WO2015027859A1 - 光路处理方法和装置 - Google Patents

光路处理方法和装置 Download PDF

Info

Publication number
WO2015027859A1
WO2015027859A1 PCT/CN2014/084976 CN2014084976W WO2015027859A1 WO 2015027859 A1 WO2015027859 A1 WO 2015027859A1 CN 2014084976 W CN2014084976 W CN 2014084976W WO 2015027859 A1 WO2015027859 A1 WO 2015027859A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
splitter
reflected
power
test
Prior art date
Application number
PCT/CN2014/084976
Other languages
English (en)
French (fr)
Inventor
赵峻
祁彪
刘西社
周劲林
李奇
周立兵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2016514273A priority Critical patent/JP6105158B2/ja
Priority to EP14839363.0A priority patent/EP3018838B1/en
Priority to KR1020157025499A priority patent/KR101751158B1/ko
Publication of WO2015027859A1 publication Critical patent/WO2015027859A1/zh
Priority to US14/880,919 priority patent/US9735865B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0771Fault location on the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0773Network aspects, e.g. central monitoring of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0775Performance monitoring and measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks

Definitions

  • Optical circuit processing method and device The present application claims priority to Chinese patent application filed on August 30, 2013, the Chinese Patent Office, Application No. 201310389084.8, and entitled "Optical Network Detection Method, Apparatus, Equipment, System, and Optical Splitter” The entire contents of which are incorporated herein by reference.
  • TECHNICAL FIELD The present invention relates to the field of optical communication technologies, and in particular, to an optical network detection method, apparatus, device, system, and optical splitter.
  • PON Passive Optical Network
  • the PON is composed of an optical line terminal (OLT), an optical distribution network (ODN), and an optical network unit (ONU).
  • the important passive components in the optical distribution network are optical splitters, and the optical splitting is performed.
  • the device can split and combine optical signals for optical signal distribution, optical path connection, optical signal transmission direction control, and coupling control between optical devices. Since the spectrometer operates in a high temperature, high humidity environment for a long time, the performance gradually deteriorates with time, resulting in an increase in link loss until the link loss fails. In order to ensure the normal operation of the PON, the PON needs to be detected before the service is opened.
  • the detection includes the optical splitter state detection and the optical fiber link loss state detection. In the prior art, it is generally required that the inspector carries the detecting device to the spectrometer setting site for detection, and thus the detection efficiency is low. Summary of the invention
  • an optical network detection method is provided, where the method includes: The management device receives the reflected peak power reported by the test device, where the reflected peak power is the reflected peak power of the optical splitter obtained by the test device according to the reflected light signal, and the reflected light signal is a test light signal sent by the test device.
  • An optical signal reflected by the optical splitter after the optical cable is transmitted to the optical splitter wherein the optical splitter is provided with N+1 optical output ports, and the N is a natural number, and the N+1 optical output ports are The N optical output ports are configured to transmit the received optical signals to the N optical network units ONU through N branch fibers according to a 1:N ratio, except for the end faces of one of the N optical output ports And a reflective film, wherein the test optical signal is reflected by the reflective film; and the optical network is detected by comparing the reflected peak power with a preset reflected power of the optical splitter.
  • the detecting by comparing the reflected peak power and the preset reflected power of the optical splitter, detecting the optical network, including: a difference between the preset reflected power and the reflected peak power; when the difference is less than the first power threshold, detecting that a fiber link between the test device and the optical splitter is normal, and The optical splitter is normal; when the difference is between the first power threshold and the second power threshold, detecting that a fiber link between the test device and the optical splitter fails; when the difference is Detecting that the optical splitter is faulty, wherein the first power threshold is smaller than the second power threshold, and the second power threshold is smaller than the second power threshold
  • the third power threshold is described.
  • the method further includes: receiving the reflected optical signal reported by the testing device Receiving time; Calculating a distance between the beam splitter and the test device according to the receiving time.
  • the preset reflected power is a theoretical value of the reflected power of the optical splitter; when the optical network is detected after the service is turned on, the preset reflected power is The reflected power of the optical splitter during normal operation of the service.
  • the second aspect provides an optical network detecting apparatus, where the apparatus includes: a receiving unit, configured to receive a reflected peak power reported by the testing device, where the reflected peak power is a spectroscope obtained by the testing device according to the reflected optical signal a reflected light signal, wherein the reflected light signal is an optical signal reflected by the optical splitter after the test optical signal sent by the testing device is transmitted to the optical splitter through an optical cable, wherein the optical splitter is provided with N+1 a light output port, wherein the N is a natural number, and the N optical output ports of the N+1 optical output ports are configured to transmit the received optical signal to N lights through N branch fibers according to a ratio of 1:N.
  • a receiving unit configured to receive a reflected peak power reported by the testing device, where the reflected peak power is a spectroscope obtained by the testing device according to the reflected optical signal a reflected light signal, wherein the reflected light signal is an optical signal reflected by the optical splitter after the test optical signal sent by
  • a network unit ONU wherein an end surface of one of the N optical output ports is provided with a reflective film, and the test optical signal is reflected by the reflective film; and a detecting unit is configured to receive by comparing the receiving unit The optical network is detected by the reflected peak power and the preset reflected power of the splitter.
  • the detecting unit includes: a difference calculation subunit, configured to calculate a difference between the preset reflected power and a reflected peak power received by the receiving unit; a detection determining subunit, configured to calculate a difference value when the difference calculating subunit When less than the first power threshold, detecting that the optical fiber link between the test device and the optical splitter is normal, and the optical splitter is normal; when the difference calculated by the difference calculation subunit is in the first Detecting a fiber link between the test device and the optical splitter between a power threshold and a second power threshold; when the difference calculated by the difference calculation subunit is in the second When the power threshold is between the third power threshold and the third power threshold, the first power threshold is smaller than the second power threshold, and the second power threshold is smaller than the third power threshold.
  • the receiving unit is further configured to receive the reflection reported by the test device Receiving time of the optical signal; the device further comprising: a calculating unit, configured to calculate a distance between the optical splitter and the testing device according to the receiving time received by the receiving unit.
  • a third aspect provides an optical network detection system, where the system includes: a detection device, a management device, and a beam splitter, wherein the test device is configured to emit a test optical signal and receive a reflected light signal, where the reflected light The signal is an optical signal reflected by the optical splitter after the test optical signal is transmitted to the optical splitter through the optical cable, and the reflected peak power of the optical splitter is obtained according to the reflected optical signal, and the reflected peak power is reported.
  • the optical splitter is configured to transmit the received optical signal to the N optical network units ONU through N branch fibers according to a ratio of 1:N through the N optical output ports, and pass the N optical output ports a reflective film disposed on an end surface of a light output port reflects the test light signal to cause the test device to receive the reflected light signal, wherein the N is a natural number; and the management device is configured to compare The reflected peak power and the preset reflected power of the optical splitter detect the optical network.
  • the optical splitter is a beam splitter that reflects the test optical signal according to a preset reflection ratio.
  • the optical splitter includes: an optical input port, and N+1 optical output ports, wherein a reflective film is disposed on an end surface of one of the N+1 optical output ports
  • the N is a natural number, wherein the N optical output ports are configured to transmit the optical signals received by the optical input port to the N optical network units ONU through N branch fibers according to a ratio of 1:N; a light output port, configured to reflect a test light signal emitted by the test device received by the optical input port through the reflective film, so that the test device obtains the splitting according to the received reflected light signal The reflected peak power of the device.
  • the test device sends a test optical signal, and receives the reflected optical signal, where the reflected optical signal is an optical signal that is reflected by the optical splitter after the test optical signal is transmitted to the optical splitter through the optical cable, where the optical splitter is An end surface of an output port is provided with a reflective film, and the test optical signal is reflected by the reflective film, and the test device obtains the reflected peak power of the optical splitter according to the reflected light signal, and reports the reflected peak power to the management device, and the management device By comparing the reflected peak power with the preset reflection of the splitter Power, detecting the optical network.
  • the test device can detect the optical splitter state and the optical fiber link state in the optical network by receiving the optical signal reflected by the optical splitter at the optical line terminal, since the tester does not need to carry The test equipment is tested on the spotter to improve the detection efficiency of the optical network performance.
  • FIG. 1A is a schematic structural diagram of an optical network detection system according to an embodiment of the present invention
  • FIG. 1B is a flowchart of an embodiment of an optical network detection method according to the present invention
  • FIG. 1C is a flowchart of another embodiment of an optical network detection method according to the present invention
  • 2 is a flow chart of another optical network detection architecture according to an embodiment of the present invention
  • FIG. 1A is a schematic structural diagram of an optical network detection system according to an embodiment of the present invention
  • FIG. 1B is a flowchart of an embodiment of an optical network detection method according to the present invention
  • FIG. 1C is a flowchart of another embodiment of an optical network detection method according to the present invention
  • 2 is a flow chart of another optical network detection architecture according to an embodiment of the present invention
  • FIG. 1A is a schematic structural diagram of an optical network detection system according to an embodiment of the present invention
  • FIG. 1B is a flowchart of an embodiment of an optical network detection method according to the present invention
  • FIG. 3B is a schematic diagram of another optical network detection architecture according to an embodiment of the present invention
  • 4 is a block diagram of another embodiment of an optical network detecting apparatus according to the present invention
  • FIG. 5 is a block diagram of another embodiment of an optical network detecting apparatus according to the present invention
  • FIG. 6 is a block diagram of an embodiment of a testing apparatus according to the present invention
  • a block diagram of another embodiment of the detecting device is a block diagram of another embodiment of an optical network detecting apparatus according to the present invention
  • FIG. 9 is a block diagram of an embodiment of a management apparatus according to the present invention.
  • An embodiment of the present invention provides an optical network detection system, where the system includes: a detection device, a management device, and a beam splitter, wherein the test device is configured to emit a test optical signal and receive a reflected light signal, where the reflected light The signal is an optical signal reflected by the optical splitter after the test optical signal is transmitted to the optical splitter through the optical cable, and the reflected peak power of the optical splitter is obtained according to the reflected optical signal, and the reflected peak power is reported.
  • the optical splitter is configured to transmit the received optical signal to the N optical network units ONU through N branch fibers according to a ratio of 1:N through the N optical output ports, and by dividing the N a reflective film disposed on an end surface of one of the light output ports of the light output port reflects the test light signal, so that the test device receives the reflected light signal, wherein the N is a natural number; And detecting the optical network by comparing the reflected peak power with a preset reflected power of the optical splitter.
  • FIG. 1A is a schematic structural diagram of an optical network detection system according to an embodiment of the present invention, where the PON system is shown in the schematic diagram:
  • the PON includes an OLT installed in the central control station, and a plurality of ONUs installed in the user premises, and the optical cable and the optical splitter are included in the ODN connecting the OLT and the ONUs.
  • the optical splitter is a passive device.
  • the optical splitter in the embodiment of the present invention adds a light output port coated with a reflective film, thereby Reflecting the received test light signal.
  • a test device in order to detect the state of the optical splitter in the PON and the state of the optical fiber link before the OLT and the optical splitter, a test device is set on the OLT side, and the test device is connected to the management device, and the test optical signal is sent through the test device. And after receiving the optical signal reflected by the optical splitter, reporting the reflected peak power of the optical splitter to the management device, thereby realizing the optical splitter state and the optical fiber link shape in the optical network. State detection.
  • FIG. 1B it is a flowchart of an embodiment of an optical network detecting method according to the present invention. The embodiment is described from the side of the testing device:
  • Step 101 The test device sends a test light signal.
  • the test device may send a test optical signal after receiving the test command issued by the management device.
  • the management device may issue a test command to the test device before the PON service is opened, so as to pre-detect the status of the optical splitter and the optical fiber link in the PON before the service is opened; or, the management device may also be in the running process of the PON service.
