成し、各ニードル20、20の脱落を防止しておく。これにより、各軸部18、18と各結合腕部15、15との間に、各ラジアル軸受21、21を設ける。この状態では、各軸受カップ17、17の底部内面に対する各ピン23a、23aの締め代を2~1000μm程度とし、完成後の締め代よりも大きくしておく。
 次に、各ピン23a、23aの先端部を、各軸受カップ17、17の底部を介して、40~250℃程度{各ピン23a、23aを構成する合成樹脂の融点(PPS:275℃、PEEK:334℃、PAI:300℃)以下の温度}に加熱する。具体的には、各軸受カップ17、17を高周波誘導加熱により発熱させたり、加熱した金属部材を各軸受カップ17、17の底部に接触させ、熱伝導により加熱する、或いは各軸受カップ17、17の底部をプラズマ加熱する事で、各ピン23a、23aの先端部を加熱する。そして、各ピン23a、23aの先端部を軟化し、更に塑性変形させる。この状態で、両ヨーク12、12のうちの一方のヨーク12を他方のヨーク12に対し揺動変位させる事により、各軸部18、18(に支持したピン23a、23a)を各軸受カップ17、17に対し相対回転させて、各軸受カップ17、17の底部内面と各ピン23a、23aの先端面とを摺接させる。これにより、各ピン23a、23aの先端部を塑性変形させて、締め代の大きさを適切な大きさに調整すると共に、各ピン23a、23aの先端面の性状を整える(先端面を、各軸受カップ17、17の底部内面に倣って部分球面状にする)。これと同時に、各軸受カップ17、17の底部内面と、各ピン23a、23aの先端面との係合に基づいて(各ピン23a、23aを、各ピン23a、23aの先端面を摺接させた各軸受カップ17、17の底部内面により案内する事で)、各軸受カップ17、17と各軸部18、18の中心軸同士を一致させる(心合わせを行う)。この状態で、各ピン23a、23aの先端部を冷却して固化する。各ピン23a、23aの先端部の冷却は、放冷により緩徐に行う事もできるが、例えば液体窒素を蒸発させて得た低温窒素ガス等の気体冷媒により行ったり、内部に冷却水を流通させた治具等を各軸受カップ17、17の底部に接触させ、熱を奪う事により行う事が、冷却温度や冷却時間の管理の容易化を図る面から好ましい。
 尚、各ピン23a、23aの先端部を加熱・冷却する際には、変形量を適切な大きさにすべく、温度(加熱温度、冷却温度)及び時間(加熱時間、冷却時間)を調整する。即ち、加熱量が多かったり(加熱温度が高かったり、加熱時間が長い)、冷却量が少ない(冷却温度が高かったり、冷却時間が短い)場合、各ピン23a、23aの先端部の変形量が過度に大きくなり、各軸受カップ17、17の底部内面に対する各ピン23a、23aの締め代が小さくなって、各軸受カップ17、17と各ピン23a、23aとの間でがたつきが生じる可能性がある。一方、加熱量が少なかったり(加熱温度が低かったり、加熱時間が短い)、冷却量が多い(冷却温度が低かったり、冷却時間が長い)場合、締め代が大きくなって、トルクの伝達時に、伝達ロスが大きくなったり、各軸受カップ17、17に大きな力が加わって、各軸受カップ17、17の耐久性が損なわれる可能性がある。
 尚、各ピン23a、23aを加熱する為には、各挿入孔22に各ピン23a、23aを挿入する以前に、十字軸13の軸部18、18を加熱しておき、その後、各挿入孔22に各ピン23a、23aを挿入する事で、各ピン23a、23aを加熱した後、更に各軸部18、18と各軸受カップ17、17とを組み立てる様にする事もできる。この場合、上述の様な冷却方法に代えて、或いはこの冷却方法を実施すると共に、加熱した各軸部18、18及び各ピン23a、23aに、(必要に応じて予め冷却しておいた)各軸受カップ17、17を組み付け、各軸受カップ17、17により熱を奪う事により、各ピン23a、23aの先端部を冷却する事もできる。
