JP2015200377A - 等速ジョイント組立体 - Google Patents

等速ジョイント組立体 Download PDF

Info

Publication number
JP2015200377A
JP2015200377A JP2014080064A JP2014080064A JP2015200377A JP 2015200377 A JP2015200377 A JP 2015200377A JP 2014080064 A JP2014080064 A JP 2014080064A JP 2014080064 A JP2014080064 A JP 2014080064A JP 2015200377 A JP2015200377 A JP 2015200377A
Authority
JP
Japan
Prior art keywords
shaft
constant velocity
velocity joint
fitting
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014080064A
Other languages
English (en)
Inventor
辰也 吉井
Tatsuya Yoshii
辰也 吉井
成司 放生
Seiji Hojo
成司 放生
洋行 黒野
Hiroyuki Kurono
洋行 黒野
康治 久保
Koji Kubo
康治 久保
Original Assignee
株式会社ジェイテクト
Jtekt Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト, Jtekt Corp filed Critical 株式会社ジェイテクト
Priority to JP2014080064A priority Critical patent/JP2015200377A/ja
Publication of JP2015200377A publication Critical patent/JP2015200377A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】シャフトの回転駆動力を内側部材に良好に伝達可能、且つ低コストで製作可能な等速ジョイント組立体を提供する。【解決手段】等速ジョイント101の内側部材120と内側部材に連結されるシャフト102とを備える等速ジョイント組立体100であって、内側部材は、連結されるシャフトの回転軸と一致する中心軸線の軸方向端面に凹凸嵌合部121bを備え、シャフトは、端面に凹凸嵌合部と圧入される凹凸被嵌合部142を備え、内側部材とシャフトは、凹凸嵌合部と凹凸被嵌合部の圧入によって係止される。【選択図】図6