  • Test commands are issued to the test equipment to detect the status of the splitter and fiber link during the running of the service.
  • Step 102 The test device receives the reflected light signal, which is an optical signal that is transmitted by the optical splitter after the test optical signal is transmitted to the optical splitter through the optical cable.
  • the test optical signal is transmitted to the optical splitter through the optical cable.
  • the optical splitter in this embodiment has the function of reflecting the optical signal, so after the test optical signal is transmitted to the optical splitter, the optical splitter The test light signal can be reflected to the test device even if the test device receives the reflected light signal.
  • the optical splitter in the embodiment of the present invention is a novel optical splitter capable of reflecting the test optical signal according to a preset reflection ratio.
  • the novel optical splitter includes an optical input port and N+1 optical output ports, and one of the N+1 optical output ports has a reflective film disposed on an end surface thereof, and N is a natural number, wherein the N optical output ports are used. Transmitting the optical signal received by the optical input port to the N optical network units ONU through N branch fibers according to a ratio of 1:N; one optical output port for receiving the optical input port
  • the test light signal emitted by the test device is reflected by the reflective film to enable the test device to obtain the reflected peak power of the splitter according to the received reflected light signal.
  • the test optical signal is reflected by the reflector at the shunt end according to a preset reflection ratio to generate a reflected optical signal.
  • Step 103 The test device obtains the reflected peak power of the splitter according to the reflected light signal.
  • the test device After receiving the reflected light signal, the test device can obtain the reflected light power of the reflected light signal, and then measure the reflected light power to obtain the reflected peak power of the splitter.
  • Step 104 The test device reports the reflected peak power to the management device, so that the management device compares The reflected peak power and the preset reflected power of the splitter are used to detect the optical network.
  • this embodiment utilizes a spectroscope having reflective performance, so that the test equipment can detect the optical splitter state and the optical fiber link state in the optical network by receiving the optical signal reflected by the optical splitter at the optical line terminal.
  • the tester is not required to carry the test equipment to the optical splitter for on-site detection, thereby improving the detection efficiency of the optical network performance.
  • FIG. 1C it is a flowchart of another embodiment of an optical network detecting method according to the present invention. The embodiment is described from the management device side:
  • Step 111 The management device receives the reflected peak power reported by the test device, where the reflected peak power is a reflected peak power of the optical splitter obtained by the test device according to the reflected light signal, and the reflected optical signal is a test optical signal sent by the test device through the optical cable.
  • the optical signal reflected by the beam splitter after transmission to the beam splitter.
  • the management device can issue a test command to the test device, thereby triggering the test device to emit a test optical signal.
  • the management device may send a test command to the test device before the PON service is opened, so as to pre-detect the state of the optical splitter and the optical fiber link in the PON before the service is opened; or, the management device may also be in the running process of the PON service.
  • Test commands are issued to the test equipment to detect the status of the splitter and fiber link during the running of the service.
  • Step 112 The management device detects the optical network by comparing the reflected peak power with the preset reflected power of the optical splitter.
  • the management device may calculate a difference between the preset reflected power and the reflected peak power. When the difference is less than the first power threshold, detecting that the optical fiber link between the test device and the optical splitter is normal, and the optical splitter is normal; Detecting that a fiber link between the test device and the optical splitter fails when the difference is between the first power threshold and the second power threshold; when the difference is at the second power threshold and the third When the power threshold is detected, the optical splitter is faulty.
  • the test device since the test device is disposed on the OLT side, the detected optical link status between the test device and the optical splitter is the OLT and the optical splitter. The fiber link status between the cables.
  • the first power threshold is smaller than the second power threshold, and the second power threshold is smaller than the third power threshold.
  • the first power threshold, the second power gate, and the third power threshold may be flexibly set according to the type of the optical device in the PON and the optical link structure, which is not limited in this embodiment of the present invention.
  • the preset reflected power when the optical network is pre-detected before the service is turned on, the preset reflected power may be a theoretical value of the reflected power of the optical splitter; when the optical network is detected after the service is opened, Let the reflected power be the reflected power of the splitter obtained during normal operation of the service.
  • this embodiment utilizes a spectroscope having reflective performance, so that the test equipment can detect the optical splitter state and the optical fiber link state in the optical network by receiving the optical signal reflected by the optical splitter at the optical line terminal.
  • the tester is not required to carry the test equipment to the optical splitter for on-site detection, thereby improving the detection efficiency of the optical network performance.
  • FIG. 2 another embodiment of the optical network detecting method of the present invention describes the optical network detecting process in detail by the interaction between the management device and the testing device:
  • Step 201 The test device receives a test instruction issued by the management device.
  • the management device may send a test command to the test device before the PON service is opened, so as to pre-detect the state of the optical splitter and the optical fiber link in the PON before the service is opened; or, the management device may also run in the PON service.
  • test commands are issued to the test equipment to detect the status of the splitter and fiber link during the running of the service.
  • Step 202 The test device sends a test optical signal.
  • test device When the test device receives the test command from the management device, it sends a test light signal. As shown in FIG. 1A, the test light signal is transmitted to the optical splitter through the optical cable.
  • the optical splitter in this embodiment includes an optical input port and N+1 optical output ports, and one end of one of the N+1 optical output ports is provided with a reflective film, N is a natural number, wherein, N light outputs
  • the port is configured to transmit the optical signal received by the optical input port to the N optical network units ONU through N branch fibers according to a 1:N ratio; a light output port, configured to receive the optical input port
  • the test light signal emitted by the test device is reflected by the reflective film to enable the test device to obtain the reflected peak power of the splitter based on the received reflected light signal.
  • Step 203 The test device receives the reflected light signal, and the reflected light signal is an optical signal reflected by the optical splitter after the test optical signal is transmitted to the optical splitter through the optical cable, and step 204 and step 207 are performed respectively.
  • the optical splitter has a function of reflecting the optical signal. Therefore, after the test optical signal sent by the test equipment is transmitted to the optical splitter, the optical splitter can reflect the test optical signal to the test equipment even if the test equipment receives the reflected optical signal.
  • the optical splitter in the embodiment of the present invention is a novel optical splitter capable of reflecting the test optical signal according to a preset reflection ratio.
  • the test optical signal enters from the combining end of the new type of splitter, the test optical signal is reflected by the reflector at the split end according to a preset reflectance For example, reflection is performed to generate a reflected light signal.
  • Step 204 The test device obtains a reflection peak power of the beam splitter according to the reflected light signal.
  • the test device After receiving the reflected light signal, the test device can directly obtain the reflected light power of the reflected light signal, and obtain the reflected peak power of the splitter by measuring the reflected light power, wherein the reflected light power is measured to obtain a reflection peak.
  • the process of power is consistent with the prior art and will not be described here.
  • Step 205 The test device reports the reflected peak power to the management device.
  • Step 206 The management device detects the optical network by comparing the reflected peak power and the preset reflected power of the optical splitter, and ends the current process.
  • the management device may calculate a difference between the preset reflected power and the reflected peak power. When the difference is less than the first power threshold, detecting that the optical fiber link between the test device and the optical splitter is normal, and the optical splitter is normal; Detecting that a fiber link between the test device and the optical splitter fails when the difference is between the first power threshold and the second power threshold; when the difference is at the second power threshold and the third When the power threshold is detected, the optical splitter is faulty.
  • the test device since the test device is disposed on the OLT side, the detected optical link status between the test device and the optical splitter is the OLT and the optical splitter. The fiber link status between the cables.
  • the first power threshold is smaller than the second power threshold, and the second power threshold is smaller than the third power threshold.
  • the first power threshold, the second power gate, and the third power threshold may be flexibly set according to the type of the optical device in the PON and the optical link structure, which is not limited in this embodiment of the present invention.
  • Step 207 The test device records the reception time of the reflected light signal.
  • Step 208 The test device reports the receiving time to the management device.
  • Step 209 The management device calculates the distance between the optical splitter and the test device according to the receiving time, and ends the current process.
  • the management device can calculate the time when the test device sends the test light signal to receive the reflected light signal according to the receiving time, thereby
  • the distance between the optical splitter and the test equipment is calculated according to the product of the speed of light and the time.
  • the management device can obtain the geographical setting of the optical splitter according to the calculated distance between the optical splitter and the test equipment.
  • this embodiment utilizes a spectroscope having reflective performance such that the test equipment can pass the optical signal reflected by the optical splitter at the optical line terminal to the optical splitter state and light in the optical network. The status of the fiber link is detected. Since the tester is not required to carry the test device to the optical splitter for detection, the detection efficiency of the optical network performance is improved.
  • FIG. 3A a schematic diagram of an optical network detection architecture for applying the embodiment of the present invention:
  • the management device is connected to the OLT and the test device respectively.
  • the test device is connected to the trunk cable between the OLT and the optical splitter through a Wavelength Division Multiplexing (WDM) device.
  • WDM Wavelength Division Multiplexing
  • the PON architecture shown in FIG. 3A uses a first-level splitting architecture, that is, only one optical splitter is disposed between the OLT and the ONUs, and the first-level splitting architecture is generally applied to a place where users are concentrated, thereby reducing the cost of the optical cable. Moreover, there are few network nodes and it is easy to maintain.
  • the splitting ratio of the first-order splitter is 1: N, for example, 1:32
  • the theoretical value of the reflected power of the spectroscope is xdB.
  • the theoretical value of the reflected power of the spectroscope is related to the state of the optical splitter. When the state of the optical splitter is degraded, the theoretical value may be lowered, which is not limited in this embodiment of the present invention.
  • the reflective port of the output end of the primary beam splitter is coated with a reflective film for reflecting the received test light signal.
  • test device When the test device receives the test command issued by the management device, it sends a test light signal, and the test light signal may have a wavelength of 1625 nm (nanometer) or 1650 nm. After the test optical signal is transmitted to the primary splitter through the optical cable, it is reflected by the reflective film of the reflective port of the primary splitter, and correspondingly, the test device receives the reflected optical signal.
  • the test device can measure the reflected light signal to obtain a reflection peak power x'dB of the primary splitter, and the test device reports the reflected peak power x'dB to the management device, and the management device calculates the difference between X and x, if the difference is If the value is less than the first power threshold W1, it is determined that the fiber link between the primary beam splitter and the OLT and the primary splitter is normal. If the difference is between the first power threshold W1 and the second power threshold W2, the OLT is determined. The fiber link failure with the primary splitter, if the difference is between the second power threshold W2 and the third power threshold W3, determines the primary splitter fault.
  • W1 is smaller than W2, and W2 is smaller than W3, and W1, W2, and W3 can be flexibly set according to the type of the optical device in the PON and the optical link structure, which is not limited in this embodiment of the present invention.
  • FIG. 3B another optical network detection architecture is applied to the embodiment of the present invention.
  • the management device is respectively connected to the OLT and the test device, and the test device is connected to the trunk cable between the OLT and the optical splitter through the WDM device.
  • the PON architecture uses a secondary splitting architecture, that is, two optical splitters are disposed between the OLT and the ONU, which are a primary splitter and a secondary splitter, and the secondary splitter architecture is generally applied to users. Decentralized places, the way to cover the blog, This saves resources.
  • the current phase of the PON service is in the real-time detection phase, wherein the splitting ratio of the primary beam splitter is 1:M, for example, 1:4, and the split ratio of the secondary splitter is 1: ⁇ ', for example It is 1:16, and it is assumed that the reflected power of the primary splitter obtained when the service is in normal operation is yl, and the reflected power of the secondary splitter is y2.