 又、各軸受カップ17、17を各円孔16、16に圧入する以前に、各軸受カップ17、17及び各ピン23a、23aを加熱しておき、その後、各軸部18、18と各軸受カップ17、17とを組み立てる様にする事もできる。この場合も、同様に、各軸受カップ17、17を各軸部18、18に組み付ける事で、各軸部18、18により熱を奪い、各ピン23a、23aの先端部を冷却しても良い。
 又、各ピン23a、23aのみを加熱する事もできる。この場合も、自在継手3cの組み立て後に、この自在継手3cを構成する他の部材により熱を奪う事で、各ピン23a、23aの先端部を冷却しても良い。
 なお、上述したいずれかの製造方法によって、各ピン23a、23aやスラストピースの寸法を調整することができる点は、以下の実施形態においても同様である。
 上述の様な本実施形態の十字軸式自在継手の製造方法によれば、十字軸13に対するヨーク12、12のがたつきを抑えつつ、自在継手3cの製造コストの低減できる。即ち、本実施形態の自在継手3cは、自在継手3cを構成する各部材を組み立てた後、合成樹脂製のピン23a、23aの先端部を加熱する事で、或いは、予め各ピン23a、23aを加熱した後、各部材を組み立てる事で、各ピン23a、23aを軟化させた状態で、両ヨーク12、12のうちの一方のヨーク12を他方のヨーク12に対し揺動変位させる事により、ラジアル軸受21、21を構成する軸受カップ17、17の底部内面と、各ピン23a、23aの先端面とを摺接させる。
 これにより、各ピン23a、23aの先端部を塑性変形させ、各軸受カップ17、17に対する各ピン23a、23aの締め代を適切な大きさとすると共に、各ピン23a、23aの先端面の性状を整える。従って、各ピン23a、23aの形状精度及び寸法精度や十字軸13とヨーク12、12との組み付け精度を過度に高くする必要がなく、自在継手3cの製造コストが徒に高くなる事を抑えられる事ができる。又、各軸受カップ17、17の底部内面と、各ピン23a、23aとの摺接部の摩擦抵抗を低く抑え、各ラジアル軸受21、21の回転抵抗(一方のヨーク12に対する他方のヨーク12の揺動抵抗)を低く抑えられる。更に、一方のヨーク12に対する他方のヨーク12の揺動変位に伴い、各ピン23a、23aの先端部を各軸受カップ17、17の底部内面に沿って移動させる事により、各軸受カップ17、17と各軸部18、18との心合わせを行える。従って、この面からも、十字軸13と両ヨーク12、12との組み付け精度を過度に高くする必要がなくなり、自在継手3cの製造コストの上昇を抑えられる。
 [第2実施形態]
 図3は、本発明の第2実施形態を示している。本実施形態の自在継手3dは、ラジアル軸受21(図1参照)を構成する軸受カップ17aの底部内面の中心部に、開口部に向かう程内径が大きくなる方向に傾斜した擂鉢状の凹部27を設けている。本実施形態の場合、自在継手3dを構成する各部材を組み立てた状態で、各凹部27と、十字軸13を構成する軸部18の挿入孔22に挿入したピン23aの先端部とを係合させている。この状態で、各ピン23aの先端部を加熱する事で、当該部分を膨張させ、各軸受カップ17aに対する締め代を調整すると共に、凹部27とピン23aとの係合に基づいて、軸受カップ17aと軸部18との心合わせを行う。この様な本実施形態によれば、上述した第1実施形態に係る構造と比較して、この心合わせをより精度良く行う事ができる。
 その他の部分の構成及び作用は、第1実施形態と同様であるから、重複する図示並びに説明は省略する。
 [第3実施形態]
