WO2014067094A1 - 分支光纤的故障检测方法、装置及系统 - Google Patents

分支光纤的故障检测方法、装置及系统 Download PDF

Info

Publication number
WO2014067094A1
WO2014067094A1 PCT/CN2012/083841 CN2012083841W WO2014067094A1 WO 2014067094 A1 WO2014067094 A1 WO 2014067094A1 CN 2012083841 W CN2012083841 W CN 2012083841W WO 2014067094 A1 WO2014067094 A1 WO 2014067094A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
unit
communication port
optical
fiber
Prior art date
Application number
PCT/CN2012/083841
Other languages
English (en)
French (fr)
Inventor
白茂森
杨素林
殷锦蓉
王卫阳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201280001526.0A priority Critical patent/CN103222206B/zh
Priority to PCT/CN2012/083841 priority patent/WO2014067094A1/zh
Publication of WO2014067094A1 publication Critical patent/WO2014067094A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks

Definitions

  • the present invention relates to the field of optical communication technologies, and in particular, to a fault detection method, apparatus, and system for a branch fiber. Background technique
  • PON Passive Optical Network
  • Passive optical network is a point-to-multipoint optical fiber access technology. Its structure is shown in Figure 1. It includes optical line termination (0LT, Optical Line Termination) at the operator's center. Network (0DN, Optical Distribution Network), and the optical network unit (0NU, Optical Network Unit) located in the customer premises (because the network location and functions of the ONU and the ONT are basically the same, the ONU in this document also refers to the optical network terminal ( ONT, Optical Network Termination)).
  • ONT Optical Network Termination
  • the optical fiber connecting the ONU and the optical splitter immediately adjacent to it is a branch optical fiber, as shown in the figure.
  • the fiber between the ONU and the second stage splitter (2 nd Splitter) is the branch fiber.
  • ODN faults dominate.
  • the Optical Time Domain Reflectometer (OTDR) is currently the most widely used tool for ODN monitoring and fault diagnosis of passive optical networks.
  • the OTDR test optical signal propagates forward on the propagation path and is reflected back to the reflected optical signal that reflects the physical characteristics of the propagation link.
  • the OTDR receives the optical signal reflected from the ODN network, and according to the received reflection test optical signal, The events in the current ODN network can be parsed.
  • an OTDR function module can be added to the ONU, and an OTDR test signal is applied from the ONU end to reverse the branch fiber where each ONU is located. After the test, the OTDR receives the reflected signal of the test optical signal, and can determine the fault of the branch fiber, and upload the test result of the branch fiber to the OLT through the ONU.
  • the branch fiber is severely faulty (for example, the fiber is broken)
  • the ONU cannot communicate with the OLT, and the OTDR test result of the ONU cannot be uploaded, causing the OTDR test of the ONU to be invalid.
  • the embodiment of the invention provides a fault detection method, device and system for a branch fiber, which can solve the problem that the ONU end OTDR test fails when the tested branch fiber is severely faulty.
  • an embodiment of the present invention provides a passive branch loopback device, where the passive branch loopback device includes at least three branch units, and any one of the branch units includes at least a first communication port and a second communication. a port and a third communication port, wherein the first communication port of the first branch unit of the at least three branch units is connected to the first optical network unit by the first branch fiber, and the first communication port of the second branch unit passes the second branch
  • the optical fiber is connected to the second optical network unit, and the first communication port of the third branch unit is connected to the third optical network unit by using the third branch fiber;
  • the at least three branch units are connected to form a loop, wherein the first branch The second communication port of the unit is connected to the third communication port of the third branch unit through an optical fiber, and the third communication port of the first branch unit and the second communication port of the second branch unit are connected by an optical fiber.
  • a third communication port of the second branch unit and a second communication port of the third branch unit are connected by an optical fiber;
  • the first branching unit is configured to receive, by the first communication port, a test signal sent by the first optical network unit when the second branch fiber fails, and transmit the test signal to the test loop through the loop Transmitting, by the first branch port of the second branch unit, to the second branch fiber, detecting the second branch fiber, and passing the reflected signal of the test signal
  • the loop is transmitted to the first optical network unit, so that the first optical network unit transmits the detection result of the second branch fiber obtained according to the reflected signal of the test signal to the optical line terminal.
  • the first branch unit passes the third communication port of the first branch unit and the second branch An optical fiber between the second communication ports of the unit transmits the test signal to the second branch unit; and/or,
  • any one of the at least three branching units includes an optical wavelength multiplexing/demultiplexing device And a unit splitter, one end of the optical wavelength multiplexing/demultiplexing device is connected to a branch fiber corresponding to the branch unit through a first communication port of the branching unit, and one end of the other end and the unit optical splitter Connecting, the other end of the other end is connected to the optical splitter through a fourth communication port, the at least three branching units sharing one of the optical splitters; the optical wavelength multiplexing/demultiplexing device for passing the first a communication port from which a branch fiber is connected Receiving a service data signal and a reflected signal of the test signal or the test signal, and demultiplexing the service data signal and the reflected signal of the test signal or the test signal, and transmitting the service data signal through the fourth communication port To the spectroscope, transmitting the reflected signal of the test signal or the test signal
  • Unit splitters in the at least three branch units are connected to form the loop, wherein a first unit splitter of the first branch unit passes through a second communication port of the first branch unit and the third a third communication port of the branch unit is connected to the third unit optical splitter of the third branch unit, and is connected to the third communication port of the first branch unit and the second communication port of the second branch unit a second unit splitter of the second branch unit, the second unit splitter being connected to the three unit split by a third communication port of the second branch unit and a second communication port of the third branch unit Device
  • the first unit optical splitter is configured to: when the second branch optical fiber fails, pass a test signal received from an optical wavelength multiplexing/demultiplexing device connected to the first unit optical splitter Transmitting the loop to the second unit optical splitter, and transmitting, by the loop, a reflected signal of the test signal to the optical wavelength multiplexing/demultiplexing of the optical unit connected to the first unit optical splitter Device.
  • the embodiment of the present invention provides a fault detection method for a branch fiber in a passive optical network system, where the passive optical network is provided with a passive branch loopback device, and the passive branch loopback device includes at least a plurality of branch units, at least one of the first communication port, the second communication port, and the third communication port, wherein the first communication port of the first branch unit of the at least three branch units passes the first branch fiber Connected to the first optical network unit, the first communication port of the second branch unit is connected to the second optical network unit by using the second branch fiber, and the first communication port of the third branch unit passes through the third branch fiber and the third optical network unit Connecting, the at least three branching units are connected to each other to form a loop, wherein the second communication port of the first branching unit and the third communication port of the third branching unit are connected by an optical fiber, the first branching unit The third communication port is connected to the second communication port of the second branch unit through an optical fiber, and the third communication port of the second branch unit The third branch of
  • the first branch unit receives a test signal sent by the first optical network unit through its first communication port;
  • the transmitting, by the first branch unit, the test signal to the second branch unit by using the loop includes:
  • any one of the at least three branching units includes optical wavelength multiplexing/demultiplexing And a unit splitter, one end of the optical wavelength multiplexing/demultiplexer is connected to a branch fiber corresponding to the branch unit through a first communication port of the branch unit, and one of the other end is split with the unit The other end of the other end is connected to the optical splitter through a fourth communication port, the at least three branching units sharing one of the optical splitters; and the unit splitters of the at least three branching units are connected to each other to form the a loop, wherein the first unit splitter of the first branch unit is connected to the third branch unit through a second communication port of the first branch unit and a third communication port of the third branch unit a third unit splitter connected to the second branch unit by a third communication port of the first branch unit and a second communication port of the second branch unit Dyad beam splitter, the second optical splitter means connected to
  • the first branch unit passes the first communication port thereof Receiving the test signal sent by the first optical network unit, including:
  • the optical wavelength multiplexing/demultiplexing unit of the first branching unit receives the service data signal and the test signal sent by the first optical network unit from the first branching fiber through the first communication port.
  • the first unit optical splitter transmits a test signal received from an optical wavelength multiplexing/demultiplexing device connected thereto to the second unit optical splitter through the loop;
  • the optical wavelength multiplexing/demultiplexing unit of the second branching unit multiplexes the received test signal with the service data signal transmitted by the optical splitter received from the fourth communication port, and passes the The first communication port sends the multiplexed signal to the second branch fiber for detection.
  • the first branch unit receives the reflected signal of the test signal by using the loop, and transmits the reflected signal of the test signal to the first through the first communication port thereof.
  • An optical network unit including:
  • the optical wavelength multiplexing/demultiplexing unit of the first branching unit multiplexes the received reflected signal of the test signal with the service data signal transmitted by the optical splitter received from the fourth communication port And transmitting the multiplexed signal to the first optical network unit through the first communication port.
  • a fault detection apparatus for a branch fiber in a passive optical network system comprising: a plurality of optical network units and a passive branch loopback device according to the first aspect, wherein each of the optical network units The passive branch loopback is connected by a branch fiber.
  • the first optical network unit of the multiple optical network units is further configured to receive, when the second branch optical fiber fails, And transmitting, by the optical line terminal, the detection result of the second branch fiber to the optical line terminal.
  • the multiple optical network unit is configured to: when the second branch optical fiber fails, according to the foregoing The scheduling algorithm determines a detection result of the second branch fiber sent by the first network unit to the optical line terminal;
  • the first optical network unit is further configured to: after obtaining the detection result of the second branch fiber, send the detection result of the second branch fiber to the optical line terminal according to the preset scheduling algorithm.
  • a passive optical network system comprising: an optical line terminal, an optical distribution network, and an optical network unit, wherein the optical distribution network is provided with a passive branch loopback device as described in the first aspect.
  • the passive branch loopback device can transmit the test signal on one branch fiber to another branch fiber, and perform fault detection on the other branch fiber, and can be detected by the ONU on the branch fiber.
  • the detection result on the other branch fiber is sent to the 0LT, thereby solving the test failure problem caused by the severe fault of the tested branch fiber, and realizing the reliable detection of the branch fiber fault of the passive optical network.
  • FIG. 1 is a schematic diagram of a passive optical network with multi-stage splitting in the prior art
  • FIG. 2 is a block diagram of a first embodiment of a passive branch loopback device of the present invention
  • FIG. 3 is a block diagram of a second embodiment of a passive branch loopback device of the present invention.
  • FIG. 4 is a block diagram of a third embodiment of a passive branch loopback device of the present invention.
  • FIG. 5 is a schematic structural diagram of a fault detecting apparatus for a branch fiber in a passive optical network system according to an embodiment of the present invention
  • FIG. 6 is a flow chart of a first embodiment of a method for detecting a fault of a branch fiber in a passive optical network system according to the present invention
  • Embodiments of the present invention provide a fault detection method, apparatus, and system for a branch fiber.
  • the passive branch loopback device can The test signal on one branch fiber is transmitted to another branch fiber, and the other branch fiber is fault-detected, and the detection result on the other branch fiber can be sent to the OLT by the ONU on the one branch fiber.
  • the problem of test failure caused by severe faults of the tested branch fiber is solved, and the reliable detection of the branch fiber fault of the passive optical network is realized.
  • FIG. 2 a block diagram of a first embodiment of a passive branch loopback device of the present invention is shown.
  • the passive branch loopback device 21 may be connected to all the branch fiber fibers under the optical splitter 22, or may be connected to only a part of the branch fiber, and the other end of each branch fiber is connected to the ONU.
  • the ONU refers to an optical network unit and an optical network terminal.
  • the ONU side can be configured with an OTDR module.
  • the OTDR module can be set inside the ONU or external to the ONU.
  • the OTDR module on the ONU sends a test signal to its branch.
  • the fiber is faulty detected by the optical branch or by the passive branch loopbacker 21.
  • the passive branch loopback device 21 can be connected to the optical splitter 22 through a communication port.
  • the passive branch loopback 21 can also be connected to the optical splitter 22, and the optical splitter 22 directly Branch fiber connection.
  • the passive branch loopbacker 21 includes at least three branching units, and any one of the branching units includes at least a first communication port, a second communication port, and a third communication port.
  • the three branching units are The first communication port of the first branch unit 221 is connected to the first ONU 241 through the first branch fiber 231, and the first communication port of the second branch unit 222 is connected to the second ONU 242 through the second branch fiber 232.
  • the third branch unit 223 The first communication port is connected to the third ONU 243 through the third branch fiber 233; the at least three branch units are connected to each other to form a loop, wherein the third communication port of the first branch unit 221 and the third communication unit 223 are in communication with each other.
  • the port is connected by a fiber, the third communication port of the first branching unit 221 is connected to the second communication port of the second branching unit 222 through the optical fiber, and the second communication port of the second branching unit 222 is in communication with the second communication unit of the third branching unit 223.
  • the port is connected by fiber; and so on, if the passive branch loopbacker 21 includes four branching units, the four branches
  • the cells are connected to each other through a second communication port and a third communication port to form a loop.
  • the second communication port of the first branch unit and the third communication port of the fourth branch unit are connected by an optical fiber
  • the third branch of the first branch unit The communication port is connected to the second communication port of the second branch unit through an optical fiber
  • the third communication port of the second branch unit is connected to the second communication port of the third branch unit through the optical fiber
  • the third communication port of the third branch unit is connected to the third communication port.
  • the second communication port of the four-branch unit is connected by an optical fiber.
  • a plurality of branching units can be connected to each other to form a loop according to the above-mentioned connection manner.
  • the first branching unit 221 is configured to receive the test signal sent by the first ONU 241 through the first communication port, transmit the test signal to the second branching unit 222 through the loop, and pass the second The first communication port of the branching unit 222 is transmitted to the second branch fiber 232, and the second branch fiber 232 is detected.
  • the test signal reflects the test signal backwards, that is, in the reverse direction of the path.
  • the signal is recorded as a reflected signal of the test signal, and the second branching unit 222 transmits the reflected signal of the test signal to the first branching unit 221 according to the above loop, and the first branching unit 221 reflects the test signal.
  • the signal is transmitted to the first ONU 241 through the above loop, so that the first ONU 241 transmits the detection result of the second branch fiber 232 obtained according to the reflected signal of the test signal to the optical line terminal.
  • the OTDR module on the first ONU 241 obtains the detection result of the second branch fiber 232 according to the reflected signal, and further the second branch fiber 232 by the first ONU 241.
  • the detection result is sent to the OLT.
  • the detection result of the second branch fiber 232 can be uploaded to the OLT to realize the effectiveness of testing the second branch fiber 232.
  • the first branching unit 221 transmits the test signal to the second branching unit 222 through the loop
  • the first branching unit 221 may be the third communication port of the first branching unit 221. Transmitting the test signal to the second branching unit 222 with the second communication port of the second branching unit 222; and/or,
  • the first branching unit 221 transmits the test signal to the third branching unit 223 through the second communication port of the first branching unit 221 and the third communication port of the third branching unit 223, and then passes through the second communication port of the third branching unit 223.
  • the third communication port with the second branching unit 222 transmits a test signal to the second branching unit 222.
  • the "first" and “second" in the first branch fiber and the second branch fiber only distinguish different branch fibers, and are not limited to a specific branch fiber. No matter which branch fiber fails, it can be used on other fibers.
  • the branch unit transmits the test signal to the faulty fiber to detect the faulty fiber.
  • the passive branch looper 21 may be disposed inside the splitter 22 or may be independently provided.
  • the second branch fiber may also have multiple, that is, the passive branch loopback device 21 may transmit the test signals on the first branch fiber to the plurality of branch fibers except the first branch fiber simultaneously or sequentially.
  • the fault detection of the plurality of branch fibers is performed.
  • the detection result of the plurality of branch fibers is obtained by the OTDR module on the ONU side of the first branch fiber, and the plurality of branches are branched by the ONUs on the first branch fiber.
  • the detection result of the optical fiber is sent to the OLT.
  • the passive branch loopback device can transmit the test signal on one branch fiber to another branch fiber, and perform fault detection on the other branch fiber, and can be used by the ONU on the branch fiber.
  • the detection result on the other branch fiber is sent to the OLT, thereby solving the test failure problem caused by the severe fault of the tested branch fiber, and realizing the reliable detection of the branch fiber fault of the passive optical network.
  • FIG. 3 a block diagram of a second embodiment of a passive branch loopback device of the present invention is shown.
  • the passive branch loopback device includes a branch unit corresponding to the branch fiber, and each branch unit has the same structure, one end of the branch unit is connected to its corresponding branch fiber, and the other end is connected to the beam splitter 30. Connected, a plurality of branch units share a splitter 30, and the branch units are connected to each other to form a loop; the passive branch loopback transmits a test signal and a reflection of the test signal between the branch fibers through a loop between the branch units. signal.
  • the number of branch units may also be greater than the number of branch fibers, and other branch units may be used as spares except for the branch units corresponding to the branch fibers.
  • each branch unit is the same, and the branch unit 31 is taken as an example.
  • the branch unit 31 further includes an optical wavelength multiplexing/demultiplexing unit 311 and a unit splitter 312.
  • One end of the optical wavelength multiplexing/demultiplexing device 311 is connected to the branch fiber corresponding to the branching unit 31 through the first communication port of the branching unit 31, one of the other ends is connected to the unit optical splitter 312, and the other end is connected to the other.
  • the branch is connected to the beam splitter 30 through the fourth communication port.
  • the optical wavelength multiplexing/demultiplexing device of each branch unit is the same, and the optical wavelength multiplexing/demultiplexing device is configured to receive the service data signal and the test signal (the reflection of the test signal) from the branch fiber connected thereto through the first communication port. Signal), demultiplexing the service data signal and the test signal (reflected signal of the test signal), transmitting the service data signal to the beam splitter 30 through the fourth communication port, and transmitting the test signal (reflected signal of the test signal) a unit splitter connected thereto; multiplexing the received test signal (reflected signal of the test signal) transmitted by the unit splitter connected thereto with the service data signal transmitted by the optical splitter 30 received from the fourth communication port, And sent to the branch fiber connected thereto through the first communication port.
  • the unit splitters in each branch unit are connected to each other to form a loop.
  • the first unit splitter of the first branch unit passes through the second communication port of the first branch unit and the third unit of the third branch unit.
  • the communication port is connected to the third unit splitter of the third branch unit, and is connected to the second unit splitter of the second branch unit through the third communication port of the first branch unit and the second communication port of the second branch unit,
  • the two-unit optical splitter is connected to the third unit optical splitter through a third communication port of the second branching unit and a second communication port of the third branching unit.
  • the first unit optical splitter transmits the test signal received from the optical wavelength multiplexing/demultiplexing device connected thereto to the second unit optical splitter through the loop, and the test signal is The reflected signal is transmitted through the loop to the optical wavelength multiplexing/demultiplexing device connected thereto.
  • the above-mentioned operation of the first unit beam splitter can also be performed by the third unit beam splitter, and it is not limited to which unit splitter is specifically executed.
  • one side of the unit splitter has a second communication port and a third communication port, and the other side is connected to the optical wavelength multiplexing/demultiplexing device.
  • the input/output ratio of the two sides of the unit splitter is 1:2. In other embodiments, the input/output ratio of the two sides of the unit splitter may also be 1:3, etc., and the splitter of each unit may be connected to each other in other manners, as long as the test signal and its reflected signal can be realized by One branch fiber can be transferred to another branch fiber.
  • FIG. 4 it is a block diagram of a third embodiment of a passive branch loopback.
  • the passive branch loopback device includes N branching units, where N is a positive integer.
  • the first communication port of the branching unit 401 is connected to the ONU 402 through the branching fiber 40.
  • the first communication port of the branching unit 411 passes through the branching fiber 41 and the ONU 412.
  • the first communication port of the branch unit 421 is connected to the ONU 422 via the branch fiber 422, the first communication port of the branch unit 431 is connected to the ONU 432 via the branch fiber 43, and the first communication port of the branch unit 441 is connected to the ONU 442 via the branch fiber 44.
  • the test signal can be sent by the OTDR module of the ONU 422 on the branch fiber.
  • the test signal is transmitted to the branching unit 421 via the branch fiber 42.
  • the optical wavelength multiplexing/demultiplexing unit 4211 in the branching unit 421 transmits the test signal to the unit splitter 4212, and the unit splitter 4212 passes through the branch optical fiber 41.
  • the connection relationship between the unit splitters 4112 sends a test signal to the unit splitter 4112, and the unit splitter 4112 transmits the test signal to the optical wavelength multiplexing/demultiplexing unit 4111 in the branch unit 411 where it is located, and The optical wavelength multiplexing/demultiplexing unit 4111 transmits a test signal to the branch fiber 41 to detect the branch fiber 41, and the reflected signal of the test signal passes through the reverse path of the path, and finally returns to the ONU side of the branch fiber 42.
  • the OTDR module obtains detection of the branch fiber 41 according to the reflected signal
  • the detection result may be a particular fault location information and the like of the branching optical fiber 41, after obtaining the detection result, ONU422 connected by the branch optical fiber 42 to the OLT through which the service data transmission path.
  • the test signal is transmitted to the unit splitter 4112 through the connection relationship between the unit splitter 4212 and the unit splitter 4112 on the branch fiber 41.
  • the transmission path of the test signal may be sent directly to the unit splitter 4112 by the unit splitter 4212 along the optical fiber connected to the unit splitter 4112, or may be first transmitted to the unit splitter 4312 by the unit splitter 4212, and the unit splits the light.
  • the device 4312 is transmitted to the unit splitter 4412, and then transmitted by the unit splitter 4412 to the unit splitter 4012, and finally transmitted by the unit splitter 4012 to the unit splitter 4112.
  • the above two path unit splitters 4212 may select one to send a test signal, or may send test signals along two paths at the same time, except that the test signal is transmitted to the unit splitter 4112 at different times, and the signal strength is also different. For the same reason, for ONU422 In other words, the time of receiving the reflected signal of the test signal is different, and the signal strength is different. However, the fault information of the branch fiber 41 reflected by the reflected signal is the same, and the ONU 422 can select the reflected signal with a large signal strength for analysis to form the pair of branch fibers 41. Test results.
  • the fault detection of the branch fiber 41 and the transmission of the detection result may also be performed by the ONU and the OTDR module of the other branch fibers, as long as the unit splitter of the branch unit on the other fiber and the point The unit splitter on the optical fiber 41 is connected, and the test signal and the reflected signal can be transmitted.
  • the OTDR module on the ONU side of the branch fiber 44 sends a test signal, which is sequentially subjected to optical wavelength multiplexing.
  • the demultiplexer 4411 and the unit splitter 4412 are transmitted to the unit splitter 4312 of the branch fiber 43, and then transmitted to the branch fiber 43 through the optical wavelength multiplexing/demultiplexing unit 4311, and then reflected by the ONU side and then sequentially passed through the optical wavelength.
  • the multiplexer/demultiplexer 4311 and the unit splitter 4312 are transmitted to the unit splitter 4112 of the branch fiber 41, and are transmitted to the branch fiber 41 via the optical wavelength multiplexing/demultiplexing unit 4111, and the branch fiber 41 is detected.
  • the reflected signal of the test signal is finally returned to the ONU side of the branch fiber 44 according to the reverse path of the path.
  • the ONU of the branch fiber 44 transmits to the OLT through its service data transmission line.
  • the action of sending the test signal and sending the detection result may be specifically performed by the OLT to specify the ONU, or may be performed by the ONU according to a certain scheduling algorithm, or may be performed by all ONUs in a loop, and the specific manner is not performed. limited.
  • the ONU and the OTDR module may detect one of the branch fibers, or in one start, the ONU and the OTDR module on a branch fiber detect all the branch fibers under the splitter.
  • the specific method is not limited.
  • the passive branch loopback device can transmit the test signal on one branch fiber to another branch fiber, and perform fault detection on the other branch fiber, and can be used by the ONU on the branch fiber.
  • the detection result on the other branch fiber is sent to the OLT, thereby solving the test failure problem caused by the severe fault of the tested branch fiber, and realizing the reliable detection of the branch fiber fault in the passive optical network system.
  • the OTDR test of the ONU on a branch fiber can be started, and all the branch fibers under the splitter are detected. This eliminates the need to start the OTDR test on the ONUs of all branches, which can improve the detection efficiency.
  • FIG. 5 is a schematic structural diagram of a fault detecting apparatus for a branch fiber in a passive optical network system according to an embodiment of the present invention.
  • the apparatus may include a plurality of ONUs 51 and a passive branch loopbacker 52 as in the previous embodiment, wherein each ONU 51 is coupled to the passive branch loopbacker 52 via a branch fiber.
  • the first ONU of the plurality of ONUs is further configured to: when the second branch fiber fails, send the detection result of the second branch fiber to the optical line terminal after receiving the command sent by the optical line terminal.
  • the second branch fiber fails when the ONU 51 sends the detection result of the second branch fiber to the OLT, the following methods may be used:
  • Method 1 All ONUs except the ONU on the second branch fiber send a test signal to the second The branch fiber performs fault detection, and all the ONUs obtain the detection result, and then the first ONU specified by the OLT transmits the detection result.
  • Manner 2 The first ONU directly issues a test signal to perform fault detection on the second branch fiber, and forms a detection result to be sent to the OLT, and other ONUs do not send a test signal.
  • the plurality of ONUs may further determine, according to a preset scheduling algorithm, a detection result of the second branch fiber sent by the first network unit to the optical line terminal.
  • the first ONU is further configured to send the detection result of the second branch fiber to the optical line terminal according to the preset scheduling algorithm after obtaining the detection result of the second branch fiber.
  • the first ONU may be any one of a plurality of ONUs (except for O on the faulty fiber;).
  • the embodiment of the present invention further provides a passive optical network system.
  • the passive optical network system includes at least an optical line terminal OLT and an optical network unit ONU, where the OLT and each ONU are connected through an optical distribution network, where The optical branching network is provided with a passive branch loopbacker 31 as described in the foregoing embodiments.
  • the specific structure of the passive branch loopbacker 31 is the same as that of the foregoing embodiment, and details are not described herein again.
  • the optical distribution network may further include: a beam splitter 30, configured to send the optical signal sent by the OLT through the optical splitter 30 and then split into multiple optical signals of the same power and send them through the passive branch loopback device 31, respectively. Give the opposite end O;
  • FIG. 6 a flowchart of a first embodiment of a method for detecting a fault of a branch fiber in a passive optical network system according to the present invention is shown.
  • the passive optical network system is provided with a passive branch loopbacker.
  • the passive branch loopbacker has the same structure as the foregoing embodiment, and may also include at least three branching units, and any one of the branching units includes at least the first a communication port, a second communication port, and a third communication port, wherein the first communication port of the first branch unit of the at least three branch units is connected to the first ONU through the first branch fiber, and the first communication port of the second branch unit Connected to the second ONU through the second branch fiber, the first communication port of the third branch unit is connected to the third ONU through the third branch fiber; the at least three branch units are connected to each other to form a loop, where the first a second communication port of the branch unit and a third communication port of the third branch unit are connected by an optical fiber, and a third communication port of the first branch unit and a second communication port of the second branch unit are connected by an optical fiber.
  • the third communication port of the second branch unit and the second communication port of the third branch unit are connected by
  • the method can include:
  • Step 601 When the second branch fiber fails, the first branch unit receives the test signal sent by the first ONU through the first communication port.
  • Step 602 The first branch unit transmits the test signal to the second branch unit through the loop, and transmits the second branch fiber to the second branch fiber through the first communication port of the second branch unit.
  • the first branch unit transmits the test signal to the second branch unit through the loop, including:
  • the first branch unit transmits the test signal to the second branch unit through a third communication port of the first branch unit and a second communication port of the second branch unit; and/or,
  • the first branch unit transmits the test signal to the third branch unit through a second communication port of the first branch unit and a third communication port of the third branch unit, and then passes the third The second communication port of the branch unit and the third communication port of the second branch unit transmit the test signal to the second branch unit.
  • Step 603 the first branch unit receives the reflected signal of the test signal through the loop, and transmits the reflected signal of the test signal to the first ONU through the first communication port, so that the first ONU will be according to the test signal.
  • the detection result of the second branch fiber obtained by the reflected signal is sent to the OLT.
  • the second branch fiber may also have multiple, that is, the passive branch loopback device transmits the test signal on the first branch fiber of the plurality of branch fibers to the second branch fiber of the plurality of branch fibers.
  • the passive branch loopback device can transmit the test signal on the first branch fiber of the plurality of branch fibers to the remaining branch fibers of the plurality of branch fibers except the first branch fiber, to A plurality of branch fibers are used for fault detection.
  • the detection result of the plurality of branch fibers is obtained by the OTDR module on the ONU side of the first branch fiber, and the plurality of branch fibers are used by the ONUs on the first branch fiber.
  • the test result is sent to the OLT.
  • first and second in the first branch fiber and the second branch fiber are only for distinguishing different branch fibers, and are not limited to a specific branch fiber.
  • the test signal on one branch fiber is transmitted to another branch fiber by setting a passive branch loopback device, and the fault detection of the other branch fiber is performed, and the ONU on the branch fiber may be The detection result on the other branch fiber is sent to the OLT, thereby solving the test failure problem caused by the severe fault of the tested branch fiber, and realizing the reliable detection of the branch fiber fault of the passive optical network.
  • FIG. 7 a flow chart of a second embodiment of a fault detection method for a branch fiber in a passive optical network system according to the present invention is shown.
  • the structure of the passive branch loopback device is similar to that of the passive branch loopback device in the foregoing embodiment shown in FIG. 3.
  • the passive branch loopback device includes a branch unit corresponding to the branch fiber. (The number of branch units can also be greater than the number of branch fibers), one end of the branch unit is connected to its corresponding branch fiber, and the other end Connected to the beam splitter, the branch units are connected to each other to form a loop.
  • the branching unit includes an optical wavelength multiplexing/demultiplexing unit and a unit optical splitter, and one end of the optical wavelength multiplexing/demultiplexing device is connected to the branch optical fiber corresponding to the branching unit through a first communication port of the branching unit One of the other ends is connected to the unit splitter, and the other end of the other end is connected to the optical splitter through a fourth communication port, the at least three branch units sharing one of the optical splitters;
  • the unit splitters of the at least three branch units are connected to each other to form the loop.
  • the first unit splitter of the first branch unit passes through the second communication port of the first branch unit.
  • a third communication port of the third branching unit is connected to the third unit optical splitter of the third branching unit, and passes through a third communication port of the first branching unit and a second communication port of the second branching unit a communication port is connected to the second unit optical splitter of the second branch unit, and the second unit optical splitter is connected to the third communication port of the second branch unit and the second communication port of the third branch unit to The third unit splitter.
  • the fault detection method of the branch fiber may include:
  • Step 701 The optical wavelength multiplexing/demultiplexing unit of the first branching unit receives the service data signal and the test signal sent by the first optical network unit from the first branch optical fiber through the first communication port.
  • Step 702 The optical wavelength multiplexing/demultiplexing unit of the first branching unit demultiplexes the service data signal and the test signal, and sends the service data signal to the optical splitter through the fourth communication port. Transmitting the test signal to the first unit splitter.
  • Step 703 the first unit optical splitter transmits a test signal received from the optical wavelength multiplexing/demultiplexing device connected thereto to the second unit optical splitter through the loop.
  • Step 704 The optical wavelength multiplexing/demultiplexing unit of the second branching unit performs a test signal received from the second unit optical splitter and a service data signal transmitted by the optical splitter received from the fourth communication port. Multiplexing, and transmitting the multiplexed signal to the second branch fiber through the first communication port for detection.
  • the optical wavelength multiplexing/demultiplexing unit of the second branching unit transmits the reflected signal of the test signal to the second unit optical splitter, and the second unit optical splitter transmits the reflected signal of the test signal to the first through the loop Unit splitter.
  • Step 705 The first unit optical splitter receives the reflected signal of the test signal through the loop, and transmits the reflected signal of the test signal to the optical wavelength multiplexing/demultiplexing device of the first branch unit.
  • Step 706 The optical wavelength multiplexing/demultiplexing unit of the first branching unit complexes the received reflected signal of the test signal with the service data signal transmitted by the optical splitter received from the fourth communication port. And transmitting, by the first communication port, the multiplexed signal to the first optical network unit.
  • the first optical network unit detects the second branch fiber obtained according to the reflected signal of the test signal The measurement result is sent to the optical line terminal.
  • the test signal on one branch fiber is transmitted to another branch fiber by setting a passive branch loopback device, and the fault detection of the other branch fiber is performed, and the ONU on the branch fiber may be The detection result on the other branch fiber is sent to the 0LT, thereby solving the test failure problem caused by the severe fault of the tested branch fiber, and realizing the reliable detection of the branch fiber fault of the passive optical network.
  • the passive branch loopback device may further send the test signal on the first branch fiber to the remaining branch fibers except the second branch fiber after step 703 or simultaneously with step 703.
  • the OTDR test of the ONU on a branch fiber can be started, and all the branch fibers under the optical splitter can be detected. It is not necessary to start the OTDR test of the ONUs of all branches. Detection efficiency.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, i.e., may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the technical solution of the present invention is essentially The portion contributing to the prior art or the portion of the technical solution may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for causing a computer device (may be A personal computer, server, or network device, or the like, or a processor, performs all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a Read-Only Memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)

Abstract

一种分支光纤的故障检测方法、装置及系统。其中,无源分支环回器包括至少三个分支单元,其中,第一分支单元,用于当第二分支光纤出现故障时,通过第一通信端口接收第一光网络单元发送的测试信号,将所述测试信号通过所述环路传输至第二分支单元,并通过第二分支单元的第一通信端口传输至第二分支光纤,对所述第二分支光纤进行检测,并将所述测试信号的反射信号通过所述环路传输至所述第一光网络单元,以使所述第一光网络单元将根据所述测试信号的反射信号获得的对所述第二分支光纤的检测结果发送至光线路终端。该无源分支环回器解决了被测分支光纤严重故障时而导致的测试失效问题,实现了对无源光网络分支光纤故障的可靠检测。

Description

分支光纤的故障检测方法、 装置及系统
技术领域 本发明涉及光通信技术领域,尤其涉及一种分支光纤的故障检测方法、装置及系 统。 背景技术
随着宽带网络技术的发展, 无源光网络 (Passive Optical Network, PON) 技术是 目前应用最广泛的光纤到驻地技术之一。
无源光网络是一种点到多点结构的光纤接入技术, 其结构如图 1所示, 包括位于 运营商中心的光线路终端 (0LT, Optical Line Termination), 位于现场的无源光分配 网络(0DN, Optical Distribution Network), 以及位于用户驻地的光网络单元(0NU, Optical Network Unit) (由于 ONU和 ONT所处的网络位置和功能基本相同, 本文中 该 0NU也泛指光网络终端 (ONT, Optical Network Termination) )。 在 ODN中可以 设置一级或多级分光器 (如图 1所示) 来实现 0LT到 0NU之间的光纤连接, 其中, 连接 ONU与紧靠其前的分光器的光纤为分支光纤, 如图 1中 ONU与第二级分光器 (2nd Splitter) 之间的光纤即为分支光纤。
随着无源光网络的大规模安装布放, 对无源光网络的监测、 维护、 故障检测也越 来越重要。 目前无源光网络中, ODN 的故障占主要地位。 光时域反射计 (OTDR, Optical Time Domain Reflectometer) 是目前最广泛采用的用于无源光网络的 ODN监 测及故障诊断的工具。OTDR测试光信号在传播路径上向前传播的同时向后反射回能 反映该传播链路物理特性的反射光信号, OTDR接收从 ODN网络反射回来的光信号, 根据接收到的反射测试光信号, 即可解析出当前 ODN网络中的事件。
目前, 对于大分光比的无源光网络的分支光纤的故障检测, 如图 1所示, 可以在 ONU上添加 OTDR功能模块, 从 ONU端施加 OTDR测试信号分别对各 ONU所在 的分支光纤进行逆向测试, OTDR接收到测试光信号的反射信号, 据此可以判断分支 光纤的故障, 并将该分支光纤的测试结果通过 ONU上传至 OLT。 然而, 该测试方法 当分支光纤出现严重故障时(如: 光纤断纤), ONU无法与 OLT通讯, 则 ONU端的 OTDR测试结果无法上传, 导致 ONU端的 OTDR测试失效。 发明内容
本发明实施例提供一种分支光纤的故障检测方法、装置及系统, 能够解决被测分 支光纤严重故障时, ONU端 OTDR测试失效的问题。
第一方面, 本发明实施例提供了一种无源分支环回器, 所述无源分支环回器包括 至少三个分支单元,任意一个所述分支单元至少包括第一通信端口、第二通信端口和 第三通信端口,所述至少三个分支单元中第一分支单元的第一通信端口通过第一分支 光纤与第一光网络单元连接,第二分支单元的第一通信端口通过第二分支光纤与第二 光网络单元连接,第三分支单元的第一通信端口通过第三分支光纤与第三光网络单元 连接; 所述至少三个分支单元连接形成环路, 其中, 所述第一分支单元的第二通信端 口与所述第三分支单元的第三通信端口通过光纤连接,所述第一分支单元的第三通信 端口与所述第二分支单元的第二通信端口通过光纤连接,所述第二分支单元的第三通 信端口与所述第三分支单元的第二通信端口通过光纤连接;
所述第一分支单元, 用于当所述第二分支光纤出现故障时, 通过第一通信端口接 收所述第一光网络单元发送的测试信号,将所述测试信号通过所述环路传输至所述第 二分支单元, 并通过所述第二分支单元的第一通信端口传输至所述第二分支光纤,对 所述第二分支光纤进行检测,并将所述测试信号的反射信号通过所述环路传输至所述 第一光网络单元,以使所述第一光网络单元将根据所述测试信号的反射信号获得的所 述第二分支光纤的检测结果发送至光线路终端。
结合上述一方面,在第一种可能的实现方式中,当所述第二分支光纤出现故障时, 所述第一分支单元通过所述第一分支单元的第三通信端口与所述第二分支单元的第 二通信端口之间的光纤将所述测试信号传输至所述第二分支单元; 和 /或,
所述第一分支单元通过所述第一分支单元的第二通信端口与所述第三分支单元 的第三通信端口之间的光纤将所述测试信号传输至所述第三分支单元,再通过所述第 三分支单元的第二通信端口与所述第二分支单元的第三通信端口之间的光纤将所述 测试信号传输至所述第二分支单元。
结合上述一方面, 和 /或第一种可能的实现方式, 在第二种可能的实现方式中, 所述至少三个分支单元中的任意一个分支单元均包括光波长复用 /解复用器和单元分 光器, 所述光波长复用 /解复用器的一端通过所述分支单元的第一通信端口与所述分 支单元对应的分支光纤连接, 另一端的一支与所述单元分光器连接, 另一端的另一支 通过第四通信端口与分光器连接, 所述至少三个分支单元共用一个所述分光器; 所述光波长复用 /解复用器, 用于通过所述第一通信端口从与其连接的分支光纤 上接收业务数据信号以及测试信号或测试信号的反射信号,并将所述业务数据信号以 及测试信号或测试信号的反射信号进行解复用,将所述业务数据信号通过所述第四通 信端口发送至所述分光器,将所述测试信号或测试信号的反射信号发送至与其连接的 所述单元分光器;将接收到的与其连接的所述单元分光器传输的测试信号或测试信号 的反射信号与从所述第四通信端口接收到的所述分光器传输的业务数据信号进行复 用, 并通过所述第一通信端口发送至所述与其连接的分支光纤;
所述至少三个分支单元中的单元分光器连接形成所述环路, 其中, 所述第一分支 单元的第一单元分光器通过所述第一分支单元的第二通信端口及所述第三分支单元 的第三通信端口连接至所述第三分支单元的第三单元分光器,并通过所述第一分支单 元的第三通信端口及所述第二分支单元的第二通信端口连接至所述第二分支单元的 第二单元分光器,所述第二单元分光器通过所述第二分支单元的第三通信端口及所述 第三分支单元的第二通信端口连接至所述三单元分光器;
所述第一单元分光器, 用于当所述第二分支光纤出现故障时, 将从与所述第一单 元分光器连接的光波长复用 /解复用器中接收到的测试信号, 通过所述环路传输至所 述第二单元分光器,并将所述测试信号的反射信号通过所述环路传输至所述与所述第 一单元分光器连接的光波长复用 /解复用器。
第二方面, 本发明实施例提供一种无源光网络系统中分支光纤的故障检测方法, 所述无源光网络中设置有无源分支环回器,所述无源分支环回器包括至少三个分支单 元, 任意一个所述分支单元至少包括第一通信端口、 第二通信端口和第三通信端口, 所述至少三个分支单元中第一分支单元的第一通信端口通过第一分支光纤与第一光 网络单元连接,第二分支单元的第一通信端口通过第二分支光纤与第二光网络单元连 接,第三分支单元的第一通信端口通过第三分支光纤与第三光网络单元连接; 所述至 少三个分支单元相互连接形成环路,其中,所述第一分支单元的第二通信端口与所述 第三分支单元的第三通信端口通过光纤连接,所述第一分支单元的第三通信端口与所 述第二分支单元的第二通信端口通过光纤连接,所述第二分支单元的第三通信端口与 所述第三分支单元的第二通信端口通过光纤连接; 所述方法包括:
当所述第二分支光纤出现故障时,所述第一分支单元通过其第一通信端口接收所 述第一光网络单元发送的测试信号;
所述第一分支单元将所述测试信号通过所述环路传输至所述第二分支单元,并通 过所述第二分支单元的第一通信端口传输至所述第二分支光纤,对所述第二分支光纤 进行检测; 所述第一分支单元通过所述环路接收所述测试信号的反射信号,并将所述测试信 号的反射信号通过其第一通信端口传输至所述第一光网络单元,以使所述第一光网络 单元将根据所述测试信号的反射信号获得的所述第二分支光纤的检测结果发送至光 线路终端。
结合上述第二方面, 在第一种可能的实现方式中, 所述第一分支单元将所述测试 信号通过所述环路传输至所述第二分支单元, 包括:
所述第一分支单元通过所述第一分支单元的第三通信端口与所述第二分支单元 的第二通信端口之间的光纤将所述测试信号传输至所述第二分支单元; 和 /或,
所述第一分支单元通过所述第一分支单元的第二通信端口与所述第三分支单元 的第三通信端口之间的光纤将所述测试信号传输至所述第三分支单元,再通过所述第 三分支单元的第二通信端口与所述第二分支单元的第三通信端口之间的光纤将所述 测试信号传输至所述第二分支单元。
结合上述第二方面, 和 /或第一种可能的实现方式, 在第二种可能的实现方式中, 所述至少三个分支单元中的任意一个分支单元均包括光波长复用 /解复用器和单元分 光器, 所述光波长复用 /解复用器的一端通过所述分支单元的第一通信端口与所述分 支单元对应的分支光纤连接, 另一端的一支与所述单元分光器连接, 另一端的另一支 通过第四通信端口与分光器连接, 所述至少三个分支单元共用一个所述分光器; 所述至少三个分支单元中的单元分光器相互连接形成所述环路, 其中, 所述第一 分支单元的第一单元分光器通过所述第一分支单元的第二通信端口及所述第三分支 单元的第三通信端口连接至所述第三分支单元的第三单元分光器,并通过所述第一分 支单元的第三通信端口及所述第二分支单元的第二通信端口连接至所述第二分支单 元的第二单元分光器,所述第二单元分光器通过所述第二分支单元的第三通信端口及 所述第三分支单元的第二通信端口连接至所述第三单元分光器。
结合上述第二方面,和 /或第一种可能的实现方式,和 /或第二种可能的实现方式, 在第三种可能的实现方式中,所述第一分支单元通过其第一通信端口接收所述第一光 网络单元发送的测试信号, 包括:
所述第一分支单元的光波长复用 /解复用器通过所述第一通信端口从所述第一分 支光纤上接收所述第一光网络单元发送的业务数据信号以及测试信号。
结合上述第二方面,和 /或第一种可能的实现方式,和 /或第二种可能的实现方式, 和 /或第三种可能的实现方式, 在第四种可能的实现方式中, 所述第一分支单元将所 述测试信号通过所述环路传输至所述第二分支单元,并通过所述第二分支单元的第一 通信端口传输至所述第二分支光纤, 对所述第二分支光纤进行检测, 包括: 所述第一分支单元的光波长复用 /解复用器将所述业务数据信号以及测试信号进 行解复用,将所述业务数据信号通过所述第四通信端口发送至所述分光器,将所述测 试信号发送至所述第一单元分光器;
所述第一单元分光器将从与其连接的光波长复用 /解复用器中接收到的测试信号 通过所述环路传输至所述第二单元分光器;
所述第二分支单元的光波长复用 /解复用器将接收到的测试信号与从所述第四通 信端口接收到的所述分光器传输的业务数据信号进行复用,并通过所述第一通信端口 将复用后的信号发送至所述第二分支光纤进行检测。
结合上述第二方面,和 /或第一种可能的实现方式,和 /或第二种可能的实现方式, 和 /或第三种可能的实现方式, 和 /或第四种可能的实现方式, 在第五种可能的实现方 式中,所述第一分支单元通过所述环路接收所述测试信号的反射信号, 并将所述测试 信号的反射信号通过其第一通信端口传输至所述第一光网络单元, 包括:
所述第一单元分光器通过所述环路接收所述测试信号的反射信号,并将所述测试 信号的反射信号传输至所述第一分支单元的光波长复用 /解复用器;
所述第一分支单元的光波长复用 /解复用器将接收到的所述测试信号的反射信号 与从所述第四通信端口接收到的所述分光器传输的业务数据信号进行复用,并通过所 述第一通信端口将复用后的信号传输至所述第一光网络单元。
第三方面,一种无源光网络系统中分支光纤的故障检测装置, 包括多个光网络单 元和如第一方面所述的无源分支环回器,其中, 每个所述光网络单元均通过分支光纤 与所述无源分支环回器连接。
结合上述第三方面, 在第一种可能的实现方式中, 所述多个光网络单元中的所述 第一光网络单元,还用于当所述第二分支光纤出现故障时,在接收到所述光线路终端 发送的指令后再将所述第二分支光纤的检测结果发送至所述光线路终端。
结合上述第三方面, 和 /或第一种可能的实现方式, 在第二种可能的实现方式中, 所述多个光网络单元,用于当所述第二分支光纤出现故障时,根据预置的调度算法确 定由所述第一网络单元向所述光线路终端发送所述第二分支光纤的检测结果;
所述第一光网络单元, 还用于在获得所述第二分支光纤的检测结果后, 根据所述 预置的调度算法将所述第二分支光纤的检测结果发送至所述光线路终端。
第四方面, 一种无源光网络系统, 包括光线路终端、 光分配网络和光网络单元, 所述光分配网络中设置有如第一方面所述的无源分支环回器。 本发明实施例中无源分支环回器可以将一条分支光纤上的测试信号传送至另一 条分支光纤上,对该另一条分支光纤进行故障检测, 并可以由前述一条分支光纤上的 0NU将该另一分支光纤上的检测结果发送至 0LT, 从而解决了被测分支光纤严重故 障时而导致的测试失效问题, 实现了对无源光网络分支光纤故障的可靠检测。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现 有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅 是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前 提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术中多级分光的无源光网络示意图;
图 2为本发明一种无源分支环回器的第一实施例框图;
图 3为本发明一种无源分支环回器的第二实施例框图;
图 4为本发明一种无源分支环回器的第三实施例框图;
图 5 为本发明实施例一种无源光网络系统中分支光纤的故障检测装置的结构示 意图;
图 6 为本发明一种无源光网络系统中分支光纤的故障检测方法的第一实施例流 程图;
图 7 为本发明一种无源光网络系统中分支光纤的故障检测方法的第二实施例流 程图。 具体实施方式 本发明实施例提出一种分支光纤的故障检测方法、装置及系统,通过在分光器和 多条分支光纤之间设置无源分支环回器,使该无源分支环回器可以将一条分支光纤上 的测试信号传送至另一条分支光纤上,对该另一条分支光纤进行故障检测, 并可以由 前述一条分支光纤上的 ONU将该另一分支光纤上的检测结果发送至 OLT, 从而解决 了被测分支光纤严重故障时而导致的测试失效问题,实现了对无源光网络分支光纤故 障的可靠检测。
为了使本技术领域的人员更好地理解本发明实施例中的技术方案,并使本发明实 施例的上述目的、特征和优点能够更加明显易懂, 下面结合附图对本发明实施例中技 术方案作进一步详细的说明。 参见图 2, 为本发明一种无源分支环回器的第一实施例框图。
本实施例中,无源分支环回器 21可以与分光器 22下的所有分支光纤连接, 也可 以只与其中的部分分支光纤连接, 各分支光纤的另一端与 ONU连接, 本发明实施例 中,该 ONU泛指光网络单元和光网络终端, ONU侧可设置有 OTDR模块,该 OTDR 模块可以设置在 ONU的内部, 也可以设置在 ONU的外部, ONU上的 OTDR模块发 送测试信号对其所在分支光纤或通过无源分支环回器 21对其他分支光纤进行故障检 测。本实施例中, 无源分支环回器 21可以通过通信端口与分光器 22连接, 在另一实 施例中, 无源分支环回器 21也可以不与分光器 22连接, 分光器 22直接与分支光纤 连接。
该无源分支环回器 21包括至少三个分支单元, 任意一个分支单元至少包括第一 通信端口、第二通信端口和第三通信端口, 以三个分支单元为例, 该三个分支单元中 第一分支单元 221的第一通信端口通过第一分支光纤 231与第一 ONU241连接, 第 二分支单元 222的第一通信端口通过第二分支光纤 232与第二 ONU242连接, 第三 分支单元 223的第一通信端口通过第三分支光纤 233与第三 ONU243连接; 该至少 三个分支单元相互连接形成环路,其中,第一分支单元 221的第二通信端口与第三分 支单元 223的第三通信端口通过光纤连接,第一分支单元 221的第三通信端口与第二 分支单元 222的第二通信端口通过光纤连接,第二分支单元 222的第三通信端口与第 三分支单元 223的第二通信端口通过光纤连接; 以此类推, 若无源分支环回器 21包 括四个分支单元,则该四个分支单元通过各自的第二通信端口和第三通信端口相互连 接形成环路,例如第一分支单元的第二通信端口与第四分支单元的第三通信端口通过 光纤连接,第一分支单元的第三通信端口与第二分支单元的第二通信端口通过光纤连 接,第二分支单元的第三通信端口与第三分支单元的第二通信端口通过光纤连接,第 三分支单元的第三通信端口与第四分支单元的第二通信端口通过光纤连接,对于包含 多个分支单元的, 多个分支单元之间均可以按照类似上述连接方式相互连接形成环 路。
当第二分支光纤 232出现故障时,第一分支单元 221用于通过第一通信端口接收 第一 ONU241发送的测试信号, 将测试信号通过上述环路传输至第二分支单元 222, 并通过第二分支单元 222的第一通信端口传输至第二分支光纤 232, 对第二分支光纤 232进行检测, 测试信号在沿路径向前传输的过程中会同时向后也即路径的逆方向反 射测试信号, 该信号记为测试信号的反射信号,第二分支单元 222将测试信号的反射 信号按照上述环路传输至第一分支单元 221, 第一分支单元 221将该测试信号的反射 信号通过上述环路传输至第一 ONU241 ,以使第一 ONU241将根据该测试信号的反射 信号获得的对第二分支光纤 232的检测结果发送至光线路终端。其中,该第一 ONU241 上的 OTDR模块在接收到测试信号的反射信号后, 根据该反射信号获得对第二分支 光纤 232的检测结果, 并进一步由该第一 ONU241将该对第二分支光纤 232的检测 结果发送至 OLT。
这样, 即使第二分支光纤 232上出现断纤等严重故障时, 也可以将第二分支光纤 232的检测结果上传至 OLT, 实现对第二分支光纤 232测试的有效性。
其中, 上述第一分支单元 221在通过环路向第二分支单元 222传输测试信号时, 若以上述三个分支单元为例,可以是第一分支单元 221通过第一分支单元 221的第三 通信端口与第二分支单元 222的第二通信端口将测试信号传输至第二分支单元 222; 和 /或,
第一分支单元 221 通过第一分支单元 221 的第二通信端口与第三分支单元 223 的第三通信端口将测试信号传输至第三分支单元 223, 再通过第三分支单元 223的第 二通信端口与第二分支单元 222 的第三通信端口将测试信号传输至第二分支单元 222。
上述第一分支光纤和第二分支光纤中的 "第一"、 "第二"仅为区分不同的分支光 纤, 并非限定具体某一分支光纤,无论哪一分支光纤出现故障均可以由其他光纤上的 分支单元将测试信号传输至故障光纤上, 对故障光纤进行检测。 该无源分支环回器 21可以设置在分光器 22的内部, 也可以独立设置。
另外, 该第二分支光纤也可以有多条, 也即无源分支环回器 21可以将第一分支 光纤上的测试信号同时或先后传送至除第一分支光纤之外的多条分支光纤上,对多条 分支光纤进行故障检测,最后也可以由该第一分支光纤上的 ONU侧的 OTDR模块获 得该多条分支光纤的检测结果, 并由该第一分支光纤上的 ONU将多条分支光纤的检 测结果发送至 OLT。
本发明实施例中无源分支环回器可以将一条分支光纤上的测试信号传送至另一 条分支光纤上,对该另一条分支光纤进行故障检测, 并可以由前述一条分支光纤上的 ONU将该另一分支光纤上的检测结果发送至 OLT, 从而解决了被测分支光纤严重故 障时而导致的测试失效问题, 实现了对无源光网络分支光纤故障的可靠检测。
参见图 3, 为本发明一种无源分支环回器的第二实施例框图。
本实施例中, 该无源分支环回器包括与分支光纤一一对应的分支单元, 每个分支 单元的结构均相同, 分支单元一端与其对应的分支光纤连接, 另一端与分光器 30连 接, 多个分支单元共用一个分光器 30, 分支单元之间相互连接形成环路; 该无源分 支环回器通过分支单元之间的环路在分支光纤之间传送测试信号及测试信号的反射 信号。 另外, 分支单元的数量也可以大于分支光纤的数量, 除与分支光纤一一对应的 分支单元外, 其它分支单元可以作为备用。
每个分支单元的结构均相同, 以其中的分支单元 31为例进行说明, 分支单元 31 进一步包括光波长复用 /解复用器 311及单元分光器 312。
其中, 光波长复用 /解复用器 311的一端通过分支单元 31的第一通信端口与分支 单元 31对应的分支光纤连接, 另一端的一支与单元分光器 312连接, 另一端的另一 支通过第四通信端口与分光器 30连接。
各分支单元的光波长复用 /解复用器相同, 该光波长复用 /解复用器用于通过第一 通信端口从与其连接的分支光纤上接收业务数据信号以及测试信号(测试信号的反射 信号), 并将该业务数据信号以及测试信号 (测试信号的反射信号) 进行解复用, 将 业务数据信号通过第四通信端口发送至分光器 30, 将测试信号 (测试信号的反射信 号)发送至与其连接的单元分光器; 将接收到的与其连接的单元分光器传输的测试信 号 (测试信号的反射信号) 与从第四通信端口接收到的分光器 30传输的业务数据信 号进行复用, 并通过第一通信端口发送至与其连接的分支光纤。
各分支单元中的单元分光器相互连接形成环路, 以三个分支单元为例, 第一分支 单元的第一单元分光器通过第一分支单元的第二通信端口及第三分支单元的第三通 信端口连接至第三分支单元的第三单元分光器,并通过第一分支单元的第三通信端口 及第二分支单元的第二通信端口连接至第二分支单元的第二单元分光器,第二单元分 光器通过第二分支单元的第三通信端口及第三分支单元的第二通信端口连接至第三 单元分光器。
当第二分支光纤出现故障时, 第一单元分光器将从与其连接的光波长复用 /解复 用器中接收到的测试信号,通过环路传输至第二单元分光器, 并将测试信号的反射信 号通过环路传输至与其连接的光波长复用 /解复用器。 上述第一单元分光器的执行动 作也可以由第三单元分光器完成, 此处并不限定具体由哪个单元分光器来执行。
本实施例中, 单元分光器的一侧具有第二通信端口和第三通信端口, 另一侧与光 波长复用 /解复用器连接, 单元分光器两侧的输入输出比为 1 :2, 在其它实施例中, 该 单元分光器两侧的输入输出比还可以为 1 : 3等, 各单元分光器之间也可以以其它方 式相互连接,只要能实现测试信号及其反射信号可以由一条分支光纤传送至另一条分 支光纤即可。 如图 4所示, 为一种无源分支环回器的第三实施例框图。
该无源分支环回器包括 N个分支单元, N为正整数, 其中, 分支单元 401 的第 一通信端口通过分支光纤 40与 ONU402连接, 分支单元 411的第一通信端口通过分 支光纤 41与 ONU412连接,分支单元 421的第一通信端口通过分支光纤 42与 ONU422 连接,分支单元 431的第一通信端口通过分支光纤 43与 ONU432连接,分支单元 441 的第一通信端口通过分支光纤 44与 ONU442连接。
假设分支光纤 41 出现如断纤等严重故障而检测失效, 或者 ONU412侧不具有 OTDR模块而无法进行故障检测时, 可以由另一分支光纤, 例如分支光纤 42 上的 ONU422 的 OTDR模块发出测试信号, 该测试信号经分支光纤 42传输至分支单元 421, 首先分支单元 421 中的光波长复用 /解复用器 4211将该测试信号发送至单元分 光器 4212, 单元分光器 4212通过与分支光纤 41上的单元分光器 4112之间的连接关 系将测试信号发送至单元分光器 4112, 单元分光器 4112将测试信号发送至其所在的 分支单元 411 中的光波长复用 /解复用器 4111, 并由光波长复用 /解复用器 4111 向分 支光纤 41发送测试信号, 对该分支光纤 41进行检测, 同时, 该测试信号的反射信号 通过上述路径的逆路径,最终返回至分支光纤 42的 ONU侧的 OTDR模块,由该 OTDR 模块根据该反射信号获得分支光纤 41的检测结果, 该检测结果具体可以是分支光纤 41的故障位置信息等, 在获得检测结果后, 由该分支光纤 42连接的 ONU422通过其 业务数据传输线路传输至 OLT。
其中, 由于各单元分光器之间相互连接形成环路, 在上述单元分光器 4212通过 与分支光纤 41 上的单元分光器 4112之间的连接关系将测试信号发送至单元分光器 4112的过程中, 该测试信号的传输路径可以是由单元分光器 4212直接沿与单元分光 器 4112相连接的光纤发送至单元分光器 4112, 也可以是由单元分光器 4212首先传 输至单元分光器 4312, 由单元分光器 4312传输至单元分光器 4412, 再由单元分光器 4412传输至单元分光器 4012, 最终由单元分光器 4012传输至单元分光器 4112。 上 述两种路径单元分光器 4212可以择其一发送测试信号, 也可以同时沿两条路径发送 测试信号, 只是测试信号传输至单元分光器 4112的时间不同, 信号强度也不同, 同 理, 对于 ONU422来说, 接收到测试信号的反射信号的时间不同, 信号强度也不同, 但是反射信号所反映的分支光纤 41的故障信息相同, ONU422可以选择信号强度大 的反射信号进行分析, 形成对分支光纤 41的检测结果。
另外, 对分支光纤 41的故障检测以及检测结果的传输还可以是由其他分支光纤 的 ONU及 OTDR模块完成的,只要是该其它光纤上的分支单元的单元分光器与该分 支光纤 41上的单元分光器是连通的, 可以实现测试信号及其反射信号的传送即可, 例如图 4中, 分支光纤 44上的 ONU侧的 OTDR模块发出测试信号, 依次经过光波 长复用 /解复用器 4411、 单元分光器 4412传送至分支光纤 43的单元分光器 4312, 然 后经过光波长复用 /解复用器 4311传送至分支光纤 43, 在 ONU侧反射后再依次经过 光波长复用 /解复用器 4311、单元分光器 4312传送至分支光纤 41的单元分光器 4112, 经光波长复用 /解复用器 4111后传送至分支光纤 41, 对该分支光纤 41进行检测, 同 时,该测试信号的反射信号同样按照上述路径的逆路径最终返回分支光纤 44的 ONU 侧, 在 OTDR模块获得检测结果后, 由该分支光纤 44的 ONU通过其业务数据传输 线路传输至 OLT。
其中,对于发出测试信号和发送检测结果的动作具体可以是由 OLT指定 ONU执 行的, 也可以是 ONU根据一定的调度算法执行的, 还可以是由所有 ONU参与循环 执行的等, 具体方式不做限定。 在启动上述检测时, 可以是由 ONU及 OTDR模块对 其中一分支光纤进行检测,也可以是在一次启动中,由一分支光纤上的 ONU及 OTDR 模块对其所在分光器下所有分支光纤进行检测, 具体方式不做限定。
本发明实施例中无源分支环回器可以将一条分支光纤上的测试信号传送至另一 条分支光纤上,对该另一条分支光纤进行故障检测, 并可以由前述一条分支光纤上的 ONU将该另一分支光纤上的检测结果发送至 OLT, 从而解决了被测分支光纤严重故 障时而导致的测试失效问题, 实现了对无源光网络系统中分支光纤故障的可靠检测。
而且, 在进行故障检测时, 可以启动一条分支光纤上的 ONU的 OTDR测试, 对 其所在分光器下的所有分支光纤进行检测, 这样无需启动所有分支的 ONU 端的 OTDR测试, 可以提高检测效率。
参见图 5, 为本发明实施例一种无源光网络系统中分支光纤的故障检测装置的结 构示意图。
该装置可以包括多个 ONU51和如前述实施例中的无源分支环回器 52, 其中, 每 个 ONU51均通过分支光纤与无源分支环回器 52连接。
该无源分支环回器 52的具体结构与前述实施例相同, 此处不再赘述。
其中, 多个 ONU中的第一 ONU, 还用于当所述第二分支光纤出现故障时, 在接 收到光线路终端发送的指令后再将第二分支光纤的检测结果发送至光线路终端。 其 中,当第二分支光纤出现故障时,在 ONU51向 OLT发送第二分支光纤的检测结果时, 可以有以下几种方式:
方式一、 除第二分支光纤上的 ONU之外的所有的 ONU均发出测试信号对第二 分支光纤进行故障检测,所述所有的 ONU均获得检测结果,然后由 OLT指定其中的 第一 ONU发送检测结果。
方式二、直接由 OLT指定第一 ONU发出测试信号对第二分支光纤进行故障检测, 并形成检测结果发送至 OLT, 其它 ONU不发出测试信号。
另一实施例中, 该多个 ONU还可以根据预置的调度算法确定由第一网络单元向 光线路终端发送所述第二分支光纤的检测结果。 该第一 ONU, 还用于在获得所述第 二分支光纤的检测结果后,根据所述预置的调度算法将所述第二分支光纤的检测结果 发送至所述光线路终端。
上述第一 ONU可以是多个 ONU中的任意一个 (除故障光纤上的 O ;)。
本发明实施例还提供了一种无源光网络系统,请参见图 3该无源光网络系统至少 包括光线路终端 OLT和光网络单元 ONU, 所述 OLT与各 ONU通过光分配网进行连 接, 其中, 该光分配网络中设置有如前述实施例中所述的无源分支环回器 31。 该无 源分支环回器 31的具体结构与前述实施例相同, 此处不再赘述。 另外, 所述光分配 网还可以包括: 分光器 30, 该分光器 30用于将 OLT发送的光信号通过分光器 30后 分成功率相同的多路光信号分别通过无源分支环回器 31发送给对端的 O ;。
以上是对本发明装置实施例的介绍,下面对应用上述装置进行故障检测的方法进 行描述。
参见图 6, 为本发明一种无源光网络系统中分支光纤的故障检测方法的第一实施 例流程图。
该无源光网络系统中设置有无源分支环回器,该无源分支环回器的结构与前述实 施例相同, 也可以包括至少三个分支单元,任意一个所述分支单元至少包括第一通信 端口、第二通信端口和第三通信端口,所述至少三个分支单元中第一分支单元的第一 通信端口通过第一分支光纤与第一 ONU连接, 第二分支单元的第一通信端口通过第 二分支光纤与第二 ONU连接, 第三分支单元的第一通信端口通过第三分支光纤与第 三 ONU连接; 所述至少三个分支单元相互连接形成环路, 其中, 所述第一分支单元 的第二通信端口与所述第三分支单元的第三通信端口通过光纤连接,所述第一分支单 元的第三通信端口与所述第二分支单元的第二通信端口通过光纤连接,所述第二分支 单元的第三通信端口与所述第三分支单元的第二通信端口通过光纤连接。
该方法可以包括:
步骤 601, 当第二分支光纤出现故障时, 第一分支单元通过其第一通信端口接收 第一 ONU发送的测试信号。 步骤 602, 第一分支单元将测试信号通过环路传输至第二分支单元, 并通过第二 分支单元的第一通信端口传输至第二分支光纤, 对第二分支光纤进行检测。
其中, 第一分支单元将所述测试信号通过所述环路传输至所述第二分支单元包 括:
第一分支单元通过所述第一分支单元的第三通信端口与所述第二分支单元的第 二通信端口将所述测试信号传输至所述第二分支单元; 和 /或,
所述第一分支单元通过所述第一分支单元的第二通信端口与所述第三分支单元 的第三通信端口将所述测试信号传输至所述第三分支单元,再通过所述第三分支单元 的第二通信端口与所述第二分支单元的第三通信端口将所述测试信号传输至所述第 二分支单元。
步骤 603, 第一分支单元通过环路接收测试信号的反射信号, 并将测试信号的反 射信号通过其第一通信端口传输至所述第一 ONU,以使第一 ONU将根据所述测试信 号的反射信号获得的对第二分支光纤的检测结果发送至 OLT。
在其它实施例中, 该第二分支光纤也可以有多条, 也即无源分支环回器将多条分 支光纤中第一分支光纤上的测试信号传送至多条分支光纤中的第二分支光纤之前,或 同时, 或之后,无源分支环回器还可以将多条分支光纤中第一分支光纤上的测试信号 传送至多条分支光纤中除第一分支光纤之外的其余分支光纤,以对多条分支光纤进行 故障检测,最后也可以由该第一分支光纤上的 ONU侧的 OTDR模块获得该多条分支 光纤的检测结果, 并由该第一分支光纤上的 ONU将多条分支光纤的检测结果发送至 OLT。
上述第一分支光纤和第二分支光纤中的 "第一"、 "第二"仅为区分不同的分支光 纤, 并非限定具体某一分支光纤。
本发明实施例中通过设置无源分支环回器将一条分支光纤上的测试信号传送至 另一条分支光纤上,对该另一条分支光纤进行故障检测, 并可以由前述一条分支光纤 上的 ONU将该另一分支光纤上的检测结果发送至 OLT, 从而解决了被测分支光纤严 重故障时而导致的测试失效问题, 实现了对无源光网络分支光纤故障的可靠检测。
参见图 7, 为本发明一种无源光网络系统中分支光纤的故障检测方法的第二实施 例流程图。
本实施例中,无源分支环回器的结构与前述图 3所示实施例中的无源分支环回器 的结构类似, 该无源分支环回器包括与分支光纤一一对应的分支单元(该分支单元的 数量还可以大于分支光纤的数量), 分支单元一端与其对应的分支光纤连接, 另一端 与分光器连接, 分支单元之间相互连接形成环路。
分支单元包括光波长复用 /解复用器和单元分光器, 所述光波长复用 /解复用器的 一端通过所述分支单元的第一通信端口与所述分支单元对应的分支光纤连接,另一端 的一支与所述单元分光器连接, 另一端的另一支通过第四通信端口与分光器连接,所 述至少三个分支单元共用一个所述分光器;
所述至少三个分支单元中的单元分光器相互连接形成所述环路,以三个分支单元 为例,第一分支单元的第一单元分光器通过所述第一分支单元的第二通信端口及所述 第三分支单元的第三通信端口连接至所述第三分支单元的第三单元分光器,并通过所 述第一分支单元的第三通信端口及所述第二分支单元的第二通信端口连接至所述第 二分支单元的第二单元分光器,所述第二单元分光器通过所述第二分支单元的第三通 信端口及所述第三分支单元的第二通信端口连接至所述第三单元分光器。
该分支光纤的故障检测方法可以包括:
步骤 701,第一分支单元的光波长复用 /解复用器通过第一通信端口从第一分支光 纤上接收第一光网络单元发送的业务数据信号以及测试信号。
步骤 702,第一分支单元的光波长复用 /解复用器将所述业务数据信号以及测试信 号进行解复用,将所述业务数据信号通过所述第四通信端口发送至所述分光器,将所 述测试信号发送至所述第一单元分光器。
步骤 703,第一单元分光器将从与其连接的光波长复用 /解复用器中接收到的测试 信号通过所述环路传输至所述第二单元分光器。
步骤 704,第二分支单元的光波长复用 /解复用器将从第二单元分光器接收到的测 试信号与从所述第四通信端口接收到的所述分光器传输的业务数据信号进行复用,并 通过所述第一通信端口将复用后的信号发送至所述第二分支光纤进行检测。
第二分支单元的光波长复用 /解复用器将该测试信号的反射信号传输至第二单元 分光器,由第二单元分光器通过所述环路将测试信号的反射信号传输至第一单元分光 器。
步骤 705, 第一单元分光器通过所述环路接收所述测试信号的反射信号, 并将所 述测试信号的反射信号传输至所述第一分支单元的光波长复用 /解复用器。
步骤 706,第一分支单元的光波长复用 /解复用器将接收到的所述测试信号的反射 信号与从所述第四通信端口接收到的所述分光器传输的业务数据信号进行复用,并通 过所述第一通信端口将复用后的信号传输至所述第一光网络单元。
第一光网络单元将根据所述测试信号的反射信号获得的所述第二分支光纤的检 测结果发送至光线路终端。
本发明实施例中通过设置无源分支环回器将一条分支光纤上的测试信号传送至 另一条分支光纤上,对该另一条分支光纤进行故障检测, 并可以由前述一条分支光纤 上的 ONU将该另一分支光纤上的检测结果发送至 0LT, 从而解决了被测分支光纤严 重故障时而导致的测试失效问题, 实现了对无源光网络分支光纤故障的可靠检测。
在另一实施例中, 该无源分支环回器还可以在步骤 703之后, 或与步骤 703同时 将该第一分支光纤上的测试信号发送至除第二分支光纤之外的其余分支光纤上,以同 时或先后对其余分支光纤进行检测, 这样可以启动一条分支光纤上的 ONU的 OTDR 测试, 对其所在分光器下的所有分支光纤进行检测, 无需启动所有分支的 ONU端的 OTDR测试, 可以提高检测效率。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单 元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结合来实现。这些功 能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专 业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实 现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、 装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和方法, 可 以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示意性的, 例如, 所 述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另外的划分方式, 例如 多个单元或组件可以结合或者可以集成到另一个系统, 或一些特征可以忽略, 或不执 行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些 接口, 装置或单元的间接耦合或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显 示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到 多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例 方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以 是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以 存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或 者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现 出来, 该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机 设备 (可以是个人计算机, 服务器, 或者网络设备等) 或处理器 (processor)执行本 发明各个实施例所述方法的全部或部分步骤。 而前述的存储介质包括: U盘、移动硬 盘、只读存储器(ROM, Read-Only Memory ) 随机存取存储器(RAM, Random Access Memory), 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限于此, 任 何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保 护范围为准。

Claims

权 利 要 求
1、 一种无源分支环回器, 其特征在于, 所述无源分支环回器包括至少三个 分支单元, 任意一个所述分支单元至少包括第一通信端口、第二通信端口和第三 通信端口,所述至少三个分支单元中第一分支单元的第一通信端口通过第一分支 光纤与第一光网络单元连接,第二分支单元的第一通信端口通过第二分支光纤与 第二光网络单元连接,第三分支单元的第一通信端口通过第三分支光纤与第三光 网络单元连接; 所述至少三个分支单元连接形成环路, 其中, 所述第一分支单元 的第二通信端口与所述第三分支单元的第三通信端口通过光纤连接,所述第一分 支单元的第三通信端口与所述第二分支单元的第二通信端口通过光纤连接,所述 第二分支单元的第三通信端口与所述第三分支单元的第二通信端口通过光纤连 接;
所述第一分支单元, 用于当所述第二分支光纤出现故障时, 通过第一通信端 口接收所述第一光网络单元发送的测试信号,将所述测试信号通过所述环路传输 至所述第二分支单元,并通过所述第二分支单元的第一通信端口传输至所述第二 分支光纤, 对所述第二分支光纤进行检测, 并将所述测试信号的反射信号通过所 述环路传输至所述第一光网络单元,以使所述第一光网络单元将根据所述测试信 号的反射信号获得的所述第二分支光纤的检测结果发送至光线路终端。
2、 根据权利要求 1所述的无源分支环回器, 其特征在于, 当所述第二分支 光纤出现故障时,所述第一分支单元通过所述第一分支单元的第三通信端口与所 述第二分支单元的第二通信端口之间的光纤将所述测试信号传输至所述第二分 支单元; 和 /或,
所述第一分支单元通过所述第一分支单元的第二通信端口与所述第三分支 单元的第三通信端口之间的光纤将所述测试信号传输至所述第三分支单元,再通 过所述第三分支单元的第二通信端口与所述第二分支单元的第三通信端口之间 的光纤将所述测试信号传输至所述第二分支单元。
3、 根据权利要求 1或 2所述的无源分支环回器, 其特征在于, 所述至少三 个分支单元中的任意一个分支单元均包括光波长复用 /解复用器和单元分光器, 所述光波长复用 /解复用器的一端通过所述分支单元的第一通信端口与所述分支 单元对应的分支光纤连接, 另一端的一支与所述单元分光器连接, 另一端的另一 支通过第四通信端口与分光器连接, 所述至少三个分支单元共用一个所述分光 器;
所述光波长复用 /解复用器, 用于通过所述第一通信端口从与其连接的分支 光纤上接收业务数据信号以及测试信号或测试信号的反射信号,并将所述业务数 据信号以及测试信号或测试信号的反射信号进行解复用,将所述业务数据信号通 过所述第四通信端口发送至所述分光器,将所述测试信号或测试信号的反射信号 发送至与其连接的单元分光器;将接收到的与其连接的单元分光器传输的测试信 号或测试信号的反射信号与从所述第四通信端口接收到的所述分光器传输的业 务数据信号进行复用, 并通过所述第一通信端口发送至所述与其连接的分支光 纤;
所述至少三个分支单元中的单元分光器连接形成所述环路, 其中, 所述第一 分支单元的第一单元分光器通过所述第一分支单元的第二通信端口及所述第三 分支单元的第三通信端口连接至所述第三分支单元的第三单元分光器,并通过所 述第一分支单元的第三通信端口及所述第二分支单元的第二通信端口连接至所 述第二分支单元的第二单元分光器,所述第二单元分光器通过所述第二分支单元 的第三通信端口及所述第三分支单元的第二通信端口连接至所述第三单元分光 器;
所述第一单元分光器, 用于当所述第二分支光纤出现故障时, 将从与所述第 一单元分光器连接的光波长复用 /解复用器中接收到的测试信号, 通过所述环路 传输至所述第二单元分光器,并将所述测试信号的反射信号通过所述环路传输至 所述与所述第一单元分光器连接的光波长复用 /解复用器。
4、 一种无源光网络系统中分支光纤的故障检测方法, 其特征在于, 所述无 源光网络中设置有无源分支环回器, 所述无源分支环回器包括至少三个分支单 元, 任意一个所述分支单元至少包括第一通信端口、第二通信端口和第三通信端 口,所述至少三个分支单元中第一分支单元的第一通信端口通过第一分支光纤与 第一光网络单元连接,第二分支单元的第一通信端口通过第二分支光纤与第二光 网络单元连接,第三分支单元的第一通信端口通过第三分支光纤与第三光网络单 元连接; 所述至少三个分支单元连接形成环路, 其中, 所述第一分支单元的第二 通信端口与所述第三分支单元的第三通信端口通过光纤连接,所述第一分支单元 的第三通信端口与所述第二分支单元的第二通信端口通过光纤连接,所述第二分 支单元的第三通信端口与所述第三分支单元的第二通信端口通过光纤连接;所述 方法包括:
当所述第二分支光纤出现故障时,所述第一分支单元通过其第一通信端口接 收所述第一光网络单元发送的测试信号;
所述第一分支单元将所述测试信号通过所述环路传输至所述第二分支单元, 并通过所述第二分支单元的第一通信端口传输至所述第二分支光纤,对所述第二 分支光纤进行检测;
所述第一分支单元通过所述环路接收所述测试信号的反射信号,并将所述测 试信号的反射信号通过其第一通信端口传输至所述第一光网络单元,以使所述第 一光网络单元将根据所述测试信号的反射信号获得的所述第二分支光纤的检测 结果发送至光线路终端。
5、 根据权利要求 4所述的方法, 其特征在于, 所述第一分支单元将所述测 试信号通过所述环路传输至所述第二分支单元, 包括:
所述第一分支单元通过所述第一分支单元的第三通信端口与所述第二分支 单元的第二通信端口之间的光纤将所述测试信号传输至所述第二分支单元; 和 / 或,
所述第一分支单元通过所述第一分支单元的第二通信端口与所述第三分支 单元的第三通信端口之间的光纤将所述测试信号传输至所述第三分支单元,再通 过所述第三分支单元的第二通信端口与所述第二分支单元的第三通信端口之间 的光纤将所述测试信号传输至所述第二分支单元。
6、 根据权利要求 4或 5所述的方法, 其特征在于, 所述至少三个分支单元 中的任意一个分支单元均包括光波长复用 /解复用器和单元分光器, 所述光波长 复用 /解复用器的一端通过所述分支单元的第一通信端口与所述分支单元对应的 分支光纤连接, 另一端的一支与所述单元分光器连接, 另一端的另一支通过第四 通信端口与分光器连接, 所述至少三个分支单元共用一个所述分光器;
所述至少三个分支单元中的单元分光器连接形成所述环路, 其中, 所述第一 分支单元的第一单元分光器通过所述第一分支单元的第二通信端口及所述第三 分支单元的第三通信端口连接至所述第三分支单元的第三单元分光器,并通过所 述第一分支单元的第三通信端口及所述第二分支单元的第二通信端口连接至所 述第二分支单元的第二单元分光器,所述第二单元分光器通过所述第二分支单元 的第三通信端口及所述第三分支单元的第二通信端口连接至所述第三单元分光 器。
7、 根据权利要求 6所述的方法, 其特征在于, 所述第一分支单元通过其第 一通信端口接收所述第一光网络单元发送的测试信号, 包括:
所述第一分支单元的光波长复用 /解复用器通过所述第一通信端口从所述第 一分支光纤上接收所述第一光网络单元发送的业务数据信号以及测试信号。
8、 根据权利要求 6所述的方法, 其特征在于, 所述第一分支单元将所述测 试信号通过所述环路传输至所述第二分支单元,并通过所述第二分支单元的第一 通信端口传输至所述第二分支光纤, 对所述第二分支光纤进行检测, 包括: 所述第一分支单元的光波长复用 /解复用器将所述业务数据信号以及测试信 号进行解复用, 将所述业务数据信号通过所述第四通信端口发送至所述分光器, 将所述测试信号发送至所述第一单元分光器;
所述第一单元分光器将从与其连接的光波长复用 /解复用器中接收到的测试 信号通过所述环路传输至所述第二单元分光器;
所述第二分支单元的光波长复用 /解复用器将接收到的测试信号与从所述第 四通信端口接收到的所述分光器传输的业务数据信号进行复用,并通过所述第一 通信端口将复用后的信号发送至所述第二分支光纤进行检测。
9、 根据权利要求 6所述的方法, 其特征在于, 所述第一分支单元通过所述 环路接收所述测试信号的反射信号,并将所述测试信号的反射信号通过其第一通 信端口传输至所述第一光网络单元, 包括:
所述第一单元分光器通过所述环路接收所述测试信号的反射信号,并将所述 测试信号的反射信号传输至所述第一分支单元的光波长复用 /解复用器;
所述第一分支单元的光波长复用 /解复用器将接收到的所述测试信号的反射 信号与从所述第四通信端口接收到的所述分光器传输的业务数据信号进行复用, 并通过所述第一通信端口将复用后的信号传输至所述第一光网络单元。
10、 一种无源光网络系统中分支光纤的故障检测装置, 其特征在于, 包括多 个光网络单元和如权利要求 1至 3中任意一项的无源分支环回器, 其中, 每个所 述光网络单元均通过分支光纤与所述无源分支环回器连接。
11、 根据权利要求 10所述的装置, 其特征在于,
所述多个光网络单元中的所述第一光网络单元,还用于当所述第二分支光纤 出现故障时,在接收到所述光线路终端发送的指令后再将所述第二分支光纤的检 测结果发送至所述光线路终端。
12、 根据权利要求 11所述的装置, 其特征在于,
所述多个光网络单元, 用于当所述第二分支光纤出现故障时, 根据预置的调 度算法确定由所述第一网络单元向所述光线路终端发送所述第二分支光纤的检 测结果;
所述第一光网络单元, 还用于在获得所述第二分支光纤的检测结果后, 根据 所述预置的调度算法将所述第二分支光纤的检测结果发送至所述光线路终端。
13、 一种无源光网络系统, 其特征在于, 包括光线路终端、 光分配网络和光 网络单元,所述光分配网络中设置有如权利要求 1至 3中任意一项所述的无源分 支环回器。
PCT/CN2012/083841 2012-10-31 2012-10-31 分支光纤的故障检测方法、装置及系统 WO2014067094A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280001526.0A CN103222206B (zh) 2012-10-31 2012-10-31 分支光纤的故障检测方法、装置及系统
PCT/CN2012/083841 WO2014067094A1 (zh) 2012-10-31 2012-10-31 分支光纤的故障检测方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/083841 WO2014067094A1 (zh) 2012-10-31 2012-10-31 分支光纤的故障检测方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2014067094A1 true WO2014067094A1 (zh) 2014-05-08

Family

ID=48818193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/083841 WO2014067094A1 (zh) 2012-10-31 2012-10-31 分支光纤的故障检测方法、装置及系统

Country Status (2)

Country Link
CN (1) CN103222206B (zh)
WO (1) WO2014067094A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104955089B (zh) * 2014-03-31 2019-02-05 中国移动通信集团公司 一种无线接入网、信号发送方法及接收方法
CN103957052A (zh) * 2014-05-12 2014-07-30 华为技术有限公司 光纤故障定位方法、光模块及光纤网络单元
CN105610495A (zh) * 2015-12-16 2016-05-25 国网福建省电力有限公司 一种在运电力光缆的监测系统
CN108270480B (zh) * 2018-01-23 2020-08-21 太原理工大学 利用通信信号自身实现光网络中的多支路故障检测方法及装置
JP7259431B2 (ja) * 2019-03-15 2023-04-18 富士通オプティカルコンポーネンツ株式会社 光デバイス、これを用いた光モジュール、及び光デバイスの試験方法
CN115133982A (zh) * 2021-03-26 2022-09-30 华为技术有限公司 分光装置、分光系统、无源光网络和光纤故障检测方法
WO2023073914A1 (ja) * 2021-10-29 2023-05-04 日本電気株式会社 光ファイバセンシングシステム、光ファイバセンシング機器、及び光ファイバセンシング方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5570217A (en) * 1993-11-04 1996-10-29 Koninklijke Ptt Nederland N.V. Positionally independent application of an OTDR technique based on correlation in a branched optical fibre network during operation
CN101043272A (zh) * 2006-06-08 2007-09-26 华为技术有限公司 光纤线路故障的检测系统和方法
CN102308498A (zh) * 2008-12-15 2012-01-04 维里逊专利及许可公司 长程传输系统的故障定位器
CN102386971A (zh) * 2011-09-28 2012-03-21 中兴通讯股份有限公司 一种检测光纤故障的方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9526185D0 (en) * 1995-12-21 1996-02-21 Stc Submarine Systems Ltd Fiber-break detection in bi-directional optical amplifier systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5570217A (en) * 1993-11-04 1996-10-29 Koninklijke Ptt Nederland N.V. Positionally independent application of an OTDR technique based on correlation in a branched optical fibre network during operation
CN101043272A (zh) * 2006-06-08 2007-09-26 华为技术有限公司 光纤线路故障的检测系统和方法
CN102308498A (zh) * 2008-12-15 2012-01-04 维里逊专利及许可公司 长程传输系统的故障定位器
CN102386971A (zh) * 2011-09-28 2012-03-21 中兴通讯股份有限公司 一种检测光纤故障的方法及装置

Also Published As

Publication number Publication date
CN103222206A (zh) 2013-07-24
CN103222206B (zh) 2016-11-02

Similar Documents

Publication Publication Date Title
US7684702B2 (en) Optical link monitoring system and method for passive optical network
US10778327B2 (en) Optical time-domain reflectometer interoperable trunk switch
WO2014067094A1 (zh) 分支光纤的故障检测方法、装置及系统
CN102714545B (zh) 光收发模块、无源光网络系统、光纤检测方法和系统
US8948589B2 (en) Apparatus and method for testing fibers in a PON
US20060029390A1 (en) Optical distribution network monitoring method and system
US9059798B2 (en) Passive optical loopback
WO2012065459A1 (zh) 无源光网络光纤故障的检测系统和方法
CN102571199B (zh) 一种光纤故障检测方法及装置
CN102035599A (zh) 一种ftth无源光链路监测系统及方法
WO2008128462A1 (fr) Procédé, système et appareil de détection de défaut pour un réseau réparti optique
WO2012097554A1 (zh) 光线路终端、无源光网络系统及光信号的传输方法
TW200814567A (en) Detection system for identifying faults in a passive optical network
WO2015154267A1 (zh) 一种光时域反射仪实现装置及系统
US11349591B2 (en) Apparatus, systems, and methods for optical channel management
WO2012149813A1 (zh) 光网络系统、光网络系统升级的方法以及光分配网
WO2011120372A1 (zh) 光纤故障检测系统、方法、光开关和无源光网络系统
US20120224170A1 (en) Optical node apparatus, method for checking connection in node apparatus and program thereof
CN106506069B (zh) 光线路终端、光收发模块、系统以及光纤检测方法
CN201918994U (zh) Ftth无源光链路监测系统
CN107078793B (zh) 一种光纤故障诊断方法、装置及系统
US20240014896A1 (en) Optical splitting apparatus, optical splitting system, passive optical network, and optical fiber fault detection method
WO2011153840A1 (zh) 长距无源光网络中实现光线路检测的方法及装置
CN114598945A (zh) 波分复用应用中的保护倒换方法、装置、系统和电子设备
JP2022507482A (ja) 安全なファイバ・リンク・システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12887422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12887422

Country of ref document: EP

Kind code of ref document: A1