WO2015029547A1 - 空気電池及び組電池 - Google Patents

空気電池及び組電池 Download PDF

Info

Publication number
WO2015029547A1
WO2015029547A1 PCT/JP2014/065865 JP2014065865W WO2015029547A1 WO 2015029547 A1 WO2015029547 A1 WO 2015029547A1 JP 2014065865 W JP2014065865 W JP 2014065865W WO 2015029547 A1 WO2015029547 A1 WO 2015029547A1
Authority
WO
WIPO (PCT)
Prior art keywords
air battery
negative electrode
cell frame
current collecting
conductive
Prior art date
Application number
PCT/JP2014/065865
Other languages
English (en)
French (fr)
Inventor
佐藤 文紀
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP14839229.3A priority Critical patent/EP3041082B1/en
Priority to JP2015534043A priority patent/JP6119865B2/ja
Priority to US14/911,395 priority patent/US10164237B2/en
Priority to CN201480045750.9A priority patent/CN105474457B/zh
Publication of WO2015029547A1 publication Critical patent/WO2015029547A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • H01M50/529Intercell connections through partitions, e.g. in a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/138Primary casings, jackets or wrappings of a single cell or a single battery adapted for specific cells, e.g. electrochemical cells operating at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/253Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders adapted for specific cells, e.g. electrochemical cells operating at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/534Electrode connections inside a battery casing characterised by the material of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a current collecting technique of an air battery that uses oxygen in the air as an active material, and more particularly to a structure of an air battery that can connect electrodes of adjacent cells under a low resistance.
  • the present invention relates to a battery pack composed of various air batteries.
  • An air battery is a battery that uses oxygen in the air as a positive electrode active material and a metal such as aluminum (Al), iron (Fe), or zinc (Zn) as a negative electrode active material.
  • a metal such as aluminum (Al), iron (Fe), or zinc (Zn)
  • oxygen in the air is used as the positive electrode active material, so the energy density is high, and it is possible to reduce the size and weight, It is expected to be used as a power source for portable devices and further as a driving power source for electric vehicles and the like.
  • Patent Document 1 in order to stabilize electrical contact between terminals of adjacent cells and suppress fluctuations in output voltage, a first terminal that conducts to a first electrode of each cell, and a first terminal of each cell.
  • One of the second terminals that conduct to the two electrodes and come into contact with the first terminal of the adjacent cell is defined as a flat terminal surface, and the other is defined as a split terminal plate having a spring property that presses against the flat terminal surface.
  • the present invention has been made to solve the above-described problems in the conventional air battery connection structure, and the object of the present invention is to reduce the current collection loss between the cells, and It is another object of the present invention to provide an air battery suitable for the above and an assembled battery comprising such a battery.
  • the inventors of the present invention formed a plurality of through holes at the bottom of the cell frame that accommodates the electrolytic solution, and the negative electrode in the cell frame via the through holes.
  • the inventors have found that the above-described object can be achieved by achieving the electrical continuity, and have completed the present invention.
  • the present invention is based on the above knowledge, and the air electricity of the present invention comprises a bottomed frame-shaped cell frame made of an insulating material containing an electrolytic solution and a negative electrode, and an electrolytic solution in the cell frame.
  • a positive electrode disposed opposite to the negative electrode, and a current collecting member electrically connected to the negative electrode, and the negative electrode and the current collecting member are interposed through a plurality of conductive members penetrating the bottom of the cell frame. It is characterized by being connected.
  • the assembled battery of the present invention is characterized in that a plurality of the air batteries are stacked.
  • the negative electrode is connected to the current collecting member via a plurality of conductive members penetrating the bottom of the cell frame, the current can be taken out by the shortest conductive path, greatly reducing the current collection loss.
  • the output performance can be improved.
  • FIG. 1 shows 1st and 2nd embodiment of the air battery by this invention. It is sectional drawing which shows the laminated structure of the assembled battery which consists of an air battery shown to Fig.1 (a).
  • (A)-(d) is process drawing explaining the preparation procedure of a shared component as a manufacturing method of the assembled battery shown in FIG. It is sectional drawing which shows the completion state of the assembled battery by the process shown in FIG. (A) And (b) is sectional drawing which shows the example which interposed the sealing material between the cell frame and the current collection member as 3rd and 4th embodiment of the air battery by this invention.
  • FIG. 8 is a process diagram for explaining a manufacturing procedure of the integrated cell frame shown in FIG. 7.
  • (A) And (b) is process drawing explaining the preparation point of the shared component for assembled batteries using the integrated cell frame shown in FIG.
  • FIG. 1A is a cross-sectional view for explaining a first embodiment of the air battery of the present invention.
  • the air battery 1 shown in the figure includes a positive electrode 2 and a negative electrode 3, and the negative electrode 3 in the vicinity of the bottom.
  • the cell frame 5 that accommodates the electrolytic solution 4 and a plurality (four in the figure) of current collecting members 6 are mainly configured.
  • the negative electrode 3 is electrically connected to each current collecting member 6 through a conducting member 7 that penetrates the cell frame 5.
  • the positive electrode 2 includes a positive electrode catalyst layer formed on the lower surface in the drawing of the etching plate 8 having air permeability through a conductive water repellent layer (not shown), and a cell frame through the electrolytic solution 4. 5 is arranged to face the negative electrode 3 disposed at the bottom of the plate 5.
  • the positive electrode 2 uses oxygen as a positive electrode active material, and includes an oxygen redox catalyst and a conductive catalyst carrier that supports the oxygen redox catalyst.
  • the catalyst component include conventionally known electrode catalysts for air battery positive electrodes, such as metal oxides such as manganese dioxide and tricobalt tetroxide, platinum (Pt), ruthenium (Ru), iridium (Ir), and rhodium (Rh).
  • the shape and size of the catalyst component are not particularly limited, and the same shape and size as those of conventionally known catalyst components can be employed.
  • the shape of the catalyst component is preferably granular, and the average particle size of the catalyst particles is preferably 30 nm to 10 ⁇ m.
  • the “average particle diameter of the catalyst particles” is measured as the crystal particle diameter obtained from the half-value width of the diffraction peak of the catalyst component in X-ray diffraction or the average value of the particle diameter of the catalyst component examined by a transmission electron microscope image. can do.
  • the catalyst carrier functions as a carrier for supporting the catalyst component, and also as an electron conduction path involved in the transfer of electrons between the catalyst component and other members.
  • Any catalyst carrier may be used as long as it has a specific surface area for supporting the catalyst component in a desired dispersion state and sufficient electron conductivity, and the main component is preferably carbon.
  • Specific examples of the catalyst carrier include carbon particles made of carbon black, activated carbon, coke, natural graphite, artificial graphite, and the like.
  • Such carbon particles form aggregate carbon that forms the main skeleton of the layer structure (porous layer structure) and a conductive path in the layer because of its function. It is roughly classified into a conductive path material that is useful for this purpose.