 図4~5は、本発明の第3実施形態を示している。本実施形態の自在継手3eは、ラジアル軸受21(図1参照)を構成する軸受カップ17の底部内面と、十字軸13aを構成する軸部18aの先端面との間に、略円盤状のスラストピース25aを挟持している。即ち、スラストピース25aの外側面(図4の上側面)は、軸受カップ17の底部内面に沿った部分球面状とし、スラストピース25aの内側面は、先端に向かう程外径が小さくなる方向に傾斜した円すい台状としている。本実施形態の場合、スラストピース25aは、前述した第1実施形態に係るピン23a(図1~2参照)と同様に、適度な熱膨張率を有し、且つ、摩擦係数の小さな、PPS、PEEK、PAI、PI等の合成樹脂製により造っている。
 自在継手3eを造る場合には、先ず、図5の(A)に示す様に、軸受カップ17の底部内面にスラストピース25aを固着した状態で、第1実施形態の場合と同様の方法により、軸受カップ17及びスラストピース25aを加熱する。次に、図5の(B)に示す様に、軸受カップ17を軸部18aに組み付ける。そして、1対のヨーク12、12(図1参照)のうちの一方のヨーク12を他方のヨーク12に対し揺動変位させ、軸部18aの先端面と、スラストピース25aの先端面とを摺接させる。これにより、図5の(B)→(C)に示す様に、スラストピース25aの先端面を塑性変形させ、軸受カップ17に対するスラストピース25aの締め代を適切な大きさとすると共に、スラストピース25aの先端面の性状を整える。更に、軸部18aにより、軸受カップ17及びスラストピース25aの熱を奪い、軸受カップ17及びスラストピース25aを冷却する。この場合、必要に応じて軸部18aを予め冷却しておく事もできる。
 但し、本実施形態を実施する場合、第1実施形態の場合と同様に、軸受カップ17と軸部18aとを組み立てた状態で加熱したり、スラストピース25aと軸部18aとを加熱する事もできる。
 その他の部分の構成及び作用は、第1実施形態と同様であるから、重複する図示並びに説明は省略する。
 [第4実施形態]
 図6は、本発明の第4実施形態を示している。本実施形態の自在継手3fは、十字軸13bを構成する軸部18bの先端面の中央部に、開口部に向かう程内径が大きくなる方向に傾斜した擂鉢状の凹部27aを設け、先端面に対向するスラストピース25bの内側面に、先端に向かう程外径が小さくする方向に傾斜した略円すい台状の凸部28を設け、凹部27aと凸部28とを係合している。上述の様な自在継手3fを造る場合、スラストピース25bを、軸受カップ17bの底部内面の中心部に支持し、軸部18bを軸受カップ17bの内側に挿入すると共に、凹部27aと凸部28とを係合させる。この状態で、スラストピース25aを加熱すると共に、1対のヨーク12、12(図1参照)のうちの一方のヨーク12を他方のヨーク12に対し揺動変位させて、スラストピース25aを変形させる。これにより、凹部27aと凸部28との間の締め代を適切な大きさに調整すると共に、凹部27aと凸部28との係合に基づいて軸部18bと軸受カップ17bとの中心軸同士を一致させる。
 その他の部分の構成及び作用は、第1~3実施形態と同様であるから、重複する図示並びに説明は省略する。
 [第5実施形態]
 図7は、本発明の第5実施形態を示している。本実施形態の自在継手3gは、第4実施形態の場合と同様に、十字軸13bを構成する軸部18bの先端面中心部に凹部27aを、スラストピース25cの内側面中心部に凸部28aを、それぞれ設け、凹部27aと凸部28aとを係合している。更に本実施形態の場合は、スラストピース25cの外側面中心部に凹部27bを、ラジアル軸受21を構成する軸受カップ17cの底部内面の中心部に凸部28bを、それぞれ設け、凹部27bと凸部28bとを係合している。この様な本実施形態の場合、スラストピース25cを軸受カップ17cの底部内面の中心部に、予め中心軸同士を一致させた状態で支持する必要がない為、組立作業が容易になる。
 その他の部分の構成及び作用は、第4実施形態の場合と同様であるから、重複する図示並びに説明は省略する。
 [第6実施形態]
