WO2015029404A1 - 高強度溶融亜鉛めっき鋼板及びその製造方法 - Google Patents

高強度溶融亜鉛めっき鋼板及びその製造方法 Download PDF

Info

Publication number
WO2015029404A1
WO2015029404A1 PCT/JP2014/004338 JP2014004338W WO2015029404A1 WO 2015029404 A1 WO2015029404 A1 WO 2015029404A1 JP 2014004338 W JP2014004338 W JP 2014004338W WO 2015029404 A1 WO2015029404 A1 WO 2015029404A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
sur
bulk
less
base steel
Prior art date
Application number
PCT/JP2014/004338
Other languages
English (en)
French (fr)
Inventor
大輔 原子
哲也 岩田
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2016002449A priority Critical patent/MX2016002449A/es
Priority to KR1020167007924A priority patent/KR101824823B1/ko
Priority to JP2015533985A priority patent/JP6128223B2/ja
Priority to CN201480047552.6A priority patent/CN105531388A/zh
Priority to EP14840002.1A priority patent/EP3040440B1/en
Priority to US14/914,803 priority patent/US9895863B2/en
Publication of WO2015029404A1 publication Critical patent/WO2015029404A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/52Controlling or regulating the coating processes with means for measuring or sensing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/06Extraction of hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12993Surface feature [e.g., rough, mirror]

Definitions

  • the present invention relates to a high-strength hot-dip galvanized steel sheet suitable as a rust-proof surface-treated steel sheet for automobiles and the like, and a method for producing the high-strength hot-dip galvanized steel sheet.
  • the hot dip galvanized steel sheet whose surface is hot dip galvanized is widely used in the fields of automobiles, home appliances, building materials, etc. as a steel sheet that is inexpensive and excellent in rust prevention.
  • annealing treatment is performed in a reducing atmosphere with H 2 -N 2 gas, and after reducing and activating the steel sheet surface, A hot dip galvanized steel sheet is manufactured by cooling the steel sheet to a temperature suitable for plating and immersing it in a hot dip galvanizing bath while preventing the steel sheet from being exposed to the atmosphere.
  • Addition of solid solution strengthening elements such as Si and Mn is performed to increase the strength of the steel sheet.
  • Si and Mn which are easily oxidizable elements, are present on the steel sheet surface in a reducing atmosphere during annealing. Thicken to form oxide. This oxide deteriorates the wettability between the hot dip galvanizing process and the steel sheet surface in the subsequent hot dip galvanizing process, and causes non-plating defects.
  • Patent Document 1 discloses a technique for reducing the oxygen potential by setting the dew point in the furnace atmosphere during annealing to ⁇ 45 ° C. or less and plating without oxidizing Si and Mn.
  • Patent Document 2 discloses a technique for increasing the reducing ability of a steel sheet with hydrogen gas by suppressing the hydrogen concentration in the furnace atmosphere during annealing to 25% or more, thereby suppressing non-plating of the steel sheet. Yes.
  • Patent Document 3 Ti compounds such as TiC and TiN are precipitated by adding a small amount of Ti to the steel sheet and occluded from the atmosphere gas by voids around these precipitates.
  • a technique is disclosed in which the generated hydrogen gas is trapped in steel as it is to suppress the release of hydrogen gas after the hot dip galvanizing treatment.
  • Patent Document 1 Although it is possible to suppress non-plating without restriction on the Si and Mn contents in the steel, it is technically difficult to maintain the inside of the annealing furnace with a low dew point. New capital investment is required. Moreover, in the technique of patent document 2, excessive hydrogen is occluded in a steel plate by increasing the hydrogen concentration at the time of annealing, and generation
  • the present invention has been made in view of such circumstances, and uses a steel sheet containing Si and Mn as a base steel sheet, and is a high-strength hot-dip galvanizing excellent in surface appearance without non-plating and blister defects (occurrence of blistering). It aims at providing a steel plate and its manufacturing method.
  • the inventors of the present invention have obtained the following knowledge as a result of intensive studies to solve the above-described problems in high-strength hot-dip galvanized steel sheets.
  • the Si and Mn concentration ratio between the surface layer of the underlying steel sheet and the interior of the underlying steel sheet is controlled appropriately, which causes deterioration of wettability. It is necessary to suppress the formation of Si oxide and Mn oxide in the surface steel plate surface layer.
  • the hydrogen partial pressure (P H2 ) in the furnace atmosphere is set to 0.10 to 0.50
  • the water vapor partial pressure (P H2O ) and the hydrogen partial pressure (P The ratio of H2 ) and log (P H2 / P H2O ) may be 2.5 or more and 4.0 or less.
  • the hydrogen partial pressure (P H2 ) in the atmosphere is set to 0.10 or more and 0.30 or less, and the steel plate temperature is 400 ° C. or more and 600 ° C. or less. It is necessary to hold for 30 seconds or more.
  • the present invention is based on the above findings, and features are as follows.
  • High-strength hot-dip galvanized steel sheet characterized in that it. (Method 1) After removing the galvanized layer from the high-strength hot-dip galvanized steel sheet, the amount of hydrogen released from the base steel sheet when the base steel sheet is heated from room temperature to 250 ° C. is measured.
  • the hydrogen partial pressure (P H2 ) of the base steel sheet having the steel composition described in (1) is 0.10 or more and 0.50 or less when the total pressure in the furnace atmosphere is 1.
  • Log (P H2 / P H2O ) which is the ratio of the partial pressure of water vapor (P H2O ) to the partial pressure of hydrogen (P H2 ) when the total pressure in the atmosphere is 1, is 2.5 or more and 4.0 or less.
  • the base steel plate After the annealing step for annealing and after the annealing step, the base steel plate is cooled, and after cooling, the hydrogen partial pressure (P H2 ) when the total pressure in the atmosphere is 1 is 0.10 or more and 0.30 or less, the steel plate temperature A cooling and holding step for holding the base steel plate under the conditions of 400 ° C. to 600 ° C. and a holding time of 20 seconds or more, and a hot dip galvanizing bath having an Al concentration of 0.15% or more after the cooling and holding step.
  • the high-strength hot-dip galvanized steel sheet is a steel sheet having a tensile strength TS of 400 MPa or more.
  • the high-strength hot-dip galvanized steel sheet of the present invention includes a plated steel sheet (hereinafter sometimes referred to as GI) that is not subjected to alloying after the hot-dip galvanizing process, and a plated steel sheet (hereinafter referred to as GA) that is subjected to the alloying process. In some cases).
  • a high-strength hot-dip galvanized steel sheet excellent in surface appearance free from unplating and blister defects is obtained using a steel sheet containing Si and Mn as a base steel sheet.
  • the present invention will be specifically described, but the present invention is not limited to the following embodiments.
  • the unit of the content of each element of the steel component composition is “mass%”, and hereinafter, simply indicated by “%” unless otherwise specified.
  • the high-strength hot-dip galvanized steel sheet of the present invention has a base steel sheet and a galvanized layer formed on the surface of the base steel sheet.
  • the base steel plate is in mass%, C: 0.01% to 0.30%, Si: 0.01% to 1.5%, Mn: 0.1% to 3.0%, P: 0 0.003% or more and 0.1% or less, S: 0.01% or less, Al: 0.001% or more and 0.20% or less, with the balance being Fe and inevitable impurities.
  • C 0.01% or more and 0.30% or less C is an element necessary for increasing the strength of the base steel sheet.
  • the C content is 0.01% or more. It is necessary to make it.
  • the upper limit is made 0.30%.
  • a preferable range of the C content is 0.06% or more and 0.12%.
  • Si 0.01% or more and 1.5% or less Si is effective as a solid solution strengthening element, and in order for the strengthening effect to appear, it is necessary to contain 0.01% or more of Si. On the other hand, if Si is contained in a large amount exceeding 1.5%, the amount of Si oxide formed on the surface of the underlying steel sheet during annealing is significantly increased and causes non-plating, so the upper limit is 1.5%. .
  • Mn 0.1% or more and 3.0% or less Mn is added to increase the strength, and in order for the strengthening effect to appear, it is necessary to contain 0.1% or more of Mn.
  • Mn 0.1% or more and 3.0% or less
  • Mn is added to increase the strength, and in order for the strengthening effect to appear, it is necessary to contain 0.1% or more of Mn.
  • Mn is contained exceeding 3.0%, the amount of Mn oxide formed on the surface of the underlying steel sheet during annealing is remarkably increased, causing non-plating. For this reason, the upper limit of the Mn content is 3.0%.
  • a preferable range of the Mn content is 1.1% or more and 2.9% or less.
  • P 0.003% or more and 0.1% or less
  • P is one of the elements inevitably contained, and in order to make it less than 0.003%, there is a concern about an increase in cost. For this reason, content of P shall be 0.003% or more.
  • P is contained in excess of 0.1%, weldability deteriorates, so the P content is 0.1% or less.
  • a preferable P content is 0.015% or less.
  • S 0.01% or less
  • the lower limit of the S content is not particularly limited, and may be about the impurity level.
  • Al 0.001% or more and 0.20% or less Al is added for the purpose of deoxidation of molten steel, but if the content is less than 0.001%, the purpose is not achieved. On the other hand, if the content exceeds 0.20%, a large amount of inclusions are generated, which causes wrinkling of the base steel sheet. Accordingly, the Al content is set to be 0.001% or more and 0.20% or less.
  • the base steel plate is composed of the above essential components, Fe and inevitable impurities. Inevitable impurities include O and N.
  • the galvanized layer is formed on the surface of the base steel plate, and the plating adhesion amount per side may be a normal adhesion amount excellent in corrosion resistance, adhesion, etc., and is 20 g / m 2 or more and 120 g / m 2 or less.
  • the amount of hydrogen released from the base steel sheet The high-strength hot-dip galvanized steel sheet of the present invention has a total amount of hydrogen released from the base steel sheet of 0 when the base steel sheet after removing the galvanized layer is heated from room temperature to 250 ° C. It is 0.05 mass ppm or more and 0.40 mass ppm or less.
  • the hydrogen gas occluded in the base steel sheet is mainly taken from the atmospheric hydrogen gas during annealing. In order to express the effect of suppressing the surface selective oxidation of Si and Mn by hydrogen gas, the lower limit of the amount of hydrogen occluded in the steel is 0.05 mass ppm.
  • the upper limit is set to 0.40 mass ppm.
  • the preferable total amount of hydrogen is 0.10 mass ppm or more and 0.38 mass ppm or less. The method for measuring the amount of hydrogen is as described in the examples.
  • the high-strength hot-dip galvanized steel plate of the present invention is measured by glow discharge optical emission spectrometry (GDS) in the depth direction from the surface side after removing the galvanized layer.
  • GDS glow discharge optical emission spectrometry
  • the ratio of the average strength of Mn (I Mn bulk ), I Si sur / I Si bulk and I Mn sur / I Mn bulk are I Si sur / I Si bulk ⁇ 2.0 and I Mn sur / I Mn bulk ⁇ , respectively. It needs to be 3.0.
  • the intensity ratio corresponds to the concentration ratio.
  • a preferable range of I Si sur / I Si bulk is 1.0 or more and 1.5 or less, and a more preferable range of I Mn sur / I Mn bulk is 1.1 or more and 2.6 or less.
  • the manufacturing method of the present invention includes an annealing process for annealing the base steel sheet, a cooling and holding process for cooling the base steel sheet after the annealing process, and holding the base steel sheet after the cooling, and a molten zinc in the base steel sheet after the cooling and holding process. It has a hot dip galvanizing process for plating.
  • An annealing process is a water vapor when the partial pressure of hydrogen (P H2 ) is 0.10 or more and 0.50 or less when the total pressure in the furnace atmosphere is 1, and the total pressure in the furnace atmosphere is 1.
  • the base steel sheet is annealed under the condition that log (P H2 / P H2O ), which is the ratio of the partial pressure (P H2O ) to the hydrogen partial pressure (P H2 ), is 2.5 or more and 4.0 or less.
  • An increase in the hydrogen partial pressure and a decrease in the water vapor partial pressure in the annealing atmosphere both reduce the oxygen potential in the atmosphere and are effective in suppressing the surface selective oxidation of Si and Mn. If the hydrogen partial pressure is less than 0.10, the reducing ability of the underlying steel sheet with hydrogen gas is insufficient, so the lower limit of the hydrogen partial pressure is 0.10. On the other hand, if the hydrogen partial pressure exceeds 0.50, excess hydrogen gas accumulates in the steel and causes blistering, so the upper limit of the hydrogen partial pressure is set to 0.50.
  • log (P H2 / P H2O ) when log (P H2 / P H2O ) is less than 2.5, the oxygen potential in the atmosphere is not sufficiently reduced, and the surface selective oxidation suppressing effect of Si and Mn is small, so log (P H2 / P H2O). ) Is set to 2.5. On the other hand, if the log (P H2 / P H2O ) exceeds 4.0, it is necessary to introduce excess hydrogen gas into the atmosphere or to lower the dew point, and blister generation and stable operability are problems. 4.0.
  • the cooling and holding step refers to cooling the underlying steel plate after the annealing step, the hydrogen partial pressure (P H2 ) when the total pressure in the atmosphere is 1 after the cooling is 0.10 to 0.30, the steel plate temperature In this step, the base steel sheet is held under conditions of 400 ° C. or higher and 600 ° C. or lower and a holding time of 20 seconds or longer.
  • the hydrogen partial pressure (P H2 ) when the total pressure in the atmosphere is 1 is 0.10 or more and 0.30 or less, the steel plate temperature
  • the base steel sheet is held in a temperature range of 400 ° C. or higher and 600 ° C. or lower for 20 seconds or longer.
  • the amount of hydrogen released from the base steel plate into the atmosphere exceeds the amount of hydrogen occluded from the atmosphere into the base steel plate.
  • the hydrogen gas accumulated in the steel is released and blister defects are suppressed.
  • the upper limit of the holding time is not particularly limited.
  • a preferable holding time is not less than 32 seconds and not more than 50 seconds.
  • the steel plate temperature is lower than 400 ° C.
  • the base steel plate is immersed in a hot dip galvanizing bath at a plate temperature lower than the freezing point of zinc, and it becomes difficult to control the adhesion amount after plating.
  • the lower limit is 400 ° C.
  • the hydrogen partial pressure when the total pressure in the atmosphere at this time is 1, the lower limit is set to 0.10 from the viewpoint of suppressing surface selective oxidation of Si and Mn, and the amount of hydrogen occluded from the atmosphere to the base steel plate Therefore, the upper limit is set to 0.30.
  • a preferable hydrogen partial pressure is 0.13 or more and 0.30 or less.
  • the hot dip galvanizing step is a step of performing hot dip galvanizing treatment on the base steel sheet after the cooling and holding step.
  • a normal hot dip galvanizing bath may be used.
  • a hot dip galvanizing bath containing a small amount of Al is used.
  • a small amount of Al has the effect of suppressing the formation of the Fe—Zn alloy layer at the interface between the hot dip galvanized layer and the base steel plate (underlying steel plate) and improving the adhesion of the hot dip galvanized layer.
  • a hot dip galvanizing bath having an Al concentration of 0.15% or more is preferably used.
  • the amount of the galvanized layer plated can be adjusted to a desired range by gas wiping or the like in this step.
  • the average strength from the sputtering time of 450 seconds to 500 seconds was taken as the strength inside the base steel plate, and the ratio of the maximum strength to the average strength inside the base steel plate was determined from the Si and Mn strength profiles. This was performed with three sets of test pieces for each specimen, and the average value was obtained.
  • the examples of the present invention all have a good plating appearance.
  • the comparative example that does not satisfy the scope of the present invention has a low evaluation of either “evaluation of non-plating” or “evaluation of blister”.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Abstract

 Si、Mnを含有する鋼板を下地鋼板とした、不めっき、ブリスター欠陥のない表面外観に優れる高強度溶融亜鉛めっき鋼板とその製造方法を提供することを目的とする。 特定の成分組成からなる下地鋼板と、前記下地鋼板の表面に形成された、片面あたりのめっき付着量が20g/m以上120g/m以下の亜鉛めっき層と、を有し、特定の方法で測定される水素量の合計が、0.05質量ppm以上0.40質量ppm以下であり、特定の方法で算出されるISi sur/ISi bulk及びIMn sur/IMn bulkが、それぞれISi sur/ISi bulk≦2.0、IMn sur/IMn bulk≦3.0であることを特徴とする高強度溶融亜鉛めっき鋼板とする。

Description

高強度溶融亜鉛めっき鋼板及びその製造方法
 本発明は、自動車用等の防錆表面処理鋼板として好適な高強度溶融亜鉛めっき鋼板、及び当該高強度溶融亜鉛めっき鋼板の製造方法に関するものである。
 表面に溶融亜鉛めっきを施した溶融亜鉛めっき鋼板は、安価で防錆性に優れる鋼板として自動車、家電、建材等の分野において広く用いられている。
 近年、これらの分野で使用される鋼板では、高性能化とともに軽量化が推進され、鋼板の高強度化が求められており、防錆性を兼ね備えた高強度溶融亜鉛めっき鋼板の使用量が増加している。
 一般的に、連続式溶融亜鉛めっきラインにおいては、溶融亜鉛めっき処理の前工程として、H-Nガスによる還元雰囲気中で焼鈍処理を施し、鋼板表面の還元、活性化を行った後、鋼板が大気に触れないようにしつつめっきに適した温度まで鋼板を冷却して溶融亜鉛めっき浴に浸漬することで、溶融亜鉛めっき鋼板を製造する。
 鋼板の高強度化にはSi、Mn等の固溶強化元素の添加が行われる。これらの元素を多量に含む高強度鋼板を下地鋼板として焼鈍、溶融亜鉛めっき処理を施した場合、一般的に用いられる焼鈍時の還元雰囲気中では易酸化性元素であるSi、Mnが鋼板表面に濃化し、酸化物を形成する。この酸化物は、その後の溶融亜鉛めっき処理過程での溶融亜鉛と鋼板表面とのぬれ性を劣化させ、不めっき欠陥を発生させる。
 また、焼鈍処理から溶融亜鉛めっき処理までの過程における雰囲気中のH濃度が高い場合、焼鈍時に鋼板に吸蔵された水素が溶融亜鉛めっき処理後に放出され、下地鋼板と溶融亜鉛めっき層との間に蓄積する。溶融亜鉛めっき処理後、合金化処理によりめっき層をZn-Fe合金化させる合金化溶融亜鉛めっき鋼板では合金化処理時に、蓄積された水素ガスがめっき層の外に放出される。合金化処理を施さない溶融亜鉛めっき鋼板では蓄積された水素ガスによりめっき層が膨れあがるブリスターと呼ばれる欠陥が問題となる。
 これらの課題に対し、特許文献1では焼鈍時の炉内雰囲気中の露点を-45℃以下とすることで酸素ポテンシャルを減少させ、Si、Mnを酸化させずにめっきする技術が開示されている。また、特許文献2では焼鈍時の炉内雰囲気中の水素濃度を25%以上とすることで、水素ガスによる鋼板の還元能力を増加させ、これにより鋼板の不めっきを抑制する技術が開示されている。
 水素吸蔵によるブリスターの改善については、例えば特許文献3では、鋼板に微量のTiを添加することによりTiC、TiN等のTi化合物を析出させ、これらの析出物周辺のボイドにより、雰囲気ガス中から吸蔵された水素ガスをそのまま鋼中にトラップさせ、溶融亜鉛めっき処理後の水素ガスの放出を抑制させる技術が開示されている。
 しかしながら、特許文献1の技術では、鋼中のSi、Mn含有量に制約なく不めっきを抑制することが可能であるものの、焼鈍炉内を低露点のまま維持することは技術的に困難であり、新規設備投資が必要となる。また、特許文献2の技術では、焼鈍時の水素濃度を増加させることで鋼板中に過剰の水素が吸蔵され、ブリスターの発生が問題となる。また、特許文献3の技術ではブリスターの発生を抑制するために鋼成分の制約が必要となり、連続式溶融亜鉛めっきラインにおける操業性が問題となる。
特開2010-255111号公報 特開2010-255113号公報 特開平05-295483号公報
 本発明は、かかる事情に鑑みてなされたものであって、Si、Mnを含有する鋼板を下地鋼板とした、不めっき、ブリスター欠陥(ブリスターの発生)のない表面外観に優れる高強度溶融亜鉛めっき鋼板とその製造方法を提供することを目的とする。
 本発明者らは、高強度溶融亜鉛めっき鋼板における上記課題を解決するために鋭意研究を重ねた結果、以下の知見を得た。
 第1に、溶融亜鉛と下地鋼板表面とのぬれ性改善に対しては、下地鋼板の表層部と下地鋼板内部とのSi及びMnの濃度比を適正に制御し、ぬれ性劣化の要因となる下地鋼板表層部におけるSi酸化物及びMn酸化物の生成を抑制させる必要がある。
 第2に、ブリスターの改善に対しては、下地鋼板内部に蓄積される水素量、特に鋼板温度を250℃まで加熱した際に放出される水素量を適正に制御することが必要である。
 次に、その製造方法については、焼鈍から溶融亜鉛めっき処理工程までの雰囲気と温度を制御する必要がある。具体的には、焼鈍過程では炉内雰囲気中の水素分圧(PH2)を0.10以上0.50以下とし、かつ炉内雰囲気中の水蒸気分圧(PH2O)と水素分圧(PH2)の比、log(PH2/PH2O)を2.5以上4.0以下とすればよい。上記の制御により、焼鈍炉内の露点を極度に低下させることなく酸素ポテンシャルを低下させ、Si及びMnの表面選択酸化を抑制することが可能となる。また、冷却後に溶融亜鉛めっき処理を施すまでの保持過程では、雰囲気中の水素分圧(PH2)を0.10以上0.30以下とし、かつ鋼板温度400℃以上600℃以下の温度域で30秒以上保持する必要がある。上記の制御により、焼鈍過程において下地鋼板内部へ蓄積された水素ガスが下地鋼板から放出され、溶融亜鉛めっき処理後のブリスター発生を抑制することができる。
 本発明は上記知見に基づくものであり、特徴は以下の通りである。
 (1)質量%で、C:0.01%以上0.30%以下、Si:0.01%以上1.5%以下、Mn:0.1%以上3.0%以下、P:0.003%以上0.1%以下、S:0.01%以下、Al:0.001%以上0.20%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成の下地鋼板と、前記下地鋼板の表面に形成された、片面あたりのめっき付着量が20g/m以上120g/m以下の亜鉛めっき層と、を有し、下記方法1で測定される水素量の合計が、0.05質量ppm以上0.40質量ppm以下であり、下記方法2で算出されるISi sur/ISi bulk及びIMn sur/IMn bulkが、それぞれISi sur/ISi bulk≦2.0、IMn sur/IMn bulk≦3.0であることを特徴とする高強度溶融亜鉛めっき鋼板。
(方法1)
 高強度溶融亜鉛めっき鋼板から亜鉛めっき層を除去後、下地鋼板を室温から250℃まで加熱した際に下地鋼板から放出される水素量を測定する。
(方法2)
 高強度溶融亜鉛めっき鋼板から亜鉛めっき層を除去後、グロー放電発光分析法(GDS)により測定した、下地鋼板表層部のSiの最大強度(ISi sur)及びMnの最大強度(IMn sur)と、下地鋼板内部のSiの平均強度(ISi bulk)及びMnの平均強度(IMn bulk)に基づいて、ISi sur/ISi bulk及びIMn sur/IMn bulkを算出する。
 (2)(1)に記載の鋼組成を有する下地鋼板を、炉内雰囲気中の全圧力を1としたときの水素分圧(PH2)が0.10以上0.50以下、かつ炉内雰囲気中の全圧力を1としたときの水蒸気分圧(PH2O)と水素分圧(PH2)の比であるlog(PH2/PH2O)が2.5以上4.0以下の条件で焼鈍する焼鈍工程と、前記焼鈍工程後、下地鋼板を冷却し、該冷却後に雰囲気中の全圧力を1としたときの水素分圧(PH2)が0.10以上0.30以下、鋼板温度400℃以上600℃以下、保持時間が20秒以上の条件で下地鋼板を保持する冷却保持工程と、前記冷却保持工程後に、Al濃度が0.15%以上の溶融亜鉛めっき浴で、下地鋼板に溶融亜鉛めっき処理を施す溶融亜鉛めっき工程と、を有することを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。
 高強度溶融亜鉛めっき鋼板とは、引張強度TSが400MPa以上の鋼板である。また、本発明の高強度溶融亜鉛めっき鋼板は、溶融亜鉛めっき処理後合金化処理を施さないめっき鋼板(以下、GIと称することもある)、合金化処理を施すめっき鋼板(以下、GAと称することもある)のいずれも含むものである。
 本発明によれば、Si、Mnを含有する鋼板を下地鋼板とした、不めっき、ブリスター欠陥のない表面外観に優れる高強度溶融亜鉛めっき鋼板が得られる。
 以下、本発明について具体的に説明するが、本発明は以下の実施形態に限定されない。なお、以下の説明において、鋼成分組成の各元素の含有量の単位は「質量%」であり、以下、特に断らない限り単に「%」で示す。
 本発明の高強度溶融亜鉛めっき鋼板は、下地鋼板と、この下地鋼板の表面に形成された亜鉛めっき層と、を有する。
 下地鋼板は、質量%で、C:0.01%以上0.30%以下、Si:0.01%以上1.5%以下、Mn:0.1%以上3.0%以下、P:0.003%以上0.1%以下、S:0.01%以下、Al:0.001%以上0.20%以下を含有し、残部がFeおよび不可避的不純物からなる。
 C:0.01%以上0.30%以下
 Cは下地鋼板の高強度化に必要な元素であり、下地鋼板の高強度化を実現するためには、Cの含有量を0.01%以上にすることが必要である。一方、Cの含有量が0.30%を超えると溶接性が劣化するため、上限は0.30%とする。Cの含有量の好ましい範囲は0.06%以上0.12%である。
 Si:0.01%以上1.5%以下
 Siは固溶強化元素として有効であり、強化効果が現れるためにはSiを0.01%以上含有する必要がある。一方、Siを1.5%を超えて多量に含有させると焼鈍時に下地鋼板表面に形成されるSi酸化物量が顕著に増加し不めっき発生の原因となるため、上限は1.5%とする。
 Mn:0.1%以上3.0%以下
 Mnは強度上昇のために添加し、強化効果が現れるためには0.1%以上のMnを含有する必要がある。一方、3.0%を超えてMnを含有させると、焼鈍時に下地鋼板表面に形成されるMn酸化物量が顕著に増加し不めっき発生の原因となる。このため、Mn含有量の上限は3.0%とする。Mn含有量の好ましい範囲は、1.1%以上2.9%以下である。
 P:0.003%以上0.1%以下
 Pは不可避的に含有される元素のひとつであり、0.003%未満とするためには、コストの増大が懸念される。このため、Pの含有量は0.003%以上とする。一方、Pを0.1%を超えて含有させると溶接性が劣化するため、Pの含有量は0.1%以下とする。好ましいPの含有量は0.015%以下である。
 S:0.01%以下
 Sは粒界に偏析するか、又はMnSを多量に生成した場合、靭性を低下させる。以上より、Sの含有量は0.01%以下とする必要がある。Sの含有量の下限は特に限定するものではなく、不純物程度であってもよい。
 Al:0.001%以上0.20%以下
 Alは溶鋼の脱酸を目的に添加されるが、その含有量が0.001%未満の場合、その目的が達成されない。一方、0.20%を超えて含有させると、介在物が多量に発生し、下地鋼板の疵の原因となる。以上より、Alの含有量は0.001%以上0.20%以下とする。
 下地鋼板は、以上の必須成分、Feおよび不可避的不純物からなる。不可避的不純物としてはOやN等が挙げられる。
 亜鉛めっき層は、下地鋼板の表面に形成され、片面あたりのめっき付着量は、耐食性、密着性等に優れる通常の付着量であればよく、20g/m以上120g/m以下とする。
 次いで、本発明の高強度溶融亜鉛めっき鋼板の性質について説明する。
 下地鋼板から放出される水素量
 本発明の高強度溶融亜鉛めっき鋼板は、亜鉛めっき層を除去後の下地鋼板を室温から250℃まで加熱した際に下地鋼板から放出される水素量の合計が0.05質量ppm以上0.40質量ppm以下である。下地鋼板に吸蔵される水素ガスは主に焼鈍時の雰囲気水素ガスから取り込まれる。水素ガスによるSi及びMnの表面選択酸化抑制効果を発現させるため、鋼中に吸蔵される水素量の下限は0.05質量ppmとする。一方、上記水素量合計が0.40質量ppmを超えた場合、鋼中に過剰の水素ガスが蓄積し、ブリスター発生の原因となるため、上限は0.40質量ppmとする。好ましい上記水素量合計は、0.10質量ppm以上0.38質量ppm以下である。なお、水素量の測定方法は実施例に記載の通りである。
 下地鋼板表層部と下地鋼板内部のSi、Mn濃度比
 本発明の高強度溶融亜鉛めっき鋼板は、亜鉛めっき層を除去後、表面側から深さ方向にグロー放電発光分析法(GDS)により測定を行ったところ、表層部近傍でSi,Mnが高く、深さ方向に深くなるに従いSi,Mnが低下していき、一定値になることを確認した。この表層部近傍のSiの最大強度(ISi sur)及びMnの最大強度(IMn sur)と、下地鋼板内部でSi,Mn量が一定となった部分のSiの平均強度(ISi bulk)及びMnの平均強度(IMn bulk)の比、ISi sur/ISi bulk及びIMn sur/IMn bulkがそれぞれISi sur/ISi bulk≦2.0、IMn sur/IMn bulk≦3.0である必要がある。各々の強度比を上記に制御することで、焼鈍過程において下地鋼板表層部に形成されたSi酸化物量及びMn酸化物量が適正となり、亜鉛めっき層と下地鋼板との濡れ性が良好となり、不めっき欠陥が抑制される。ここで、強度比は濃度比と対応する。好ましいISi sur/ISi bulkの範囲は1.0以上1.5以下であり、より好ましいIMn sur/IMn bulkの範囲は1.1以上2.6以下である。
 次に製造方法について説明する。
 本発明の製造方法は、上記下地鋼板を焼鈍する焼鈍工程と、焼鈍工程後の下地鋼板を冷却し、該冷却後に下地鋼板を保持する冷却保持工程と、冷却保持工程後の下地鋼板に溶融亜鉛めっき処理を施す溶融亜鉛めっき工程を有する。
 焼鈍工程とは、炉内雰囲気中の全圧力を1としたときの水素分圧(PH2)が0.10以上0.50以下、かつ炉内雰囲気中の全圧力を1としたときの水蒸気分圧(PH2O)と水素分圧(PH2)の比であるlog(PH2/PH2O)が2.5以上4.0以下の条件で、下地鋼板を焼鈍する工程である。
 焼鈍雰囲気中の水素分圧の増加、及び水蒸気分圧の低下はいずれも雰囲気中の酸素ポテンシャルを減少させ、Si及びMnの表面選択酸化抑制に効果がある。水素分圧が0.10未満では水素ガスによる下地鋼板の還元能力が不十分なため、水素分圧の下限は0.10とする。一方、水素分圧が0.50超えでは鋼中に過剰の水素ガスが蓄積しブリスター発生の原因となるため、水素分圧の上限は0.50とする。
 また、log(PH2/PH2O)が2.5未満では雰囲気中の酸素ポテンシャルが十分に減少しておらず、Si及びMnの表面選択酸化抑制効果が小さいので、log(PH2/PH2O)の下限を2.5とする。一方、log(PH2/PH2O)を4.0超えとすると雰囲気中に過剰な水素ガスの投入、または低露点化が必要となり、ブリスター発生、及び安定操業性が課題となるため、上限は4.0とする。
 冷却保持工程とは、上記焼鈍工程後、下地鋼板を冷却し、該冷却後に雰囲気中の全圧力を1としたときの水素分圧(PH2)が0.10以上0.30以下、鋼板温度400℃以上600℃以下、保持時間が20秒以上の条件で下地鋼板を保持する工程である。
 上記冷却保持工程において、冷却後、溶融亜鉛めっき処理を施すまでの過程では、雰囲気中の全圧力を1としたときの水素分圧(PH2)を0.10以上0.30以下、鋼板温度400℃以上600℃以下の温度域、20秒以上の条件で下地鋼板の保持を行う。
 鋼板温度が600℃以下では雰囲気中から下地鋼板へ吸蔵される水素量よりも下地鋼板から雰囲気中に放出される水素量が上回ることから、この温度域で30秒以上保持することで、焼鈍過程で鋼中に蓄積された水素ガスが放出され、ブリスター欠陥が抑制される。保持時間の上限は特に限定されない。好ましい保持時間は32秒以上50秒以下である。上記鋼板温度が400℃より低くなると、その後の溶融亜鉛めっき処理において、亜鉛の凝固点よりも低い板温で下地鋼板が溶融亜鉛めっき浴へ浸漬され、めっき後の付着量制御が困難となるため、下限は400℃とする。また、このときの雰囲気中の全圧力を1としたときの水素分圧は、Si及びMnの表面選択酸化抑制の観点から下限を0.10とし、雰囲気中から下地鋼板へ吸蔵される水素量を減少させるため、上限を0.30とする。好ましい水素分圧は0.13以上0.30以下である。
 溶融亜鉛めっき工程とは、冷却保持工程後の下地鋼板に溶融亜鉛めっき処理を施す工程である。本工程では、通常の溶融亜鉛めっき浴を使用すればよく、例えば、微量のAlを含む溶融亜鉛めっき浴を用いる。微量のAlは、溶融亜鉛めっき層と素地鋼板(下地鋼板)との界面におけるFe-Zn合金層の形成を抑制し、溶融亜鉛めっき層の密着性を高める作用を有している。本発明では、Al濃度が0.15%以上の溶融亜鉛めっき浴を用いることが好ましい。
 また、亜鉛めっき層のめっき付着量は、本工程において、ガスワイピング等で所望の範囲に調整することができる。
 表1に示す成分組成を有するスラブを1250℃で加熱した後、厚さ3.0mmまで熱間圧延を行い、550℃で巻取りを行った。その後、酸洗による黒皮スケール除去を施し、厚さ1.4mmまで冷間圧延を行った。
 次いで、CGLラインにて、表2に示す条件にて連続焼鈍処理を施し、その後、Al含有Zn浴に浸漬し、溶融亜鉛めっき処理を施した。このときのめっき付着量はガスワイピングにより片面あたり70g/mに調節した。
Figure JPOXMLDOC01-appb-T000001
 以上により得られた溶融亜鉛めっき鋼板(GI)について、以下の評価を実施した。
 <不めっきの評価>
 溶融亜鉛めっき鋼板の表面外観を目視評価し、不めっきの有無を評価した。不めっきが全くない場合は最良(◎)、軽微な不めっきが存在するが表面品質を損ねる程度ではない場合は良好(○)、不めっきがあり表面品質が劣る場合は不良(×)とし、「◎」、及び「○」を合格とした。
 <ブリスターの評価>
 300mm×300mmに切り出した溶融亜鉛めっき鋼板を熱風式焼付け炉にて加熱処理を行った。熱処理条件は、鋼板温度が250℃に到達後、30分間保持後に空冷を行い、室温まで冷却後、目視によりブリスターの有無を評価した。ブリスターが全くない場合は良好(○)、ブリスターが発生した場合は不良(×)とし、「○」を合格とした。
 <鋼中に吸蔵された水素量の評価>
 5mm×100mmに切り出した溶融亜鉛めっき鋼板を液体窒素に浸漬し約-196℃で冷却し、鋼中水素量測定用試験片とした。この試験片を-100℃以下に保ちながら、表裏面の亜鉛めっき層を研削除去し、アルコール洗浄を行った後にガスクロマトグラフにセットし、水素量測定を行った。測定条件は、加熱速度200℃/hrで250℃まで昇温した後、250℃で30分間保持を行い、昇温から保持過程において放出された全水素量を測定した。これを各供試材につき3組の試験片で行い、その平均値を求めた。
 <下地鋼板表層部と下地鋼板内部の濃度比の評価>
 30mm×30mmに切り出した溶融亜鉛めっき鋼板を、20質量%NaOH-10質量%トリエタノールアミン水溶液195ccと、35質量%過酸化水素溶液7ccの混合液に浸漬してめっき層を溶解し、試験片とした。試験片をGDSにセットし、Arガス流量250cc、電流20mAの条件で500秒間スパッタを行った。スパッタ時間450秒から500秒までの平均強度を下地鋼板内部の強度とし、Si、Mnの強度プロファイルから、その最大強度と下地鋼板内部の平均強度の比を求めた。これを各供試材につき3組の試験片で行い、その平均値を求めた。
 以上により得られた結果を製造条件と併せて表2に示す。
 表2より、本発明例は、めっき外観がすべて良好である。一方、本発明の範囲を満たさない比較例は、「不めっきの評価」、「ブリスターの評価」いずれかの評価が低い。
Figure JPOXMLDOC01-appb-T000002
 

Claims (2)

  1.  質量%で、C:0.01%以上0.30%以下、Si:0.01%以上1.5%以下、Mn:0.1%以上3.0%以下、P:0.003%以上0.1%以下、S:0.01%以下、Al:0.001%以上0.20%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成の下地鋼板と、
     前記下地鋼板の表面に形成された、片面あたりのめっき付着量が20g/m以上120g/m以下の亜鉛めっき層と、を有し、
     下記方法1で測定される水素量の合計が、0.05質量ppm以上0.40質量ppm以下であり、
     下記方法2で算出されるISi sur/ISi bulk及びIMn sur/IMn bulkが、それぞれISi sur/ISi bulk≦2.0、IMn sur/IMn bulk≦3.0であることを特徴とする高強度溶融亜鉛めっき鋼板。
    (方法1)
     高強度溶融亜鉛めっき鋼板から亜鉛めっき層を除去後、下地鋼板を室温から250℃まで加熱した際に下地鋼板から放出される水素量を測定する。
    (方法2)
     高強度溶融亜鉛めっき鋼板から亜鉛めっき層を除去後、グロー放電発光分析法(GDS)により測定した、下地鋼板表層部のSiの最大強度(ISi sur)及びMnの最大強度(IMn sur)と、下地鋼板内部のSiの平均強度(ISi bulk)及びMnの平均強度(IMn bulk)に基づいて、ISi sur/ISi bulk及びIMn sur/IMn bulkを算出する。
  2.  請求項1に記載の鋼組成を有する下地鋼板を、炉内雰囲気中の全圧力を1としたときの水素分圧(PH2)が0.10以上0.50以下、かつ炉内雰囲気中の全圧力を1としたときの水蒸気分圧(PH2O)と水素分圧(PH2)の比であるlog(PH2/PH2O)が2.5以上4.0以下の条件で焼鈍する焼鈍工程と、
     前記焼鈍工程後、下地鋼板を冷却し、該冷却後に雰囲気中の全圧力を1としたときの水素分圧(PH2)が0.10以上0.30以下、鋼板温度400℃以上600℃以下、保持時間が30秒以上の条件で下地鋼板を保持する冷却保持工程と、
     前記冷却保持工程後に、Al濃度が0.15%以上の溶融亜鉛めっき浴で、下地鋼板に溶融亜鉛めっき処理を施す溶融亜鉛めっき工程と、を有することを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。
     
PCT/JP2014/004338 2013-08-26 2014-08-22 高強度溶融亜鉛めっき鋼板及びその製造方法 WO2015029404A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2016002449A MX2016002449A (es) 2013-08-26 2014-08-22 Lamina de acero galvanizada de alta resistencia y metodo para la fabricacion de la misma.
KR1020167007924A KR101824823B1 (ko) 2013-08-26 2014-08-22 고강도 용융 아연 도금 강판의 제조 방법
JP2015533985A JP6128223B2 (ja) 2013-08-26 2014-08-22 高強度溶融亜鉛めっき鋼板及びその製造方法
CN201480047552.6A CN105531388A (zh) 2013-08-26 2014-08-22 高强度热浸镀锌钢板及其制造方法
EP14840002.1A EP3040440B1 (en) 2013-08-26 2014-08-22 High-strength hot-dip galvanized steel sheet and method for manufacturing same
US14/914,803 US9895863B2 (en) 2013-08-26 2014-08-22 High-strength galvanized steel sheet and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-174197 2013-08-26
JP2013174197 2013-08-26

Publications (1)

Publication Number Publication Date
WO2015029404A1 true WO2015029404A1 (ja) 2015-03-05

Family

ID=52585994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004338 WO2015029404A1 (ja) 2013-08-26 2014-08-22 高強度溶融亜鉛めっき鋼板及びその製造方法

Country Status (7)

Country Link
US (1) US9895863B2 (ja)
EP (1) EP3040440B1 (ja)
JP (1) JP6128223B2 (ja)
KR (1) KR101824823B1 (ja)
CN (1) CN105531388A (ja)
MX (1) MX2016002449A (ja)
WO (1) WO2015029404A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6323617B1 (ja) * 2017-02-10 2018-05-16 Jfeスチール株式会社 高強度亜鉛めっき鋼板及びその製造方法
WO2018146828A1 (ja) * 2017-02-10 2018-08-16 Jfeスチール株式会社 高強度亜鉛めっき鋼板及びその製造方法
WO2019189842A1 (ja) * 2018-03-30 2019-10-03 Jfeスチール株式会社 高強度亜鉛めっき鋼板、高強度部材およびそれらの製造方法
WO2019189849A1 (ja) * 2018-03-30 2019-10-03 Jfeスチール株式会社 高強度亜鉛めっき鋼板、高強度部材およびそれらの製造方法
WO2019189841A1 (ja) * 2018-03-30 2019-10-03 Jfeスチール株式会社 高強度亜鉛めっき鋼板、高強度部材およびそれらの製造方法
WO2019189848A1 (ja) * 2018-03-30 2019-10-03 Jfeスチール株式会社 高強度亜鉛めっき鋼板、高強度部材およびそれらの製造方法
WO2020170542A1 (ja) * 2019-02-22 2020-08-27 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
US11685963B2 (en) 2018-05-01 2023-06-27 Nippon Steel Corporation Zinc-plated steel sheet and manufacturing method thereof
US11859259B2 (en) 2018-05-01 2024-01-02 Nippon Steel Corporation Zinc-plated steel sheet and manufacturing method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106756555A (zh) * 2016-12-19 2017-05-31 武汉钢铁股份有限公司 一种屈服强度为160MPa级的铁‑锌镀层钢板及生产方法
EP3715493A4 (en) * 2017-12-27 2020-11-25 JFE Steel Corporation HIGH STRENGTH STEEL SHEET AND METHOD OF MANUFACTURING ITEM
KR102561381B1 (ko) * 2018-01-17 2023-07-28 제이에프이 스틸 가부시키가이샤 고강도 합금화 전기 아연 도금 강판 및 그 제조 방법
KR20230029865A (ko) * 2020-07-14 2023-03-03 제이에프이 스틸 가부시키가이샤 강재 및 강 제품의 탈수소 방법, 그리고, 강재 및 강 제품의 제조 방법
KR102493977B1 (ko) * 2020-12-13 2023-01-31 주식회사 포스코 도금품질이 우수한 고강도 용융아연도금강판, 도금용 강판 및 이들의 제조방법
KR102461161B1 (ko) * 2020-12-13 2022-11-02 주식회사 포스코 도금품질이 우수한 고강도 용융아연도금강판, 도금용 강판 및 이들의 제조방법
CN113265512B (zh) * 2021-05-17 2022-08-12 山西太钢不锈钢股份有限公司 一种消除电渣马氏体锻圆机加工表面色差的方法
DE102022104228A1 (de) 2022-02-23 2023-08-24 Thyssenkrupp Steel Europe Ag Verfahren zur Herstellung eines kaltgewalzten Stahlflachprodukts mit niedrigem Kohlenstoffgehalt
KR102678569B1 (ko) * 2022-05-19 2024-06-27 현대제철 주식회사 용접성이 우수한 초고강도 아연도금강판 및 그 제조방법

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130443A (en) * 1978-03-31 1979-10-09 Sumitomo Metal Ind Ltd Manufacture of zinc plated steel sheet
JPH02267251A (ja) * 1989-04-07 1990-11-01 Nkk Corp 気泡状電着塗膜欠陥発生を防止可能とした塗装適合性に優れた高耐食性複層めっき鋼板
JPH05295483A (ja) 1992-04-23 1993-11-09 Kawasaki Steel Corp 耐ブリスター性に優れた溶融亜鉛めっき鋼板
JPH0913156A (ja) * 1995-06-27 1997-01-14 Nisshin Steel Co Ltd ブリスターのない溶融Znめっき熱延鋼板の製造方法
JPH09118968A (ja) * 1995-10-24 1997-05-06 Nisshin Steel Co Ltd ブリスターの発生しない溶融亜鉛めっき熱延鋼板
JPH10204597A (ja) * 1997-01-16 1998-08-04 Nkk Corp めっきふくれのない溶融亜鉛めっき熱延鋼板
JP2000309824A (ja) * 1999-02-25 2000-11-07 Kawasaki Steel Corp 冷延鋼板および溶融めっき鋼板ならびにそれらの製造方法
JP2006037130A (ja) * 2004-07-23 2006-02-09 Nippon Steel Corp ホットプレス用めっき鋼板の製造方法
JP2008261027A (ja) * 2007-04-13 2008-10-30 Nippon Steel Corp 耐水素脆化特性に優れた高強度亜鉛めっきボルト及びその製造方法
JP2010255111A (ja) 2009-03-31 2010-11-11 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2010255113A (ja) 2009-03-31 2010-11-11 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2013142198A (ja) * 2012-01-13 2013-07-22 Nippon Steel & Sumitomo Metal Corp めっき濡れ性及び耐ピックアップ性に優れる溶融亜鉛めっき鋼板の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2030812A1 (en) 1989-04-07 1990-10-08 Hiroshi Miwa High corrosion resistant multi-layer coated steel sheets having excellent paintability by enabling the prevention of occurrence of bubble-like ed paint defects, and producing method thereof
JPH0713285B2 (ja) 1990-04-25 1995-02-15 新日本製鐵株式会社 加工性に優れた溶融合金化亜鉛めっき鋼板
JP3403859B2 (ja) 1995-04-26 2003-05-06 帝人株式会社 離型フイルム
CA2330010C (en) 1999-02-25 2008-11-18 Kawasaki Steel Corporation Steel sheets, hot-dipped steel sheets and alloyed hot-dipped steel sheets as well as method of producing the same
JP5040093B2 (ja) 2004-10-07 2012-10-03 Jfeスチール株式会社 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板
EP2415896B1 (en) * 2009-03-31 2016-11-16 JFE Steel Corporation Method for producing high-strength hot-dip galvanized steel plate
WO2011111858A1 (ja) 2010-03-10 2011-09-15 Jfeスチール株式会社 鋼の連続鋳造方法および鋼板の製造方法
EP2762583B1 (en) * 2011-09-30 2018-11-07 Nippon Steel & Sumitomo Metal Corporation High-strength hot-dip galvanized steel sheet having excellent delayed fracture resistance and manufacturing method thereof

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54130443A (en) * 1978-03-31 1979-10-09 Sumitomo Metal Ind Ltd Manufacture of zinc plated steel sheet
JPH02267251A (ja) * 1989-04-07 1990-11-01 Nkk Corp 気泡状電着塗膜欠陥発生を防止可能とした塗装適合性に優れた高耐食性複層めっき鋼板
JPH05295483A (ja) 1992-04-23 1993-11-09 Kawasaki Steel Corp 耐ブリスター性に優れた溶融亜鉛めっき鋼板
JPH0913156A (ja) * 1995-06-27 1997-01-14 Nisshin Steel Co Ltd ブリスターのない溶融Znめっき熱延鋼板の製造方法
JPH09118968A (ja) * 1995-10-24 1997-05-06 Nisshin Steel Co Ltd ブリスターの発生しない溶融亜鉛めっき熱延鋼板
JPH10204597A (ja) * 1997-01-16 1998-08-04 Nkk Corp めっきふくれのない溶融亜鉛めっき熱延鋼板
JP2000309824A (ja) * 1999-02-25 2000-11-07 Kawasaki Steel Corp 冷延鋼板および溶融めっき鋼板ならびにそれらの製造方法
JP2006037130A (ja) * 2004-07-23 2006-02-09 Nippon Steel Corp ホットプレス用めっき鋼板の製造方法
JP2008261027A (ja) * 2007-04-13 2008-10-30 Nippon Steel Corp 耐水素脆化特性に優れた高強度亜鉛めっきボルト及びその製造方法
JP2010255111A (ja) 2009-03-31 2010-11-11 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2010255113A (ja) 2009-03-31 2010-11-11 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2013142198A (ja) * 2012-01-13 2013-07-22 Nippon Steel & Sumitomo Metal Corp めっき濡れ性及び耐ピックアップ性に優れる溶融亜鉛めっき鋼板の製造方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6323617B1 (ja) * 2017-02-10 2018-05-16 Jfeスチール株式会社 高強度亜鉛めっき鋼板及びその製造方法
WO2018146828A1 (ja) * 2017-02-10 2018-08-16 Jfeスチール株式会社 高強度亜鉛めっき鋼板及びその製造方法
US11180823B2 (en) 2017-02-10 2021-11-23 Jfe Steel Corporation High-strength galvanized steel sheet and method for producing the same
JP2020143368A (ja) * 2018-03-30 2020-09-10 Jfeスチール株式会社 高強度亜鉛めっき鋼板および高強度部材
CN111936648A (zh) * 2018-03-30 2020-11-13 杰富意钢铁株式会社 高强度镀锌钢板、高强度部件及其制造方法
WO2019189848A1 (ja) * 2018-03-30 2019-10-03 Jfeスチール株式会社 高強度亜鉛めっき鋼板、高強度部材およびそれらの製造方法
JP6624352B1 (ja) * 2018-03-30 2019-12-25 Jfeスチール株式会社 高強度亜鉛めっき鋼板、高強度部材およびそれらの製造方法
JP6631760B1 (ja) * 2018-03-30 2020-01-15 Jfeスチール株式会社 高強度亜鉛めっき鋼板および高強度部材
JP2020045568A (ja) * 2018-03-30 2020-03-26 Jfeスチール株式会社 高強度亜鉛めっき鋼板の製造方法、及び高強度部材の製造方法
JPWO2019189849A1 (ja) * 2018-03-30 2020-04-30 Jfeスチール株式会社 高強度亜鉛めっき鋼板の製造方法および高強度部材の製造方法
JPWO2019189841A1 (ja) * 2018-03-30 2020-04-30 Jfeスチール株式会社 高強度亜鉛めっき鋼板、高強度部材およびそれらの製造方法
US11795531B2 (en) 2018-03-30 2023-10-24 Jfe Steel Corporation High-strength galvanized steel sheet, high strength member, and method for manufacturing the same
WO2019189849A1 (ja) * 2018-03-30 2019-10-03 Jfeスチール株式会社 高強度亜鉛めっき鋼板、高強度部材およびそれらの製造方法
US11560614B2 (en) 2018-03-30 2023-01-24 Jfe Steel Corporation High-strength galvanized steel sheet, high strength member, and method for manufacturing the same
WO2019189841A1 (ja) * 2018-03-30 2019-10-03 Jfeスチール株式会社 高強度亜鉛めっき鋼板、高強度部材およびそれらの製造方法
CN111936650A (zh) * 2018-03-30 2020-11-13 杰富意钢铁株式会社 高强度镀锌钢板、高强度部件和它们的制造方法
CN111936648B (zh) * 2018-03-30 2021-11-02 杰富意钢铁株式会社 高强度镀锌钢板、高强度部件及其制造方法
WO2019189842A1 (ja) * 2018-03-30 2019-10-03 Jfeスチール株式会社 高強度亜鉛めっき鋼板、高強度部材およびそれらの製造方法
US11473165B2 (en) 2018-03-30 2022-10-18 Jfe Steel Corporation High-strength galvanized steel sheet, high strength member, and method for manufacturing the same
US11530463B2 (en) 2018-03-30 2022-12-20 Jfe Steel Corporation High-strength galvanized steel sheet, high strength member, and method for manufacturing the same
US11685963B2 (en) 2018-05-01 2023-06-27 Nippon Steel Corporation Zinc-plated steel sheet and manufacturing method thereof
US11859259B2 (en) 2018-05-01 2024-01-02 Nippon Steel Corporation Zinc-plated steel sheet and manufacturing method thereof
JP6777267B1 (ja) * 2019-02-22 2020-10-28 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法
WO2020170542A1 (ja) * 2019-02-22 2020-08-27 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板およびその製造方法

Also Published As

Publication number Publication date
KR20160048882A (ko) 2016-05-04
KR101824823B1 (ko) 2018-02-01
EP3040440B1 (en) 2019-03-06
EP3040440A4 (en) 2016-08-17
JPWO2015029404A1 (ja) 2017-03-02
US20160214351A1 (en) 2016-07-28
EP3040440A1 (en) 2016-07-06
JP6128223B2 (ja) 2017-05-17
CN105531388A (zh) 2016-04-27
MX2016002449A (es) 2016-06-24
US9895863B2 (en) 2018-02-20

Similar Documents

Publication Publication Date Title
JP6128223B2 (ja) 高強度溶融亜鉛めっき鋼板及びその製造方法
KR101431317B1 (ko) 고강도 용융 아연 도금 강판 및 그 제조 방법
US9309586B2 (en) High-strength galvanized steel sheet and method for manufacturing the same
KR101692129B1 (ko) 고강도 용융 아연 도금 강판의 제조 방법 및 고강도 용융 아연 도금 강판
JP7244722B2 (ja) 加工後耐食性に優れた亜鉛合金めっき鋼材及びその製造方法
KR101719947B1 (ko) 고강도 합금화 용융 아연 도금 강판의 제조 방법
JP5513216B2 (ja) 合金化溶融亜鉛めっき鋼板の製造方法
JP5552863B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5552859B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
WO2015125433A1 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5552862B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5593771B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法
JP5672743B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
US9677148B2 (en) Method for manufacturing galvanized steel sheet
WO2015125435A1 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5593770B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法
JP2007291445A (ja) 濡れ性、ふくれ性に優れた高張力溶融亜鉛めっき熱延鋼板の製造方法
JP2011219782A (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2011219781A (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP6777045B2 (ja) 高強度溶融亜鉛めっき鋼板の製造方法
JP5552860B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP5552861B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2002115039A (ja) めっき密着性に優れる高強度溶融亜鉛めっき鋼板
JP2010138480A (ja) 高強度合金化溶融亜鉛めっき鋼板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480047552.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015533985

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014840002

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014840002

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/002449

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14914803

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IDP00201601845

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 20167007924

Country of ref document: KR

Kind code of ref document: A