  • the aggregate carbon activated carbon, graphite, and scaly graphite are suitable, and these all have a property of retaining an independent particle shape to some extent in the porous layer.
  • graphite or scaly graphite since a relatively large number of gaps are easily formed in the porous layer, it is suitable for use as the aggregate carbon of the liquid-tight ventilation layer.
  • Examples of the conductive path material include carbon black and acetylene black.
  • acetylene black easily adopts the chain structure described above, and the surface exhibits water repellency. It is suitable as.
  • the particle diameters of the above-mentioned aggregate carbon and conductive path material are also affected by the air battery used and the target electromotive force, but typically the average particle diameter of the aggregate carbon is 5 to 300 ⁇ m.
  • the average particle diameter of the conductive path material is preferably 50 to 500 nm.
  • the average particle diameter of the aggregate carbon is within the above range, the electrical conductivity in the surface direction of the aggregate carbon and the strength of the positive electrode can be increased.
  • the average particle diameter of the conductive path material is within the above range, the conductivity in the thickness direction of the porous layer and the gas permeability of the liquid-tight ventilation layer can be increased.
  • the average particle diameter (median diameter, D50) of the aggregate carbon and the conductive path material can be obtained by a dynamic light scattering method.
  • the amount of the catalyst component supported on the catalyst carrier is preferably 1 to 50% by mass, more preferably 5 to 30% by mass, based on the total amount of the catalyst and the carrier on which the catalyst is supported. When the supported amount of the catalyst component is within such a range, the balance between the degree of dispersion of the catalyst component on the catalyst carrier and the catalyst performance becomes appropriate. It should be noted that the above-described catalyst component and the type of the carrier supporting the catalyst component are not limited to those described above, and it goes without saying that conventionally known materials applicable to air batteries can be used as appropriate. .
  • the etching plate 8 is made of, for example, a thin plate of nickel or stainless steel, and is subjected to chemical etching in a masked state, thereby removing a peripheral portion and a position where the current collecting member 6 is joined as will be described later. In addition, those having fine holes of about 0.2 to several mm are used.
  • the conductive water-repellent layer has liquid-tightness (water-tightness) with respect to the electrolytic solution and air permeability with respect to oxygen, and enables supply of oxygen to the positive electrode 2, while the electrolytic solution 4 is external. It consists of a water-repellent porous resin such as polyolefin or fluororesin and a conductive powder such as graphite.
  • the negative electrode 3 a single metal whose standard electrode potential is lower than that of hydrogen or an alloy containing these metals is used.
  • a simple metal include zinc (Zn), iron (Fe), aluminum (Al), and magnesium (Mg).
  • the alloy include those obtained by adding one or more metal elements or non-metal elements to these metal elements.
  • the material is not limited to these, and a conventionally known material applied to the air battery can be applied.
  • an aqueous solution of potassium chloride (KCl), sodium chloride (NaCl), potassium hydroxide (KOH), sodium hydroxide (NaOH), or the like is used, but is not limited thereto.
  • KCl potassium chloride
  • NaCl sodium chloride
  • KOH potassium hydroxide
  • NaOH sodium hydroxide
  • a conventionally well-known electrolyte applied to the same air battery can be applied.
  • the cell frame 5 is a bottomed container having a shallow dish shape made of an insulating material such as resin, and a through hole (through hole) through which the conductive member 7 passes is formed at the bottom.
  • a through hole through which the conductive member 7 passes is formed at the bottom.
  • the current collecting member 6 is preferably made of a metal that is a conductive material, in particular, a metal having excellent conductivity such as copper or aluminum, and is electrically connected to the negative electrode 3 via the conductive member 7.
  • the shortest conductive path can be formed to reduce current collection loss.
  • the shape of the current collecting member 6 is not particularly limited, but in this embodiment, a hat-shaped cross section is adopted, and by adopting such a cross section, the shape of the adjacent air battery is reduced. It functions as a spacer between them and can secure a circulation space for air.
  • a conductive adhesive is used in this embodiment from the viewpoint of achieving both electrical conductivity between the negative electrode 3 and the current collecting member 6 and strong bonding. As long as it can be integrated with the electric member 6 and can be firmly connected to the negative electrode 3, it is not limited to the conductive adhesive.
  • a separator 10 can be disposed between the positive electrode 2 and the negative electrode 3.
  • a separator 4 for example, a glass paper that has not been subjected to a water repellent treatment, or a microporous film made of polyolefin such as polyethylene or polypropylene is used.
  • polyolefin such as polyethylene or polypropylene
  • FIG. 2 is a cross-sectional view showing the structure of an assembled battery formed by laminating a large number of the air cells 1 of the present invention, and is connected to the negative electrode 3 through the conductive member 7 in the laminated state as shown in the figure.
  • the current collecting member 6 is electrically connected to the positive electrode 2 of the lower air battery 1 in the figure. Therefore, cells can be connected in series by the shortest path, and a high-capacity assembled battery with low output loss and high output voltage can be realized. Further, since it is not necessary to apply a pressing force between the cells during current collection, the strength to withstand this is not required, and a reduction in size and weight is possible.
  • FIG. 3 is a process diagram showing a manufacturing procedure of common parts used in the repetitive structure portion of the assembled battery shown in FIG.
  • a positive electrode (catalyst layer) 2 is formed on the surface of the etching plate 8 via a conductive water repellent layer (not shown).
  • the etching plate 8 has a fine ventilation hole in a portion excluding the joining portion between the peripheral portion and the current collecting member 6 by chemically etching a nickel or stainless steel thin plate in which a required portion is masked. It can be obtained by forming.
  • the conductive water-repellent layer is formed using a water-repellent resin such as a fluororesin, a conductive carbon such as acetylene black or graphite, and a binder ink in a solvent.
  • a water-repellent resin such as a fluororesin
  • a conductive carbon such as acetylene black or graphite
  • a binder ink in a solvent.
  • the catalyst layer ink containing the conductive carbon, the catalyst component, and the binder in a solvent can be used.
  • the binder applied to a conventionally well-known air battery can be used suitably.
  • PTFE polytetrafluoroethylene
  • PP polypropylene
  • PFA tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer
  • FEP ethylene / tetrafluoroethylene copolymer
  • ETFE ethylene / tetrafluoroethylene copolymer
  • the conductive water repellent layer ink is applied to the surface of the etching plate 8 and dried at a temperature of about 80 to 120 ° C., for example, and then the catalyst layer ink is applied thereon and dried in the same manner. Then, for example, by baking at a temperature of about 100 to 350 ° C., the positive electrode 2 is laminated on the etching plate 8 via a conductive water repellent layer.
  • the obtained laminate is inverted, and the current collecting member 6 is placed in a predetermined portion of the etching plate 8 (non-vented and non-vented) with the etching plate 8 facing upward.
  • the etching plate 8 non-vented and non-vented
  • the cell frame 5 having a through hole (through hole) h at a predetermined position is placed on the current collecting member 6 joined on the etching plate 8.
  • the conductive adhesive A is applied to the portions of the current collecting member 6 exposed from the through holes h.