  • a reflective film is respectively plated on the reflection ports of the output ends of the first-stage splitter and the second-stage splitter for reflecting the received test light signal.
  • test device When the test device receives the test command issued by the management device, it sends a test light signal, and the test light signal may have a wavelength of 1520 nm.
  • the test optical signal is transmitted to the primary splitter through the optical cable, and is further transmitted by the primary splitter to the secondary splitter, wherein the test optical signal transmitted to the primary splitter is first reflected by the reflective film of the reflective port of the primary splitter Returning the test device, so that the test device receives the first reflected light signal, and then the test light signal transmitted to the secondary splitter is reflected back to the test device through the reflective film of the reflective port of the secondary splitter, so that the test device receives the second reflection Optical signal.
  • the test device can separately test the first reflected light signal to obtain the reflected peak power yl of the primary splitter, and test the second reflected light signal to obtain the reflected peak power y2 of the secondary splitter, and the test device reflects the primary splitter
  • the peak power yl, and the reflected peak power y2 of the secondary splitter are reported to the management device, the management device calculates the difference between yl and yl, and according to the difference, the fiber link between the OLT and the primary splitter, And detecting the state of the first-stage optical splitter, and the specific detecting process is performed on the optical fiber link between the OLT and the primary splitter and the state of the primary optical splitter according to the difference between X and x in FIG. 3A.
  • the management device calculates the difference between y2 and y2, and based on the difference between the optical link between the OLT and the secondary splitter, and the optical splitter of the earphone The status is detected.
  • the relationship between the primary optical splitter and the secondary optical splitter can be further determined. The fiber link has failed.
  • the present invention also provides an embodiment of an optical network detecting device, a testing device, and a management device.
  • FIG. 4 it is a block diagram of an embodiment of an optical network detecting apparatus according to the present invention, which may be disposed in a testing device:
  • the apparatus includes: an issue unit 410, a receiving unit 420, an obtaining unit 430, and a reporting unit 440.
  • the issuing unit 410 is configured to send a test optical signal;
  • the receiving unit 420 is configured to receive a reflected optical signal, where the reflected optical signal is the sending unit 410
  • the emitted test signal is transmitted to the optical splitter through the optical cable to be reflected by the optical splitter, wherein the optical splitter is provided with N+1 optical output ports, and the N is a natural number, and the N+1
  • the N optical output ports of the optical output port are used to transmit the received optical signals to the N optical network units ONU through N branch fibers in a 1:N ratio, except for one optical output of the N optical output ports.
  • An end surface of the port is provided with a reflective film, and the test light signal is reflected by the reflective film;
  • the obtaining unit 430 is configured to obtain a reflection peak power of the optical splitter according to the reflected light signal received by the receiving unit 420, so that the management device compares the reflected peak power with a preset reflection of the optical splitter Power, detecting the optical network.
  • the obtaining unit 430 may include (not shown in FIG. 4):
  • the reflected optical power obtaining subunit is configured to obtain the reflected optical power of the reflected optical signal; and the power is measured to obtain the reflected peak power of the optical splitter.
  • FIG. 5 it is a block diagram of another embodiment of an optical network detecting apparatus according to the present invention, which may be disposed in a test device:
  • the apparatus includes: an issue unit 510, a receiving unit 520, a recording unit 530, an obtaining unit 540, and an upper unit 550.
  • the sending unit 510 is configured to send a test optical signal
  • the receiving unit 520 is configured to receive a reflected optical signal, where the reflected optical signal is an optical signal that is transmitted by the optical splitter and transmitted by the optical splitter to the optical splitter, and is reflected by the optical splitter, where the optical splitter N+1 optical output ports are provided, the N is a natural number, and N of the N+1 optical output ports are used to pass the received optical signals according to a ratio of 1:N through N branches.
  • the optical fiber is transmitted to the N optical network units ONU, and an end surface of one of the N optical output ports is provided with a reflective film, and the test optical signal is reflected by the reflective film;
  • a recording unit 530 configured to record a receiving time of the reflected light signal received by the receiving unit 520, and an obtaining unit 540, configured to obtain a reflected peak power of the optical splitter according to the reflected light signal received by the receiving unit 520;
  • the reporting unit 550 is configured to report the receiving time recorded by the recording unit 530 to the management device. And the management device calculates the distance between the optical splitter and the test device according to the receiving time, and reports the reflected peak power obtained by the obtaining unit 540 to the management device, so that the management The device detects the optical network by comparing the reflected peak power with a preset reflected power of the optical splitter.
  • the obtaining unit 540 may include (not shown in FIG. 5):
  • the reflected optical power obtaining subunit is configured to obtain the reflected optical power of the reflected optical signal; and the power is measured to obtain the reflected peak power of the optical splitter.
  • FIG. 6 is a block diagram of an embodiment of a test device of the present invention:
  • the test equipment includes: a network interface 610, an optical interface 620, and a processor 630.
  • the optical interface 620 is configured to send a test optical signal, and receive the reflected optical signal, where the reflected optical signal is an optical signal that is reflected by the optical splitter after the test optical signal is transmitted to the optical splitter through the optical cable, where
  • the optical splitter is provided with N+1 optical output ports, wherein the N is a natural number, and the N optical output ports of the N+1 optical output ports are used to compare the received optical signals according to a ratio of 1:N.
  • the processor 630 is configured to obtain a reflection peak power of the optical splitter according to the reflected optical signal, and report the reflected peak power to the management device through the network interface 610, so that the management device compares The optical network is detected by the reflected peak power and the preset reflected power of the optical splitter.
  • the processor 630 is specifically configured to obtain a reflected optical power of the reflected optical signal, and measure the reflected optical power to obtain a reflected peak power of the optical splitter.
  • the processor 630 is further configured to record a receiving time of the reflected optical signal, and report the receiving time to the management device by using the network interface, so that the management device is configured according to the The receiving time calculates the distance between the beam splitter and the test device.
  • FIG. 7 is a block diagram of another embodiment of an optical network detecting apparatus according to the present invention
  • the apparatus may be disposed in a management device:
  • the apparatus includes: a receiving unit 710 and a detecting unit 720.
  • the receiving unit 710 is configured to receive a reflected peak power reported by the test device, where the reflection peak power a reflectance peak power of the optical splitter obtained by the test device according to the reflected light signal, where the reflected optical signal is reflected by the optical splitter after the test optical signal sent by the test device is transmitted to the optical splitter through the optical cable
  • An optical signal wherein the optical splitter is provided with N+1 optical output ports, the N is a natural number, and N of the N+1 optical output ports are used to receive the received optical signal according to 1: N ratio, transmitted to the N optical network units ONU through the N branch fibers, wherein the end surface of one of the N optical output ports is provided with a reflective film, and the test optical signal is passed through the reflective film Perform reflection;
  • the detecting unit 720 is configured to detect the optical network by comparing the reflected peak power received by the receiving unit 710 with the preset reflected power of the optical splitter.
  • the detecting unit 720 may include (not shown in FIG. 7).
  • a difference calculation subunit configured to calculate a difference between the preset reflected power and a reflected peak power received by the receiving unit
  • a detection determining subunit configured to detect that a fiber link between the test device and the optical splitter is normal, and the splitting, when the difference calculated by the difference calculating subunit is less than a first power threshold Normally; when the difference calculated by the difference calculation subunit is between the first power threshold and the second power threshold, detecting that a fiber link between the test device and the optical splitter occurs Fault; detecting that the splitter fails when the difference calculated by the difference calculation subunit is between the second power threshold and the third power threshold.
  • FIG. 8 is a block diagram of another embodiment of an optical network detecting apparatus according to the present invention
  • the apparatus may be disposed in a management device:
  • the apparatus includes: a receiving unit 810, a calculating unit 820, and a detecting unit 830.
  • the receiving unit 810 is configured to receive the reflected peak power reported by the test device, where the reflected peak power is a reflected peak power of the optical splitter obtained by the test device according to the reflected light signal, where the reflected light signal is the test device.
  • a reflective film is disposed on an end surface of one of the N optical output ports, and the test optical signal is reflected by the reflective film;
  • the calculating unit 820 is configured to calculate a distance between the optical splitter and the testing device according to the receiving time received by the receiving unit 810;
  • the detecting unit 830 is configured to detect the optical network by comparing the reflected peak power received by the receiving unit 810 with the preset reflected power of the optical splitter.
  • the detecting unit 830 may include (not shown in FIG. 8):
  • a difference calculation subunit configured to calculate a difference between the preset reflected power and a reflected peak power received by the receiving unit
  • a detection determining subunit configured to detect that a fiber link between the test device and the optical splitter is normal, and the splitting, when the difference calculated by the difference calculating subunit is less than a first power threshold Normally; when the difference calculated by the difference calculation subunit is between the first power threshold and the second power threshold, detecting that a fiber link between the test device and the optical splitter occurs Fault; detecting that the splitter fails when the difference calculated by the difference calculation subunit is between the second power threshold and the third power threshold.
  • FIG. 9 a block diagram of an embodiment of a management device of the present invention is shown:
  • the management device includes: a network interface 910 and a processor 920.
  • the network interface 910 is configured to receive a reflected peak power reported by the test device, where the reflected peak power is a reflected peak power of the optical splitter obtained by the test device according to the reflected light signal, where the reflected light signal is An optical signal reflected by the optical splitter to the optical splitter after being transmitted to the optical splitter by the optical splitter, wherein the optical splitter is provided with N+1 optical output ports, and the N is a natural number, N of the N+1 optical output ports are used to transmit the received optical signals to the N optical network units ONU through N branch fibers in a 1:N ratio, except for the N optical output ports.
  • An end surface of one of the light output ports is provided with a reflective film, and the test light signal is reflected by the reflective film;
  • the processor 920 is configured to detect the optical network by comparing the reflected peak power with a preset reflected power of the optical splitter.
  • the processor 920 is specifically configured to calculate a difference between the preset reflected power and the reflected peak power; when the difference is less than the first power threshold, detecting the test device and The optical fiber link between the optical splitters is normal, and the optical splitter is normal; when the difference is between the first power threshold and the second power threshold, detecting the test device and the splitting Fiber between devices The link is faulty; when the difference is between the second power threshold and the third power threshold, detecting that the optical splitter is faulty, where the first power threshold is smaller than the second power threshold And the second power threshold is less than the third power threshold.
  • the network interface 910 is further configured to receive a receiving time of the reflected optical signal on the test device, where the processor 920 is further configured to calculate, according to the receiving time, the The distance between the beam splitter and the test equipment.
  • the test device emits a test optical signal and receives the reflected optical signal, where the reflected optical signal is an optical signal that is reflected by the optical splitter after the test optical signal is transmitted to the optical splitter through the optical cable, where the optical splitter is An end surface of an output port is provided with a reflective film, and the test optical signal is reflected by the reflective film, and the test device obtains the reflected peak power of the optical splitter according to the reflected light signal, and reports the reflected peak power to the management device, and the management device
  • the optical network is detected by comparing the reflected peak power with the preset reflected power of the splitter.
  • the test device can detect the optical splitter state and the optical fiber link state in the optical network by receiving the optical signal reflected by the optical splitter at the optical line terminal, since the tester does not need to carry The test equipment is tested on the spotter to improve the detection efficiency of the optical network performance.
  • the techniques in the embodiments of the present invention can be implemented by means of software plus a necessary general hardware platform.
  • the technical solution in the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product, and the computer software product may be stored in a storage medium such as a ROM/RAM. , a diskette, an optical disk, etc., includes instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments of the present invention or in some portions of the embodiments.
  • a computer device which may be a personal computer, server, or network device, etc.