 図8は、本発明の第6実施形態を示している。本実施形態の自在継手3hも、第4~5実施形態の場合と同様に、十字軸13bを構成する軸部18bの先端面中心部に凹部27aを、スラストピース25dの内側面中心部に凸部28aを、それぞれ設け、凹部27aと凸部28aとを係合している。又、本実施形態の場合、スラストピース25dの外側面中心部に凸部28bを、ラジアル軸受21(図1参照)を構成する軸受カップ17cの底部内面の中心部に凹部27cを、それぞれ設け、凹部27cと凸部28bとを係合している。
 その他の部分の構成及び作用は、第5実施形態の場合と同様であるから、重複する図示並びに説明は省略する。
 [第7実施形態]
 図9は、本発明の第7実施形態を示している。本実施形態の自在継手3iは、第6実施形態の場合と同様に、スラストピース25eの外側面中心部に凸部28bを、ラジアル軸受21を構成する軸受カップ17cの底部内面の中心部に凹部27cを、それぞれ設け、凹部27cと凸部28bとを係合している。又、本実施形態の場合、十字軸13cを構成する軸部18cの先端面中心部に凸部28cを、スラストピース25eの内側面中心部に凹部27dを、それぞれ設け、凹部27dと凸部28cとを係合している。
 その他の部分の構成及び作用は、第6実施形態の場合と同様であるから、重複する図示並びに説明は省略する。
 [第8実施形態]
 図10は、本発明の第8実施形態を示している。本実施形態の自在継手3jは、ラジアル軸受21(図1参照)を構成する軸受カップ17dの底部内面と、十字軸13dを構成する軸部18dの先端面との間に、略円盤状のスラストピース25fを挟持している。即ち、スラストピース25fの外側面(図15の上側面)は、軸受カップ17dの底部内面に沿った部分球面状の凸部28bとし、スラストピース25fの内側面は、先端に向かう程外径が小さくなる方向に傾斜した円すい台状の凸部28としている。軸部18dの先端面の中央部に、開口部に向かう程内径が大きくなる方向に傾斜した擂鉢状の凹部27aを設け、凸部28と係合している。この様な本実施形態によれば、スラストピース25fの外側面が、軸受カップ17dの底部内面に沿った部分球面状であるので、軸受カップ17d内にスラストピース25fを入れるだけで調芯されやすい。さらに、軸受カップ17dと軸部18dとを組み立てる際、凸部28と凹部27aとが互いに傾斜しているので、嵌合しやすくなる。そのため、組み立て作業が容易になる。
 [第9実施形態]
 図11は、本発明の第9実施形態を示している。本実施形態の自在継手3kは、第1実施形態の場合に於ける挿入孔22を設けていない。それに伴い、ピン23aの形状をピン23aの挿入孔22に挿入される部分を削除したスラストピース25の形状としている。
 本実施形態においても、自在継手3kの組み立て完成後に、スラストピース25の先端部を、各軸受カップ17、17の底部を介して、40~250℃程度{各スラストピース25を構成する合成樹脂の融点(PPS:275℃、PEEK:334℃、PAI:300℃)以下の温度}に加熱し、当該部分を軟化し、更に塑性変形させることができる。
 また、各スラストピース25を組み入れる以前に、十字軸13の軸部18、18を加熱しておき、その後、各軸部18、18と軸受カップ17、17とを組み立てる様にする事もできる。或いは、各軸受カップ17、17を各円孔16、16に圧入する以前に、各軸受カップ17、17及び各スラストピース25を加熱しておき、その後、各軸部18、18と各軸受カップ17、17とを組み立てる様にする事もできる。
 また、本実施形態においても第2実施形態と同じ様に、軸受カップ17aの底部内面の中心部に、擂鉢状の凹部27を設け、自在継手3dを構成する各部材を組み立てた状態で、各凹部27と、スラストピース25の先端部とを係合させることもできる。この状態で、スラストピース25の先端部を加熱する事で、当該部分を膨張させ、各軸受カップ17aに対する締め代を調整すると共に、凹部27とスラストピース25との係合に基づいて、軸受カップ17aと軸部18との心合わせを行うことが可能である。