Description

本発明は、等速ジョイント組立体、特に等速ジョイント組立体の内側部材とシャフトとの連結構造に関する。
特許文献1に、等速ジョイントの内輪(内側部材)の構造が記載されている。内輪の内周スプラインがシャフトの外周スプラインに圧入嵌合され、内輪とシャフトとが相対回転不能に固定されている。これにより、内輪とシャフトとの間で、回転駆動力が伝達される。
特開2008−286308号公報 特開2010−14259号公報
特許文献1に記載の内輪及びシャフトの構造では、内輪の内周面、及びシャフトに設けたスプラインを良好に圧入するために精度の高い加工が必要となる。これにより、内輪、延いては等速ジョイント組立体の製作コストが上昇する。特許文献2には、内輪の内周面にスプラインを設けず、内輪のシャフトと当接する端面側にスプラインを形成している構造が開示されている。しかし、この場合、シャフトには突起部が設けられている。そして突起部と接合ボルトとを螺着させて内輪とシャフトとが固定される。このため突起部の製作費及び接合ボルト代により等速ジョイント組立体の製作コストが上昇する。
本発明は、シャフトの回転駆動力を内側部材に良好に伝達可能、且つ低コストで製作可能な等速ジョイント組立体の提供を目的とする。
(請求項1)本発明の等速ジョイント組立体は、等速ジョイントの内側部材と前記内側部材に連結されるシャフトとを備える等速ジョイント組立体であって、前記内側部材は、連結される前記シャフトの回転軸と一致する中心軸線の軸方向端面に凹凸嵌合部を備え、前記シャフトは、端面に前記凹凸嵌合部と圧入される凹凸被嵌合部を備え、前記内側部材と前記シャフトは、前記凹凸嵌合部と前記凹凸被嵌合部の圧入によって係止される。
このように、凹凸嵌合部と凹凸被嵌合部との圧入によって、簡易に内側部材とシャフトとの間の相対回転及び軸方向の相対移動が規制される。これにより、従来技術のようにシャフトの回転駆動力を内側部材に良好に伝達するため、内側部材の軸孔のスプライン及びシャフト先端部の外周面のスプラインを精度よく加工する必要がなく、接合ボルトによって、内側部材とシャフトとを固定する必要もない。これらにより、等速ジョイント組立体の製作コストが低減する。
(請求項2)また、前記凹凸嵌合部と前記凹凸被嵌合部における複数の噛み合い歯の一部分のみで圧入されてもよい。このため、凹凸嵌合部と凹凸被嵌合部のうちの一方の嵌合部の噛み合い歯の凸部が、対向する他方の噛み合い歯の凹部に圧入状態で進入したとき、圧入された他方の凹部と隣接する他方の少なくとも1つの凸部は、非圧入の他方の凹部に向かって撓むことができる。これにより、凹凸嵌合部と凹凸被嵌合部との圧入が可能となる。
(請求項3)また、前記凹凸嵌合部と前記凹凸被嵌合部における複数の噛み合い歯は、所定方向に連続して配置され、前記複数の噛み合い歯のうち圧入される一部は、前記所定方向に一つおきに配置されてもよい。これにより、凹凸嵌合部と凹凸被嵌合部のうちの一方の嵌合部の噛み合い歯の凸部が、対向する他方の噛み合い歯の凹部に圧入状態で進入したとき、圧入された他方の凹部と隣接する他方の両側の凸部は、非圧入の他方の凹部に向かって撓むことができ、凹凸嵌合部と凹凸被嵌合部との圧入が容易となる。また、撓んだ他方の凸部が、圧入された一方の凸部を押圧し抜け荷重を増大させるため、凹凸嵌合部と凹凸被嵌合部との間の抜けが良好に防止される。
(請求項4)また、前記所定方向は、前記シャフトの回転軸を中心とした回転方向であり、前記凹凸嵌合部及び前記凹凸被嵌合部における前記複数の噛み合い歯は、前記シャフトの回転軸心を中心とした放射状に形成されてもよい。これにより、シャフトと内側部材との間の回転駆動力が確実に伝達される。
(請求項5)また、前記内側部材は、軸孔を備え、前記シャフトは、前記凹凸被嵌合部の中心から軸方向に突出し、前記軸孔に圧入される先端軸部を備えてもよい。これにより、内側部材と、シャフトとの軸方向の位置決めがより強固となる。
(請求項6)また、前記軸孔の内周面及び前記先端軸部の外周面は、円筒面形状に形成されてもよい。このため、内側部材と、シャフトとの軸方向の位置決めの強固さを維持しつつ、先端軸部及び軸孔が、容易、且つ低コストで加工される。
(請求項7)また、前記軸孔は、内周スプラインを備え、前記先端軸部は、前記内周スプラインに圧入嵌合される外周スプラインを備えてもよい。このように、凹凸嵌合部と凹凸被嵌合部との間、及び軸孔の内周スプラインと先端軸部の外周スプラインとの間の各圧入嵌合によって、内側部材とシャフトとの間の回転駆動力の伝達、及び軸方向の位置決めがより強固となる。
(請求項8)また、前記等速ジョイントは、トリポード型等速ジョイントであり、前記内側部材は、トリポードであってもよい。これにより、シャフトとトリポードとの間において、回転駆動力の伝達が良好となる。また、トリポード型等速ジョイント組立体のコストが低減する。
(請求項9)また、前記等速ジョイントは、ボール型等速ジョイントであり、前記内側部材は、内輪であってもよい。これにより、シャフトと内輪との間において、回転駆動力の伝達が良好となる。また、ボール型等速ジョイント組立体のコストが低減する。
(請求項10)また、前記等速ジョイントは、車両のドライブシャフトのインボード側及びアウトボード側の少なくとも一方に搭載される等速ジョイントであってもよい。これにより、インボード側及びアウトボード側の少なくとも一方の等速ジョイント組立体のコストが低減する。
第一実施形態の等速ジョイント101を含む等速ジョイント組立体100の軸方向断面図である。 図1の2−2断面図である。 トリポード120の斜視図である。 図3の凹凸嵌合部121b側から見た正面図である。 シャフト102の側面図である。 図4の6−6断面図であり、凸部124bが矩形の場合を説明する図である。 図4の6−6断面図であり、凸部124bが逆テーパ形状の場合を説明する図である。 第二実施形態における図4の6−6断面図に対応する図であり、凸部124b及び凸部142bの変形例を示した図である。 第二実施形態の変形態様を示した図である。 第三実施形態の等速ジョイント101を含む等速ジョイント組立体200の軸方向断面図である。 第四実施形態の等速ジョイント201を含む等速ジョイント組立体300の軸方向断面図である。