  • the negative electrode 3 made of zinc, aluminum, or the like is layered on the conductive adhesive A and pressure bonded, so that the adhesive A closes the through hole of the cell frame 5.
  • the sealing property of the electrolytic solution is ensured.
  • each current collecting member 6 is adhered to the negative electrode 3, and the conductive adhesive A is solidified to become a conductive member 7, and the current collecting member 6 and the negative electrode 3 are electrically connected to each other for an assembled battery.
  • the common parts are completed.
  • FIG. 5A is a cross-sectional view showing a third embodiment of the air battery of the present invention.
  • the air battery 1 shown in the figure has an adhesive property or a gap between the cell frame 5 and the current collecting member 6.
  • a sealing material 11 made of adhesive resin or double-sided tape is interposed, and the sealing performance between the cell frame 5 and the current collecting member 6 can be enhanced.
  • FIG. 5B is a cross-sectional view showing a fourth embodiment of the air battery of the present invention.
  • the current collecting member 6 is integrated with the conducting member 7.
  • a material having a T-shaped cross section is used, and a sealing material 11 is arranged between the current collecting member 6 (7) and the cell frame 5.
  • the sealing performance can be enhanced and the leakage resistance of the electrolytic solution 4 can be improved.
  • FIG. 6A is a cross-sectional view showing a structural example in which a conductive double-sided tape 12 is interposed between a negative electrode 3 and a conductive member 7 as a fifth embodiment of the air battery of the present invention. Then, the current collecting member 6 integrated with the conducting member and the negative electrode 3 are electrically connected by the conductive double-sided tape 12. At the same time, the gap between the through-hole of the cell frame 5 and the current collecting member 6 is covered with the double-sided tape 12, and the sealing performance of the electrolyte is ensured.
  • FIG. 6B is a cross-sectional view for explaining a manufacturing procedure of a common part used in a repetitive structure portion of the assembled battery including the air battery 1 having the above structure.
  • a conductive double-sided tape 12 is attached to the inner surface of the bottom of the cell frame 5.
  • the front end portion of the current collecting member 6 joined to the upper surface side of the etching plate 8 provided with the positive electrode 2 on the lower surface side in the figure is attached to the conductive double-sided tape 12 through the through hole h of the cell frame 5, and the upper side
  • the common parts can be assembled very easily by simply pressing the negative electrode 3 and sticking it to the conductive double-sided tape 12.
  • FIG. 7 shows a sixth embodiment of the air battery of the present invention.
  • a current collecting member 6 having a substantially cross-shaped cross section also having a function as a conducting member is formed at the bottom by integral molding.
  • the embedded cell frame 5 is used, and the negative electrode 3 disposed on the bottom of the cell frame 5 and the current collecting member 6 are electrically connected.
  • FIGS. 8A to 8D are process diagrams showing an example of a method for manufacturing the cell frame 5 integrally provided with the current collecting member 6.
  • the current collecting member 6 is sandwiched.
  • the current collecting members 6 are set between the molds M ⁇ b> 1 and M ⁇ b> 2 in a state where the current collecting members 6 are aligned with the through holes h of the resin sheets S and S. Then, as shown in FIG. 8C, by closing the mold and vacuum forming, the current collecting member integrated cell frame 5 as shown in FIG. 8D is completed.
  • FIGS. 9A and 9B are cross-sectional views for explaining a manufacturing procedure of a common part used in a repetitive structure portion of an assembled battery composed of an air battery using the current collecting member-integrated cell frame 5. is there.
  • the integrated cell frame 5 obtained in FIG. 8D is reversed, and as shown in FIG. 9A, the current collecting member 6 protruding from the cell frame 5 faces upward,
  • the etching plate 8 provided with the positive electrode 2 is placed with the positive electrode 2 facing upward.
  • the etching plate 8 provided with the positive electrode 2 is joined to the front-end
  • the joined body obtained as described above is inverted, and the negative electrode 3 is accommodated at the bottom of the cell frame 5, and similarly, the negative electrode 3 is irradiated with a laser beam.
  • a metal foil 13 can be provided between the conducting member 7 and the negative electrode 3.
  • a metal made of noble metal such as copper or stainless steel can be used.
  • the negative electrode is consumed and thinned by the progress of the electrode reaction, or dispersed in an island shape. Even if it does, the inconvenience that current collection property is impaired can be avoided.
  • the sealing material 11 on the outer peripheral portion of the metal foil 13, thereby improving the sealing performance of the electrolyte solution 4 and further improving the leakage resistance.
  • the metal foil 13 and the negative electrode 3 or the conductive member 7 can be joined widely by metallurgical bonding methods such as welding, diffusion bonding, and cladding techniques in addition to the conductive adhesive. can do.
  • the metal foil 13 does not necessarily need to be a continuous sheet, and there is no problem even if it is divided into a plurality of pieces.
  • FIG. 11 shows a structural example in which the metal foil 13 is disposed between the conducting member 7 and the current collecting member 6, that is, outside the cell frame 5 as an eighth embodiment of the air battery of the present invention.
  • FIGS. 3A and 3B after the conductive water repellent layer and the positive electrode (catalyst layer) 2 are formed on the surface of the etching plate 8, the obtained laminate is inverted, With the etching plate 8 facing upward, the current collecting member 6 is joined to a predetermined portion of the etching plate 8 by laser welding or seam welding.
  • the cell frame 5 having a through hole at a predetermined position is placed on the current collecting member 6 joined on the etching plate 8.
  • the conductive adhesive A is applied to the portions exposed from the through holes.
  • the negative electrode 3 and the metal foil 13 are bonded together.
  • the joining means of the negative electrode 3 and the metal foil 13 at this time is not particularly limited, and diffusion joining, welding, a clad method, etc. can be applied. Moreover, it can also adhere
  • the adhesive 3 of the negative electrode 3 made of zinc or aluminum and the metal foil 13 shown in FIG. It expands into the through-hole of the cell frame 5 to secure the sealing property, and solidifies to become the conductive member 7, and electrically connects the current collecting member 6, the metal foil 13, and the negative electrode 3.
  • the shared component for assembled batteries is completed.
  • the air battery of the present invention includes a plurality of the current-carrying member 7 or the current collecting member 6 integrated with the current-carrying member 7, and the current-carrying member 7 or the current-collecting member 6 member penetrates the bottom of the cell frame 5. As a result, electrical continuity with the negative electrode 3 is ensured.
  • the conducting member 7 or the integrated current collecting member 6 can be a continuous long shape or a short intermittent shape.
  • FIG. 14A shows an example of the shape of the through-hole h formed in the cell frame 5 when the long conducting member 7 and the integrated current collecting member 6 are used.
  • the through hole h also has a continuous long shape, similar to the above member. In this way, the number of parts is reduced, the process of joining these parts to the etching plate 8 and the process of fitting the cell frame 5 into the through holes h are simplified, and the manufacturing cost can be reduced.
  • FIG. 14B shows a shape of the through hole h of the cell frame 5 in the case where the conductive member 7 or the integrated current collecting member 6 having a short shape and intermittent in the longitudinal direction is used.
  • these through-holes h are also discontinuous having a short shape similar to that of the member.
  • Air battery Positive electrode (Air electrode) DESCRIPTION OF SYMBOLS 3 Negative electrode 4 Electrolyte 5 Cell frame 6 Current collecting member 7 Conductive member 11 Sealing material 12 Conductive double-sided tape 13 Metal foil