 本実施形態においては4箇所の軸部18に夫々挿入孔22を加工する必要が無くなる為、加工コストが安価になる。
 上述した各実施形態の場合、ヨークの円孔と十字軸の軸部との間に設けるラジアル軸受を、ラジアルニードル軸受としている。但し、ラジアル軸受を、軸部の外周面と、円孔に内嵌固定した軸受カップの内周面との間に複数個の球を配置して成る、ラジアル玉軸受等の他種のラジアル転がり軸受とする事もできる。又、合成樹脂、含油メタル等の低摩擦材を円筒状に形成したスリーブを両周面同士の間に配置した、ラジアル滑り軸受とする事もできる。
 更には、本発明に係る自在継手を自動車用ステアリング装置に組み込む場合に於いて、自在継手を車室外に設置する場合には、十字軸の軸部の基端部と、軸受カップの開口縁部との間にシールリングを設ける事もできる。
 また、スラストピースの寸法を調整する本発明の方法は、4個のスラストピースの全てに適用してもよいが、これに限らず、少なくとも1箇所のスラストピースに適用されればよい。
 例えば、4個のスラストピースのうち、一方のヨークに対応して軸受カップと軸部との間に配置される2個のスラストピースのうちのいずれかのスラストピースと、他方のヨークに対応して軸受カップと軸部との間に配置される2個のスラストピースのうちのいずれかのスラストピースとに、本発明の方法が適用されてもよい。
 上記実施形態では、上述したように、以下のいずれかの方法によって軸部の軸方向に関するスラストピースの寸法を適切な大きさに調整している。
(i)1対のヨーク、十字軸、各ラジアル軸受、及び各スラストピースを組み立てた状態で、スラストピースの少なくとも一つを加熱し変形させる。
(ii)スラストピースの少なくとも一つを軸受カップと軸部との間に設ける以前の状態で、スラストピースが配置される軸部を加熱し、スラストピースと軸部とを組み立て、その後、軸受カップと軸部とを組み立てて、スラストピースを加熱し変形させる。
(iii)各軸受カップと十字軸とを組み立てる以前の状態で、スラストピースの少なくとも一つ及びスラストピースが配置される軸受カップを加熱し、その後、各軸受カップと十字軸とを組み立てて、スラストピースを変形させる。
 しかしながら、本発明は、十字軸式自在継手を組み立てる際に、スラストピースの少なくとも一つを直接、又は、軸受カップ又は十字軸を介して、加熱し変形させる事により、軸部の軸方向に関するスラストピースの寸法を調整するものであれば、上述した方法以外の方法であってもよい。
 本出願は、2013年8月30日出願の日本特許出願2013-178822号、2014年1月6日出願の日本特許出願2014-109号、2014年4月9日出願の日本特許出願2014-79904号、及び、2014年5月27日出願の日本特許出願2014-108656号に基づき、その内容は参照としてここに取り込まれる。
  1  ステアリングホイール
  2  ステアリングシャフト
  3、3a~3i 自在継手
  4  中間シャフト
  5  ステアリングギヤユニット
  6  入力軸
  7  タイロッド
  8  雄スプライン部
  9  インナシャフト
 10  雌スプライン部
 11  アウタチューブ
 12、12a、12b ヨーク
 13、13a、13b 十字軸
 14  基部
 15  結合腕部
 16  円孔
 17、17a~17c 軸受カップ
 18、18a~18c 軸部
 19  結合基部
 20  ニードル
 21  ラジアル軸受
 22  挿入孔
 23、23a ピン
 24  シールリング
 25、25a~25e スラストピース
 26  内向鍔部
 27、27a~27d 凹部
 28、28a~28c 凸部