以下、本発明の等速ジョイントを具体化した実施形態について図面を参照しつつ説明する。なお、本実施形態では、トリポード型等速ジョイント(第一実施形態)及びボール型等速ジョイント(第二実施形態)の組立体を例に挙げて説明する。ここで、本実施形態の等速ジョイントは、車両の動力伝達シャフトの連結に用いる場合を例に挙げる。例えば、トリポード型等速ジョイントは、ディファレンシャルギヤに連結された軸部とドライブシャフトの中間シャフトとの連結部位(インボード側)に用いる。ボール型等速ジョイントは、車輪に連結されるハブユニットとドライブシャフトの中間シャフトとの連結部位(アウトボード側)に用いる。
<第一実施形態>
第一実施形態の等速ジョイント組立体100について、図1〜図7を参照して説明する。図1に示すように、等速ジョイント組立体100は、トリポード型等速ジョイント101(以下、単に「等速ジョイント」と称する。)と、シャフト102と、ブーツ104とを備える。等速ジョイント101は、外輪110と、トリポード120(内側部材に相当)と、3つのローラユニット130(ローラに相当)とを備える。
外輪110は、筒状(例えば、有底筒状)に形成され、外輪110の一端側(図1左側)がディファレンシャルギヤ(図示せず)に連結される。外輪110の筒状部分の内周面には、外輪110の軸方向に延びる軌道溝111が、周方向に等間隔に3本形成される。
トリポード120は、外輪110に対して、外輪軸方向に移動可能であると共に、傾動可能である。また、トリポード120は、シャフト102に一体的に連結(係止)される。図1〜図4に示すように、トリポード120は、シャフト102に連結されるボス部121と、3本のトリポード軸部122とを備える。トリポード120の詳細形状は、後述する。
図1、図2に示す3つのローラユニット130は、全体形状としては円環状である。各ローラユニット130は、各トリポード軸部122の外周側に、各トリポード軸部122に対して回転可能、且つ傾動可能に支持される。図1、図2に示すように、各ローラユニット130は、少なくとも外ローラ131と、内ローラ132と、ニードルローラ133とを有する。
外ローラ131と内ローラ132とは、ニードルローラ133を介して、相対回転可能となる。また、外ローラ131の外周面は、軌道溝111の側面に対応する形状、すなわち軌道溝111の側面を転写した形状である。例えば、外ローラ131の外周面の軸方向断面形状は、凸円弧形状に形成される。外ローラ131は、外ローラ131の中心軸が外輪110の回転軸に直交する姿勢で、軌道溝111の側面に転動可能に嵌挿される。つまり、ローラユニット130全体が、外輪110に対して姿勢を規制される。
シャフト102は、トリポード120のボス部121に連結(係止)される。これにより、シャフト102と外輪110とに角度を付与した状態で、トリポード120及びローラユニット130を介することによりシャフト102と外輪110との間で回転駆動力が伝達される。シャフト102の詳細形状については後述する。
ブーツ104は、中心軸方向に伸縮可能で、かつ、中心軸を屈曲可能となるように、蛇腹筒状に形成される。ブーツ104の一端が外輪110の外周面の開口側に取り付けられ、ブーツ104の他端がシャフト102の外周面に取り付けられる。このようにして、ブーツ104は、外輪110の開口側を閉塞する。外輪110の内部領域にはグリースが封入されており、ブーツ104は、グリースが外部へ漏出しないようにシールする。
(トリポードの詳細)
トリポード120の詳細形状について、図1〜3を参照して説明する。トリポード120は、上述したように、ボス部121と3つのトリポード軸部122とを備える。外輪110の開口側におけるボス部121の軸方向の端面に、凹凸嵌合部121bが形成される。なお、トリポード120のボス部121の軸方向とは、トリポード120に連結された状態におけるシャフト102の回転軸と一致するボス部121の中心軸線の方向をいう。凹凸嵌合部121bの凹部及び凸部がボス部121の径方向に放射状に延び、且つ、凹部と凸部がボス部121の周方向に交互に配置される。
トリポード120の凹凸嵌合部121bについて説明する。図3、図4に示すように、凹凸嵌合部121bは、凹部124a及び凸部124bがボス部121の径方向に放射状に延び、且つ、シャフト102の回転軸を中心として、ボス部121の周方向に交互に連続して配置される複数の噛み合い歯である。この凹凸嵌合部121bの凸部124bの断面形状は、矩形(図6参照)でもよいし、根元部が狭くなる逆テーパ状(図7参照)でもよい。凹凸嵌合部121bは、後述するシャフト102の凹凸被嵌合部142と圧入(噛合)される。凹凸被嵌合部142と凹凸嵌合部121bとの圧入の詳細については、後述する。
図3、図4に示すように、トリポード120の外形部を構成するそれぞれのトリポード軸部122は、ボス部121の外周面からそれぞれボス部121の径方向外方に延びるように形成される。これらのトリポード軸部122は、ボス部121の周方向に等間隔(120deg間隔)に形成される。各トリポード軸部122の外周面は、球面凸状に形成される。そして、それぞれのトリポード軸部122の少なくとも先端部は、外輪110のそれぞれの軌道溝111内に挿入される。
(シャフトの詳細)
図5に示すように、シャフト102は、シャフト本体141と、凹凸被嵌合部142とを備える。シャフト本体141は、中実又は中空の棒状部材である。凹凸被嵌合部142は、シャフト本体141の軸方向端面に形成される。凹凸被嵌合部142は、シャフト本体141の軸周りに凹凸状をなし、凹部及び凸部がシャフト本体141の径方向に放射状に延びるように形成される。放射状に形成された凹凸被嵌合部142の内径及び外径は、それぞれ、ボス部121の凹凸嵌合部121bの内径及び外径とほぼ同等である。凹凸被嵌合部142は、ボス部121の凹凸嵌合部121bに噛合して圧入される。