Abstract

 電解液4と負極3を収納した絶縁性材料から成る有底枠状のセルフレーム5と、セルフレーム5内の電解液4を介して上記負極3と対向配置された正極2と、上記負極2と電気的に接続された集電部材6を備えた空気電池において、セルフレーム5の底部を貫通する複数の導通部材7によって、上記負極3と集電部材6とを電気的に接続する。

Description

空気電池及び組電池
 本発明は、空気中の酸素を活物質として利用する空気電池の特に集電技術に係り、隣接するセルの電極間を低抵抗のもとに接続することができる空気電池の構造と、このような空気電池から成る組電池に関するものである。
 空気電池は、空気中の酸素を正極活物質に、アルミニウム(Al)、鉄(Fe)、亜鉛(Zn)などの金属を負極活物質に用いた電池である。
 このような電池においては、正極活物質として、空気中の酸素を用いることから、電池容器内に正極活物質を備える必要がないため、エネルギー密度が高く、小型化、軽量化が可能であり、携帯機器用電源として、さらには電動車両などの駆動用電源としての利用が期待されている。
 このような空気電池の実用に向けて、例えば自動車の駆動用電源として用いる場合、大きな出力電圧と容量が求められるため、複数の大型電池を直列に接続する必要がある。
 例えば、特許文献1には、隣接するセルの端子同士の電気的接触性を安定化させ、出力電圧の変動を抑えるべく、各セルの第1電極に導通する第1端子と、各セルの第2電極に導通し隣接するセルの第1端子と接触する第2端子の一方を平坦端子面とし、他方を上記平坦端子面に圧接するバネ性を有する分割端子板とすることが記載されている。
日本国特開平07-085899号公報
 上記文献に記載された集電構造では、次段の空気極(正極)への電気的接続がアルミニウム電極(負極)表面から集電ワイヤ、アノード集電フレーム、第2端子、第1端子を介して行われ、両端子間の接続は、バネによる押し付けによるものとなっている。
 すなわち、セル間の電気的接続が正極、負極ともにセルの外周部を迂回した経路による構造となっているため、集電パスが長く、集電損失が極めて大きくなるという問題がある。なお、このような問題は、大型の大電力用の電池ほど顕著であり、より深刻なものとなる。
 本発明は、従来の空気電池の接続構造における上記のような課題を解決すべくなされたものであって、その目的とするところは、セル間の集電損失を低減することができ、直列積層に好適な空気電池と、このような電池から成る組電池を提供することにある。
 本発明者らは、上記目的の達成に向けて鋭意検討を重ねた結果、電解液を収納するセルフレームの底部に複数のスルーホールを形成し、このスルーホールを介してセルフレーム内の負極との電気的な導通を図ることによって、上記目的が達成できることを見出し、本発明を完成するに至った。
 すなわち、本発明は上記知見に基づくものであって、本発明の空気電気は、電解液と負極を収納した絶縁性材料から成る有底枠状のセルフレームと、該セルフレーム内の電解液を介して上記負極と対向配置された正極と、上記負極と電気的に接続された集電部材を備え、上記負極と集電部材とが上記セルフレームの底部を貫通する複数の導通部材を介して接続されていることを特徴としている。
 また、本発明の組電池は、上記空気電池を複数個積層して成ることを特徴とするものである。
 本発明によれば、負極がセルフレームの底部を貫通した複数の導通部材を介して集電部材に接続されているため、最短の導電パスによって電流を取り出すことができ、集電損失を大幅に低減することができ、出力性能を向上することができる。
(a)及び(b)は本発明による空気電池の第1及び第2の実施形態を示すそれぞれ断面図である。 図1(a)に示した空気電池から成る組電池の積層構造を示す断面図である。 (a)~(d)は図2に示した組電池の製造方法として、共用部品の作製手順を説明する工程図である。 図3に示した工程による組電池の完成状態を示す断面図である。 (a)及び(b)は本発明による空気電池の第3及び第4の実施形態として、セルフレームと集電部材の間にシール材を介在させた例を示す断面図である。 本発明による空気電池の第5の実施形態として、負極と導通部材を導電性両面テープによって接続した構造例(a)及び製造要領(b)を示す断面図である。 本発明による空気電池の第6の実施形態として、一体化された集電部材と導通部材をセルフレームに一体成形した例を示す断面図である。 図7に示した一体化セルフレームの作製要領を説明する工程図である。 (a)及び(b)は図7に示した一体化セルフレームを用いた組電池用共用部品の作製要領を説明する工程図である。 本発明による空気電池の第7の実施形態として、負極と導通部材と間に金属箔を介在させた構造例を示す断面図である。 本発明による空気電池の第8の実施形態として、集電部材と導通部材と間に金属箔を介在させた構造例を示す断面図である。 (a)~(c)は図10(a)に示した形態の空気電池から成る組電池に用いる共用部品の作製手順を説明する工程図である。 図12に示した工程による共用部品を用いた組電池の完成状態を示す断面図である。 (a)及び(b)は導通部材を貫通させるためにセルフレームに形成する貫通孔の形状例を示すセルフレームの平面図及び断面図である。
 以下に、本発明の空気電池と、該空気電池を用いた組電池についてさらに詳細、具体的に説明する。
 図1(a)は、本発明の空気電池の第1の実施形態を説明するための断面図であって、図に示す空気電池1は、正極2及び負極3と、該負極3を底部近傍位置に備え、電解液4を収納するセルフレーム5と、複数(図では4個)の集電部材6から主に構成されている。そして、上記負極3は、セルフレーム5を貫通する導通部材7を介してそれぞれの集電部材6に電気的に接続されている。
 上記正極2は、図示しない導電性撥水層を介して、通気性を備えたエッチングプレート8の図中下側の面上に形成された正極触媒層を備え、電解液4を介してセルフレーム5の底部に配設された負極3と対向するようになっている。
 正極2は、酸素を正極活物質とするものであって、酸素の酸化還元触媒と、これを担持する導電性の触媒担体を含んでいる。
 触媒成分としては、従来公知の空気電池正極用の電極触媒、例えば、二酸化マンガンや四酸化三コバルトなどの金属酸化物や、白金(Pt)、ルテニウム(Ru)、イリジウム(Ir)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、タングステン(W)、鉛(Pb)、鉄(Fe)、クロム(Cr)、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)、バナジウム(V)、モリブデン(Mo)、ガリウム(Ga)、アルミニウム(Al)等の金属及びその化合物、並びにこれらの合金などから選択することができる。
 触媒成分の形状や大きさは、特に限定されるものではなく、従来公知の触媒成分と同様の形状及び大きさを採用することができる。ただし、触媒成分の形状は、粒状であることが好ましく、触媒粒子の平均粒子径は、30nm~10μmであることが好ましい。
 触媒粒子の平均粒子径がこのような範囲内の値であると、電気化学反応が進行する有効電極面積に関連する触媒利用率と担持の簡便さとのバランスを適切に制御することができる。
 なお、「触媒粒子の平均粒子径」は、X線回折における触媒成分の回折ピークの半値幅から求められる結晶粒子径や、透過型電子顕微鏡像によって調べられる触媒成分の粒子径の平均値として測定することができる。
 触媒担体は、上記触媒成分を担持するための担体として、また、触媒成分と他の部材との間での電子の授受に関与する電子伝導パスとして機能する。触媒担体としては、触媒成分を所望の分散状態で担持させるための比表面積を有し、充分な電子伝導性を有しているものであればよく、主成分がカーボンであることが好ましい。触媒担体としては、具体的には、カーボンブラック、活性炭、コークス、天然黒鉛、人造黒鉛などからなるカーボン粒子が挙げられる。
 なお、触媒成分と触媒担体で触媒層を形成する場合、かかるカーボン粒子は、その機能から、層構造(多孔質層構造)の主骨格を形成する骨材炭素と、層中に導電通路を形成するのに有用な導電パス材とに大別される。
 骨材炭素としては、活性炭、黒鉛及び鱗片状黒鉛が好適であり、これらはいずれも多孔質層中で独立した粒子形状をある程度保持する性質を有している。特に、黒鉛や鱗片状黒鉛を用いると、多孔質層中に隙間が比較的多く形成され易いので、液密性通気層の骨材炭素として使用するのに適している。