Claims (9)

  1.  1対のヨークと、十字軸と、4個のラジアル軸受と、4個のスラストピースとを備え、
     前記1対のヨークはそれぞれ、回転軸の端部を結合固定する基部と、前記基部の軸方向一端縁のうちで、前記回転軸の直径方向反対側2箇所位置から軸方向に延出した1対の結合腕部と、前記1対の結合腕部の先端部に互いに同心に形成された1対の円孔とを備え、
     前記十字軸は、結合基部の外周面に4本の軸部を放射状に固設して成るものであり、
     前記各ラジアル軸受はそれぞれ、前記各円孔の内側に内嵌固定された有底円筒状の軸受カップの内周面と、前記各軸部の外周面との間に配置され、前記各軸受カップと前記各軸部との間に加わるラジアル荷重を支承し、
     前記各スラストピースはそれぞれ、合成樹脂製で、前記各軸受カップの底部内面と前記各軸部との間に配置される、
     十字軸式自在継手の製造方法であって、
     前記十字軸式自在継手を組み立てる際に、前記スラストピースの少なくとも一つを加熱し変形させる事により、前記軸部の軸方向に関する前記スラストピースの寸法を調整する十字軸式自在継手の製造方法。
  2. 前記1対のヨーク、前記十字軸、前記各ラジアル軸受、及び前記各スラストピースを組み立てた状態で、前記スラストピースの少なくとも一つを加熱し変形させる事により、前記軸部の軸方向に関する前記スラストピースの寸法を調整する請求項1に記載の十字軸式自在継手の製造方法。
  3.  前記スラストピースの少なくとも一つを前記軸受カップと前記軸部との間に設ける以前の状態で、前記スラストピースが配置される前記軸部を加熱し、前記スラストピースと前記軸部とを組み立て、その後、前記軸受カップと前記軸部とを組み立てて、前記スラストピースを加熱し変形させる事により、前記軸部の軸方向に関する前記スラストピースの寸法を調整する請求項1に記載の十字軸式自在継手の製造方法。
  4.  前記各軸受カップと前記十字軸とを組み立てる以前の状態で、前記スラストピースの少なくとも一つ及び前記スラストピースが配置される前記軸受カップを加熱し、その後、前記各軸受カップと前記十字軸とを組み立てて、前記スラストピースを変形させる事により、前記軸部の軸方向に関する前記スラストピースの寸法を調整する請求項1に記載の十字軸式自在継手の製造方法。
  5.  前記スラストピースに、前記軸受カップ及び前記軸部に対する締め代を持たせており、前記スラストピースを加熱する以前の状態に於ける前記締め代の大きさが、加熱した後の前記締め代の大きさよりも大きい、請求項1~4のうちの何れか1項に記載した十字軸式自在継手の製造方法。
  6.  前記スラストピースの端面と、前記端面に対向する面とのうちの何れか一方の面の中心部に凸部を、他方の面の中心部に凹部を、それぞれ設けており、前記凸部と前記凹部との係合に基づいて、前記軸部と前記ラジアル軸受との中心軸同士を一致させる、請求項1に記載した十字軸式自在継手の製造方法。
  7.  前記スラストピースを加熱し、前記凸部と前記凹部とを係合させた状態で、前記1対のヨークのうちの一方のヨークを他方のヨークに対し揺動変位させる、請求項6に記載した十字軸式自在継手の製造方法。
  8.  前記スラストピースは、前記軸受カップの底部内面と、前記軸部の先端面との間に配置され、且つ、
     前記スラストピースは、前記軸受カップの底部内面に沿った部分球面状の外側面と、先端に向かう程外径が小さくなる方向に傾斜した円すい台状の内側面と、を持った略円盤状に形成される請求項1~4の何れか1項に記載した十字軸式自在継手の製造方法。
  9.  前記スラストピースは、中心部に凸部が設けられた前記軸受カップの底部内面と、中心部に凹部が設けられた前記軸部の先端面との間に配置され、且つ、
     前記スラストピースは、前記軸受カップの底部内面の凸部に係合する凹部を中心部に有する外側面と、前記軸部の先端面の凹部に係合する凸部を中心部に有する内側面と、を持った略円盤状に形成される請求項1~4の何れか1項に記載した十字軸式自在継手の製造方法。
PCT/JP2014/071799 2013-08-30 2014-08-20 十字軸式自在継手の製造方法 WO2015029857A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480002391.9A CN104822957B (zh) 2013-08-30 2014-08-20 十字轴式万向接头的制造方法
JP2014555646A JP5850181B2 (ja) 2013-08-30 2014-08-20 十字軸式自在継手の製造方法
US14/900,254 US10184525B2 (en) 2013-08-30 2014-08-20 Method of manufacturing cross shaft universal joint
EP14839006.5A EP3001061B1 (en) 2013-08-30 2014-08-20 Method of manufacturing cross shaft universal joint

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2013178822 2013-08-30
JP2013-178822 2013-08-30
JP2014000109 2014-01-06
JP2014-000109 2014-01-08
JP2014079904 2014-04-09
JP2014-079904 2014-04-09
JP2014108656 2014-05-27
JP2014-108656 2014-05-27

Publications (1)

Publication Number Publication Date
WO2015029857A1 true WO2015029857A1 (ja) 2015-03-05

Family

ID=52586419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071799 WO2015029857A1 (ja) 2013-08-30 2014-08-20 十字軸式自在継手の製造方法

Country Status (5)

Country Link
US (1) US10184525B2 (ja)
EP (1) EP3001061B1 (ja)
JP (1) JP5850181B2 (ja)
CN (1) CN104822957B (ja)
WO (1) WO2015029857A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3396189B1 (en) * 2016-01-28 2020-02-19 NSK Ltd. Method for assembling cruciform universal joint, and cruciform universal joint
KR101930335B1 (ko) * 2016-10-11 2018-12-19 이양화 파이프를 이용한 유니버셜 조인트 제조방법
CN110043571A (zh) * 2019-04-29 2019-07-23 万向钱潮股份有限公司 一种弹簧吸振式新型长寿命万向节

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0229322U (ja) * 1988-08-11 1990-02-26
JPH08135674A (ja) 1994-11-11 1996-05-31 Nippon Seiko Kk 自在継手
JPH0960650A (ja) 1995-08-25 1997-03-04 Nippon Seiko Kk 自在継手
JP2004036827A (ja) * 2002-07-05 2004-02-05 Nok Corp シャフト用カップリング
JP2004068871A (ja) * 2002-08-05 2004-03-04 Koyo Seiko Co Ltd 十字軸継手
JP2004278790A (ja) * 2003-03-12 2004-10-07 American Axle & Mfg Inc 摩擦嵌合と軸受カップ保持部材とを備えたユニバーサルジョイント
JP2006250197A (ja) 2005-03-09 2006-09-21 Fuji Kiko Co Ltd ユニバーサルジョイント
JP2008039119A (ja) * 2006-08-08 2008-02-21 Nsk Ltd 十字軸自在継手

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1480650A (en) * 1973-08-23 1977-07-20 Nadella & Pitner Universal joints
DE2616020A1 (de) * 1976-04-12 1977-10-20 Schaeffler Ohg Industriewerk Lagerbuechse fuer kreuzgelenkzapfen
US7037199B2 (en) * 2004-01-16 2006-05-02 Federal-Mogul World Wide, Inc. Universal joint washer baffle
JP2009041732A (ja) * 2007-08-10 2009-02-26 Jtekt Corp 自在継手

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0229322U (ja) * 1988-08-11 1990-02-26
JPH08135674A (ja) 1994-11-11 1996-05-31 Nippon Seiko Kk 自在継手
JPH0960650A (ja) 1995-08-25 1997-03-04 Nippon Seiko Kk 自在継手
JP2004036827A (ja) * 2002-07-05 2004-02-05 Nok Corp シャフト用カップリング
JP2004068871A (ja) * 2002-08-05 2004-03-04 Koyo Seiko Co Ltd 十字軸継手
JP2004278790A (ja) * 2003-03-12 2004-10-07 American Axle & Mfg Inc 摩擦嵌合と軸受カップ保持部材とを備えたユニバーサルジョイント
JP2006250197A (ja) 2005-03-09 2006-09-21 Fuji Kiko Co Ltd ユニバーサルジョイント
JP2008039119A (ja) * 2006-08-08 2008-02-21 Nsk Ltd 十字軸自在継手

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3001061A4

Also Published As

Publication number Publication date
US20160153502A1 (en) 2016-06-02
JPWO2015029857A1 (ja) 2017-03-02
CN104822957A (zh) 2015-08-05
EP3001061B1 (en) 2017-11-01
CN104822957B (zh) 2018-01-02
US10184525B2 (en) 2019-01-22
EP3001061A1 (en) 2016-03-30
EP3001061A4 (en) 2016-05-11
JP5850181B2 (ja) 2016-02-03

Similar Documents

Publication Publication Date Title
JP2013194862A (ja) プロペラシャフト及びこのプロペラシャフトに用いられる等速ジョイント
JP5850181B2 (ja) 十字軸式自在継手の製造方法
JP5376239B2 (ja) 摺動式トリポード型等速ジョイント
WO2015174432A1 (ja) 十字軸式自在継手用ヨーク及びその製造方法
JP2011252547A (ja) 等速自在継手
EP1760347B1 (en) Shaft for constant velocity universal joint
JP2007010029A (ja) 等速ジョイントの外輪
KR101965133B1 (ko) 인텀 샤프트에 적용되는 샤프트 조립체 및 이의 제조 방법
JP6344467B2 (ja) 十字軸式自在継手用ヨーク
JP5978647B2 (ja) 十字軸式自在継手
JP2018053983A (ja) 摺動式等速自在継手
JP6354351B2 (ja) 十字軸式自在継手用軸受カップ及びその製造方法、並びに、十字軸式自在継手
JP6486694B2 (ja) 等速自在継手
JP2007032645A (ja) 摺動式等速自在継手
JP5117305B2 (ja) 等速自在継手の内側継手部材、等速自在継手の組立方法、ドライブシャフトアッシー、およびプロペラシャフトアッシー
JP2015200377A (ja) 等速ジョイント組立体
JP6642551B2 (ja) トルク伝達軸
US20170051793A1 (en) Multi-piece driveshaft assembly
JP2006161884A (ja) 固定式等速自在継手
JP2005226812A (ja) 等速自在継手
JP2007010080A (ja) 摺動式等速自在継手
JP6112149B2 (ja) 十字軸式自在継手
JP2014098490A (ja) シャフトと自在継手のヨークとの結合部及びその製造方法
JP2015137696A (ja) 等速ジョイント組立体
JP2010112439A (ja) 摺動式等速自在継手およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014555646

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839006

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14900254

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014839006

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014839006

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE