WO2015029840A1 - 自転車用歯付ベルト駆動装置 - Google Patents

自転車用歯付ベルト駆動装置 Download PDF

Info

Publication number
WO2015029840A1
WO2015029840A1 PCT/JP2014/071680 JP2014071680W WO2015029840A1 WO 2015029840 A1 WO2015029840 A1 WO 2015029840A1 JP 2014071680 W JP2014071680 W JP 2014071680W WO 2015029840 A1 WO2015029840 A1 WO 2015029840A1
Authority
WO
WIPO (PCT)
Prior art keywords
belt
pulley
tooth
driven pulley
tooth portion
Prior art date
Application number
PCT/JP2014/071680
Other languages
English (en)
French (fr)
Inventor
侑 大崎
岡沢 学秀
Original Assignee
三ツ星ベルト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三ツ星ベルト株式会社 filed Critical 三ツ星ベルト株式会社
Priority to CA2917984A priority Critical patent/CA2917984C/en
Priority to EP14841215.8A priority patent/EP3040580B1/en
Priority to US14/915,402 priority patent/US9950768B2/en
Priority to CN201480048040.1A priority patent/CN105492800B/zh
Priority to KR1020167005248A priority patent/KR101858946B1/ko
Publication of WO2015029840A1 publication Critical patent/WO2015029840A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M9/00Transmissions characterised by use of an endless chain, belt, or the like
    • B62M9/02Transmissions characterised by use of an endless chain, belt, or the like of unchangeable ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/14Driving-belts made of plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/28Driving-belts with a contact surface of special shape, e.g. toothed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/17Toothed wheels
    • F16H55/171Toothed belt pulleys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/02Gearings for conveying rotary motion by endless flexible members with belts; with V-belts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H7/00Gearings for conveying rotary motion by endless flexible members
    • F16H7/02Gearings for conveying rotary motion by endless flexible members with belts; with V-belts
    • F16H7/023Gearings for conveying rotary motion by endless flexible members with belts; with V-belts with belts having a toothed contact surface or regularly spaced bosses or hollows for slipless or nearly slipless meshing with complementary profiled contact surface of a pulley
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/32Friction members
    • F16H55/36Pulleys
    • F16H55/38Means or measures for increasing adhesion

Definitions

  • the present invention relates to a toothed belt drive device for a bicycle used in a belt-driven bicycle.
  • a driving pulley connected to a rotating shaft of a pedal, a driven pulley connected to a rotating shaft of a rear wheel, and the two pulleys are wound around.
  • a toothed belt driving device provided with a toothed belt.
  • convex belt teeth are formed at a predetermined pitch along the belt longitudinal direction.
  • pulley grooves that mesh with the belt teeth are formed on the outer peripheral surfaces of the drive pulley and the driven pulley.
  • the belt tension applied to one pulley groove of the driven pulley is larger than that of the driving pulley. For this reason, when the belt tension suddenly increases due to standing or the like during traveling, and the belt partially extends, belt jumping (tooth skipping) is likely to occur in the driven pulley. In particular, during rainy weather, rainwater is applied to the driven pulley and the friction coefficient between the pulley groove and the belt tooth portion is reduced, so that jumping is more likely to occur.
  • the present invention provides a toothed belt drive for a bicycle that can suppress the occurrence of jumping of the belt in the driven pulley and maintain smooth power transmission performance even in an environment where foreign matter such as a mixture of water and sand adheres.
  • An object is to provide an apparatus.
  • the toothed belt drive device for a bicycle is formed of a rubber-like elastic body in which a tensile body is embedded along the belt longitudinal direction, and is arranged at a predetermined tooth pitch in the belt longitudinal direction.
  • a portion of the surface of the pulley is in surface contact
  • the surface contact portion between the pulley groove portion and the belt tooth portion of the drive pulley and the surface contact portion between the pulley groove portion and the belt tooth portion of the driven pulley are: The range from the outer circumference of each of the drive pulley and the driven pulley to the tooth circumference side of the belt tooth portion from the reference circumference concentric with the pulley, the length of which is obtained by subtracting the tooth height of the belt tooth portion.
  • the portion of the drive pulley where the pulley groove portion and the belt tooth portion are in surface contact with each other and the portion of the driven pulley where the pulley groove portion and the belt tooth portion are in surface contact are in the belt width direction.
  • the maximum value of the shortest distance between the pulley groove portion of the driving pulley and the belt tooth side surface of the belt tooth portion is 2% or more and 6% or less of the tooth pitch of the belt tooth portion.
  • the maximum value of the shortest distance between the pulley groove portion of the driven pulley and the surface of the belt tooth portion opposite to the belt running direction is 10% or more and 18% or less of the tooth pitch of the belt tooth portion.
  • the groove depth of the pulley groove portion of the driven pulley is larger than the tooth height of the belt tooth portion, and the difference is 5% or more of the tooth height of the belt tooth portion.
  • the maximum value of the shortest distance between the pulley groove portion of the driven pulley and the surface opposite to the belt running direction of the belt tooth portion is as large as 10% or more of the tooth pitch. Therefore, when the bicycle toothed belt drive device is driven in an environment in which foreign matter such as a mixture of sand and water adheres, the pulley groove of the driven pulley and the surface of the belt tooth opposite to the belt running direction In the meantime, foreign matter such as a mixture of sand and water can be prevented from being caught, and the foreign matter that has entered can be easily discharged to the outside. As a result, belt jumping in the driven pulley can be suppressed.
  • the maximum value of the shortest distance between the pulley groove portion of the driven pulley and the belt tooth portion on the opposite side to the belt running direction exceeds 18% of the tooth pitch, the distance between two adjacent pulley groove portions The width of the pulley (the width of the pulley teeth) is too narrow. For this reason, the durability of the driven pulley is reduced due to wear, and the shoulder groove of the pulley groove (the tooth tip roundness of the pulley tooth portion) cannot be secured. Moreover, even if the shoulder groove of the pulley groove can be ensured, the driven pulley tooth portion is likely to be chipped.
  • the drive pulley since the drive pulley has a larger outer diameter than the driven pulley, the belt tension applied to one pulley groove portion of the drive pulley is smaller than that of the driven pulley. Therefore, even in an environment where foreign matters such as a mixture of water and sand adhere, belt jumping hardly occurs in the drive pulley. Therefore, in the drive pulley, the distance between the pulley groove portion of the driven pulley and the surface of the belt tooth portion on the side opposite to the belt traveling direction is set to the distance between the pulley groove portion and the surface of the belt tooth portion on the belt traveling direction side. There is no need to secure large.
  • the maximum value of the shortest distance between the pulley groove of the drive pulley and the belt tooth surface on the belt running direction side exceeds 6% of the tooth pitch, the power transmission efficiency will decrease, vibration and noise will occur, and wear will occur. Problems such as a decrease in the durability (lifetime) of the toothed belt due to the occurrence of the problem.
  • the maximum value of the shortest distance between the pulley groove portion of the drive pulley and the surface of the belt tooth portion on the belt running direction side is 6% or less of the tooth pitch, the above-described problems can be prevented.
  • the pulley groove portion of the drive pulley and the belt tooth portion on the belt running direction side is 2% or more of the tooth pitch, the pulley groove portion of the drive pulley and the belt teeth Can smoothly mesh with each other, and smooth power transmission performance can be obtained.
  • the groove depth of the pulley groove of the driven pulley is larger than the tooth height of the belt tooth and the difference is less than 5%, the belt jumping on the driven pulley in an environment where foreign matter such as water or sand does not adhere
  • foreign matter such as a mixture of sand and water is between the groove bottom of the pulley groove of the driven pulley and the tooth tip of the belt tooth. Because it is bitten, jumping is likely to occur.
  • the difference between the groove depth of the pulley groove portion of the driven pulley and the tooth height of the belt tooth portion is 5% or more of the tooth height of the belt tooth portion. Therefore, foreign matter such as a mixture of sand and water can be prevented from being caught between the groove bottom of the pulley groove portion of the driven pulley and the tooth tip of the belt tooth portion, and the occurrence of jumping can be suppressed.
  • the cross-sectional shape perpendicular to the belt width direction of the pulley groove portion of the driving pulley and the driven pulley or the belt tooth portion is linear within the range of the tooth root side of the belt tooth portion from the reference circumference.
  • the contact between the pulley groove portion and the belt tooth portion is likely to be a line contact.
  • the pulley groove portion of the driven pulley and the belt tooth portion are in line contact, a large stress is locally applied to the belt tooth portion.
  • the pulley groove portions of the drive pulley and the driven pulley and the belt tooth portions are in surface contact with each other in a cross-sectional curved shape within a range on the tooth base side from the reference circumference. Therefore, since it is possible to prevent a large stress from being applied locally to the belt tooth portion of the driven pulley, it is possible to suppress the occurrence of missing teeth during jumping.
  • the distance on the reference circumference between the pulley groove portion of the drive pulley and the surface of the belt tooth portion opposite to the belt traveling direction, and the pulley groove portion of the driven pulley and the belt tooth portion is 0% or more and 0.5% or less of the tooth pitch. Therefore, the pulley groove portions of the driving pulley and the driven pulley and the belt tooth portion can be smoothly engaged with each other, and smooth power transmission performance can be obtained.
  • the toothed belt drive device for a bicycle is the first aspect, wherein the pulley groove portion of the driven pulley is in any straight line in the radial direction of the pulley in a cross section perpendicular to the belt width direction. It is also asymmetric.
  • the pulley groove portion of the driven pulley and the belt in the driven state are compared with the case where the pulley groove portion of the driven pulley is symmetric with respect to the straight line along the radial direction of the pulley.
  • the maximum value of the shortest distance between the tooth portion in the belt running direction and the opposite surface can be secured larger. Therefore, it is possible to prevent foreign matter such as a mixture of sand and water from being pressed and retained between the pulley groove portion of the driven pulley and the surface of the belt tooth portion on the opposite side to the belt running direction. It becomes easy to discharge to the outside. Therefore, the occurrence of belt jumping in the driven pulley can be continuously suppressed.
  • the tooth tip of the belt tooth portion extends in the belt longitudinal direction in a cross-sectional shape orthogonal to the belt width direction. It is formed in a straight line.
  • the groove bottom of the pulley groove portion of the driven pulley in the driven state and the belt are compared with the case where the tooth tip of the belt tooth portion is formed in an arc shape bulging outward.
  • the gap between the tooth part and the tooth tip can be secured larger. Therefore, foreign matter such as sand and water mixture can be more reliably prevented between the groove bottom of the pulley groove of the driven pulley and the tooth tip of the belt tooth, and jumping can be more reliably suppressed. it can.
  • the tensile body is made of carbon fiber.
  • the tensile body has higher strength and higher elasticity than when an aramid fiber is used as the material of the tensile body, intermediate elongation can be suppressed and appropriate tension can be maintained. For this reason, it is possible to prevent the toothed belt from loosening, flapping, and abnormal meshing due to elongation. Furthermore, even if an excessive tension is applied to the toothed belt, the extension of the toothed belt can be kept low, so that the occurrence of jumping can be suppressed.
  • the rubber-like elastic body includes at least a thermosetting urethane elastomer. According to this configuration, the wear resistance of the toothed belt can be easily improved even with a simple configuration in which the tooth surface of the toothed belt is not covered with the tooth cloth. Moreover, generation
  • the rubber-like elastic body has a JISA hardness of 90 or more. According to this configuration, since the tooth deformation of the toothed belt can be suppressed to a low level, the occurrence of jumping can be more reliably suppressed.
  • FIG. 1 is a diagram showing a configuration of a bicycle toothed belt drive device according to a first embodiment of the present invention.
  • FIG. 2 is a partially enlarged sectional view of the toothed belt of FIG.
  • FIG. 3 is a partially enlarged sectional view of the drive pulley of FIG.
  • FIG. 4 is a partially enlarged sectional view of the driving pulley and the toothed belt in the driving state of the apparatus of FIG.
  • FIG. 5 is a partially enlarged sectional view of the driven pulley of FIG. 6 is a partially enlarged sectional view of the driven pulley and the toothed belt in the driving state of the apparatus of FIG.
  • FIG. 2 is a partially enlarged sectional view of the toothed belt of FIG.
  • FIG. 3 is a partially enlarged sectional view of the drive pulley of FIG.
  • FIG. 4 is a partially enlarged sectional view of the driving pulley and the toothed belt in the driving state of the apparatus of FIG.
  • FIG. 7 is a partially enlarged cross-sectional view of a driven pulley of a bicycle toothed belt drive device according to a second embodiment of the present invention.
  • FIG. 8 is a partially enlarged sectional view of the driven pulley and the toothed belt in the driving state of the apparatus of FIG.
  • FIGS. 9A to 9G are partial enlarged sectional views of the driven pulley and the toothed belt in the driving state of Comparative Examples 1 to 8.
  • a bicycle toothed belt drive device 1 includes a drive pulley 10 connected to a rotating shaft of a bicycle pedal (not shown), and a bicycle rear wheel (not shown).
  • a driven pulley 20 connected to the rotating shaft of the motor, and an endless toothed belt 2 wound around the driving pulley 10 and the driven pulley 20.
  • the bicycle toothed belt drive device 1 of this embodiment does not have a tension adjusting mechanism for adjusting the tension of the toothed belt 2.
  • a cross section perpendicular to the belt width direction of the bicycle toothed belt drive device 1 (cross section perpendicular to the axial direction of the pulley) is referred to as a side cross section.
  • a plurality of convex belt tooth portions 3 are arranged on the inner peripheral surface of the toothed belt 2 at a constant tooth pitch along the belt longitudinal direction. Between the two adjacent belt tooth portions 3, a tooth bottom surface 4 substantially parallel to the pitch line PL is formed.
  • the toothed belt 2 is made of a rubber-like elastic body in which a tensile body (not shown) is embedded on the pitch line PL.
  • the pitch line PL is a reference line in the belt longitudinal direction in the belt that maintains the same length even when the belt is bent.
  • the rubber-like elastic body is made of rubber, elastomer, synthetic resin, or the like.
  • the rubbery elastic body preferably contains a thermosetting urethane elastomer.
  • the rubbery elastic body preferably has a JISA hardness of 90 or more.
  • the JISA hardness was measured according to JIS K 6253-3: 2012 using a type A durometer. A highly elastic and high strength cord is used for the tensile body.
  • the tensile body is formed of, for example, carbon fiber, aramid fiber, glass fiber or the like, and is preferably formed of carbon fiber.
  • the tensile body may be subjected to an adhesion treatment for the purpose of improving the adhesion with the rubber-like elastic body.
  • the tooth surface (inner peripheral surface) of the toothed belt 2 may be covered with a tooth cloth.
  • the shape of the side cross section of the toothed belt 2 is constant in the belt width direction.
  • the belt tooth portion 3 is formed substantially symmetrically with respect to the belt center line C along the belt thickness direction.
  • the tooth pitch is a distance between the belt center lines C of two adjacent belt tooth portions 3.
  • the contour of the belt tooth portion 3 is composed of a tooth tip portion 5, two tooth root portions 6, and two tooth side portions 7.
  • the tooth root portion 6 is connected to the end portion of the tooth bottom surface 4 and is formed in a single arc shape (an arc shape centered on an arbitrary point).
  • the tooth tip part 5 is a part including the tip (tooth top) of the belt tooth part 3.
  • the tooth tip portion 5 of the present embodiment is formed in a straight line extending in the belt length direction (substantially parallel to the belt length direction).
  • the tooth tip portion 5 may be formed in a single arc shape.
  • the tooth side part 7 is a part between the tooth tip part 5 and the tooth base part 6.
  • the tooth side portion 7 has a shape in which a plurality of arcs are smoothly connected, and has a curved shape bulging outward.
  • the distance in the belt thickness direction from the tip of the belt tooth portion 3 to the bottom surface 4 of the belt tooth portion 3 is the tooth height H of the belt tooth portion 3.
  • the drive pulley 10 is made of synthetic resin such as polyacetal, nylon, polypropylene, or metal.
  • the material of the driven pulley 20 is the same as that of the driving pulley 10.
  • a pulley groove portion 11 that meshes with the belt tooth portion 3 is formed on the outer peripheral surface of the drive pulley 10.
  • the pulley groove 11 is formed symmetrically with respect to the pulley center line c1 along the radial direction of the drive pulley 10.
  • the pulley groove portion 11 has a shape in which a plurality of arcs are smoothly connected.
  • the groove depth h1 of the pulley groove portion 11 of the drive pulley 10 is preferably larger than the tooth height H of the belt tooth portion 3, but may be smaller than the tooth height H of the belt tooth portion 3.
  • the jumper of the toothed belt 2 hardly occurs in the drive pulley 10, but the tooth tip portion 5 is caused by the attachment of foreign matter such as a mixture of water and sand.
  • wear in the pulley groove 11 may be promoted. Further, it is necessary to maintain good meshing between the toothed belt 2 and the driving pulley 10.
  • the groove depth h ⁇ b> 1 of the pulley groove portion 11 of the drive pulley 10 is preferably larger than the tooth height H of the belt tooth portion 3.
  • the difference between the groove depth h1 and the tooth height H may be 5% or more of the tooth height H, as in the driven pulley 20 described later.
  • the pulley groove portion 11 of the driving pulley 10 and a part of the surface of the belt tooth portion 3 opposite to the belt traveling direction are in surface contact.
  • hatching indicating cross sections of the toothed belt 2 and the drive pulley 10 is omitted.
  • a portion of the pulley groove portion 11 that is in surface contact with the belt tooth portion 3 is defined as a first power transmission region A1.
  • a circumference that is concentric with the drive pulley 10 having a length obtained by subtracting the tooth height H of the belt tooth portion 3 from the outer diameter of the drive pulley 10 is defined as a first reference circumference L1.
  • region A1 exists in the range by the side of the tooth root part 6 from 1st reference
  • the first power transmission region A1 has a shape in which a plurality of arcs are connected or a single arc shape (that is, a curved shape).
  • the first power transmission region A ⁇ b> 1 of the present embodiment contacts a part of the tooth side part 7 of the belt tooth part 3 and a part of the tooth base part 6, but may contact only the tooth side part 7.
  • a distance on the first reference circumference L1 (hereinafter referred to as backlash on the power transmission side) D1 between the pulley groove portion 11 of the driving pulley 10 and the surface of the belt tooth portion 3 on the side opposite to the belt traveling direction is: , 0.5% or less of the tooth pitch.
  • the interval D1 may be omitted (it may be 0% of the tooth pitch).
  • the maximum value d1 of the shortest distance between the pulley groove 11 of the driving pulley 10 and the belt tooth portion 3 on the belt running direction side (hereinafter referred to as backlash on the non-power transmission side) d1 is the tooth pitch. It is 2% or more and 6% or less.
  • a pulley groove portion 21 that meshes with the belt tooth portion 3 is formed on the outer peripheral surface of the driven pulley 20.
  • the outer diameter of the driven pulley 20 is smaller than the outer diameter of the driving pulley 10.
  • the number of pulley grooves 21 of the driven pulley 20 is within the range of a general bicycle toothed belt drive device, and is 22 to 29, for example.
  • the outer diameter ratio (groove number ratio) of the driven pulley 20 and the driving pulley 10 is within the range of a general bicycle toothed belt driving device, and is, for example, 1.7 to 3.2.
  • the pulley groove portion 21 is formed symmetrically with respect to the pulley center line c2 along the radial direction of the driven pulley 20.
  • the pulley groove portion 21 has a shape in which a plurality of arcs are smoothly connected.
  • the groove depth h ⁇ b> 2 of the pulley groove portion 21 of the driven pulley 20 is larger than the tooth height H of the belt tooth portion 3.
  • the difference is 5% or more of the tooth height H.
  • hatching indicating cross sections of the toothed belt 2 and the driven pulley 20 is omitted.
  • a portion of the pulley groove portion 21 that is in surface contact with the belt tooth portion 3 is defined as a second power transmission region A2.
  • a circumference that is concentric with the driven pulley 20 having a diameter obtained by subtracting the tooth height H of the belt tooth portion 3 from the outer diameter of the driven pulley 20 is defined as a second reference circumference L2.
  • the second power transmission area A2 is within the range on the tooth base 6 side from the second reference circumference L2.
  • the second power transmission region A2 has a shape in which a plurality of arcs are connected or a single arc shape (that is, a curved shape).
  • the second power transmission region A2 of the present embodiment contacts a part of the tooth side part 7 of the belt tooth part 3 and a part of the tooth base part 6, but may contact only the tooth side part 7.
  • the length in the radial direction (belt thickness direction) of the pulley in the second power transmission region A2 is preferably 10% to 50% of the tooth height H.
  • the distance on the second reference circumference L2 between the pulley groove portion 21 of the driven pulley 20 and the surface of the belt tooth portion 3 on the belt traveling direction side (hereinafter referred to as power transmission side backlash) D2 is a tooth It is 0.5% or less of the pitch.
  • the interval D2 may be omitted (it may be 0% of the tooth pitch).
  • the maximum value d2 of the shortest distance between the pulley groove portion 21 of the driven pulley 20 and the surface of the belt tooth portion 3 opposite to the belt running direction (hereinafter referred to as backlash on the non-power transmission side) is: It is 10% or more and 18% or less of the tooth pitch.
  • the position where the shortest distance between the pulley groove portion 21 of the driven pulley 20 and the surface of the belt tooth portion 3 opposite to the belt traveling direction is the maximum is the second position than the circumference passing through the tooth tip portion of the belt tooth portion 3. Close to the reference circumference L2.
  • the backlash d2 on the non-power transmission side of the driven pulley 20 is as large as 10% or more of the tooth pitch. Therefore, when the bicycle toothed belt drive device 1 is driven in an environment where foreign matter X such as a mixture of sand and water adheres, it is opposite to the belt travel direction of the pulley groove 21 of the driven pulley 20 and the belt tooth portion 3. It is possible to prevent foreign matter X such as a mixture of sand and water from being caught between the side surfaces, and to easily discharge the foreign matter X that has entered. As a result, belt jumping in the driven pulley 20 can be suppressed.
  • the width between the two adjacent pulley groove portions 21 becomes too narrow. .
  • the durability of the driven pulley 20 is reduced due to wear, and a large roundness of the shoulder of the pulley groove 21 cannot be secured.
  • the driven pulley tooth portion is likely to be chipped.
  • the backlash d2 on the non-power transmission side of the driven pulley 20 is 18% or less of the tooth pitch, the above-described problem can be prevented.
  • the groove depth h2 of the pulley groove portion 21 of the driven pulley 20 is larger than the tooth height H of the belt tooth portion 3 and the difference is less than 5%, an environment in which foreign matter X such as water and sand does not adhere In this case, the occurrence of jumping of the belt at the driven pulley 20 can be suppressed. Since the foreign matter X is bitten by the jumper, jumping is likely to occur.
  • the difference between the groove depth h2 of the pulley groove 21 of the driven pulley 20 and the tooth height H of the belt tooth portion 3 is 5% or more of the tooth height H.
  • the pulley groove part of the driving pulley and the driven pulley or the cross-sectional shape perpendicular to the belt width direction of the belt tooth part is a linear part within the range of the tooth root side of the belt tooth part from the reference circumference
  • the contact between the pulley groove portion and the belt tooth portion is likely to be a line contact.
  • the pulley groove portion of the driven pulley and the belt tooth portion are in line contact, a large stress is locally applied to the belt tooth portion.
  • the pulley groove portions 11 and 21 of the driving pulley 10 and the driven pulley 20 and the belt tooth portion 3 are respectively curved in a cross-sectional curve within the range of the tooth root side from the reference circumferences L1 and L2. Contact. Therefore, since it is possible to prevent a large stress from being applied locally to the belt tooth portion 3 of the driven pulley 20, it is possible to suppress the occurrence of missing teeth during jumping.
  • the backlash D1 on the power transmission side of the drive pulley 10 and the backlash D2 on the power transmission side of the driven pulley 20 are each 0% or more and 0.5% or less of the tooth pitch. is there. Therefore, the pulley groove portions 11 and 21 of the driving pulley 10 and the driven pulley 20 can smoothly mesh with the belt tooth portion 3, and smooth power transmission performance can be obtained.
  • the driving pulley 10 since the driving pulley 10 has a larger outer diameter than the driven pulley 20, the belt tension applied to one pulley groove portion of the driving pulley 10 is smaller than that of the driven pulley 20. Therefore, even in an environment where foreign matter X such as a mixture of water and sand adheres, the driving pulley 10 hardly causes belt jumping. Therefore, unlike the driven pulley 20, the driving pulley 10 does not need to ensure a large backlash on the non-power transmission side. If the backlash d1 on the non-power transmission side of the drive pulley 10 exceeds 6% of the tooth pitch, the power transmission efficiency decreases, the vibration or noise occurs, and the durability (life) of the toothed belt decreases due to wear. Problems arise.
  • the tooth tip portion 5 of the belt tooth portion 3 is formed in a straight line extending in the belt longitudinal direction (substantially parallel to the belt length direction) in the side cross section. Therefore, the groove bottom of the pulley groove portion 21 of the driven pulley 20 and the teeth of the belt tooth portion 3 in the driven state are compared with the case where the tooth tip portion of the belt tooth portion 3 is formed in an arc shape that bulges outward in the side cross section. A larger distance from the tip can be secured. Therefore, foreign matter X such as a mixture of sand and water can be more reliably prevented from being caught between the groove bottom of the pulley groove 21 of the driven pulley 20 and the tooth tip of the belt tooth portion 3, and jumping can be prevented. It can suppress more reliably.
  • the toothed belt 2 when the rubber-like elastic body constituting the toothed belt 2 is made of a thermosetting urethane elastomer, the toothed belt can be easily toothed even if the tooth surface of the toothed belt is not covered with a tooth cloth. The wear resistance of the belt can be improved. Moreover, generation
  • the tooth deformation of the toothed belt can be suppressed low, so that the occurrence of jumping can be suppressed.
  • the bicycle toothed belt drive device of the present embodiment includes a driven pulley 120 different from the driven pulley 20 of the first embodiment, and a drive pulley 10 and a toothed belt 2 similar to those of the first embodiment.
  • a pulley groove portion 121 that meshes with the belt tooth portion 3 is formed on the outer peripheral surface of the driven pulley 120.
  • the driven pulley 20 of the first embodiment is indicated by a broken line.
  • the outer diameter of the driven pulley 120 and the number of grooves of the pulley groove 121 are the same as the driven pulley 20 of the first embodiment.
  • the pulley groove 121 is asymmetric with respect to any straight line in the radial direction of the driven pulley 120.
  • the pulley groove 121 has a shape in which a plurality of arcs are smoothly connected.
  • the groove depth h ⁇ b> 3 of the pulley groove 121 of the driven pulley 120 is larger than the tooth height H of the belt tooth portion 3. The difference is 5% or more of the tooth height H.
  • the groove depth h3 of the pulley groove 121 is larger than the groove depth h2 of the pulley groove 21 of the driven pulley 20 of the first embodiment.
  • the surface on the rotation direction (arrow B direction in FIG. 7) side of the pulley groove 121 has substantially the same shape as the surface on the rotation direction side of the pulley groove 21 of the first embodiment. Moreover, the surface on the opposite side to the rotation direction of the pulley groove part 121 is formed outside the surface on the opposite side to the rotation direction of the pulley groove part 21 of 1st Embodiment. Therefore, the groove width of the pulley groove 121 is larger than the groove width of the pulley groove 21.
  • the pulley groove portion 121 of the driven pulley 120 and a part of the surface of the belt tooth portion 3 on the side of the belt traveling direction are in surface contact.
  • hatching indicating cross sections of the toothed belt 2 and the driven pulley 120 is omitted.
  • a portion of the pulley groove 121 that is in surface contact with the belt tooth portion 3 is defined as a third power transmission region A3.
  • a circumference concentric with the driven pulley 120 having a length obtained by subtracting the tooth height H of the belt tooth portion 3 from the outer diameter of the driven pulley 120 is defined as a third reference circumference L3.
  • the third reference circumference L3 has the same diameter as the second reference circumference L2.
  • the third power transmission region A3 is within the range on the tooth root portion 6 side from the third reference circumference L3. Further, in the side cross section, the third power transmission region A3 has a shape in which a plurality of arcs are connected or a single arc shape (that is, a curved shape).
  • the third power transmission region A3 of the present embodiment contacts a part of the tooth side part 7 of the belt tooth part 3 and a part of the tooth base part 6, but may contact only the tooth side part 7.
  • the length in the radial direction (belt thickness direction) of the pulley in the third power transmission region A3 is preferably 10% to 50% of the tooth height H.
  • the distance on the third reference circumference L3 (hereinafter referred to as backlash on the power transmission side) D3 between the pulley groove 121 of the driven pulley 120 and the surface of the belt tooth portion 3 on the belt traveling direction side is a tooth It is 0.5% or less of the pitch.
  • the interval D3 may be omitted (it may be 0% of the tooth pitch).
  • the maximum value d3 of the shortest distance between the pulley groove 121 of the driven pulley 120 and the surface of the belt tooth 3 opposite to the belt travel direction (hereinafter referred to as backlash on the non-power transmission side) is It is 10% or more and 18% or less of the tooth pitch.
  • the position where the shortest distance between the pulley groove portion 121 of the driven pulley 120 and the surface of the belt tooth portion 3 opposite to the belt traveling direction is the maximum is the third distance from the circumference passing through the tooth tip portion of the belt tooth portion 3. Close to the reference circumference L3.
  • the bicycle toothed pulley drive device of the present embodiment has the following effects.
  • the pulley groove 121 of the driven pulley 120 is asymmetric with respect to any straight line in the radial direction of the pulley in the side cross section. Therefore, the backlash d3 on the non-power transmission side of the driven pulley 120 in the driving state is larger than that in the case where the pulley groove portion of the driven pulley 120 is symmetric with respect to the straight line along the radial direction of the pulley in the side cross section. It can be secured. Therefore, it is possible to prevent foreign matter X such as a mixture of sand and water from being pressed and held between the pulley groove 121 of the driven pulley 120 and the surface of the belt tooth portion 3 opposite to the belt running direction. This makes it easy to quickly discharge the foreign matter X to the outside. Therefore, the occurrence of belt jumping in the driven pulley 120 can be continuously suppressed.
  • Example 1 As Example 1, a driving pulley, a driven pulley, and a toothed belt similar to the bicycle toothed belt driving device of the first embodiment shown in FIGS. 1 to 6 were used.
  • the number of grooves in the pulley groove of the drive pulley is 55
  • the number of grooves in the pulley groove of the driven pulley is 25,
  • the ratio of the number of grooves is 2.2.
  • the driving pulley and the driven pulley are made of steel.
  • the groove depth of the pulley groove portion of the drive pulley is 3.45 mm.
  • the groove depth (Hp) of the pulley groove portion of the driven pulley is as shown in Table 1.
  • the specifications of the toothed belt of Example 1 are as follows.
  • the backlash on the power transmission side of the drive pulley during belt running in Example 1 is 0.26% of the tooth pitch, and the backlash on the non-power transmission side is 4.52% of the tooth pitch. Further, the ratio of the backlash D on the power transmission side and the backlash d on the non-power transmission side to the tooth pitch of the driven pulley during belt running is as shown in Table 1.
  • Example 2 As the driven pulley of Example 2, the driven pulley of the second embodiment shown in FIGS. 7 and 8 was used.
  • the groove depth (Hp) of the pulley groove portion of the driven pulley is as shown in Table 1.
  • Table 1 shows the ratio of the backlash D on the power transmission side and the backlash d on the non-power transmission side of the driven pulley to the tooth pitch during belt running.
  • FIG. 9A shows a partially enlarged cross-sectional view of the driven pulley and the toothed belt during the belt running of the first comparative example.
  • the number of grooves in the pulley groove of the drive pulley is 55
  • the number of grooves in the pulley groove of the driven pulley is 25,
  • the ratio of the number of grooves is 2.2.
  • the groove depth of the pulley groove portion of the drive pulley is 3.65 mm.
  • the groove depth (Hp) of the pulley groove portion of the driven pulley is as shown in Table 1.
  • the toothed belt of Comparative Example 1 is the same as that of Examples 1 and 2 and Comparative Examples 2 to 8 described later in terms of the material of the tensile body, the tooth height (Hb) of the belt tooth part, and the shape of the belt tooth part. It is different from the attached belt, but other specifications are the same.
  • the material of the tensile body is aramid fiber
  • the tooth height (Hb) of the belt tooth portion is 3.56 mm.
  • the tooth tip of the toothed belt of the comparative example 1 is formed in cross-sectional arc shape.
  • the backlash on the power transmission side of the drive pulley during running of the belt of Comparative Example 1 is 0.31% of the tooth pitch, and the backlash on the non-power transmission side is 3.49% of the tooth pitch. Further, the ratio of the backlash D on the power transmission side and the backlash d on the non-power transmission side to the tooth pitch of the driven pulley during belt running is as shown in Table 1.
  • Comparative Example 1 when the belt travels, the pulley groove portion of the driven pulley and the surface on the traveling direction side of the tooth portion of the toothed belt are in surface contact with each other in a curved cross section.
  • FIG. 9B shows a partially enlarged cross-sectional view of the driven pulley and the toothed belt during the belt traveling of the second comparative example.
  • the toothed belt of Comparative Example 2 has the same configuration as the toothed belt of Example 1 except that the tensile body is made of an aramid fiber.
  • Table 1 shows the groove depth of the pulley groove portion of the driven pulley of Comparative Example 2 and the ratio of the backlash D on the power transmission side of the driven pulley and the backlash d on the non-power transmission side on the non-power transmission side to the tooth pitch during belt travel. As shown.
  • Comparative Example 2 when the belt travels, the pulley groove portion of the driven pulley and the surface on the traveling direction side of the tooth portion of the toothed belt are in surface contact with each other in a curved cross-section.
  • FIGS. 9 (b) to 9 (g) show partially enlarged cross-sectional views of the driven pulley and the toothed belt during belt running in Comparative Examples 3 to 8.
  • FIGS. The ratio of the groove depth of the pulley groove portion of the driven pulley of Comparative Examples 3 to 8 to the tooth pitch of the backlash D on the power transmission side of the driven pulley and the backlash d on the non-power transmission side of the non-power transmission side during belt running is As shown in Table 1.
  • the pulley groove portion of the driven pulley and the surface on the traveling direction side of the toothed portion of the toothed belt are in surface contact with each other in a cross-sectional curved shape when the belt is traveling.
  • the pulley groove portion of the driven pulley and the surface of the tooth portion of the toothed belt on the traveling direction side are non-similar, and the pulley groove portion of the driven pulley and the tooth of the toothed belt are in the belt traveling state.
  • the surface on the traveling direction side of the part is in line contact at a position outside a reference circumference L that is a circumference concentric with the driven pulley having a diameter obtained by subtracting the tooth height from the outer diameter of the driven pulley. .
  • Comparative Examples 2 and 3 differ only in the material of the tensile body.
  • aramid fibers are used, and in Comparative Example 3, carbon fibers are used. Comparing the test results of Comparative Examples 2 and 3, in Comparative Example 3, both “water / sandless jumping torque T 1 ” and “water / sandy jumping torque T 2 ” are larger than Comparative Example 2. From this result, it can be seen that the use of carbon fiber as the tensile body contributes to the suppression of the occurrence of jumping.
  • Comparative Example 4 the groove depth (Hp) of the pulley groove portion of the driven pulley is smaller than the tooth height (Hb) of the belt tooth portion.
  • Comparative Example 3 the groove depth (Hp) of the pulley groove portion of the driven pulley is larger than the tooth height (Hb).
  • Comparative Example 3 “water / sandless jumping torque T 1 ” is larger than that in Comparative Example 4.
  • Comparative Example 3 the “water / sand jumping torque T 2 ” is larger than that in Comparative Example 4 although the backlash d on the non-power transmission side of the driven pulley is smaller than that in Comparative Example 4.
  • Comparative Examples 5 to 8 the condition that the pulley groove portion of the driven pulley and the belt tooth portion are in line contact with each other is the same, and in the order of Comparative Examples 5, 6, 7, and 8, the non-power transmission side of the driven pulley. And the gap between the groove bottom of the pulley groove portion of the driven pulley and the tooth tip of the belt tooth portion is large. Comparing the test results of Comparative Examples 5 to 8, “Water / Sandless Jumping Torque T 1 ” and “Water / Sand Jumping Torque T 2 ” increase in the order of Comparative Examples 5, 6, 7, and 8. At the same time, the reduction rate of the jumping torque is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Pulleys (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)

Abstract

 本発明は、駆動状態において、従動プーリのプーリ溝部とベルト歯部のベルト走行方向側の面の一部分とが面接触し、この面接触する部分が、従動プーリの外径からベルト歯部の歯高さを差し引いた長さを直径とする当該プーリと同心の基準円周からベルト歯部の歯元部側の範囲内であって、且つ、前記面接触する部分がベルト幅方向に直交する断面において曲線状であり、また、従動プーリのプーリ溝部と、ベルト歯部のべルト走行方向と反対側の面との最短距離の最大値が歯ピッチの10%以上18%以下であって、従動プーリのプーリ溝部の溝深さがベルト歯部の歯高さよりも大きく、その差が歯高さの5%以上である、自転車用歯付ベルト駆動装置に関する。

Description

自転車用歯付ベルト駆動装置
 本発明は、ベルト駆動式自転車に用いられる自転車用歯付ベルト駆動装置に関する。
 従来、自転車のペダルの回転を後輪に伝達するための装置として、ペダルの回転軸に連結された駆動プーリと、後輪の回転軸に連結された従動プーリと、これら2つのプーリに巻き掛けられた歯付ベルトとを備えた歯付ベルト駆動装置が知られている。この歯付ベルトの内周面には、凸状のベルト歯部がベルト長手方向に沿って所定のピッチで形成されている。また、駆動プーリおよび従動プーリの外周面には、ベルト歯部と噛み合うプーリ溝部が形成されている。
 従動プーリの外径が駆動プーリよりも小さい場合、従動プーリのプーリ溝部1つあたりにかかかるベルト張力は駆動プーリよりも大きくなる。そのため、走行中に立ち漕ぎなどによって急激にベルトの張力が大きくなって、部分的にベルトが伸びると、従動プーリにおいてベルトのジャンピング(歯飛び)が発生しやすくなる。特に、雨天走行時では、従動プーリに雨水がかかって、プーリ溝部とベルト歯部との摩擦係数が低下するため、ジャンピングが一層発生しやすくなる。このような雨天走行時に急激にベルトの張力が増大したときの従動プーリでのベルトのジャンピングを抑制するために、例えば特許文献1の歯付ベルト駆動装置では、従動プーリのプーリ溝部と歯付ベルトのベルト歯部の形状を工夫している。
日本国特許第4340460号公報
 走行状況によっては、歯付ベルト駆動装置に水だけでなく砂も入り込む場合がある。砂は水を含むことでよりプーリやベルトに付着しやすくなる。上述の特許文献1の歯付ベルト駆動装置において、砂と水の混合物が従動プーリのプーリ溝部とベルト歯部との間に入り込むと、砂と水の混合物が両者の間に噛み込まれてしまう。これにより、砂と水の混合物がベルト歯部をプーリ溝部との噛み合いを外す方向(プーリ径方向外側)に押しやり、その結果、従動プーリにおいてベルトのジャンピングが生じやすくなってしまう。
 そこで、本発明は、水と砂の混合物などの異物が付着する環境下にあっても、従動プーリにおけるベルトのジャンピングの発生を抑制し、円滑な動力伝達性能を維持できる自転車用歯付ベルト駆動装置を提供することを目的とする。
 本発明の第1の態様に係る自転車用歯付ベルト駆動装置は、ベルト長手方向に沿って抗張体が埋設されたゴム状弾性体で形成され、ベルト長手方向に所定の歯ピッチで配置された複数の凸状のベルト歯部を有する歯付ベルト、前記ベルト歯部と噛み合うプーリ溝部が外周面に形成された駆動プーリ、および前記ベルト歯部と噛み合うプーリ溝部が外周面に形成された従動プーリを備える自転車用歯付ベルト駆動装置であって、ベルト幅方向に直交する断面において、前記ベルト歯部がベルト厚み方向の直線に対して略対称に形成されており、駆動状態において、前記駆動プーリの前記プーリ溝部と前記ベルト歯部のベルト走行方向と反対側の面の一部分が面接触し、且つ前記従動プーリの前記プーリ溝部と前記ベルト歯部のベルト走行方向側の面の一部分が面接触し、前記駆動プーリの前記プーリ溝部と前記ベルト歯部との前記面接触する部分および前記従動プーリの前記プーリ溝部と前記ベルト歯部との前記面接触する部分が、前記駆動プーリおよび前記従動プーリのそれぞれの外径から前記ベルト歯部の歯高さを差し引いた長さを直径とする当該プーリと同心の基準円周から前記ベルト歯部の歯元部側の範囲内であって、且つ、前記駆動プーリの前記プーリ溝部と前記ベルト歯部との前記面接触する部分および前記従動プーリの前記プーリ溝部と前記ベルト歯部との前記面接触する部分がベルト幅方向に直交する断面において曲線状であり、駆動状態において、前記駆動プーリの前記プーリ溝部と前記ベルト歯部のベルト走行方向と反対側の面との前記基準円周上の間隔、および、前記従動プーリの前記プーリ溝部と前記ベルト歯部のベルト走行方向側の面との前記基準円周上の間隔が、前記ベルト歯部の歯ピッチの0%以上0.5%以下であって、駆動状態において、前記駆動プーリの前記プーリ溝部と前記ベルト歯部のべルト走行方向側の面との最短距離の最大値が前記ベルト歯部の歯ピッチの2%以上6%以下であって、駆動状態において、前記従動プーリの前記プーリ溝部と前記ベルト歯部のべルト走行方向と反対側の面との最短距離の最大値が前記ベルト歯部の歯ピッチの10%以上18%以下であって、前記従動プーリの前記プーリ溝部の溝深さが前記ベルト歯部の歯高さよりも大きく、その差が前記ベルト歯部の歯高さの5%以上である。
 本態様では、従動プーリのプーリ溝部とベルト歯部のべルト走行方向と反対側の面との最短距離の最大値が、歯ピッチの10%以上と大きい。そのため、砂と水の混合物などの異物が付着する環境下で自転車用歯付ベルト駆動装置を駆動した場合に、従動プーリのプーリ溝部とベルト歯部のべルト走行方向と反対側の面との間に、砂と水の混合物などの異物が噛み込まれるのを防止できるとともに、入り込んだ異物を外部に排出させやすい。その結果、従動プーリにおけるベルトのジャンピングの発生を抑制できる。
 また、仮に、従動プーリのプーリ溝部とベルト歯部のべルト走行方向と反対側の面との最短距離の最大値が歯ピッチの18%を超える場合には、隣り合う2つのプーリ溝部の間の幅(プーリ歯部の幅)が狭くなりすぎる。そのため、摩耗により従動プーリの耐久性が低下したり、プーリ溝部の肩の丸み(プーリ歯部の歯先丸み)を大きく確保できなくなる。また、たとえプーリ溝部の肩の丸みを確保できたとしても、従動プーリ歯部が欠けやすくなる。一方、本態様では、従動プーリのプーリ溝部とベルト歯部のべルト走行方向と反対側の面との最短距離の最大値が歯ピッチの18%以下であるため、上述したような問題を防止できる。
 一般的な自転車用歯付き駆動装置においては、駆動プーリは従動プーリよりも外径が大きいため、駆動プーリのプーリ溝部1つあたりにかかるベルト張力は従動プーリのものよりも小さい。そのため、水と砂の混合物などの異物が付着する環境下でも駆動プーリではベルトのジャンピングはほとんど生じない。したがって、駆動プーリでは、従動プーリのプーリ溝部とベルト歯部のべルト走行方向と反対側の面との間隔のように、プーリ溝部とベルト歯部のべルト走行方向側の面との間隔を大きく確保する必要はない。
 仮に、駆動プーリのプーリ溝部とベルト歯部のべルト走行方向側の面との最短距離の最大値が歯ピッチの6%を超える場合、動力伝達効率の低下、振動や異音の発生、摩耗による歯付きベルトの耐久性(寿命)の低下などの問題が生じる。一方、本態様では、駆動プーリのプーリ溝部とベルト歯部のべルト走行方向側の面との最短距離の最大値が歯ピッチの6%以下であるため、上述したような問題を防止できる。
 さらに、本態様では、駆動プーリのプーリ溝部とベルト歯部のべルト走行方向側の面との最短距離の最大値が、歯ピッチの2%以上であるため、駆動プーリのプーリ溝部とベルト歯部とが円滑に噛み合うことができ、円滑な動力伝達性能を得ることができる。
 また、従動プーリのプーリ溝部の溝深さがベルト歯部の歯高さよりも大きく、その差が5%未満の場合、水や砂などの異物が付着しない環境下では従動プーリでのベルトのジャンピングの発生を抑制できるものの、砂と水の混合物などの異物が付着する環境下では、従動プーリのプーリ溝部の溝底とベルト歯部の歯先との間に砂と水の混合物などの異物が噛み込まれるため、ジャンピングが発生しやすい。一方、本態様では、従動プーリのプーリ溝部の溝深さとベルト歯部の歯高さとの差がベルト歯部の歯高さの5%以上である。そのため、従動プーリのプーリ溝部の溝底とベルト歯部の歯先との間に砂と水の混合物などの異物が噛み込まれるのを防止でき、ジャンピングの発生を抑制できる。
 また、仮に、駆動プーリおよび従動プーリのプーリ溝部、または、ベルト歯部のベルト幅方向に直交する断面形状が、前記基準円周よりもベルト歯部の歯元側の範囲内において、直線状の部分を含んでいる場合、プーリ溝部とベルト歯部との接触は線接触になりやすい。従動プーリのプーリ溝部とベルト歯部とが線接触する場合、ベルト歯部に局所的に大きい応力がかかるため、ジャンピング時に歯欠けが生じやすくなる。
 一方、本態様では、駆動プーリおよび従動プーリのプーリ溝部と、ベルト歯部とは、それぞれ、前記基準円周より歯元側の範囲内において断面曲線状に面接触する。そのため、従動プーリのベルト歯部に局所的に大きい応力がかかるのを防止できるため、ジャンピング時に歯欠けが生じるのを抑制できる。
 さらに、本態様では、駆動状態において、駆動プーリのプーリ溝部とベルト歯部のベルト走行方向と反対側の面との前記基準円周上の間隔、および、従動プーリのプーリ溝部とベルト歯部のベルト走行方向側の面との前記基準円周上の間隔が、それぞれ、歯ピッチの0%以上0.5%以下である。そのため、駆動プーリおよび従動プーリのプーリ溝部とベルト歯部とが円滑に噛み合うことができ、円滑な動力伝達性能を得ることができる。
 本発明の第2の態様に係る自転車用歯付ベルト駆動装置は、第1の態様において、ベルト幅方向に直交する断面において、前記従動プーリの前記プーリ溝部がプーリの径方向のいずれの直線に対しても非対称である。
 この構成によると、ベルト幅方向に直交する断面において、従動プーリのプーリ溝部が、プーリの径方向に沿った直線に対して対称である場合に比べて、駆動状態における従動プーリのプーリ溝部とベルト歯部のべルト走行方向と反対側の面との最短距離の最大値をより大きく確保できる。そのため、従動プーリのプーリ溝部とベルト歯部のべルト走行方向と反対側の面との間に、砂と水の混合物などの異物を押し固めて滞留させてしまうことを防止でき、異物を速やかに外部に排出させやすくなる。したがって、従動プーリにおけるベルトのジャンピングの発生を継続的に抑制できる。
 本発明の第3の態様に係る自転車用歯付ベルト駆動装置は、第1または第2の態様において、ベルト幅方向に直交する断面形状において、前記ベルト歯部の歯先がベルト長手方向に延びる直線状に形成されている。
 この構成によると、ベルト幅方向に直交する断面において、ベルト歯部の歯先が外側に膨らんだ円弧状に形成されている場合に比べて、駆動状態における従動プーリのプーリ溝部の溝底とベルト歯部の歯先との間隔をより大きく確保できる。そのため、従動プーリのプーリ溝部の溝底とベルト歯部の歯先との間に、砂と水の混合物などの異物が噛み込まれるのをより確実に防止でき、ジャンピングの発生をより確実に抑制できる。
 本発明の第4の態様に係る自転車用歯付ベルト駆動装置は、第1~第3の態様のいずれかにおいて、前記抗張体が炭素繊維からなる。
 この構成によると、抗張体の材料にアラミド繊維を用いた場合よりも、抗張体が高強度且つ高弾性であるため、中間伸びが抑えられ、適正な張力を維持できる。そのため、伸びによる歯付ベルトのゆるみ、ばたつき、かみ合い異常の発生などを防止できる。さらに万が一、歯付ベルトに過大な張力がかかっても、歯付ベルトの伸びが低く抑えられるので、ジャンピングの発生を抑制できる。
 本発明の第5の態様に係る自転車用歯付ベルト駆動装置は、第1~第4の態様のいずれかにおいて、前記ゴム状弾性体が少なくとも熱硬化性ウレタンエラストマーを含む。
 この構成によると、歯付ベルトの歯面が歯布で被覆されていない簡素な構成であっても、容易に歯付ベルトの耐磨耗性を向上させることができる。また、磨耗粉の発生を抑制できる。
 本発明の第6の態様に係る自転車用歯付ベルト駆動装置は、第1~第5の態様のいずれかにおいて、前記ゴム状弾性体のJISA硬度が90以上である。
 この構成によると、歯付ベルトの歯変形が低く抑えられるので、ジャンピングの発生をより確実に抑制できる。
図1は、本発明の第1実施形態に係る自転車用歯付ベルト駆動装置の構成を示す図である。 図2は、図1の歯付ベルトの部分拡大断面図である。 図3は、図1の駆動プーリの部分拡大断面図である。 図4は、図1の装置の駆動状態における駆動プーリと歯付ベルトの部分拡大断面図である。 図5は、図1の従動プーリの部分拡大断面図である。 図6は、図1の装置の駆動状態における従動プーリと歯付ベルトの部分拡大断面図である。 図7は、本発明の第2実施形態に係る自転車用歯付ベルト駆動装置の従動プーリの部分拡大断面図である。 図8は、図7の装置の駆動状態における従動プーリと歯付ベルトの部分拡大断面図である。 図9(a)~(g)は、比較例1~8の駆動状態における従動プーリと歯付ベルトの部分拡大断面図である。
<第1実施形態>
 以下、本発明の第1の実施の形態について図面を参照しつつ説明する。
 図1に示すように、本実施形態の自転車用歯付ベルト駆動装置1は、自転車のペダル(図示せず)の回転軸に連結される駆動プーリ10と、自転車の後輪(図示せず)の回転軸に連結される従動プーリ20と、駆動プーリ10および従動プーリ20に巻き掛けられる無端状の歯付ベルト2とを備える。本実施形態の自転車用歯付ベルト駆動装置1は、歯付ベルト2の張力を調整する張力調整機構を有しない。
 自転車のライダーがペダルを踏んでペダルを回転させると、駆動プーリ10が回転し、その回転運動が歯付ベルト2を介して従動プーリ20に伝達されることで、後輪が回転する。
 以下の説明において、自転車用歯付ベルト駆動装置1のベルト幅方向に直交する断面(プーリの軸方向に直交する断面)を、側断面という。
 図2に示すように、歯付ベルト2の内周面には、複数の凸状のベルト歯部3が、ベルト長手方向に沿って一定の歯ピッチで配置されている。隣り合う2つのベルト歯部3の間には、ピッチラインPLと略平行な歯底面4が形成されている。
 歯付ベルト2は、ピッチラインPL上に抗張体(図示せず)が埋設されたゴム状弾性体からなる。なお、ピッチラインPLとは、ベルトが曲げられても同じ長さを保つベルト中のベルト長手方向の基準線のことである。ゴム状弾性体は、ゴム、エラストマー、または合成樹脂等で構成されている。ゴム状弾性体は、熱硬化性ウレタンエラストマーを含んでいることが好ましい。また、ゴム状弾性体のJISA硬度は、90以上が好ましい。ここで、JISA硬度はタイプAデュロメータを用い、JIS K 6253-3:2012に準拠し測定した。抗張体には、高弾性で高強度のコードが用いられる。抗張体は、例えば、炭素繊維、アラミド繊維、ガラス繊維等で形成されているが、炭素繊維で形成されていることが好ましい。なお、抗張体には、ゴム状弾性体との接着性を高める目的で接着処理が施されていてもよい。また、歯付ベルト2の歯面(内周面)は、歯布で被覆されていてもよい。
 歯付ベルト2の側断面の形状はベルト幅方向に関して一定である。側断面において、ベルト歯部3は、ベルト厚み方向に沿ったベルト中心線Cに対して略対称に形成されている。歯ピッチとは、隣り合う2つのベルト歯部3のベルト中心線C間の距離のことである。
 側断面において、ベルト歯部3の輪郭は、歯先部5と、2つの歯元部6と、2つの歯側部7とで構成されている。歯元部6は、歯底面4の端部に接続されており、単一の円弧状(任意の一点を中心とする円弧状)に形成されている。歯先部5は、ベルト歯部3の先端(歯頂)を含む部分である。本実施形態の歯先部5は、ベルト長さ方向に延びる直線状に(ベルト長さ方向と略平行に)形成されている。なお、歯先部5は、単一の円弧状に形成されていてもよい。歯側部7は、歯先部5と歯元部6との間の部分である。歯側部7は、複数の円弧をなめらかに繋げた形状であって、外側に膨らんだ曲線状となっている。ベルト歯部3の先端から、ベルト歯部3の歯底面4までのベルト厚さ方向の距離が、ベルト歯部3の歯高さHである。
 駆動プーリ10は、ポリアセタール、ナイロン、ポリプロピレン等の合成樹脂、または、金属で形成されている。なお、従動プーリ20の材質も駆動プーリ10と同様である。図3に示すように、駆動プーリ10の外周面には、ベルト歯部3と噛み合うプーリ溝部11が形成されている。
 側断面において、プーリ溝部11は、駆動プーリ10の径方向に沿ったプーリ中心線c1に対して対称に形成されている。側断面において、プーリ溝部11は、複数の円弧をなめらかに繋げた形状となっている。
 駆動プーリ10のプーリ溝部11の溝深さh1は、ベルト歯部3の歯高さHよりも大きいことが好ましいが、ベルト歯部3の歯高さHより小さくてもよい。前述のように、水と砂の混合物などの異物が付着する環境下でも駆動プーリ10では歯付ベルト2のジャンピングはほとんど生じないが、水と砂の混合物などの異物の付着により歯先部5及びプーリ溝部11においても磨耗が促進されるおそれがある。また、歯付ベルト2と駆動プーリ10の噛み合いを良好に維持する必要がある。このため、駆動プーリ10のプーリ溝部11の溝深さh1は、ベルト歯部3の歯高さHよりも大きいことが好ましい。むろん、溝深さh1と歯高さHの差は、後述の従動プーリ20と同様に、歯高さHの5%以上であっても良い。
 図4に示すように、駆動状態において、駆動プーリ10のプーリ溝部11と、ベルト歯部3のベルト走行方向(図4の矢印B方向)と反対側の面の一部分とは、面接触する。なお、図4では、歯付ベルト2および駆動プーリ10の断面を示すハッチングを省略して表示している。プーリ溝部11においてベルト歯部3と面接触する部分を、第1動力伝達領域A1とする。また、駆動プーリ10の外径からベルト歯部3の歯高さHを差し引いた長さを直径とする駆動プーリ10と同心の円周を、第1基準円周L1とする。
 第1動力伝達領域A1は、第1基準円周L1から歯元部6側の範囲内にある。また、側断面において、第1動力伝達領域A1は、複数の円弧を繋げた形状または単一の円弧状である(すなわち、曲線状である)。本実施形態の第1動力伝達領域A1は、ベルト歯部3の歯側部7の一部と歯元部6の一部に接触するが、歯側部7のみに接触してもよい。
 また、駆動状態において、駆動プーリ10のプーリ溝部11とベルト歯部3のベルト走行方向と反対側の面との第1基準円周L1上の間隔(以下、動力伝達側のバックラッシという)D1は、歯ピッチの0.5%以下である。間隔D1は無くてもよい(歯ピッチの0%であってもよい)。また、駆動状態において、駆動プーリ10のプーリ溝部11とベルト歯部3のべルト走行方向側の面との最短距離の最大値(以下、非動力伝達側のバックラッシという)d1は、歯ピッチの2%以上6%以下である。
 図5に示すように、従動プーリ20の外周面には、ベルト歯部3と噛み合うプーリ溝部21が形成されている。従動プーリ20の外径は、駆動プーリ10の外径よりも小さい。従動プーリ20のプーリ溝21の溝数は、一般的な自転車用歯付ベルト駆動装置の範囲内であって、例えば22~29である。従動プーリ20と駆動プーリ10の外径比(溝数比)は、一般的な自転車用歯付ベルト駆動装置の範囲内であって、例えば1.7~3.2である。
 側断面において、プーリ溝部21は、従動プーリ20の径方向に沿ったプーリ中心線c2に対して対称に形成されている。側断面において、プーリ溝部21は、複数の円弧をなめらかに繋げた形状となっている。
 従動プーリ20のプーリ溝部21の溝深さh2は、ベルト歯部3の歯高さHよりも大きい。その差は、歯高さHの5%以上である。
 図6に示すように、駆動状態において、従動プーリ20のプーリ溝部21と、ベルト歯部3のベルト走行方向(図6の矢印B方向)側の面の一部分とは、面接触する。なお、図6では、歯付ベルト2および従動プーリ20の断面を示すハッチングを省略して表示している。プーリ溝部21においてベルト歯部3と面接触する部分を、第2動力伝達領域A2とする。また、従動プーリ20の外径からベルト歯部3の歯高さHを差し引いた長さを直径とする従動プーリ20と同心の円周を、第2基準円周L2とする。
 第2動力伝達領域A2は、第2基準円周L2から歯元部6側の範囲内にある。また、側断面において、第2動力伝達領域A2は、複数の円弧を繋げた形状または単一の円弧状である(すなわち、曲線状である)。本実施形態の第2動力伝達領域A2は、ベルト歯部3の歯側部7の一部と歯元部6の一部に接触するが、歯側部7のみに接触してもよい。第2動力伝達領域A2のプーリの径方向(ベルト厚さ方向)の長さは、歯高さHの10%以上50%以下が好ましい。
 また、駆動状態において、従動プーリ20のプーリ溝部21とベルト歯部3のベルト走行方向側の面との第2基準円周L2上の間隔(以下、動力伝達側のバックラッシという)D2は、歯ピッチの0.5%以下である。間隔D2は無くてもよい(歯ピッチの0%であってもよい)。また、駆動状態において、従動プーリ20のプーリ溝部21と、ベルト歯部3のべルト走行方向と反対側の面との最短距離の最大値(以下、非動力伝達側のバックラッシという)d2は、歯ピッチの10%以上18%以下である。従動プーリ20のプーリ溝部21とベルト歯部3のべルト走行方向と反対側の面との最短距離が最大となる位置は、ベルト歯部3の歯先部を通る円周よりも、第2基準円周L2に近い。
 本実施形態の自転車用歯付ベルト駆動装置1では、従動プーリ20の非動力伝達側のバックラッシd2が、歯ピッチの10%以上と大きい。そのため、砂と水の混合物などの異物Xが付着する環境下で自転車用歯付ベルト駆動装置1を駆動した場合に、従動プーリ20のプーリ溝部21とベルト歯部3のべルト走行方向と反対側の面との間に、砂と水の混合物などの異物Xが噛み込まれるのを防止できるとともに、入り込んだ異物Xを外部に排出させやすい。その結果、従動プーリ20におけるベルトのジャンピングの発生を抑制できる。
 また、仮に、従動プーリ20の非動力伝達側のバックラッシd2が、歯ピッチの18%を超える場合には、隣り合う2つのプーリ溝部21の間の幅(プーリ歯部の幅)が狭くなりすぎる。そのため、摩耗により従動プーリ20の耐久性が低下したり、プーリ溝部21の肩の丸みを大きく確保できなくなる。また、たとえプーリ溝部21の肩の丸みを確保できたとしても、従動プーリ歯部が欠けやすくなる。一方、本実施形態では、従動プーリ20の非動力伝達側のバックラッシd2が、歯ピッチの18%以下であるため、上述したような問題を防止できる。
 また、従動プーリ20のプーリ溝部21の溝深さh2が、ベルト歯部3の歯高さHよりも大きく、その差が5%未満の場合、水や砂などの異物Xが付着しない環境下では従動プーリ20でのベルトのジャンピングの発生を抑制できるものの、砂と水の混合物などの異物Xが付着する環境下では、従動プーリのプーリ溝部の溝底とベルト歯部の歯先との間に異物Xが噛み込まれるため、ジャンピングが発生しやすい。一方、本実施形態では、従動プーリ20のプーリ溝部21の溝深さh2とベルト歯部3の歯高さHとの差が歯高さHの5%以上である。そのため、従動プーリ20のプーリ溝部21の溝底とベルト歯部3の歯先との間に砂と水の混合物などの異物Xが噛み込まれるのを防止でき、ジャンピングの発生を抑制できる。
 また、仮に、駆動プーリおよび従動プーリのプーリ溝部、または、ベルト歯部のベルト幅方向に直交する断面形状が、基準円周よりもベルト歯部の歯元側の範囲内において、直線状の部分を含んでいる場合、プーリ溝部とベルト歯部との接触は線接触になりやすい。従動プーリのプーリ溝部とベルト歯部とが線接触する場合、ベルト歯部に局所的に大きい応力がかかるため、ジャンピング時に歯欠けが生じやすくなる。
 一方、本実施形態では、駆動プーリ10および従動プーリ20のプーリ溝部11、21と、ベルト歯部3とは、それぞれ、基準円周L1、L2より歯元側の範囲内において断面曲線状に面接触する。そのため、従動プーリ20のベルト歯部3に局所的に大きい応力がかかるのを防止できるため、ジャンピング時に歯欠けが生じるのを抑制できる。
 さらに、本実施形態では、駆動状態において、駆動プーリ10の動力伝達側のバックラッシD1、および、従動プーリ20の動力伝達側のバックラッシD2が、それぞれ、歯ピッチの0%以上0.5%以下である。そのため、駆動プーリ10および従動プーリ20のプーリ溝部11、21とベルト歯部3とが円滑に噛み合うことができ、円滑な動力伝達性能を得ることができる。
 また、駆動プーリ10は従動プーリ20よりも外径が大きいため、駆動プーリ10のプーリ溝部1つあたりにかかるベルト張力は従動プーリ20のものよりも小さい。そのため、水と砂の混合物などの異物Xが付着する環境下でも駆動プーリ10ではベルトのジャンピングはほとんど生じない。したがって、駆動プーリ10では、従動プーリ20のように、非動力伝達側のバックラッシを大きく確保する必要はない。
 仮に、駆動プーリ10の非動力伝達側のバックラッシd1が、歯ピッチの6%を超える場合、動力伝達効率の低下、振動や異音の発生、摩耗による歯付きベルトの耐久性(寿命)の低下などの問題が生じる。一方、本実施形態では、駆動プーリ10の非動力伝達側のバックラッシd1が歯ピッチの6%以下であるため、上述したような問題を防止できる。
 さらに、本実施形態では、駆動プーリ10の非動力伝達側のバックラッシd1が歯ピッチの2%以上であるため、駆動プーリ10のプーリ溝部11とベルト歯部3とが円滑に噛み合うことができ、円滑な動力伝達性能を得ることができる。
 また、本実施形態では、側断面において、ベルト歯部3の歯先部5が、ベルト長手方向に延びる直線状に(ベルト長さ方向と略平行に)形成されている。したがって、側断面においてベルト歯部3の歯先部が外側に膨らんだ円弧状に形成されている場合に比べて、駆動状態における従動プーリ20のプーリ溝部21の溝底とベルト歯部3の歯先との間隔をより大きく確保できる。そのため、従動プーリ20のプーリ溝部21の溝底とベルト歯部3の歯先との間に、砂と水の混合物などの異物Xが噛み込まれるのをより確実に防止でき、ジャンピングの発生をより確実に抑制できる。
 また、歯付ベルト2を構成するゴム状弾性体が、熱硬化性ウレタンエラストマーからなる場合、歯付ベルトの歯面が歯布で被覆されていない簡素な構成であっても、容易に歯付ベルトの耐磨耗性を向上させることができる。また、磨耗粉の発生を抑制できる。
 また、歯付ベルト2を構成するゴム状弾性体のJISA硬度が、90以上である場合、歯付ベルトの歯変形が低く抑えられるので、ジャンピングの発生を抑制できる。
<第2実施形態>
 次に、本発明の第2の実施の形態について説明する。但し、前記第1実施形態と同様の構成を有するものについては、同じ符号を用いて適宜その説明を省略する。
 本実施形態の自転車用歯付ベルト駆動装置は、第1実施形態の従動プーリ20と異なる従動プーリ120と、第1実施形態と同様の駆動プーリ10および歯付ベルト2とを備えている。
 図7に示すように、従動プーリ120の外周面には、ベルト歯部3と噛み合うプーリ溝部121が形成されている。なお、図7には、第1実施形態の従動プーリ20を破線で表示している。従動プーリ120の外径およびプーリ溝部121の溝数は、第1実施形態の従動プーリ20と同じである。
 側断面において、プーリ溝部121は、従動プーリ120の径方向のいずれの直線に対しても非対称となっている。側断面において、プーリ溝部121は、複数の円弧をなめらかに繋げた形状となっている。
 従動プーリ120のプーリ溝部121の溝深さh3は、ベルト歯部3の歯高さHよりも大きい。その差は、歯高さHの5%以上である。プーリ溝部121の溝深さh3は、第1実施形態の従動プーリ20のプーリ溝部21の溝深さh2よりも大きい。
 プーリ溝部121の回転方向(図7の矢印B方向)側の面は、第1実施形態のプーリ溝部21の回転方向側の面とほぼ同じ形状である。また、プーリ溝部121の回転方向と反対側の面は、第1実施形態のプーリ溝部21の回転方向と反対側の面より外側に形成されている。したがって、プーリ溝部121の溝幅は、プーリ溝部21の溝幅よりも大きい。
 図8に示すように、駆動状態において、従動プーリ120のプーリ溝部121と、ベルト歯部3のベルト走行方向(図8の矢印B方向)側の面の一部分とは、面接触する。なお、図8では、歯付ベルト2および従動プーリ120の断面を示すハッチングを省略して表示している。プーリ溝部121においてベルト歯部3と面接触する部分を、第3動力伝達領域A3とする。また、従動プーリ120の外径からベルト歯部3の歯高さHを差し引いた長さを直径とする従動プーリ120と同心の円周を、第3基準円周L3とする。第3基準円周L3は、第2基準円周L2と同径である。
 第3動力伝達領域A3は、第3基準円周L3から歯元部6側の範囲内にある。また、側断面において、第3動力伝達領域A3は、複数の円弧を繋げた形状または単一の円弧状である(すなわち、曲線状である)。本実施形態の第3動力伝達領域A3は、ベルト歯部3の歯側部7の一部と歯元部6の一部に接触するが、歯側部7のみに接触してもよい。第3動力伝達領域A3のプーリの径方向(ベルト厚さ方向)の長さは、歯高さHの10%以上50%以下が好ましい。
 また、駆動状態において、従動プーリ120のプーリ溝部121とベルト歯部3のベルト走行方向側の面との第3基準円周L3上の間隔(以下、動力伝達側のバックラッシという)D3は、歯ピッチの0.5%以下である。間隔D3は無くてもよい(歯ピッチの0%であってもよい)。また、駆動状態において、従動プーリ120のプーリ溝部121と、ベルト歯部3のべルト走行方向と反対側の面との最短距離の最大値(以下、非動力伝達側のバックラッシという)d3は、歯ピッチの10%以上18%以下である。従動プーリ120のプーリ溝部121とベルト歯部3のべルト走行方向と反対側の面との最短距離が最大となる位置は、ベルト歯部3の歯先部を通る円周よりも、第3基準円周L3に近い。
 本実施形態の自転車用歯付プーリ駆動装置では、第1実施形態で述べた効果に加えて、以下の効果を奏する。
 本実施形態では、側断面において、従動プーリ120のプーリ溝部121が、プーリの径方向のいずれの直線に対しても非対称である。したがって、側断面において、従動プーリ120のプーリ溝部が、プーリの径方向に沿った直線に対して対称である場合に比べて、駆動状態における従動プーリ120の非動力伝達側のバックラッシd3をより大きく確保できる。そのため、従動プーリ120のプーリ溝部121とベルト歯部3のべルト走行方向と反対側の面との間に、砂と水の混合物などの異物Xを押し固めて滞留させてしまうことを防止でき、異物Xを速やかに外部に排出させやすくなる。したがって、従動プーリ120におけるベルトのジャンピングの発生を継続的に抑制できる。
 以上、本発明の好適な実施の形態について説明したが、本発明は上述の実施形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な変更が可能である。
 以下、本発明の具体的な実施例と比較例について説明する。
<実施例1>
 実施例1として、図1~図6に示す第1実施形態の自転車用歯付ベルト駆動装置と同様の駆動プーリ、従動プーリ、および歯付ベルトを使用した。また、駆動プーリのプーリ溝部の溝数は55であり、従動プーリのプーリ溝部の溝数は25であって、その溝数比は2.2である。駆動プーリおよび従動プーリは、鋼材で形成されている。また、駆動プーリのプーリ溝部の溝深さは、3.45mmである。従動プーリのプーリ溝部の溝深さ(Hp)は、表1に示す通りである。なお、後述する実施例2および比較例2~8の駆動プーリは、実施例1の駆動プーリと同様のものを用いた。また、後述する実施例2および比較例2~8の従動プーリの材質およびプーリ溝の溝数は、実施例1の従動プーリと同様である。
Figure JPOXMLDOC01-appb-T000001
 実施例1の歯付ベルトの仕様は以下の通りである。なお、後述する実施例2および比較例3~8の歯付ベルトは、実施例1の歯付ベルトと同様のものを用いた。
・ベルト幅:15mm
・歯ピッチ:8mm
・歯高さ(Hb):3.4mm
・ピッチ円周長(ピッチライン上の長さ):1200mm
・歯数:150
・ゴム状弾性体:熱硬化性ウレタンエラストマー、JISA硬度95
・抗張体:カーボン繊維、直径0.9mm
 実施例1のベルト走行時の駆動プーリの動力伝達側のバックラッシは、歯ピッチの0.26%であって、非動力伝達側のバックラッシは、歯ピッチの4.52%である。また、ベルト走行時の従動プーリの動力伝達側のバックラッシDおよび非動力伝達側のバックラッシdの歯ピッチに対する割合は、表1に示す通りである。
<実施例2>
 実施例2の従動プーリとして、図7および図8に示す上述した第2実施形態の従動プーリを使用した。従動プーリのプーリ溝部の溝深さ(Hp)は、表1に示す通りである。ベルト走行時の従動プーリの動力伝達側のバックラッシDおよび非動力伝達側のバックラッシdの歯ピッチに対する割合は、表1に示す通りである。
<比較例1>
 比較例1として、特許文献1(日本国特許第4340460号公報)に記載の駆動プーリ、従動プーリ、および歯付ベルトと同様のものを使用した。図9(a)は、比較例1のベルト走行時の従動プーリと歯付ベルトの部分拡大断面図を示している。駆動プーリのプーリ溝部の溝数は55であり、従動プーリのプーリ溝部の溝数は25であって、その溝数比は2.2である。駆動プーリのプーリ溝部の溝深さは、3.65mmである。従動プーリのプーリ溝部の溝深さ(Hp)は、表1に示す通りである。
 比較例1の歯付ベルトは、抗張体の材質と、ベルト歯部の歯高さ(Hb)と、ベルト歯部の形状が、実施例1、2および後述する比較例2~8の歯付ベルトと異なっているが、その他の仕様は同じである。比較例1では、抗張体の材質は、アラミド繊維であって、ベルト歯部の歯高さ(Hb)は、3.56mmである。図9(a)に示すように、比較例1の歯付ベルトの歯先は、断面円弧状に形成されている。
 比較例1のベルト走行時の駆動プーリの動力伝達側のバックラッシは、歯ピッチの0.31%であって、非動力伝達側のバックラッシは、歯ピッチの3.49%である。また、ベルト走行時の従動プーリの動力伝達側のバックラッシDおよび非動力伝達側のバックラッシdの歯ピッチに対する割合は、表1に示す通りである。比較例1では、ベルトの走行時に、従動プーリのプーリ溝部と歯付ベルトの歯部の走行方向側の面とが、断面曲線状に面接触する。
<比較例2>
 図9(b)は、比較例2のベルト走行時の従動プーリと歯付ベルトの部分拡大断面図を示している。比較例2の歯付ベルトは、抗張体がアラミド繊維からなり、この点以外は実施例1の歯付ベルトと同じ構成である。比較例2の従動プーリのプーリ溝部の溝深さと、ベルト走行時の従動プーリの動力伝達側のバックラッシDおよび非動力伝達側の非動力伝達側のバックラッシdの歯ピッチに対する割合は、表1に示す通りである。比較例2では、ベルトの走行時に、従動プーリのプーリ溝部と歯付ベルトの歯部の走行方向側の面とが、断面曲線状に面接触する。
<比較例3~8>
 図9(b)~図9(g)は、比較例3~8のベルト走行時の従動プーリと歯付ベルトの部分拡大断面図を示している。比較例3~8の従動プーリとのプーリ溝部の溝深さと、ベルト走行時の従動プーリの動力伝達側のバックラッシDおよび非動力伝達側の非動力伝達側のバックラッシdの歯ピッチに対する割合は、表1に示す通りである。比較例3、4では、ベルトの走行時に、従動プーリのプーリ溝部と歯付ベルトの歯部の走行方向側の面とが、断面曲線状に面接触する。比較例5~8では、従動プーリのプーリ溝部と歯付ベルトの歯部の走行方向側の面とが非相似形であって、ベルトの走行時に、従動プーリのプーリ溝部と歯付ベルトの歯部の走行方向側の面とが、従動プーリの外径から歯高さを差し引いた長さを直径とする従動プーリと同心の円周である基準円周Lより外側の位置において、線接触する。
 以上の実施例1、2および比較例1~8について、異物の無い状況と、水と砂の混合物が付着する状況で、それぞれ、ジャンピング試験を行った。
 異物が無い状況でのジャンピング試験は、まず、駆動プーリと従動プーリに歯付ベルトを巻き掛けて、ベルト張力が300Nになるようにプーリの軸間距離を調整した後、駆動プーリを500rpmで回転させた。その後、従動軸に与える負荷トルクを連続的に上昇させていき、ジャンピングが発生した時点での従動軸の負荷トルクを「水・砂無しジャンピングトルクT」とした。その結果を表1に示す。
 また、異物が無い状況でのジャンピング試験と同様に、ベルト張力が300Nになるようにプーリの軸間距離を調整した後、歯付ベルトの従動プーリに巻き付く手前側の歯面全体(図1のAの範囲)に、容積比1:1で計量・混合した砂と水の混合物をベルト歯元が見えなくなる程度まで堆積させた後、駆動プーリを回転させた(500rpm)。砂は、珪砂6号(粒径0.2~0.4mm)を用いた。その後、従動軸に与える負荷トルクを連続的に上昇させていき、ジャンピングが発生した時点での従動軸の負荷トルクを「水・砂有りジャンピングトルクT」とした。また、試験後、歯付ベルトの歯欠けの有無を観察した。それらの結果を表1に示す。また、「水・砂無しジャンピングトルクT」に対する「水・砂有りジャンピングトルクT」の低下率((T―T)/T)(以下、ジャンピングトルクの低下率という)も表1に示す。
 表1から明らかなように、比較例1~7では、ジャンピングトルクの低下率が0よりも大きい。つまり、異物の付着により、ジャンピングが発生しやすくなっている。これに対して、比較例8および実施例1、2では、ジャンピングトルクの低下率が0である。つまり、異物の付着に起因するジャンピングの発生を抑制できていることがわかる。
 また、従動プーリのプーリ溝部とベルト歯部とが線接触する比較例8では、歯欠けが生じている。これに対して、従動プーリのプーリ溝部とベルト歯部とが面接触する実施例1、2では、歯付ベルトの歯欠けが生じていない。これは、従動プーリのプーリ溝部とベルト歯部とが面接触することで、歯付ベルトに局所的に大きな応力がかかることを防止できたためと考えられる。
 また、比較例2、3は、抗張体の材質のみが異なっており、比較例2ではアラミド繊維を用いており、比較例3ではカーボン繊維を用いている。
 比較例2、3の試験結果を比較すると、比較例3は、「水・砂無しジャンピングトルクT」、「水・砂有りジャンピングトルクT」とも、比較例2よりも大きくなっている。この結果から、抗張体としてカーボン繊維を用いることが、ジャンピングの発生の抑制に寄与していることがわかる。
 また、比較例4では、従動プーリのプーリ溝部の溝深さ(Hp)が、ベルト歯部の歯高さ(Hb)よりも小さい。一方、比較例3では、従動プーリのプーリ溝部の溝深さ(Hp)が歯高さ(Hb)よりも大きい。
 比較例3、4の試験結果を比較すると、比較例3は、「水・砂無しジャンピングトルクT」が、比較例4よりも大きくなっている。さらに比較例3は、従動プーリの非動力伝達側のバックラッシdが比較例4よりも小さいにも関わらず、「水・砂有りジャンピングトルクT」が、比較例4よりも大きくなっている。この結果から、従動プーリのプーリ溝部の溝底とベルト歯部の歯先との間に隙間を確保することが、ジャンピングの発生の抑制に寄与していることがわかる。
 なお、比較例3と比較例4では、ジャンピングトルクの低下率はほぼ同じである。
 また、比較例5~8は、従動プーリのプーリ溝部とベルト歯部とが線接触するという条件が同じであって、比較例5、6、7、8の順に、従動プーリの非動力伝達側のバックラッシdが大きくなっていると共に、従動プーリのプーリ溝部の溝底とベルト歯部の歯先との間の隙間が大きくなっている。
 比較例5~8の試験結果を比較すると、比較例5、6、7、8の順に、「水・砂無しジャンピングトルクT」および「水・砂有りジャンピングトルクT」が大きくなっていると共に、ジャンピングトルクの低下率が小さくなっている。
 ここで、比較例3、4の結果から、従動プーリのプーリ溝部の溝底とベルト歯部の歯先との間の隙間の大きさは、ジャンピングトルクの低下率への影響は小さいと考えられる。したがって、従動プーリの非動力伝達側のバックラッシdが大きくなるほど、ジャンピングトルクの低下率が小さくなることと考えられる。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく、様々な修正や変更を加えることができることは、当業者にとって自明である。
 本出願は、2013年8月30日出願の日本特許出願2013-179395に基づくものであり、その内容はここに参照として取り込まれる。
1 自転車用歯付ベルト駆動装置
2 歯付ベルト
3 ベルト歯部
5 歯先部
6 歯元部
7 歯側部
10 駆動プーリ
11 プーリ溝部
20、120 従動プーリ
21、121 プーリ溝部
A1 第1動力伝達領域
A2 第2動力伝達領域
A3 第3動力伝達領域
C ベルト中心線
c1、c2 プーリ中心線
D1 駆動プーリの動力伝達側のバックラッシ
D2、D3 従動プーリの動力伝達側のバックラッシ
d1 駆動プーリの非動力伝達側のバックラッシ
d2、d3 従動プーリの非動力伝達側のバックラッシ
H 歯高さ
h1、h2、h3 溝深さ
L1 第1基準円周
L2 第2基準円周
L3 第3基準円周

Claims (6)

  1.  ベルト長手方向に沿って抗張体が埋設されたゴム状弾性体で形成され、ベルト長手方向に所定の歯ピッチで配置された複数の凸状のベルト歯部を有する歯付ベルト、
     前記ベルト歯部と噛み合うプーリ溝部が外周面に形成された駆動プーリ、および
     前記ベルト歯部と噛み合うプーリ溝部が外周面に形成された従動プーリを備える自転車用歯付ベルト駆動装置であって、
     ベルト幅方向に直交する断面において、前記ベルト歯部がベルト厚み方向の直線に対して略対称に形成されており、
     駆動状態において、前記駆動プーリの前記プーリ溝部と前記ベルト歯部のベルト走行方向と反対側の面の一部分が面接触し、且つ前記従動プーリの前記プーリ溝部と前記ベルト歯部のベルト走行方向側の面の一部分が面接触し、
     前記駆動プーリの前記プーリ溝部と前記ベルト歯部との前記面接触する部分および前記従動プーリの前記プーリ溝部と前記ベルト歯部との前記面接触する部分が、前記駆動プーリおよび前記従動プーリのそれぞれの外径から前記ベルト歯部の歯高さを差し引いた長さを直径とする当該プーリと同心の基準円周から前記ベルト歯部の歯元部側の範囲内であって、且つ、前記駆動プーリの前記プーリ溝部と前記ベルト歯部との前記面接触する部分および前記従動プーリの前記プーリ溝部と前記ベルト歯部との前記面接触する部分がベルト幅方向に直交する断面において曲線状であり、
     駆動状態において、前記駆動プーリの前記プーリ溝部と前記ベルト歯部のベルト走行方向と反対側の面との前記基準円周上の間隔、および、前記従動プーリの前記プーリ溝部と前記ベルト歯部のベルト走行方向側の面との前記基準円周上の間隔が、前記ベルト歯部の歯ピッチの0%以上0.5%以下であって、
     駆動状態において、前記駆動プーリの前記プーリ溝部と前記ベルト歯部のべルト走行方向側の面との最短距離の最大値が、前記ベルト歯部の歯ピッチの2%以上6%以下であって、
     駆動状態において、前記従動プーリの前記プーリ溝部と、前記ベルト歯部のべルト走行方向と反対側の面との最短距離の最大値が、前記ベルト歯部の歯ピッチの10%以上18%以下であって、
     前記従動プーリの前記プーリ溝部の溝深さが前記ベルト歯部の歯高さよりも大きく、その差が前記ベルト歯部の歯高さの5%以上である、自転車用歯付ベルト駆動装置。
  2.  ベルト幅方向に直交する断面において、前記従動プーリの前記プーリ溝部がプーリの径方向のいずれの直線に対しても非対称である、請求項1に記載の自転車用歯付ベルト駆動装置。
  3.  ベルト幅方向に直交する断面形状において、前記ベルト歯部の歯先がベルト長手方向に延びる直線状に形成されている、請求項1または2に記載の自転車用歯付ベルト駆動装置。
  4.  前記抗張体が炭素繊維からなる、請求項1~3のいずれか1項に記載の自転車用歯付ベルト駆動装置。
  5.  前記ゴム状弾性体が少なくとも熱硬化性ウレタンエラストマーを含む、請求項1~4のいずれか1項に記載の自転車用歯付ベルト駆動装置。
  6.  前記ゴム状弾性体のJISA硬度が90以上である、請求項1~5のいずれか1項に記載の自転車用歯付ベルト駆動装置。
PCT/JP2014/071680 2013-08-30 2014-08-19 自転車用歯付ベルト駆動装置 WO2015029840A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2917984A CA2917984C (en) 2013-08-30 2014-08-19 Toothed belt driving device for bicycle
EP14841215.8A EP3040580B1 (en) 2013-08-30 2014-08-19 Toothed belt driving device for bicycle
US14/915,402 US9950768B2 (en) 2013-08-30 2014-08-19 Toothed belt driving device for bicycle
CN201480048040.1A CN105492800B (zh) 2013-08-30 2014-08-19 自行车用有齿带驱动装置
KR1020167005248A KR101858946B1 (ko) 2013-08-30 2014-08-19 자전거용 톱니 벨트 구동장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013179395A JP5931028B2 (ja) 2013-08-30 2013-08-30 自転車用歯付ベルト駆動装置
JP2013-179395 2013-08-30

Publications (1)

Publication Number Publication Date
WO2015029840A1 true WO2015029840A1 (ja) 2015-03-05

Family

ID=52586402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071680 WO2015029840A1 (ja) 2013-08-30 2014-08-19 自転車用歯付ベルト駆動装置

Country Status (8)

Country Link
US (1) US9950768B2 (ja)
EP (1) EP3040580B1 (ja)
JP (1) JP5931028B2 (ja)
KR (1) KR101858946B1 (ja)
CN (1) CN105492800B (ja)
CA (1) CA2917984C (ja)
TW (1) TWI622525B (ja)
WO (1) WO2015029840A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017144140A1 (de) * 2016-02-22 2017-08-31 Contitech Antriebssysteme Gmbh Zahnriementrieb
US10716912B2 (en) 2015-03-31 2020-07-21 Fisher & Paykel Healthcare Limited User interface and system for supplying gases to an airway
US10989293B2 (en) 2016-06-09 2021-04-27 Contitech Antriebssysteme Gmbh Non-metal sprocket and bushing apparatus
US11015694B2 (en) 2016-06-09 2021-05-25 Contitech Antriebssysteme Gmbh Bushing and hub to prevent back-rotation
US11324908B2 (en) 2016-08-11 2022-05-10 Fisher & Paykel Healthcare Limited Collapsible conduit, patient interface and headgear connector
US11585423B2 (en) 2020-10-03 2023-02-21 Contitech Antriebssysteme Gmbh Composite sprocket

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6748131B2 (ja) * 2017-04-27 2020-08-26 三ツ星ベルト株式会社 はす歯ベルト伝動装置
JP6883541B2 (ja) 2017-05-30 2021-06-09 三ツ星ベルト株式会社 歯付ベルト伝動装置
TWI642864B (zh) * 2017-08-22 2018-12-01 傳誠技研有限公司 導向齒盤結構
CN109931365A (zh) * 2018-09-04 2019-06-25 浙江三星胶带有限公司 一种电摩用同步带
DE112021002627T5 (de) 2020-07-03 2023-03-23 Bando Chemical Industries, Ltd. Übertragungsriemen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405299A (en) * 1992-12-29 1995-04-11 Bridgestone Corporation Toothed belt and toothed belt-adapted pulley
JPH08326851A (ja) * 1995-05-31 1996-12-10 Toyota Motor Corp 歯付ベルト伝動装置
JP2001065648A (ja) * 1999-08-30 2001-03-16 Mitsuboshi Belting Ltd 歯付ベルト駆動装置
JP2006153249A (ja) * 2004-10-29 2006-06-15 Mitsuboshi Belting Ltd 歯付ベルト駆動装置
JP4340460B2 (ja) 2003-03-17 2009-10-07 ゲイツ・ユニッタ・アジア株式会社 自転車用動力伝達システムと自転車用プーリ

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4337056A (en) * 1977-12-12 1982-06-29 Uniroyal, Inc. Mechanical power transmission system
ZA786820B (en) 1977-12-14 1979-11-28 Uniroyal Inc Mechanical power transmission system
US4468211A (en) * 1981-11-12 1984-08-28 Mitsuboshi Belting Ltd. Toothed belt manufacture
GB2109503B (en) * 1981-11-12 1985-09-25 Mitsuboshi Belting Ltd Toothed belt
IN162773B (ja) * 1983-10-12 1988-07-09 Mitsuboshi Belting Ltd
JPS6474341A (en) * 1987-09-14 1989-03-20 Mitsuboshi Belting Ltd Driving device of toothed belt
DE3874860T2 (de) * 1987-11-12 1993-04-29 Mitsuboshi Belting Ltd Zahntreibriemen und antrieb.
JPH082473A (ja) 1994-06-21 1996-01-09 S R Santsuaa:Kk 歯付ベルト駆動自転車の弛み調整装置
JP2000337444A (ja) * 1999-03-25 2000-12-05 Bando Chem Ind Ltd 歯付ベルト及び歯付ベルト伝動装置並びに事務用機器
JP4010551B2 (ja) * 2003-04-03 2007-11-21 ゲイツ・ユニッタ・アジア株式会社 ハス歯ベルト伝動装置
US20090156341A1 (en) * 2007-12-14 2009-06-18 John Gaynor Belt
US9222568B2 (en) * 2011-01-05 2015-12-29 Trek Bicycle Corporation Bicycle power train cogs
CN102401104A (zh) * 2011-11-02 2012-04-04 周承岗 无级变速装置
US8312959B1 (en) * 2011-11-10 2012-11-20 The Gates Corporation Vehicle steering system transmission
CN104520609B (zh) * 2012-08-09 2018-07-17 阪东化学株式会社 齿形带及包括该齿形带的带减速装置
EP2921398B1 (en) * 2014-03-20 2017-02-22 Askoll Eva S.R.L. Electric propulsion unit and torque transmission group for an electric scooter and corresponding scooter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5405299A (en) * 1992-12-29 1995-04-11 Bridgestone Corporation Toothed belt and toothed belt-adapted pulley
JPH08326851A (ja) * 1995-05-31 1996-12-10 Toyota Motor Corp 歯付ベルト伝動装置
JP2001065648A (ja) * 1999-08-30 2001-03-16 Mitsuboshi Belting Ltd 歯付ベルト駆動装置
JP4340460B2 (ja) 2003-03-17 2009-10-07 ゲイツ・ユニッタ・アジア株式会社 自転車用動力伝達システムと自転車用プーリ
JP2006153249A (ja) * 2004-10-29 2006-06-15 Mitsuboshi Belting Ltd 歯付ベルト駆動装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10716912B2 (en) 2015-03-31 2020-07-21 Fisher & Paykel Healthcare Limited User interface and system for supplying gases to an airway
US11904097B2 (en) 2015-03-31 2024-02-20 Fisher & Paykel Healthcare Limited User interface and system for supplying gases to an airway
WO2017144140A1 (de) * 2016-02-22 2017-08-31 Contitech Antriebssysteme Gmbh Zahnriementrieb
CN108700161A (zh) * 2016-02-22 2018-10-23 康蒂泰克驱动系统有限公司 齿形皮带传动装置
US10989293B2 (en) 2016-06-09 2021-04-27 Contitech Antriebssysteme Gmbh Non-metal sprocket and bushing apparatus
US11015694B2 (en) 2016-06-09 2021-05-25 Contitech Antriebssysteme Gmbh Bushing and hub to prevent back-rotation
US11324908B2 (en) 2016-08-11 2022-05-10 Fisher & Paykel Healthcare Limited Collapsible conduit, patient interface and headgear connector
US11585423B2 (en) 2020-10-03 2023-02-21 Contitech Antriebssysteme Gmbh Composite sprocket

Also Published As

Publication number Publication date
CA2917984A1 (en) 2015-03-05
EP3040580A1 (en) 2016-07-06
TW201520131A (zh) 2015-06-01
US9950768B2 (en) 2018-04-24
KR101858946B1 (ko) 2018-06-28
JP2015048870A (ja) 2015-03-16
JP5931028B2 (ja) 2016-06-08
US20160221637A1 (en) 2016-08-04
EP3040580B1 (en) 2018-08-01
CN105492800B (zh) 2018-11-02
KR20160051761A (ko) 2016-05-11
CA2917984C (en) 2018-10-16
CN105492800A (zh) 2016-04-13
EP3040580A4 (en) 2017-04-26
TWI622525B (zh) 2018-05-01

Similar Documents

Publication Publication Date Title
WO2015029840A1 (ja) 自転車用歯付ベルト駆動装置
CN103538688B (zh) 用于自行车变速系统的后变速器及其导链轮
US7407236B2 (en) Elastic crawler
CN101230901B (zh) 链条传动装置
US20120077631A1 (en) V-belt transmission system combining friction transmission with mesh transmission
WO2014129300A1 (ja) スチールコード及びそれを用いた弾性クローラ
US7114788B2 (en) Angled traction lugs for endless band
CN104864046A (zh) 链轮及链条传动机构
WO2007030490A1 (en) Multiple ribbed pulley and system
WO2016129290A1 (ja) スプロケットおよび弾性クローラ駆動機構
JP6647984B2 (ja) 伝動ベルト
US5254049A (en) Synchronous drive belt
JP2005351425A (ja) 歯付プーリ及びそれを備えたベルト式伝動装置
JP2014504701A (ja) 横方向エレメント及び引張りリングを有する組み立てられた駆動ベルト用の横方向エレメント、及び組み立てられた駆動ベルト
JP4021224B2 (ja) 弾性クローラ用コード
JP4460681B2 (ja) 歯付ベルト伝動システム
JP2017048924A (ja) 自転車用歯付ベルト駆動装置
WO2007090149B1 (en) Low friction, direct drive pin conveyor belt
CN213111038U (zh) 一种设置有热塑性弹性体耐磨层的传动带结构
US10633043B2 (en) Elastic crawler and elastic crawler drive mechanism
JP2007139180A (ja) タイミングベルト及びその結合構造
JP2017043204A (ja) クローラ
JP2017001414A (ja) クローラ
JPH10141446A (ja) 駆動ベルト
JP2009174641A (ja) プーリ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480048040.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841215

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2917984

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2014841215

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014841215

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167005248

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14915402

Country of ref document: US