Abstract

本发明实施例公开了光网络检测方法、装置、设备、系统及分光器,其所述方法包括:管理设备接收测试设备上报的反射峰功率,反射峰功率为测试设备根据反射光信号获得的分光器的反射峰功率,反射光信号为所述测试设备发出的测试光信号经过光缆传输到所述分光器后由分光器反射的光信号,分光器通过一个光输出端口的端面设置的反射膜对测试光信号进行反射;通过比较所述反射峰功率和所述分光器的预设反射功率,对所述光网络进行检测。本发明实施例由于无需检测人员携带测试设备到分光器现场进行检测,因此提高了光网络性能的检测效率。

Description

光路处理方法和装置 本申请要求于 2013年 8月 30日提交中国专利局、申请号为 201310389084.8、 发明名称为"光网络检测方法、 装置、设备、 系统及分光器"的中国专利申请的优 先权, 其全部内容通过引用结合在本申请中。 技术领域 本发明涉及光通信技术领域, 特别涉及光网络检测方法、 装置、 设备、 系 统及分光器。 背景技术 随着光纤网络规模的扩大, 无源光网络( Passive Optical Network , PON ) 技术逐渐成为光接入网技术的热点。 PON由光线路终端(Optical Line Terminal, OLT )、 光分布网络( Optical Distribution Network, ODN )和光网络单元 ( Optical Network Unit, ONU )组成, 其中光分布网络中的重要无源器件为分光器, 分光 器可以对光信号进行分路和合路, 用于光信号的分配、 光路连接、 光信号传输 方向控制、 以及各光器件之间的耦合控制等。 由于分光器长时间工作在高温、 高湿环境中, 因此性能会随时间而逐渐劣化, 导致链路损耗增大, 直至链路损 耗失效。 为了保证 PON的正常运行, 通常在业务开通前, 需要对 PON进行检测, 检测包括分光器状态检测及光纤链路损耗状态检测。 现有技术中, 通常需要检 测人员携带检测设备到分光器设置现场进行检测, 因此检测效率低下。 发明内容
本发明实施例中提供了光网络检测方法、 装置、 设备、 系统及分光器, 以 解决现有技术中光网络检测效率低下的问题。 为了解决上述技术问题, 本发明实施例公开了如下技术方案: 第一方面, 提供一种光网络检测方法, 所述方法包括: 管理设备接收测试设备上报的反射峰功率, 所述反射峰功率为所述测试设 备根据反射光信号获得的分光器的反射峰功率, 所述反射光信号为所述测试设 备发出的测试光信号经过光缆传输到所述分光器后由所述分光器反射的光信 号, 其中, 所述分光器设置有 N+1个光输出端口, 所述 N为自然数, 所述 N+1 个光输出端口中的 N个光输出端口用于将接收到的光信号按照 1: N比例, 通过 N个分支光纤传输到 N个光网络单元 ONU,除所述 N个光输出端口的一个光输 出端口的端面设置有反射膜, 通过所述反射膜对所述测试光信号进行反射; 通过比较所述反射峰功率和所述分光器的预设反射功率, 对所述光网络进 行检测。 结合第一方面, 在第一方面的第一种可能的实现方式中, 所述通过比较所 述反射峰功率和所述分光器的预设反射功率, 对所述光网络进行检测, 包括: 计算所述预设反射功率和所述反射峰功率的差值; 当所述差值小于第一功率门限时, 检测到所述测试设备与所述分光器之间 的光纤链路正常, 以及所述分光器正常; 当所述差值在所述第一功率门限和第 二功率门限之间时, 检测到所述测试设备与所述分光器之间的光纤链路发生故 障; 当所述差值在所述第二功率门限和第三功率门限之间时, 检测到所述分光 器发生故障, 其中, 所述第一功率门限小于所述第二功率门限, 且所述第二功 率门限小于所述第三功率门限。 结合第一方面, 或第一方面的第一种可能的实现方式, 在第一方面的第二 种可能的实现方式中, 所述方法还包括: 接收所述测试设备上报的所述反射光信号的接收时间; 根据所述接收时间计算所述分光器与所述测试设备之间的距离。 结合第一方面, 或第一方面的第一种可能的实现方式, 或第一方面的第二 种可能的实现方式, 在第一方面的第三种可能的实现方式中, 当对所述光网络 进行业务开通前的预检测时, 所述预设反射功率为所述分光器的反射功率的理 论值; 当对所述光网络进行业务开通后的检测时, 所述预设反射功率为所述业务 正常运行时所述分光器的反射功率。 第二方面, 提供一种光网络检测装置, 所述装置包括: 接收单元, 用于接收测试设备上报的反射峰功率, 所述反射峰功率为所述 测试设备根据反射光信号获得的分光器的反射峰功率, 所述反射光信号为所述 测试设备发出的测试光信号经过光缆传输到所述分光器后由所述分光器反射的 光信号, 其中, 所述分光器设置有 N+1个光输出端口, 所述 N为自然数, 所述 N+1个光输出端口中的 N个光输出端口用于将接收到的光信号按照 1:N比例, 通过 N个分支光纤传输到 N个光网络单元 ONU, 除所述 N个光输出端口的一 个光输出端口的端面设置有反射膜, 通过所述反射膜对所述测试光信号进行反 射; 检测单元, 用于通过比较所述接收单元接收到的反射峰功率和所述分光器 的预设反射功率, 对所述光网络进行检测。 结合第二方面, 在第二方面的第一种可能的实现方式中, 所述检测单元包 括: 差值计算子单元, 用于计算所述预设反射功率和所述接收单元接收到的反 射峰功率的差值; 检测确定子单元, 用于当所述差值计算子单元计算到的差值小于第一功率 门限时, 检测到所述测试设备与所述分光器之间的光纤链路正常, 以及所述分 光器正常; 当所述差值计算子单元计算到的差值在所述第一功率门限和第二功 率门限之间时, 检测到所述测试设备与所述分光器之间的光纤链路发生故障; 当所述差值计算子单元计算到的差值在所述第二功率门限和第三功率门限之间 时, 检测到所述分光器发生故障, 其中, 所述第一功率门限小于所述第二功率 门限, 且所述第二功率门限小于所述第三功率门限。 结合第二方面, 或第二方面的第一种可能的实现方式, 在第二方面的第二 种可能的实现方式中, 所述接收单元, 还用于接收所述测试设备上报的所述反 射光信号的接收时间; 所述装置还包括: 计算单元, 用于根据所述接收单元接收到的接收时间计算所述分光器与所 述测试设备之间的距离。 第三方面, 提供一种光网络检测系统, 所述系统包括: 检测设备、 管理设 备和分光器, 其中, 所述测试设备, 用于发出测试光信号, 并接收反射光信号, 所述反射光信 号为所述测试光信号经过光缆传输到所述分光器后由所述分光器反射的光信 号, 根据所述反射光信号获得所述分光器的反射峰功率, 并将所述反射峰功率 上报到管理设备; 所述分光器, 用于通过 N个光输出端口将接收到的光信号按照 1:N比例, 通过 N个分支光纤传输到 N个光网络单元 ONU, 以及通过除所述 N个光输出 端口的一个光输出端口的端面设置的反射膜对所述测试光信号进行反射, 以使 所述测试设备接收到所述反射光信号, 其中, 所述 N为自然数; 所述管理设备, 用于通过比较所述反射峰功率和所述分光器的预设反射功 率, 对所述光网络进行检测。 结合第三方面, 在第三方面的第一种可能的实现方式中, 所述分光器为按 照预设的反射比例对所述测试光信号进行反射的分光器。 第四方面, 提供一种分光器, 所述分光器包括: 光输入端口、 N+1 个光输 出端口, 所述 N+1个光输出端口中的一个光输出端口的端面设置有反射膜, 所 述 N为自然数, 其中, 所述 N个光输出端口, 用于将所述光输入端口接收到的光信号按照 1:N比 例, 通过 N个分支光纤传输到 N个光网络单元 ONU; 所述一个光输出端口, 用于将所述光输入端口接收到的由测试设备发出的 测试光信号通过所述反射膜进行反射, 以使所述测试设备根据接收到的反射光 信号获得所述分光器的反射峰功率。 本发明实施例中, 测试设备发出测试光信号, 并接收反射光信号, 反射光 信号为所述测试光信号经过光缆传输到分光器后由所述分光器反射的光信号, 所述分光器的一个输出端口的端面设置有反射膜, 通过所述反射膜对所述测试 光信号进行反射, 测试设备根据反射光信号获得分光器的反射峰功率, 并将反 射峰功率上报到管理设备, 管理设备通过比较反射峰功率和分光器的预设反射 功率, 对光网络进行检测。 由于本发明实施例利用具有反射性能的分光器, 使 得测试设备可以在光线路终端通过接收分光器反射的光信号对光网络中的分光 器状态和光纤链路状态进行检测, 由于无需检测人员携带测试设备到分光器现 场进行检测, 因此提高了光网络性能的检测效率。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 对于本领 域普通技术人员而言, 在不付出创造性劳动性的前提下, 还可以根据这些附图 获得其他的附图。 图 1 A为本发明实施例中光网络检测系统的架构示意图; 图 1B为本发明光网络检测方法的一个实施例流程图; 图 1C为本发明光网络检测方法的另一个实施例流程图; 图 2为本发明光网络检测方法的另一个实施例流程图 图 3 A为应用本发明实施例的一个光网络检测架构示意图; 图 3B为应用本发明实施例的另一个光网络检测架构示意图; 图 4为本发明光网络检测装置的一个实施例框图; 图 5为本发明光网络检测装置的另一个实施例框图; 图 6为本发明测试设备的实施例框图; 图 7为本发明光网络检测装置的另一个实施例框图; 图 8为本发明光网络检测装置的另一个实施例框图; 图 9为本发明管理设备的实施例框图。 具体实施方式
为了使本技术领域的人员更好地理解本发明实施例中的技术方案, 并使本 发明实施例的上述目的、 特征和优点能够更加明显易懂, 下面结合附图对本发 明实施例中技术方案作进一步详细的说明。
本发明实施例提供了一种光网络检测系统, 该系统包括: 检测设备、 管理 设备和分光器, 其中, 所述测试设备, 用于发出测试光信号, 并接收反射光信 号, 所述反射光信号为所述测试光信号经过光缆传输到所述分光器后由所述分 光器反射的光信号, 根据所述反射光信号获得所述分光器的反射峰功率, 并将 所述反射峰功率上报到管理设备; 所述分光器, 用于通过 N个光输出端口将接 收到的光信号按照 1:N比例, 通过 N个分支光纤传输到 N个光网络单元 ONU, 以及通过除所述 N个光输出端口的一个光输出端口的端面设置的反射膜对所述 测试光信号进行反射, 以使所述测试设备接收到所述反射光信号, 其中, 所述 N 为自然数; 所述管理设备, 用于通过比较所述反射峰功率和所述分光器的预设 反射功率, 对所述光网络进行检测。
参见图 1A, 为本发明实施例中光网络检测系统的架构示意图, 该示意图中 示出的是 PON系统:
本发明实施例中, PON包括一个安装于中心控制站的 OLT, 以及多个安装 于用户场所的 ONUs, 在连接 OLT与 ONUs的 ODN中包含了光缆以及分光器。 其中, 分光器是一种无源器件, 本发明实施例中的分光器除了 N个用于向 ONU 传输光信号的光输出端口外, 还增加了一个镀有反射膜的光输出端口, 从而可 以对接收到的测试光信号进行反射。
图 1A中, 为了对 PON中分光器的状态和 OLT和分光器之前的光纤链路的 状态进行检测, 在 OLT侧设置了测试设备, 该测试设备与管理设备连接, 通过 测试设备发出测试光信号, 并可以在接收到分光器反射的光信号后, 向管理设 备上报分光器的反射峰功率, 从而实现对光网络中的分光器状态和光纤链路状 态的检测。
参见图 IB, 为本发明光网络检测方法的一个实施例流程图, 该实施例从测 试设备侧进行描述:
步骤 101 : 测试设备发出测试光信号。
本实施例中, 测试设备可以在接收到管理设备发出的测试命令后, 发出测 试光信号。其中, 管理设备可以在 PON业务开通前, 向测试设备发出测试命令, 以便对业务开通前 PON中的分光器和光纤链路状态进行预检测; 或者, 管理设 备也可以在 PON业务运行过程中, 向测试设备发出测试命令, 以便对业务运行 过程中的分光器和光纤链路状态进行实时检测。
步骤 102: 测试设备接收反射光信号, 该反射光信号为测试光信号经过光缆 传输到分光器后由分光器反射的光信号。
结合图 1A可知, 测试设备发出测试光信号后, 该测试光信号经过光缆传输 到分光器, 本实施例中的分光器具有反射光信号的功能, 因此测试光信号传输 到分光器后, 分光器可以向测试设备反射该测试光信号, 即使测试设备接收到 反射光信号。
本发明实施例中的分光器与现有技术中的分光器相比, 为能够按照预设的 反射比例对测试光信号进行反射的新型的分光器。 该新型的分光器包括光输入 端口、 N+1个光输出端口, N+1个光输出端口中的一个光输出端口的端面设置 有反射膜, N为自然数, 其中, N个光输出端口用于将所述光输入端口接收 到的光信号按照 1:N比例,通过 N个分支光纤传输到 N个光网络单元 ONU; — 个光输出端口, 用于将所述光输入端口接收到的由测试设备发出的测试光信号 通过所述反射膜进行反射, 以使所述测试设备根据接收到的反射光信号获得所 述分光器的反射峰功率。 其中, 当测试光信号从新型的分光器的合路端进入后, 该测试光信号由分路端的反射器按照预设的反射比例进行反射, 生成反射光信 号。
步骤 103: 测试设备根据反射光信号获得分光器的反射峰功率。
其中, 测试设备在接收到反射光信号后, 可以获得该反射光信号的反射光 功率, 然后对所述反射光功率进行测量得到所述分光器的反射峰功率。
步骤 104: 测试设备将反射峰功率上报到管理设备, 以使管理设备通过比较 反射峰功率和分光器的预设反射功率, 对光网络进行检测。
由上述实施例可见, 该实施例利用具有反射性能的分光器, 使得测试设备 可以在光线路终端通过接收分光器反射的光信号对光网络中的分光器状态和光 纤链路状态进行检测, 由于无需检测人员携带测试设备到分光器现场进行检测, 因此提高了光网络性能的检测效率。
参见图 1C, 为本发明光网络检测方法的另一个实施例流程图, 该实施例从 管理设备侧进行描述:
步骤 111 : 管理设备接收测试设备上报的反射峰功率, 其中, 该反射峰功率 为测试设备根据反射光信号获得的分光器的反射峰功率, 该反射光信号为测试 设备发出的测试光信号经过光缆传输到分光器后由分光器反射的光信号。
本实施例中, 管理设备可以向测试设备发出测试命令, 从而触发测试设备 发出测试光信号。 其中, 管理设备可以在 PON业务开通前, 向测试设备发出测 试命令,以便对业务开通前 PON中的分光器和光纤链路状态进行预检测;或者, 管理设备也可以在 PON业务运行过程中, 向测试设备发出测试命令, 以便对业 务运行过程中的分光器和光纤链路状态进行实时检测。
步骤 112: 管理设备通过比较反射峰功率和分光器的预设反射功率, 对光网 络进行检测。
其中, 管理设备可以计算预设反射功率和反射峰功率的差值, 当差值小于 第一功率门限时, 检测到测试设备与所述分光器之间的光纤链路正常, 以及分 光器正常; 当差值在第一功率门限和第二功率门限之间时, 检测到测试设备与 所述分光器之间的光纤链路发生故障; 当所述差值在所述第二功率门限和第三 功率门限之间时, 检测到所述分光器发生故障, 本实施例中, 由于测试设备设 置在 OLT侧, 因此检测到的测试设备与分光器之间的光纤链路状态即为 OLT与 分光器之间光缆的光纤链路状态。 其中, 第一功率门限小于所述第二功率门限, 且所述第二功率门限小于所述第三功率门限。 第一功率门限、 第二功率门和第 三功率门限可以根据 PON 中光器件的类型以及光链路结构的不同进行灵活设 置, 对此本发明实施例不进行限制。
本实施例中, 当对所述光网络进行业务开通前的预检测时, 预设反射功率 可以为分光器的反射功率的理论值; 当对光网络进行业务开通后的检测时, 预 设反射功率可以为业务正常运行时获得的分光器的反射功率。
由上述实施例可见, 该实施例利用具有反射性能的分光器, 使得测试设备 可以在光线路终端通过接收分光器反射的光信号对光网络中的分光器状态和光 纤链路状态进行检测, 由于无需检测人员携带测试设备到分光器现场进行检测, 因此提高了光网络性能的检测效率。
参见图 2, 本发明光网络检测方法的另一个实施例, 该实施例通过管理设备 和测试设备之间的交互详细描述了光网络检测过程:
步骤 201 : 测试设备接收管理设备发出的测试指令。
本实施例中,管理设备可以在 PON业务开通前,向测试设备发出测试命令, 以便对业务开通前 PON中的分光器和光纤链路状态进行预检测; 或者, 管理设 备也可以在 PON业务运行过程中, 向测试设备发出测试命令, 以便对业务运行 过程中的分光器和光纤链路状态进行实时检测。
步骤 202: 测试设备发送测试光信号。
当测试设备接收到管理设备发出的测试指令后, 发出测试光信号, 结合图 1A可知, 该测试光信号经过光缆传输到分光器。
本实施例中的分光器包括光输入端口、 N+1个光输出端口, N+1个光输出 端口中的一个光输出端口的端面设置有反射膜, N为自然数, 其中, N个光 输出端口用于将所述光输入端口接收到的光信号按照 1: N比例, 通过 N个分支 光纤传输到 N个光网络单元 ONU; —个光输出端口, 用于将所述光输入端口接 收到的由测试设备发出的测试光信号通过所述反射膜进行反射, 以使所述测试 设备根据接收到的反射光信号获得所述分光器的反射峰功率。
步骤 203: 测试设备接收反射光信号, 该反射光信号为测试光信号经过光缆 传输到分光器后由所述分光器反射的光信号, 分别执行步骤 204和步骤 207。
本实施例中, 分光器具有反射光信号的功能, 因此测试设备发出的测试光 信号传输到分光器后, 分光器可以向测试设备反射该测试光信号, 即使测试设 备接收到反射光信号。
本发明实施例中的分光器与现有技术中的分光器相比, 为能够按照预设的 反射比例对测试光信号进行反射的新型的分光器。 其中, 当测试光信号从新型 的分光器的合路端进入后, 该测试光信号由分路端的反射器按照预设的反射比 例进行反射, 生成反射光信号。
步骤 204: 测试设备根据反射光信号获得分光器的反射峰功率。
其中, 测试设备在接收到反射光信号后, 可以直接获得该反射光信号的反 射光功率, 并通过对反射光功率进行测量得到分光器的反射峰功率, 其中对反 射光功率进行测量得到反射峰功率的过程与现有技术一致, 在此不再赘述。
步骤 205: 测试设备将反射峰功率上报到管理设备。
步骤 206: 管理设备通过比较反射峰功率和分光器的预设反射功率,对光网 络进行检测, 结束当前流程。
其中, 管理设备可以计算预设反射功率和反射峰功率的差值, 当差值小于 第一功率门限时, 检测到测试设备与所述分光器之间的光纤链路正常, 以及分 光器正常; 当差值在第一功率门限和第二功率门限之间时, 检测到测试设备与 所述分光器之间的光纤链路发生故障; 当所述差值在所述第二功率门限和第三 功率门限之间时, 检测到所述分光器发生故障, 本实施例中, 由于测试设备设 置在 OLT侧, 因此检测到的测试设备与分光器之间的光纤链路状态即为 OLT与 分光器之间光缆的光纤链路状态。 其中, 第一功率门限小于所述第二功率门限, 且所述第二功率门限小于所述第三功率门限。, 第一功率门限、 第二功率门和第 三功率门限可以根据 PON 中光器件的类型以及光链路结构的不同进行灵活设 置, 对此本发明实施例不进行限制。
步骤 207: 测试设备记录反射光信号的接收时间。
步骤 208: 测试设备将接收时间上报到管理设备。
步骤 209: 管理设备根据接收时间计算分光器与测试设备之间的距离, 结束 当前流程。
本实施例中, 当测试设备接收到反射光信号后, 将记录的接收时间上报到 管理设备, 管理设备可以根据该接收时间计算出测试设备发出测试光信号到接 收到反射光信号的时间, 从而根据光速与该时间的乘积计算出分光器与测试设 备之间的距离, 作为 PON检测的一部分, 管理设备可以根据计算得到的分光器 与测试设备之间的距离, 获得分光器的地理设置情况。
由上述实施例可见, 该实施例利用具有反射性能的分光器, 使得测试设备 可以在光线路终端通过接收分光器反射的光信号对光网络中的分光器状态和光 纤链路状态进行检测, 由于无需检测人员携带测试设备到分光器现场进行检测, 因此提高了光网络性能的检测效率。
参见图 3A, 为应用本发明实施例的一个光网络检测架构示意图:
图 3A中, 管理设备分别与 OLT和测试设备相连, 测试设备通过波分复用 ( Wavelength Division Multiplexing, WDM )设备连接到 OLT与分光器之间的主 干光缆上。其中,图 3A中示出的 PON架构釆用一级分光架构,即 OLT到 ONUs 之间仅设置一个光分器, 一级分光架构一般应用在用户比较集中的地方, 以此 降低光缆的成本, 而且网络节点少, 易于维护。
结合图 3A, 假设当前处于 PON业务开通前的预检测阶段, 其中, 一级分 光器的分光比 1 : N, 例如为 1:32, 分光器反射功率的理论值为 xdB , 需要说明 的是, 分光器反射功率的理论值与分光器的状态相关, 当分光器状态劣化时, 该理论值可能降低, 对此本发明实施例不进行限制。 其中, 在一级分光器的输 出端的反射端口上镀有一层反射膜, 用于对接收到的测试光信号进行反射。
当测试设备接收到管理设备下发的测试指令后, 发出测试光信号, 该测试 光信号的波长可以为 1625nm (纳米)或 1650nm。 测试光信号经过光缆传输到 一级分光器后, 由一级分光器的反射端口的反射膜进行反射, 相应的, 测试设 备接收到反射光信号。 测试设备可以对该反射光信号进行测量得到一级分光器 的反射峰功率 x'dB, 测试设备将反射峰功率 x'dB上报到管理设备, 管理设备计 算 X与 x,的差值, 如果差值小于第一功率门限 W1 , 则确定一级分光器和 OLT 与一级分光器之间的光纤链路正常, 如果差值在第一功率门限 W1 和第二功率 门限 W2之间, 则确定 OLT与一级分光器之间的光纤链路故障, 如果差值在第 二功率门限 W2和第三功率门限 W3之间, 则确定一级分光器故障。 其中, W1 小于 W2, 且 W2小于 W3 , Wl、 W2和 W3可以根据 PON中光器件的类型以及 光链路结构的不同进行灵活设置, 对此本发明实施例不进行限制。
参见图 3B, 为应用本发明实施例的另一个光网络检测架构示意图: 图 3B中, 管理设备分别与 OLT和测试设备相连, 测试设备通过 WDM设 备连接到 OLT与分光器之间的主干光缆上。 其中, 图 3B中示出 PON架构釆用 二级分光架构, 即 OLT到 ONU之间设置二个光分器, 分别为一级分光器和二 级分光器, 二级分光架构一般应用在用户比较分散的地方, 釆取博覆盖的方式, 以此节约资源。
结合图 3B,假设当前处于 PON业务开通后的实时检测阶段, 其中, 一级分 光器的分光比为 1 : M,例如为 1:4,二级分光器的分光比为 1 : Μ' ,例如为 1: 16, 且假设业务正常运行时获得的一级分光器的反射功率为 yl , 二级分光器的反射 功率为 y2。 其中, 在一级分光器和二级分光器的输出端的反射端口上分别镀有 一层反射膜, 用于对接收到的测试光信号进行反射。
当测试设备接收到管理设备下发的测试指令后, 发出测试光信号, 该测试 光信号的波长可以为 1520nm。 测试光信号经过光缆传输到一级分光器, 并由一 级分光器继续传输到二级分光器, 其中传输到一级分光器的测试光信号首先通 过一级分光器的反射端口的反射膜反射回测试设备, 使测试设备接收到第一反 射光信号, 然后传输到二级分光器的测试光信号通过二级分光器的反射端口的 反射膜反射回测试设备, 使测试设备接收到第二反射光信号。 测试设备可以分 别测试第一反射光信号得到一级分光器的反射峰功率 yl,, 以及测试第二反射光 信号得到二级分光器的反射峰功率 y2,,测试设备将一级分光器的反射峰功率 yl, 和二级分光器的反射峰功率 y2,上报到管理设备,管理设备计算 yl与 yl,的差值, 并根据该差值对 OLT与一级分光器之间的光纤链路, 以及该一级分光器的状态 进行检测, 具体检测过程与前述对图 3 A中根据 X与 x,的差值对 OLT与一级分 光器之间的光纤链路以及一级分光器的状态进行检测的过程一致, 在此不再赘 述; 同理, 管理设备计算 y2与 y2,的差值, 并根据该差值对 OLT与二级分光器 之间的光纤链路, 以及该耳机分光器的状态进行检测。 其中, 当检测到 OLT与 一级分光器之间的光纤链路正常, 但是 OLT与二级分光器之间的光纤链路故障 时, 可以进一步确定一级分光器与二级分光器之间的光纤链路发生故障。
与本发明光网络检测方法的实施例相对应, 本发明还提供了光网络检测装 置、 测试设备和管理设备的实施例。
参见图 4, 为本发明光网络检测装置的一个实施例框图, 该装置可以设置在 测试设备内:
该装置包括: 发出单元 410、 接收单元 420、 获得单元 430和上报单元 440。 其中, 发出单元 410, 用于发出测试光信号;
接收单元 420, 用于接收反射光信号, 所述反射光信号为所述发出单元 410 发出的测试光信号经过光缆传输到分光器后由所述分光器反射的光信号, 其中, 所述分光器设置有 N+1个光输出端口, 所述 N为自然数, 所述 N+1个光输出端 口中的 N个光输出端口用于将接收到的光信号按照 1:N比例, 通过 N个分支光 纤传输到 N个光网络单元 ONU,除所述 N个光输出端口的一个光输出端口的端 面设置有反射膜, 通过所述反射膜对所述测试光信号进行反射;
获得单元 430,用于根据所述接收单元 420接收到的反射光信号获得所述分 光器的反射峰功率; 以使所述管理设备通过比较所述反射峰功率和所述分光器的预设反射功率, 对 所述光网络进行检测。
可选的, 所述获得单元 430可以包括(图 4中未示出):
反射光功率获得子单元, 用于获得所述反射光信号的反射光功率; 功率进行测量得到所述分光器的反射峰功率。
参见图 5, 为本发明光网络检测装置的另一个实施例框图, 该装置可以设置 在测试设备内:
该装置包括: 发出单元 510、 接收单元 520、 记录单元 530、 获得单元 540 和上 4艮单元 550。
其中, 发出单元 510, 用于发出测试光信号;
接收单元 520, 用于接收反射光信号, 所述反射光信号为所述发出单元 510 发出的测试光信号经过光缆传输到分光器后由所述分光器反射的光信号, 其中, 所述分光器设置有 N+1个光输出端口, 所述 N为自然数, 所述 N+1个光输出端 口中的 N个光输出端口用于将接收到的光信号按照 1:N比例, 通过 N个分支光 纤传输到 N个光网络单元 ONU,除所述 N个光输出端口的一个光输出端口的端 面设置有反射膜, 通过所述反射膜对所述测试光信号进行反射;
