WO2012149813A1 - 光网络系统、光网络系统升级的方法以及光分配网 - Google Patents

光网络系统、光网络系统升级的方法以及光分配网 Download PDF

Info

Publication number
WO2012149813A1
WO2012149813A1 PCT/CN2011/081595 CN2011081595W WO2012149813A1 WO 2012149813 A1 WO2012149813 A1 WO 2012149813A1 CN 2011081595 W CN2011081595 W CN 2011081595W WO 2012149813 A1 WO2012149813 A1 WO 2012149813A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
wavelength division
division multiplexing
optical network
unit
Prior art date
Application number
PCT/CN2011/081595
Other languages
English (en)
French (fr)
Inventor
林华枫
李先银
梅运明
董英华
徐之光
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2011/081595 priority Critical patent/WO2012149813A1/zh
Priority to CN201180002047.6A priority patent/CN102439996B/zh
Publication of WO2012149813A1 publication Critical patent/WO2012149813A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0226Fixed carrier allocation, e.g. according to service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an optical network system, an optical network system upgrade method, and an optical distribution network.
  • the Passive Optical Network (PON) system includes an optical line terminal (OLT) at the central office, and an optical distribution network (branch/coupling or multiplexing/demultiplexing). ODN) and several Optical Network Units (ONUs). Gigabit PON (GPON) and Ethernet PON (EPON) are currently used. However, as bandwidth requirements continue to increase, GP0N and EP0N will no longer be able to meet the needs of users, and optical access networks will face escalation problems.
  • the 0LT of the central office when the optical access network is upgraded, the 0LT of the central office includes the 0LT of the GP0N system or the 0LT of the EP0N system is replaced with the optical branch of the wavelength division multiplexing (WDM) PON system.
  • WDM wavelength division multiplexing
  • AVG Array Waveguide Grating
  • the ONU in the G PON system or the EPON system with the ONU in the WDM PON system, and upgrade the system from GPON or EPON to WDM P0N.
  • each terminal enjoys all the bandwidth on one wavelength.
  • the current upgrade scheme requires the optical splitter in the 0DN to be replaced with the AWG, and the user-side ONU in all the GP0N or EP0N systems needs to be upgraded to the WDM P0N system.
  • this upgrade method has changed a lot to the existing network, and the user side ONU cannot be upgraded according to the bandwidth requirement.
  • the invention provides an optical network system, an optical network system upgrade method and an optical distribution network, which solves the on-demand upgrade of the optical network unit in the optical network system, reduces the system upgrade cost, and improves the user experience level.
  • a passive optical network system includes an optical distribution network, a wavelength division multiplexing device, and an optical network unit, where the optical line terminal includes a first optical line terminal and a second optical line terminal; An optical splitter and a first arrayed waveguide grating unit, wherein the first optical line termination is connected to the optical splitter, and the second optical line is terminated The end is connected to the first arrayed waveguide grating unit, one end of the wavelength division multiplexing device is respectively connected to the optical splitter and the first arrayed waveguide grating unit, and the other end of the wavelength division multiplexing device Connecting to an optical network unit; the wavelength division multiplexing device, configured to transmit a wavelength of an optical signal transmitted through the first optical line terminal of the optical splitter, and through the first arrayed waveguide grating The wavelength of the optical signal transmitted by the second optical line terminal is multiplexed onto each of the branch fibers connected to the optical network unit.
  • Another aspect of the present invention provides a method for upgrading an optical network system, where the TDM P0N includes a TDM 0LT on a central office side and a 0DN in an optical splitter.
  • the optical network system includes: an optical line terminal, an optical distribution network, a wavelength division multiplexing device, and an optical network unit, the optical line terminal including a first optical line terminal and a second optical line terminal;
  • the optical distribution network includes a light distribution And a first array of waveguide grating units, the first optical line termination being coupled to the optical splitter, the second optical line termination being coupled to the first arrayed waveguide grating unit, the wavelength division multiplexing One end of the device is respectively connected to the optical splitter and the first arrayed waveguide grating unit, and the other end of the wavelength division multiplexing device is connected to an optical network unit, and the wavelength division multiplexing device will pass the light
  • the wavelength of the optical signal emitted by the first optical line termination of the splitter, and the wavelength of the optical signal transmitted by the second optical line termination of the first arrayed waveguide grating are multiplexed with the optical network unit Connected to each branch fiber;
  • the optical network unit includes an optical network unit of a time division multiplex
  • the method includes:
  • the optical network unit is an optical network unit of a time division multiplexed passive optical network system, receiving an optical signal sent by the optical network unit of the time division multiplexed passive optical network system, passing the optical signal through the light a splitter is sent to the first optical line terminal;
  • the optical network unit is an optical network unit of a wavelength division multiplexed passive optical network system
  • receiving an optical signal sent by the optical network unit of the wavelength division multiplexed passive optical network system and passing the optical signal through the A first array of waveguide grating elements is transmitted to the second optical line termination.
  • optical distribution network including an optical splitter and a first arrayed waveguide grating unit, the optical distribution network further comprising: a wavelength division multiplexing device, the wavelength division multiplexing One end of the device is respectively connected to the optical splitter and the first arrayed waveguide grating unit, and the other end of the wavelength division multiplexing device is connected to an optical network unit, and the wavelength division multiplexing device will pass the The wavelength of the optical signal emitted by the first optical line termination of the optical splitter, and the wavelength of the optical signal transmitted by the second optical line termination of the first arrayed waveguide grating are multiplexed with the optical network
  • the optical network unit includes an optical network unit of a time division multiplexed optical network system and an optical network unit of a wavelength division multiplexed optical network system, where The wavelength division multiplexing device is configured to: when the optical network unit is a time division multiplexed optical network unit, receive an optical signal sent by an optical network unit of the time division multiplexed optical network system
  • the wavelength division multiplexing device is configured to: when the optical network unit is a wavelength division multiplexed optical network unit, the wavelength division multiplexing device receives the light sent by the optical network unit of the wavelength division multiplexing optical network system And transmitting, by the first arrayed waveguide grating unit, the optical signal to the second optical line terminal.
  • the present invention provides a passive optical network system, an upgrade method, and an optical distribution network, the optical distribution network including an optical splitter and a first arrayed waveguide grating unit, and a wavelength division multiplexing device, when the optical network unit
  • the wavelength division multiplexing device receives the optical signal transmitted by the optical network unit of the time division multiplexed optical network system, and passes the optical signal through the optical component Transmitting to the first optical line terminal; or, when the optical network unit is an optical network unit of a wavelength division multiplexed passive optical network system, the wavelength division multiplexing device receives the wave division Transmitting, by the optical signal transmitted by the optical network unit of the passive optical network system, the optical signal to the second optical line terminal by using the first arrayed waveguide grating unit, thereby solving the optical network unit in the optical network system
  • the on-demand upgrade enables the user-side optical network unit to use both the optical network unit of the time division multiplexed passive optical
  • FIG. 1 is a structural block diagram of an optical network system according to an embodiment of the present invention.
  • FIG. 2 is a structural block diagram of an optical network system according to an embodiment of the present invention.
  • FIG. 3 is a structural block diagram of another optical network system according to an embodiment of the present invention.
  • the technical solutions of the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. example. Based on the embodiments of the present invention, those skilled in the art can obtain the work without creative labor. All other embodiments are within the scope of the invention.
  • FIG. 1 is an optical network system, where the system is a P0N system, including 0LT, ODN, and ONU, and the OLT is connected to each ONU through an ODN, where the 0LT is The optical signal sent to the 0NU is the downstream optical signal, and the optical signal sent by the 0NU to the 0LT is the upstream optical signal.
  • the OLT includes: a first OLT and a second OLT; the OD includes an optical splitter and a first arrayed waveguide grating unit, wherein the first OLT is an OLT of a TDM PON system, and the second OLT is a WDM PON system 0 LT, the optical network unit includes: 0NU of the TDM P0N system and ONU of the WDM P0N system, and a structural diagram of the specific optical network system is shown in FIG. 2, and FIG. 2 is an optical network system according to an embodiment of the present invention. Specific structural block diagram.
  • the first OLT 10 is connected to the optical splitter 15
  • the second OLT 20 is connected to the first arrayed waveguide grating unit 21
  • one end of the wavelength division multiplexing device 16 is respectively connected to the optical splitter 15 and the first arrayed waveguide grating unit 21 is connected, the other end of the wavelength division multiplexing device 16 is connected to the optical network unit 30; wherein the ONU 30 includes the ONU of the TDM P0N and the ONU of the WDM P0N;
  • the wavelength division multiplexing device for transmitting a wavelength of an optical signal transmitted through the first OLT end of the optical splitter and light emitted by the second OLT of the first arrayed waveguide grating
  • the wavelength of the signal is multiplexed onto each branch fiber connected to the ONU; when the ONU is the ONU of the TDM P0N system, the wavelength division multiplexing device is configured to receive the optical signal transmitted by the 0NU of the TDM P0N, Transmitting the optical signal to the first OLT through the optical splitter; or, when the ONU is the ONU of the WDM PON system, the wavelength division multiplexing device is configured to receive the WDM PON An optical signal transmitted by the 0NU, the optical signal being transmitted to the second OLT through the first arrayed waveguide grating unit.
  • the P0N further includes a first wavelength division multiplexing device and a second wavelength division multiplexing device, wherein the first wavelength division multiplexing device is connected to the first OLT and the second OLT, respectively, the first The other end of the wavelength division multiplexing device is connected to one end of the second wavelength division multiplexing device; one end of the second wavelength division multiplexing device is connected to the first wavelength division multiplexing device, and the second wave The other end of the sub-multiplexing device is respectively connected to the optical splitter and the first arrayed waveguide grating unit; wherein
  • the first wavelength division multiplexing device is configured to couple a wavelength of the optical signal emitted by the first 0LT and a wavelength of the optical signal emitted by the second 0LT to a trunk optical fiber;
  • the second wavelength division multiplexing device is configured to demultiplex the wavelength of the first wavelength division multiplexing device coupled to the backbone fiber.
  • the optical distribution network further includes: a first Faraday rotating mirror; one end of the first Faraday rotating mirror is connected to the second wavelength division multiplexing device, and the other end of the first Faraday rotating mirror is opposite to the first An array of waveguide grating unit connections;
  • the second OLT further includes: a second arrayed waveguide grating unit and a second Faraday rotating mirror; wherein The optical signal emitted by the second OLT passes through the second arrayed waveguide grating and the second Faraday rotating mirror, and reaches the first arrayed waveguide grating unit through the first Faraday rotating mirror.
  • the 0LT of the WDM P0N system further includes: a circulator, a third wavelength division multiplexing device, and a fourth wavelength division multiplexing device;
  • the wavelength of the second arrayed waveguide grating unit is sequentially transmitted to the first wavelength division multiplexing device through the second Faraday rotating mirror, the third wavelength division multiplexing device, and the circulator.
  • the 0LT of the WDM P0N system further includes an Optical Time Domain Ref ectometer (OTDR) generator and an OTDR receiver for performing line testing;
  • OTDR Optical Time Domain Ref ectometer
  • the optical time domain reflectometer generator When performing line testing, the optical time domain reflectometer generator generates a test signal, and the test signal is transmitted to the optical distribution network via the second arrayed waveguide grating unit;
  • the wavelength division multiplexing optical line terminal includes a control module, at least one transceiver unit, and a connection switch array, and the control module is connected to each of the transceiver units through the connection switch array;
  • the optical time domain reflectometer generator is connected to each of the transceiver unit and the control module through the connection switch array;
  • the optical time domain reflectometer receiver is coupled to the control module and the optical time domain reflectometer generator.
  • the arrayed waveguide grating unit is an Array Waveguide Grating (AWG) or a Waveguide Grating Router (WGR).
  • the optical distribution network includes an optical splitter and a first arrayed waveguide grating unit, and a wavelength division multiplexing device, when the optical network unit is time division multiplexed
  • the wavelength division multiplexing device receives an optical signal sent by the optical network unit of the time division multiplexed optical network system, and sends the optical signal to the optical splitter through the optical splitter
  • the first optical line terminal or, when the optical network unit is an optical network unit of a wavelength division multiplexing passive optical network system, the wavelength division multiplexing device receives the wavelength division multiplexed passive light
  • An optical signal sent by the optical network unit of the network system, and the optical signal is sent to the second optical line terminal through the first arrayed waveguide grating unit, thereby solving the on-demand upgrade of the optical network unit in the optical network system.
  • the user-side optical network unit can use both the optical network unit of the time division multiplexing passive optical network system and the optical network unit
  • the passive optical network system includes: the system is a P0N system, including 0LT, 0DN, and ONU, and the OLT passes 0DN is connected to each 0NU.
  • the OLT includes: a first OLT and a second OLT; wherein the first OLT is the OLT 110 of the TDM PON system, and the second OLT is the OLT 122 of the WDM PON system.
  • the optical network unit includes: an ONU of the TDM P0N system and an ONU of the WDM P0N system, the ODN includes an optical splitter and a first arrayed waveguide grating unit, wherein the first 0LT is an OLT of the TDM P0N system, and the second The OLT is the OLT of the WDM PON system, and the optical network unit includes: 0NU of the TDM P0N system and ONU of the WDM P0N system.
  • the OLT of the TDM PON system described above also includes the OLT of the G PON system or the OLT of the EP0N system, and the ONU of the DM PON system includes the 0NU or EP0N system of the GP0N system. 0NU.
  • the arrayed waveguide grating unit referred to hereinafter may be AWG or WGR.
  • the optical splitter 115 and the first arrayed waveguide grating unit 121 are included in the 0DN.
  • the downstream optical signal from the 0LT 110 of the TDM P0N system is transmitted to the optical splitter 115; the downstream optical signal from the 0LT 120 of the WDM P0N system is transmitted to the first arrayed waveguide grating unit 121.
  • the optical splitter 115 includes at least one branch port, and the first arrayed waveguide grating unit 121 includes at least one branch port.
  • the optical splitter 115 is a 1*N optical splitter, that is, has 1 common port and N branch ports, N is greater than or equal to 1; the first arrayed waveguide grating unit 121 is 1*N.
  • the arrayed waveguide grating unit has a common port and N branch ports, and N is greater than or equal to 1.
  • the 0DN further includes a first wavelength division multiplexing device (represented by W for convenience of description of the wavelength division multiplexing device below) W1 and a second wavelength division multiplexing device W2.
  • a first wavelength division multiplexing device represented by W for convenience of description of the wavelength division multiplexing device below
  • W1 a second wavelength division multiplexing device
  • W2 One common end of the optical splitter 115 is connected to W2, and the N branch ports of the optical splitter 115 are respectively connected to the wavelength division multiplexing device W; a common port of the first arrayed waveguide grating unit 121 Connected to the W2, the N branch ports of the first arrayed waveguide grating unit 121 are respectively connected to the wavelength division multiplexing device W, that is, the wavelength division multiplexer W and the N of the optical splitter 115, respectively.
  • the branch ports and the N branch ports of the first arrayed waveguide grating unit 121 are connected.
  • the W1 is used to couple the wavelength of the optical signal emitted by the OLT 110 of the TDM PON system and the wavelength of the optical signal emitted by the OLT 122 of the WDM PON system to the backbone fiber; the W2 is used to couple the W1 to the backbone fiber.
  • the wavelength is demultiplexed, thereby demultiplexing the wavelength of the optical signal transmitted by the 0LT 110 of the TDM P0N system into the optical splitter 115, and demultiplexing the wavelength of the optical signal transmitted by the 0LT 122 of the WDM P0N system to the first Arrayed waveguide grating unit 121.
  • WDM P0N systems typically use C-band wavelength (1530raTl560nm) and L-band (1570nm ⁇ l610nm) the wavelength and GP0N EP0N system or downstream of the wavelength 1490nm, upstream 1260raTl360 n m wavelength range of two passive optical network
  • the operating wavelengths of the system are different, so it is possible to combine and split the waves by W1 and W2 to save the cost of laying the line.
  • the W receives the light transmitted by the ONU of the TDM P0N system. Signaling, transmitting the optical signal to the first optical line terminal through the optical splitters 115, W2, and W1; or, when the ONU is the ONU of the WDM P0N system, receiving the wave division
  • the optical signal transmitted by the optical network unit is transmitted to the second optical line terminal through the first arrayed waveguide grating unit, W2 and W1.
  • the 0DN may further include a first Faraday Rotator Mirror (FRM1) FRM1;
  • the OLT of the WDM PON system may further include a second arrayed waveguide grating unit and a second a Faraday rotating mirror (FRM2); a downstream optical signal from the second arrayed waveguide grating unit is sequentially transmitted to the first arrayed waveguide grating unit via the FRM2 and the FRM1.
  • the 0NU internal transceiver module of the WDM P0N system is wavelength independent, and the laser emission wavelength of the transceiver module can automatically adapt to the wavelength of the connected first arrayed waveguide grating unit, thereby reducing the cost of the system.
  • the first array of waveguide grating elements acts not only as a combiner and a splitter but also as an intracavity filter.
  • the gain medium inside the optical module of the branch port of the second arrayed waveguide grating unit in the 0LT in the WDM P0N system and the second Faraday rotating mirror (FRM2) resonate at different wavelengths to form different emission wavelengths.
  • the second array of waveguide grating elements acts not only as a multiplexer and a splitter but also as an intracavity filter. The uplink and downlink emission wavelengths are different.
  • the 0LT of the WDM P0N system further includes: a circulator 125, a third wavelength division multiplexing device W3, and a fourth wavelength division multiplexing device W4.
  • An optical signal from the second arrayed waveguide grating unit is sequentially transmitted to the first wavelength division multiplexing device W1 via FRM2, the third wavelength division multiplexing device W3, and the circulator 125; light from the optical distribution network
  • the signal is sequentially transmitted to the FRM 2 via the first wavelength division multiplexing device W circulator 125, the fourth wavelength division multiplexing device W4, and the third wavelength division multiplexing device.
  • the 0LT from the TDM P0N system emits a 1490 nm optical signal that is coupled to the backbone fiber through a first wavelength division multiplexing device W1.
  • the second wavelength division multiplexing device W2 After entering the public port of the 0DN, the second wavelength division multiplexing device W2 is decoupled to the common port of the 1*N optical splitter 115, and then equally distributed into N shares, reaching the N branch fibers of the optical splitter 115. .
  • the 1490 nm optical signal carried on each of the branch fibers is coupled by the wavelength division multiplexing device W and then passed through the branch fiber to the TDM PON 0NU 140 on the user side.
  • TDM P0N system Tl360nm optical signal, transmitted to the wavelength division multiplexing via branch fiber
  • the device W is coupled to the branch fiber of the 1*N optical splitter 115, then passes through the optical splitter 115 to the common port of the optical splitter 115, and then enters the trunk optical fiber through the second wavelength division multiplexing device W2.
  • a wavelength division multiplexing device W1 is transmitted to the TDM P0N system.
  • the optical signal emitted by the 0LT of the WDM P0N system can be applied to the L-band or the C-band.
  • the following is an example of the L-band.
  • the plurality of L-band signals of the downlink are emitted from the FRM2, they enter the third wavelength division multiplexing device W3, and then enter the port 1 of the circulator 125, output from the 2-port of the circulator 125, and pass through the first wavelength division multiplexing device.
  • the piece W1 is coupled to the backbone fiber.
  • the second wavelength division multiplexing device W2 After entering 0DN, the second wavelength division multiplexing device W2 is decoupled to FRM1, and then reaches the common port of the 1*N first arrayed waveguide grating unit 121, and then distributed to the first arrayed waveguide grating unit 121 according to the wavelength. N branch fibers.
  • the L-band signals of the upstream and downstream of each AWG branch fiber are coupled by the WDM device W and then passed through the 0DN branch fiber to the 0NU 145 of the user-side WDM system.
  • the C-band optical signal transmitted by the ONU of the WDM P0N system is coupled to the branch fiber of the first arrayed waveguide grating unit 121 by the wavelength division multiplexing device W via 0DN, and then passes through the first arrayed waveguide grating unit 121 and FRM1 to reach the first
  • the second wavelength division multiplexing device W2 then enters the backbone fiber. After reaching the first wavelength division multiplexing device W1, it is coupled to the 2 port of the circulator 125, is outputted from the 3 port of the circulator 125, and is coupled to the third wavelength division multiplexing device by the fourth wavelength division multiplexing device W4. W3. It is then distributed to different transceiver modules TRx via FRM2 and AWG 122, depending on the wavelength.
  • the Optical Time Domain Reflectometer (OTDR) test function can be integrated into the 0LT of the WDM P0N system.
  • the WDM PON 0LT in this embodiment may further include an 0TDR generator 135 and an 0TDR receiver 130 for performing line testing.
  • the 0TDR pattern generator 135 is respectively connected to any of the transceiver modules TRx through the connected optical switch array.
  • the 0LT of the WDM P0N system further includes: a control module, where the control module includes a media access control module (MAC) and a central processing unit (CPU) module.
  • the OLT further includes: at least one transceiver module TRx and a connection switch array.
  • the MAC and CPU modules are connected to each of the TRx through the connection switch array; meanwhile, the 0TDR generator 135 is connected to each of the TRx through the connection switch array and The control module is connected; at the same time, the 0TDR receiver 130 is connected to the control module and the 0TDR generator 135.
  • the 0TDR generator 135 When the line test is performed, the 0TDR generator 135 generates a test signal and sends it to the any one of the TRx via the connection switch array.
  • the test signal is sent by the any one of the TRx, and is transmitted to the optical distribution network through the second arrayed waveguide grating unit; the 0TDR receiver 130 receives any one of the optical distribution network
  • the reflected signal is sequentially passed through the first wavelength division multiplexing device W1, the circulator 125, and the fourth wavelength division multiplexing device W4.
  • the following example shows how the 0LT of the WDM P0N system implements the 0TDR function.
  • the control module issues a test command to the 0LT of the WDM P0N system.
  • the 0LT board of the WDM PON system uses different test methods according to its own situation. If branch fiber 1 is connected to 0NU of TDM P0N system, 0LT of WDM P0N system switches TRxl connection switch, disconnects control module from TRxl, and connects TRx1 to 0TDR pattern generator 135. The test procedure is initiated and TRxl transmits an L-band test optical signal from the 0TDR generator 135.
  • the test signal enters the port 1 of the circulator 125 through the first arrayed waveguide grating unit 122, FRM2, and the third wavelength division multiplexing device W3.
  • the sequence passes through the first wavelength division multiplexing device W1, the main fiber, enters the circle, and is then routed by the second wavelength division multiplexing device W2 to the FRM1, and then enters the 1*N first array waveguide.
  • the common port of the optical deletion unit 121 Since the optical signal at this time is transmitted by TRx1, the test optical signal is routed to the first branch fiber of the first arrayed waveguide grating unit 121 according to the correspondence between the wavelength and the branch fiber of the first arrayed waveguide grating unit 121.
  • the test optical signal is transmitted from the central office and passes through the trunk fiber and the branch fiber 1.
  • the test signal will be reflected at any point on the line, and the reflected signal will return along the original path to the 2 port of the circulator 125.
  • the reflected signal is output from the 3-port of the circulator 125 to the fourth wavelength division multiplexing device W4. Since the reflected signal is the L band at this time, it is coupled to the 0TDR receiver 130 by the fourth wavelength division multiplexing device W4.
  • the 0LT of the WDM P0N system can calculate the fault type and the location of the fault according to the change of the signal received by the 0TDR receiver 130.
  • the TRx is being applied.
  • the 0LT of the WDM P0N system cannot start the 0TDR test immediately. Some processing must be done first. In the first way, after receiving the test command, the 0LT of the WDM P0N system suspends the transfer of data, switches the connection switch of TRxl, disconnects and controls the connection of a fast and TRxl, connects TRx1 with the 0TDR pattern generator 135, and then starts. 0TDR test.
  • the test procedure is the same as described in the previous paragraph. After the test is completed, restart the data transfer.
  • the 0LT of the WDM P0N system does not suspend the data transfer, and switches the TRxl connection switch so that the TRx1 and the 0TDR pattern generator 135 and the control module are simultaneously connected.
  • the 0TDR test signal is superimposed on the normal transmission data to form a secondary modulation.
  • the subsequent signal transmission, reflection channel, and reception detection mode are still the same as those of the previous paragraph.
  • the P0N system provided by the embodiment of the present invention supports the coexistence of the TDM P0N system and the WDM P0N system, and can implement the on-demand upgrade of the user-side ONU, and the WDM P0N in the system can also be used for fiber link fault diagnosis. Solved the large branch TDM P0N, because the optical splitter loss is too large, the branch fiber cannot be realized. The problem of obstacle detection.
  • the embodiment of the present invention further provides a method for upgrading a P0N system.
  • the optical network system includes: an optical line terminal, an optical distribution network, and wavelength division multiplexing. a device and an optical network unit, wherein the optical line termination comprises a first optical line termination and a second optical line termination; the optical distribution network comprising an optical splitter and a first arrayed waveguide grating unit, the first optical a line termination is connected to the optical splitter, the second optical line termination is connected to the first arrayed waveguide grating unit, and one end of the wavelength division multiplexing device is respectively associated with the optical splitter and the An array of waveguide grating units connected, the other end of the wavelength division multiplexing device being coupled to the optical network unit, the wavelength division multiplexing device to be transmitted through the first optical line termination of the optical splitter a wavelength of the optical signal, and a wavelength of the optical signal emitted by the second optical line termination of the first arrayed waveguide
  • the optical network unit is an optical network unit of a time division multiplexed passive optical network system, receiving an optical signal sent by the time division multiplexed optical network unit, and transmitting the optical signal to the optical splitter through the optical splitter On the first optical line terminal; or,
  • the optical network unit is an optical network unit of a wavelength division multiplexing passive optical network system, receiving an optical signal sent by the wavelength division multiplexed optical network unit, and passing the optical signal through the first arrayed waveguide grating unit Sended to the second optical line terminal.
  • the optical network system further includes: a first wavelength division multiplexing device and a second wavelength division multiplexing device, the method further comprising:
  • the wavelength of the optical signal emitted by the first optical line termination and the wavelength of the optical signal transmitted by the second optical line termination are coupled to the backbone fiber through the first wavelength division multiplexing device; the coupling to the backbone fiber
  • the wavelength is demultiplexed onto the optical splitter or the first arrayed waveguide grating unit by the second wavelength division multiplexing device.
  • the second optical line termination further comprising: a second arrayed waveguide grating unit and a second Faraday rotating mirror; the optical signal emitted by the second optical line terminal After passing through the second arrayed waveguide grating and the second Faraday rotating mirror, the wavelength is transmitted to the first arrayed waveguide grating unit through the first Faraday rotating mirror.
  • the method further includes:
  • the optical time domain reflectometer generator when performing line testing, transmits a test signal through the second array wave a light guide grating unit is transmitted to the optical distribution network; the optical time domain reflectometer receiver receives a reflected signal at any position of the optical distribution network, and the reflected signal sequentially passes through the first wavelength division multiplexing device And the circulator and the fourth wavelength division multiplexing device.
  • the arrayed waveguide grating unit is an arrayed waveguide grating or a waveguide grating router.
  • a method for upgrading a passive optical network system when the optical network unit is an optical network unit of a time division multiplexed passive optical network system, the wavelength division multiplexing device receives the time division multiplexing An optical signal transmitted by an optical network unit of the optical network system, where the optical signal is sent to the first optical line terminal through the optical splitter; or, when the optical network unit is wavelength division multiplexed
  • the wavelength division multiplexing device receives an optical signal transmitted by an optical network unit of the wavelength division multiplexed passive optical network system, and passes the optical signal through the first arrayed waveguide grating
  • the unit is sent to the second optical line terminal, which solves the on-demand upgrade of the optical network unit in the optical network system, so that the user side can use the optical network unit of the time division multiplexing passive optical network system, and can also use the wave.
  • the optical network unit is an optical network unit of a time
  • An embodiment of the present invention further provides an optical distribution network, where the optical distribution network includes: an optical splitter and a first arrayed waveguide grating unit, and a wavelength division multiplexing device, wherein one end of the wavelength division multiplexing device is respectively The optical splitter and the first arrayed waveguide grating unit are connected, the other end of the wavelength division multiplexing device is connected to an optical network unit, and the wavelength division multiplexing device will pass through the optical splitter
  • the wavelength of the optical signal emitted by the first optical line terminal, and the wavelength of the optical signal transmitted by the second optical line termination of the first arrayed waveguide grating are multiplexed to each branch fiber connected to the optical network unit
  • the optical network unit includes an optical network unit of a time division multiplexed optical network system and an optical network unit of a wavelength division multiplexed optical network system, where
  • the wavelength division multiplexing device is configured to: when the optical network unit is an optical network unit of a time division multiplexed passive optical network system, receive an optical signal sent by an optical network unit of the time division multiplexed optical network system, Transmitting the optical signal to the first optical line terminal through the optical splitter; or
  • the wavelength division multiplexing device is configured to: when the optical network unit is an optical network unit of a wavelength division multiplexing passive optical network system, receive the optical network unit sent by the wavelength division multiplexing passive optical network system An optical signal, the optical signal being transmitted to the second optical line terminal through the first arrayed waveguide grating unit.
  • the optical distribution network includes an optical splitter, a first arrayed waveguide grating, and a wavelength division multiplexing device, and the wavelength division multiplexing device receives the time division multiplexed optical network An optical signal transmitted by the optical network unit of the system, the optical signal being sent to the first optical line terminal by the optical splitter; or, when the optical network unit is a wavelength division multiplexed passive optical network
  • the wavelength division multiplexing device receives an optical signal transmitted by an optical network unit of the wavelength division multiplexed passive optical network system, and passes the optical signal through the
  • the first arrayed waveguide grating unit is sent to the second optical line terminal to solve the on-demand upgrade of the optical network unit in the optical network system, so that the user side can use the optical network unit of the time division multiplexed passive optical network system.
  • the optical network unit of the wavelength division multiplexing passive optical network system can be used, which reduces the upgrade cost of the system and improves the user experience.
  • the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种无源光网络系统、升级方法以及光分配网,当所述光网络单元为时分复用无源光网络系统的光网络单元时,所述波分复用器件接收所述时分复用光网络系统的光网络单元发送的光信号,将所述光信号通过所述光分路器发送到所述第一光线路终端上;或者,当所述光网络单元为波分复用无源光网络系统的光网络单元时,所述波分复用器件接收所述波分复用无源光网络系统的光网络单元发送的光信号,将所述光信号通过所述第一阵列波导光栅单元发送到所述第二光线路终端上,解决了光网络系统中对光网络单元的按需升级,降低了系统的升级成本,提高了用户的体验程度。

Description

光网络系统、 光网络系统升级的方法以及光分配网 技术领域 本发明实施例涉及通信技术领域, 尤其涉及一种光网络系统、 光网络系统升级的方 法以及光分配网。
背景技术 随着用户对带宽需求的不断增长, 目前光纤接入已经是接入网的主流, 其中尤其以 无源光网络最具竞争力。 无源光网络(Passive Optical Network, PON)系统包括一个位 于中心局的光线路终端 (Optical Line Terminal , OLT), 用于分支 /耦合或者复用 /解复 用的光分配网 ( Optical Distribution Network, ODN) 以及若干光网络单元(Optical Network Unit , ONU)。 目前使用的是千兆无源光网络(gigabit PON, GPON)和以太网无 源光网络(Ethernet PON, EPON)。 但随着带宽需求的不断增加, GP0N和 EP0N将不再能 够满足用户的需求, 光接入网会面临升级的问题。
现有技术在升级光接入网时,将局端的 0LT包括 GP0N系统的 0LT或者 EP0N系统的 0LT更换为波分复用(Wavelength Division Multiplexing, WDM) PON系统的 0LT, ODN 中的光分路器更换为阵列波导光栅 (Array Waveguide Grating, AWG), G PON系统 或者 EPON系统中的 ONU更换为 WDM PON系统中的 0NU, 从而将系统从 GPON或者 EPON升级到 WDM P0N。 升级后, 每个终端独享一个波长上所有的带宽。 但是在这种方案中, 为了满 足部分 0NU对带宽的需求, 目前的升级方案需要 0DN中的光分路器更换为 AWG, 所有的 GP0N或者 EP0N系统中的用户侧 0NU都需要升级为 WDM P0N系统中的用户侧的 0NU, 这 种升级方式对现有网络改动很大, 且不能按带宽需求对用户侧 0NU进行升级。 发明内容
本发明提供一种光网络系统、 光网络系统升级的方法以及光分配网, 解决了光网络 系统中对光网络单元的按需升级, 降低了系统的升级成本, 提高了用户的体验程度。
本发明一方面提供的无源光网络系统,包括光分配网、波分复用器件和光网络单元, 所述光线路终端包括第一光线路终端和第二光线路终端; 所述光分配网包括光分路器和 第一阵列波导光栅单元, 所述第一光线路终端与所述光分路器连接, 所述第二光线路终 端与所述第一阵列波导光栅单元连接,所述波分复用器件的一端分别与所述光分路器以 及所述第一阵列波导光栅单元连接, 所述波分复用器件的另一端与光网络单元连接; 所述波分复用器件,用于将通过所述光分路器的所述第一光线路终端发射的光信号 的波长, 以及通过所述第一阵列波导光栅的所述第二光线路终端发射的光信号的波长复 用到与所述光网络单元连接的各分支光纤上。
本发明另一方面提供一种光网络系统升级的方法,所述 TDM P0N包括中心局侧的 TDM 0LT、 内设光分路器的 0DN,
所述光网络系统包括: 光线路终端、 光分配网、 波分复用器件和光网络单元, 所述 光线路终端包括第一光线路终端和第二光线路终端;所述光分配网包括光分路器和第一 阵列波导光栅单元, 所述第一光线路终端与所述光分路器连接, 所述第二光线路终端与 所述第一阵列波导光栅单元连接,所述波分复用器件的一端分别与所述光分路器以及所 述第一阵列波导光栅单元连接, 所述波分复用器件的另一端与光网络单元连接, 所述波 分复用器件将通过所述光分路器的所述第一光线路终端发射的光信号的波长, 以及通过 所述第一阵列波导光栅的所述第二光线路终端发射的光信号的波长复用到与所述光网 络单元连接的各分支光纤上;所述光网络单元包括时分复用无源光网络系统的光网络单 元和波分复用无源光网络系统的光网络单元;
所述方法包括:
当所述光网络单元为时分复用无源光网络系统的光网络单元时,接收所述时分复用 无源光网络系统的光网络单元发送的光信号,将所述光信号通过所述光分路器发送到所 述第一光线路终端上; 或者,
当所述光网络单元为波分复用无源光网络系统的光网络单元,接收所述波分复用无 源光网络系统的光网络单元发送的光信号,将所述光信号通过所述第一阵列波导光栅单 元发送到所述第二光线路终端上。
本发明另一方面提供了一种光分配网,所述光分配网包括光分路器和第一阵列波导 光栅单元, 所述光分配网还包括: 波分复用器件, 所述波分复用器件的一端分别和所述 光分路器以及所述第一阵列波导光栅单元连接,所述波分复用器件的另一端与光网络单 元连接,所述波分复用器件将通过所述光分路器的所述第一光线路终端发射的光信号的 波长, 以及通过所述第一阵列波导光栅的所述第二光线路终端发射的光信号的波长复用 到与所述光网络单元连接的各分支光纤上; 所述光网络单元包括时分复用光网络系统的 光网络单元和波分复用光网络系统的光网络单元, 其中, 所述波分复用器件, 用于当所述光网络单元为时分复用光网络单元时, 接收所述时 分复用光网络系统的光网络单元发送的光信号,将所述光信号通过所述光分路器发送到 所述第一光线路终端上; 或者,
所述波分复用器件, 用于当所述光网络单元为波分复用光网络单元时, 所述波分复 用器件接收所述波分复用光网络系统的光网络单元发送的光信号,将所述光信号通过所 述第一阵列波导光栅单元发送到所述第二光线路终端上。
本发明提供的一种无源光网络系统、 升级方法以及光分配网, 所述光分配网包括光 分路器和第一阵列波导光栅单元, 以及波分复用器件, 当所述光网络单元为时分复用无 源光网络系统的光网络单元时,所述波分复用器件接收所述时分复用光网络系统的光网 络单元发送的光信号, 将所述光信号通过所述光分路器发送到所述第一光线路终端上; 或者, 当所述光网络单元为波分复用无源光网络系统的光网络单元时, 所述波分复用器 件接收所述波分复用无源光网络系统的光网络单元发送的光信号,将所述光信号通过所 述第一阵列波导光栅单元发送到所述第二光线路终端上,解决了光网络系统中对光网络 单元的按需升级,使得用户侧光网络单元既可以使用时分复用无源光网络系统的光网络 单元, 又可以使用波分复用无源光网络系统的光网络单元, 降低了系统的升级成本, 提 高了用户的体验程度。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施例或现 有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅 是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提 下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的一种光网络系统的结构框图;
图 2为本发明实施例提供的一种光网络系统的具体结构框图;
图 3为本发明实施例提供的另一种光网络系统的具体结构框图。 具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例的技术方案进行清楚、 完整 地描述, 显然, 所描述的实施例仅仅是本发明的一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动的前提下所获得 的所有其它实施例, 都属于本发明保护的范围。
如图 1所示, 图 1为本发明实施例提供一种光网络系统, 所述系统为 P0N系统, 包括 0LT、 ODN和 0NU, 所述 OLT通过 ODN与各个 ONU进行连接, 其中, 所述 0LT发送 给 0NU的光信号为下行光信号, 0NU发送给 0LT的光信号为上行光信号。
所述 0LT包括: 第一 0LT和第二 0LT; 所述 0DN包括光分路器和第一阵列波导光 栅单元, 其中所述第一 0LT为 TDM P0N系统的 0LT, 第二 0LT为 WDM P0N系统的 0LT, 所述光网络单元包括: TDM P0N系统的 0NU和 WDM P0N系统的 0NU, 其具体光网络系 统的结构图如图 2所示,图 2为本发明实施例提供的一种光网络系统的具体结构框图。
所述第一 0LT10与所述光分路器 15连接, 所述第二 0LT20与所述第一阵列波导 光栅单元 21连接, 所述波分复用器件 16的一端分别与所述光分路器 15以及所述第 一阵列波导光栅单元 21连接, 所述波分复用器件 16的另一端与光网络单元 30连接; 其中, 所述 0NU30包括 TDM P0N的 0NU和 WDM P0N的 0NU;
所述波分复用器件, 用于将通过所述光分路器的所述第一 0LT端发射的光信号的 波长, 以及通过所述第一阵列波导光栅的所述第二 0LT发射的光信号的波长复用到与 所述 0NU连接的各分支光纤上; 当所述 0NU为 TDM P0N系统的 0NU时, 所述波分复用 器件用于接收所述 TDM P0N的 0NU发送的光信号, 将所述光信号通过所述光分路器发 送到所述第一 0LT上; 或者, 当所述 0NU为 WDM P0N系统的 0NU时, 所述波分复用器 件用于接收所述 WDM P0N的 0NU发送的光信号, 将所述光信号通过所述第一阵列波导 光栅单元发送到所述第二 0LT上。
所述 P0N进一步包括第一波分复用器件以及第二波分复用器件, 所述第一波分复 用器件一端分别与所述第一 0LT以及所述第二 0LT相连, 所述第一波分复用器件的另 一端与所述第二波分复用器件的一端连接; 所述第二波分复用器件的一端与所述第一 波分复用器件连接, 所述第二波分复用器件的另一端分别与所述光分路器以及所述第 一阵列波导光栅单元连接; 其中,
所述第一波分复用器件, 用于将所述第一 0LT发射的光信号的波长以及所述第二 0LT发射的光信号的波长耦合到主干光纤上;
所述第二波分复用器件, 用于将所述第一波分复用器件耦合到主干光纤的波长进 行解复用。
所述光分配网内进一步包括: 第一法拉第旋转镜; 所述第一法拉第旋转镜的一端 与所述第二波分复用器件连接, 所述第一法拉第旋转镜的另一端与所述第一阵列波导 光栅单元连接;
所述第二 0LT还包括: 第二阵列波导光栅单元和第二法拉第旋转镜; 其中, 所述 第二 OLT发射的光信号经过所述第二阵列波导光栅和第二法拉第旋转镜后, 通过所述 第一法拉第旋转镜到达所述第一阵列波导光栅单元上。
所述 WDM P0N系统的 0LT进一步包括: 环形器、 第三波分复用器件和第四波分复 用器件;
经过所述第二阵列波导光栅单元的波长依次经过所述第二法拉第旋转镜、 所述第 三波分复用器件件和环形器发射到所述第一波分复用器件。
所述 WDM P0N系统的 0LT进一步包括用于进行线路测试的光时域反射仪(Optical Time Domain Ref lectometer, OTDR) 生成器和 OTDR接收器;
在进行线路测试时, 所述光时域反射仪生成器产生测试信号, 所述测试信号经过 所述第二阵列波导光栅单元被传送到所述光分配网;
所述光时域反射仪接收器接收在所述光分配网的反射信号, 所述反射信号依次经 过所述第一波分复用器件件、 所述环形器和所述第四波分复用器件件。
所述波分复用光线路终端包括控制模块、 至少一个收发单元以及连接开关阵列, 所述控制模块通过所述连接开关阵列与每一个所述收发单元相连;
所述光时域反射仪生成器通过所述连接开关阵列, 与每一个所述收发单元及所述 控制模块相连;
所述光时域反射仪接收器与所述控制模块及所述光时域反射仪生成器相连。
所述阵列波导光栅单元为阵列波导光栅 (Array Waveguide Grating, AWG)或波导 光栅路由器(Waveguide Grating Router, WGR)。
本发明实施例提供的一种无源光网络系统中, 所述光分配网包括光分路器和第一 阵列波导光栅单元, 以及波分复用器件, 当所述光网络单元为时分复用无源光网络系 统的光网络单元时, 所述波分复用器件接收所述时分复用光网络系统的光网络单元发 送的光信号, 将所述光信号通过所述光分路器发送到所述第一光线路终端上; 或者, 当所述光网络单元为波分复用无源光网络系统的光网络单元时, 所述波分复用器件接 收所述波分复用无源光网络系统的光网络单元发送的光信号, 将所述光信号通过所述 第一阵列波导光栅单元发送到所述第二光线路终端上, 解决了光网络系统中对光网络 单元的按需升级, 使得用户侧光网络单元既可以使用时分复用无源光网络系统的光网 络单元,又可以使用波分复用无源光网络系统的光网络单元, 降低了系统的升级成本, 提高了用户的体验程度。
本发明实施例提供的另一种光网络系统的具体结构框图, 如图 3所示, 所述无源 光网络系统包括: 所述系统为 P0N系统, 包括 0LT、 0DN和 0NU, 所述 OLT通过 0DN与 各个 0NU进行连接。 所述 OLT包括: 第一 OLT和第二 OLT; 其中第一 0LT为 TDM PON系统的 0LT110 , 第二 OLT为 WDM PON系统的 0LT122。所述光网络单元包括: TDM P0N系统的 0NU和 WDM P0N系统的 0NU, 所述 0DN包括光分路器和第一阵列波导光栅单元, 其中所述第一 0LT 为 TDM P0N系统的 0LT, 第二 OLT为 WDM PON系统的 0LT, 所述光网络单元包括: TDM P0N系统的 0NU和 WDM P0N系统的 0NU。
由于 GP0N系统或者 EP0N系统是基于 TDM的 P0N技术, 因而, 上述的 TDM P0N系 统的 0LT也包括 G P0N系统的 0LT或者 EP0N系统的 0LT, 所述 DM PON系统的 0NU包 括 GP0N系统的 0NU或者 EP0N系统的 0NU。 同时指出, 下文所涉及的阵列波导光栅单 元可以为 AWG或 WGR。
所述 0DN内包括光分路器 115和第一阵列波导光栅单元 121。 TDM P0N系统的 0LT 110发出的下行光信号传送至光分路器 115 ; WDM P0N系统的 0LT 120发出的下行光 信号传送至第一阵列波导光栅单元 121。其中, 光分路器 115包括至少一个分支端口, 第一阵列波导光栅单元 121包括至少一个分支端口。优选地,所述光分路器 115为 1*N 的光分路器, 即具有 1个公共端口和 N个分支端口, N大于等于 1 ; 所述第一阵列波 导光栅单元 121为 1*N的阵列波导光栅单元,即具有一 1个公共端口和 N个分支端口, N大于等于 1。
所述 0DN内进一步包括第一波分复用器件 (为方便描述下面波分复用器件都用 W 表示) W1和第二波分复用器件 W2。 所述光分路器 115的一个公共端与 W2连接, 所述 光分路器 115的 N个分支端口分别与波分复用器件 W连接; 所述第一阵列波导光栅单 元 121的一个公共端口与所述 W2连接, 所述第一阵列波导光栅单元 121的 N个分支 端口分别与波分复用器件 W连接, 即所述波分复用器 W分别与所述光分路器 115的 N 个分支端口以及所述第一阵列波导光栅单元 121的 N个分支端口连接。
所述 W1用于将 TDM P0N系统的 0LT110发射的光信号的波长以及 WDM P0N系统的 0LT122发射的光信号的波长耦合到主干光纤上; 所述 W2, 用于将所述 W1耦合到主干 光纤的波长进行解复用, 进而使得 TDM P0N系统的 0LT110发射的光信号的波长解复 用到光分路器 115中, 将所述 WDM P0N系统的 0LT122发射的光信号的波长解复用到 第一阵列波导光栅单元 121中。
由于 WDM P0N 系统一般使用 C 波段 ( 1530raTl560nm ) 的波长和 L 波段 ( 1570nm^l610nm) 的波长, 而 GP0N或者 EP0N系统下行使用 1490nm的波长, 上行使 用 1260raTl360nm范围的波长, 两种无源光网络系统的工作波长不同, 因此可以通过 W1和 W2进行合波和分波, 以节省线路的铺设投入成本。
当所述 0NU为 TDM P0N系统的 0NU时, 所述 W接收 TDM P0N系统的 0NU发送的光 信号, 将所述光信号通过所述光分路器 115、 W2 以及 W1发送到所述第一光线路终端 上; 或者, 当所述 0NU为 WDM P0N系统的 0NU, W接收所述波分复用光网络单元发送 的光信号, 将所述光信号通过所述第一阵列波导光栅单元、 W2以及 W1发送到所述第 二光线路终端上。
优选地, 在本实施例中, 所述 0DN内还可以进一步包括第一法拉第旋转镜 (FRM, Faraday Rotator Mirror) FRM1 ; 所述 WDM PON系统的 OLT还可以包括第二阵列波导 光栅单元和第二法拉第旋转镜 (FRM2); 来自所述第二阵列波导光栅单元的下行光信号 依次经过所述 FRM2和所述 FRM1而传送至所述第一述阵列波导光栅单元。 WDM P0N系 统的 0NU内部的收发模块是与波长无关的, 其收发模块的激光器发射波长可以自动适 应所连接的第一阵列波导光栅单元的波长, 进而降低了系统的成本。
下面对 FRM1以及 FRM2的工作过程描述一下: 所述 0DN内的第一阵列波导光栅单 元所在分支端口的光模块内部的增益介质和第一法拉第旋转镜 (FRM1)在不同的波长 形成谐振, 形成不同的发射波长。 第一阵列波导光栅单元不仅作为合波和分波器, 也 作为腔内滤波器。 WDM P0N系统中的 0LT中的第二阵列波导光栅单元所在分支端口的 光模块内部的增益介质, 和第二法拉第旋转镜 (FRM2)在不同的波长形成谐振, 形成不 同的发射波长。 第二阵列波导光栅单元不仅作为合波和分波器, 也作为腔内滤波器。 上行和下行的发射波长不同。
在本实施例中, 可选地, 所述 WDM P0N系统的 0LT进一步包括: 环形器 125、 第 三波分复用器件 W3和第四波分复用器件 W4。
来自所述第二阵列波导光栅单元的光信号依次经过 FRM2、所述第三波分复用器件 W3和环形器 125被传送至所述第一波分复用器件 W1 ; 来自光分配网的光信号, 依次 经过第一波分复用器件 W 环形器 125、 第四波分复用器件 W4、 所述第三波分复用器 件被传送至 FRM2。
结合图 3, 具体信号流程如下:
对于 TDM P0N系统而言, 下行方向:
来自 TDM P0N系统的 0LT发射 1490nm的光信号, 通过第一波分复用器件 W1耦合 到主干光纤上。 进入 0DN的公共端口后, 被第二波分复用器件 W2解耦到 1*N光分路 器 115的公共端口, 然后被平均分配成 N份, 到达光分路器 115的 N个分支光纤。 在 每个分支光纤上承载的 1490nm的光信号, 再通过波分复用器件 W耦合并继而通过分 支光纤到达用户侧的 TDM PON 0NU 140。
对于 TDM P0N系统而言, 上行方向:
TDM P0N系统的 0NU发射 126(Tl360nm的光信号, 通过分支光纤传送至波分复用 器件 W耦合到 1*N光分路器 115的分支光纤上, 然后通过光分路器 115到达光分路器 115的公共端口, 再通过第二波分复用器件 W2进入主干光纤, 经由第一波分复用器件 W1发射至 TDM P0N系统。
对于 WDM P0N系统, 下行方向:
WDM P0N系统的 0LT发射的光信号可以适用 L波段, 也可以适用 C波段, 下面以 L波段为例说明。 下行的多个 L 波段信号从 FRM2出射后, 进入第三波分复用器件件 W3, 而后进入环形器 125的 1端口, 从环形器 125的 2端口输出, 再通过第一波分复 用器件件 W1耦合到主干光纤上。进入 0DN后,被第二波分复用器件件 W2解耦到 FRM1, 继而到达 1*N的第一阵列波导光栅单元 121的公共端口, 然后根据波长, 被分配到第 一阵列波导光栅单元 121的 N个分支光纤。 每个 AWG分支光纤上下行的 L 波段信号, 再通过波分复用器件 W耦合并继而通过 0DN的分支光纤到达用户侧 WDM 系统的 0NU 145。
对于 WDM P0N系统, 上行方向:
WDM P0N系统的 0NU发送的 C波段的光信号, 经过 0DN, 被波分复用器件 W耦合 到第一阵列波导光栅单元 121 的分支光纤, 然后通过第一阵列波导光栅单元 121 和 FRM1 , 到达第二波分复用器件 W2继而进入主干光纤。 到达第一波分复用器件 W1后, 被耦合到环形器 125的 2端口, 从环形器 125的 3端口输出, 再被第四波分复用器件 件 W4耦合到第三波分复用器件 W3。 继而通过 FRM2和 AWG 122, 再根据不同的波长, 被分配到不同的收发模块 TRx接收。
此外, WDM P0N 系统的 0LT 内可集成光时域反射仪(Optical Time Domain Reflectometer, OTDR)测试功能。如图 3所示,优选地,本实施例中的所述 WDM PON 0LT 可进一步包括用于进行线路测试的 0TDR生成器 135和 0TDR接收器 130。所述 0TDR码 型生成器 135通过连接的光开关阵列分别与任意所述收发模块 TRx相连。
所述 WDM P0N系统的 0LT进一步包括: 控制模块, 所述控制模块包括媒体接入控 制模块 (Media Access Control , MAC) 及中央处理 ( Central Processing Unit, CPU) 模块。 所述 OLT还包括: 至少一个收发模块 TRx以及连接开关阵列。 其中, 可选地, 所述 MAC及 CPU模块通过所述连接开关阵列和所述每一个 TRx相连; 同时,所述 0TDR 生成器 135通过所述连接开关阵列和每一个所述 TRx相连且与所述控制模块相连; 同 时 0TDR接收器 130与所述控制模块、 0TDR生成器 135相连。
在进行线路测试时, 0TDR生成器 135产生测试信号, 并经由所述连接开关阵列送 至所述任意一个 TRx。 所述测试信号由所述任意一个 TRx发出, 经过所述第二阵列波 导光栅单元而被传送至所述光分配网; 0TDR接收器 130接收在所述光分配网任一位 置的反射信号, 所述反射信号依次经过第一波分复用器件 Wl、环形器 125和第四波分 复用器件件 W4。
下面举例说明 WDM P0N系统的 0LT如何实现 0TDR功能。 控制模块发出测试命令 给 WDM P0N系统的 0LT, WDM PON系统的 0LT板根据自身情况, 使用不同的测试方式。 如果此时分支光纤 1连接的是 TDM P0N系统的 0NU, 则 WDM P0N系统的 0LT切换 TRxl 的连接开关, 断开控制模块与 TRxl的连接, 使 TRxl与 0TDR码型生成器 135相连。 启动测试程序, TRxl发射 L波段的测试光信号,所述测试光信号来自 0TDR生成器 135。 测试信号经过第一阵列波导光栅单元 122、 FRM2和第三波分复用器件 W3进入环形器 125的 1端口。 从环形器 125的 2端口输出后, 序通过第一波分复用器件 Wl、 主干光 纤, 进入圆, 再被第二波分复用器件 W2路由到 FRM1, 继而进入 1*N第一阵列波导 光删单元 121的公共端口。 由于此时的光信号是 TRxl发射的, 根据波长和所述第一 阵列波导光栅单元 121分支光纤的对应关系, 测试光信号被路由到所述第一阵列波导 光栅单元 121的第一个分支光纤, 再通过波分复用器件件^ 并继而通过 0DN的分支 光纤 1, 最终到达用户侧 WDM P0N系统的 0NU 145。 在整个过程中, 测试光信号从局 端发射后, 通过了主干光纤和分支光纤 1。 信号在这条线路上传输的过程中, 线路上 任意一点都会对测试信号产生反射, 反射信号会沿原路返回, 到达环形器 125的 2端 口。 反射信号会从环形器 125的 3端口输出, 到达第四波分复用器件件 W4。 因为此时 反射信号是 L 波段, 因此会被第四波分复用器件件 W4耦合到 0TDR接收器 130接收。 当这条线路上存在的任何缺陷和故障时, 反射信号会发生变化, WDM P0N系统的 0LT 可以根据 0TDR接收器 130接收信号的变化, 计算出故障类型和故障所处的位置。
如果此时分支光纤 1连接的是 WDM P0N系统的 0NU,说明此 TRx正在应用, WDM P0N 系统的 0LT不能立即开始 0TDR测试, 必须先做一些处理。 第一种方式, 接收到测试 命令后, WDM P0N系统的 0LT暂停数据的传送, 切换 TRxl 的连接开关, 断开控制某 快和 TRxl的连接, 使 TRxl与 0TDR码型生成器 135相连, 然后开始 0TDR测试。 此时 测试步骤和上一段介绍的相同。 测试完成后, 再重新开始数据传送。 第二种方式, 接 收到测试命令后, WDM P0N系统的 0LT不暂停数据传送, 切换 TRxl 的连接开关, 使 TRxl与 0TDR码型生成器 135和所述控制模块同时相连。 此时的 0TDR测试信号叠加 在正常的传输数据上, 形成二次调制。 后面的信号传输、 反射通道、 接收检测方式, 仍然和上一段的相同。
本发明实施例提供的一种 P0N系统, 同时支持 TDM P0N系统和 WDM P0N系统的共 存, 能够实现用户侧 0NU的按需升级, 而且系统中的 WDM P0N还可以用来进行光纤链 路故障诊断, 解决了大分支 TDM P0N中由于光分路器损耗过大, 无法实现分支光纤故 障检测的问题。
此外, 与 P0N系统相对应, 本发明实施例还提供一种对 P0N系统的升级的方法, , 如图 2所示, 所述光网络系统包括: 光线路终端、 光分配网、 波分复用器件和光网络 单元, 其特征在于, 所述光线路终端包括第一光线路终端和第二光线路终端; 所述光 分配网包括光分路器和第一阵列波导光栅单元, 所述第一光线路终端与所述光分路器 连接, 所述第二光线路终端与所述第一阵列波导光栅单元连接, 所述波分复用器件的 一端分别与所述光分路器以及所述第一阵列波导光栅单元连接, 所述波分复用器件的 另一端与所述光网络单元连接, 所述波分复用器件将通过所述光分路器的所述第一光 线路终端发射的光信号的波长, 以及通过所述第一阵列波导光栅的所述第二光线路终 端发射的光信号的波长复用到与所述光网络单元连接的各分支光纤上; 所述光网络单 元包括时分复用无源光网络系统的光网络单元和波分复用无源光网络系统的光网络 单元, 具体 P0N系统可以参见实施例二中的对图 2以及图 3的描述, 基于图 2以及图 3的结构, 所述升级方法包括:
当所述光网络单元为时分复用无源光网络系统的光网络单元时, 接收所述时分复 用光网络单元发送的光信号, 将所述光信号通过所述光分路器发送到所述第一光线路 终端上; 或者,
当所述光网络单元为波分复用无源光网络系统的光网络单元, 接收所述波分复用 光网络单元发送的光信号, 将所述光信号通过所述第一阵列波导光栅单元发送到所述 第二光线路终端上。
所述光网络系统还包括: 第一波分复用器件以及第二波分复用器件, 所述方法还 包括:
第一光线路终端发射的光信号的波长以及所述第二光线路终端发射的光信号的 波长通过所述第一波分复用器件后被耦合到主干光纤上; 所述耦合到主干光纤的波长 通过所述第二波分复用器件后被解复用到所述光分路器或者所述第一阵列波导光栅 单元上。
在所述光分配网内进一步包括第一法拉第旋转镜, 所述第二光线路终端还包括: 第二阵列波导光栅单元和第二法拉第旋转镜; 所述第二光线路终端发射的光信号的波 长经过所述第二阵列波导光栅和第二法拉第旋转镜后, 通过所述第一法拉第旋转镜发 射至所述第一阵列波导光栅单元上。 。
所述方法还包括:
在所述第二光线路终端内设置光时域反射仪生成器和光时域反射仪接收器; 进行线路测试时, 所述光时域反射仪生成器发送测试信号, 经过所述第二阵列波 导光栅单元被传送到所述光分配网; 所述光时域反射仪接收器接收在所述光分配网任 一位置的反射信号, 所述反射信号依次经过所述第一波分复用器件件、 所述环形器和 所述第四波分复用器件。
所述阵列波导光栅单元为阵列波导光栅或波导光栅路由器。 本发明实施例提供的 一种无源光网络系统升级方法, 当所述光网络单元为时分复用无源光网络系统的光网 络单元时, 所述波分复用器件接收所述时分复用光网络系统的光网络单元发送的光信 号, 将所述光信号通过所述光分路器发送到所述第一光线路终端上; 或者, 当所述光 网络单元为波分复用无源光网络系统的光网络单元时, 所述波分复用器件接收所述波 分复用无源光网络系统的光网络单元发送的光信号, 将所述光信号通过所述第一阵列 波导光栅单元发送到所述第二光线路终端上, 解决了光网络系统中对光网络单元的按 需升级, 使得用户侧既可以使用时分复用无源光网络系统的光网络单元, 又可以使用 波分复用无源光网络系统的光网络单元, 降低了系统的升级成本, 提高了用户的体验 程度。
本发明实施例还提供了一种光分配网, 所述光分配网包括: 光分路器和第一阵列 波导光栅单元, 以及波分复用器件, 所述波分复用器件的一端分别和所述光分路器以 及所述第一阵列波导光栅单元连接, 所述波分复用器件的另一端与光网络单元连接, 所述波分复用器件将通过所述光分路器的所述第一光线路终端发射的光信号的波长, 以及通过所述第一阵列波导光栅的所述第二光线路终端发射的光信号的波长复用到 与所述光网络单元连接的各分支光纤上; 所述光网络单元包括时分复用光网络系统的 光网络单元和波分复用光网络系统的光网络单元, 其中,
所述波分复用器件, 用于当所述光网络单元为时分复用无源光网络系统的光网络 单元时, 接收所述时分复用光网络系统的光网络单元发送的光信号, 将所述光信号通 过所述光分路器发送到所述第一光线路终端上; 或者,
所述波分复用器件, 用于当所述光网络单元为波分复用无源光网络系统的光网络 单元时, 接收所述波分复用无源光网络系统的光网络单元发送的光信号, 将所述光信 号通过所述第一阵列波导光栅单元发送到所述第二光线路终端上。
具体光分配网络的结构图可以参见实施例二中的对图 2的描述
本发明实施例提供的一种光分配网, 所述光配网包括光分路器、 第一阵列波导光 栅以及波分复用器件, 所述波分复用器件接收所述时分复用光网络系统的光网络单元 发送的光信号,将所述光信号通过所述光分路器发送到所述第一光线路终端上;或者, 当所述光网络单元为波分复用无源光网络系统的光网络单元时, 所述波分复用器件接 收所述波分复用无源光网络系统的光网络单元发送的光信号, 将所述光信号通过所述 第一阵列波导光栅单元发送到所述第二光线路终端上, 解决了光网络系统中对光网络 单元的按需升级, 使得用户侧既可以使用时分复用无源光网络系统的光网络单元, 又 可以使用波分复用无源光网络系统的光网络单元, 降低了系统的升级成本, 提高了用 户的体验程度。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤可以通过程 序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读取存储介质中, 该程序 在执行时, 执行包括上述方法实施例的步骤; 而前述的存储介质包括: R0M、 RAM, 磁碟 或者光盘等各种可以存储程序代码的介质。 最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限制; 尽 管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员应当理解: 其依 然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同 替换; 而这些修改或者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案 的精神和范围。

Claims

权利要求书
1、 一种无源光网络系统, 包括光线路终端、 光分配网、 波分复用器件和光网络 单元, 其特征在于, 所述光线路终端包括第一光线路终端和第二光线路终端; 所述光 分配网包括光分路器和第一阵列波导光栅单元, 所述第一光线路终端与所述光分路器 连接, 所述第二光线路终端与所述第一阵列波导光栅单元连接, 所述波分复用器件的 一端分别与所述光分路器以及所述第一阵列波导光栅单元连接, 所述波分复用器件的 另一端与光网络单元连接; 其中, 所述光网络单元包括时分复用光网络系统的光网络 单元和波分复用光网络系统的光网络单元;
所述波分复用器件, 用于将通过所述光分路器的所述第一光线路终端发射的光信 号的波长, 以及通过所述第一阵列波导光栅的所述第二光线路终端发射的光信号的波 长复用到与所述光网络单元连接的各分支光纤上;
当所述光网络单元为时分复用无源光网络系统的光网络单元时, 所述波分复用器 件用于接收所述时分复用光网络系统的光网络单元发送的光信号, 将所述光信号通过 所述光分路器发送到所述第一光线路终端上; 或者, 当所述光网络单元为波分复用无 源光网络系统的光网络单元时, 所述波分复用器件用于接收所述波分复用无源光网络 系统的光网络单元发送的光信号, 将所述光信号通过所述第一阵列波导光栅单元发送 到所述第二光线路终端上。
2、 如权利要求 1所述的无源光网络系统, 其特征在于,
所述无源光网络系统进一步包括第一波分复用器件以及第二波分复用器件, 所述 第一波分复用器件一端分别与所述第一光线路终端以及所述第二光线路终端相连, 所 述第一波分复用器件的另一端与所述第二波分复用器件的一端连接; 所述第二波分复 用器件的一端与所述第一波分复用器件连接, 所述第二波分复用器件的另一端分别与 所述光分路器以及所述第一阵列波导光栅单元连接; 其中,
所述第一波分复用器件, 用于将所述第一光线路终端发射的光信号的波长以及所 述第二光线路终端发射的光信号的波长耦合到主干光纤上;
所述第二波分复用器件, 用于将所述第一波分复用器件耦合到主干光纤的波长进 行解复用。
3、 如权利要求 2所述的无源光网络系统, 其特征在于,
所述光分配网内进一步包括: 第一法拉第旋转镜; 所述第一法拉第旋转镜的一端 与所述第二波分复用器件连接, 所述第一法拉第旋转镜的另一端与所述第一阵列波导 光栅单元连接;
所述第二光线路终端还包括:第二阵列波导光栅单元和第二法拉第旋转镜;其中, 所述第二光线路终端发射的光信号经过所述第二阵列波导光栅和第二法拉第旋转镜 后, 通过所述第一法拉第旋转镜到达所述第一阵列波导光栅单元上。
4、 如权利要求 3所述的无源光网络系统, 其特征在于, 所述第二 0LT进一步包 括: 环形器、 第三波分复用器件和第四波分复用器件;
经过所述第二阵列波导光栅单元的波长依次经过所述第二法拉第旋转镜、 所述第 三波分复用器件和环形器发射到所述第一波分复用器件。
5、 如权利要求 4所述的无源光网络系统, 其特征在于,
所述第二 0LT进一步包括用于进行线路测试的光时域反射仪生成器和光时域反射 仪接收器;
在进行线路测试时, 所述光时域反射仪生成器产生测试信号, 所述测试信号经过 所述第二阵列波导光栅单元被传送到所述光分配网;
所述光时域反射仪接收器接收在所述光分配网的反射信号, 所述反射信号依次经 过所述第一波分复用器件件、 所述环形器和所述第四波分复用器件。
6、 如权利要求 5所述的无源光网络系统, 其特征在于,
所述第二 0LT进一步包括控制模块、 至少一个收发单元以及连接开关阵列, 所述 控制模块通过所述连接开关阵列与每一个所述收发单元相连;
所述光时域反射仪生成器通过所述连接开关阵列, 与每一个所述收发单元及控制 模块相连;
所述光时域反射仪接收器与所述控制模块及所述光时域反射仪生成器相连。
7、 如权利要求 1-6 中任一项所述的无源光网络系统, 其特征在于, 所述阵列波 导光栅单元为阵列波导光栅或波导光栅路由器。
8、 一种光网络系统升级的方法, 所述光网络系统包括: 光线路终端、 光分配网、 波分复用器件和光网络单元, 其特征在于, 所述光线路终端包括第一光线路终端和第 二光线路终端; 所述光分配网包括光分路器和第一阵列波导光栅单元, 所述第一光线 路终端与所述光分路器连接, 所述第二光线路终端与所述第一阵列波导光栅单元连 接, 所述波分复用器件的一端分别与所述光分路器以及所述第一阵列波导光栅单元连 接, 所述波分复用器件的另一端与所述光网络单元连接, 所述波分复用器件将通过所 述光分路器的所述第一光线路终端发射的光信号的波长, 以及通过所述第一阵列波导 光栅的所述第二光线路终端发射的光信号的波长复用到与所述光网络单元连接的各 分支光纤上; 所述光网络单元包括时分复用无源光网络系统的光网络单元和波分复用 无源光网络系统的光网络单元,
所述方法包括:
当所述光网络单元为时分复用无源光网络系统的光网络单元时, 接收所述时分复 用光网络单元发送的光信号, 将所述光信号通过所述光分路器发送到所述第一光线路 终端上; 或者,
当所述光网络单元为波分复用无源光网络系统的光网络单元, 接收所述波分复用 光网络单元发送的光信号, 将所述光信号通过所述第一阵列波导光栅单元发送到所述 第二光线路终端上。
9、 如权利要求 8 所述的方法, 其特征在于, 所述光网络系统还包括: 第一波分 复用器件以及第二波分复用器件, 所述方法还包括:
第一光线路终端发射的光信号的波长以及所述第二光线路终端发射的光信号的 波长通过所述第一波分复用器件后被耦合到主干光纤上; 所述耦合到主干光纤的波长 通过所述第二波分复用器件后被解复用到所述光分路器或者所述第一阵列波导光栅 单元上。
10、 如权利要求 9所述的方法, 其特征在于, 所述方法还包括:
在所述光分配网内进一步包括第一法拉第旋转镜, 所述第二光线路终端还包括: 第二阵列波导光栅单元和第二法拉第旋转镜; 所述第二光线路终端发射的光信号的波 长经过所述第二阵列波导光栅和第二法拉第旋转镜后, 通过所述第一法拉第旋转镜到 达所述第一阵列波导光栅单元上。
11、 如权利要求 10所述的方法, 其特征在于, 所述方法还包括:
在所述第二光线路终端内设置光时域反射仪生成器和光时域反射仪接收器; 进行线路测试时, 所述光时域反射仪生成器发送测试信号, 经过所述第二阵列波 导光栅单元被传送到所述光分配网; 所述光时域反射仪接收器接收在所述光分配网任 一位置的反射信号, 所述反射信号依次经过所述第一波分复用器件、 所述环形器和所 述第四波分复用器件件。
12、 如权利要求 9-11 中任一项所述的方法, 其特征在于, 所述阵列波导光栅单 元为阵列波导光栅或波导光栅路由器。
13、 一种光分配网, 其特征在于, 所述光分配网包括光分路器和第一阵列波导光 栅单元, 以及波分复用器件, 所述波分复用器件的一端分别和所述光分路器以及所述 第一阵列波导光栅单元连接, 所述波分复用器件的另一端与光网络单元连接, 所述波 分复用器件将通过所述光分路器的所述第一光线路终端发射的光信号的波长, 以及通 过所述第一阵列波导光栅的所述第二光线路终端发射的光信号的波长复用到与所述 光网络单元连接的各分支光纤上; 所述光网络单元包括时分复用光网络系统的光网络 单元和波分复用光网络系统的光网络单元, 其中,
所述波分复用器件, 用于当所述光网络单元为时分复用无源光网络系统的光网络 单元时, 接收所述时分复用光网络系统的光网络单元发送的光信号, 将所述光信号通 过所述光分路器发送到所述第一光线路终端上; 或者,
所述波分复用器件, 用于当所述光网络单元为波分复用无源光网络系统的光网络 单元时, 接收所述波分复用无源光网络系统的光网络单元发送的光信号, 将所述光信 号通过所述第一阵列波导光栅单元发送到所述第二光线路终端上。
PCT/CN2011/081595 2011-10-31 2011-10-31 光网络系统、光网络系统升级的方法以及光分配网 WO2012149813A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/081595 WO2012149813A1 (zh) 2011-10-31 2011-10-31 光网络系统、光网络系统升级的方法以及光分配网
CN201180002047.6A CN102439996B (zh) 2011-10-31 2011-10-31 光网络系统、光网络系统升级的方法以及光分配网

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/081595 WO2012149813A1 (zh) 2011-10-31 2011-10-31 光网络系统、光网络系统升级的方法以及光分配网

Publications (1)

Publication Number Publication Date
WO2012149813A1 true WO2012149813A1 (zh) 2012-11-08

Family

ID=45986287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081595 WO2012149813A1 (zh) 2011-10-31 2011-10-31 光网络系统、光网络系统升级的方法以及光分配网

Country Status (2)

Country Link
CN (1) CN102439996B (zh)
WO (1) WO2012149813A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236898B (zh) * 2013-05-02 2016-01-20 重庆邮电大学 一种绿色节能的网络专有保护方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014094227A1 (zh) * 2012-12-18 2014-06-26 华为技术有限公司 光网络系统的通信方法、系统及装置
CN103281624A (zh) * 2013-06-20 2013-09-04 苏州彩云飞电子有限公司 多波长无源光网络系统
CN104422989B (zh) * 2013-08-26 2018-03-06 华为技术有限公司 光组件、光隔离器组件和光发射系统
WO2016061778A1 (zh) * 2014-10-23 2016-04-28 华为技术有限公司 光互联系统、节点、光网络控制器和传输数据的方法
CN106656402B (zh) * 2016-12-12 2018-07-31 南京理工大学 基于离散lcfbg和光纤反射镜的可调谐真延时实验装置及方法
CN106817323B (zh) * 2017-03-06 2023-08-22 南京曦光信息科技有限公司 一种可片上集成的物理层组播光交换节点装置及网络
US11444718B2 (en) * 2017-09-05 2022-09-13 Danmarks Tekniske Universitet Optical line terminal and optical fiber access system with increased capacity
CN113169799A (zh) * 2018-09-24 2021-07-23 丹麦科技大学 具有增强灵活性的光线路终端和光纤接入系统
CN113473268A (zh) * 2020-03-31 2021-10-01 华为技术有限公司 基于多路复用的通道识别方法及其装置
CN114070735B (zh) * 2021-11-02 2024-02-02 杭州电子科技大学 基于Manchester码与PAM4的组合码升级无源光网络的系统
CN114374901B (zh) * 2022-01-10 2024-04-19 国家电网有限公司信息通信分公司 一种qkd与光接入网融合的通信方法、装置及光网络系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070212072A1 (en) * 2006-02-03 2007-09-13 Iannone Patrick P Wavelength upgrade for passive optical networks
CN101309191A (zh) * 2008-05-30 2008-11-19 北京北方烽火科技有限公司 一种有局域网功能的tdma和wdm相混合pon系统
CN101355387A (zh) * 2007-07-26 2009-01-28 华为技术有限公司 光网络单元接入网络的方法、设备及系统
CN101562763A (zh) * 2009-06-04 2009-10-21 烽火通信科技股份有限公司 实现tdm-pon系统向wdm-pon系统平滑过渡的方法
CN101848403A (zh) * 2010-04-23 2010-09-29 中兴通讯股份有限公司 基于光码分多址复用的无源光网络系统及光线路终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070212072A1 (en) * 2006-02-03 2007-09-13 Iannone Patrick P Wavelength upgrade for passive optical networks
CN101355387A (zh) * 2007-07-26 2009-01-28 华为技术有限公司 光网络单元接入网络的方法、设备及系统
CN101309191A (zh) * 2008-05-30 2008-11-19 北京北方烽火科技有限公司 一种有局域网功能的tdma和wdm相混合pon系统
CN101562763A (zh) * 2009-06-04 2009-10-21 烽火通信科技股份有限公司 实现tdm-pon系统向wdm-pon系统平滑过渡的方法
CN101848403A (zh) * 2010-04-23 2010-09-29 中兴通讯股份有限公司 基于光码分多址复用的无源光网络系统及光线路终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236898B (zh) * 2013-05-02 2016-01-20 重庆邮电大学 一种绿色节能的网络专有保护方法

Also Published As

Publication number Publication date
CN102439996B (zh) 2013-12-18
CN102439996A (zh) 2012-05-02

Similar Documents

Publication Publication Date Title
WO2012149813A1 (zh) 光网络系统、光网络系统升级的方法以及光分配网
CN103650422B (zh) 多波长无源光网络的波长协商方法、系统和装置
US8180223B2 (en) System and method for extending reach in a passive optical network
CN102714545B (zh) 光收发模块、无源光网络系统、光纤检测方法和系统
US9025949B2 (en) Equalization delay agnostic protection switching in protected passive optical networks
US20090263122A1 (en) Method and apparatus for network diagnostics in a passive optical network
WO2015154267A1 (zh) 一种光时域反射仪实现装置及系统
EP1863207A1 (en) System and method for protecting an optical network
WO2012149810A1 (zh) 无源光网络系统及其下行传输方法
US9306700B2 (en) Method and device for transmitting optical signals
US20130089316A1 (en) Method and arrangements for protection in an optical network
WO2013075662A1 (zh) 共存无源光网络系统及上、下行光信号发送方法
CN103516431B (zh) 光电光中继器、长距盒及其对上下行光信号的处理方法
KR101762973B1 (ko) 다중포트 수동 광 네트워크 확장장치 및 이를 이용한 광신호 전송방법
WO2013075507A1 (zh) 数据发送方法及系统
US8565599B2 (en) System and method for transmitting optical markers in a passive optical network system
WO2012106920A1 (zh) 光模块及其突发发射方法、激光器及光网络系统
WO2021035487A1 (zh) 确定光网络终端连接的方法、设备及系统
TW201532396A (zh) 雙向五訊耦合收發系統及其方法
CN103516433B (zh) 一种光电光中继器、长距盒及对上下行光信号的处理方法
KR20150144280A (ko) 시간 및 파장 분할 다중 - 수동형 광 네트워크에서의 파장 튜닝 방법
WO2019109252A1 (zh) Pon系统中的数据发送和接收方法、网络设备及系统
WO2013097185A1 (zh) 波分复用/解复用器、自注入光纤激光器和光网络系统
KR100707244B1 (ko) 파장 분할 다중화 수동형 광 가입자 망의 보호 복구 장치및 그 방법
JP2009206899A (ja) 加入者宅側光回線終端装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002047.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11864720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11864720

Country of ref document: EP

Kind code of ref document: A1