 また、導電パス材としては、カーボンブラックやアセチレンブラックを例示できるが、特に、アセチレンブラックは上記の鎖状構造を採り易く、しかも表面が撥水性を示すので、液密性通気層の導電パス材として好適である。
 上述の骨材炭素と導電パス材の粒径は、使用する空気電池や目的とする起電力などによっても影響を受けるが、代表的には、骨材炭素の平均粒子径は5~300μmで、導電パス材の平均粒子径は50~500nmとすることが好ましい。
 骨材炭素の平均粒子径が上記範囲内であることにより、骨材炭素の面方向の導電性及び正極の強度を高めることが可能となる。また、導電パス材の平均粒子径が上記範囲内であることにより、多孔質層の厚さ方向の導電性や液密通気層のガス透過性を高めることが可能となる。なお、骨材炭素及び導電パス材の平均粒子径(メディアン径、D50)は、動的光散乱法により求めることができる。
 触媒担体に対する触媒成分の担持量については、触媒とこれを担持した担体の全量に対して、好ましくは1~50質量%、より好ましくは5~30質量%である。触媒成分の担持量がこのような範囲内の値であると、触媒担体上での触媒成分の分散度と触媒性能とのバランスが適切なものとなる。
 なお、上記した触媒成分や、これを担持する担体の種類については、上記したものだけに限定されるものではなく、空気電池に適用される従来公知の材料を適宜使用することができることは言うまでもない。
 上記エッチングプレート8は、例えばニッケルやステンレス鋼の薄板から成るものであって、マスキングした状態で化学エッチングを施すことによって、周辺部と、後述するように集電部材6との接合位置を除く部分に、0.2~数mm程度の微細孔を形成したものが用いられる。
 なお、導電性撥水層は、電解液に対する液密性(水密性)と、酸素に対する通気性を備えたものであって、正極2への酸素供給を可能にする一方、電解液4が外部に漏出するのを防止する機能を備え、ポリオレフィンやフッ素樹脂などの撥水性多孔質樹脂と黒鉛などの導電性粉末から成る。
 負極3としては、標準電極電位が水素より卑な金属単体や、これら金属を含む合金が用いられる。このような金属単体としては、例えば亜鉛(Zn)、鉄(Fe)、アルミニウム(Al)、マグネシウム(Mg)などを挙げることができる。また、合金としてはこれらの金属元素に1種以上の金属元素又は非金属元素を加えたものを挙げることができる。しかしながら、これらに限定されるものではなく、空気電池に適用される従来公知の材料を適用することができる。
 電解液4としては、例えば、塩化カリウム(KCl)、塩化ナトリウム(NaCl)、水酸化カリウム(KOH)、水酸化ナトリウム(NaOH)などの水溶液が用いられるが、これらに限定されるものではなく、同様の空気電池に適用される従来公知の電解液を適用することができる。
 セルフレーム5は、樹脂のような絶縁性材料から成る浅い皿状をなす有底容器であって、底部には、導通部材7が貫通する貫通孔(スルーホール)が形成されており、樹脂のような材料から成るものとすることにより、空気電池、特に組電池の軽量化に寄与するものとなる。
 集電部材6は、導電性材料である金属、特に銅やアルミニウムなどの導電性に優れた金属から成る物であることが望ましく、導通部材7を介して負極3と電気的に接続されており、最短の導電パスを形成して、集電損失を低減することができる。
 なお、当該集電部材6の形状としては、特に限定される訳ではないが、この実施形態においては、ハット型断面を採用しており、このような断面とすることによって隣接する空気電池との間のスペーサーとして機能し、空気の流通空間を確保することができる。
 導通部材7としては、負極3と集電部材6との間の導電性と強固な接合を両立させる観点から、この実施形態においては導電性接着剤を用いているが、後述するように、集電部材6と一体化することもでき、負極3との強固な電気的接続が可能でありさえすれば、導電性接着剤のみに限定されることはない。
 なお、図1(b)に、本発明の第2の実施形態として示すように、上記正極2と負極3の間には、セパレータ10を配置することもできる。
 このようなセパレータ4としては、例えば、撥水処理を行っていないグラスペーパー、ポリエチレンやポリプロピレン等のポリオレフィンからなる微多孔膜が用いられる。但し、これら材料に限定されるものではなく、空気電池に適用される従来公知のものを適用することができる。
 図2は、本発明の上記空気電池1を多数積層してなる組電池の構造を示す断面図であって、図に示すように、積層状態において、導通部材7を介して負極3に接続された集電部材6が図中下側の空気電池1の正極2と電気的に接続されることになる。
 したがって、最短のパスによるセル同士の直列接続が可能になり、集電損失が少なく、出力電圧の高い高容量の組電池を実現することができる。また、集電に際してセル間に押し付け力を加える必要がないため、これに耐える強度が必要なく、小型軽量化が可能になる。
 図3は、図2に示した組電池の繰り返し構造部分に用いられる共用部品の作製要領を示す工程図である。
 まず、図3(a)に示すように、エッチングプレート8の表面に、導電性撥水層(図示せず)を介して、正極(触媒層)2を形成する。
 エッチングプレート8は、上記したように、所要部分にマスキングを施したニッケルやステンレス鋼の薄板を化学エッチングすることによって、周辺部と集電部材6との接合部位を除く部分に微細な通気孔を形成することによって得ることができる。
 導電性撥水層の形成には、溶媒中にフッ素樹脂などの撥水性樹脂とアセチレンブラックや黒鉛などの導電性炭素とバインダーを含む導電性撥水層用インクが用いられ、正極触媒層の形成には、溶媒中に上記導電性炭素と触媒成分とバインダーを含む触媒層用インクを用いることができる。
 ここで、バインダーとしては、特に限定されるものではなく、従来公知の空気電池に適用されるバインダーを適宜用いることができる。なお、耐熱性及び耐薬品性の観点からは、ポリテトラフルオロエチレン(PTFE)、ポリプロピレン(PP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)及びエチレン・テトラフルオロエチレン共重合体(ETFE)を特に好適に使用することができる。
 なお、これらインクには、必要に応じて公知の界面活性剤や増粘剤を混合してもよい。
 上記エッチングプレート8の表面に、導電性撥水層用インクを塗布し、例えば80~120℃程度の温度で乾燥したのち、この上に触媒層用インクを塗布し、同様に乾燥する。そして、例えば100~350℃程度の温度で、焼成することによって、エッチングプレート8上に、導電性撥水層を介して正極2が積層される。
 次に、図3(b)に示すように、得られた積層体を反転させ、エッチングプレート8を上側にした状態で、集電部材6をエッチングプレート8の所定部位(エッチングされていない非通気性部分)に、例えばレーザ溶接やシーム溶接などによって接合する。
 次いで、図3(c)に示すように、エッチングプレート8上に接合された集電部材6の上に、所定位置に貫通孔(スルーホール)hを備えたセルフレーム5を載置し、各集電部材6の貫通孔hから露出する部分に、導電性接着剤Aをそれぞれ塗布する。
 次に、図3(d)に示すように、導電性接着剤Aの上に、亜鉛やアルミニウムなどから成る負極3を重ねて圧着することによって、接着剤Aがセルフレーム5の貫通孔を塞いで、電解液のシール性が確保される。同時に、各集電部材6が負極3にそれぞれ接着され、導電性接着剤Aは固化して導通部材7となって、集電部材6と負極3の間が電気的に接続されて組電池用の共用部品が完成する。
 そして、セルフレーム5の外周部上端縁に接着剤(導電性は不要)を塗布した状態で、図4に示すように、これら共用部品を多数積層することによって、集電損失が少なくて出力電圧の高い高容量の組電池が完成する。なお、図4に示すように、最上段の共用部品には、正極2と集電部材6を備えたエッチングプレート8を重ねるだけでよく、最下段には、正極2のない部品が配置されることになる。
 本発明において、上記セルフレーム5と集電部材6との間にシール材を設けることができる。また、上記集電部材6を導通部材7と一体化し、導通部材としての機能を兼ねることもできる。
 図5(a)は、本発明の空気電池の第3の実施形態を示す断面図であって、図に示す空気電池1は、セルフレーム5と集電部材6との間に、接着性あるいは粘着性樹脂や両面テープなどから成るシール材11を介在させたものであって、セルフレーム5と集電部材6との間のシール性を強化することができる。
 また、図5(b)は、本発明の空気電池の第4の実施形態を示す断面図であって、図に示す空気電池1においては、集電部材6として、導通部材7と一体化したT字型断面をなすものを用いると共に、この集電部材6(7)とセルフレーム5との間にシール材11を配置するようにしている。これによって、上記実施形態と同様に、シール性を強化することができ、電解液4の耐漏液性を向上させることができる。
 また、本発明においては、負極3と導通部材7との間の電気的接続を導電性両面テープによって行うこともできる。
 図6(a)は、本発明の空気電池の第5の実施形態として、負極3と導通部材7との間に導電性両面テープ12を介在させた構造例を示す断面図であって、ここでは、導通部材と一体化された集電部材6と負極3の間が導電性両面テープ12によって電気的に接続されている。同時に、セルフレーム5の貫通孔と集電部材6の間の隙間が両面テープ12によって覆われ、電解液のシール性が確保されている。
 図6(b)は、上記構造の空気電池1から成る組電池の繰り返し構造部分に用いられる共用部品の作製要領を説明する断面図である。
 図に示すように、まず、セルフレーム5の底部内面側に、導電性両面テープ12を貼り付ける。そして、図中下面側に正極2を備えたエッチングプレート8の上面側に接合された集電部材6の先端部をセルフレーム5の貫通孔hを通して導電性両面テープ12に貼り付けると共に、上方側から負極3を押し当てて導電性両面テープ12に貼り付けるだけで、極めて簡単に共用部品を組み立てることができる。
 さらに、本発明においては、上記導通部材7、あるいは導通部材と一体化された構造の集電部材6と、セルフレーム5とを一体成形することもでき、簡素なプロセスによって、当該電池の耐漏液性を向上させることができる。
 図7は、本発明の空気電池の第6の実施形態を示すものであって、ここでは、一体成型によって、導通部材としての機能も備えた略十字型断面をなす集電部材6が底部に埋め込まれたセルフレーム5が使用され、その底部に配設された負極3と上記集電部材6とが電気的に接続されている。
 図8(a)~(d)は、集電部材6を一体的に備えた上記セルフレーム5の製造方法の一例を示す工程図である。
 まず、図8(a)に示すように、所定位置に貫通孔hを備えた上下2枚の樹脂シートS、Sを用意し、これら樹脂シートS、Sの間に複数(図では4個)の集電部材6を挟み込む。
 次に、図8(b)に示すように、各集電部材6を樹脂シートS、Sの貫通孔hに位置合わせした状態で、成形型M1、M2の間にセットする。
 そして、図8(c)に示すように、型を閉じて真空成型することにより、図8(d)に示すような集電部材一体型のセルフレーム5が完成する。
 図9(a)及び(b)は、上記の集電部材一体型セルフレーム5を用いた空気電池から成る組電池の繰り返し構造部分に用いられる共用部品の作製要領を説明するための断面図である。
 先ず、上記図8(d)で得られた一体型セルフレーム5を反転させて、図9(a)に示すように、セルフレーム5から突出する集電部材6を上に向け、この上に正極2を備えたエッチングプレート8を正極2を上にした状態で載置する。
 そして、上方側からレーザビームを照射することによって、正極2を備えたエッチングプレート8をそれぞれの集電部材6の先端に接合する。この接合は、集電部材6の間隔に応じて設定されたエッチングプレート8の非通気性部分(マスキング部位)において行われる。
 次に、図9(b)に示すように、上記により得られた接合体を反転させて、セルフレーム5の底部に負極3を収納し、同様に、レーザビームを照射することによって、負極3を各集電部材6に接合することによって、組電池用の共用部品が得られる。
 このような共用部品を多数積層することによって、図4に示したものと同様に、集電損失が少なく、出力電圧が高く、高容量で、耐漏液性に優れた軽量の組電池を得ることができる。
 本発明においては、図10(a)及び(b)に示すように、上記導通部材7と負極3の間に金属箔13を設けることができる。
 金属箔13としては、例えば銅やステンレス鋼など、負極金属より貴な金属から成るものを用いることができ、これによって、電極反応の進行によって負極が消耗して薄くなったり、島状に分散したりしたとしても、集電性が損なわれるような不都合を回避することができる。
 このとき、図10(b)に示すように、金属箔13の外周部にシール材11を設けることも望ましく、これによって、電解液4のシール性を高め、耐漏液性をさらに向上させることができる。
 なお、金属箔13と負極3や導通部材7(一体型集電部材6)との間の接合は、導電性接着剤の他、溶接、拡散接合、クラッド手法など冶金的な接合方法を広く適用することができる。また、金属箔13は、必ずしも連続した1枚のものである必要なく、複数に分割されていても支障はない。
 図11は、本発明の空気電池の第8の実施形態として、上記金属箔13を導通部材7と集電部材6の間、すなわちセルフレーム5の外側に配置した構造例を示すものである。
 このような構造を採用することによって、電極反応の進行に応じて、負極が消耗して薄くなったり島状に分散したりした場合に面内の集電抵抗の分布が緩和され、集電抵抗の悪化が低減できる。また、金属箔部外周にシール層を設けることにより、電解液のシール性を向上させることができる。
 図12(a)~(c)は、図10(a)に示した空気電池から成る組電池の繰り返し構造部分に用いられる共用部品の作製要領を示す工程図である。
 すなわち、図3(a)、(b)に示したように、エッチングプレート8の表面に、導電性撥水層と正極(触媒層)2を形成したのち、得られた積層体を反転させ、エッチングプレート8を上側にした状態で、集電部材6をエッチングプレート8の所定部位にレーザ溶接やシーム溶接などによって接合する。
 次に、図12(a)に示すように、エッチングプレート8上に接合された集電部材6の上に、所定位置に貫通孔を備えたセルフレーム5を載置し、各集電部材6の貫通孔から露出する部分に、導電性接着剤Aをそれぞれ塗布する。
 一方、図12(b)に示すように、負極3と金属箔13とを接合しておく。このときの負極3と金属箔13との接合手段としては、特に限定されることはなく、拡散接合、溶接、クラッド手法などを適用することができる。また、導電性接着剤を用いて接着することもできる。
 次に、導電性接着剤Aの上に、図12(b)に示した亜鉛やアルミニウムから成る負極3と金属箔13との接合体を重ねて圧着することによって、導電性接着剤Aは、セルフレーム5の貫通孔内に拡がってシール性を確保すると共に、固化して導通部材7となり、集電部材6と金属箔13及び負極3の間を電気的に接続する。
 これによって、図12(c)に示すように、組電池用の共用部品が完成する。
 そして、上記により得られた共用部品におけるセルフレーム5の外周部上端縁に接着剤を塗布した状態で、これら共用部品を多数積層することによって、図13に示すように、集電損失が少なくて出力電圧の高い高容量の組電池が完成する。
 本発明の空気電池においては、上記導通部材7、あるいは該導通部材と一体化された集電部材6を複数個備え、当該導通部材7あるいは集電部材6部材がセルフレーム5の底部を貫通することによって、負極3との電気的導通が確保されるものである。
 これら導通部材7、あるいは一体化集電部材6については、連続した長尺状のものとすることも、短い断続形状のものとすること可能である。
 図14(a)は、長尺状の導通部材7や一体化集電部材6を用いる場合に、セルフレーム5に形成される貫通孔hの形状例を示すものであって、当然のことながら、貫通孔hについても、上記部材と同様に、連続した長尺状のものとなる。
 このようにすれば、部品点数が少なくなり、これら部品のエッチングプレート8への接合工程や、セルフレーム5の貫通孔hへの嵌合工程が簡略化され、製造コストを抑えることができる。
 一方、 図14(b)は、短尺状をなし、長手方向に断続した形状の導通部材7や一体化集電部材6を用いる場合におけるセルフレーム5の貫通孔hの形状を示すものであって、これら貫通孔hについても、部材と同様の短尺状をなす不連続のものとなることは言うまでもない。
 このような不連続状の導通部材7や一体化集電部材6を用いることによって、電池内部に温度変化が生じたとしても、セルフレーム5との熱膨張差による熱応力を緩和することができ、セルフレーム5の変形や、これによる破損を未然に防止することができる。
 1 空気電池
 2 正極(空気極)
 3 負極
 4 電解液
 5 セルフレーム
 6 集電部材
 7 導通部材
11 シール材
12 導電性両面テープ
13 金属箔