记录单元 530 ,用于记录所述接收单元 520接收到的反射光信号的接收时间; 获得单元 540,用于根据所述接收单元 520接收到的反射光信号获得所述分 光器的反射峰功率;
上报单元 550,用于将所述记录单元 530记录的接收时间上报到所述管理设 备, 以使所述管理设备根据所述接收时间计算所述分光器与所述测试设备之间 的距离, 以及将所述获得单元 540获得的反射峰功率上报到管理设备, 以使所 述管理设备通过比较所述反射峰功率和所述分光器的预设反射功率, 对所述光 网络进行检测。
可选的, 所述获得单元 540可以包括(图 5中未示出):
反射光功率获得子单元, 用于获得所述反射光信号的反射光功率; 功率进行测量得到所述分光器的反射峰功率。
参见图 6, 为本发明测试设备的实施例框图:
该测试设备包括: 网络接口 610、 光接口 620和处理器 630。
其中, 所述光接口 620, 用于发出测试光信号, 并接收反射光信号, 所述反 射光信号为所述测试光信号经过光缆传输到分光器后由所述分光器反射的光信 号, 其中, 所述分光器设置有 N+1个光输出端口, 所述 N为自然数, 所述 N+1 个光输出端口中的 N个光输出端口用于将接收到的光信号按照 1: N比例, 通过 N个分支光纤传输到 N个光网络单元 ONU,除所述 N个光输出端口的一个光输 出端口的端面设置有反射膜, 通过所述反射膜对所述测试光信号进行反射; 所述处理器 630, 用于根据所述反射光信号获得所述分光器的反射峰功率, 并将所述反射峰功率通过所述网络接口 610上报到管理设备, 以使所述管理设 备通过比较所述反射峰功率和所述分光器的预设反射功率, 对所述光网络进行 检测。
可选的,所述处理器 630,可以具体用于获得所述反射光信号的反射光功率, 对所述反射光功率进行测量得到所述分光器的反射峰功率。
可选的, 所述处理器 630, 还可以用于记录所述反射光信号的接收时间, 并 通过所述网络接口将所述接收时间上报到所述管理设备, 以使所述管理设备根 据所述接收时间计算所述分光器与所述测试设备之间的距离。
参见图 7, 为本发明光网络检测装置的另一个实施例框图, 该装置可以设置 在管理设备内:
该装置包括: 接收单元 710和检测单元 720。
其中, 接收单元 710, 用于接收测试设备上报的反射峰功率, 所述反射峰功 率为所述测试设备根据反射光信号获得的分光器的反射峰功率, 所述反射光信 号为所述测试设备发出的测试光信号经过光缆传输到所述分光器后由所述分光 器反射的光信号, 其中, 所述分光器设置有 N+1个光输出端口, 所述 N为自然 数,所述 N+1个光输出端口中的 N个光输出端口用于将接收到的光信号按照 1: N 比例, 通过 N个分支光纤传输到 N个光网络单元 ONU, 除所述 N个光输出端 口的一个光输出端口的端面设置有反射膜, 通过所述反射膜对所述测试光信号 进行反射;
检测单元 720,用于通过比较所述接收单元 710接收到的反射峰功率和所述 分光器的预设反射功率, 对所述光网络进行检测。
可选的, 所述检测单元 720可以包括(图 7中未示出 )··
差值计算子单元, 用于计算所述预设反射功率和所述接收单元接收到的反 射峰功率的差值;
检测确定子单元, 用于当所述差值计算子单元计算到的差值小于第一功率 门限时, 检测到所述测试设备与所述分光器之间的光纤链路正常, 以及所述分 光器正常; 当所述差值计算子单元计算到的差值在所述第一功率门限和第二功 率门限之间时, 检测到所述测试设备与所述分光器之间的光纤链路发生故障; 当所述差值计算子单元计算到的差值在所述第二功率门限和第三功率门限之间 时, 检测到所述分光器发生故障。
参见图 8, 为本发明光网络检测装置的另一个实施例框图, 该装置可以设置 在管理设备内:
该装置包括: 接收单元 810、 计算单元 820和检测单元 830。
其中, 接收单元 810, 用于接收测试设备上报的反射峰功率, 所述反射峰功 率为所述测试设备根据反射光信号获得的分光器的反射峰功率, 所述反射光信 号为所述测试设备发出的测试光信号经过光缆传输到所述分光器后由所述分光 器反射的光信号; 以及, 接收所述测试设备上报的所述反射光信号的接收时间, 其中, 所述分光器设置有 N+1个光输出端口, 所述 N为自然数, 所述 N+1个光 输出端口中的 N个光输出端口用于将接收到的光信号按照 1: N比例, 通过 N个 分支光纤传输到 N个光网络单元 ONU,除所述 N个光输出端口的一个光输出端 口的端面设置有反射膜, 通过所述反射膜对所述测试光信号进行反射; 计算单元 820,用于根据所述接收单元 810接收到的接收时间计算所述分光 器与所述测试设备之间的距离;
检测单元 830,用于通过比较所述接收单元 810接收到的反射峰功率和所述 分光器的预设反射功率, 对所述光网络进行检测。
可选的, 所述检测单元 830可以包括(图 8中未示出):
差值计算子单元, 用于计算所述预设反射功率和所述接收单元接收到的反 射峰功率的差值;
检测确定子单元, 用于当所述差值计算子单元计算到的差值小于第一功率 门限时, 检测到所述测试设备与所述分光器之间的光纤链路正常, 以及所述分 光器正常; 当所述差值计算子单元计算到的差值在所述第一功率门限和第二功 率门限之间时, 检测到所述测试设备与所述分光器之间的光纤链路发生故障; 当所述差值计算子单元计算到的差值在所述第二功率门限和第三功率门限之间 时, 检测到所述分光器发生故障。
参见图 9, 为本发明管理设备的实施例框图:
该管理设备包括: 网络接口 910和处理器 920。
其中, 所述网络接口 910, 用于接收测试设备上报的反射峰功率, 所述反射 峰功率为所述测试设备根据反射光信号获得的分光器的反射峰功率, 所述反射 光信号为所述测试设备发出的测试光信号经过光缆传输到所述分光器后由所述 分光器反射的光信号, 其中, 所述分光器设置有 N+1个光输出端口, 所述 N为 自然数, 所述 N+1个光输出端口中的 N个光输出端口用于将接收到的光信号按 照 1:N比例, 通过 N个分支光纤传输到 N个光网络单元 ONU, 除所述 N个光 输出端口的一个光输出端口的端面设置有反射膜, 通过所述反射膜对所述测试 光信号进行反射;
所述处理器 920,用于通过比较所述反射峰功率和所述分光器的预设反射功 率, 对所述光网络进行检测。
可选的, 所述处理器 920, 可以具体用于计算所述预设反射功率和所述反射 峰功率的差值; 当所述差值小于第一功率门限时, 检测到所述测试设备与所述 分光器之间的光纤链路正常, 以及所述分光器正常; 当所述差值在所述第一功 率门限和第二功率门限之间时, 检测到所述测试设备与所述分光器之间的光纤 链路发生故障; 当所述差值在所述第二功率门限和第三功率门限之间时, 检测 到所述分光器发生故障, 其中, 所述第一功率门限小于所述第二功率门限, 且 所述第二功率门限小于所述第三功率门限。
可选的, 所述网络接口 910 , 还可以用于接收所述测试设备上 ^艮的所述反射 光信号的接收时间; 所述处理器 920, 还可以用于根据所述接收时间计算所述分 光器与所述测试设备之间的距离。
由上述实施例可见, 测试设备发出测试光信号, 并接收反射光信号, 反射 光信号为所述测试光信号经过光缆传输到分光器后由所述分光器反射的光信 号, 所述分光器的一个输出端口的端面设置有反射膜, 通过所述反射膜对所述 测试光信号进行反射, 测试设备根据反射光信号获得分光器的反射峰功率, 并 将反射峰功率上报到管理设备, 管理设备通过比较反射峰功率和分光器的预设 反射功率, 对光网络进行检测。 由于本发明实施例利用具有反射性能的分光器, 使得测试设备可以在光线路终端通过接收分光器反射的光信号对光网络中的分 光器状态和光纤链路状态进行检测, 由于无需检测人员携带测试设备到分光器 现场进行检测, 因此提高了光网络性能的检测效率。
本领域的技术人员可以清楚地了解到本发明实施例中的技术可借助软件加 必需的通用硬件平台的方式来实现。 基于这样的理解, 本发明实施例中的技术 方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出 来, 该计算机软件产品可以存储在存储介质中, 如 ROM/RAM、 磁碟、 光盘等, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网 络设备等)执行本发明各个实施例或者实施例的某些部分所述的方法。
本说明书中的各个实施例均釆用递进的方式描述, 各个实施例之间相同相 似的部分互相参见即可, 每个实施例重点说明的都是与其他实施例的不同之处。 尤其, 对于系统实施例而言, 由于其基本相似于方法实施例, 所以描述的比较 简单, 相关之处参见方法实施例的部分说明即可。
以上所述的本发明实施方式, 并不构成对本发明保护范围的限定。 任何在 本发明的精神和原则之内所作的修改、 等同替换和改进等, 均应包含在本发明 的保护范围之内。