シャフト102の凹凸被嵌合部142について詳細に説明する。凹凸被嵌合部142は、前述したようにシャフト本体141の端面に形成される。凹凸被嵌合部142は、図6、図7に示す凹部142a及び凸部142bが、シャフト本体141の端面で、シャフト102の回転軸を中心として、径方向に放射状に延び、且つ、ボス部121の周方向に交互に連続して配置される複数の噛み合い歯である。
この凸部142bの断面形状は、凹凸嵌合部121bの凸部124bの断面形状が、矩形であれば逆テーパ状とすることが好ましい(図6参照)。また、凸部142bの断面形状は、凹凸嵌合部121bの凸部124bの断面形状が、逆テーパ状であれば矩形とすることが好ましい(図7参照)。しかし、これには限らず、凸部142bの断面形状は、凹凸嵌合部121bとの間で相互に圧入可能であればどのような形状でもよい。
(凹凸嵌合部と凹凸被嵌合部との圧入嵌合について)
図6において、周方向に交互に配置される凹凸被嵌合部142の複数の凸部142bは、周方向において、凹凸嵌合部121bの凹部124aに対し、1つおきに圧入されるよう形成される(図6、図7参照)。これにより、凹凸被嵌合部142の凸部142bが、対向する凹凸嵌合部121bの凹部124aに圧入状態で進入したとき、圧入された凹部124aと隣接する両側の凸部124b,124bは、非圧入の凹部124aに向かって撓むことができ(図6,図7中、矢印参照)、凹凸の形状及び位置を精度よく形成しないと難しいとされる、放射状に形成された噛み合い歯部同士の圧入が比較的容易に実現できる。また、撓んだ両側の凸部124b,124bが、圧入された一方の凸部142bを押圧し、抜け荷重を増大させるため、凹凸嵌合部121bと凹凸被嵌合部142との間の抜けを良好に防止する。なお、図6,図7において、Prは、圧入状態であることを示している。
上記より、シャフト102とトリポード120とは、ボルト等を用いずに、凹凸被嵌合部142と凹凸嵌合部121bとの圧入のみによって簡易に固定(係止)される。これにより、シャフト102の回転駆動力をトリポード120に良好に伝達でき、低コストで製作可能なトリポード型等速ジョイント組立体100を得ることができる。
(効果)
上述の説明から明らかなように、第一実施形態に係る等速ジョイント組立体100は、別部材を介さず、凹凸被嵌合部142と凹凸嵌合部121bとの圧入による係止のみによって、トリポード120とシャフト102との間の相対回転及び軸方向の相対移動が規制される。これにより、従来技術のようにシャフトの回転駆動力を内側部材に良好に伝達するため、トリポード120(内側部材)の軸孔に内周スプラインを設け、シャフト先端部の外周面に外周スプラインを設けて、それぞれを精度よく加工する必要がない。また、従来技術のように、接合ボルトによって、内側部材とシャフトとを固定する必要もない。これにより、トリポード120及びシャフト102、延いては等速ジョイント組立体100が、低コストで製作できる。
また、第一実施形態によれば、凹凸嵌合部121b及び凹凸被嵌合部142の複数の噛み合い歯は、シャフト102の回転軸心を中心として放射状に形成された。これにより、シャフト102とトリポード120との間の回転駆動力の伝達が、確実となる。
<第二実施形態>
上記第一実施形態においては、凹凸嵌合部121b及び各凹凸被嵌合部142がそれぞれ有する凸部124b及び凸部142bの断面形状が、矩形、または、逆テーパ状であるとした(図6、図7参照)。しかし、各凸部124b,142bの断面形状は、これらの形状には限らない。第二実施形態として、各凸部124b,142bは、例えば、図8に示す形状としてもよい。
凸部124bの周方向側面には両側で隣接する凹部124aに向かって各突出部124c,124cが形成される。また、凸部142bの周方向側面には、両側で隣接する凹部142aに向かって各突出部142c,142cが形成される。凸部142bが凹部124aに進入した場合、各突出部124c,124cと各突出部142c,142cとが当接し、凸部142bはそれ以上進入できない。
そこで、さらにシャフト102の凸部142bを凹部124aに進入させる。これにより、凸部142bの突出部142c,142cが、凹部124aに設けられた突出部124c,124cと圧入状態となる。その後、突出部142cが突出部124cを乗り越える。この状態で、突出部124cが突出部142cの抜けを規制する。これによっても、第二実施形態の凹凸嵌合部121b及び各凹凸被嵌合部142は、第一実施形態と同様の効果を奏する。
<第二実施形態の変形態様>
さらに、第二実施形態の変形態様として、図9に示すような形状としてもよい。図9では、凹凸嵌合部121bの凸部124bの周方向側面に各凹部124d,124dが形成される。また、凸部142bの周方向側面には、両側で隣接する凹部142aに向かって各突出部142d,142dが形成される。各突出部142d,142dは、凹凸嵌合部121bの凹部124aの周方向側面に圧入可能な寸法で形成される。また、各突出部142d,142dは、凹凸嵌合部121bの各凹部124d,124dとオーバーラップするよう形成される。
そして、凸部142bを凹部124aに進入させると、凸部142bの各突出部142d,142dが凹部124aの周方向側面と圧入状態となる。その後、凸部142bを凹部124a内にさらに進入させると、各突出部142d,142dは、凹凸嵌合部121bの各凹部124d,124dと嵌合する。これにより、各凹部124d,124dが、各突出部142d,142dの抜けを規制する。これによっても、第一実施形態と同様の効果を奏する。
<第三実施形態>
第三実施形態のジョイント組立体200について図10を参照して説明する。ジョイント組立体200は、第一実施形態のジョイント組立体100に対して、トリポード120が、軸孔121aを備え、シャフト102が先端軸部143を備える点のみが異なる。上記以外は、第一実施形態と同様であるので、変更点についてのみ説明し、同様部分については、説明を省略する。
トリポード120の軸孔121aは、ボス部121の軸方向に貫通形成される。軸孔121aは、ボス部121の軸方向全長に亘って同一外径で形成される。さらに、軸孔121aの中心軸は、トリポード120の中心軸(ボス部121の中心軸でもある)に一致するように設定される。軸孔121aには、内周面に内周スプライン125が形成される。内周スプライン125は、前述したシャフト102の先端軸部143の外周面に形成される外周スプライン145と圧入嵌合される。
なお、凹凸嵌合部121bと内周スプライン125との軸線周りの位置関係は、シャフト102の外周スプライン145とトリポード120の内周スプライン125とが嵌合した状態で、シャフト102の凹凸被嵌合部142とトリポード120の凹凸嵌合部121bとが嵌合可能なように、軸線周り方向の位相が調整されて形成される。
内周スプライン125には、断面が三角山形状でトリポード軸方向に延びる複数の内凸歯(図略)が形成される。内凸歯は、周方向に等間隔に配列される。内周スプライン125の内凸歯は、トリポード120の軸線と平行に形成される。
シャフト102の先端軸部143は、シャフト本体141の軸方向端面に形成された凹凸被嵌合部142の中心から軸方向に突出される。先端軸部143は、円柱状であって、その外周面に、前述した外周スプライン145が形成される。外周スプライン145は、ボス部121の軸孔121aに設けられた内周スプライン125に圧入嵌合される。先端軸部143の軸方向長さは、ボス部121の軸孔121aの軸方向長さとほぼ同等である。先端軸部143は、シャフト102の凹凸被嵌合部142とボス部121の凹凸嵌合部121bとが圧入嵌合された状態で、軸孔121aの内周スプライン125に嵌合される。
外周スプライン145は、先端軸部143の外周面に内周スプライン125の複数の内凸歯と符合する複数の外凸歯(詳細な図示は省略する)を備えている。先端軸部143が、軸孔121aに挿入されることにより、先端軸部143の外周スプライン145が、軸孔121aの内周スプライン125に嵌合される。
外周スプライン145の外凸歯は、内凸歯に対して周方向に極小(1°以下)のねじれ角が存在するようにリードが形成される。これにより、トリポード120の内周スプライン125とシャフト102の外周スプライン145とが嵌合されたときに、軸線周り方向で隣接する内凸歯と外凸歯どうしが圧接(圧入)するようになっている。これにより、トリポード120と、シャフト102との軸方向の位置決めがより強固となる。そして、凹凸被嵌合部142と凹凸嵌合部121bとが第一実施形態で説明したのと同様に圧入される。
このように、第三実施形態によれば、凹凸嵌合部121bと凹凸被嵌合部142との間、及び軸孔の内周スプライ125と先端軸部143の外周スプライン145との間の圧入嵌合によって、トリポード120とシャフト102との間の回転駆動力の伝達、及び軸方向の強固な位置決めが可能となる。
<第四実施形態>
次に、第四実施形態のジョイント組立体300について図11を参照して説明する。第四実施形態は第三実施形態に対応し、第三実施形態と等速ジョイントのみ異なる。第四実施形態のジョイント組立体300は、ボール型等速ジョイント201(以下、単に「等速ジョイント」と称する。)と、シャフト102と、ブーツ204とを備える。等速ジョイント201は、外輪210と、内輪220(内側部材に相当)と、転動体としての複数のボール230と、保持器240とを備えて構成される。上述したように内側部材は、内輪220であり、内輪220の外形部は、転動体としてのボール230を転動可能なボール溝を含む形状とする。
外輪210は、図11の右側に開口部を有する有底筒状に形成される。外輪210の底部の外方(図11の左側)には、ハブユニットに連結される連結軸210aが外輪軸方向に延びるように一体形成される。外輪210の内周面210bは、凹球面状に形成される。外輪210の内周面210bには、複数の外輪ボール溝210cが、ほぼ外輪軸方向に延びるように形成される。複数の外輪ボール溝210cは、周方向に等間隔に形成される。
内輪220は、外輪210に対して、回転中心を同一として傾動可能である。また、内輪220は、シャフト102に一体的に連結(係止)される。内輪220は、円環状に形成され、外輪210の内側に配置される。内輪220の外周面220dは、凸球面状に形成される。内輪220の外周面220dには、複数の内輪ボール溝220cが、ほぼ内輪軸方向に延びるように形成される。複数の内輪ボール溝220cは、周方向に等間隔に形成される。内輪220のうちシャフト102との連結部位については、後述する。
複数のボール230のそれぞれは、外輪210の外輪ボール溝210cと、当該外輪ボール溝210cに対向する内輪220の内輪ボール溝220cに挟まれるように配置される。それぞれのボール230は、外輪ボール溝210c及び内輪ボール溝220cに対して、転動自在であって、周方向(外輪軸回りまたは内輪軸回り)に係合する。従って、ボール230は、外輪210と内輪220との間で回転駆動力の伝達が良好に行なわれる。
保持器240は、円環状に形成され、外輪210の内周面210bと内輪220の外周面220dとの径方向間に配置される。保持器240は、複数の窓部243を有する。複数の窓部243は、周方向(保持器軸心の周方向)に等間隔に形成されたほぼ矩形の貫通孔である。それぞれの窓部243には、ボール230が1つずつ収容される。
(内輪とシャフトの連結部位の詳細)
また、内輪220は図11に示す軸孔220a(内周面)と、凹凸嵌合部220bとを備えている。軸孔220aは、内輪220の内輪軸方向に貫通される。内輪軸方向は、連結されるシャフト102の軸線方向と一致する。凹凸嵌合部220bは、図11における右側端面の軸孔220a周りに形成される。凹凸嵌合部220bは上記第三実施形態の凹凸嵌合部121bと同様の形状で形成される。また、軸孔220aは第三実施形態の軸孔121aと同様に形成され、軸孔220aの内周面には、内周スプライン225が形成される。
シャフト102は、先端軸部181とシャフト本体182と凹凸被嵌合部184とを備える。先端軸部181は、第三実施形態の先端軸部143と同様に形成され、外周面に外周スプライン185が形成される。シャフト本体182及び凹凸被嵌合部184は、上記第三実施形態のシャフト102のシャフト本体141及び凹凸被嵌合部142と同様の形状で形成される。
先端軸部181は、外輪210の開口側から内輪220の軸孔220a(内周スプライン225)に挿入される。このため、内輪220の内周スプライン225とシャフト102の先端軸部181の外周スプライン185とが圧入嵌合される。また、凹凸嵌合部220bと凹凸被嵌合部184とが圧入される。これにより、内輪220とシャフト102とが、ボルト等の別部材を介さず、凹凸被嵌合部184と凹凸嵌合部220bとの圧入、及びシャフト102の外周スプライン185と内輪220の内周スプライン225との圧入嵌合のみによって固定(係止)される。また、シャフト102の回転駆動力を内輪220に良好に伝達でき、低コストで製作可能なボール型等速ジョイント組立体300を得ることができる。上記構成により、等速ジョイント組立体300は、第三実施形態に係る等速ジョイント組立体200と同等の効果を得る。
なお、上記第四実施形態のジョイント組立体300においては、第三実施形態と同様にシャフト102が、先端軸部181を備え、内輪220が、軸孔220aを有する構成とした。しかし、この態様には限らない。ジョイント組立体300は、第一実施形態のジョイント組立体100と同様に、先端軸部181及び軸孔220aを有さず、凹凸嵌合部220bと凹凸被嵌合部184との嵌合のみによってシャフト102と内輪220とが固定(係止)されてもよい。これによって、第一実施形態のジョイント組立体100と同様の効果を得る。
また、上記各実施形態においては、摺動式トリポード型等速ジョイント101が、車両のディファレンシャルギヤに連結された軸部とドライブシャフトの中間シャフトとの連結部位に設けられるもの、つまり、インボード側に設けられるものとして説明した。また、固定式ボール型等速ジョイント201が、ドライブシャフトの中間シャフトと車輪のハブユニットとの間、つまり、アウトボード側に設けられるものとして説明した。しかし、この態様には限らない。トリポード型等速ジョイントがアウトボード側に設けられ、ボール型等速ジョイントがインボード側に設けられてもよい。これにより、シャフトの回転駆動力を内側部材(トリポード120,内輪220)に良好に伝達でき、低コストで製作可能なインボード側及びアウトボード側の少なくとも一方の等速ジョイントを得ることができる。
また、トリポード型等速ジョイント及びボール型等速ジョイントに限らず、インボード側及びアウトボード側に、本発明を適用した、その他の摺動式等速ジョイント及びその他の固定式等速ジョイントを用いてもよい。このような構成においても同様の効果を奏する。
また、上記各実施形態の凹凸嵌合部121b,220b及び凹凸被嵌合部142,184は放射状に形成された複数の噛み合い歯であるとした。しかし、この態様に限らず、各凹凸部は、複数の平行溝(ハースセレーション)によって形成されるものや、複数の突起と該突起を圧入する孔とからなるものでもよい。
また、上記第三、及び第四実施形態においては、各軸孔121a,220aの内周面に設けられた各内周スプライン125,225と各シャフト102の各先端軸部143,181の外周面に設けられた各外周スプライン145,185とが嵌合された。しかし、この態様には限らない。例えば、各軸孔121a,220aには、各内周スプライン125,225を設けず、各シャフト102の各先端軸部143,181の外周面には、各外周スプライン145,185を設けなくてもよい。つまり各軸孔121a,220aの内周面及び各先端軸部143,181の外周面は、円筒面形状に形成されてもよい。このような状態で各軸孔121a,220aと各先端軸部143,181とが圧入されてもよい。当該圧入により、内側部材(トリポード120,内輪220)とシャフト102との軸方向の位置決めがさらに強固となる。また、各先端軸部143,181及び各軸孔121a,220aの加工が容易となる分、低コストとなる。
また、上記各実施形態においては、各凹凸嵌合部121b,220bと各凹凸被嵌合部142,184とを圧入する場合、各凹凸嵌合部側の凸部142bを各凹凸被嵌合部側の凹部124aに周方向に1つおきに圧入した。しかし、この態様に限らず、各凹凸被嵌合部側の凸部を各凹凸嵌合部側の凹部に周方向に1つおきに圧入してもよい。
さらに、上記各実施形態においては、各凹凸嵌合部121b,220bと各凹凸被嵌合部142,184とを圧入する際、一方の凸部が他方の凹部に周方向に1つおきに圧入された。しかし、この態様に限らず、凸部の凹部への圧入は、2つおきでもよいし、3つおきでもよい。さらには、3つを超える間隔をあけて凸部を凹部に圧入するようにしてもよい。また、1箇所のみ凸部を凹部へ圧入するようにしてもよい。このように各凹凸嵌合部121b,220b及び各凹凸被嵌合部142,184の噛み合い歯の一部分のみが圧入されてもよい。このため、各噛み合い歯の数を減らすことができるので、内側部材(トリポード120,内輪220)及び各シャフト102が低コストで製作できる。また、全ての凹部が、凸部に圧入されてもよい。これによって、内側部材(トリポード120,内輪220)が、シャフト102に強固に固定される。
100,200・・・トリポード型等速ジョイント組立体、 101・・・トリポード型等速ジョイント、 102・・・シャフト、 110,210・・・外輪、 111・・・軌道溝、 120・・・トリポード(内側部材)、 121・・・ボス部、 121a,220a・・・貫通孔、 121b,220b・・・凹凸嵌合部、 122・・・トリポード軸部、 130・・・ローラユニット、 141,182・・・シャフト本体、 142,184・・・凹凸被嵌合部、 300・・・ボール型等速ジョイント組立体、 201・・・ボール型等速ジョイント、 220・・・内輪(内側部材)、 230・・・ボール。

Claims (10)

  1. 等速ジョイントの内側部材と前記内側部材に連結されるシャフトとを備える等速ジョイント組立体であって、
    前記内側部材は、連結される前記シャフトの回転軸と一致する中心軸線の軸方向端面に凹凸嵌合部を備え、
    前記シャフトは、端面に前記凹凸嵌合部と圧入される凹凸被嵌合部を備え、
    前記内側部材と前記シャフトは、前記凹凸嵌合部と前記凹凸被嵌合部の圧入によって係止される、等速ジョイント組立体。
  2. 前記凹凸嵌合部と前記凹凸被嵌合部における複数の噛み合い歯の一部分のみで圧入される、請求項1に記載の等速ジョイント組立体。
  3. 前記凹凸嵌合部と前記凹凸被嵌合部における複数の噛み合い歯は、所定方向に連続して配置され、
    前記複数の噛み合い歯のうち圧入される一部は、前記所定方向に一つおきに配置される、
    請求項2に記載の等速ジョイント組立体。
  4. 前記所定方向は、前記シャフトの回転軸を中心とした回転方向であり、
    前記凹凸嵌合部及び前記凹凸被嵌合部における前記複数の噛み合い歯は、前記シャフトの回転軸心を中心とした放射状に形成される、
    請求項3に記載の等速ジョイント組立体。
  5. 前記内側部材は、軸孔を備え、
    前記シャフトは、前記凹凸被嵌合部の中心から軸方向に突出し、前記軸孔に圧入される先端軸部を備える、
    請求項1〜4の何れか1項に記載の等速ジョイント組立体。
  6. 前記軸孔の内周面及び前記先端軸部の外周面は、円筒面形状に形成される、請求項5に記載の等速ジョイント組立体。
  7. 前記軸孔は、内周スプラインを備え、
    前記先端軸部は、前記内周スプラインに圧入嵌合される外周スプラインを備える、
    請求項5に記載の等速ジョイント組立体。
  8. 前記等速ジョイントは、トリポード型等速ジョイントであり、
    前記内側部材は、トリポードである、
    請求項1〜7の何れか1項に記載の等速ジョイント組立体。
  9. 前記等速ジョイントは、ボール型等速ジョイントであり、
    前記内側部材は、内輪である、
    請求項1〜7の何れか1項に記載の等速ジョイント組立体。
  10. 前記等速ジョイントは、車両のドライブシャフトのインボード側及びアウトボード側の少なくとも一方に搭載される等速ジョイントである、請求項1〜9の何れか1項に記載の等速ジョイント組立体。
JP2014080064A 2014-04-09 2014-04-09 等速ジョイント組立体 Pending JP2015200377A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014080064A JP2015200377A (ja) 2014-04-09 2014-04-09 等速ジョイント組立体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014080064A JP2015200377A (ja) 2014-04-09 2014-04-09 等速ジョイント組立体

Publications (1)

Publication Number Publication Date
JP2015200377A true JP2015200377A (ja) 2015-11-12

Family

ID=54551812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014080064A Pending JP2015200377A (ja) 2014-04-09 2014-04-09 等速ジョイント組立体

Country Status (1)

Country Link
JP (1) JP2015200377A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106090047A (zh) * 2016-05-12 2016-11-09 浙江同济科技职业学院 快拆式汽车传动轴球笼
KR20200046650A (ko) * 2018-10-25 2020-05-07 현대위아 주식회사 등속조인트

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106090047A (zh) * 2016-05-12 2016-11-09 浙江同济科技职业学院 快拆式汽车传动轴球笼
KR20200046650A (ko) * 2018-10-25 2020-05-07 현대위아 주식회사 등속조인트
KR102177597B1 (ko) * 2018-10-25 2020-11-11 현대위아(주) 등속조인트

Similar Documents

Publication Publication Date Title
JP5561151B2 (ja) 車輪駆動用軸受ユニット
JP2010144902A (ja) スプライン嵌合構造、摺動式トリポード型等速ジョイントおよびボール型等速ジョイント
JP5167903B2 (ja) 車輪用軸受装置
JP2015200377A (ja) 等速ジョイント組立体
JP2013047056A (ja) 車輪支持装置
JP2013047056A5 (ja)
JP5206291B2 (ja) 車輪用軸受ユニット
JP2016030260A (ja) 転がり軸受ユニットの製造方法
US8714573B2 (en) Vehicle bearing apparatus
JP5283832B2 (ja) 等速自在継手
JP2007010029A (ja) 等速ジョイントの外輪
JP2009185872A (ja) 等速ジョイントのシャフト連結構造
US8342971B2 (en) Fixed type constant velocity universal joint
JP2008051222A (ja) 二部材の連結構造
JP3736571B2 (ja) 駆動輪用転がり軸受ユニット及び車輪用駆動ユニットの製造方法
JP2008051221A (ja) 二部材の連結構造
JP6261846B2 (ja) 車輪用軸受装置および車輪用軸受装置の製造方法
JP2014151813A (ja) 車輪支持装置
KR101696907B1 (ko) 휠 베어링 및 그 제작 방법
JP2003054210A (ja) 車軸用軸受装置
US20140162796A1 (en) Inner Race and Boot Sleeve
JP2020067150A (ja) 動力伝達軸とハブ輪との接続構造
JP2010127311A (ja) 固定式等速自在継手およびこれを用いた車輪軸受装置
JP2017193262A (ja) 車輪用軸受装置
JP5561338B2 (ja) 車輪用軸受装置