Claims (11)

  1.  電解液と負極を収納した絶縁性材料から成る有底枠状のセルフレームと、該セルフレーム内の電解液を介して上記負極と対向配置された正極と、上記負極と電気的に接続された集電部材を備えた空気電池において、
     上記負極と集電部材とが上記セルフレームの底部を貫通する複数の導通部材を介して接続されていることを特徴とする空気電池。
  2.  上記集電部材が隣接する空気電池との間に通気空間を形成するスペーサーとして機能することを特徴とする請求項1に記載の空気電池。
  3.  上記導通部材がセルフレームと一体成形されていることを特徴とする請求項1又は2に記載の空気電池。
  4.  上記セルフレームと集電部材の間にシール材を備えていることを特徴とする請求項1~3のいずれか1つの項に記載の空気電池。
  5.  上記負極と導通部材との間が導電性両面テープによって接続されていることを特徴とする請求項1~4のいずれか1つの項に記載の空気電池。
  6.  上記負極と導通部材との間に金属箔を備えていることを特徴とする請求項1~4のいずれか1つの項に記載の空気電池。
  7.  上記集電部材と導通部材の間に金属箔を備えていることを特徴とする請求項1~6のいずれか1つの項に記載の空気電池。
  8.  上記集電部材が導通部材と一体化され両者の機能を兼ね備えていることを特徴とする請求項1~6のいずれか1つの項に記載の空気電池。
  9.  上記導通部材及び該導通部材が貫通するセルフレーム底部の貫通孔が共に連続した長尺状をなしていることを特徴とする請求項1~8のいずれか1つの項に記載の空気電池。
  10.  上記導通部材及び該導通部材が貫通するセルフレーム底部の貫通孔が共に断続した短尺状をなしていることを特徴とする請求項1~8のいずれか1つの項に記載の空気電池。
  11.  請求項1~10のいずれか1つの項に記載の空気電池を積層して成ることを特徴とする組電池。
PCT/JP2014/065865 2013-08-26 2014-06-16 空気電池及び組電池 WO2015029547A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14839229.3A EP3041082B1 (en) 2013-08-26 2014-06-16 Air battery and battery pack
JP2015534043A JP6119865B2 (ja) 2013-08-26 2014-06-16 空気電池及び組電池
US14/911,395 US10164237B2 (en) 2013-08-26 2014-06-16 Air battery cell with electrically conductive members and battery pack
CN201480045750.9A CN105474457B (zh) 2013-08-26 2014-06-16 空气电池及电池组

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013174852 2013-08-26
JP2013-174852 2013-08-26

Publications (1)

Publication Number Publication Date
WO2015029547A1 true WO2015029547A1 (ja) 2015-03-05

Family

ID=52586126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065865 WO2015029547A1 (ja) 2013-08-26 2014-06-16 空気電池及び組電池

Country Status (5)

Country Link
US (1) US10164237B2 (ja)
EP (1) EP3041082B1 (ja)
JP (1) JP6119865B2 (ja)
CN (1) CN105474457B (ja)
WO (1) WO2015029547A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3018396A1 (fr) * 2014-03-04 2015-09-11 Commissariat Energie Atomique Procede de fabrication d'une cellule electrochimique elementaire a electrode a gaz du type metal-gaz et cellule associee
WO2018056307A1 (ja) * 2016-09-20 2018-03-29 マクセルホールディングス株式会社 空気電池およびパッチ
DE102016223187B3 (de) * 2016-11-23 2018-03-22 Robert Bosch Gmbh Batterie umfassend eine erste Batteriezelle und eine zweite Batteriezelle und Verfahren zum elektrischen Kontaktieren einer ersten Batteriezelle mit einer zweiten Batteriezelle zum Zusammenbauen einer Batterie
DE102016223194B4 (de) * 2016-11-23 2018-07-26 Robert Bosch Gmbh Batteriezelle umfassend mindestens eine galvanische Zelle, Batterie und Verfahren zum Herstellen einer Batteriezelle
US10964925B2 (en) * 2019-02-22 2021-03-30 International Business Machines Corporation Hermetial via seal for thin film battery
CN112615013A (zh) * 2020-12-14 2021-04-06 桂林理工大学 一种液态金属@碳纳米管锂空气电池正极及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61284072A (ja) * 1985-06-07 1986-12-15 Matsushita Electric Ind Co Ltd 空気ボタン電池
JPH0785899A (ja) 1993-09-20 1995-03-31 Aisin Seiki Co Ltd 積層型電池
JP2008541398A (ja) * 2005-05-17 2008-11-20 ザ ジレット カンパニー ウェーハアルカリ電池
JP2010186727A (ja) * 2009-01-15 2010-08-26 Tohoku Tsushin Kogyo Kk 空気電池
JP2013201122A (ja) * 2012-02-22 2013-10-03 Nissan Motor Co Ltd 空気電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439758A (en) * 1992-10-02 1995-08-08 Voltek, Inc. Electrochemical power generating system
US7776468B2 (en) 2004-03-18 2010-08-17 The Gillette Company Wafer alkaline cell
US7531271B2 (en) 2004-03-18 2009-05-12 The Gillette Company Wafer alkaline cell
US7413828B2 (en) 2004-03-18 2008-08-19 The Gillette Company Wafer alkaline cell
JP6020896B2 (ja) * 2011-09-15 2016-11-02 日産自動車株式会社 組電池
GB2496110A (en) * 2011-10-28 2013-05-08 Univ St Andrews Electrochemical Cell
JP6011799B2 (ja) * 2012-01-27 2016-10-19 日産自動車株式会社 組電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61284072A (ja) * 1985-06-07 1986-12-15 Matsushita Electric Ind Co Ltd 空気ボタン電池
JPH0785899A (ja) 1993-09-20 1995-03-31 Aisin Seiki Co Ltd 積層型電池
JP2008541398A (ja) * 2005-05-17 2008-11-20 ザ ジレット カンパニー ウェーハアルカリ電池
JP2010186727A (ja) * 2009-01-15 2010-08-26 Tohoku Tsushin Kogyo Kk 空気電池
JP2013201122A (ja) * 2012-02-22 2013-10-03 Nissan Motor Co Ltd 空気電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3041082A4

Also Published As

Publication number Publication date
CN105474457B (zh) 2018-04-06
EP3041082A1 (en) 2016-07-06
CN105474457A (zh) 2016-04-06
EP3041082A4 (en) 2016-08-17
US20160190668A1 (en) 2016-06-30
JPWO2015029547A1 (ja) 2017-03-02
US10164237B2 (en) 2018-12-25
JP6119865B2 (ja) 2017-05-10
EP3041082B1 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
JP6119865B2 (ja) 空気電池及び組電池
US10177426B2 (en) Air battery
TWI470866B (zh) A positive electrode for air battery and a method for manufacturing the same
JP2007095669A (ja) 電解質膜−電極接合体
JP6156637B2 (ja) 空気電池及びその製造方法
JP2018113182A (ja) 空気極、金属空気電池、燃料電池及び空気極の製造方法
JP4475866B2 (ja) 燃料電池
US11302974B2 (en) Electrode structure, air cell, and air cell stack
JP6299247B2 (ja) 空気電池用ユニット及び空気電池
WO2017187888A1 (ja) リチウム空気電池の負極複合体構造
JP2014089893A (ja) 燃料電池
CN103797626A (zh) 高容量气体扩散电极
JP5408375B1 (ja) 空気電池用電極及び該空気電池用電極を用いた空気電池モジュール
US10651445B2 (en) Electrode with cellulose acetate separator system
JP2015171668A (ja) 気体透過シート
WO2004047211A1 (fr) Ensemble electrode a membrane pour piles a combustible et son procede de fabrication
JP6347321B2 (ja) 負極構造体、これを用いた空気電池、及び負極構造体の製造方法
JP6344079B2 (ja) 金属空気電池用負極及び金属空気電池
JP2018190538A (ja) 全固体電池
JP2005019146A (ja) 空気電池
JP2019129022A (ja) 空気極、空気極の製造方法、及び金属空気電池
JP2008103134A (ja) 空気電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480045750.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839229

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534043

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14911395

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014839229

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014839229

Country of ref document: EP