Claims

权利 要求 书
1、 一种光网络检测方法, 其特征在于, 所述方法包括:
管理设备接收测试设备上报的反射峰功率, 所述反射峰功率为所述测试设 备根据反射光信号获得的分光器的反射峰功率, 所述反射光信号为所述测试设 备发出的测试光信号经过光缆传输到所述分光器后由所述分光器反射的光信 号, 其中, 所述分光器设置有 N+1个光输出端口, 所述 N为自然数, 所述 N+1 个光输出端口中的 N个光输出端口用于将接收到的光信号按照 1: N比例, 通过 N个分支光纤传输到 N个光网络单元 ONU,除所述 N个光输出端口的一个光输 出端口的端面设置有反射膜, 通过所述反射膜对所述测试光信号进行反射; 通过比较所述反射峰功率和所述分光器的预设反射功率, 对所述光网络进 行检测。
2、 根据权利要求 1所述的方法, 其特征在于, 所述通过比较所述反射峰功 率和所述分光器的预设反射功率, 对所述光网络进行检测, 包括:
计算所述预设反射功率和所述反射峰功率的差值;
当所述差值小于第一功率门限时, 检测到所述测试设备与所述分光器之间 的光纤链路正常, 以及所述分光器正常; 当所述差值在所述第一功率门限和第 二功率门限之间时, 检测到所述测试设备与所述分光器之间的光纤链路发生故 障; 当所述差值在所述第二功率门限和第三功率门限之间时, 检测到所述分光 器发生故障, 其中, 所述第一功率门限小于所述第二功率门限, 且所述第二功 率门限小于所述第三功率门限。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述方法还包括:
接收所述测试设备上报的所述反射光信号的接收时间;
根据所述接收时间计算所述分光器与所述测试设备之间的距离。
4、 根据权利要求 1至 3任意一项所述的方法, 其特征在于,
当对所述光网络进行业务开通前的预检测时, 所述预设反射功率为所述 光器的反射功率的理论值;
当对所述光网络进行业务开通后的检测时, 所述预设反射功率为所述业务 正常运行时所述分光器的反射功率。
5、 一种光网络检测装置, 其特征在于, 所述装置包括:
接收单元, 用于接收测试设备上报的反射峰功率, 所述反射峰功率为所述 测试设备根据反射光信号获得的分光器的反射峰功率, 所述反射光信号为所述 测试设备发出的测试光信号经过光缆传输到所述分光器后由所述分光器反射的 光信号, 其中, 所述分光器设置有 N+1个光输出端口, 所述 N为自然数, 所述 N+1个光输出端口中的 N个光输出端口用于将接收到的光信号按照 1:N比例, 通过 N个分支光纤传输到 N个光网络单元 ONU, 除所述 N个光输出端口的一 个光输出端口的端面设置有反射膜, 通过所述反射膜对所述测试光信号进行反 射;
检测单元, 用于通过比较所述接收单元接收到的反射峰功率和所述分光器 的预设反射功率, 对所述光网络进行检测。
6、 根据权利要求 5所述的装置, 其特征在于, 所述检测单元包括: 差值计算子单元, 用于计算所述预设反射功率和所述接收单元接收到的反 射峰功率的差值;
检测确定子单元, 用于当所述差值计算子单元计算到的差值小于第一功率 门限时, 检测到所述测试设备与所述分光器之间的光纤链路正常, 以及所述分 光器正常; 当所述差值计算子单元计算到的差值在所述第一功率门限和第二功 率门限之间时, 检测到所述测试设备与所述分光器之间的光纤链路发生故障; 当所述差值计算子单元计算到的差值在所述第二功率门限和第三功率门限之间 时, 检测到所述分光器发生故障, 其中, 所述第一功率门限小于所述第二功率 门限, 且所述第二功率门限小于所述第三功率门限。
7、 根据权利要求 5或 6所述的管理设备, 其特征在于,
所述接收单元, 还用于接收所述测试设备上报的所述反射光信号的接收时 间;
所述装置还包括:
计算单元, 用于根据所述接收单元接收到的接收时间计算所述分光器与所 述测试设备之间的距离。
8、 一种光网络检测系统, 其特征在于, 所述系统包括: 检测设备、 管理设 备和分光器, 其中,
所述测试设备, 用于发出测试光信号, 并接收反射光信号, 所述反射光信 号为所述测试光信号经过光缆传输到所述分光器后由所述分光器反射的光信 号, 根据所述反射光信号获得所述分光器的反射峰功率, 并将所述反射峰功率 上报到管理设备;
所述分光器, 用于通过 N个光输出端口将接收到的光信号按照 1:N比例, 通过 N个分支光纤传输到 N个光网络单元 ONU, 以及通过除所述 N个光输出 端口的一个光输出端口的端面设置的反射膜对所述测试光信号进行反射, 以使 所述测试设备接收到所述反射光信号, 其中, 所述 N为自然数;
所述管理设备, 用于通过比较所述反射峰功率和所述分光器的预设反射功 率, 对所述光网络进行检测。
9、 根据权利要求 8所述的系统, 其特征在于, 所述分光器为按照预设的反 射比例对所述测试光信号进行反射的分光器。
10、 一种分光器, 其特征在于, 所述分光器包括: 光输入端口、 N+1 个光 输出端口, 所述 N+1个光输出端口中的一个光输出端口的端面设置有反射膜, 所述 N为自然数, 其中,
所述 N个光输出端口, 用于将所述光输入端口接收到的光信号按照 1:N比 例, 通过 N个分支光纤传输到 N个光网络单元 ONU;
所述一个光输出端口, 用于将所述光输入端口接收到的由测试设备发出的 测试光信号通过所述反射膜进行反射, 以使所述测试设备根据接收到的反射光 信号获得所述分光器的反射峰功率。
PCT/CN2014/084976 2013-08-30 2014-08-22 光路处理方法和装置 WO2015027859A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016514273A JP6105158B2 (ja) 2013-08-30 2014-08-22 光パス処理方法及び装置
EP14839363.0A EP3018838B1 (en) 2013-08-30 2014-08-22 Optical path processing method and apparatus
KR1020157025499A KR101751158B1 (ko) 2013-08-30 2014-08-22 광 네트워크 검출 방법, 장치 및 시스템
US14/880,919 US9735865B2 (en) 2013-08-30 2015-10-12 Method, apparatus and system for detecting optical network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310389084.8 2013-08-30
CN201310389084.8A CN104426603A (zh) 2013-08-30 2013-08-30 光网络检测方法、装置、设备、系统及分光器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/880,919 Continuation US9735865B2 (en) 2013-08-30 2015-10-12 Method, apparatus and system for detecting optical network

Publications (1)

Publication Number Publication Date
WO2015027859A1 true WO2015027859A1 (zh) 2015-03-05

Family

ID=52585564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084976 WO2015027859A1 (zh) 2013-08-30 2014-08-22 光路处理方法和装置

Country Status (6)

Country Link
US (1) US9735865B2 (zh)
EP (1) EP3018838B1 (zh)
JP (1) JP6105158B2 (zh)
KR (1) KR101751158B1 (zh)
CN (1) CN104426603A (zh)
WO (1) WO2015027859A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517924A (zh) * 2020-04-09 2021-10-19 北京今信科技发展有限公司 一种pon网络资源清查方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107196699B (zh) * 2017-06-29 2021-10-15 中国电力科学研究院 一种诊断多层分级无源光纤网络故障的方法和系统
JP2019066259A (ja) * 2017-09-29 2019-04-25 オムロン株式会社 光学センサおよび光学センサにおける異常検出方法
CN110071761B (zh) * 2018-01-24 2022-10-11 华为技术有限公司 一种检测的方法及装置
CN113711509B (zh) * 2019-06-14 2023-12-08 住友电气工业株式会社 车载通信系统、光耦合器以及车载装置
CN112491465A (zh) * 2019-08-23 2021-03-12 中兴通讯股份有限公司 光纤线路检测控制方法、装置、设备及可读存储介质
CN112583489A (zh) * 2019-09-30 2021-03-30 中兴通讯股份有限公司 一种光网络功率控制自动方法及装置、存储介质
CN110933531A (zh) 2019-10-23 2020-03-27 华为技术有限公司 一种端口检测的方法以及装置
CN113783606B (zh) * 2019-12-31 2023-05-16 华为技术有限公司 一种光分配装置和光通信检测系统以及光通信检测方法
CN111669221B (zh) * 2020-04-29 2021-09-21 华为技术有限公司 故障定位的方法、装置和系统
JP7189189B2 (ja) * 2020-10-19 2022-12-13 アンリツ株式会社 Otdr測定装置および測定器制御方法
CN115021807A (zh) * 2022-05-27 2022-09-06 中国电信股份有限公司 分光器的监测方法及分光监测系统
CN115347952B (zh) * 2022-10-19 2023-01-31 高勘(广州)技术有限公司 光路测试方法、装置、设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102204127A (zh) * 2011-05-11 2011-09-28 华为技术有限公司 检测网络设备类型的方法、装置和系统
CN102725975A (zh) * 2011-12-27 2012-10-10 华为技术有限公司 一种光分配网的故障检测方法、装置和光网络系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0918411A (ja) 1995-06-27 1997-01-17 Fujitsu Ltd 光中継器
JP2002357782A (ja) * 2001-05-31 2002-12-13 Fujitsu Ltd 合分波チップ及び双方向伝送用光モジュール
JP4562535B2 (ja) * 2005-01-24 2010-10-13 Nttエレクトロニクス株式会社 光スプリッタ及び光スプリッタ監視システム
JP2006262381A (ja) * 2005-03-18 2006-09-28 Japan Aviation Electronics Industry Ltd 双方向光通信網
JP4932197B2 (ja) * 2005-09-02 2012-05-16 株式会社フジクラ 光線路障害監視装置及び方法
JP4902213B2 (ja) * 2006-02-03 2012-03-21 株式会社フジクラ 光線路監視装置及び方法
CN102055523A (zh) 2009-11-09 2011-05-11 中国移动通信集团江苏有限公司 一种诊断无源光网络故障的方法、设备及系统
CN102104421B (zh) 2009-12-16 2015-03-25 华为技术有限公司 光纤网络中分支光纤故障检测方法、装置以及光纤网络
CN102104423A (zh) * 2009-12-22 2011-06-22 中兴通讯股份有限公司 一种多分支无源光网络的故障检测方法和系统
EP2432140B1 (en) * 2010-09-17 2014-11-12 ADVA Optical Networking SE Monitoring node and reflector node of an optical communication network, optical communication network, and method for operating an optical communication network
CN202565272U (zh) * 2011-01-10 2012-11-28 上海坤腾光电科技有限公司 光分路器性能测试系统
CN103582808B (zh) * 2011-05-31 2016-06-01 日本电信电话株式会社 光线路特性分析装置及其分析方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102204127A (zh) * 2011-05-11 2011-09-28 华为技术有限公司 检测网络设备类型的方法、装置和系统
CN102725975A (zh) * 2011-12-27 2012-10-10 华为技术有限公司 一种光分配网的故障检测方法、装置和光网络系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517924A (zh) * 2020-04-09 2021-10-19 北京今信科技发展有限公司 一种pon网络资源清查方法

Also Published As

Publication number Publication date
KR20150119382A (ko) 2015-10-23
JP2016524396A (ja) 2016-08-12
CN104426603A (zh) 2015-03-18
EP3018838A4 (en) 2016-08-17
JP6105158B2 (ja) 2017-03-29
EP3018838B1 (en) 2017-11-15
KR101751158B1 (ko) 2017-07-11
US9735865B2 (en) 2017-08-15
US20160036523A1 (en) 2016-02-04
EP3018838A1 (en) 2016-05-11

Similar Documents

Publication Publication Date Title
WO2015027859A1 (zh) 光路处理方法和装置
CN102714545B (zh) 光收发模块、无源光网络系统、光纤检测方法和系统
CN101079668B (zh) 光纤故障定位设备、方法及装置
US8306417B2 (en) Bidirectional multi-wavelength optical signal routing and amplification module
WO2008092397A1 (fr) Procédé de repérage de point d'événement de fibre, et réseau optique et équipement de réseau associés
WO2012097554A1 (zh) 光线路终端、无源光网络系统及光信号的传输方法
WO2019000876A1 (zh) 一种可动态执行光时域反射检测的光放大器组件和检测方法
WO2011120372A1 (zh) 光纤故障检测系统、方法、光开关和无源光网络系统
WO2021135244A1 (zh) 一种光分配装置和光通信检测系统以及光通信检测方法
CN104202084A (zh) 一种监测时分复用光网络链路故障的装置及方法
WO2021218145A1 (zh) 故障定位的方法、装置和系统
WO2011124169A2 (zh) 检测网络设备类型的方法、装置和系统
WO2011023104A1 (zh) 检测水下设备故障的方法、装置及设备
WO2017206371A1 (zh) 光纤网络故障检测方法、装置和系统
WO2014067094A1 (zh) 分支光纤的故障检测方法、装置及系统
WO2012113301A1 (zh) 光开关系统和信号光的反馈控制方法
CN107078793B (zh) 一种光纤故障诊断方法、装置及系统
CN104205676A (zh) 光线路终端、光收发模块、系统以及光纤检测方法
JP2001021445A (ja) 多分岐光線路試験装置
CN102893539B (zh) 一种光网络监测模块、光通信系统及光网络监测方法
CN105743568B (zh) 一种pon系统中光纤链路检测方法及其装置
JPH08201223A (ja) 光ファイバ線路網の監視方法及びその監視システム
WO2019169525A1 (zh) 一种光性能监测装置及方法
JPH05172693A (ja) スターバス型光ファイバ線路網の監視システム
CN112866832B (zh) 一种测试系统、测试方法、测试模块以及光网络单元onu

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839363

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014839363

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014839363

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157025499

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016514273

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE