WO2021135244A1 - 一种光分配装置和光通信检测系统以及光通信检测方法 - Google Patents

一种光分配装置和光通信检测系统以及光通信检测方法 Download PDF

Info

Publication number
WO2021135244A1
WO2021135244A1 PCT/CN2020/108611 CN2020108611W WO2021135244A1 WO 2021135244 A1 WO2021135244 A1 WO 2021135244A1 CN 2020108611 W CN2020108611 W CN 2020108611W WO 2021135244 A1 WO2021135244 A1 WO 2021135244A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
reflected
light
test
reflector
Prior art date
Application number
PCT/CN2020/108611
Other languages
English (en)
French (fr)
Inventor
祁彪
李三星
周恩宇
杨波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20911260.6A priority Critical patent/EP4075688A4/en
Publication of WO2021135244A1 publication Critical patent/WO2021135244A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0771Fault location on the transmission path

Definitions

  • the embodiments of the present application relate to the field of optical communication, and in particular, to an optical distribution device, an optical communication detection system, and an optical communication detection method.
  • Optical communication systems using PON technology may include: optical line terminal (OLT), optical line terminal (OLT), and optical line terminal (OLT).
  • Distribution network (optical division network, ODN) equipment and optical network unit (optical network unit, ONU), ODN equipment provides an optical transmission channel between the OLT and the ONU.
  • the ODN equipment includes multiple optical fiber links, and each optical fiber link may include an optical fiber and an optical splitter.
  • the optical splitter may be a single-stage or multi-stage optical splitter.
  • the OLT provides optical fiber interfaces for user-oriented passive optical networks.
  • the optical splitter has the function of splitting and combining optical signals.
  • the optical splitter is used for the distribution of optical signals, the connection of optical paths, and the control of the transmission direction of optical signals.
  • the optical splitter can be set in the fiber optic box, and the optical splitter is connected to the ONU through the output port of the fiber optic box, and multiple output ports are usually provided in the fiber optic box.
  • ONU is a form of access node that uses optical cables to convert the transmitted optical signals into electrical signals, and then transmits them to each customer through coaxial cables and other methods.
  • the OLT cannot identify the optical link plug connected to the ONU.
  • Users carry their ONUs that have activated services to other blocks, buildings or rooms under the same ODN device, and can share the ONU with one or more users in other buildings served by the same ODN device. Multiple users can share broadband services. Access.
  • the embodiments of the present application provide an optical distribution device, an optical communication detection system, and an optical communication detection method, which are used to accurately identify the output port in the optical distribution device.
  • an embodiment of the present application provides an optical distribution device, including: an input port, M output ports, and N first optical reflectors, where M is greater than or equal to N, and M and N Is a positive integer, wherein the input ports are respectively connected to the M output ports through M optical fibers; one of the N first optical reflectors is connected to the M in a pluggable manner One of the output ports, wherein each of the N first optical reflectors is used to reflect the test optical signal entering the corresponding output port.
  • the N first optical reflectors are connected to the N output ports in a pluggable manner, so the first optical reflector can be inserted into the output port, or the first optical reflector can be unplugged ,
  • Each first optical reflector is connected to an output port in a pluggable manner, so the N first optical reflectors can be removed from the output port, and the removed first optical reflector cannot reflect the output into the output port.
  • Test optical signal that is, the output port of the removed first optical reflector can be identified by the removed first optical reflector without reflecting the test optical signal. Therefore, the embodiment of the present application can accurately identify the output port of the optical distribution device .
  • the lengths of the N optical fibers corresponding to the N output ports connected to the N first optical reflectors are different from each other; the test optical signals respectively reflected by the N first optical reflectors The corresponding reflection peak parameters are not the same.
  • the input ports in the optical distribution device are connected to M output ports through M optical fibers, and the N output ports of the N first optical reflectors are connected to the corresponding N optical fibers.
  • the fiber lengths of the N optical fibers are different, and the N optical fibers are connected.
  • the fiber lengths of the N fibers corresponding to the N output ports of the first optical reflector are different, and the transmission distances of the test light signals transmitted in different optical fibers are also different.
  • the different test lights reflected by the first optical reflector have different transmission distances.
  • the emission peak parameters corresponding to the signal are also different.
  • the corresponding reflection peak parameters of the test optical signals reflected by the N first optical reflectors are different, so the test optical signals respectively reflected by the N first optical reflectors can be used.
  • the corresponding reflection peak parameters distinguish different output ports.
  • the test optical signals respectively reflected by the N first optical reflectors have different wavelengths.
  • the N first optical reflectors inserted into the N output ports of the optical distribution device can reflect test optical signals of different wavelengths, and the N first optical reflectors have different reflection functions.
  • the detection equipment sequentially inputs test optical signals of different wavelengths into the optical distribution device.
  • Each of the N optical reflectors in the optical distribution device can reflect a test optical signal of one wavelength, and the N first optical reflectors are respectively The wavelength corresponding to the reflected test optical signal is used to distinguish different output ports.
  • the removed first light reflector can be determined by the light detection device, so that the first light reflector is connected to the first light reflector through the first light reflector.
  • the corresponding relationship between the output ports of the optical device identifies the output port that requires an external optical fiber in the optical distribution device.
  • the optical distribution device further includes: an optical splitting module, wherein one port of the optical splitting module is connected to the input port, and the other M ports of the optical splitting module are respectively connected to the M optical fiber.
  • the optical distribution device may include a splitting module.
  • the splitting module is a module for splitting in the optical distribution device. One port of the splitting module is connected to the input port, and the incoming test optical signal is transmitted through the input port of the optical distribution device.
  • the optical splitting module can be divided into M test optical signals, and the other M ports of the optical splitting module are respectively connected to M optical fibers, so that the M test optical signals can be transmitted to the M output ports, for example, some output ports are inserted into the first After the optical reflector is removed, the remaining first optical reflectors that have not been removed can reflect the test optical signal, and the test optical signal is reflected by the first optical reflector inserted in the output port and then transmitted to the optical splitting module.
  • the light detecting device sends the test light signal reflected by the first light reflector that has not been removed among the N first light reflectors.
  • an optical splitting module may be provided in the optical distribution device, and the split transmission of optical signals may be realized through the splitting module.
  • the optical distribution device includes M input ports, wherein the optical distribution device is respectively connected to M ports of an optical splitter through the M input ports.
  • the optical splitter can also be externally connected to the optical distribution device, that is, the optical splitter is a device independent of the optical distribution device.
  • the optical splitter After the test light signal generated by the optical detection device is transmitted to the optical splitter, the optical splitter has M ports, The optical distribution device has M input ports, the optical distribution device is respectively connected to the M ports of the optical splitter through the M input ports, when the first optical reflector inserted into one or more output ports of the optical distribution device is removed , The remaining first optical reflectors that have not been removed can reflect the test optical signal, and the test optical signal is reflected by the first optical reflector inserted in the output port of the optical distribution device and then transmitted to the optical splitter, which is directed to the optical detection device Send the test light signal reflected by the first light reflector that has not been removed among the N first light reflectors.
  • the splitter connected to the optical distribution device can realize the separated transmission of the optical signal.
  • the light distribution device further includes: a second light reflector, wherein the second light reflector is connected to the input port, and the reflection of the second light reflector enters the The second reflection peak of the test optical signal of the input port is used to identify the first reflection peak of the test optical signal reflected by the first optical reflector.
  • a second optical reflector is also provided between the input port and the N output ports in the optical distribution device, and the test optical signal generated by the optical detection device is transmitted to the second optical reflector after passing through the input port.
  • the second optical reflector can transmit the test optical signal to N output ports.
  • N first optical reflectors are inserted into the N output ports, and the second optical reflector is placed between the input port and the N output ports.
  • the second optical reflector reflects the test optical signal, for example
  • the second optical reflector reflects the test optical signal entering the input port, and produces a second reflection peak in the reflected test optical signal.
  • the N first optical reflectors will reflect the test optical signal.
  • the first reflection peak is generated in the reflected test optical signal, and the second reflection peak of the test optical signal reflected by the second optical reflector can be used to identify the first reflection peak.
  • the second reflection peak can be used as a reference point for identifying the first reflection peak. Therefore, the first reflection peak of the test light signal reflected by the first light reflector can be quickly and accurately identified, and the recognition efficiency of the test light signal reflected by the first light reflector can be improved.
  • the light distribution device further includes: N dust caps, one of the N dust caps and one first light reflector form an integrated structure.
  • the dust cap can be inserted into the output port to achieve the effect of waterproof and dustproof and avoid damage to the output port.
  • the dust cap can be an integral structure with the first light reflector, that is, the dust cap and the first light reflector are fixedly connected. When the first light reflector needs to be removed from the first output port, it only needs to be unplugged The dust cap connected with the first light reflector is sufficient, which simplifies the construction connection operation of the light distribution device and the ONU.
  • an embodiment of the present application also provides an optical communication detection system, including: an optical distribution device, an optical detection device, and a network management device, wherein the optical detection device is used to send a test light to the optical distribution device Signal; the optical distribution device for reflecting the test optical signal through the first optical reflector in the optical distribution device, the optical distribution device has M output ports and N first optical reflectors, the M Greater than or equal to the N, the M and the N are positive integers, and one of the N first optical reflectors is connected to one of the M output ports in a pluggable manner Output port; the optical detection device is also used to receive the test optical signal reflected by the first optical reflector, and send the reflected optical signal corresponding to the test optical signal reflected by the first optical reflector to the network management device Parameters; the network management device for receiving the reflected light signal parameters corresponding to the test light signal reflected by the first light reflector sent by the light detection device; according to the test light signal reflected by the first light reflector The corresponding reflected light signal
  • the optical communication detection system includes an optical distribution device, an optical detection device, and a network management device.
  • the removed first optical reflector in the optical distribution device cannot reflect the test optical signal, so that the network management device can be removed
  • the first optical reflector of does not reflect the test light signal to identify the output port of the removed first optical reflector, so the embodiment of the present application can accurately identify the output port of the optical distribution device.
  • the light detection device is used to send a first test light signal to the light distribution device; the light distribution device is used to pass N first test light signals in the light distribution device.
  • the optical reflectors reflect the first test optical signals respectively; the optical detection device is also used to receive the first test optical signals respectively reflected by the N first optical reflectors, and send them to the network management device The reflected optical signal parameters corresponding to the first test optical signals respectively reflected by the N first optical reflectors; the network management device is further configured to receive the N first optical signals sent by the optical detection device The reflected light signal parameters corresponding to the first test light signals respectively reflected by the reflectors; the light is detected according to the reflected light signal parameters corresponding to the first test light signals respectively reflected by the N first light reflectors The state of the optical fiber link between the detection device and the N output ports of the optical distribution device.
  • N first optical reflectors are pluggable connected to the N output ports in the optical distribution device, and the N first optical reflectors can reflect the test optical signal, so that the network management equipment can be based on N
  • the reflected light signal parameters corresponding to the first test light signal reflected by the first light reflectors respectively detect the state of the optical fiber link between the light detection equipment and the N output ports of the light distribution device to detect the light detection equipment to the light Whether the optical fiber link loss between the N output ports in the distribution device is normal.
  • the test light signal is reflected by the first light reflector, and the change in the intensity of the reflection peak of the test light signal reflected by the first light reflector is used to determine the N number from the light detection device to the light distribution device. Whether the loss of the optical fiber link between the output ports is normal. If the loss of the optical fiber link is normal, the construction acceptance of the optical distribution device has passed; if the loss of the optical fiber link is abnormal, the construction acceptance of the optical distribution device has failed.
  • the reflected optical signal parameter includes: the reflected peak intensity of the first test optical signal reflected by the first optical reflector; the network management device is used for the N first
  • the reflection peak intensity corresponding to the first test optical signal respectively reflected by the optical reflectors is lower than the first threshold, and it is determined that the state of the optical fiber link between the optical detection device and the input port of the optical distribution device is abnormal; or, The reflection peak intensity corresponding to the first test optical signal respectively reflected by the N first optical reflectors is lower than a second threshold, and the optical fiber between the input port and the N output ports of the optical distribution device is determined
  • the link status is abnormal; or, the reflection peak intensity corresponding to the first test optical signal respectively reflected by the N first optical reflectors is greater than or equal to the first threshold, and it is determined that the optical detection device and the optical The state of the optical fiber link between the N output ports of the distribution device is normal; wherein the second threshold is smaller than the first threshold.
  • the network management device calculates the reflection peak position of the test optical signal reflected by each first optical reflector, and compares the actually measured reflection peak intensity with the pre-stored reflection peak intensity to determine whether the optical fiber link loss normal.
  • the reflection peak intensity corresponding to the first test light signal reflected by the N first light reflectors is judged with the first threshold and the second threshold, and it can be realized.
  • the construction quality of the output port of the optical distribution device is checked and accepted without manual operation, and the acceptance efficiency of the construction quality of the output port of the optical distribution device is improved.
  • the light detection equipment is used to send a second test optical signal to the light distribution device; the light distribution device is used to pass N-1 of the light distribution devices The first optical reflectors respectively reflect the second test optical signal, the N-1 first optical reflectors are connected to the N-1 output ports among the M output ports, and the N first optical reflectors are The first light reflector that is not connected to the output port cannot reflect the second test light signal; the light detection device is also used to receive the second light reflectors respectively reflected by the N-1 first light reflectors Test optical signals, send to the network management device the reflected optical signal parameters corresponding to the second test optical signals respectively reflected by the N-1 first optical reflectors; the network management device is configured to receive the The parameters of the reflected light signals corresponding to the second test light signals respectively reflected by the N-1 first light reflectors sent by the light detection device; according to the parameters of the reflected light signals respectively reflected by the N-1 first light reflectors The reflected optical signal parameter corresponding to the second test optical signal identifies
  • the network management equipment can also detect whether the output port of the construction is correct.
  • the network management device can communicate with the optical detection device to receive the reflected optical signal parameters corresponding to the test optical signals respectively reflected by the first optical reflectors that are not removed among the N first optical reflectors sent by the optical detection device.
  • the test light signals respectively reflected by the N first light reflectors can be used to distinguish the N output ports. Therefore, the network management device is based on the test light reflected by the first light reflectors that are not removed from the N first light reflectors.
  • the reflected light signal parameter corresponding to the signal determines whether the output port of the removed first optical reflector is the target output port, which solves the situation that the wrong output port may be connected to an external optical fiber during the construction process.
  • the network management device is configured to obtain from the reference database of the network management device when the target output port in the optical distribution device needs to be unplugged from the first optical reflector
  • the reference reflected light signal parameter corresponding to the target output port according to the reflected light signal parameter corresponding to the second test light signal reflected by the N-1 first optical reflectors, the corresponding reflected light signal that disappears is determined Reflected light signal parameter; determining whether the reflected light signal parameter corresponding to the disappeared reflected light signal is the same as the reference reflected light signal parameter corresponding to the target output port, and if the reflected light signal parameter corresponding to the disappeared reflected light signal is the same as
  • the reference reflected light signal parameters corresponding to the target output ports are the same, and it is determined that the target output port is the output port of the optical distribution device from which the first light reflector is unplugged.
  • the output port of the optical distribution device can be identified without manual operation, and the correct connection of the output port of the optical distribution device and the external optical fiber can be ensured.
  • the reflected optical signal parameter includes: a reflection peak position and a reflection peak intensity corresponding to the reflection peak position; or, the reflected optical signal parameter includes: wavelength information of the reflected optical signal.
  • the network management device can determine whether the reflected peak intensity corresponding to the disappeared reflected optical signal is the same as the reference peak intensity corresponding to the target output port, and if the reflected peak intensity corresponding to the disappeared reflected optical signal corresponds to the target output port If the reference reflection peak intensity is the same, it is determined that the target output port is the first output port. If the reflection peak intensity corresponding to the disappeared reflected light signal is different from the reference reflection peak intensity corresponding to the target output port, it is determined that the target output port is not the first output port.
  • the network management device can determine whether the wavelength information corresponding to the disappeared reflected optical signal is the same as the reference wavelength information corresponding to the target output port. If the wavelength information corresponding to the disappeared reflected optical signal is the same as the reference wavelength information corresponding to the target output port, determine The target output port is the first output port, and if the wavelength information corresponding to the disappeared reflected light signal is different from the reference wavelength information corresponding to the target output port, it is determined that the target output port is not the first output port.
  • the optical distribution device further includes: an input port and a second optical reflector, wherein the second optical reflector is connected to the input port; the network management device is configured to Detect the second reflection peak of the test optical signal that enters the input port reflected by the second optical reflector, and identify the first reflection of the test optical signal reflected by the first optical reflector according to the second reflection peak peak.
  • N first optical reflectors are inserted into the N output ports, and the second optical reflector is placed between the input port and the N output ports, and the second optical reflector reflects the test light. Signals, for example, the second optical reflector reflects the test light signal entering the input port, and a second reflection peak is generated in the reflected test light signal.
  • N first light reflectors will reflect the test light Signal
  • the first reflection peak is generated in the reflected test light signal
  • the second reflection peak of the test light signal reflected by the second light reflector can be used to identify the first reflection peak, for example, the second reflection peak can be used as the identification first reflection peak Therefore, the first reflection peak of the test light signal reflected by the first light reflector can be quickly and accurately identified, and the recognition efficiency of the test light signal reflected by the first light reflector can be improved.
  • an embodiment of the present application also provides an optical communication detection method, including: a network management device receives a reflected optical signal parameter corresponding to a test optical signal reflected by a first optical reflector sent by the optical detection device, wherein the second The test light signal reflected by a light reflector is sent by the light distribution device to the light detection device, and the test light signal is sent by the light detection device to the light distribution device, and the light distribution device has M output ports.
  • the M is greater than or equal to the N, the M and the N are positive integers, and one first light reflector of the N first light reflectors can be inserted
  • One output port of the M output ports is connected in a pull-out manner; the network management device identifies the output port of the optical distribution device according to the reflected light signal parameter corresponding to the test optical signal reflected by the first optical reflector.
  • the optical communication detection system includes an optical distribution device, and the removed first optical reflector in the optical distribution device cannot reflect the test optical signal, so that the network management equipment can pass through the removed first optical reflector without reflection The optical signal is tested to identify the output port of the removed first optical reflector, so the embodiment of the present application can accurately identify the output port of the optical distribution device.
  • the method further includes: When the network management device receives the reflected optical signal parameters corresponding to the first test optical signals respectively reflected by the N first optical reflectors sent by the optical detection device, the network management device determines the parameters according to the N first optical reflectors.
  • the reflected light signal parameters corresponding to the first test light signal respectively reflected by the light reflectors are used to detect the state of the optical fiber link between the light detection device and the N output ports of the light distribution device.
  • N first optical reflectors are pluggable connected to the N output ports in the optical distribution device, and the N first optical reflectors can reflect the test optical signal, so that the network management equipment can be based on N
  • the reflected light signal parameters corresponding to the first test light signal reflected by the first light reflectors respectively detect the state of the optical fiber link between the light detection equipment and the N output ports of the light distribution device to detect the light detection equipment to the light Whether the optical fiber link loss between the N output ports in the distribution device is normal.
  • the test light signal is reflected by the first light reflector, and the change in the intensity of the reflection peak of the test light signal reflected by the first light reflector is used to determine the N number from the light detection device to the light distribution device. Whether the loss of the optical fiber link between the output ports is normal. If the loss of the optical fiber link is normal, the construction acceptance of the optical distribution device has passed; if the loss of the optical fiber link is abnormal, the construction acceptance of the optical distribution device has failed.
  • the reflected optical signal parameter includes: the reflected peak intensity of the first test optical signal reflected by the first optical reflector; and the network management device reflects the first optical signal according to the N first optical reflectors.
  • the reflected optical signal parameters corresponding to the first test optical signal respectively reflected by the optical device to detect the optical fiber link state between the optical detection device and the N output ports of the optical distribution device including: the Nth The reflection peak intensity corresponding to the first test optical signal respectively reflected by an optical reflector is lower than a first threshold, and the network management device determines the optical fiber link between the optical detection device and the input port of the optical distribution device The path status is abnormal; or, the reflection peak intensity corresponding to the first test optical signal reflected by the N first optical reflectors is lower than a second threshold, and the network management device determines that the input port and the optical The state of the optical fiber link between the M output ports of the distribution device is abnormal; or, the reflection peak intensity corresponding to the first test optical signal reflected by the N first optical reflectors is greater
  • the network management device calculates the reflection peak position of the test optical signal reflected by each first optical reflector, and compares the actually measured reflection peak intensity with the pre-stored reflection peak intensity to determine whether the optical fiber link loss normal.
  • the reflection peak intensity corresponding to the first test light signal reflected by the N first light reflectors is judged with the first threshold and the second threshold, and it can be realized.
  • the construction quality of the output port of the optical distribution device is checked and accepted without manual operation, and the acceptance efficiency of the construction quality of the output port of the optical distribution device is improved.
  • the network management device identifies the output port of the optical distribution device according to the reflected optical signal parameter corresponding to the test optical signal reflected by the first optical reflector, including: When the device receives the reflected optical signal parameters corresponding to the second test optical signals respectively reflected by the N-1 first optical reflectors sent by the optical detection device, the network management device reflects according to the N-1 first optical reflectors.
  • the parameters of the reflected light signal corresponding to the second test optical signal reflected by the optical device identify the output port of the unplugged first optical reflector in the optical distribution device; wherein, the N-1 first optical reflectors are connected Among the N-1 output ports of the M output ports, the first optical reflector that is not connected to the output port among the N first optical reflectors cannot reflect the second test optical signal.
  • the network management equipment can also detect whether the output port of the construction is correct.
  • the network management device can communicate with the optical detection device to receive the reflected optical signal parameters corresponding to the test optical signals respectively reflected by the first optical reflectors that are not removed among the N first optical reflectors sent by the optical detection device.
  • the test light signals respectively reflected by the N first light reflectors can be used to distinguish the N output ports. Therefore, the network management device is based on the test light reflected by the first light reflectors that are not removed from the N first light reflectors.
  • the reflected light signal parameter corresponding to the signal determines whether the output port of the removed first optical reflector is the target output port, which solves the situation that the wrong output port may be connected to an external optical fiber during the construction process.
  • the network management device identifies the reflected light signal parameter corresponding to the second test optical signal reflected by the N-1 first optical reflectors, respectively, of the optical distribution device being Unplugging the output port of the first optical reflector includes: when the target output port in the optical distribution device needs to be unplugged from the first optical reflector, the network management device reads from the reference database of the network management device Acquire the reference reflected optical signal parameter corresponding to the target output port; the network management device determines the disappearance according to the reflected optical signal parameter corresponding to the second test optical signal respectively reflected by the N-1 first optical reflectors The reflected light signal parameter corresponding to the reflected light signal; the network management device determines whether the reflected light signal parameter corresponding to the disappeared reflected light signal is the same as the reference reflected light signal parameter corresponding to the target output port; if the disappearance The reflected optical signal parameter corresponding to the reflected optical signal is the same as the reference reflected optical signal parameter corresponding to the target output port, and the network management device determine
  • the network management device determines that the target output port is not the optical The output port of the first light reflector is unplugged in the distribution device.
  • the output port of the optical distribution device can be identified without manual operation, and the correct connection of the output port of the optical distribution device and the external optical fiber can be ensured.
  • the reflected optical signal parameter includes: a reflection peak position and a reflection peak intensity corresponding to the reflection peak position; or, the reflected optical signal parameter includes: the wavelength of the reflected optical signal.
  • the network management device can determine whether the reflected peak intensity corresponding to the disappeared reflected optical signal is the same as the reference peak intensity corresponding to the target output port, and if the reflected peak intensity corresponding to the disappeared reflected optical signal corresponds to the target output port If the reference reflection peak intensity is the same, it is determined that the target output port is the first output port. If the reflection peak intensity corresponding to the disappeared reflected light signal is different from the reference reflection peak intensity corresponding to the target output port, it is determined that the target output port is not the first output port.
  • the network management device can determine whether the wavelength information corresponding to the disappeared reflected optical signal is the same as the reference wavelength information corresponding to the target output port. If the wavelength information corresponding to the disappeared reflected optical signal is the same as the reference wavelength information corresponding to the target output port, determine The target output port is the first output port, and if the wavelength information corresponding to the disappeared reflected light signal is different from the reference wavelength information corresponding to the target output port, it is determined that the target output port is not the first output port.
  • the optical distribution device further includes: an input port and a second optical reflector, wherein the second optical reflector is connected to the input port; the method further includes: the The network management device detects the second reflection peak of the test optical signal entering the input port reflected by the second optical reflector; the network management device identifies the reflection peak of the first optical reflector according to the second reflection peak Test the first reflection peak of the optical signal.
  • N first optical reflectors are inserted into the N output ports, and the second optical reflector is placed between the input port and the N output ports, and the second optical reflector reflects the test light. Signals, for example, the second optical reflector reflects the test light signal entering the input port, and a second reflection peak is generated in the reflected test light signal.
  • N first light reflectors will reflect the test light Signal
  • the first reflection peak is generated in the reflected test light signal
  • the second reflection peak of the test light signal reflected by the second light reflector can be used to identify the first reflection peak, for example, the second reflection peak can be used as the identification first reflection peak Therefore, the first reflection peak of the test light signal reflected by the first light reflector can be quickly and accurately identified, and the recognition efficiency of the test light signal reflected by the first light reflector can be improved.
  • the optical distribution device in the optical communication detection system may also have the structural features described in the foregoing first aspect and various possible implementations.
  • the optical distribution device in the optical communication detection system may also have the structural features described in the foregoing first aspect and various possible implementations.
  • the foregoing description of the first aspect and various possible implementations please refer to the foregoing description of the first aspect and various possible implementations. The description in the implementation method.
  • the embodiments of the present application also provide an optical communication detection method, which is applied to an optical communication detection system.
  • the optical communication detection system includes: an optical distribution device, an optical detection device, and a network management device.
  • the method includes: the light detection device sends a test light signal to the light distribution device; the light distribution device reflects the test light signal through a first light reflector in the light distribution device, and the light distribution device has M Output ports and N first light reflectors, the M is greater than or equal to the N, the M and the N are positive integers, one of the N first light reflectors Connect one of the M output ports in a pluggable manner; the optical detection device receives the test optical signal reflected by the first optical reflector, and sends the first optical reflector to the network management device The reflected optical signal parameter corresponding to the test optical signal reflected by the optical device; the network management device receives the reflected optical signal parameter corresponding to the test optical signal reflected by the first optical reflector sent by the optical detection device; the network management device Identify the
  • the optical communication detection system includes an optical distribution device, and the removed first optical reflector in the optical distribution device cannot reflect the test optical signal, so that the network management equipment can pass through the removed first optical reflector without reflection
  • the optical signal is tested to identify the output port of the removed first optical reflector, so the embodiment of the present application can accurately identify the output port of the optical distribution device.
  • the method further includes: when the network management device receives the reflected optical signal corresponding to the first test optical signal respectively reflected by the N first optical reflectors sent by the optical detection device
  • the network management equipment detects the N number of light detection equipment and the light distribution device according to the reflected light signal parameters corresponding to the first test light signals respectively reflected by the N first light reflectors. The status of the optical fiber link between the output ports.
  • the reflected optical signal parameter includes: the reflected peak intensity of the first test optical signal reflected by the first optical reflector; and the network management device reflects the first optical signal according to the N first optical reflectors.
  • the reflected optical signal parameters corresponding to the first test optical signal respectively reflected by the optical device to detect the optical fiber link state between the optical detection device and the N output ports of the optical distribution device including: the Nth The reflection peak intensity corresponding to the first test optical signal respectively reflected by an optical reflector is lower than a first threshold, and the network management device determines the optical fiber link between the optical detection device and the input port of the optical distribution device The path status is abnormal; or, the reflection peak intensity corresponding to the first test optical signal reflected by the N first optical reflectors is lower than a second threshold, and the network management device determines that the input port and the optical The state of the optical fiber link between the M output ports of the distribution device is abnormal; or, the reflection peak intensity corresponding to the first test optical signal reflected by the N first optical reflectors is greater
  • the network management device calculates the reflection peak position of the test optical signal reflected by each first optical reflector, and compares the actually measured reflection peak intensity with the pre-stored reflection peak intensity to determine whether the optical fiber link loss normal.
  • the reflection peak intensity corresponding to the first test light signal reflected by the N first light reflectors is judged with the first threshold and the second threshold, and it can be realized.
  • the construction quality of the output port of the optical distribution device is checked and accepted without manual operation, and the acceptance efficiency of the construction quality of the output port of the optical distribution device is improved.
  • the network management device identifies the output port of the optical distribution device according to the reflected optical signal parameter corresponding to the test optical signal reflected by the first optical reflector, including: When the device receives the reflected optical signal parameters corresponding to the second test optical signals respectively reflected by the N-1 first optical reflectors sent by the optical detection device, the network management device reflects according to the N-1 first optical reflectors.
  • the parameters of the reflected light signal corresponding to the second test optical signal reflected by the optical device respectively identify the output port of the first optical reflector that is unplugged in the optical distribution device; wherein, the N-1 first optical reflectors are connected to the N-1 output ports among the M output ports, and the first optical reflector that is not connected to the output port among the N first optical reflectors cannot reflect the second test optical signal.
  • the network management equipment can also detect whether the output port of the construction is correct.
  • the network management device can communicate with the optical detection device to receive the reflected optical signal parameters corresponding to the test optical signals respectively reflected by the first optical reflectors that are not removed among the N first optical reflectors sent by the optical detection device.
  • the test light signals respectively reflected by the N first light reflectors can be used to distinguish the N output ports. Therefore, the network management device is based on the test light reflected by the first light reflectors that are not removed from the N first light reflectors.
  • the reflected light signal parameter corresponding to the signal determines whether the output port of the removed first optical reflector is the target output port, which solves the situation that the wrong output port may be connected to an external optical fiber during the construction process.
  • the network management device identifies the reflected light signal parameter corresponding to the second test optical signal reflected by the N-1 first optical reflectors, respectively, of the optical distribution device being Unplugging the output port of the first optical reflector includes: when the target output port in the optical distribution device needs to be unplugged from the first optical reflector, the network management device reads from the reference database of the network management device Acquire the reference reflected optical signal parameter corresponding to the target output port; the network management device determines the disappearance according to the reflected optical signal parameter corresponding to the second test optical signal respectively reflected by the N-1 first optical reflectors The reflected light signal parameter corresponding to the reflected light signal; the network management device determines whether the reflected light signal parameter corresponding to the disappeared reflected light signal is the same as the reference reflected light signal parameter corresponding to the target output port; if the disappearance The reflected optical signal parameter corresponding to the reflected optical signal is the same as the reference reflected optical signal parameter corresponding to the target output port, and the network management device determine
  • the network management device determines that the target output port is not the optical The output port of the first light reflector is unplugged in the distribution device.
  • the output port of the optical distribution device can be identified without manual operation, and the correct connection of the output port of the optical distribution device and the external optical fiber can be ensured.
  • the reflected optical signal parameter includes: a reflection peak position and a reflection peak intensity corresponding to the reflection peak position; or, the reflected optical signal parameter includes: the wavelength of the reflected optical signal.
  • the network management device can determine whether the reflected peak intensity corresponding to the disappeared reflected optical signal is the same as the reference peak intensity corresponding to the target output port, and if the reflected peak intensity corresponding to the disappeared reflected optical signal corresponds to the target output port If the reference reflection peak intensity is the same, it is determined that the target output port is the first output port. If the reflection peak intensity corresponding to the disappeared reflected light signal is different from the reference reflection peak intensity corresponding to the target output port, it is determined that the target output port is not the first output port.
  • the network management device can determine whether the wavelength information corresponding to the disappeared reflected optical signal is the same as the reference wavelength information corresponding to the target output port. If the wavelength information corresponding to the disappeared reflected optical signal is the same as the reference wavelength information corresponding to the target output port, determine The target output port is the first output port, and if the wavelength information corresponding to the disappeared reflected light signal is different from the reference wavelength information corresponding to the target output port, it is determined that the target output port is not the first output port.
  • the optical distribution device further includes: an input port and a second optical reflector, wherein the second optical reflector is connected to the input port; the method further includes: the The network management device detects the second reflection peak of the test optical signal entering the input port reflected by the second optical reflector; the network management device identifies the reflection peak of the first optical reflector according to the second reflection peak Test the first reflection peak of the optical signal.
  • N first optical reflectors are inserted into the N output ports, and the second optical reflector is placed between the input port and the N output ports, and the second optical reflector reflects the test light. Signals, for example, the second optical reflector reflects the test light signal entering the input port, and a second reflection peak is generated in the reflected test light signal.
  • N first light reflectors will reflect the test light Signal
  • the first reflection peak is generated in the reflected test light signal
  • the second reflection peak of the test light signal reflected by the second light reflector can be used to identify the first reflection peak, for example, the second reflection peak can be used as the identification first reflection peak Therefore, the first reflection peak of the test light signal reflected by the first light reflector can be quickly and accurately identified, and the recognition efficiency of the test light signal reflected by the first light reflector can be improved.
  • the embodiments of the present application provide a computer-readable storage medium having instructions stored in the computer-readable storage medium, which when run on a computer, cause the computer to execute the optical detection device and the optical detection device in the third aspect.
  • the embodiments of the present application provide a computer program product containing instructions that, when run on a computer, cause the computer to execute the optical detection device and the network management device in the third aspect, or the method implemented in the fourth aspect .
  • an embodiment of the present application provides an optical communication detection system.
  • the optical communication detection system includes: an optical distribution device, an optical detection device, and a network management device. Both the optical detection device and the network management device include: processing The memory is used to store instructions; the processor is used to execute the instructions in the memory, so that each component device in the optical communication detection system executes the optical detection device and network in the foregoing third aspect Manage equipment, or implement the method described in the fourth aspect.
  • the present application provides a light detection device.
  • the light detection device includes a processor for supporting the light detection device to implement the functions involved in the above third aspect, for example, sending or processing the functions involved in the above method. Data and/or information.
  • the light detection device further includes a memory, and the memory is used to store the necessary program instructions and data of the light detection device.
  • the light detection equipment may be composed of a chip, or may include a chip and other discrete devices.
  • the present application provides a network management device.
  • the network management device includes a processor for supporting the network management device to implement the functions involved in the third aspect or the fourth aspect, for example, sending or processing the foregoing method The data and/or information involved in.
  • the network management device further includes a memory, and the memory is used to store necessary program instructions and data of the network management device.
  • the network management device may be composed of a chip, or may include a chip and other discrete devices.
  • FIG. 1 is a schematic diagram of the composition structure of an optical communication system provided by an embodiment of the application.
  • FIG. 2 is a schematic diagram of the composition structure of an optical distribution device provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of the composition structure of another optical distribution device provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of the composition structure of an optical communication detection system provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of the composition structure of another optical communication detection system provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of the composition structure of an optical fiber box provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of an OTDR detection curve provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a system architecture of an optical fiber box application provided by an embodiment of the application.
  • FIG. 9 is a schematic diagram of the reflected peak power of a reflected optical signal according to an embodiment of the application.
  • FIG. 10 is a schematic diagram of a system architecture of an ONU external to an optical fiber box provided by an embodiment of the application;
  • FIG. 11 is a schematic diagram of identifying a reflection peak from an OTDR detection curve according to an embodiment of the application.
  • FIG. 12 is a schematic diagram of the composition structure of an optical fiber box provided by an embodiment of the application.
  • FIG. 13 is a schematic diagram of a system architecture of another optical fiber box application provided by an embodiment of the application.
  • FIG. 14 is a schematic diagram of another system architecture of an ONU external to an optical fiber box provided by an embodiment of the application;
  • FIG. 15 is another schematic diagram of identifying a reflection peak from an OTDR detection curve provided by an embodiment of the application.
  • 16 is a schematic diagram of the composition structure of another optical fiber box provided by an embodiment of the application.
  • FIG. 17 is a schematic diagram of another OTDR detection curve provided by an embodiment of the application.
  • 18 is a schematic diagram of another system architecture of an ONU external to an optical fiber box provided by an embodiment of the application;
  • FIG. 19 is a schematic diagram of identifying a reflection peak from an OTDR detection curve provided by an embodiment of the application.
  • 20 is a schematic diagram of the composition structure of a light detection device provided by an embodiment of the application.
  • FIG. 21 is a schematic diagram of the composition structure of a network management device provided by an embodiment of the application.
  • the embodiments of the present application provide an optical distribution device, an optical communication detection system, and an optical communication detection method, which are used to accurately identify the output port in the optical distribution device.
  • an optical communication system provided by the embodiments of the present application may include: an optical line terminal (OLT) and an optical distribution network (optical division network, ODN) equipment and t optical network units (ONU).
  • OLT optical line terminal
  • ODN optical division network
  • ONU optical network units
  • the OLT is respectively connected to t ONUs through ODN devices.
  • the t ONUs may be ONU0, ..., ONUt-2, and ONUt-1 shown in FIG. 1.
  • the ODN equipment is a passive device, and the ODN equipment includes an optical distribution device having multiple output ports, and at least one output port is inserted with a light reflector (the light reflector in the subsequent embodiments may be referred to as a reflector for short),
  • the optical distribution device has M output ports, and M is greater than or equal to N.
  • M is greater than N
  • N output ports of the M output ports are inserted into the optical reflector, that is, the optical reflector is inserted into the N output ports of the optical distribution device.
  • the optical distribution device has N output ports in total, and each output port of the N output ports is inserted with an optical reflector.
  • the light reflector is inserted into each output port of the optical distribution device as an example for description.
  • the optical reflector is connected to the output port in a pluggable manner, that is, N optical reflectors can be inserted into N output ports, or one or more output ports in the optical distribution device need to be connected externally.
  • the light reflector is removed from one or more output ports. Therefore, the light reflector in the embodiment of the present application may be a polishable reflector.
  • the optical distribution device may include at least one of the following equipment: optical fiber access terminal (FAT), optical cable splicing box (SSC splitting and splicing closure), optical fiber terminal box (access terminal box, ATB), or optical wiring Frame (optical distribution frame, ODF).
  • FAT optical fiber access terminal
  • SSC splitting and splicing closure optical cable splicing box
  • ATB access terminal box
  • ODF optical wiring Frame
  • the optical distribution frame can be used for the termination and distribution of the backbone optical cable of the central office in the optical communication system, which can conveniently realize the connection, distribution and dispatch of optical fiber lines.
  • the optical fiber distribution box is located at the user access point in the optical access network, and realizes the connection of the distribution optical cable and the home optical cable, the direct connection of the optical fiber, the branching and the protection function, and the optical splitter can be set inside.
  • the optical cable connector box can be an outdoor product that supports human/hand hole installation. It is mainly used in the user access point of the optical access network to realize the connection and divergence of the optical cable and the introduction of the user-end optical fiber cable.
  • the optical fiber terminal box is a passive device used to connect the home optical cable and the indoor ONU. It is installed on the user's inner wall and provides an optical fiber socket for the indoor ONU. It should be noted that the optical distribution device is not limited to the above types, and the optical distribution device may be any node device in the ODN device.
  • an optical distribution device provided by an embodiment of this application includes: an input port, M output ports, and N first optical reflectors, M is greater than or equal to N, M and N Is a positive integer, where
  • the input ports are respectively connected to M output ports through M optical fibers;
  • One of the N first optical reflectors is connected to one of the M output ports in a pluggable manner, where each of the N first optical reflectors is used for Reflect the test optical signal entering the corresponding output port.
  • the optical distribution device has M output ports, and M is greater than or equal to N.
  • Fig. 2 schematically illustrates that when M is greater than N, N output ports of the M output ports are respectively inserted into the first optical reflector , So it is necessary to insert N first optical reflectors in the N output ports, and if M is equal to N, then each of the N output ports in the optical distribution device is inserted with the first optical reflector, where The legend is no longer used.
  • the first optical reflector is connected to the output port in a pluggable manner, that is, the N optical reflectors can be inserted into the N output ports, or can be connected to one or more output ports in the optical distribution device.
  • the first light reflector in the embodiment of the present application may be a polishable reflector.
  • the connection between the output port of the light distribution device and the first optical reflector in FIG. 2 is indicated by a dotted line to indicate the pluggable relationship between the output port and the first optical reflector.
  • the optical distribution device has at least one input port, the input port is used to input a test optical signal into the optical distribution device from the outside, and the test optical signal is used to test whether the construction of the output port and the external optical fiber in the optical distribution device meets the requirements and the optical fiber Whether the output port of the external optical fiber selected in the distribution device is correct.
  • the test optical signal can be input to the optical distribution device by a photodetection device.
  • the photodetection device can be an optical time domain reflectometer (OTDR).
  • the photodetection device can generate an OTDR detection curve. The above shows the reflection peak corresponding to each reflected light signal.
  • the optical detection device can be a separate device, or it can be integrated with other devices in the optical communication system.
  • the optical detection device can be integrated with the OLT, that is, the OLT can include the optical detection device, for example, the OLT includes There are OTDR components, which are used to input test optical signals to the optical distribution device.
  • the optical distribution device can also include multiple output ports.
  • the number of output ports is represented by the letter M.
  • the value of M can be 2, or the value of M is greater than 2.
  • the number of ports is not limited.
  • the input ports are respectively connected to M output ports through M optical fibers, that is, the input port can be connected through 1 optical fiber and one output port.
  • the test optical signal in the distribution device can be transmitted to the output port through the optical fiber.
  • a first optical reflector is inserted into N output ports among M output ports.
  • the first optical reflector may be referred to as "first reflector" or "reflector” for short.
  • the first optical reflector is used for For devices that reflect optical signals, when an optical signal enters the first optical reflector, the first optical reflector can reflect the optical signal.
  • the optical signal may be a test optical signal or a service optical signal.
  • the first light reflector refers to the light reflector connected to the output port of the light distribution device in a pluggable manner.
  • the second light reflector refers to the light reflector connected to the output port of the light distribution device in a pluggable manner.
  • the optical reflector connected to the input port of the distribution device, the first optical reflector and the second optical reflector can be used to distinguish and describe the optical reflectors connected to different types of ports.
  • the first light reflector is also referred to simply as a reflector.
  • the test optical signal When the test optical signal enters the output port, if a first optical reflector is inserted in the output port, the first optical reflector can reflect the test optical signal, and the first optical reflector can transmit the reflected test optical signal through the optical fiber.
  • the test optical signals respectively reflected by the N first optical reflectors are used to distinguish different N output ports, and the first optical reflectors, that is, the first optical reflectors, are inserted into the N output ports. There is a one-to-one correspondence with the output port connected to the first optical reflector.
  • the test optical signals respectively reflected by the N first optical reflectors are also transmitted in different optical fibers.
  • the first optical reflector in the embodiment of the present application may have one or more reflectivities.
  • the first optical reflector may be a single-port device or a dual-port device, where the single-port device means that only one port can be connected to an optical fiber , Dual-port device means that the ports on both sides can be connected to optical fiber.
  • the first light reflector is a light reflecting device coated with a dielectric film and a fiber Bragg grating (FBG), the first light reflector can also be a light reflecting device coated with a metal film, or the first light reflector can be a special
  • the structure of the device that realizes the optical signal reflection function is not limited here.
  • the N output ports of the optical distribution device are connected to the N first optical reflectors in a pluggable manner.
  • the output port is inserted
  • the first optical reflector can be removed, that is, the first optical reflector can be unplugged from the output port, and then an optical fiber is inserted into the output port, and then the ONU is connected through the optical fiber.
  • the first output port is any one of the N output ports, and the first optical reflector is inserted into the first output port.
  • the first output port is inserted into the first output port.
  • the optical reflector can be removed from the first output port, and the removed first optical reflector cannot reflect the test light signal entering the first output port, that is, the removed first optical reflector does not reflect the test light
  • the signal is used to identify the first output port of the removed first light reflector, so the embodiment of the present application can accurately identify the output port of the optical distribution device.
  • the first light reflector is pluggable in the output port.
  • the inserted first light reflector needs to be removed, so the optical performance of the first light reflector will not be degraded. Construction The completed optical link communication situation.
  • the first optical reflector may have one or more preset reflectivities, and may reflect test optical signals and service optical signals, resulting in large attenuation.
  • the first optical reflector can also only reflect the test optical signal, resulting in large attenuation.
  • the light distribution device further includes: N dust caps, and each dust cap of the N dust caps forms an integral structure with a first light reflector.
  • the dust-proof cap can be inserted into the output port to realize the function of waterproof and dustproof and avoid damage to the output port.
  • the dust cap can be an integral structure with the first light reflector, that is, the dust cap and the first light reflector are fixedly connected. When the first light reflector needs to be removed from the first output port, it only needs to be unplugged The dust cap connected with the first light reflector is sufficient, which simplifies the construction connection operation of the light distribution device and the ONU.
  • first light reflector and the dust cap may be an integral structure, but it is not limited that the first light reflector and the dust cap in the embodiment of the present application may also be independent components separated from each other, namely the first light reflector and the dust cap.
  • a light reflector can be inserted into the output port, and then a dust cap is connected to the output port.
  • the lengths of the N optical fibers corresponding to the N output ports connected to the N first optical reflectors are different from each other;
  • the reflection peak parameters corresponding to the test optical signals respectively reflected by the N first optical reflectors are different.
  • the input ports in the optical distribution device are respectively connected to M output ports through M optical fibers, and the N optical fibers corresponding to the N output ports connected to the N first optical reflectors have different optical fiber lengths.
  • the optical fiber length refers to the connection input
  • the length of the optical fiber between the port and the output port, the length of the N optical fibers corresponding to the N output ports of the N first optical reflectors are not the same, the transmission distance of the test optical signal transmitted in the different optical fibers is also different. Therefore, the emission peak parameters corresponding to different test optical signals after being reflected by the first optical reflector are different.
  • the corresponding reflection peak parameters of the test optical signals reflected by the N first optical reflectors are different, so the test optical signals respectively reflected by the N first optical reflectors can be used.
  • the corresponding reflection peak parameters distinguish different output ports.
  • the reflection peak parameter refers to the waveform curve parameter generated by the first optical reflector reflecting the test light signal.
  • different lengths of optical fibers can be used to connect the input port and N output ports, and according to the pre-planned fiber length, the length of the fiber between different output ports and the input port is different, and different output ports are tested respectively.
  • the corresponding specific optical fiber length can distinguish different output ports, so as to accurately distinguish the output ports inserted with the optical reflector.
  • the optical fiber lengths of the N optical fibers corresponding to the N output ports of the N first optical reflectors satisfy a preset difference relationship.
  • the fiber lengths of the N fibers are not the same, and the fiber lengths of these N fibers meet the preset difference relationship, so that the reflection peak corresponding to the test light signal reflected by the first optical reflector transmitted in each fiber is The parameters are not the same.
  • the reflection peak parameters corresponding to the test optical signals respectively reflected by the N first optical reflectors can be identified.
  • the difference relationship between the fiber lengths of the N optical fibers can be implemented in various ways. For example, as follows, the fiber lengths of the N fibers are in an asymmetric sequence, or the fiber lengths of the N fibers are in a specific difference distribution.
  • the optical distribution device includes: an input port and M output ports, of which N output ports of the M output ports are connected to N first optical reflectors in a pluggable manner, and the N output ports are respectively: output Port 1, output port 2,..., output port N.
  • the fiber length of output port 1 is L
  • the fiber length of output port 2 is longer than that of output port 1 by a
  • the fiber length of output port 2 is L+a, so the reflection peak position corresponding to output port 2 on the corresponding OTDR detection curve
  • the reflection peak position corresponding to output port 1 is different by a.
  • the fiber length of output port N is longer than that of output port 1 by (N-1) ⁇ a, so the reflection peak position corresponding to output port N on the corresponding OTDR detection curve is different from the reflection peak position corresponding to output port 1. (N-1) ⁇ a.
  • the difference between the fiber lengths corresponding to the N output ports is an arithmetic sequence, which is only an achievable way, and it is not limited that the difference between the fiber lengths corresponding to the N output ports is The difference can also satisfy other preset relationships, and the output port corresponding to each reflection peak can be identified.
  • the test optical signals respectively reflected by the N first optical reflectors have different wavelengths.
  • the wavelengths corresponding to the test optical signals respectively reflected by the N first optical reflectors are used to distinguish different output ports.
  • the N first optical reflectors respectively inserted into the N output ports of the optical distribution device can reflect test optical signals of different wavelengths, the N first optical reflectors have different reflection functions, and the optical detection equipment sequentially
  • the distribution device inputs test optical signals of different wavelengths, each of the N optical reflectors in the optical distribution device can reflect a test optical signal of one wavelength, and the test optical signals reflected by the N first optical reflectors respectively
  • the corresponding wavelength is used to distinguish different output ports.
  • the removed first light reflector can be determined by the light detection device, so that the first light reflector is connected to the first light reflector through the first light reflector.
  • the corresponding relationship between the output ports of the optical device identifies the output port that requires an external optical fiber in the optical distribution device.
  • the optical distribution device includes: an input port and M output ports, wherein N output ports of the M output ports are respectively connected to the N first optical reflectors in a pluggable manner, and the N output ports are respectively It is: output port 1, output port 2,..., output port N.
  • the optical signal wavelength corresponding to output port 1 is lamda 1, so on the corresponding OTDR detection curve, output port 1 has a reflection peak at lamda 1 wavelength.
  • the wavelength of the optical signal corresponding to the output port N is lamda N, so the output port N has a reflection peak at the lamda N wavelength on the corresponding OTDR detection curve.
  • the light distribution device further includes: a second light reflector, wherein:
  • the second optical reflector is connected to the input port, and the second reflection peak of the test optical signal entering the input port reflected by the second optical reflector is used to identify the first reflection peak of the test optical signal reflected by the first optical reflector.
  • a second optical reflector is also provided between the input port and the N output ports in the optical distribution device, and the test optical signal generated by the optical detection device is transmitted to the second optical reflector after passing through the input port, and the second optical reflector
  • the reflector can transmit the test light signal to N output ports.
  • N first optical reflectors are inserted into the N output ports, and the second optical reflector is placed between the input port and the N output ports.
  • the second optical reflector reflects the test optical signal, for example
  • the second optical reflector reflects the test optical signal entering the input port, and produces a second reflection peak in the reflected test optical signal.
  • the N first optical reflectors will reflect the test optical signal.
  • the first reflection peak is generated in the reflected test optical signal, and the second reflection peak of the test optical signal reflected by the second optical reflector can be used to identify the first reflection peak.
  • the second reflection peak can be used as a reference point for identifying the first reflection peak. Therefore, the first reflection peak of the test light signal reflected by the first light reflector can be quickly and accurately identified, and the recognition efficiency of the test light signal reflected by the first light reflector can be improved.
  • the optical distribution device further includes: an optical splitting module, wherein:
  • One port of the optical splitting module is connected to the input port, and the other M ports of the optical splitting module are respectively connected to M optical fibers.
  • the optical distribution device may include a splitting module, which is a module for splitting in the optical distribution device.
  • One port of the splitting module is connected to the input port, and the test optical signal transmitted in through the input port of the optical distribution device can be split.
  • the module is divided into M test optical signals, and the other M ports of the optical splitting module are respectively connected to M optical fibers, so that M test optical signals can be transmitted to M output ports, such as the first optical reflector inserted into some output ports After being removed, the remaining first optical reflectors that have not been removed can reflect the test optical signal.
  • the test optical signal is reflected by the first optical reflector inserted in the output port and then transmitted to the optical splitting module, which transmits the optical splitting module to the optical detection device. Send the test light signal reflected by the first light reflector that has not been removed among the N first light reflectors.
  • an optical splitting module may be provided in the optical distribution device, and the split transmission of optical signals may be realized through the splitting module.
  • the optical distribution device includes M input ports, where:
  • the optical distribution device is respectively connected to the M ports of the optical splitter through the M input ports.
  • the optical splitter can also be connected to the optical distribution device, that is, the optical splitter is a device independent of the optical distribution device.
  • the optical splitter After the test light signal generated by the optical detection equipment is transmitted to the optical splitter, the optical splitter has M ports. With M input ports, the optical distribution device is respectively connected to the M ports of the optical splitter through the M input ports.
  • the first optical reflector inserted into one or more output ports of the optical distribution device is removed, the rest are not The removed first optical reflector can reflect the test optical signal.
  • the test optical signal is reflected by the first optical reflector inserted in the output port of the optical distribution device and then transmitted to the optical splitter.
  • the optical splitter sends N pieces to the optical detection device.
  • the splitter connected to the optical distribution device can realize the separated transmission of the optical signal.
  • the optical distribution device includes input ports, M output ports, and N first light reflectors, M is greater than or equal to N, and N is a positive integer, where the input port passes through M
  • the optical fibers are respectively connected to M output ports; one of the N first optical reflectors is connected to one of the M output ports in a pluggable manner, among which, among the N first optical reflectors
  • Each of the first optical reflectors is used to reflect the test optical signal entering the corresponding output port.
  • the N first light reflectors are connected to the N output ports in a pluggable manner.
  • the first light reflector can be inserted into the output port, or the first light reflector can be unplugged to realize the first light reflector.
  • Each first optical reflector is connected to an output port in a pluggable manner, so N first optical reflectors can be removed from the output port, and the removed first optical reflector cannot reflect the output port Test optical signal, that is, the output port of the removed first optical reflector can be identified by the removed first optical reflector not reflecting the test optical signal. Therefore, the embodiment of the present application can accurately identify the output port of the optical distribution device .
  • the foregoing embodiment introduces the optical distribution device provided by the embodiment of the present application.
  • the optical communication detection system applied by the optical distribution device is introduced.
  • the embodiment of the present application also provides an optical communication detection system.
  • the communication detection system includes: optical distribution device, optical detection equipment and network management equipment, among which,
  • Optical detection equipment used to send test optical signals to the optical distribution device
  • the optical distribution device is used to reflect the test optical signal through the first optical reflector in the optical distribution device.
  • the optical distribution device has M output ports and N first optical reflectors, M is greater than or equal to N, and M and N are positive An integer, one of the N first optical reflectors is connected to one of the M output ports in a pluggable manner;
  • the optical detection device is further configured to receive the test optical signal reflected by the first optical reflector, and send the reflected optical signal parameter corresponding to the test optical signal reflected by the first optical reflector to the network management device;
  • Network management equipment for receiving the reflected light signal parameters corresponding to the test light signal reflected by the first light reflector sent by the light detection equipment; identifying the light distribution device according to the reflected light signal parameters corresponding to the test light signal reflected by the first light reflector Output port.
  • the optical distribution device described in the foregoing Figures 2 to 3 can be applied to an optical communication detection system.
  • the optical communication detection system can be used to detect optical signals to determine the output port and the external optical fiber in the optical distribution device. Is the connection correct?
  • light detection equipment refers to equipment that can generate test light signals.
  • the light detection equipment can also receive the test light signals reflected by the first light reflector from the light distribution device, and then the light detection equipment can identify the first light reflection.
  • the reflection peak corresponding to the test optical signal reflected by the detector may be an OTDR, and the light detection device may generate an OTDR detection curve, and the reflection peak corresponding to the test light signal reflected by the first light reflector is displayed on the OTDR detection curve.
  • the optical detection device generates reflected optical signal parameters according to the identified test optical signals respectively reflected by the N first optical reflectors, and sends the reflected optical signal parameters corresponding to the test optical signals respectively reflected by the N first optical reflectors to the network management device .
  • the optical detection device can be a separate device, or it can be integrated with other devices in the optical communication system.
  • the optical detection device can be integrated with the OLT, that is, the OLT can include the optical detection device, for example, the OLT includes There are OTDR components, which are used to input test optical signals to the optical distribution device.
  • the reflected light signal parameter is the parameter of the reflected light signal generated after the light detection device receives the test light signal reflected by the first light reflector from the light distribution device
  • the reflected light signal parameter may include: Various parameters of the reflected optical signal, for example, the reflected optical signal parameter may include: the reflection peak intensity of the test optical signal reflected by the first optical reflector.
  • the reflected light signal parameter includes: the reflection peak position and the reflection peak intensity corresponding to the reflection peak position; or, the reflected optical signal parameter includes: wavelength information of the reflected optical signal.
  • the reflection peak position refers to the position of the reflection peak on the OTDR detection curve
  • the reflection peak intensity refers to the intensity of the reflection peak optical power.
  • the reflected optical signal parameter may also be the wavelength information of the reflected optical signal, and the specific implementation of the reflected optical signal parameter is not limited here.
  • the network management equipment is the identification equipment of the output port in the optical distribution device.
  • the network equipment can be connected with the optical detection equipment.
  • the network management equipment is used to receive the test optical signals respectively reflected by the N first optical reflectors sent by the optical detection equipment.
  • Corresponding reflected light signal parameters; N output ports are identified according to the reflected light signal parameters corresponding to the test light signals respectively reflected by the N first light reflectors.
  • the network management device can be a separate device, or it can be integrated with other devices in the optical communication system.
  • the network management device can be integrated with the OLT, that is, the OLT can include network management equipment.
  • the implementation method of is not limited.
  • test optical signals reflected by the N first optical reflectors are used to distinguish the N output ports, so the network management device can receive the reflected light corresponding to the test optical signals respectively reflected by the N first optical reflectors.
  • the signal parameter identifies N output ports.
  • the optical detection device is used to send the first test optical signal to the optical distribution device
  • the optical distribution device is configured to reflect the first test optical signal through the N first optical reflectors in the optical distribution device;
  • the optical detection device is also used to receive the first test optical signals respectively reflected by the N first optical reflectors, and send the reflected optical signal parameters corresponding to the first test optical signals respectively reflected by the N first optical reflectors to the network management device ;
  • the network management device is configured to receive the reflected optical signal parameters corresponding to the first test optical signals respectively reflected by the N first optical reflectors sent by the optical detection device; according to the first test optical signals respectively reflected by the N first optical reflectors Corresponding to the reflected light signal parameter, it detects the state of the optical fiber link between the light detection equipment and the N output ports of the light distribution device.
  • the optical detection device in the embodiment of the present application can send a test optical signal to the optical distribution device, and the N output ports of the optical distribution device are connected in a pluggable manner.
  • N first optical reflectors these N first optical reflectors can reflect the test optical signal, so that the network management device can according to the reflected optical signal parameters corresponding to the first test optical signal respectively reflected by the N first optical reflectors,
  • the state of the optical fiber link between the optical detection device and the N output ports of the optical distribution device is detected to detect whether the optical fiber link loss between the optical detection device and the N output ports in the optical distribution device is normal.
  • the test light signal is reflected by the first light reflector, and the change in the intensity of the reflection peak of the test light signal reflected by the first light reflector is used to determine the N number from the light detection device to the light distribution device.
  • the loss of the optical fiber link between the output ports is normal. If the loss of the optical fiber link is normal, the construction acceptance of the optical distribution device has passed; if the loss of the optical fiber link is abnormal, the construction acceptance of the optical distribution device has failed. It is understandable that whether the loss of the optical fiber link is normal can be determined by the set loss threshold.
  • the reflected optical signal parameter includes: the reflected peak intensity of the first test optical signal reflected by the first optical reflector;
  • the network management equipment is used for the reflection peak intensity corresponding to the first test optical signal respectively reflected by the N first optical reflectors to be lower than the first threshold value to determine the optical fiber link state between the optical detection equipment and the input port of the optical distribution device Abnormal; or, the reflection peak intensity corresponding to the first test optical signal respectively reflected by the N first optical reflectors is lower than the second threshold, and it is determined that the state of the optical fiber link between the input port and the N output ports of the optical distribution device is abnormal Or, the reflection peak intensity corresponding to the first test optical signal respectively reflected by the N first optical reflectors is greater than or equal to the first threshold to determine the optical fiber link state between the optical detection equipment and the N output ports of the optical distribution device Normal; where the second threshold is less than the first threshold.
  • the network management device calculates the reflection peak position of the test optical signal reflected by each first optical reflector, and compares the actually measured reflection peak intensity with the pre-stored reflection peak intensity to determine whether the optical fiber link loss is normal .
  • the reflection peak intensity of the test optical signal sent by the optical detection equipment is xdB, which indicates that the state of the optical fiber link and the optical distribution device is normal.
  • the optical detection device detects that the reflection peak intensity of the test optical signal reflected by the output port is x′.
  • x′ decreases slightly relative to x, for example, when x′ is lower than the normal reflection peak intensity x below the first threshold W1, it is judged
  • the optical fiber link before the optical distribution device fails that is, the state of the optical fiber link between the optical detection equipment and the input port of the optical distribution device is abnormal.
  • the optical detection device detects that the reflection peak intensity x′ reflected by the output port is greater than or equal to the first threshold W1, it is determined that the optical fiber link state between the optical detection device and the N output ports of the optical distribution device is normal.
  • the light detection device detects that the reflection peak intensity x′ reflected by the output port has a large decrease, for example, x′ is lower than the normal reflection peak intensity x below the second threshold W2, it is determined that the optical path in the optical distribution device is faulty, That is, the status of the optical fiber link between the input port and the N output ports of the optical distribution device is abnormal.
  • the first threshold W1 and the second W2 can be determined according to the type of optical device and the structure of the optical link.
  • the optical device refers to the physical link, optical fiber, optical splitter, connector, adapter, etc. and their combination of optical fiber communication.
  • the optical detection device is used to send the second test optical signal to the optical distribution device
  • the optical distribution device is used to reflect the second test optical signal through the N-1 first optical reflectors in the optical distribution device, and the N-1 first optical reflectors are connected to the N-1 outputs of the M output ports Port, the first optical reflector that is not connected to the output port among the N first optical reflectors cannot reflect the second test optical signal;
  • the optical detection device is also used to receive the second test optical signals respectively reflected by the N-1 first optical reflectors, and send to the network management device corresponding to the second test optical signals respectively reflected by the N-1 first optical reflectors Reflected light signal parameters;
  • the network management device is used to receive the reflected optical signal parameters corresponding to the second test optical signals respectively reflected by the N-1 first optical reflectors sent by the optical detection device; according to the first optical reflectors respectively reflected by the N-1 first optical reflectors Second, the reflected optical signal parameter corresponding to the test optical signal identifies the output port of the unplugged first optical reflector in the optical distribution device.
  • the first optical reflector inserted in the output port can be unplugged, for example, the first optical reflector inserted in the first output port is removed from the output port
  • the optical detection device may send to the network management device the reflected optical signal parameters corresponding to the test optical signals respectively reflected by the first optical reflectors that have not been removed among the N first optical reflectors, for example, one first optical reflector is moved
  • the remaining N-1 first optical reflectors among the N first optical reflectors can still reflect the test optical signal to the optical detection device.
  • the network management equipment can also detect whether the output port of the construction is correct.
  • the network management device can communicate with the optical detection device to receive the reflected optical signal parameters corresponding to the test optical signals respectively reflected by the first optical reflectors that are not removed among the N first optical reflectors sent by the optical detection device.
  • the test light signals respectively reflected by the N first light reflectors can be used to distinguish the N output ports. Therefore, the network management device is based on the test light reflected by the first light reflectors that are not removed from the N first light reflectors.
  • the reflected light signal parameter corresponding to the signal determines whether the output port of the removed first optical reflector is the target output port, which solves the situation that the wrong output port may be connected to an external optical fiber during the construction process.
  • the network management device is used to obtain the reference reflected light corresponding to the target output port from the reference database of the network management device when the first optical reflector is unplugged from the target output port Signal parameters; determine the reflected light signal parameters corresponding to the disappeared reflected light signals according to the reflected light signal parameters corresponding to the second test optical signals respectively reflected by the N-1 first optical reflectors; determine the reflected light corresponding to the disappeared reflected light signals Whether the signal parameter is the same as the reference reflected light signal parameter corresponding to the target output port, if the reflected light signal parameter corresponding to the disappeared reflected light signal is the same as the reference reflected light signal parameter corresponding to the target output port, confirm that the target output port is in the optical distribution device If the output port of the first optical reflector is unplugged, if the reflected optical signal parameter corresponding to the disappeared reflected optical signal is different from the reference reflected optical signal parameter corresponding to the target output port, make sure that the target output port is not unplugged in the optical distribution device
  • the output port of the first optical reflector is
  • the target output port of the optical distribution device refers to the output port that notifies the construction party that an external optical fiber is required.
  • the network management device can obtain the reference reflected light signal parameter corresponding to the target output port from the reference database of the network management device, and the reference database can It is the local database of the network management device, or the database external to the network management device.
  • the reference reflected light signal parameters include standard parameters used to compare changes in the reflected light signal parameters.
  • the network management device receives the reflected optical signal parameters corresponding to the second test optical signals respectively reflected by the first optical reflectors that have not been removed among the N first optical reflectors, so as to determine the reflections corresponding to the disappeared reflected optical signals
  • N first optical reflectors can reflect the second test optical signal before the first optical reflector is removed.
  • the network device can determine whether the reflected optical signal parameter corresponding to the disappeared reflected optical signal is the same as the reference reflected optical signal parameter corresponding to the target output port.
  • the target output port is determined to be the first output port. If the reflected light signal parameters corresponding to the disappeared reflected light signal are not the same as the reference reflected light signal parameters corresponding to the target output port, the target output is determined The port is not the first output port.
  • the output port of the optical distribution device can be identified without manual operation, and the correct connection of the output port of the optical distribution device and the external optical fiber can be ensured.
  • the reflected light signal parameter includes: the reflection peak position and the reflection peak intensity corresponding to the reflection peak position; or, the reflected light signal parameter includes: wavelength information of the reflected optical signal.
  • the network management device can determine whether the reflection peak intensity corresponding to the disappeared reflected optical signal is the same as the reference reflection peak intensity corresponding to the target output port, and if the reflection peak intensity corresponding to the disappeared reflected optical signal is the same as the reference reflection peak corresponding to the target output port If the intensity is the same, it is determined that the target output port is the first output port. If the reflection peak intensity corresponding to the disappeared reflected light signal is different from the reference reflection peak intensity corresponding to the target output port, it is determined that the target output port is not the first output port.
  • An example is as follows, according to the target output port number assigned by the work order, the characteristic reflection peak reference of the target output port number is found in the reference database, and it is recorded as A1, and the characteristic reflection peak of the actual construction output port is recorded as A2. After the construction is completed, because the first light reflector of the output port of the construction is removed, the A2 reflection peak disappears. Determine whether A1 and A2 correspond to the same output port. If A1 and A2 are the same, it means that the output port of the construction is consistent with the target output port assigned by the work order. If A1 and A2 are different, it means that the construction has not been carried out according to the target output port assigned by the work order. At this time, the network management equipment can prompt the construction port number to be wrong. In the embodiment of the present application, the network management device can automatically determine whether the output port selection in the optical distribution device under construction is correct by analyzing the reflection peak intensity of the reflected light signal, without manual verification, and improve the efficiency of verification of the construction quality of the output port.
  • the network management device can determine whether the wavelength information corresponding to the disappeared reflected optical signal is the same as the reference wavelength information corresponding to the target output port, and if the wavelength information corresponding to the disappeared reflected optical signal is the same as the reference wavelength information corresponding to the target output port, determine The target output port is the first output port, and if the wavelength information corresponding to the disappeared reflected light signal is different from the reference wavelength information corresponding to the target output port, it is determined that the target output port is not the first output port.
  • the target output port number to be constructed according to the work order is No. 2, and the reference of the characteristic wavelength reflection peak of the target output port is found in the benchmark database, which is recorded as A1, and the characteristic wavelength reflection peak of the actual construction output port Denoted as A2.
  • the reflection peak of A2 disappears, and the reflection peaks of other output ports still exist.
  • the network management equipment can automatically determine whether the output port selection in the optical distribution device under construction is correct by analyzing the wavelength of the reflected optical signal, without manual verification, and improve the efficiency of verification of the construction quality of the output port.
  • the light distribution device further includes: an input port and a second light reflector, wherein the second light reflector is connected to the input port,
  • the network management device is used for detecting the second reflection peak of the test optical signal entering the input port reflected by the second optical reflector, and identifying the first reflection peak of the test optical signal reflected by the first optical reflector according to the second reflection peak.
  • a second optical reflector is also provided between the input port and the N output ports in the optical distribution device, and the test optical signal generated by the optical detection device is transmitted to the second optical reflector after passing through the input port, and the second optical reflector
  • the reflector can transmit the test light signal to N output ports.
  • N first optical reflectors are inserted into the N output ports, and the second optical reflector is placed between the input port and the N output ports.
  • the second optical reflector reflects the test optical signal, for example
  • the second optical reflector reflects the test optical signal entering the input port, and produces a second reflection peak in the reflected test optical signal.
  • the N first optical reflectors will reflect the test optical signal.
  • the first reflection peak is generated in the reflected test optical signal, and the second reflection peak of the test optical signal reflected by the second optical reflector can be used to identify the first reflection peak.
  • the second reflection peak can be used as a reference point for identifying the first reflection peak. Therefore, the first reflection peak of the test light signal reflected by the first light reflector can be quickly and accurately identified, and the recognition efficiency of the test light signal reflected by the first light reflector can be improved.
  • the optical communication detection system includes: an optical distribution device, an optical detection device, and a network management device, and an optical distribution device for reflecting the test optical signal through the first optical reflector in the optical distribution device, N
  • One of the first optical reflectors is connected to one of the M output ports in a pluggable manner; the optical detection device is also used to receive the test optical signal reflected by the first optical reflector,
  • the network management device sends the reflected optical signal parameters corresponding to the test optical signal reflected by the first optical reflector;
  • the network management device is configured to receive the reflected optical signal parameters corresponding to the test optical signal reflected by the first optical reflector sent by the optical detection device; Identify the output port of the light distribution device according to the reflected light signal parameter corresponding to the test light signal reflected by the first light reflector.
  • the removed first optical reflector in the optical distribution device cannot reflect the test light signal, so the network management equipment can pass the removed first optical reflector without reflecting the test light
  • the signal is used to identify the output port of the removed first light reflector, so the embodiment of the present application can accurately identify the output port of the optical distribution device.
  • the optical communication detection system provided by the embodiments of the present application further includes: a wavelength division multiplexing (WDM) and an optical line terminal, where:
  • WDM wavelength division multiplexing
  • the wavelength division multiplexer is respectively connected to the optical line terminal, the optical distribution device and the optical detection equipment.
  • the wavelength division multiplexer is connected to the optical line terminal, and the wavelength division multiplexer is also connected to the optical distribution device and the optical detection device.
  • the test optical signal output by the optical detection device can be sent to the optical distribution device through the wavelength division multiplexer.
  • the optical line terminal With the optical line terminal, the test light signal reflected by the optical reflector in the optical distribution device is transmitted to the optical detection equipment through the wavelength division multiplexer, and the optical detection equipment can receive the reflection test of the optical reflector in the optical distribution device from the wavelength division multiplexer Light signal.
  • the optical line terminal can communicate with the optical distribution device through the wavelength division multiplexer.
  • the optical communication detection method executed by the optical communication detection system in the embodiment of the present application includes the following steps:
  • Step S01 The optical detection device sends a test optical signal to the optical distribution device.
  • the optical detection device refers to a device that can generate a test optical signal, and the optical detection device may specifically be an OTDR. After the optical detection device generates the test optical signal, it can send the test optical signal to the optical distribution device.
  • the optical detection device can be a separate device, or it can be integrated with other devices in the optical communication system.
  • the optical detection device can be integrated with the OLT, that is, the OLT can include the optical detection device, for example, the OLT includes There are OTDR components, which are used to input test optical signals to the optical distribution device.
  • Step S02 The light distribution device reflects the test light signal through the first light reflector in the light distribution device.
  • the light distribution device has M output ports and N first light reflectors, M is greater than or equal to N, N is a positive integer, and one first light reflector of the N first light reflectors is pluggable Connect one of the M output ports.
  • the N light reflectors in the light distribution device can reflect the test light signal
  • the light distribution device sends the test light signals reflected by the N light reflectors in the light distribution device to the light detection equipment, and the N light reflectors reflect the test light signals respectively.
  • the test optical signal is used to distinguish the N output ports. For details, refer to the detailed description of distinguishing the test optical signals transmitted by the N output ports in the foregoing embodiment, which will not be repeated here.
  • Step S03 The optical detection device receives the test optical signal reflected by the first optical reflector, and sends the reflected optical signal parameter corresponding to the test optical signal reflected by the first optical reflector to the network management device.
  • the light detection equipment can receive the test light signals respectively reflected by the N light reflectors sent by the light distribution device, and then the light detection equipment generates reflections according to the test light signals respectively reflected by the identified N light reflectors.
  • Optical signal parameters sending the reflected optical signal parameters corresponding to the test optical signals respectively reflected by the N optical reflectors to the network management device.
  • Step S04 The network management device receives the reflected optical signal parameter corresponding to the test optical signal reflected by the first optical reflector sent by the optical detection device.
  • the network management device is the identification device of the output port in the optical distribution device.
  • the network device can be connected to the optical detection device.
  • the network management device receives the reflected light corresponding to the test optical signal respectively reflected by the N optical reflectors sent by the optical detection device. Signal parameters.
  • Step S05 The network management equipment identifies the output port of the optical distribution device according to the reflected light signal parameter corresponding to the test optical signal reflected by the first optical reflector.
  • the network device identifies the N output ports according to the reflected optical signal parameters corresponding to the test optical signals respectively reflected by the N optical reflectors. Specifically, the test optical signals reflected by the N optical reflectors are used to distinguish the N output ports, so the network management device can identify N according to the reflected optical signal parameters corresponding to the received test optical signals respectively reflected by the N optical reflectors. Output ports. It is not limited that the network management device can be a separate device, or it can be integrated with other devices in the optical communication system. For example, the network management device can be integrated with the OLT, that is, the OLT can include network management equipment. The implementation method of is not limited.
  • the network management device identifies the output port of the optical distribution device according to the reflected optical signal parameter corresponding to the test optical signal reflected by the first optical reflector, including:
  • the network management device When the network management device receives the reflected optical signal parameters corresponding to the first test optical signals respectively reflected by the N first optical reflectors sent by the optical detection device, the network management device according to the first reflected light signal parameters of the N first optical reflectors. Test the reflected optical signal parameters corresponding to the optical signal, and detect the state of the optical fiber link between the optical detection equipment and the N output ports of the optical distribution device.
  • the optical detection device in the embodiment of the present application can send a test optical signal to the optical distribution device, and the N output ports of the optical distribution device are connected in a pluggable manner.
  • N first optical reflectors these N first optical reflectors reflect the test optical signals, so that the network management device can detect the reflected optical signal parameters corresponding to the first test optical signals respectively reflected by the N first optical reflectors
  • the state of the optical fiber link between the optical detection device and the N output ports of the optical distribution device to detect whether the optical fiber link loss between the optical detection device and the N output ports in the optical distribution device is normal.
  • the test light signal is reflected by the first light reflector, and the change in the intensity of the reflection peak of the test light signal reflected by the first light reflector is used to determine the N number from the light detection device to the light distribution device.
  • the loss of the optical fiber link between the output ports is normal. If the loss of the optical fiber link is normal, the construction acceptance of the optical distribution device has passed; if the loss of the optical fiber link is abnormal, the construction acceptance of the optical distribution device has failed. It is understandable that whether the loss of the optical fiber link is normal can be determined by the set loss threshold.
  • the reflected optical signal parameter includes: the reflected peak intensity of the first test optical signal reflected by the first optical reflector;
  • the network management equipment detects the optical fiber link status between the optical detection equipment and the N output ports of the optical distribution device according to the reflected optical signal parameters corresponding to the first test optical signals respectively reflected by the N first optical reflectors, including:
  • the reflection peak intensity corresponding to the first test optical signal respectively reflected by the N first optical reflectors is lower than the first threshold, and the network management device determines that the state of the optical fiber link between the optical detection device and the input port of the optical distribution device is abnormal; or ,
  • the reflection peak intensity corresponding to the first test optical signal respectively reflected by the N first optical reflectors is lower than the second threshold, and the network management device determines that the state of the optical fiber link between the input port and the M output ports of the optical distribution device is abnormal; or,
  • the reflection peak intensity corresponding to the first test optical signal respectively reflected by the N first optical reflectors is greater than or equal to the first threshold, and the network management equipment determines the optical fiber link state between the optical detection equipment and the M output ports of the optical distribution device Normal; where the second threshold is less than the first threshold.
  • the network management device calculates the reflection peak position of the test optical signal reflected by each first optical reflector, and compares the actually measured reflection peak intensity with the pre-stored reflection peak intensity to determine whether the optical fiber link loss is normal .
  • the optical detection device detects that the reflection peak intensity of the test optical signal reflected by the output port is x′. If x′ decreases slightly relative to x, for example, when x′ is lower than the normal reflection peak intensity x below the first threshold W1, it is judged
  • the optical fiber link before the optical distribution device fails that is, the state of the optical fiber link between the optical detection equipment and the input port of the optical distribution device is abnormal.
  • the optical detection device detects that the reflection peak intensity x′ reflected by the output port is greater than or equal to the first threshold W1
  • the light detection equipment detects that the reflection peak intensity x′ reflected by the output port has a large decrease, and x′ is lower than the normal reflection peak intensity x below the second threshold W2
  • it is judged that the optical path in the optical distribution device is faulty that is, the input The status of the optical fiber link between the port and the N output ports of the optical distribution device is abnormal.
  • the loss of the optical fiber link between the input port and the output port is normal, it is determined that the construction acceptance of the optical distribution device is qualified, and the database is updated according to the obtained results to ensure the smooth opening of the service of the optical fiber external to the optical distribution device.
  • the network management device identifies the output port of the optical distribution device according to the reflected optical signal parameter corresponding to the test optical signal reflected by the first optical reflector, including:
  • the network management device When the network management device receives the reflected optical signal parameters corresponding to the second test optical signal respectively reflected by the N-1 first optical reflectors sent by the optical detection device, the network management device reflects the parameters according to the N-1 first optical reflectors.
  • the reflected optical signal parameter corresponding to the second test optical signal identifies the output port of the unplugged first optical reflector in the optical distribution device;
  • N-1 first optical reflectors are connected to N-1 output ports of the M output ports, and the first optical reflector that is not connected to the output port among the N first optical reflectors cannot reflect the second test optical signal.
  • the first optical reflector inserted in the output port can be unplugged, for example, the first optical reflector inserted in the first output port is removed from the output port
  • the optical detection device may send to the network management device the reflected optical signal parameters corresponding to the test optical signals respectively reflected by the first optical reflectors that have not been removed among the N first optical reflectors, for example, one first optical reflector is moved
  • the remaining N-1 first optical reflectors among the N first optical reflectors can still reflect the test optical signal to the optical detection device.
  • the network management equipment can also detect whether the output port of the construction is correct.
  • the network management device can communicate with the optical detection device to receive the reflected optical signal parameters corresponding to the test optical signals respectively reflected by the first optical reflectors that are not removed among the N first optical reflectors sent by the optical detection device.
  • the test light signals respectively reflected by the N first light reflectors can be used to distinguish the N output ports. Therefore, the network management device is based on the test light reflected by the first light reflectors that are not removed from the N first light reflectors.
  • the reflected light signal parameter corresponding to the signal determines whether the output port of the removed first optical reflector is the target output port, which solves the situation that the wrong output port may be connected to an external optical fiber during the construction process.
  • the network management device identifies the unplugged first light in the optical distribution device according to the reflected light signal parameters corresponding to the second test light signals respectively reflected by the N-1 first light reflectors.
  • the output ports of the reflector include:
  • the network management device obtains the reference reflected light signal parameter corresponding to the target output port from the reference database of the network management device;
  • the network management device determines, according to the reflected optical signal parameters corresponding to the second test optical signals respectively reflected by the N-1 first optical reflectors, the reflected optical signal parameters corresponding to the disappeared reflected optical signals;
  • the network management device determines whether the reflected optical signal parameter corresponding to the disappeared reflected optical signal is the same as the reference reflected optical signal parameter corresponding to the target output port;
  • the network management device determines that the target output port is the output port of the optical distribution device from which the first optical reflector is unplugged;
  • the network management device determines that the target output port is not the output port of the optical distribution device from which the first optical reflector is unplugged.
  • the target output port of the optical distribution device refers to the output port that is notified to the construction party that an external optical fiber is required.
  • the network management equipment can obtain the reference reflected light signal parameter corresponding to the target output port in the reference database, and the reference database may be the network management equipment.
  • the reference reflected light signal parameters include standard parameters used to compare changes in the reflected light signal parameters.
  • the network management device receives the reflected optical signal parameters corresponding to the second test optical signals respectively reflected by the first optical reflectors that have not been removed among the N first optical reflectors, so as to determine the reflections corresponding to the disappeared reflected optical signals
  • N first optical reflectors can reflect the second test optical signal before the first optical reflector is removed.
  • the network device can determine whether the reflected optical signal parameter corresponding to the disappeared reflected optical signal is the same as the reference reflected optical signal parameter corresponding to the target output port.
  • the target output port is determined to be the first output port. If the reflected light signal parameters corresponding to the disappeared reflected light signal are not the same as the reference reflected light signal parameters corresponding to the target output port, the target output is determined The port is not the first output port.
  • the reflected light signal parameter includes: the reflection peak position and the reflection peak intensity corresponding to the reflection peak position; or, the reflected light signal parameter includes: the wavelength of the reflected optical signal.
  • the light distribution device further includes: an input port and a second light reflector, wherein the second light reflector is connected to the input port.
  • the method provided in the embodiment of the present application further includes:
  • the network management device detects the second reflection peak of the test optical signal entering the input port reflected by the second optical reflector
  • the network management device identifies the first reflection peak of the test optical signal reflected by the first optical reflector according to the second reflection peak.
  • a second optical reflector is also provided between the input port and the N output ports in the optical distribution device, and the test optical signal generated by the optical detection device is transmitted to the second optical reflector after passing through the input port, and the second optical reflector
  • the reflector can transmit the test light signal to N output ports.
  • N first optical reflectors are inserted into the N output ports, and the second optical reflector is placed between the input port and the N output ports.
  • the second optical reflector reflects the test optical signal, for example
  • the second optical reflector reflects the test optical signal entering the input port, and produces a second reflection peak in the reflected test optical signal.
  • the N first optical reflectors will reflect the test optical signal.
  • the first reflection peak is generated in the reflected test light signal, and the second reflection peak of the test light signal reflected by the second light reflector can be used to identify the first reflection peak.
  • the second reflection peak can be used as a reference, so that it can be quickly and accurately
  • the first reflection peak of the test light signal reflected by the first light reflector is recognized, and the recognition efficiency of the test light signal reflected by the first light reflector is improved.
  • the network management device receives the reflected light signal parameter corresponding to the test light signal reflected by the first light reflector sent by the light detection device, and the test light signal reflected by the first light reflector is sent by the light distribution device.
  • the test light signal is sent by the light detection equipment to the light distribution device.
  • the light distribution device has M output ports and N first light reflectors. M is greater than or equal to N, and the number of the N first light reflectors is A first optical reflector is connected to one of the M output ports in a pluggable manner; the output port of the optical distribution device is identified according to the reflected light signal parameter corresponding to the test optical signal reflected by the first optical reflector.
  • the removed first optical reflector in the optical distribution device cannot reflect the test light signal, so that the network management device can pass the removed first optical reflector without reflecting the test light
  • the signal is used to identify the output port of the removed first light reflector, so the embodiment of the present application can accurately identify the output port of the optical distribution device.
  • the embodiments of this application will then describe in detail the output port acceptance and output port verification of the optical distribution device in the optical communication detection system.
  • the optical distribution device is specifically a fiber splitting box or an optical fiber box, and the optical reflector is referred to as a reflector for short.
  • the device is specifically an OTDR.
  • the optical distribution device includes N reflectors connected to the N output ports in a pluggable manner.
  • M is greater than or equal to N, and M is equal to N as an example. It is explained that the N output ports of the optical distribution device are respectively inserted with N reflectors.
  • the OTDR can be used to check the construction quality of the fiber box and check the output port.
  • a fiber box with a splitter can be used, or the fiber box is connected with a splitter.
  • the output ports of the fiber box are differentiated according to the length of the fiber.
  • the output port is equipped with a dust cap with reflector.
  • the optical fiber box includes an optical splitter, the fiber length of output port 1 is L, the fiber length of output port 2 is L+a,..., the fiber length of output port N is L+(N-1) a.
  • the fiber length of output port 2 is longer than that of output port 1 by a, the reflection peak position corresponding to output port 2 on the corresponding OTDR detection curve is different from the reflection peak position corresponding to output port 1 by a.
  • the fiber length of output port N is longer than that of output port 1 by (N-1) ⁇ a, so the reflection peak position corresponding to output port N on the corresponding OTDR detection curve is different from the reflection peak position corresponding to output port 1 ( N-1) ⁇ a. In this way, the output port in the optical fiber box can be identified by the specific reflection peak on the OTDR detection curve.
  • each output port of the optical fiber box is equipped with a dust cap with a reflector, which can reflect the OTDR test optical signal in whole or in part.
  • the reflectance of the reflector is x dB.
  • the reflectivity is related to the quality of the link between the reflector and the OTDR. As the quality of the link deteriorates, the reflectivity will decrease.
  • the reflectivity can be used as a criterion for the loss of the optical fiber link.
  • the optical communication detection system can include: optical fiber box, WDM, OTDR, OLT and network management equipment, where WDM is connected to OLT, OTDR and optical fiber box respectively, OTDR is connected to network management equipment, and the network management equipment can also It is called a network management system.
  • WDM is connected to OLT
  • the network management equipment can also It is called a network management system.
  • the OTDR sends a test optical signal.
  • the test optical signal is connected to the backbone optical cable through the WDM, and is transmitted along the optical cable to the optical splitter (or a splitter module) in the optical fiber box.
  • the optical splitter transmits the test optical signal to N transmitters and N reflectors reflect the test optical signal with a specific reflectivity; the reflected optical signal returns to the optical test equipment (ie OTDR) on the OLT side along the optical fiber.
  • the optical test equipment receives the reflected light signal, records its receiving time (or receiving distance) and the reflected peak intensity, and reports it to the network management device. For example, the reflected peak power corresponding to the output port 1 of the optical fiber box is measured to be x′dB and reported Network management equipment.
  • the network management device calculates the distance of each reflector, and judges the state of the optical link by comparing the actual measured reflectance with the theoretical value. As shown in Figure 9, the reflectivity is xdB, indicating that the optical fiber link and the optical fiber box are in normal condition.
  • the reflectance x′ of the optical signal reflected by the reflector of the detected output port is slightly decreased relative to x, for example, x′ is lower than the normal reflection peak intensity x by the threshold W1 or less, it is judged that the optical signal before the optical fiber box The optical fiber link is faulty.
  • the thresholds W1 and W2 are determined according to the type of optical device and the structure of the optical link. Among them, optical devices refer to the physical links of optical fiber communication, optical fibers, optical splitters, connectors, adapters, etc. and their combinations. According to the above criteria, the optical fiber box is in normal condition and the optical fiber link loss of the previous connection is normal. Construction acceptance is qualified. Update to the database according to the obtained results.
  • the embodiment of the present application completes the pre-test of the optical cable loss before the output port 1 of the optical fiber box, and performs construction acceptance on the output port to ensure smooth service opening. According to the foregoing acceptance process of output port 1, the construction acceptance of output port 2, output port 3 to output port N can be completed in sequence according to the process.
  • the construction personnel when connecting the optical fiber to the output port of the optical fiber box, the construction personnel received a work order requesting that the end user be connected to the output port 2 of the optical fiber box.
  • the construction personnel jumped at the output port (port) 2 of the optical fiber box, took out the dust cap and reflector of the corresponding port, and connected the corresponding optical cable.
  • the central office refers to the side of the OLT to identify the position and intensity of the reflection peak of each output port of the optical fiber box.
  • the distance between the corresponding optical fiber box and output port and the OTDR can be obtained through the position of the reflection peak.
  • the preset feature distance can identify the corresponding port number, and verify the construction port number and the port number assigned by the work order through the disappearance of a feature reflection peak intensity after construction, and store it in the database.
  • the OTDR can be used to check the construction quality of the optical fiber box and check the output port.
  • the output ports of the optical fiber box are distinguished according to the length of the optical fiber.
  • the output port of the optical fiber box is equipped with a reflector.
  • the dust cap, the input end of the optical fiber box is a multi-core optical cable, which is connected to the output port of the optical splitter.
  • the optical fiber box includes an optical splitter, the fiber length of output port 1 is L, the fiber length of output port 2 is L+a,..., the fiber length of output port N is L+(N-1) a.
  • An optical splitter is connected to the optical fiber box.
  • the fiber length of the output port 1 is L, because the fiber length of the output port 2 is longer than that of the output port 1, so the reflection peak position corresponding to the output port 2 on the corresponding OTDR detection curve The reflection peak position corresponding to output port 1 is different by a.
  • the fiber length of output port N is longer than that of output port 1 by (N-1) ⁇ a, so the reflection peak position corresponding to output port N on the corresponding OTDR detection curve is different from the reflection peak position corresponding to output port 1 ( N-1) ⁇ a.
  • the corresponding ports of the optical splitter and the optical fiber box can be identified through the specific reflection peak on the OTDR curve.
  • each output port of the optical fiber box is equipped with a dust cap with a reflector, which can reflect the OTDR test optical signal in whole or in part.
  • the reflectance of the reflector is y dB.
  • the reflectivity is related to the quality of the link between the reflector and the OTDR. As the quality of the link deteriorates, the reflectivity will decrease.
  • the reflectivity can be used as a criterion for the loss of the optical fiber link.
  • the optical communication detection system can include: optical fiber box, optical splitter, WDM, OTDR, OLT and network management equipment, where WDM is connected to OLT, OTDR and optical splitter respectively, the optical splitter is connected to the optical fiber box, and the OTDR is connected to the network Management equipment, the network management equipment may also be referred to as a network management system.
  • the OTDR sends a test optical signal.
  • the test optical signal is connected to the backbone optical cable through the WDM, and is transmitted along the optical cable to the optical splitter in the optical fiber box.
  • the optical splitter transmits the test optical signal to N transmitters.
  • the reflector reflects the test optical signal with a specific reflectivity; the reflected optical signal returns to the test equipment (ie, OTDR) on the OLT side along the optical cable.
  • the test equipment receives the reflected light signal, records its receiving time (distance) and the intensity of the reflection peak, and reports it to the network management device; the measured peak reflection power corresponding to the output port 2 of the optical fiber box is y′dB and reports it to the network management device.
  • the network management device calculates the distance of each reflector, and judges the state of the optical link by comparing the actual measured reflectivity with the theoretical value.
  • the reflectivity is y dB, indicating that the optical fiber link and optical fiber box are in normal condition.
  • the detected reflectivity y'drops slightly, and is lower than y below the threshold W1 it is judged that the optical fiber link before the optical splitter is faulty.
  • the detected reflectivity y′ has a large decrease and is lower than y by a threshold value W2 or less, it is judged that the optical fiber box is faulty.
  • the thresholds W1 and W2 are determined according to the type of optical device and the structure of the optical link. It can be seen from the above criteria that the optical fiber box is in normal condition, but the loss of the feeder cable connected before it is slightly increased, and the construction acceptance is unqualified. Update the database based on the results obtained.
  • the pre-test of the optical cable loss before the output port 1 of the optical fiber box can be completed, and the construction acceptance of the output port can be performed to ensure the smooth opening of the service.
  • the construction acceptance from output port 2 to output port N in sequence.
  • the distance between the corresponding optical fiber box and the output port from the OTDR can be obtained through the position of the reflection peak, and the corresponding distance can be identified through the preset characteristic distance.
  • Port number, through the disappearance of a characteristic reflection peak intensity after construction, the construction port number is verified with the port number assigned by the work order, and it is stored in the database.
  • the verification process is: according to the target construction port number 2 assigned by the work order, find the characteristic reflection peak reference of the target port in the reference database, and record it as B1.
  • the characteristic reflection peak of the actual construction port is recorded as B2.
  • the characteristic distance of the output port 2 is D1
  • the distance of the disappearing characteristic reflection peak is D2.
  • the verification result is that the construction port is inconsistent with the target port assigned by the work order.
  • OTDR can be used to perform fiber box construction quality acceptance and port verification.
  • the optical fiber box with a splitter is used, and the characteristic reflection or transmission wavelength of each output port is different to distinguish, and the output end of the splitter is equipped with a dust cap with a reflector;
  • a splitter is included in the fiber optic box, and N reflectors are inserted into the N output ports.
  • the wavelength information of the test optical signal reflected by the N reflector is different.
  • the characteristic wavelength of output port 1 is lamda 1, so on the corresponding OTDR detection curve, output port 1 has a reflection peak at lamda 1 wavelength.
  • the characteristic wavelength of the output port N is lamda N, so the output port N has a reflection peak at the lamda N wavelength on the corresponding OTDR detection curve.
  • the N output ports in the optical fiber box can be identified through the specific reflection peak characteristic wavelength on the OTDR detection curve.
  • each port of the optical fiber box is equipped with a dust cap with a reflector, which can reflect the OTDR test light of a specific wavelength in whole or in part.
  • the reflectance of the reflector is x dB.
  • the reflectivity is related to the quality of the link between the reflector and the OTDR. As the quality of the link deteriorates, the reflectivity will decrease.
  • the reflectivity can be used as a criterion for the loss of the optical fiber link.
  • the optical communication detection system can include: optical fiber box, optical splitter, WDM, OTDR, OLT and network management equipment, where WDM is connected to OLT, OTDR and optical splitter respectively, the optical splitter is connected to the optical fiber box, and the OTDR is connected to the network Management equipment, the network management equipment may also be referred to as a network management system.
  • the OTDR sends a test optical signal; the test optical signal is connected to the backbone optical cable through WDM, and after being transmitted to the optical fiber box along the optical cable, the reflector in the optical fiber box reflects the test optical signal with a specific reflectivity; the reflected optical signal Return to the optical test equipment (ie OTDR) on the OLT side along the optical cable.
  • the optical test equipment receives the reflected light signal, records its receiving time (or receiving distance) and the intensity of the reflection peak, and reports it to the network management device; the measured peak power corresponding to the output port 1 of the optical fiber box is x'dB and reports it to the network management equipment.
  • the network management device calculates the distance of each reflector, and judges the state of the optical link by comparing the actual measured reflectivity with the theoretical value.
  • the reflectivity is x dB, indicating that the fiber link and fiber box are in normal condition.
  • the detected reflectance x'drops slightly, and is lower than the normal threshold W1 it is judged that the optical fiber link before the optical splitter is faulty.
  • the detected reflectivity x'has a large decrease and is lower than the threshold W2 than normal it is judged that the optical path of the optical fiber box is faulty.
  • the thresholds W1 and W2 are determined according to the type of optical device and the structure of the optical link. It can be seen from the above criteria that the optical fiber box is in normal condition, the optical fiber link loss of the previous connection is normal, and the construction acceptance is qualified. Update the database based on the results obtained.
  • the construction personnel When connecting the optical fiber to the fiber optic box port, the construction personnel received a work order, requesting the end user to connect to the optical fiber box's No. 2 output port. The construction personnel jumped on the output port 2 of the optical fiber box, took out the dust cap and reflector of the corresponding port, and connected the corresponding optical cable.
  • the OTDR is started from the central office for detection to identify the reflection peak wavelength, position, and reflection peak intensity of each output port of the optical fiber box.
  • the distance between the corresponding optical fiber box and output port and the OTDR can be obtained through the position of the reflection peak.
  • the characteristic wavelength of the reflection peak can identify the corresponding port number, and the verification of the construction port number and the port number assigned by the work order can be performed by the disappearance of the reflection peak of the reflected light signal of a certain wavelength after the construction, and stored in the database.
  • the verification process includes: according to the target construction port number 2 assigned by the work order, the reference of the characteristic wavelength reflection peak of the target port is found in the reference database, which is recorded as A1, and the characteristic reflection peak of the actual construction port is recorded as A2.
  • the reflection peak of A2 disappears, and the reflection peaks of other output ports still exist, as shown in Figure 19.
  • the characteristic wavelength of output port 2 is lamda 2, and the disappearing characteristic reflection peak wavelength is lamda 2.
  • the construction port is consistent with the target port assigned by the work order, and the port verification is consistent.
  • the volume of the optical fiber box does not increase.
  • the construction quality of the optical fiber box and the connection relationship can be confirmed remotely at the central office without the ONU scenario, which saves labor costs and time for on-site construction.
  • the central office can remotely verify whether the on-site fiber box port is consistent with the work order to ensure resource accuracy and ensure that the operator's fiber resources are not wasted.
  • An embodiment of the present application also provides a computer storage medium, wherein the computer storage medium stores a program, and the program executes some or all of the steps recorded in the above method embodiments.
  • the light detection device is an OTDR, and the light detection device may include: a processor (for example, a CPU) 201, a memory 202, and a receiver 203.
  • the receiver 203 and the transmitter 204 are coupled to the processor 201, and the processor 201 controls the receiving action of the receiver 203 and the sending action of the transmitter 204.
  • the memory 202 may include a high-speed RAM memory, or may also include a non-volatile memory NVM, such as at least one disk memory.
  • the memory 202 may store various instructions for completing various processing functions and implementing the methods of the embodiments of the present application. step.
  • the optical detection device involved in the embodiment of the present application may further include one or more of the power supply 205, the communication bus 206, and the communication port 207.
  • the receiver 203 and the transmitter 204 may be integrated in the transceiver of the optical detection device, or may be independent receiving and transmitting antennas on the optical detection device.
  • the communication bus 206 is used to implement communication connections between components.
  • the above-mentioned communication port 207 is used to realize connection and communication between the optical detection device and other peripherals.
  • the above-mentioned memory 202 is used to store computer executable program code, and the program code includes instructions; when the processor 201 executes the instructions, the instructions cause the processor 201 to perform the processing actions of the optical detection device in the above method embodiments,
  • the implementation principle and technical effect of enabling the transmitter 204 to perform the sending action of the optical detection device in the foregoing method embodiment are similar, and will not be repeated here.
  • the network management device may be a network management system, and the network management device may include: a processor 211 (for example, a CPU), a memory 212, and a transmitting device.
  • the transmitter 214 and the receiver 213; the transmitter 214 and the receiver 213 are coupled to the processor 211, and the processor 211 controls the sending action of the transmitter 214 and the receiving action of the receiver 213.
  • the memory 212 may include a high-speed RAM memory, or may also include a non-volatile memory NVM, such as at least one disk memory.
  • the memory 212 may store various instructions for completing various processing functions and implementing the methods of the embodiments of the present application. step.
  • the network management device involved in the embodiment of the present application may further include one or more of the power supply 215, the communication bus 216, and the communication port 217.
  • the receiver 213 and the transmitter 214 may be integrated in the transceiver of the network management device, or may be independent receiving and transmitting antennas on the network management device.
  • the communication bus 216 is used to implement communication connections between components.
  • the aforementioned communication port 217 is used to implement connection and communication between the network management device and other peripherals.
  • the above-mentioned memory 212 is used to store computer executable program code, and the program code includes instructions; when the processor 211 executes the instructions, the instructions cause the processor 211 to perform the processing actions of the network management device in the foregoing method embodiments.
  • the implementation principle and technical effect of enabling the transmitter 214 to execute the sending action of the network management device in the foregoing method embodiment are similar, and will not be repeated here.
  • the chip when the optical detection device or the network management device is a chip, the chip includes a processing unit and a communication unit.
  • the processing unit may be a processor, for example, and the communication unit may be an input/output, for example. Interface, pin or circuit, etc.
  • the processing unit can execute the computer-executable instructions stored in the storage unit, so that the chip in the terminal executes the wireless communication method of any one of the above-mentioned first aspects.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit located outside the chip in the field terminal or the network management server, such as Read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), etc.
  • ROM Read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above can be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above
  • the first aspect is an integrated circuit for program execution of the wireless communication method.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physically separate.
  • the physical unit can be located in one place or distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the connection relationship between the modules indicates that they have a communication connection between them, which can be specifically implemented as one or more communication buses or signal lines.
  • this application can be implemented by means of software plus necessary general hardware.
  • it can also be implemented by dedicated hardware including dedicated integrated circuits, dedicated CPUs, dedicated memory, Dedicated components and so on to achieve.
  • all functions completed by computer programs can be easily implemented with corresponding hardware.
  • the specific hardware structures used to achieve the same function can also be diverse, such as analog circuits, digital circuits or special-purpose circuits. Circuit etc.
  • software program implementation is a better implementation in more cases.
  • the technical solution of this application essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a readable storage medium, such as a computer floppy disk.
  • a readable storage medium such as a computer floppy disk.
  • U disk mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk, etc., including several instructions to make a computer device (which can be A personal computer, a server, or a network device, etc.) execute the method described in each embodiment of the present application.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • wired such as coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)

Abstract

本申请实施例公开了一种光分配装置和光通信检测系统以及光通信检测方法。本申请实施例提供的一种光分配装置包括:输入端口、M个输出端口和N个第一光反射器,所述M大于或等于所述N,所述M和所述N为正整数,其中,所述输入端口通过M根光纤分别连接所述M个输出端口;所述N个第一光反射器中的一个第一光反射器以可插拔方式连接所述M个输出端口中的一个输出端口,其中,所述N个第一光反射器中的每一个第一光反射器用于反射进入对应输出端口的测试光信号。

Description

一种光分配装置和光通信检测系统以及光通信检测方法
本申请要求于2019年12月31日提交中国专利局、申请号为201911418193.1、发明名称为“一种光分配装置和光通信检测系统以及光通信检测方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及光通信领域,尤其涉及一种光分配装置和光通信检测系统以及光通信检测方法。
背景技术
随着光通信技术的发展,无源光纤网络(passive optical network,PON)技术在接入网中广泛应用,使用PON技术的光通信系统可以包括:光线路终端(optical line terminal,OLT)、光分配网络(optical division network,ODN)设备和光网络单元(optical network unit,ONU),ODN设备提供OLT和ONU之间的光传输通道。ODN设备包括多条光纤链路,每一条光纤链路可以包括光纤和分光器。该分光器可以是一级或者多级的分光器。
其中,OLT提供面向用户的无源光纤网络的光纤接口。分光器具有对光信号进行分路和合路的功能,分光器用于光信号的分配、光路的连接、光信号传输方向的控制等。分光器可设置在光纤盒中,分光器通过光纤盒的输出端口与ONU连接,在光纤盒中通常设置有多个输出端口。ONU是接入节点的一种形式,利用光缆将发送的光信号转换成电信号,然后通过同轴电缆等方式传送给每个客户。
在使用PON的光通信系统中,OLT不能识别ONU所连接的光链路插头。用户携带其已开通业务的ONU到同一ODN设备下的其他街区、建筑物或房间,可以与同一ODN设备服务的其他建筑中的一个或多个用户共享该ONU,多个用户可以共享宽带业务的接入。
在目前的光纤盒施工过程中,由于光纤盒中有多个输出端口,无法识别出光纤盒的输出端口,可能导致光纤与光纤盒的输出端口的连接关系错误。
发明内容
本申请实施例提供了一种光分配装置和光通信检测系统以及光通信检测方法,用于实现对光分配装置中输出端口的准确识别。
为解决上述技术问题,本申请实施例提供以下技术方案:
第一方面,本申请实施例提供一种光分配装置,包括:输入端口、M个输出端口和N个第一光反射器,所述M大于或等于所述N,所述M和所述N为正整数,其中,所述输入端口通过M根光纤分别连接所述M个输出端口;所述N个第一光反射器中的一个第一光反射器以可插拔方式连接所述M个输出端口中的一个输出端口,其中,所述N个第一光反射器中的每一个第一光反射器用于反射进入对应输出端口的测试光信号。在本申请的一些实施例中,N个第一光反射器与N个输出端口通过可插拔的方式连接,因此输出端口中可插入第一光反射器,也可以拔掉第一光反射器,实现第一光反射器和输出端口的动态连接。 每个第一光反射器以可插拔的方式连接到一个输出端口,因此N个第一光反射器可以从输出端口中移除,被移除的第一光反射器无法反射进入输出端口的测试光信号,即可以通过被移除的第一光反射器没有反射测试光信号来识别出被移除第一光反射器的输出端口,因此本申请实施例可以准确识别出光分配装置的输出端口。
在一种可能的实现方式中,连接所述N个第一光反射器的N个输出端口对应的N根光纤的长度互不相同;所述N个第一光反射器分别反射的测试光信号对应的反射峰参数不相同。在该方案中,光分配装置中输入端口通过M根光纤分别连接M个输出端口,连接N个第一光反射器的N个输出端口对应的N根光纤的光纤长度都不相同,连接N个第一光反射器的N个输出端口对应的N根光纤的光纤长度不相同,则不同光纤内传输的测试光信号的传输距离也不相同,因此经过第一光反射器反射后的不同测试光信号对应的发射峰参数也不相同。例如,N根光纤的光纤长度不相同时,N个第一光反射器分别反射的测试光信号对应的反射峰参数也不相同,因此可以通过N个第一光反射器分别反射的测试光信号对应的反射峰参数区分不同的输出端口。
在一种可能的实现方式中,所述N个第一光反射器分别反射的测试光信号具有不同的波长。在该方案中,具体的,光分配装置中N个输出端口中分别插入的N个第一光反射器可以反射不同波长的测试光信号,N个第一光反射器具有不同的反射功能,光检测设备依次向光分配装置中输入不同波长的测试光信号,光分配装置中的N个光反射器中每个光反射器可反射一种波长的测试光信号,N个第一光反射器分别反射的测试光信号对应的波长用于区分不同的输出端口。当某个第一光反射器从相应的输出端口中被移除时,通过光检测设备可以确定出被移除的第一光反射器,从而通过第一光反射器和连接该第一光反射器的输出端口的对应关系,识别出需要光分配装置中外接光纤的输出端口。
在一种可能的实现方式中,所述光分配装置还包括:分光模块,其中,所述分光模块的一个端口连接所述输入端口,所述分光模块的另M个端口分别连接所述M根光纤。在该方案中,光分配装置中可以包括分光模块,该分光模块是光分配装置中进行分光的模块,该分光模块的一个端口连接输入端口,通过光分配装置的输入端口传输进来的测试光信号可以被分光模块分为M个测试光信号,该分光模块的另M个端口分别连接M根光纤,从而M个测试光信号可以被传输至M个输出端口,例如有的输出端口插入的第一光反射器被移除之后,其余没有被移除的第一光反射器可以反射测试光信号,测试光信号被输出端口中插入的第一光反射器反射之后传输至分光模块,该分光模块向光检测设备发送N个第一光反射器中没有被移除的第一光反射器反射的测试光信号。本申请实施例中,光分配装置中可以设分光模块,通过该分光模块可以实现光信号的分离传输。
在一种可能的实现方式中,所述光分配装置中包括M个所述输入端口,其中,所述光分配装置通过M个所述输入端口分别连接分光器的M个端口。在该方案中,分光器还可以与光分配装置外接,即分光器是独立于光分配装置的一个器件,光检测设备产生的测试光信号传输给分光器之后,该分光器具有M个端口,光分配装置具有M个输入端口,则光分配装置通过M个输入端口分别连接分光器的M个端口,当光分配装置中的一个或多个输出端口插入的第一光反射器被移除之后,其余没有被移除的第一光反射器可以反射测试光信号,测试光信号被光分配装置的输出端口中插入的第一光反射器反射之后传输至分光器, 该分光器向光检测设备发送N个第一光反射器中没有被移除的第一光反射器反射的测试光信号。本申请实施例中,通过光分配装置外接的分光器可以实现光信号的分离传输。
在一种可能的实现方式中,所述光分配装置还包括:第二光反射器,其中,所述第二光反射器与所述输入端口连接,所述第二光反射器反射的进入所述输入端口的测试光信号的第二反射峰,用于识别所述第一光反射器反射的测试光信号的第一反射峰。在该方案中,光分配装置内输入端口和N个输出端口之间还设置有第二光反射器,光检测设备产生的测试光信号在通过输入端口之后传输至该第二光反射器,该第二光反射器可以将测试光信号传输至N个输出端口。其中,N个输出端口中分别插入的是N个第一光反射器,置于输入端口和N个输出端口之间的是第二光反射器,该第二光反射器反射测试光信号,例如第二光反射器反射进入输入端口的测试光信号,在反射的测试光信号中产生第二反射峰,测试光信号进入N个输出端口时N个第一光反射器会反射测试光信号,在反射的测试光信号中产生第一反射峰,第二光反射器反射的测试光信号的第二反射峰可用于识别第一反射峰,例如第二反射峰可以作为识别第一反射峰的参考点,从而可以快速、准确的识别出第一光反射器反射的测试光信号的第一反射峰,提高对第一光反射器反射的测试光信号的识别效率。
在一种可能的实现方式中,所述光分配装置还包括:N个防尘帽,所述N个防尘帽中的一个防尘帽与一个第一光反射器形成一体结构。在该方案中,防尘帽可以插入到输出端口中,以实现防水防尘的作用,避免输出端口的损坏。该防尘帽可以与第一光反射器为一体成型结构,即防尘帽和第一光反射器为固定连接,当第一输出端口中需要移除第一光反射器时,只需要拔掉与第一光反射器连接在一起的防尘帽即可,简化光分配装置与ONU的施工连接操作。
第二方面,本申请实施例还提供一种光通信检测系统,包括:光分配装置、光检测设备和网络管理设备,其中,所述光检测设备,用于向所述光分配装置发送测试光信号;所述光分配装置,用于通过所述光分配装置中的第一光反射器反射测试光信号,所述光分配装置具有M个输出端口和N个第一光反射器,所述M大于或等于所述N,所述M和所述N为正整数,所述N个第一光反射器中的一个第一光反射器以可插拔方式连接所述M个输出端口中的一个输出端口;所述光检测设备,还用于接收所述第一光反射器反射的测试光信号,向所述网络管理设备发送所述第一光反射器反射的测试光信号对应的反射光信号参数;所述网络管理设备,用于接收所述光检测设备发送的所述第一光反射器反射的测试光信号对应的反射光信号参数;根据所述第一光反射器反射的测试光信号对应的反射光信号参数识别所述光分配装置的输出端口。在该方案中,光通信检测系统包括光分配装置、光检测设备和网络管理设备,光分配装置中被移除的第一光反射器无法反射测试光信号,从而网络管理设备可以通过被移除的第一光反射器没有反射测试光信号来识别出被移除第一光反射器的输出端口,因此本申请实施例可以准确识别出光分配装置的输出端口。
在一种可能的实现方式中,所述光检测设备,用于向所述光分配装置发送第一测试光信号;所述光分配装置,用于通过所述光分配装置中的N个第一光反射器分别反射所述第一测试光信号;所述光检测设备,还用于接收所述N个第一光反射器分别反射的所述第一测试光信号,向所述网络管理设备发送所述N个第一光反射器分别反射的所述第一测试光 信号对应的反射光信号参数;所述网络管理设备,还用于接收所述光检测设备发送的所述N个第一光反射器分别反射的所述第一测试光信号对应的反射光信号参数;根据所述N个第一光反射器分别反射的所述第一测试光信号对应的反射光信号参数,检测所述光检测设备与所述光分配装置的N个输出端口之间的光纤链路状态。在该方案中,光分配装置中N个输出端口上以可插拔方式连接有N个第一光反射器,这N个第一光反射器可以反射测试光信号,从而网络管理设备可以根据N个第一光反射器分别反射的第一测试光信号对应的反射光信号参数,检测光检测设备与光分配装置的N个输出端口之间的光纤链路状态,以检测从光检测设备到光分配装置中的N个输出端口之间的光纤链路损耗是否正常。本申请实施例中通过第一光反射器反射测试光信号,通过被第一光反射器反射的测试光信号的反射峰强度的变化情况,来确定从光检测设备到光分配装置中的N个输出端口之间的光纤链路损耗是否正常,若该光纤链路损耗正常,则说明光分配装置的施工验收通过,若该光纤链路损耗不正常,则说明光分配装置的施工验收未通过。
在一种可能的实现方式中,所述反射光信号参数包括:第一光反射器反射的所述第一测试光信号的反射峰强度;所述网络管理设备,用于所述N个第一光反射器分别反射的所述第一测试光信号对应的反射峰强度低于第一阈值,确定所述光检测设备与所述光分配装置的输入端口之间的光纤链路状态异常;或者,所述N个第一光反射器分别反射的所述第一测试光信号对应的反射峰强度低于第二阈值,确定所述输入端口与所述光分配装置的N个输出端口之间的光纤链路状态异常;或者,所述N个第一光反射器分别反射的所述第一测试光信号对应的反射峰强度大于或等于所述第一阈值,确定所述光检测设备与所述光分配装置的N个输出端口之间的光纤链路状态正常;其中,所述第二阈值小于所述第一阈值。在该方案中,网络管理设备计算每个第一光反射器反射的测试光信号的反射峰位置,通过将实际测到的反射峰强度与预先存储的反射峰强度对比,判断光纤链路损耗是否正常。通过分别设置的第一阈值和第二阈值,将N个第一光反射器分别反射的所述第一测试光信号对应的反射峰强度与上述第一阈值、第二阈值进行判断,就可以实现对光分配装置的输出端口施工质量进行验收,不需要人工进行操作,提高光分配装置的输出端口施工质量的验收效率。
在一种可能的实现方式中,所述光检测设备,用于向所述光分配装置发送第二测试光信号;所述光分配装置,用于通过所述光分配装置中的N-1个第一光反射器分别反射所述第二测试光信号,所述N-1个第一光反射器连接所述M个输出端口中的N-1个输出端口,所述N个第一光反射器中没有连接输出端口的第一光反射器无法反射所述第二测试光信号;所述光检测设备,还用于接收所述N-1个第一光反射器分别反射的所述第二测试光信号,向所述网络管理设备发送所述N-1个第一光反射器分别反射的所述第二测试光信号对应的反射光信号参数;所述网络管理设备,用于接收所述光检测设备发送的所述N-1个第一光反射器分别反射的所述第二测试光信号对应的反射光信号参数;根据所述N-1个第一光反射器分别反射的所述第二测试光信号对应的反射光信号参数识别所述光分配装置中被拔掉第一光反射器的输出端口。在该方案中,网络管理设备还可以检测施工的输出端口是否正确。网络管理设备能够与光检测设备进行通信,以接收光检测设备发送的N个第一光反射器中没有被移除的第一光反射器分别反射的测试光信号对应的反射光信号参数,由于N个 第一光反射器分别反射的测试光信号能够用于区分N个输出端口,因此网络管理设备根据N个第一光反射器中没有被移除的第一光反射器分别反射的测试光信号对应的反射光信号参数确定被移除第一光反射器的输出端口是否为目标输出端口,解决了施工过程中可能对错误的输出端口外接光纤的情况。
在一种可能的实现方式中,所述网络管理设备,用于当所述光分配装置中的目标输出端口需要被拔掉第一光反射器时,从所述网络管理设备的基准数据库中获取所述目标输出端口对应的基准反射光信号参数;根据所述N-1个第一光反射器分别反射的所述第二测试光信号对应的反射光信号参数,确定消失的反射光信号对应的反射光信号参数;确定所述消失的反射光信号对应的反射光信号参数是否与所述目标输出端口对应的基准反射光信号参数相同,若所述消失的反射光信号对应的反射光信号参数与所述目标输出端口对应的基准反射光信号参数相同,确定所述目标输出端口是所述光分配装置中被拔掉第一光反射器的输出端口,若所述消失的反射光信号对应的反射光信号参数与所述目标输出端口对应的基准反射光信号参数不相同,确定所述目标输出端口不是所述光分配装置中被拔掉第一光反射器的输出端口。在该方案中,可以实现对光分配装置的输出端口进行识别,不需要人工进行操作,保证光分配装置的输出端口与外接光纤的正确连接。
在一种可能的实现方式中,所述反射光信号参数包括:反射峰位置和所述反射峰位置对应的反射峰强度;或者,所述反射光信号参数包括:反射光信号的波长信息。在该方案中,网络管理设备可以确定消失的反射光信号对应的反射峰强度是否与目标输出端口对应的基准反射峰强度相同,若消失的反射光信号对应的反射峰强度与目标输出端口对应的基准反射峰强度相同,确定目标输出端口是第一输出端口,若消失的反射光信号对应的反射峰强度与目标输出端口对应的基准反射峰强度不相同,确定目标输出端口不是第一输出端口。另外,网络管理设备可以确定消失的反射光信号对应的波长信息是否与目标输出端口对应的基准波长信息相同,若消失的反射光信号对应的波长信息与目标输出端口对应的基准波长信息相同,确定目标输出端口是第一输出端口,若消失的反射光信号对应的波长信息与目标输出端口对应的基准波长信息不相同,确定目标输出端口不是第一输出端口。
在一种可能的实现方式中,所述光分配装置还包括:输入端口和第二光反射器,其中,所述第二光反射器与所述输入端口连接;所述网络管理设备,用于检测所述第二光反射器反射的进入所述输入端口的测试光信号的第二反射峰,以及根据所述第二反射峰识别所述第一光反射器反射的测试光信号的第一反射峰。在该方案中,N个输出端口中分别插入的是N个第一光反射器,置于输入端口和N个输出端口之间的是第二光反射器,该第二光反射器反射测试光信号,例如第二光反射器反射进入输入端口的测试光信号,在反射的测试光信号中产生第二反射峰,测试光信号进入N个输出端口时N个第一光反射器会反射测试光信号,在反射的测试光信号中产生第一反射峰,第二光反射器反射的测试光信号的第二反射峰可用于识别第一反射峰,例如第二反射峰可以作为识别第一反射峰的参考点,从而可以快速、准确的识别出第一光反射器反射的测试光信号的第一反射峰,提高对第一光反射器反射的测试光信号的识别效率。
第三方面,本申请实施例还提供一种光通信检测方法,包括:网络管理设备接收光检测设备发送的第一光反射器反射的测试光信号对应的反射光信号参数,其中,所述第一光 反射器反射的测试光信号由光分配装置发送给所述光检测设备,所述测试光信号由所述光检测设备发送给所述光分配装置,所述光分配装置具有M个输出端口和N个第一光反射器,所述M大于或等于所述N,所述M和所述N为正整数,所述N个第一光反射器中的一个第一光反射器以可插拔方式连接所述M个输出端口中的一个输出端口;所述网络管理设备根据所述第一光反射器反射的测试光信号对应的反射光信号参数识别所述光分配装置的输出端口。在该方案中,光通信检测系统包括光分配装置,光分配装置中被移除的第一光反射器无法反射测试光信号,从而网络管理设备可以通过被移除的第一光反射器没有反射测试光信号来识别出被移除第一光反射器的输出端口,因此本申请实施例可以准确识别出光分配装置的输出端口。
在一种可能的实现方式中,所述网络管理设备根据所述第一光反射器反射的测试光信号对应的反射光信号参数识别所述光分配装置的输出端口之后,所述方法还包括:当所述网络管理设备接收到所述光检测设备发送的N个第一光反射器分别反射的第一测试光信号对应的反射光信号参数时,所述网络管理设备根据所述N个第一光反射器分别反射的第一测试光信号对应的反射光信号参数,检测所述光检测设备与所述光分配装置的N个输出端口之间的光纤链路状态。在该方案中,光分配装置中N个输出端口上以可插拔方式连接有N个第一光反射器,这N个第一光反射器可以反射测试光信号,从而网络管理设备可以根据N个第一光反射器分别反射的第一测试光信号对应的反射光信号参数,检测光检测设备与光分配装置的N个输出端口之间的光纤链路状态,以检测从光检测设备到光分配装置中的N个输出端口之间的光纤链路损耗是否正常。本申请实施例中通过第一光反射器反射测试光信号,通过被第一光反射器反射的测试光信号的反射峰强度的变化情况,来确定从光检测设备到光分配装置中的N个输出端口之间的光纤链路损耗是否正常,若该光纤链路损耗正常,则说明光分配装置的施工验收通过,若该光纤链路损耗不正常,则说明光分配装置的施工验收未通过。
在一种可能的实现方式中,所述反射光信号参数包括:第一光反射器反射的所述第一测试光信号的反射峰强度;所述网络管理设备根据所述N个第一光反射器分别反射的所述第一测试光信号对应的反射光信号参数,检测所述光检测设备与所述光分配装置的N个输出端口之间的光纤链路状态,包括:所述N个第一光反射器分别反射的所述第一测试光信号对应的反射峰强度低于第一阈值,所述网络管理设备确定所述光检测设备与所述光分配装置的输入端口之间的光纤链路状态异常;或者,所述N个第一光反射器分别反射的所述第一测试光信号对应的反射峰强度低于第二阈值,所述网络管理设备确定所述输入端口与所述光分配装置的M个输出端口之间的光纤链路状态异常;或者,所述N个第一光反射器分别反射的所述第一测试光信号对应的反射峰强度大于或等于第一阈值,所述网络管理设备确定所述光检测设备与所述光分配装置的M个输出端口之间的光纤链路状态正常;其中,所述第二阈值小于所述第一阈值。在该方案中,网络管理设备计算每个第一光反射器反射的测试光信号的反射峰位置,通过将实际测到的反射峰强度与预先存储的反射峰强度对比,判断光纤链路损耗是否正常。通过分别设置的第一阈值和第二阈值,将N个第一光反射器分别反射的所述第一测试光信号对应的反射峰强度与上述第一阈值、第二阈值进行判断,就可以实现对光分配装置的输出端口施工质量进行验收,不需要人工进行操作,提高光分 配装置的输出端口施工质量的验收效率。
在一种可能的实现方式中,所述网络管理设备根据所述第一光反射器反射的测试光信号对应的反射光信号参数识别所述光分配装置的输出端口,包括:当所述网络管理设备接收所述光检测设备发送的N-1个第一光反射器分别反射的第二测试光信号对应的反射光信号参数时,所述网络管理设备根据所述N-1个第一光反射器分别反射的所述第二测试光信号对应的反射光信号参数识别所述光分配装置中被拔掉第一光反射器的输出端口;其中,所述N-1个第一光反射器连接所述M个输出端口中的N-1个输出端口,所述N个第一光反射器中没有连接输出端口的第一光反射器无法反射所述第二测试光信号。在该方案中,网络管理设备还可以检测施工的输出端口是否正确。网络管理设备能够与光检测设备进行通信,以接收光检测设备发送的N个第一光反射器中没有被移除的第一光反射器分别反射的测试光信号对应的反射光信号参数,由于N个第一光反射器分别反射的测试光信号能够用于区分N个输出端口,因此网络管理设备根据N个第一光反射器中没有被移除的第一光反射器分别反射的测试光信号对应的反射光信号参数确定被移除第一光反射器的输出端口是否为目标输出端口,解决了施工过程中可能对错误的输出端口外接光纤的情况。
在一种可能的实现方式中,所述网络管理设备根据所述N-1个第一光反射器分别反射的所述第二测试光信号对应的反射光信号参数识别所述光分配装置中被拔掉第一光反射器的输出端口,包括:当所述光分配装置中的目标输出端口需要被拔掉第一光反射器时,所述网络管理设备从所述网络管理设备的基准数据库中获取所述目标输出端口对应的基准反射光信号参数;所述网络管理设备根据所述N-1个第一光反射器分别反射的所述第二测试光信号对应的反射光信号参数,确定消失的反射光信号对应的反射光信号参数;所述网络管理设备确定所述消失的反射光信号对应的反射光信号参数是否与所述目标输出端口对应的基准反射光信号参数相同;若所述消失的反射光信号对应的反射光信号参数与所述目标输出端口对应的基准反射光信号参数相同,所述网络管理设备确定所述目标输出端口是所述光分配装置中被拔掉第一光反射器的输出端口;若所述消失的反射光信号对应的反射光信号参数与所述目标输出端口对应的基准反射光信号参数不相同,所述网络管理设备确定所述目标输出端口不是所述光分配装置中被拔掉第一光反射器的输出端口。在该方案中,可以实现对光分配装置的输出端口进行识别,不需要人工进行操作,保证光分配装置的输出端口与外接光纤的正确连接。
在一种可能的实现方式中,所述反射光信号参数包括:反射峰位置和所述反射峰位置对应的反射峰强度;或者,所述反射光信号参数包括:反射光信号的波长。在该方案中,网络管理设备可以确定消失的反射光信号对应的反射峰强度是否与目标输出端口对应的基准反射峰强度相同,若消失的反射光信号对应的反射峰强度与目标输出端口对应的基准反射峰强度相同,确定目标输出端口是第一输出端口,若消失的反射光信号对应的反射峰强度与目标输出端口对应的基准反射峰强度不相同,确定目标输出端口不是第一输出端口。另外,网络管理设备可以确定消失的反射光信号对应的波长信息是否与目标输出端口对应的基准波长信息相同,若消失的反射光信号对应的波长信息与目标输出端口对应的基准波长信息相同,确定目标输出端口是第一输出端口,若消失的反射光信号对应的波长信息与目标输出端口对应的基准波长信息不相同,确定目标输出端口不是第一输出端口。
在一种可能的实现方式中,所述光分配装置还包括:输入端口和第二光反射器,其中,所述第二光反射器与所述输入端口连接;所述方法还包括:所述网络管理设备检测所述第二光反射器反射的进入所述输入端口的测试光信号的第二反射峰;所述网络管理设备根据所述第二反射峰识别所述第一光反射器反射的测试光信号的第一反射峰。在该方案中,N个输出端口中分别插入的是N个第一光反射器,置于输入端口和N个输出端口之间的是第二光反射器,该第二光反射器反射测试光信号,例如第二光反射器反射进入输入端口的测试光信号,在反射的测试光信号中产生第二反射峰,测试光信号进入N个输出端口时N个第一光反射器会反射测试光信号,在反射的测试光信号中产生第一反射峰,第二光反射器反射的测试光信号的第二反射峰可用于识别第一反射峰,例如第二反射峰可以作为识别第一反射峰的参考点,从而可以快速、准确的识别出第一光反射器反射的测试光信号的第一反射峰,提高对第一光反射器反射的测试光信号的识别效率。
在本申请的第三方面中,光通信检测系统中的光分配装置还可以具有前述第一方面以及各种可能的实现方式中所描述的结构特征,详见前述对第一方面以及各种可能的实现方式中的说明。
第四方面,本申请实施例还提供一种光通信检测方法,所述方法应用于光通信检测系统,所述光通信检测系统包括:光分配装置、光检测设备和网络管理设备,其中,所述方法包括:所述光检测设备向所述光分配装置发送测试光信号;所述光分配装置通过所述光分配装置中的第一光反射器反射测试光信号,所述光分配装置具有M个输出端口和N个第一光反射器,所述M大于或等于所述N,所述M和所述N为正整数,所述N个第一光反射器中的一个第一光反射器以可插拔方式连接所述M个输出端口中的一个输出端口;所述光检测设备接收所述第一光反射器反射的测试光信号,向所述网络管理设备发送所述第一光反射器反射的测试光信号对应的反射光信号参数;所述网络管理设备接收所述光检测设备发送的所述第一光反射器反射的测试光信号对应的反射光信号参数;所述网络管理设备根据所述第一光反射器反射的测试光信号对应的反射光信号参数识别所述光分配装置的输出端口。在该方案中,光通信检测系统包括光分配装置,光分配装置中被移除的第一光反射器无法反射测试光信号,从而网络管理设备可以通过被移除的第一光反射器没有反射测试光信号来识别出被移除第一光反射器的输出端口,因此本申请实施例可以准确识别出光分配装置的输出端口。
在一种可能的实现方式中,所述方法还包括:当所述网络管理设备接收到所述光检测设备发送的N个第一光反射器分别反射的第一测试光信号对应的反射光信号参数时,所述网络管理设备根据所述N个第一光反射器分别反射的所述第一测试光信号对应的反射光信号参数,检测所述光检测设备与所述光分配装置的N个输出端口之间的光纤链路状态。
在一种可能的实现方式中,所述反射光信号参数包括:第一光反射器反射的所述第一测试光信号的反射峰强度;所述网络管理设备根据所述N个第一光反射器分别反射的所述第一测试光信号对应的反射光信号参数,检测所述光检测设备与所述光分配装置的N个输出端口之间的光纤链路状态,包括:所述N个第一光反射器分别反射的所述第一测试光信号对应的反射峰强度低于第一阈值,所述网络管理设备确定所述光检测设备与所述光分配装置的输入端口之间的光纤链路状态异常;或者,所述N个第一光反射器分别反射的所述 第一测试光信号对应的反射峰强度低于第二阈值,所述网络管理设备确定所述输入端口与所述光分配装置的M个输出端口之间的光纤链路状态异常;或者,所述N个第一光反射器分别反射的所述第一测试光信号对应的反射峰强度大于或等于第一阈值,所述网络管理设备确定所述光检测设备与所述光分配装置的M个输出端口之间的光纤链路状态正常;其中,所述第二阈值小于所述第一阈值。在该方案中,网络管理设备计算每个第一光反射器反射的测试光信号的反射峰位置,通过将实际测到的反射峰强度与预先存储的反射峰强度对比,判断光纤链路损耗是否正常。通过分别设置的第一阈值和第二阈值,将N个第一光反射器分别反射的所述第一测试光信号对应的反射峰强度与上述第一阈值、第二阈值进行判断,就可以实现对光分配装置的输出端口施工质量进行验收,不需要人工进行操作,提高光分配装置的输出端口施工质量的验收效率。
在一种可能的实现方式中,所述网络管理设备根据所述第一光反射器反射的测试光信号对应的反射光信号参数识别所述光分配装置的输出端口,包括:当所述网络管理设备接收所述光检测设备发送的N-1个第一光反射器分别反射的第二测试光信号对应的反射光信号参数时,所述网络管理设备根据所述N-1个第一光反射器分别反射的第二测试光信号对应的反射光信号参数识别所述光分配装置中被拔掉第一光反射器的输出端口;其中,所述N-1个第一光反射器连接所述M个输出端口中的N-1个输出端口,所述N个第一光反射器中没有连接输出端口的第一光反射器无法反射第二测试光信号。在该方案中,网络管理设备还可以检测施工的输出端口是否正确。网络管理设备能够与光检测设备进行通信,以接收光检测设备发送的N个第一光反射器中没有被移除的第一光反射器分别反射的测试光信号对应的反射光信号参数,由于N个第一光反射器分别反射的测试光信号能够用于区分N个输出端口,因此网络管理设备根据N个第一光反射器中没有被移除的第一光反射器分别反射的测试光信号对应的反射光信号参数确定被移除第一光反射器的输出端口是否为目标输出端口,解决了施工过程中可能对错误的输出端口外接光纤的情况。
在一种可能的实现方式中,所述网络管理设备根据所述N-1个第一光反射器分别反射的所述第二测试光信号对应的反射光信号参数识别所述光分配装置中被拔掉第一光反射器的输出端口,包括:当所述光分配装置中的目标输出端口需要被拔掉第一光反射器时,所述网络管理设备从所述网络管理设备的基准数据库中获取所述目标输出端口对应的基准反射光信号参数;所述网络管理设备根据所述N-1个第一光反射器分别反射的所述第二测试光信号对应的反射光信号参数,确定消失的反射光信号对应的反射光信号参数;所述网络管理设备确定所述消失的反射光信号对应的反射光信号参数是否与所述目标输出端口对应的基准反射光信号参数相同;若所述消失的反射光信号对应的反射光信号参数与所述目标输出端口对应的基准反射光信号参数相同,所述网络管理设备确定所述目标输出端口是所述光分配装置中被拔掉第一光反射器的输出端口;若所述消失的反射光信号对应的反射光信号参数与所述目标输出端口对应的基准反射光信号参数不相同,所述网络管理设备确定所述目标输出端口不是所述光分配装置中被拔掉第一光反射器的输出端口。在该方案中,可以实现对光分配装置的输出端口进行识别,不需要人工进行操作,保证光分配装置的输出端口与外接光纤的正确连接。
在一种可能的实现方式中,所述反射光信号参数包括:反射峰位置和所述反射峰位置 对应的反射峰强度;或者,所述反射光信号参数包括:反射光信号的波长。在该方案中,网络管理设备可以确定消失的反射光信号对应的反射峰强度是否与目标输出端口对应的基准反射峰强度相同,若消失的反射光信号对应的反射峰强度与目标输出端口对应的基准反射峰强度相同,确定目标输出端口是第一输出端口,若消失的反射光信号对应的反射峰强度与目标输出端口对应的基准反射峰强度不相同,确定目标输出端口不是第一输出端口。另外,网络管理设备可以确定消失的反射光信号对应的波长信息是否与目标输出端口对应的基准波长信息相同,若消失的反射光信号对应的波长信息与目标输出端口对应的基准波长信息相同,确定目标输出端口是第一输出端口,若消失的反射光信号对应的波长信息与目标输出端口对应的基准波长信息不相同,确定目标输出端口不是第一输出端口。
在一种可能的实现方式中,所述光分配装置还包括:输入端口和第二光反射器,其中,所述第二光反射器与所述输入端口连接;所述方法还包括:所述网络管理设备检测所述第二光反射器反射的进入所述输入端口的测试光信号的第二反射峰;所述网络管理设备根据所述第二反射峰识别所述第一光反射器反射的测试光信号的第一反射峰。在该方案中,N个输出端口中分别插入的是N个第一光反射器,置于输入端口和N个输出端口之间的是第二光反射器,该第二光反射器反射测试光信号,例如第二光反射器反射进入输入端口的测试光信号,在反射的测试光信号中产生第二反射峰,测试光信号进入N个输出端口时N个第一光反射器会反射测试光信号,在反射的测试光信号中产生第一反射峰,第二光反射器反射的测试光信号的第二反射峰可用于识别第一反射峰,例如第二反射峰可以作为识别第一反射峰的参考点,从而可以快速、准确的识别出第一光反射器反射的测试光信号的第一反射峰,提高对第一光反射器反射的测试光信号的识别效率。
第五方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第三方面中光检测设备和网络管理设备,或第四方面实现的方法。
第六方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第三方面中光检测设备和网络管理设备,或第四方面实现的方法。
第七方面,本申请实施例提供一种光通信检测系统,该光通信检测系统包括:光分配装置、光检测设备和网络管理设备,所述光检测设备和所述网络管理设备都包括:处理器、存储器;所述存储器用于存储指令;所述处理器用于执行所述存储器中的所述指令,使得所述光通信检测系统中各个组成设备执行如前述第三方面中光检测设备和网络管理设备,或第四方面实现所述的方法。
第八方面,本申请提供了一种光检测设备,该光检测设备包括处理器,用于支持光检测设备实现上述第三方面中所涉及的功能,例如,发送或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述光检测设备还包括存储器,所述存储器,用于保存光检测设备必要的程序指令和数据。该光检测设备,可以由芯片构成,也可以包括芯片和其他分立器件。
第九方面,本申请提供了一种网络管理设备,该网络管理设备包括处理器,用于支持网络管理设备实现上述第三方面或第四方面中所涉及的功能,例如,发送或处理上述方法 中所涉及的数据和/或信息。在一种可能的设计中,所述网络管理设备还包括存储器,所述存储器,用于保存网络管理设备必要的程序指令和数据。该网络管理设备,可以由芯片构成,也可以包括芯片和其他分立器件。
附图说明
图1为本申请实施例提供的一种光通信系统的组成结构示意图;
图2为本申请实施例提供的一种光分配装置的组成结构示意图;
图3为本申请实施例提供的另一种光分配装置的组成结构示意图;
图4为本申请实施例提供的一种光通信检测系统的组成结构示意图;
图5为本申请实施例提供的另一种光通信检测系统的组成结构示意图;
图6为本申请实施例提供的一种光纤盒的组成结构示意图;
图7为本申请实施例提供的一种OTDR探测曲线的示意图;
图8为本申请实施例提供的一种光纤盒应用的系统架构示意图;
图9为本申请实施例提供的一种反射光信号的反射峰功率的示意图;
图10为本申请实施例提供的一种光纤盒外接ONU的系统架构示意图;
图11为本申请实施例提供的一种从OTDR探测曲线上识别出反射峰的示意图;
图12为本申请实施例提供的一种光纤盒的组成结构示意图;
图13为本申请实施例提供的另一种光纤盒应用的系统架构示意图;
图14为本申请实施例提供的另一种光纤盒外接ONU的系统架构示意图;
图15为本申请实施例提供的另一种从OTDR探测曲线上识别出反射峰的示意图;
图16为本申请实施例提供的另一种光纤盒的组成结构示意图;
图17为本申请实施例提供的另一种OTDR探测曲线的示意图;
图18为本申请实施例提供的另一种光纤盒外接ONU的系统架构示意图;
图19为本申请实施例提供的从OTDR探测曲线上识别出反射峰的示意图;
图20为本申请实施例提供的一种光检测设备的组成结构示意图;
图21为本申请实施例提供的一种网络管理设备的组成结构示意图。
具体实施方式
本申请实施例提供了一种光分配装置和光通信检测系统以及光通信检测方法,用于实现对光分配装置中输出端口的准确识别。
下面结合附图,对本申请的实施例进行描述。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
本申请实施例的技术方案可以应用于各种光通信系统,如图1所示,本申请实施例提供的一种光通信系统可以包括:光线路终端(optical line terminal,OLT)、光分配网络(optical division network,ODN)设备和t个光网络单元(optical network unit,ONU)。其中,本申请实施例中OLT通过ODN设备分别和t个ONU连接,例如t个ONU可以是图1中所示的ONU0、…、ONUt-2、ONUt-1。ODN设备为无源器件,ODN设备包括光分配装置,该光分配装置具有多个输出端口,至少有一个输出端口上插入有光反射器(后续实施例中光反射器可以简称为反射器),例如光分配装置有M个输出端口,M大于或等于N,例如,M大于N,M个输出端口中有N个输出端口分别插入光反射器,即在光分配装置的N个输出端口中插入N个光反射器,N个输出端口中的每一个输出端口中插入有一个光反射器。又如M等于N,则光分配装置共有N个输出端口,N个输出端口中的每个输出端口都插入有一个光反射器。后续实施例中以光分配装置中每个输出端口都插入有光反射器为例进行说明。本申请实施例中,光反射器以可插拔的方式与输出端口连接,即N个光反射器可以插入到N个输出端口,也可以在光分配装置中的一个或多个输出端口需要外接光纤时,从一个或多个的输出端口中移除光反射器,因此本申请实施例中光反射器可以为可抛光反射器。
当光分配装置中的输出端口需要外接ONU时,该输出端口中插入的光反射器可以移除,然后在该输出端口中插入光纤,通过光纤再连接ONU。光分配装置可以包括如下设备中的至少一种:光纤分纤箱(fiber access terminal,FAT),光缆接头盒(SSCsplitting and splicing closure),光纤终端盒(access terminal box,ATB),或者光配线架(optical distribution frame,ODF)。其中,光配线架可用于光通信系统中局端主干光缆的成端和分配,可方便地实现光纤线路的连接、分配和调度。光纤分纤箱位于光接入网络中的用户接入点,实现配线光缆与入户光缆的接续、光纤的直通、分歧和保护功能,内部可以设置分光器等。光缆接头盒可以为支持人/手孔安装的户外型产品,主要应用于光接入网络的用户接入点,实现光缆的接续与分歧及用户端入户光缆的引入等功能。光纤终端盒是用来连接入户光缆与户内ONU的无源设备,安装在用户的内墙,为户内ONU提供光纤插口。需要说明的是,光分配装置不限于上述几种,光分配装置可以是ODN设备中的任意一个节点设备。
如图2所示,为本申请实施例提供的一种光分配装置,该光分配装置包括:输入端口、M个输出端口和N个第一光反射器,M大于或等于N,M和N为正整数,其中,
输入端口通过M根光纤分别连接M个输出端口;
N个第一光反射器中的一个第一光反射器以可插拔方式连接M个输出端口中的一个输出端口,其中,N个第一光反射器中的每一个第一光反射器用于反射进入对应输出端口的测试光信号。
需要说明的是,光分配装置有M个输出端口,M大于或等于N,例如,图2中示意说明了M大于N时,M个输出端口中有N个输出端口分别插入第一光反射器,因此需要在N个输出端口中插入N个第一光反射器,又如M等于N,则光分配装置中的N个输出端口中每个输出端口都插入有第一光反射器,此处不再使用图例说明。本申请实施例中,第一光反射器以可插拔的方式与输出端口连接,即N个光反射器可以插入到N个输出端口,也可以在光分配装置中的一个或多个输出端口需要外接光纤时,从一个或多个的输出端口中移除 光反射器,本申请实施例第一光反射器可以为可抛光反射器。图2中光分配装置的输出端口和第一光反射器之间的连接用虚线示意,以表示输出端口和第一光反射器之间的可插拔关系。
其中,该光分配装置具有至少一个输入端口,输入端口用于外界向光分配装置中输入测试光信号,该测试光信号用于测试光分配装置中输出端口与外接光纤的施工是否符合要求、光分配装置中选择的外接光纤的输出端口是否正确。该测试光信号可以由光检测设备输入到光分配装置中,该光检测设备可以是光时域反射仪(optical time domain reflectometer,OTDR),光检测设备可以生成OTDR探测曲线,在该OTDR探测曲线上显示每个反射光信号对应的反射峰。不限定的是,光检测设备可以是一单独的器件,也可以与光通信系统中其它器件的集成在一起,例如光检测设备可以与OLT集成,即OLT可以包括光检测设备,例如OLT中包括有OTDR部件,用于向光分配装置中输入测试光信号。
该光分配装置除了具有输入端口,还可以包括多个输出端口,输出端口的个数用字母M表示,M的取值可以是2,或者M的取值大于2,对于光分配装置包括的输出端口个数不做限定。输入端口通过M根光纤分别连接M个输出端口,即输入端口可以通过1根光纤和一个输出端口连接,光分配装置中有M个输出端口,因此共需要M根光纤,通过输入端口输入到光分配装置中的测试光信号可以通过光纤传输到输出端口。在M个输出端口中有N个输出端口中插入有第一光反射器,该第一光反射器可以简称为“第一反射器”或者简称为“反射器”,第一光反射器是用于反射光信号的器件,当有光信号进入第一光反射器时,第一光反射器可以实现对该光信号的反射,例如光信号可以是测试光信号,或者业务光信号。
需要说明的是,本申请实施例中,第一光反射器是指以可插拔方式与光分配装置的输出端口连接的光反射器,通过后续记载可知,第二光反射器是指与光分配装置的输入端口连接的光反射器,第一光反射器和第二光反射器可用于区别描述连接不同类型端口的光反射器。例如,在后续涉及与光分配装置的输出端口连接的第一光反射器的描述时,还将第一光反射器简称为反射器。
测试光信号进入输出端口时,若该输出端口中插入有第一光反射器,第一光反射器可以对测试光信号进行反射,第一光反射器可以将反射的测试光信号再通过光纤传输到输入端口。本申请实施例中,N个第一光反射器分别反射的测试光信号用于区分不同的N个输出端口,这N个输出端口中分别插入有第一光反射器,即第一光反射器与连接该第一光反射器的输出端口是一一对应关系,N个第一光反射器分别反射的测试光信号也在不同的光纤中传输,通过分析N个第一光反射器分别反射的测试光信号,就可以对光分配装置中的N个输出端口做出准确区分。本申请实施例第一光反射器可以具有一种或多种反射率,第一光反射器可以是单端口器件,或者双端口器件,其中,单端口器件是指只有一侧的端口可连接光纤,双端口器件是指两侧的端口都可以连接光纤。第一光反射器是镀介质膜和布拉格光栅(fiber Bragg grating,FBG)的光反射器件,第一光反射器还可以是镀金属膜的光反射器件,或者第一光反射器可以是利用特殊结构实现光信号反射功能的器件,此处不做限定。
本申请实施例中,光分配装置的N个输出端口上以可插拔方式连接N个第一光反射器, 当某一个输出端口或多个输出端口需要外接ONU时,该输出端口中插入的第一光反射器可以移除,即可以从输出端口中拔掉第一光反射器,然后在该输出端口中插入光纤,通过光纤再连接ONU。例如第一输出端口为N个输出端口中的任意一个输出端口,该第一输出端口中插入有第一光反射器,当第一输出端口需要连接光纤时,第一输出端口中插入的第一光反射器可从第一输出端口中移除,被移除的第一光反射器无法反射进入第一输出端口的测试光信号,即可以通过被移除的第一光反射器没有反射测试光信号来识别出被移除第一光反射器的第一输出端口,因此本申请实施例可以准确识别出光分配装置的输出端口。
需要说明的是,第一光反射器在输出端口内是可插拔的,当需要使用输出端口时需移除插入的第一光反射器,因此第一光反射器的光学性能不会劣化施工完成后的光链路通信情况。本申请实施例中第一光反射器可以有一种或多种预设的反射率,可以对测试光信号、业务光信号进行反射,产生大的衰减。另外,第一光反射器也可以只对测试光信号进行反射,产生大的衰减。
在本申请的一些实施例中,光分配装置还包括:N个防尘帽,N个防尘帽中的每一个防尘帽与一个第一光反射器形成一体结构。其中,防尘帽可以插入到输出端口中,以实现防水防尘的作用,避免输出端口的损坏。该防尘帽可以与第一光反射器为一体成型结构,即防尘帽和第一光反射器为固定连接,当第一输出端口中需要移除第一光反射器时,只需要拔掉与第一光反射器连接在一起的防尘帽即可,简化光分配装置与ONU的施工连接操作。
需要说明的是,第一光反射器可以与防尘帽是一体成型结构,不限定的是,本申请实施例中第一光反射器和防尘帽还可以是相互分离的独立器件,即第一光反射器可以插入到输出端口中,然后在输出端口上再连接防尘帽。
在本申请的一些实施例中,连接N个第一光反射器的N个输出端口对应的N根光纤的长度互不相同;
N个第一光反射器分别反射的测试光信号对应的反射峰参数不相同。
其中,光分配装置中输入端口通过M根光纤分别连接M个输出端口,连接N个第一光反射器的N个输出端口对应的N根光纤的光纤长度都不相同,光纤长度是指连接输入端口和输出端口之间的光纤长度,连接N个第一光反射器的N个输出端口对应的N根光纤的光纤长度不相同,则不同光纤内传输的测试光信号的传输距离也不相同,因此经过第一光反射器反射后的不同测试光信号对应的发射峰参数也不相同。例如,N根光纤的光纤长度不相同时,N个第一光反射器分别反射的测试光信号对应的反射峰参数也不相同,因此可以通过N个第一光反射器分别反射的测试光信号对应的反射峰参数区分不同的输出端口。其中,反射峰参数是指第一光反射器反射测试光信号产生的波形曲线参数。当光纤中传输的测试光信号被第一光反射器反射时,反射的测试光信号会产生反射峰。本申请实施例中,在输入端口和N个输出端口之间可以使用不同长度的光纤连接起来,且按预先的光纤长度规划,不同输出端口距离输入端口的光纤长度不同,通过测试不同输出端口分别对应的特定光纤长度可以区分不同的输出端口,实现对插入有光反射器的输出端口的准确区分。
在本申请的一些实施例中,连接N个第一光反射器的N个输出端口对应的N根光纤的光纤长度之间满足预设的差值关系。
具体的,N根光纤的光纤长度不相同,这些N根光纤的光纤长度之间满足预设的差值 关系,从而每根光纤中传输的第一光反射器反射的测试光信号对应的反射峰参数是不相同,基于N根光纤的光纤长度之间的差值关系可以识别出N个第一光反射器分别反射的测试光信号对应的反射峰参数。N根光纤的光纤长度之间的差值关系具有多种实现方式,举例说明如下,N根光纤的光纤长度呈等差序列,或者N根光纤的光纤长度呈特定的差值分布。
例如,光分配装置包括:一个输入端口和M个输出端口,其中M个输出端口中有N个输出端口以可插拔方式连接有N个第一光反射器,N个输出端口分别为:输出端口1、输出端口2、…、输出端口N。输出端口1的光纤长度为L,输出端口2比输出端口1的光纤长度多了a,输出端口2的光纤长度为L+a,所以在对应的OTDR探测曲线上输出端口2对应的反射峰位置比输出端口1对应的反射峰位置相差了a。相应的,输出端口N比输出端口1的光纤长度多了(N-1)×a,所以在对应的OTDR探测曲线上输出端口N对应的反射峰位置比输出端口1对应的反射峰位置相差了(N-1)×a。通过OTDR探测曲线上特定的反射峰,就可以识别出光分配装置的N个输出端口。
需要说明的是,上述N个输出端口分别对应的光纤长度之间的差值为等差序列,只是一种可实现的方式,不限定的是,N个输出端口分别对应的光纤长度之间的差值也可以满足其他预设关系,都可以识别出每个反射峰对应的输出端口。
在本申请的一些实施例中,N个第一光反射器分别反射的测试光信号具有不同的波长。
其中,N个第一光反射器分别反射的测试光信号对应的波长用于区分不同的输出端口。
具体的,光分配装置中N个输出端口中分别插入的N个第一光反射器可以反射不同波长的测试光信号,N个第一光反射器具有不同的反射功能,光检测设备依次向光分配装置中输入不同波长的测试光信号,光分配装置中的N个光反射器中每个光反射器可反射一种波长的测试光信号,N个第一光反射器分别反射的测试光信号对应的波长用于区分不同的输出端口。当某个第一光反射器从相应的输出端口中被移除时,通过光检测设备可以确定出被移除的第一光反射器,从而通过第一光反射器和连接该第一光反射器的输出端口的对应关系,识别出需要光分配装置中外接光纤的输出端口。
举例说明如下,光分配装置包括:一个输入端口和M个输出端口,其中,M个输出端口中有N个输出端口分别以可插拔方式连接N个第一光反射器,N个输出端口分别为:输出端口1、输出端口2、…、输出端口N。输出端口1对应的光信号波长是lamda 1,所以在对应的OTDR探测曲线上输出端口1在lamda 1波长处有反射峰。相应的,输出端口N对应的光信号波长是lamda N,所以在对应的OTDR探测曲线上输出端口N在lamda N波长处有反射峰。通过OTDR探测曲线上特定的反射光信号的波长,就可以识别出每个反射峰对应的输出端口。
在本申请的一些实施例中,如图3所示,光分配装置还包括:第二光反射器,其中,
第二光反射器与输入端口连接,第二光反射器反射的进入输入端口的测试光信号的第二反射峰,用于识别第一光反射器反射的测试光信号的第一反射峰。
其中,光分配装置内输入端口和N个输出端口之间还设置有第二光反射器,光检测设备产生的测试光信号在通过输入端口之后传输至该第二光反射器,该第二光反射器可以将测试光信号传输至N个输出端口。其中,N个输出端口中分别插入的是N个第一光反射器,置于输入端口和N个输出端口之间的是第二光反射器,该第二光反射器反射测试光信号, 例如第二光反射器反射进入输入端口的测试光信号,在反射的测试光信号中产生第二反射峰,测试光信号进入N个输出端口时N个第一光反射器会反射测试光信号,在反射的测试光信号中产生第一反射峰,第二光反射器反射的测试光信号的第二反射峰可用于识别第一反射峰,例如第二反射峰可以作为识别第一反射峰的参考点,从而可以快速、准确的识别出第一光反射器反射的测试光信号的第一反射峰,提高对第一光反射器反射的测试光信号的识别效率。
在本申请的一些实施例中,光分配装置还包括:分光模块,其中,
分光模块的一个端口连接输入端口,分光模块的另M个端口分别连接M根光纤。
其中,光分配装置中可以包括分光模块,该分光模块是光分配装置中进行分光的模块,该分光模块的一个端口连接输入端口,通过光分配装置的输入端口传输进来的测试光信号可以被分光模块分为M个测试光信号,该分光模块的另M个端口分别连接M根光纤,从而M个测试光信号可以被传输至M个输出端口,例如有的输出端口插入的第一光反射器被移除之后,其余没有被移除的第一光反射器可以反射测试光信号,测试光信号被输出端口中插入的第一光反射器反射之后传输至分光模块,该分光模块向光检测设备发送N个第一光反射器中没有被移除的第一光反射器反射的测试光信号。本申请实施例中,光分配装置中可以设分光模块,通过该分光模块可以实现光信号的分离传输。
在本申请的一些实施例中,光分配装置中包括M个输入端口,其中,
光分配装置通过M个输入端口分别连接分光器的M个端口。
其中,分光器还可以与光分配装置外接,即分光器是独立于光分配装置的一个器件,光检测设备产生的测试光信号传输给分光器之后,该分光器具有M个端口,光分配装置具有M个输入端口,则光分配装置通过M个输入端口分别连接分光器的M个端口,当光分配装置中的一个或多个输出端口插入的第一光反射器被移除之后,其余没有被移除的第一光反射器可以反射测试光信号,测试光信号被光分配装置的输出端口中插入的第一光反射器反射之后传输至分光器,该分光器向光检测设备发送N个第一光反射器中没有被移除的第一光反射器反射的测试光信号。本申请实施例中,通过光分配装置外接的分光器可以实现光信号的分离传输。
通过前述实施例对本申请的举例说明可知,光分配装置中包括有输入端口、M个输出端口和N个第一光反射器,M大于或等于N,N为正整数,其中,输入端口通过M根光纤分别连接M个输出端口;N个第一光反射器中的一个第一光反射器以可插拔方式连接M个输出端口中的一个输出端口,其中,N个第一光反射器中的每一个第一光反射器用于反射进入对应输出端口的测试光信号。本申请实施例中,N个第一光反射器与N个输出端口通过可插拔的方式连接,因此输出端口中可插入第一光反射器,也可以拔掉第一光反射器,实现第一光反射器和输出端口的动态连接。每个第一光反射器以可插拔的方式连接到一个输出端口,因此N个第一光反射器可以从输出端口中移除,被移除的第一光反射器无法反射进入输出端口的测试光信号,即可以通过被移除的第一光反射器没有反射测试光信号来识别出被移除第一光反射器的输出端口,因此本申请实施例可以准确识别出光分配装置的输出端口。
前述实施例介绍了本申请实施例提供的光分配装置,接下来介绍该光分配装置所应用 的光通信检测系统,如图4所示,本申请实施例还提供一种光通信检测系统,光通信检测系统包括:光分配装置、光检测设备和网络管理设备,其中,
光检测设备,用于向光分配装置发送测试光信号;
光分配装置,用于通过光分配装置中的第一光反射器反射测试光信号,光分配装置具有M个输出端口和N个第一光反射器,M大于或等于N,M和N为正整数,N个第一光反射器中的一个第一光反射器以可插拔方式连接M个输出端口中的一个输出端口;
光检测设备,还用于接收第一光反射器反射的测试光信号,向网络管理设备发送第一光反射器反射的测试光信号对应的反射光信号参数;
网络管理设备,用于接收光检测设备发送的第一光反射器反射的测试光信号对应的反射光信号参数;根据第一光反射器反射的测试光信号对应的反射光信号参数识别光分配装置的输出端口。
其中,前述图2至图3中所说明的光分配装置,可应用于光通信检测系统中,该光通信检测系统可用于对光信号的检测,以判断光分配装置中的输出端口与外接光纤的连接是否正确。
具体的,光检测设备是指可以产生测试光信号的设备,光检测设备还可以从光分配装置接收到第一光反射器反射回来的测试光信号,然后光检测设备可以识别出第一光反射器反射回来的测试光信号对应的反射峰。例如光检测设备可以是OTDR,光检测设备可以生成OTDR探测曲线,在该OTDR探测曲线上显示第一光反射器反射回来的测试光信号对应的反射峰。光检测设备根据识别出的N个第一光反射器分别反射的测试光信号生成反射光信号参数,向网络管理设备发送N个第一光反射器分别反射的测试光信号对应的反射光信号参数。不限的是,光检测设备可以是一单独的器件,也可以与光通信系统中其它器件的集成在一起,例如光检测设备可以与OLT集成,即OLT可以包括光检测设备,例如OLT中包括有OTDR部件,用于向光分配装置中输入测试光信号。
在本申请的一些实施例中,反射光信号参数是光检测设备从光分配装置接收到第一光反射器反射回来的测试光信号之后生成的反射光信号的参数,反射光信号参数可以包括:反射光信号的多种参数,例如可以反射光信号参数包括:第一光反射器反射的测试光信号的反射峰强度。或者,反射光信号参数包括:反射峰位置和反射峰位置对应的反射峰强度;或者,反射光信号参数包括:反射光信号的波长信息。其中,反射峰位置是指在OTDR探测曲线上的反射峰的位置,反射峰强度是指反射峰光功率的强度,若第一光反射器的反射率越大,则光信号对应的反射峰强度就越强。另外,反射光信号参数还可以是反射光信号的波长信息,对于反射光信号参数的具体实现方式,此处不做限定。
网络管理设备是光分配装置中的输出端口的识别设备,该网络设备可以与光检测设备相连接,网络管理设备用于接收光检测设备发送的N个第一光反射器分别反射的测试光信号对应的反射光信号参数;根据N个第一光反射器分别反射的测试光信号对应的反射光信号参数识别N个输出端口。不限的是,网络管理设备可以是一单独的器件,也可以与光通信系统中其它器件的集成在一起,例如网络管理设备可以与OLT集成,即OLT可以包括网络管理设备,对于网络管理设备的实现方式不做限定。
具体的,N个第一光反射器分别反射的测试光信号用于区分N个输出端口,因此网络 管理设备可以根据接收到的N个第一光反射器分别反射的测试光信号对应的反射光信号参数识别N个输出端口。
在本申请的一些实施例中,光检测设备,用于向光分配装置发送第一测试光信号;
光分配装置,用于通过光分配装置中的N个第一光反射器分别反射第一测试光信号;
光检测设备,还用于接收N个第一光反射器分别反射的第一测试光信号,向网络管理设备发送N个第一光反射器分别反射的第一测试光信号对应的反射光信号参数;
网络管理设备,用于接收光检测设备发送的N个第一光反射器分别反射的第一测试光信号对应的反射光信号参数;根据N个第一光反射器分别反射的第一测试光信号对应的反射光信号参数,检测光检测设备与光分配装置的N个输出端口之间的光纤链路状态。
其中,光分配装置和光检测设备、网络管理设备连接完成之后,本申请实施例中光检测设备可以向光分配装置发送测试光信号,光分配装置中N个输出端口上以可插拔方式连接有N个第一光反射器,这N个第一光反射器可以反射测试光信号,从而网络管理设备可以根据N个第一光反射器分别反射的第一测试光信号对应的反射光信号参数,检测光检测设备与光分配装置的N个输出端口之间的光纤链路状态,以检测从光检测设备到光分配装置中的N个输出端口之间的光纤链路损耗是否正常。本申请实施例中通过第一光反射器反射测试光信号,通过被第一光反射器反射的测试光信号的反射峰强度的变化情况,来确定从光检测设备到光分配装置中的N个输出端口之间的光纤链路损耗是否正常,若该光纤链路损耗正常,则说明光分配装置的施工验收通过,若该光纤链路损耗不正常,则说明光分配装置的施工验收未通过。可以理解的是,光纤链路损耗是否正常可以通过设置的损耗阈值来确定。
在本申请的一些实施例中,反射光信号参数包括:第一光反射器反射的第一测试光信号的反射峰强度;
网络管理设备,用于N个第一光反射器分别反射的第一测试光信号对应的反射峰强度低于第一阈值,确定光检测设备与光分配装置的输入端口之间的光纤链路状态异常;或者,N个第一光反射器分别反射的第一测试光信号对应的反射峰强度低于第二阈值,确定输入端口与光分配装置的N个输出端口之间的光纤链路状态异常;或者,N个第一光反射器分别反射的第一测试光信号对应的反射峰强度大于或等于第一阈值,确定光检测设备与光分配装置的N个输出端口之间的光纤链路状态正常;其中,第二阈值小于第一阈值。
举例说明如下,网络管理设备计算每个第一光反射器反射的测试光信号的反射峰位置,通过将实际测到的反射峰强度与预先存储的反射峰强度对比,判断光纤链路损耗是否正常。光检测设备发送的测试光信号的反射峰强度为xdB,表示光纤链路和光分配装置的状态正常。光检测设备探测到输出端口反射的测试光信号的反射峰强度为x′,若x′相对于x稍稍下降,例如,x′比正常的反射峰强度x降低到第一阈值W1以下时,判断光分配装置之前的光纤链路故障,即光检测设备与光分配装置的输入端口之间的光纤链路状态异常。当光检测设备探测到输出端口反射的反射峰强度x′大于或等于第一阈值W1,确定光检测设备与光分配装置的N个输出端口之间的光纤链路状态正常。当光检测设备探测到输出端口反射的反射峰强度x′下降幅度较大,例如,x′比正常的反射峰强度x降低到第二阈值W2以下时,判断为光分配装置内的光路故障,即输入端口与光分配装置的N个输出端口之间 的光纤链路状态异常。其中,第一阈值W1、第二W2可以根据光器件的种类及光链路结构确定,光器件是指光纤通信的物理链路、光纤、分光器、连接器、适配器等及其组合方式。由以上判据可知,当输入端口到输出端口之间的光纤链路损耗正常时,确定光分配装置的施工验收合格,根据所得结果更新数据库,确保业务顺利开通。通过分别设置的第一阈值和第二阈值,将N个第一光反射器分别反射的所述第一测试光信号对应的反射峰强度与上述第一阈值、第二阈值进行判断,就可以实现对光分配装置的输出端口施工质量进行验收,不需要人工进行操作,提高光分配装置的输出端口施工质量的验收效率。
在本申请的一些实施例中,光检测设备,用于向光分配装置发送第二测试光信号;
光分配装置,用于通过光分配装置中的N-1个第一光反射器分别反射第二测试光信号,N-1个第一光反射器连接M个输出端口中的N-1个输出端口,N个第一光反射器中没有连接输出端口的第一光反射器无法反射第二测试光信号;
光检测设备,还用于接收N-1个第一光反射器分别反射的第二测试光信号,向网络管理设备发送N-1个第一光反射器分别反射的第二测试光信号对应的反射光信号参数;
网络管理设备,用于接收光检测设备发送的N-1个第一光反射器分别反射的第二测试光信号对应的反射光信号参数;根据N-1个第一光反射器分别反射的第二测试光信号对应的反射光信号参数识别光分配装置中被拔掉第一光反射器的输出端口。
具体的,光分配装置中的输出端口需要外接光纤时,可以将该输出端口中插入的第一光反射器拔掉,例如第一输出端口中插入的第一光反射器从输出端口中移除,光检测设备可以向网络管理设备发送N个第一光反射器中没有被移除的第一光反射器分别反射的测试光信号对应的反射光信号参数,例如一个第一光反射器被移除,则N个第一光反射器中剩余的N-1个第一光反射器仍可以反射测试光信号到光检测设备。
网络管理设备还可以检测施工的输出端口是否正确。网络管理设备能够与光检测设备进行通信,以接收光检测设备发送的N个第一光反射器中没有被移除的第一光反射器分别反射的测试光信号对应的反射光信号参数,由于N个第一光反射器分别反射的测试光信号能够用于区分N个输出端口,因此网络管理设备根据N个第一光反射器中没有被移除的第一光反射器分别反射的测试光信号对应的反射光信号参数确定被移除第一光反射器的输出端口是否为目标输出端口,解决了施工过程中可能对错误的输出端口外接光纤的情况。
进一步的,在本申请的一些实施例中,网络管理设备,用于当目标输出端口中被拔掉第一光反射器时,从网络管理设备的基准数据库中获取目标输出端口对应的基准反射光信号参数;根据N-1个第一光反射器分别反射的第二测试光信号对应的反射光信号参数确定消失的反射光信号对应的反射光信号参数;确定消失的反射光信号对应的反射光信号参数是否与目标输出端口对应的基准反射光信号参数相同,若消失的反射光信号对应的反射光信号参数与目标输出端口对应的基准反射光信号参数相同,确定目标输出端口是光分配装置中被拔掉第一光反射器的输出端口,若消失的反射光信号对应的反射光信号参数与目标输出端口对应的基准反射光信号参数不相同,确定目标输出端口不是光分配装置中被拔掉第一光反射器的输出端口。
其中,光分配装置的目标输出端口指的是通知给施工方需要外接光纤的输出端口,网络管理设备可以网络管理设备的基准数据库中获取该目标输出端口对应的基准反射光信号 参数,基准数据库可以是网络管理设备的本地数据库,或者是网络管理设备外接的数据库。基准反射光信号参数包括用于比较反射光信号参数变化情况的标准参数。网络管理设备接收到N个第一光反射器中没有被移除的第一光反射器分别反射的第二测试光信号对应的反射光信号参数,以此确定出消失的反射光信号对应的反射光信号参数,在没有移除第一光反射器之前N个第一光反射器都可以反射第二测试光信号,当有的输出端口中移除了第一光反射器,此时就无法反射第二测试光信号,因此网络设备可以确定消失的反射光信号对应的反射光信号参数是否与目标输出端口对应的基准反射光信号参数相同,若消失的反射光信号对应的反射光信号参数与目标输出端口对应的基准反射光信号参数相同,确定目标输出端口是第一输出端口,若消失的反射光信号对应的反射光信号参数与目标输出端口对应的基准反射光信号参数不相同,确定目标输出端口不是第一输出端口。本申请实施例中,可以实现对光分配装置的输出端口进行识别,不需要人工进行操作,保证光分配装置的输出端口与外接光纤的正确连接。
进一步的,在本申请的一些实施例中,反射光信号参数包括:反射峰位置和反射峰位置对应的反射峰强度;或者,反射光信号参数包括:反射光信号的波长信息。
其中,网络管理设备可以确定消失的反射光信号对应的反射峰强度是否与目标输出端口对应的基准反射峰强度相同,若消失的反射光信号对应的反射峰强度与目标输出端口对应的基准反射峰强度相同,确定目标输出端口是第一输出端口,若消失的反射光信号对应的反射峰强度与目标输出端口对应的基准反射峰强度不相同,确定目标输出端口不是第一输出端口。
举例说明如下,根据工单分配的需要施工的目标输出端口号,在基准数据库中找到目标输出端口号的特征反射峰基准,记为A1,实际施工的输出端口的特征反射峰记为A2。施工完成后,因为施工的输出端口的第一光反射器被移除,A2反射峰消失。判断A1和A2是否对应同一个输出端口,如果A1和A2相同,则说明施工的输出端口与工单分配的目标输出端口一致。如果A1和A2不同,则说明施工未按照工单分配的目标输出端口进行施工,此时网络管理设备可以提示施工的端口号错误。本申请实施例中,网络管理设备通过分析反射光信号的反射峰强度,就可以自动判断施工的光分配装置中的输出端口选择是否正确,不需要人工核查,提高输出端口施工质量的核查效率。
其中,网络管理设备可以确定消失的反射光信号对应的波长信息是否与目标输出端口对应的基准波长信息相同,若消失的反射光信号对应的波长信息与目标输出端口对应的基准波长信息相同,确定目标输出端口是第一输出端口,若消失的反射光信号对应的波长信息与目标输出端口对应的基准波长信息不相同,确定目标输出端口不是第一输出端口。
举例说明如下,根据工单分配的需要施工的目标输出端口号为2号,在基准数据库中找到目标输出端口的特征波长反射峰的基准,记为A1,实际施工的输出端口的特征波长反射峰记为A2。施工完成后,因为施工端口的第一光反射器被移除,A2反射峰消失,其他输出端口的反射峰依然存在,输出端口2的特征波长是lamda 2,消失的特征反射峰波长是lamda 2’,若对比发现lamda 2’=lamda 2,通过输出端口2的特征波长,判断A1和A2是是对应的同一个输出端口,说明施工的输出端口与工单分配的目标输出端口一致,端口校验一致。本申请实施例中,网络管理设备通过分析反射光信号的波长,就可以自动判断 施工的光分配装置中的输出端口选择是否正确,不需要人工核查,提高输出端口施工质量的核查效率。
在本申请的一些实施例中,光分配装置还包括:输入端口和第二光反射器,其中,第二光反射器与输入端口连接,
网络管理设备,用于检测第二光反射器反射的进入输入端口的测试光信号的第二反射峰,以及根据第二反射峰识别第一光反射器反射的测试光信号的第一反射峰。
其中,光分配装置内输入端口和N个输出端口之间还设置有第二光反射器,光检测设备产生的测试光信号在通过输入端口之后传输至该第二光反射器,该第二光反射器可以将测试光信号传输至N个输出端口。其中,N个输出端口中分别插入的是N个第一光反射器,置于输入端口和N个输出端口之间的是第二光反射器,该第二光反射器反射测试光信号,例如第二光反射器反射进入输入端口的测试光信号,在反射的测试光信号中产生第二反射峰,测试光信号进入N个输出端口时N个第一光反射器会反射测试光信号,在反射的测试光信号中产生第一反射峰,第二光反射器反射的测试光信号的第二反射峰可用于识别第一反射峰,例如第二反射峰可以作为识别第一反射峰的参考点,从而可以快速、准确的识别出第一光反射器反射的测试光信号的第一反射峰,提高对第一光反射器反射的测试光信号的识别效率。
通过前述实施例的举例说明可知,光通信检测系统包括:光分配装置、光检测设备和网络管理设备,光分配装置,用于通过光分配装置中的第一光反射器反射测试光信号,N个第一光反射器中的一个第一光反射器以可插拔方式连接M个输出端口中的一个输出端口;光检测设备,还用于接收第一光反射器反射的测试光信号,向网络管理设备发送第一光反射器反射的测试光信号对应的反射光信号参数;网络管理设备,用于接收光检测设备发送的第一光反射器反射的测试光信号对应的反射光信号参数;根据第一光反射器反射的测试光信号对应的反射光信号参数识别光分配装置的输出端口。本申请实施例提供的光通信检测系统中,光分配装置中被移除的第一光反射器无法反射测试光信号,从而网络管理设备可以通过被移除的第一光反射器没有反射测试光信号来识别出被移除第一光反射器的输出端口,因此本申请实施例可以准确识别出光分配装置的输出端口。
在本申请的一些实施例,请参阅图5所示,本申请实施例提供的光通信检测系统还包括:波分复用器(wavelength division multiplexing,WDM)和光线路终端,其中,
波分复用器分别连接光线路终端、光分配装置和光检测设备。
具体的,波分复用器连接光线路终端,并且该波分复用器还连接光分配装置和光检测设备,光检测设备输出的测试光信号可以通过波分复用器分别发送给光分配装置和光线路终端,光分配装置中光反射器反射的测试光信号通过波分复用器传输至光检测设备,光检测设备可以从波分复用器接收到光分配装置中光反射器反射的测试光信号。光通信检测系统中,光线路终端可以通过波分复用器和光分配装置进行通信。
基于前述图4和图5所示的光通信检测系统,接下来介绍本申请实施例中光通信检测系统执行的光通信检测方法,本申请实施例提供的光通信检测方法,包括如下步骤:
步骤S01、光检测设备向光分配装置发送测试光信号。
其中,光检测设备是指可以产生测试光信号的设备,光检测设备具体可以是OTDR。光 检测设备产生测试光信号之后,可以向光分配装置发送测试光信号。不限的是,光检测设备可以是一单独的器件,也可以与光通信系统中其它器件的集成在一起,例如光检测设备可以与OLT集成,即OLT可以包括光检测设备,例如OLT中包括有OTDR部件,用于向光分配装置中输入测试光信号。
步骤S02、光分配装置通过光分配装置中的第一光反射器反射测试光信号。
其中,光分配装置具有M个输出端口和N个第一光反射器,M大于或等于N,N为正整数,N个第一光反射器中的一个第一光反射器以可插拔方式连接M个输出端口中的一个输出端口。
其中,光分配装置中的N个光反射器可以反射测试光信号,光分配装置向光检测设备发送光分配装置中N个光反射器分别反射的测试光信号,N个光反射器分别反射的测试光信号用于区分N个输出端口,详见前述实施例中对N个输出端口通过发射的测试光信号进行区分的详细说明,此处不再赘述。
步骤S03、光检测设备接收第一光反射器反射的测试光信号,向网络管理设备发送第一光反射器反射的测试光信号对应的反射光信号参数。
在本申请实施例中,光检测设备可以接收光分配装置发送的N个光反射器分别反射的测试光信号,然后光检测设备根据识别出的N个光反射器分别反射的测试光信号生成反射光信号参数,向网络管理设备发送N个光反射器分别反射的测试光信号对应的反射光信号参数。
步骤S04、网络管理设备接收光检测设备发送的第一光反射器反射的测试光信号对应的反射光信号参数。
网络管理设备是光分配装置中的输出端口的识别设备,该网络设备可以与光检测设备相连接,网络管理设备接收光检测设备发送的N个光反射器分别反射的测试光信号对应的反射光信号参数。
步骤S05、网络管理设备根据第一光反射器反射的测试光信号对应的反射光信号参数识别光分配装置的输出端口。
网络设备根据N个光反射器分别反射的测试光信号对应的反射光信号参数识别N个输出端口。具体的,N个光反射器分别反射的测试光信号用于区分N个输出端口,因此网络管理设备可以根据接收到的N个光反射器分别反射的测试光信号对应的反射光信号参数识别N个输出端口。不限定的是,网络管理设备可以是一单独的器件,也可以与光通信系统中其它器件的集成在一起,例如网络管理设备可以与OLT集成,即OLT可以包括网络管理设备,对于网络管理设备的实现方式不做限定。
针对上述步骤S01至步骤S05的具体举例说明,请参阅图4所示的光检测系统中针对光分配装置、光检测设备和网络管理设备的功能说明,此处不再赘述。
在本申请的一些实施例中,网络管理设备根据第一光反射器反射的测试光信号对应的反射光信号参数识别光分配装置的输出端口,包括:
当网络管理设备接收到光检测设备发送的N个第一光反射器分别反射的第一测试光信号对应的反射光信号参数时,网络管理设备根据N个第一光反射器分别反射的第一测试光信号对应的反射光信号参数,检测光检测设备与光分配装置的N个输出端口之间的光纤链 路状态。
其中,光分配装置和光检测设备、网络管理设备连接完成之后,本申请实施例中光检测设备可以向光分配装置发送测试光信号,光分配装置中N个输出端口上以可插拔方式连接有N个第一光反射器,这N个第一光反射器反射测试光信号,从而网络管理设备可以根据N个第一光反射器分别反射的第一测试光信号对应的反射光信号参数,检测光检测设备与光分配装置的N个输出端口之间的光纤链路状态,以检测从光检测设备到光分配装置中的N个输出端口之间的光纤链路损耗是否正常。本申请实施例中通过第一光反射器反射测试光信号,通过被第一光反射器反射的测试光信号的反射峰强度的变化情况,来确定从光检测设备到光分配装置中的N个输出端口之间的光纤链路损耗是否正常,若该光纤链路损耗正常,则说明光分配装置的施工验收通过,若该光纤链路损耗不正常,则说明光分配装置的施工验收未通过。可以理解的是,光纤链路损耗是否正常可以通过设置的损耗阈值来确定。
在本申请的一些实施例中,反射光信号参数包括:第一光反射器反射的第一测试光信号的反射峰强度;
网络管理设备根据N个第一光反射器分别反射的第一测试光信号对应的反射光信号参数,检测光检测设备与光分配装置的N个输出端口之间的光纤链路状态,包括:
N个第一光反射器分别反射的第一测试光信号对应的反射峰强度低于第一阈值,网络管理设备确定光检测设备与光分配装置的输入端口之间的光纤链路状态异常;或者,
N个第一光反射器分别反射的第一测试光信号对应的反射峰强度低于第二阈值,网络管理设备确定输入端口与光分配装置的M个输出端口之间的光纤链路状态异常;或者,
N个第一光反射器分别反射的第一测试光信号对应的反射峰强度大于或等于第一阈值,网络管理设备确定光检测设备与光分配装置的M个输出端口之间的光纤链路状态正常;其中,第二阈值小于第一阈值。
举例说明如下,网络管理设备计算每个第一光反射器反射的测试光信号的反射峰位置,通过将实际测到的反射峰强度与预先存储的反射峰强度对比,判断光纤链路损耗是否正常。光检测设备探测到输出端口反射的测试光信号的反射峰强度为x′,若x′相对于x稍稍下降,例如,x′比正常的反射峰强度x降低到第一阈值W1以下时,判断光分配装置之前的光纤链路故障,即光检测设备与光分配装置的输入端口之间的光纤链路状态异常。当光检测设备探测到输出端口反射的反射峰强度x′大于或等于第一阈值W1,确定光检测设备与光分配装置的N个输出端口之间的光纤链路状态正常。当光检测设备探测到输出端口反射的反射峰强度x′下降幅度较大,x′比正常的反射峰强度x降低到第二阈值W2以下时,判断为光分配装置内的光路故障,即输入端口与光分配装置的N个输出端口之间的光纤链路状态异常。当输入端口到输出端口之间的光纤链路损耗正常时,确定光分配装置的施工验收合格,根据所得结果更新数据库,确保光分配装置外接光纤的业务顺利开通。
进一步的,在本申请的一些实施例中,网络管理设备根据第一光反射器反射的测试光信号对应的反射光信号参数识别光分配装置的输出端口,包括:
当网络管理设备接收光检测设备发送的N-1个第一光反射器分别反射的第二测试光信号对应的反射光信号参数时,网络管理设备根据N-1个第一光反射器分别反射的第二测试 光信号对应的反射光信号参数识别光分配装置中被拔掉第一光反射器的输出端口;
其中,N-1个第一光反射器连接M个输出端口中的N-1个输出端口,N个第一光反射器中没有连接输出端口的第一光反射器无法反射第二测试光信号。
具体的,光分配装置中的输出端口需要外接光纤时,可以将该输出端口中插入的第一光反射器拔掉,例如第一输出端口中插入的第一光反射器从输出端口中移除,光检测设备可以向网络管理设备发送N个第一光反射器中没有被移除的第一光反射器分别反射的测试光信号对应的反射光信号参数,例如一个第一光反射器被移除,则N个第一光反射器中剩余的N-1个第一光反射器仍可以反射测试光信号到光检测设备。
网络管理设备还可以检测施工的输出端口是否正确。网络管理设备能够与光检测设备进行通信,以接收光检测设备发送的N个第一光反射器中没有被移除的第一光反射器分别反射的测试光信号对应的反射光信号参数,由于N个第一光反射器分别反射的测试光信号能够用于区分N个输出端口,因此网络管理设备根据N个第一光反射器中没有被移除的第一光反射器分别反射的测试光信号对应的反射光信号参数确定被移除第一光反射器的输出端口是否为目标输出端口,解决了施工过程中可能对错误的输出端口外接光纤的情况。
进一步的,在本申请的一些实施例中,网络管理设备根据N-1个第一光反射器分别反射的第二测试光信号对应的反射光信号参数识别光分配装置中被拔掉第一光反射器的输出端口,包括:
当光分配装置中的目标输出端口需要被拔掉第一光反射器时,网络管理设备从网络管理设备的基准数据库中获取目标输出端口对应的基准反射光信号参数;
网络管理设备根据N-1个第一光反射器分别反射的第二测试光信号对应的反射光信号参数确定消失的反射光信号对应的反射光信号参数;
网络管理设备确定消失的反射光信号对应的反射光信号参数是否与目标输出端口对应的基准反射光信号参数相同;
若消失的反射光信号对应的反射光信号参数与目标输出端口对应的基准反射光信号参数相同,网络管理设备确定目标输出端口是光分配装置中被拔掉第一光反射器的输出端口;
若消失的反射光信号对应的反射光信号参数与目标输出端口对应的基准反射光信号参数不相同,网络管理设备确定目标输出端口不是光分配装置中被拔掉第一光反射器的输出端口。
其中,光分配装置的目标输出端口指的是通知给施工方需要外接光纤的输出端口,网络管理设备可以基准数据库中获取该目标输出端口对应的基准反射光信号参数,基准数据库可以是网络管理设备的本地数据库,或者是网络管理设备外接的数据库。基准反射光信号参数包括用于比较反射光信号参数变化情况的标准参数。网络管理设备接收到N个第一光反射器中没有被移除的第一光反射器分别反射的第二测试光信号对应的反射光信号参数,以此确定出消失的反射光信号对应的反射光信号参数,在没有移除第一光反射器之前N个第一光反射器都可以反射第二测试光信号,当有的输出端口中移除了第一光反射器,此时就无法反射第二测试光信号,因此网络设备可以确定消失的反射光信号对应的反射光信号参数是否与目标输出端口对应的基准反射光信号参数相同,若消失的反射光信号对应的反射光信号参数与目标输出端口对应的基准反射光信号参数相同,确定目标输出端口是第一 输出端口,若消失的反射光信号对应的反射光信号参数与目标输出端口对应的基准反射光信号参数不相同,确定目标输出端口不是第一输出端口。
在本申请的一些实施例中,反射光信号参数包括:反射峰位置和反射峰位置对应的反射峰强度;或者,反射光信号参数包括:反射光信号的波长。
在本申请的一些实施例中,光分配装置还包括:输入端口和第二光反射器,其中,第二光反射器与输入端口连接。本申请实施例提供的方法还包括:
网络管理设备检测第二光反射器反射的进入输入端口的测试光信号的第二反射峰;
网络管理设备根据第二反射峰识别第一光反射器反射的测试光信号的第一反射峰。
其中,光分配装置内输入端口和N个输出端口之间还设置有第二光反射器,光检测设备产生的测试光信号在通过输入端口之后传输至该第二光反射器,该第二光反射器可以将测试光信号传输至N个输出端口。其中,N个输出端口中分别插入的是N个第一光反射器,置于输入端口和N个输出端口之间的是第二光反射器,该第二光反射器反射测试光信号,例如第二光反射器反射进入输入端口的测试光信号,在反射的测试光信号中产生第二反射峰,测试光信号进入N个输出端口时N个第一光反射器会反射测试光信号,在反射的测试光信号中产生第一反射峰,第二光反射器反射的测试光信号的第二反射峰可用于识别第一反射峰,例如第二反射峰可以作为参考,从而可以快速、准确的识别出第一光反射器反射的测试光信号的第一反射峰,提高对第一光反射器反射的测试光信号的识别效率。
通过前述实施例的举例说明可知,网络管理设备接收光检测设备发送的第一光反射器反射的测试光信号对应的反射光信号参数,第一光反射器反射的测试光信号由光分配装置发送给光检测设备,测试光信号由光检测设备发送给光分配装置,光分配装置具有M个输出端口和N个第一光反射器,M大于或等于N,N个第一光反射器中的一个第一光反射器以可插拔方式连接M个输出端口中的一个输出端口;根据第一光反射器反射的测试光信号对应的反射光信号参数识别光分配装置的输出端口。本申请实施例提供的光通信检测系统中,光分配装置中被移除的第一光反射器无法反射测试光信号,从而网络管理设备可以通过被移除的第一光反射器没有反射测试光信号来识别出被移除第一光反射器的输出端口,因此本申请实施例可以准确识别出光分配装置的输出端口。
为便于更好的理解和实施本申请实施例的上述方案,下面举例相应的应用场景来进行具体说明。
本申请实施例接下来对光通信检测系统中光分配装置的输出端口验收以及输出端口校验进行详细说明,光分配装置具体为分纤箱或者光纤盒,光反射器简称为反射器,光检测设备具体为OTDR。
本申请实施例中,光分配装置中的输出端口为M个,光分配装置包括以可插拔方式连接N个输出端口的N个反射器,M大于或等于N,后续以M等于N进行示例说明,即光分配装置的N个输出端口分别插入有N个反射器。可以利用OTDR进行光纤盒的施工质量验收及输出端口校验,例如可以采用带分光器的光纤盒,或者该光纤盒外接有分光器,光纤盒的各输出端口根据光纤长度不同进行区分,光纤盒的输出端口配有带反射器的防尘帽。
如图6所示,在光纤盒内包括有分光器,输出端口1的光纤长度为L,输出端口2的光纤长度为L+a,…,输出端口N的光纤长度为L+(N-1)a。如图7所示,因为输出端口 2比输出端口1的光纤长度多了a,所以在对应的OTDR探测曲线上输出端口2对应的反射峰位置比输出端口1对应的反射峰位置相差了a。相应的,输出端口N比输出端口1光纤长度多了(N-1)×a,所以在对应的OTDR探测曲线上输出端口N对应的反射峰位置比输出端口1对应的反射峰位置相差了(N-1)×a。这样,通过OTDR探测曲线上特定的反射峰就可以识别光纤盒中的输出端口。
具体的,光纤盒的每个输出端口都配有带反射器的防尘帽,可以全部或部分反射OTDR测试光信号。
例如,反射器的反射率为x dB。该反射率与反射器到OTDR之间的链路质量状态相关,随着链路质量状态的劣化,反射率会随之降低,该反射率可以作为光纤链路损耗状态的判据。
如图8所示,光通信检测系统可以包括:光纤盒、WDM、OTDR、OLT和网络管理设备,其中,WDM分别连接OLT、OTDR和光纤盒,OTDR连接网络管理设备,该网络管理设备也可以称为网络管理系统。光纤盒施工完成后,OTDR发送测试光信号,该测试光信号通过WDM连接到主干光缆,沿光缆传递到光纤盒中的分光器(也可以成为分光模块)后,分光器将测试光信号传输至N个发射器,N个反射器以特定反射率反射测试光信号;反射光信号沿光纤返回到OLT侧的光测试设备(即OTDR)。光测试设备接收反射光信号,记录其接收时间(或者接收距离)和反射峰强度,并上报网络管理设备,例如,测得光纤盒的输出端口1对应的反射峰功率为x′dB,并上报网络管理设备。
网络管理设备计算每个反射器的距离,通过将实际测到的反射率与理论值对比,判断光链路状态。如图9所示,反射率为xdB,表示光纤链路和光纤盒状态正常。当探测到的输出端口的反射器反射的光信号的反射率x′若x′相对于x稍稍下降,例如,x′比正常的反射峰强度x降低了阈值W1以下时,判断光纤盒之前的光纤链路故障。当探测到的反射率x′下降幅度较大,x′比正常的反射峰强度x降降低了阈值W2以下时,判断为光纤盒光路故障。阈值W1、W2根据光器件的种类及光链路结构确定。其中,光器件是指光纤通信的物理链路,光纤,分光器,连接器,适配器等及其组合方式,由以上判据可知,该光纤盒状态正常,其前连接的光纤链路损耗正常,施工验收合格。根据所得结果更新到数据库中。
通过上述举例可知,本申请实施例完成对该光纤盒的输出端口1前的光缆损耗的预测试,对该输出端口进行施工验收,确保业务顺利开通。根据前述对输出端口1的验收流程,可以按照该流程依次完成输出端口2、输出端口3到输出端口N的施工验收。
如图10所示,当连接光纤到光纤盒的输出端口时,施工人员接到工单,要求将终端用户连接到该光纤盒的2号输出端口。施工人员在光纤盒的输出端口(port)2跳接,取出对应端口的防尘帽和反射器,连接对应光缆。
从局端启动OTDR进行检测,局端是指OLT一侧,识别光纤盒的各输出端口的反射峰的位置和强度,通过反射峰的位置可以得到对应光纤盒和输出端口距离OTDR的距离,通过预设的特征距离可以识别对应的端口号,通过施工后某个特征反射峰强度的消失来进行施工端口号与工单分配端口号的校验,并存入数据库。
校验过程包括如下:根据工单分配的目标施工端口号2号,在基准数据库中找到目标 端口的特征反射峰基准,记为A1。实际施工端口的特征反射峰记为A2。施工完成后,因为施工端口的反射器被移除,A2反射峰消失,其他输出端口的反射峰依然存在,如图11所示。在施工完成后,启动OTDR测试得到的每个端口的距离不同,这个作为初始基准,而不同的距离就是不同端口的特征,输出端口2的特征距离是D1,消失特征反射峰的距离是D2,对比发现D2=D1,通过输出端口2的特征距离,判断A1和A2是是对应的同一输出端口,说明施工端口与工单分配的目标端口一致,端口校验一致。
在本申请的另一些实施例中,可利用OTDR进行光纤盒的施工质量验收及输出端口校验,光纤盒的各输出端口根据盘光纤长度不同进行区分,光纤盒的输出端口配有带反射器的防尘帽,光纤盒输入端为多芯光缆,连接着分光器的输出端口。
如图12所示,在光纤盒内包括有分光器,输出端口1的光纤长度为L,输出端口2的光纤长度为L+a,…,输出端口N的光纤长度为L+(N-1)a。光纤盒外接有分光器。如图7所示,在光纤盒内部,输出端口1的光纤长度为L,因为输出端口2比输出端口1光纤长度多了a,所以在对应的OTDR探测曲线上输出端口2对应的反射峰位置比输出端口1对应的反射峰位置相差了a。相应的,输出端口N比输出端口1光纤长度多了(N-1)×a,所以在对应的OTDR探测曲线上输出端口N对应的反射峰位置比输出端口1对应的反射峰位置相差了(N-1)×a。这样,通过OTDR曲线上特定的反射峰就可以识别分光器和光纤盒对应端口。
具体的,光纤盒的每个输出端口都配有带反射器的防尘帽,可以全部或部分反射OTDR测试光信号。
例如,反射器的反射率为y dB。该反射率与反射器到OTDR之间的链路质量状态相关,随着链路质量状态的劣化,反射率会随之降低,该反射率可以作为光纤链路损耗状态的判据。
如图13所示,光通信检测系统可以包括:光纤盒、分光器、WDM、OTDR、OLT和网络管理设备,其中,WDM分别连接OLT、OTDR和分光器,分光器连接光纤盒,OTDR连接网络管理设备,该网络管理设备也可以称为网络管理系统。光纤盒施工完成后,OTDR发送测试光信号,该测试光信号通过WDM连接到主干光缆,沿光缆传递到光纤盒中的分光器后,分光器将测试光信号传输至N个发射器,N个反射器以特定反射率反射测试光信号;反射光信号沿光缆返回到OLT侧的测试设备(即OTDR)。测试设备接收反射光信号,记录其接收时间(距离)和反射峰强度,并上报网络管理设备;测得光纤盒的输出端口2对应的反射峰功率为y′dB,并上报网络管理设备。
如图9所示,网络管理设备计算每个反射器的距离,通过将实际测到的反射率与理论值对比,判断光链路状态。反射率为y dB,表示光纤链路和光纤盒状态正常。当探测到的反射率y′稍稍下降,比y降低了阈值W1以下时,判断分光器之前的光纤链路故障。当探测到的反射率y′下降幅度较大,比y降低了阈值W2以下时,判断为光纤盒光路故障。阈值W1、W2根据光器件的种类及光链路结构确定。由以上判据可知,该光纤盒状态正常,但其前连接的馈线光缆损耗稍微增大,施工验收不合格。根据所得结果更新数据库。
本申请实施例中基于前述举例可完成对光纤盒的输出端口口1之前的光缆损耗的预测试,对该输出端口进行施工验收,确保业务顺利开通。按照该流程依次完成输出端口2到 输出端口N的施工验收。
如图14所示,当连接光纤到光纤盒端口时,施工人员接到工单,要求将终端用户连接到该光纤盒的2号输出端口。施工人员不小心在光纤盒的输出端口1跳接,取出对应端口的防尘帽和光反射器,连接对应光缆。
从局端启动OTDR进行检测,识别光纤盒的各输出端口的反射峰位置和强度,通过反射峰的位置可以得到对应光纤盒和输出端口距离OTDR的距离,通过预设的特征距离可以识别对应的端口号,通过施工后某个特征反射峰强度的消失来进行施工端口号与工单分配端口号的校验,并存入数据库。
校验过程为:根据工单分配的目标施工端口号2号,在基准数据库中找到目标端口的特征反射峰基准,记为B1。实际施工端口的特征反射峰记为B2。施工完成后,因为施工端口的反射器被移除,B2反射峰消失,其他输出端口的反射峰依然存在,如图15所示。输出端口2的特征距离D1,消失的特征反射峰的距离是D2,对比发现D2=D1+a,判断消失的反射峰B2对应的端口不是端口D2,而是端口D1,提示报错。校验结果为施工端口与工单分配的目标端口不一致。
在本申请的一些实施例中,可利用OTDR进行光纤盒施工质量验收及端口校验。采用带分光器的光纤盒,各输出端口的特征反射或透射波长不同进行区分,分光器输出端配有带反射器的防尘帽;
如图16所示,在光纤盒内包括有分光器,N个输出端口中分别插入N个反射器。N反射器反射的测试光信号的波长信息不相同。如图17所示,在光纤盒内部,输出端口1的特征波长是lamda 1,所以在对应的OTDR探测曲线上输出端口1在lamda 1波长处有反射峰。相应的,输出端口N的特征波长是lamda N,所以在对应的OTDR探测曲线上输出端口N在lamda N波长处有反射峰。这样,通过OTDR探测曲线上特定的反射峰特征波长,就可以识别光纤盒中的N个输出端口。
具体的,光纤盒的每个端口都配有带反射器的防尘帽,可以全部或部分反射特定波长的OTDR测试光。
反射器的反射率为x dB。该反射率与反射器到OTDR之间的链路质量状态相关,随着链路质量状态的劣化,反射率会随之降低,该反射率可以作为光纤链路损耗状态的判据。
如图18所示,光通信检测系统可以包括:光纤盒、分光器、WDM、OTDR、OLT和网络管理设备,其中,WDM分别连接OLT、OTDR和分光器,分光器连接光纤盒,OTDR连接网络管理设备,该网络管理设备也可以称为网络管理系统。光纤盒施工完成后,OTDR发送测试光信号;该测试光信号通过WDM连接到主干光缆,沿光缆传递到光纤盒后,该光纤盒中的反射器以特定反射率反射测试光信号;反射光信号沿光缆返回到OLT侧的光测试设备(即OTDR)。光测试设备接收反射光信号,记录其接收时间(或接收距离)和反射峰强度,并上报网络管理设备;测得光纤盒的输出端口1对应的反射峰功率为x’dB,并上报网络管理设备。
如图7所示,网络管理设备计算每个反射器的距离,通过将实际测到的反射率与理论值对比,判断光链路状态。反射率为x dB,表示光纤链路和光纤盒状态正常。当探测到的反射率x'稍稍下降,比正常时降低了阈值W1以下时,判断分光器之前的光纤链路故障。 当探测到的反射率x’下降幅度较大,比正常时降低了阈值W2以下时,判断为光纤盒光路故障。阈值W1、W2根据光器件的种类及光链路结构确定。由以上判据可知,该光纤盒状态正常,其前连接的光纤链路损耗正常,施工验收合格。根据所得结果更新数据库。
从而完成对该光纤盒的输出端口口2前的光缆损耗的预测试,对该端口进行施工验收,确保业务顺利开通。
按照该流程依次完成输出端口1、输出端口3到输出端口N的施工验收。
当连接光纤到光纤盒端口时,施工人员接到工单,要求将终端用户连接到该光纤盒的2号输出端口。施工人员在光纤盒的输出端口2跳接,取出对应端口的防尘帽和反射器,连接对应光缆。
如图18所示,从局端启动OTDR进行检测,识别光纤盒各输出端口的反射峰波长、位置和反射峰强度,通过反射峰的位置可以得到对应光纤盒和输出端口距离OTDR的距离,通过反射峰的特征波长可以识别对应的端口号,通过施工后某个波长的反射光信号的反射峰的消失来进行施工端口号与工单分配端口号的校验,并存入数据库。
校验过程包括:根据工单分配的目标施工端口号2号,在基准数据库中找到目标端口的特征波长反射峰的基准,记为A1,实际施工端口的特征反射峰记为A2。施工完成后,因为施工端口的反射器被移除,A2反射峰消失,其他输出端口的反射峰依然存在,如图19所示。输出端口2的特征波长是lamda 2,消失的特征反射峰波长是lamda 2,对比发现lamda 2’=lamda 2,通过输出端口2的特征波长,判断A1和A2是是对应的同一输出端口,说明施工端口与工单分配的目标端口一致,端口校验一致。
本申请实施例中光纤盒体积不增加,通过头端的OTDR配合,在无ONU场景下,就可以在局端远程验收光纤盒施工质量及确认连接关系,节省现场施工耗费的人力成本和时间。在光分配装置的输出端口连接到用户的光缆时,可以在局端远程校验现场施工的光纤盒端口是否和工单一致,保证资源准确性,确保运营商光纤资源不会浪费。
需要说明的是,对于前述的拓扑处理装置执行的方法,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
上述装置各模块/单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其带来的技术效果与本申请方法实施例相同,具体内容可参见本申请前述所示的方法实施例中的叙述,此处没有赘述。
本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质存储有程序,该程序执行包括上述方法实施例中记载的部分或全部步骤。
如图20所示,为本申请实施例的又一种光检测设备的结构示意图,该光检测设备为OTDR,该光检测设备可以包括:处理器(例如CPU)201、存储器202、接收器203和发送器204;接收器203和发送器204耦合至处理器201,处理器201控制接收器203的接收动作和发送器204的发送动作。存储器202可能包含高速RAM存储器,也可能还包括非易失性存储器NVM,例如至少一个磁盘存储器,存储器202中可以存储各种指令,以用于完成 各种处理功能以及实现本申请实施例的方法步骤。可选的,本申请实施例涉及的光检测设备还可以包括:电源205、通信总线206以及通信端口207中的一个或多个。接收器203和发送器204可以集成在光检测设备的收发器中,也可以为光检测设备上分别独立的收、发天线。通信总线206用于实现元件之间的通信连接。上述通信端口207用于实现光检测设备与其他外设之间进行连接通信。
在本申请实施例中,上述存储器202用于存储计算机可执行程序代码,程序代码包括指令;当处理器201执行指令时,指令使处理器201执行上述方法实施例中光检测设备的处理动作,使发送器204执行上述方法实施例中光检测设备的发送动作,其实现原理和技术效果类似,在此没有赘述。
如图21所示,为本申请实施例的一种网络管理设备的结构示意图,该网络管理设备可以为网络管理系统,该网络管理设备可以包括:处理器211(例如CPU)、存储器212、发送器214和接收器213;发送器214和接收器213耦合至处理器211,处理器211控制发送器214的发送动作和接收器213的接收动作。存储器212可能包含高速RAM存储器,也可能还包括非易失性存储器NVM,例如至少一个磁盘存储器,存储器212中可以存储各种指令,以用于完成各种处理功能以及实现本申请实施例的方法步骤。可选的,本申请实施例涉及的网络管理设备还可以包括:电源215、通信总线216以及通信端口217中的一个或多个。接收器213和发送器214可以集成在网络管理设备的收发器中,也可以为网络管理设备上分别独立的收、发天线。通信总线216用于实现元件之间的通信连接。上述通信端口217用于实现网络管理设备与其他外设之间进行连接通信。
在本申请实施例中,上述存储器212用于存储计算机可执行程序代码,程序代码包括指令;当处理器211执行指令时,指令使处理器211执行上述方法实施例中网络管理设备的处理动作,使发送器214执行上述方法实施例中网络管理设备的发送动作,其实现原理和技术效果类似,在此没有赘述。
在另一种可能的设计中,当光检测设备或者网络管理设备为芯片时,芯片包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使该终端内的芯片执行上述第一方面任意一项的无线通信方法。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述现场终端或者网络管理服务器内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第一方面无线通信方法的程序执行的集成电路。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请提供的装 置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (21)

  1. 一种光分配装置,其特征在于,所述光分配装置包括:输入端口、M个输出端口和N个第一光反射器,所述M大于或等于所述N,所述M和所述N为正整数,其中,
    所述输入端口通过M根光纤分别连接所述M个输出端口;
    所述N个第一光反射器中的一个第一光反射器以可插拔方式连接所述M个输出端口中的一个输出端口,其中,所述N个第一光反射器中的每一个第一光反射器用于反射进入对应输出端口的测试光信号。
  2. 根据权利要求1所述的光分配装置,其特征在于,连接所述N个第一光反射器的N个输出端口对应的N根光纤的长度互不相同;
    所述N个第一光反射器分别反射的测试光信号对应的反射峰参数不相同。
  3. 根据权利要求1所述的光分配装置,其特征在于,所述N个第一光反射器分别反射的测试光信号具有不同的波长。
  4. 根据权利要求1至3中任一项所述的光分配装置,其特征在于,所述光分配装置还包括:分光模块,其中,
    所述分光模块的一个端口连接所述输入端口,所述分光模块的另M个端口分别连接所述M根光纤。
  5. 根据权利要求1至3中任一项所述的光分配装置,其特征在于,所述光分配装置中包括M个所述输入端口,其中,
    所述光分配装置通过M个所述输入端口分别连接分光器的M个端口。
  6. 根据权利要求1至5中任一项所述的光分配装置,其特征在于,所述光分配装置还包括:第二光反射器,其中,
    所述第二光反射器与所述输入端口连接,所述第二光反射器反射的进入所述输入端口的测试光信号的第二反射峰,用于识别所述第一光反射器反射的测试光信号的第一反射峰。
  7. 根据权利要求1至6中任一项所述的光分配装置,其特征在于,所述光分配装置还包括:N个防尘帽,所述N个防尘帽中的一个防尘帽与一个第一光反射器形成一体结构。
  8. 一种光通信检测系统,其特征在于,所述光通信检测系统包括:光分配装置、光检测设备和网络管理设备,其中,
    所述光检测设备,用于向所述光分配装置发送测试光信号;
    所述光分配装置,用于通过所述光分配装置中的第一光反射器反射测试光信号,所述光分配装置具有M个输出端口和N个第一光反射器,所述M大于或等于所述N,所述M和所述N为正整数,所述N个第一光反射器中的一个第一光反射器以可插拔方式连接所述M个输出端口中的一个输出端口;
    所述光检测设备,还用于接收所述第一光反射器反射的测试光信号,向所述网络管理设备发送所述第一光反射器反射的测试光信号对应的反射光信号参数;
    所述网络管理设备,用于接收所述光检测设备发送的所述第一光反射器反射的测试光信号对应的反射光信号参数;根据所述第一光反射器反射的测试光信号对应的反射光信号参数识别所述光分配装置的输出端口。
  9. 根据权利要求8所述的光通信检测系统,其特征在于,所述光检测设备,用于向所 述光分配装置发送第一测试光信号;
    所述光分配装置,用于通过所述光分配装置中的N个第一光反射器分别反射所述第一测试光信号;
    所述光检测设备,还用于接收所述N个第一光反射器分别反射的所述第一测试光信号,向所述网络管理设备发送所述N个第一光反射器分别反射的所述第一测试光信号对应的反射光信号参数;
    所述网络管理设备,还用于接收所述光检测设备发送的所述N个第一光反射器分别反射的所述第一测试光信号对应的反射光信号参数;根据所述N个第一光反射器分别反射的所述第一测试光信号对应的反射光信号参数,检测所述光检测设备与所述光分配装置的N个输出端口之间的光纤链路状态。
  10. 根据权利要求9所述的光通信检测系统,其特征在于,所述反射光信号参数包括:第一光反射器反射的所述第一测试光信号的反射峰强度;
    所述网络管理设备,用于所述N个第一光反射器分别反射的所述第一测试光信号对应的反射峰强度低于第一阈值,确定所述光检测设备与所述光分配装置的输入端口之间的光纤链路状态异常;或者,所述N个第一光反射器分别反射的所述第一测试光信号对应的反射峰强度低于第二阈值,确定所述输入端口与所述光分配装置的N个输出端口之间的光纤链路状态异常;或者,所述N个第一光反射器分别反射的所述第一测试光信号对应的反射峰强度大于或等于所述第一阈值,确定所述光检测设备与所述光分配装置的N个输出端口之间的光纤链路状态正常;其中,所述第二阈值小于所述第一阈值。
  11. 根据权利要求8所述的光通信检测系统,其特征在于,所述光检测设备,用于向所述光分配装置发送第二测试光信号;
    所述光分配装置,用于通过所述光分配装置中的N-1个第一光反射器分别反射所述第二测试光信号,所述N-1个第一光反射器连接所述M个输出端口中的N-1个输出端口,所述N个第一光反射器中没有连接输出端口的第一光反射器无法反射所述第二测试光信号;
    所述光检测设备,还用于接收所述N-1个第一光反射器分别反射的所述第二测试光信号,向所述网络管理设备发送所述N-1个第一光反射器分别反射的所述第二测试光信号对应的反射光信号参数;
    所述网络管理设备,用于接收所述光检测设备发送的所述N-1个第一光反射器分别反射的所述第二测试光信号对应的反射光信号参数;根据所述N-1个第一光反射器分别反射的所述第二测试光信号对应的反射光信号参数识别所述光分配装置中被拔掉第一光反射器的输出端口。
  12. 根据权利要求11所述的光通信检测系统,其特征在于,所述网络管理设备,用于当所述光分配装置中的目标输出端口需要被拔掉第一光反射器时,从所述网络管理设备的基准数据库中获取所述目标输出端口对应的基准反射光信号参数;根据所述N-1个第一光反射器分别反射的所述第二测试光信号对应的反射光信号参数,确定消失的反射光信号对应的反射光信号参数;确定所述消失的反射光信号对应的反射光信号参数是否与所述目标输出端口对应的基准反射光信号参数相同,若所述消失的反射光信号对应的反射光信号参数与所述目标输出端口对应的基准反射光信号参数相同,确定所述目标输出端口是所述光 分配装置中被拔掉第一光反射器的输出端口,若所述消失的反射光信号对应的反射光信号参数与所述目标输出端口对应的基准反射光信号参数不相同,确定所述目标输出端口不是所述光分配装置中被拔掉第一光反射器的输出端口。
  13. 根据权利要求11或12所述的光通信检测系统,其特征在于,所述反射光信号参数包括:反射峰位置和所述反射峰位置对应的反射峰强度;或者,
    所述反射光信号参数包括:反射光信号的波长信息。
  14. 根据权利要求8至13中任一项所述的光通信检测系统,其特征在于,所述光分配装置还包括:输入端口和第二光反射器,其中,所述第二光反射器与所述输入端口连接;
    所述网络管理设备,用于检测所述第二光反射器反射的进入所述输入端口的测试光信号的第二反射峰,以及根据所述第二反射峰识别所述第一光反射器反射的测试光信号的第一反射峰。
  15. 一种光通信检测方法,其特征在于,所述方法包括:
    网络管理设备接收光检测设备发送的第一光反射器反射的测试光信号对应的反射光信号参数,其中,所述第一光反射器反射的测试光信号由光分配装置发送给所述光检测设备,所述测试光信号由所述光检测设备发送给所述光分配装置,所述光分配装置具有M个输出端口和N个第一光反射器,所述M大于或等于所述N,所述M和所述N为正整数,所述N个第一光反射器中的一个第一光反射器以可插拔方式连接所述M个输出端口中的一个输出端口;
    所述网络管理设备根据所述第一光反射器反射的测试光信号对应的反射光信号参数识别所述光分配装置的输出端口。
  16. 根据权利要求15所述的光通信检测方法,其特征在于,所述网络管理设备根据所述第一光反射器反射的测试光信号对应的反射光信号参数识别所述光分配装置的输出端口之后,所述方法还包括:
    当所述网络管理设备接收到所述光检测设备发送的N个第一光反射器分别反射的第一测试光信号对应的反射光信号参数时,所述网络管理设备根据所述N个第一光反射器分别反射的第一测试光信号对应的反射光信号参数,检测所述光检测设备与所述光分配装置的N个输出端口之间的光纤链路状态。
  17. 根据权利要求16所述的光通信检测方法,其特征在于,所述反射光信号参数包括:第一光反射器反射的所述第一测试光信号的反射峰强度;
    所述网络管理设备根据所述N个第一光反射器分别反射的所述第一测试光信号对应的反射光信号参数,检测所述光检测设备与所述光分配装置的N个输出端口之间的光纤链路状态,包括:
    所述N个第一光反射器分别反射的所述第一测试光信号对应的反射峰强度低于第一阈值,所述网络管理设备确定所述光检测设备与所述光分配装置的输入端口之间的光纤链路状态异常;或者,
    所述N个第一光反射器分别反射的所述第一测试光信号对应的反射峰强度低于第二阈值,所述网络管理设备确定所述输入端口与所述光分配装置的M个输出端口之间的光纤链路状态异常;或者,
    所述N个第一光反射器分别反射的所述第一测试光信号对应的反射峰强度大于或等于第一阈值,所述网络管理设备确定所述光检测设备与所述光分配装置的M个输出端口之间的光纤链路状态正常;其中,所述第二阈值小于所述第一阈值。
  18. 根据权利要求15所述的光通信检测方法,其特征在于,所述网络管理设备根据所述第一光反射器反射的测试光信号对应的反射光信号参数识别所述光分配装置的输出端口,包括:
    当所述网络管理设备接收所述光检测设备发送的N-1个第一光反射器分别反射的第二测试光信号对应的反射光信号参数时,所述网络管理设备根据所述N-1个第一光反射器分别反射的所述第二测试光信号对应的反射光信号参数识别所述光分配装置中被拔掉第一光反射器的输出端口;
    其中,所述N-1个第一光反射器连接所述M个输出端口中的N-1个输出端口,所述N个第一光反射器中没有连接输出端口的第一光反射器无法反射所述第二测试光信号。
  19. 根据权利要求18所述的光通信检测方法,其特征在于,所述网络管理设备根据所述N-1个第一光反射器分别反射的所述第二测试光信号对应的反射光信号参数识别所述光分配装置中被拔掉第一光反射器的输出端口,包括:
    当所述光分配装置中的目标输出端口需要被拔掉第一光反射器时,所述网络管理设备从所述网络管理设备的基准数据库中获取所述目标输出端口对应的基准反射光信号参数;
    所述网络管理设备根据所述N-1个第一光反射器分别反射的所述第二测试光信号对应的反射光信号参数,确定消失的反射光信号对应的反射光信号参数;
    所述网络管理设备确定所述消失的反射光信号对应的反射光信号参数是否与所述目标输出端口对应的基准反射光信号参数相同;
    若所述消失的反射光信号对应的反射光信号参数与所述目标输出端口对应的基准反射光信号参数相同,所述网络管理设备确定所述目标输出端口是所述光分配装置中被拔掉第一光反射器的输出端口;
    若所述消失的反射光信号对应的反射光信号参数与所述目标输出端口对应的基准反射光信号参数不相同,所述网络管理设备确定所述目标输出端口不是所述光分配装置中被拔掉第一光反射器的输出端口。
  20. 根据权利要求18或19所述的光通信检测方法,其特征在于,所述反射光信号参数包括:反射峰位置和所述反射峰位置对应的反射峰强度;或者,
    所述反射光信号参数包括:反射光信号的波长。
  21. 根据权利要求15至20中任一项所述的光通信检测方法,其特征在于,所述光分配装置还包括:输入端口和第二光反射器,其中,所述第二光反射器与所述输入端口连接;
    所述方法还包括:
    所述网络管理设备检测所述第二光反射器反射的进入所述输入端口的测试光信号的第二反射峰;
    所述网络管理设备根据所述第二反射峰识别所述第一光反射器反射的测试光信号的第一反射峰。
PCT/CN2020/108611 2019-12-31 2020-08-12 一种光分配装置和光通信检测系统以及光通信检测方法 WO2021135244A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20911260.6A EP4075688A4 (en) 2019-12-31 2020-08-12 OPTICAL DISTRIBUTION DEVICE, OPTICAL COMMUNICATION DETECTION SYSTEM AND OPTICAL COMMUNICATION DETECTION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911418193.1 2019-12-31
CN201911418193.1A CN111130636B (zh) 2019-12-31 2019-12-31 一种光分配装置和光通信检测系统以及光通信检测方法

Publications (1)

Publication Number Publication Date
WO2021135244A1 true WO2021135244A1 (zh) 2021-07-08

Family

ID=70506861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108611 WO2021135244A1 (zh) 2019-12-31 2020-08-12 一种光分配装置和光通信检测系统以及光通信检测方法

Country Status (4)

Country Link
EP (1) EP4075688A4 (zh)
CN (2) CN113783606B (zh)
AR (1) AR120953A1 (zh)
WO (1) WO2021135244A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113783606B (zh) * 2019-12-31 2023-05-16 华为技术有限公司 一种光分配装置和光通信检测系统以及光通信检测方法
CN113873358B (zh) * 2020-06-30 2022-12-06 华为技术有限公司 分光器、光分布网络及确定光滤波结构对应波长方法
CN112187354B (zh) * 2020-09-29 2022-04-01 深圳市新龙鹏科技有限公司 基于多onu设备的稳定性测试方法及系统
CN114430512B (zh) * 2020-10-29 2023-04-28 华为技术有限公司 端口识别的方法和装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291176A (zh) * 2011-08-30 2011-12-21 上海波汇通信科技有限公司 一种无源光网络故障在线监测系统
CN202334525U (zh) * 2011-11-28 2012-07-11 华为技术有限公司 光网络单元和无源光网络
WO2012168004A1 (en) * 2011-06-07 2012-12-13 Telefonica, S.A. Method and system for supervising point to multipoint passive optical networks based on reflectometry systems
CN103227677A (zh) * 2013-04-28 2013-07-31 桂林聚联科技有限公司 一种光纤反射器及利用该器件实现pon网络监测的方法
WO2013141765A1 (en) * 2012-03-20 2013-09-26 Telefonaktiebolaget Lm Ericsson (Publ) A system, a wavelength isolator and methods therein for supervision of a passive optical network
CN104579459A (zh) * 2013-10-25 2015-04-29 华为技术有限公司 一种光纤链路识别的方法、设备和系统
CN105790828A (zh) * 2014-12-22 2016-07-20 中国电信股份有限公司 抑制光反射的装置和光链路检测方法
CN107078795A (zh) * 2014-09-03 2017-08-18 英国电讯有限公司 光网络故障识别
WO2018017458A1 (en) * 2016-07-21 2018-01-25 Corning Optical Communications LLC Optical reflective filter devices and optical networks using the same
CN111130636A (zh) * 2019-12-31 2020-05-08 华为技术有限公司 一种光分配装置和光通信检测系统以及光通信检测方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7184666B1 (en) * 2003-10-01 2007-02-27 Ciena Corporation Reconfigurable optical add-drop multiplexer
EP1578038A1 (en) * 2004-03-19 2005-09-21 Multitel Device and method for real-time optical network monitoring
CN102111218A (zh) * 2009-12-25 2011-06-29 华为技术有限公司 分支光纤故障检测方法、装置及系统
CN102244539B (zh) * 2010-05-11 2014-09-17 华为技术有限公司 分支光纤检测方法及系统、无源光网络和分光器
CN103107842B (zh) * 2012-09-05 2015-11-25 华为技术有限公司 分光器端口识别系统
CN103905111A (zh) * 2012-12-28 2014-07-02 深圳市华为安捷信电气有限公司 光链路检测方法、装置及系统
CN104426603A (zh) * 2013-08-30 2015-03-18 华为技术有限公司 光网络检测方法、装置、设备、系统及分光器
CN203849455U (zh) * 2014-05-28 2014-09-24 奥普镀膜技术(广州)有限公司 插拔式贴膜光学反射器
CN107769844A (zh) * 2017-11-15 2018-03-06 国网江苏省电力公司徐州供电公司 一种独立插拔式光合波器以及在线监测系统
CN108683451A (zh) * 2018-04-18 2018-10-19 东南大学 基于光编码及光时域反射仪的无源光纤网络链路故障监测方法
CN110474678B (zh) * 2019-08-22 2021-06-01 华为技术有限公司 一种光纤编码的获取方法、系统以及相关设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012168004A1 (en) * 2011-06-07 2012-12-13 Telefonica, S.A. Method and system for supervising point to multipoint passive optical networks based on reflectometry systems
CN102291176A (zh) * 2011-08-30 2011-12-21 上海波汇通信科技有限公司 一种无源光网络故障在线监测系统
CN202334525U (zh) * 2011-11-28 2012-07-11 华为技术有限公司 光网络单元和无源光网络
WO2013141765A1 (en) * 2012-03-20 2013-09-26 Telefonaktiebolaget Lm Ericsson (Publ) A system, a wavelength isolator and methods therein for supervision of a passive optical network
CN103227677A (zh) * 2013-04-28 2013-07-31 桂林聚联科技有限公司 一种光纤反射器及利用该器件实现pon网络监测的方法
CN104579459A (zh) * 2013-10-25 2015-04-29 华为技术有限公司 一种光纤链路识别的方法、设备和系统
CN107078795A (zh) * 2014-09-03 2017-08-18 英国电讯有限公司 光网络故障识别
CN105790828A (zh) * 2014-12-22 2016-07-20 中国电信股份有限公司 抑制光反射的装置和光链路检测方法
WO2018017458A1 (en) * 2016-07-21 2018-01-25 Corning Optical Communications LLC Optical reflective filter devices and optical networks using the same
CN111130636A (zh) * 2019-12-31 2020-05-08 华为技术有限公司 一种光分配装置和光通信检测系统以及光通信检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4075688A4

Also Published As

Publication number Publication date
EP4075688A1 (en) 2022-10-19
CN111130636B (zh) 2021-08-13
CN113783606A (zh) 2021-12-10
CN111130636A (zh) 2020-05-08
EP4075688A4 (en) 2023-06-07
AR120953A1 (es) 2022-03-30
CN113783606B (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
WO2021135244A1 (zh) 一种光分配装置和光通信检测系统以及光通信检测方法
JP6105158B2 (ja) 光パス処理方法及び装置
EP2843387B1 (en) Optical fiber testing using OTRD instrument
US9544049B2 (en) Fibre network comprising sensors
US9571189B2 (en) In-service monitoring of a fiberoptic network
EP3029853B1 (en) Method, device, and system for optical fiber link identification
US11860058B2 (en) Fiber-optic testing source and fiber-optic testing receiver for multi-fiber cable testing
US9577748B2 (en) Monitoring of a passive optical network (PON)
WO2022100384A1 (zh) 故障定位方法、装置及系统
WO2013107232A1 (zh) 基于pon系统的检测方法和系统
US11825249B2 (en) Systems and methods for measurement of optical parameters in an optical network
KR20230002795A (ko) 고장 위치 확인 방법, 장치, 시스템
CN103078676A (zh) 无源兼容光网络及其光网络单元光模块
CN110945800B (zh) 一种光性能监测装置及方法
EP4064587A1 (en) Optical device, method and system for remotely detecting optical network terminals
WO2023073876A1 (ja) 光ファイバセンシングシステム、光ファイバセンシング方法、及びonu
JP2012173184A (ja) 光多重反射点特定装置及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911260

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020911260

Country of ref document: EP

Effective date: 20220711

NENP Non-entry into the national phase

Ref country code: DE