WO2013097185A1 - 波分复用/解复用器、自注入光纤激光器和光网络系统 - Google Patents

波分复用/解复用器、自注入光纤激光器和光网络系统 Download PDF

Info

Publication number
WO2013097185A1
WO2013097185A1 PCT/CN2011/085044 CN2011085044W WO2013097185A1 WO 2013097185 A1 WO2013097185 A1 WO 2013097185A1 CN 2011085044 W CN2011085044 W CN 2011085044W WO 2013097185 A1 WO2013097185 A1 WO 2013097185A1
Authority
WO
WIPO (PCT)
Prior art keywords
common
waveguide
optical
branch
port
Prior art date
Application number
PCT/CN2011/085044
Other languages
English (en)
French (fr)
Inventor
刘德坤
徐之光
赵峻
林华枫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201180003264.7A priority Critical patent/CN102725981B/zh
Priority to PCT/CN2011/085044 priority patent/WO2013097185A1/zh
Publication of WO2013097185A1 publication Critical patent/WO2013097185A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures

Definitions

  • the present invention relates to communication technologies, and in particular, to a wavelength division multiplexing/demultiplexing device, a self-injection fiber laser, and an optical network system. Background technique
  • WDM-PON Wide Division Multiplexing Passive Optical Network
  • AWG Arrayed Waveguide Grating
  • WGR Wideguide Grating Router
  • the wavelengths on the AWG or WGR ports connected to each ONU transceiver module are different, which will cause the lasers of each ONU transceiver module to be different (because different ONU transceiver modules require lasers of different wavelengths) ), called the colored light module in the field of optical communication.
  • the use of colored light modules in ONUs can lead to a series of colored problems. For example, the ONUs of the respective users are different and cannot be used universally. It is very difficult for the operators to distribute the services. When the operators issue ONUs to the users, they need to It is known which port (or wavelength) of the AWG is connected to the fiber of the user's home, and also brings storage problems to the operator.
  • the ONUs of all WDM-PONs are guaranteed to be the same.
  • the industry has proposed the concept of WDM-PON colorless light sources.
  • the so-called colorless light source means that the ONU transceiver module is wavelength-independent.
  • the laser emission wavelength of the transceiver module can automatically adapt to the port wavelength of the connected AWG or WGR, and can be inserted on any AWG port or WGR port. Just fine.
  • various solutions have been proposed in the industry, such as the self-seeded WDM-PON system.
  • the AWG at the transmitting end simultaneously functions as a cavity filter at the transmitting end and a multiplexer for multiple users at the transmitting end.
  • each channel of the AWG is an intracavity filter from a seed laser that requires a filter curve of the AWG channel to have a narrow 3 dB bandwidth and maximum transmission at the center wavelength of the channel;
  • the AWG also acts to multiplex the signals from multiple users' lasers onto the same backbone fiber. Function, which requires the AWG to have a wide 3dB bandwidth and a flat transmission curve inside the channel.
  • the existing AWG has only one common waveguide, and it is impossible to optimize the lasing performance and signal multiplexing performance of the transmitting end at the same time, so that the performance of the self-injecting WDM-PON system based on the existing AWG is very limited and cannot meet the actual demand. Summary of the invention
  • Embodiments of the present invention provide a wavelength division multiplexing/demultiplexer, a self-injection fiber laser, and an optical network system, which are used to solve the problem that the existing wavelength division multiplexing/demultiplexer cannot simultaneously optimize the lasing of the self-injection laser at the transmitting end. Defects in performance and signal multiplexing performance.
  • a first aspect of the present invention provides a wavelength division multiplexing/demultiplexing device, including: a branch port, a first branch waveguide, an optical processing unit, at least two common waveguides, and at least two common ports;
  • the first common waveguide is connected to the first common port, and is connected to the second common port through the second common waveguide;
  • the branch port is connected to the optical processing unit through the first branch waveguide;
  • the wavelength of the first common waveguide is the same as the wavelength of the second common waveguide, and the bandwidth of the first common waveguide is smaller than the bandwidth of the second common waveguide;
  • the light processing unit is configured to receive an optical signal from the branch port through the first branch waveguide, and send the received optical signal from the first common port to a mirror through the first common waveguide Performing intracavity filtering; multiplexing the received optical signal from the second common port to the backbone fiber through the second common waveguide and transmitting to the peer device.
  • a second aspect of the present invention provides a self-injecting fiber laser, comprising: a laser, a wavelength division multiplexing/demultiplexing device, and a mirror;
  • the wavelength division multiplexing/demultiplexing device includes: a branch port, a first branch waveguide a light processing unit, at least two common waveguides, and at least two common ports;
  • the light processing unit is connected to the first common port through the first common waveguide, and is connected to the second common port through the second common waveguide, and the branch port passes through the first branch waveguide and the The light processing unit is connected; wherein, the wavelength of the first common waveguide is the same as the wavelength of the second common waveguide, and the bandwidth of the first common waveguide is smaller than the bandwidth of the second common waveguide; the laser is connected to the branch port; The mirror is connected to the first common port; the light processing unit is configured to receive, by the first branch waveguide, an optical signal sent by the laser from the branch port, by using the first common waveguide Transmitting the received optical signal from the first common port to the mirror to complete intracavity filtering; through the second common waveguide The received optical signal is multiplexed from the second common port to the backbone fiber and transmitted to the peer device.
  • a third aspect of the present invention provides an optical network system, including: an optical line terminal, an optical distribution network, and an optical network unit, wherein the optical line terminal is connected to the optical network unit through an optical distribution network, wherein the optical line
  • the above-described wavelength division multiplexing/demultiplexing device is included in the terminal and/or the optical network unit.
  • the wavelength division multiplexing/demultiplexing device has two common waveguides having the same wavelength but different bandwidths, and can utilize a narrow bandwidth.
  • the waveguide performs intracavity filtering on the transmitted signal, and uses a wide-bandwidth common waveguide for multiplexing the transmitted signal. Therefore, the wavelength division multiplexing/demultiplexing device provided by the embodiment of the present invention can simultaneously optimize the lasing performance and the signal complex. With performance, the performance of the self-injected WDM-PON system is significantly improved.
  • FIG. 1A is a schematic structural diagram of a wavelength division multiplexing/demultiplexing apparatus according to an embodiment of the present invention
  • FIG. 1B is a schematic diagram of an AWG with two common ports provided by an AWG provided by an embodiment of the present invention to a user side AWG according to an embodiment of the present invention
  • a schematic diagram of a connection mode between the AWG on the OLT side and the AWG on the user side In the case, a schematic diagram of a connection mode between the AWG on the OLT side and the AWG on the user side;
  • 1C is a schematic diagram of another connection manner between the OLT-side AWG and the user-side AWG in the case where the OLT-side AWG sends a signal to the user-side AWG by using the AWG with two common ports provided by the embodiment of the present invention;
  • FIG. 1D is a schematic diagram of a connection manner between the AWG on the OLT side and the AWG on the user side in the case where the user-side AWG sends a signal to the user-side AWG by using the AWG with two common ports provided by the embodiment of the present invention;
  • FIG. 1E shows a user-side AWG with two public ports provided by an embodiment of the present invention.
  • 1F is a schematic diagram showing a connection manner between an OLT-side AWG and a user-side AWG in a case where both the user-side AWG and the OLT-side AWG use the AWG having two common ports provided by the embodiment of the present invention
  • 2 is a schematic structural diagram of another AWG according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a connection manner between an OLT side AWG and a user side AWG when the OLT side and the user side both use the AWG provided by the embodiment of the present invention
  • FIG. 4 is a schematic diagram of the embodiment provided by the embodiment of the present invention. Schematic diagram of an AWG with two common ports formed by an improved AWG of a common port;
  • FIG. 5A is a schematic structural diagram of a self-injection fiber laser according to an embodiment of the present invention
  • FIG. 5B is a schematic structural view of another self-injection fiber laser according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of an optical network system according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another network system according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another optical network system according to an embodiment of the present invention.
  • DETAILED DESCRIPTION The wavelength division multiplexing/demultiplexing device provided by the embodiment of the present invention may be an AWG or a WGR.
  • FIG. 1A is a schematic structural diagram of a wavelength division multiplexing/demultiplexing apparatus according to an embodiment of the present invention.
  • the wavelength division multiplexing/demultiplexing device includes: a branch port, a first branch waveguide 1 1 , a light processing unit 12, and at least two common waveguides and at least two common ports.
  • the wavelength division multiplexing/demultiplexer may have a plurality of branch ports, and accordingly, there may be a plurality of first branch waveguides 11.
  • the light processing unit is connected to the first common port A through the first common waveguide 13, and is connected to the second common port B through the second common waveguide 14, and the branch port passes the first
  • the branch waveguide is connected to the light processing unit; wherein the wavelength of the first common waveguide is the same as the wavelength of the second common waveguide, and the bandwidth of the first common waveguide is smaller than the bandwidth of the second common waveguide.
  • the wavelength division multiplexing/demultiplexing device provided by the embodiment of the present invention has at least two common ports having the same wavelength but different bandwidths.
  • An optical processing unit configured to receive, by the first branch waveguide, an optical signal from the branch port, and send, by using the first common waveguide, the received optical signal from the first common port to a mirror, to complete Intracavity filtering; multiplexing the received optical signal from the second common port to the backbone fiber through the second common waveguide and transmitting to the peer device. Therefore, the wavelength division multiplexing/demultiplexing device provided by the embodiment of the present invention can be set at the central office of the telecommunication room, the branch port and The laser connection in the OLT transmission module can also be set on the user side, and the branch port is connected to the laser in the ONU transmission module or the laser in the plurality of ONT transmission modules.
  • the first branch waveguides connected to the respective branch ports are fed.
  • the optical processing unit after being processed by the optical processing unit, a part of the energy of all the light waves is output from the first common port through the first common waveguide having a narrow bandwidth, and is reflected back by the mirror connected to the first common port A, thereby Intracavity filtering; another portion of the energy is output from the second common port B via a wide bandwidth common waveguide. Further, the narrow-band optical signal output from the first common port is reflected back by the mirror, and then multiplexed to the main optical fiber via the second common port B.
  • the optical processing unit can function as an intracavity filter through the first common waveguide, and the bandwidth design can be separately optimized for the first common waveguide.
  • the bandwidth is designed to be narrower, and the transmission peak is consistent with the center wavelength of the channel, thereby improving the performance of the transmitted signal.
  • the second common waveguide can function to multiplex all received optical signals of different wavelengths into one optical fiber, so that the bandwidth of the common waveguide can be designed to be wide, and the transmission curve is flat, so that the signal is relatively flat. All of the spectrums have almost the same insertion loss, thus improving the performance of the multiplexed optical signal.
  • the first common waveguide may be set to a Gaussian type
  • the second common waveguide may be set to a flat type, such that the channel-to-wavelength transmission curve formed by the first common waveguide and each of the first branch waveguides is Gaussian
  • the transmission curve of the output of a common port A is Gaussian
  • the transmission curve of the channel formed by the second common waveguide and each of the first branch waveguides is flat
  • the transmission curve of the output of the second common port B is flat. Therefore, the first common port A can be a Gauss port and the second common port B can be a flat port.
  • the optical processing unit is further configured to receive, by the first common waveguide, an optical signal sent by the opposite device from the first common port, and demultiplex the optical signal to the first branch waveguide.
  • the optical processing unit is further configured to receive, by the second common waveguide, an optical signal sent by the opposite device from the second common port, and demultiplex the optical signal to the first branch waveguide . Therefore, the wavelength division multiplexing/demultiplexing device provided by the embodiment of the present invention may be disposed at a central office of the telecommunication equipment room, and the branch port is connected to the receiver in the OLT sending module; or may be set on the user side, and the branch port and the ONU send In the receiver of the module or in the ONT receiving module Receiver connection.
  • the branch ports can also be connected to the laser and the receiver through WDM respectively, and the signals of different transmission directions are respectively utilized in the wavelength division multiplexing/demultiplexing device by using the periodicity of the wavelength division multiplexing/demultiplexing device.
  • the free transmission area that is, the signals of different transmission directions respectively use different frequency bands, so that the wavelength division/multiplexer can simultaneously perform signal transmission and signal reception.
  • the AWG is used as an example to describe how the AWG 1 on the OLT side is connected to the AWG2 on the user side.
  • AWG1 is an AWG with two common ports provided by an embodiment of the present invention
  • the AWG2 may be an AWG with two common ports provided by the present invention, or may have a common port.
  • the first common port A with narrow bandwidth on the AWG1 is connected to a mirror. If the AWG 2 is an AWG having two common ports provided by the present invention, as shown in FIG.
  • the second common port B having a wide bandwidth on the AWG 1 can be connected to the second common port B of the wide bandwidth on the AWG 2 via the trunk fiber, AWG 2
  • the common waveguide corresponding to the second common port B demultiplexes the signal transmitted by the AWG1 to each branch waveguide of the AWG2; as shown in FIG. 1C, the second common port B with a wide bandwidth on the AWG1 can also be connected to the AWG2 via the trunk fiber.
  • the first public port A having a narrow bandwidth, the common waveguide corresponding to the first common port A of the AWG 2 demultiplexes the signal transmitted by the AWG1 to each branch waveguide of the AWG 2.
  • AWG2 is an AWG with two common ports provided by an embodiment of the present invention
  • the AWG 1 may be an AWG with two common ports provided by the present invention, or may have a common The AWG of the port.
  • the first common port A with narrow bandwidth on AWG2 is connected to a mirror.
  • a second common port B having a wide bandwidth on the AWG 2 may be connected to the second common port B having a wide bandwidth on the AWG 1 via the trunk fiber;
  • the second common port B having a wide bandwidth on the AWG 2 may also be connected to the first common terminal PA having a narrow bandwidth on the AWG 1 via the trunk fiber.
  • the AWG1 is set at the central office of the telecom equipment room.
  • the branch port of the AWG1 is connected to the OLT receiving and sending module.
  • the AWG2 is set on the user side, and the branch port of the AWG2 is connected to the ONU transceiver module or the ONT transceiver module.
  • AWG1 and AWG2 are both AWGs with two common ports provided by the present invention, and a second common port B having a wide bandwidth on the AWG2 is connected to the second common port B having a wide bandwidth on the AWG1 via the trunk fiber, and the periodicity of the AWG can be utilized.
  • the line signal and the downlink signal respectively use different free transmission areas (FSR) of the AWG, that is, the uplink signal and the downlink signal respectively use different frequency bands, so that the AWG1 can transmit signals to the AWG2 and also receive signals of the AWG2.
  • the AWG2 can The AWG1 sends a signal and can also receive the AWG1 signal. Therefore, the AWG1 connected to the OLT can be used to simultaneously multiplex the downlink signal and demultiplex the uplink signal, and the AWG2 connected to the ONU is also used to demultiplex the downlink signal and multiplex the uplink signal at the same time.
  • FSR free transmission areas
  • the wavelength division multiplexing/demultiplexing device provided by the embodiment of the present invention has two common waveguides having the same wavelength but different bandwidths, and can perform intracavity filtering on the transmitted signal by using a common waveguide with a narrow bandwidth, and is used for a wide bandwidth common waveguide.
  • the transmit signal is multiplexed. Therefore, the wavelength division multiplexing/demultiplexer provided by the embodiment of the present invention can simultaneously optimize lasing performance and signal multiplexing performance, and significantly improve the performance of the self-injected WDM-PON system.
  • FIG. 2 is a schematic structural diagram of another wavelength division multiplexing/demultiplexing apparatus according to an embodiment of the present invention.
  • the wavelength division multiplexing/demultiplexer provided in this embodiment further has a third common waveguide 15 and a third common port C.
  • a third common port is coupled to the light processing unit through the third common waveguide.
  • the wavelength of the three common waveguides is the same as the wavelengths of the first common waveguide and the second common waveguide of the opposite wavelength division multiplexing/demultiplexer.
  • an optical processing unit configured to receive, by the third common waveguide, an optical signal sent by the opposite device from the third common port, and demultiplex the optical signal to the first branch waveguide.
  • the wavelength division multiplexing/demultiplexing device can demultiplex the signals received from the peer device to the respective first branch waveguides.
  • the third common waveguide may be set to a Gaussian type or a flat type.
  • AWG1 and AWG2 are respectively AWGs having three common ports provided by embodiments of the present invention, wherein the third common port C of AWG1 has the same wavelength as the common ports A and B of AWG2.
  • the second common port B of the AWG 1 is connected to one circulator, then connected to the third common port C of the AWG 2 via the trunk fiber and the other circulator, and the second common port B of the AWG 2 is connected to the second circulator, and then through the trunk fiber Connect to the third common port C of AWG1.
  • the signal sent by the AWG1 to the AWG2 is multiplexed to the trunk fiber via the second common port B, and is transmitted to the AWG2 through the trunk fiber, and is demultiplexed to the respective first branch waveguides of the AWG2 through the third common port C of the AWG2.
  • the signal sent by AWG2 to AWG1 is multiplexed to the backbone fiber via the second common port B, and transmitted to the AWG1 via the backbone fiber.
  • the first common branch waveguide of the AWG 1 is demultiplexed through the third common port C of the AWG 1.
  • the wavelength division multiplexing/demultiplexing device with two common ports may be composed of two wavelength division multiplexing/demultiplexing devices with different bandwidths and multiple optical beam splitters.
  • a 2xN AWG consists of two different bandwidth AWGs and multiple beam splitters.
  • AWG1 and AWG2 may be AWGs having a common waveguide, respectively.
  • the number of branch waveguides of AWG1 is the same as the number of branch waveguides of AWG2, and the number of optical beam splitters is the same as the number of branch waveguides of AWG1.
  • the common waveguide of AWG1 is narrower than the common waveguide bandwidth of AWG2.
  • Each branch waveguide is connected to an optical beam splitter, and each of the optical beam splitters is connected to AWG1 and AWG2, respectively. Accordingly, an AWG having three common ports can be composed of three AWGs having one common port and a plurality of optical beamsplitters.
  • a wavelength division multiplexing/demultiplexing device having a common port can be modified to form a wavelength division multiplexing/demultiplexing device having two common ports provided by the embodiments of the present invention.
  • the wavelength division multiplexing/demultiplexing device further includes: an optical beam splitter and a second branch waveguide.
  • the branch port is connected to the first branch waveguide, the first branch waveguide is connected to the optical beam splitter, and the optical beam splitter is connected to the optical processing unit through the second branch waveguide.
  • the optical beam splitter is configured to send, by the second branch waveguide, an optical signal received by the first branch waveguide to the optical processing unit for processing.
  • the following uses the AWG as an example to illustrate a wavelength division multiplexing/demultiplexer having two common ports, which is composed of a wavelength division multiplexing/demultiplexer having a common port.
  • FIG. 4 is a schematic structural diagram of an AWG having two common ports formed by improving an AWG having a common port according to an embodiment of the present invention.
  • the AWG provided in this embodiment includes: a plurality of branch waveguides 41, a plurality of optical beam splitters 42, a first free propagation range (FPR) 43, and an array waveguide composed of a plurality of waveguides. 44 and a second free transfer zone 45 and two common waveguides.
  • the optical beam splitter, the first free transmission area, the array waveguide and the second free transmission area constitute an optical processing unit.
  • the first free transfer zone and the second free transfer zone may be in the shape of a circle.
  • Each branch waveguide is connected to the first free transfer region, and the first free transfer region is connected to the second free transfer region through the array waveguide.
  • Each branch waveguide is arranged as a Y branch, that is, each branch waveguide is respectively decomposed into two branch waveguides by one optical beam splitter, and the split branch waveguide is connected to the first free transmission area, and the second free transmission area is connected with the first branch.
  • a common waveguide 46 and a second public Waveguide 47 are common waveguide 46 and a second public Waveguide 47.
  • the optical signal entering each of the branch waveguides is incident on a point of the first free transmission region which produces an imaging point on the second free transmission region at which the second free transmission region is connected to a common waveguide.
  • a Y branch is added to each of the branch waveguides such that a portion of the optical signal entering from each of the branch waveguides is incident on another point of the first free transfer region, the portion of the optical signal being in the second free transfer region Imaging also moves to another point where a common waveguide is added. Therefore, the two imaging points of the second free transmission area are respectively connected to a common waveguide.
  • a flattening design is added for a wide-bandwidth common waveguide, for example, a wide-bandwidth common waveguide is designed to be tapered, and a common waveguide on a side connected to the Roland circle has a width larger than a width of the branch waveguide, thereby making the bandwidth wide.
  • the transmission curve of the common waveguide becomes a flat type.
  • Other AWG planarization techniques can also be employed, such as setting a wide-bandwidth common waveguide as a multimode interferometer ( ⁇ ) or a Mach-Zehnder interferometer (abbreviated as ⁇ ).
  • multimode interferometer
  • Mach-Zehnder interferometer
  • a common waveguide that is, a third common waveguide, may be further connected to the second free transmission region, so that the AWG can provide three common ports to the outside.
  • FIG. 5 is a schematic structural diagram of a self-injection fiber laser according to an embodiment of the present invention.
  • the present embodiment includes: a laser 51, a wavelength division multiplexing/demultiplexing unit 52, and a mirror 53.
  • the wavelength division multiplexing/demultiplexing unit 52 may be an AWG or a WGR; the laser 51 may be a wide spectrum gain laser.
  • the wavelength division multiplexing/demultiplexer 52 includes: a branch port, a first branch waveguide, an optical processing unit, at least two common waveguides, and at least two common ports through which the optical processing unit passes
  • the first common port connection is connected to the second common port through the second common waveguide, and the branch port is connected to the optical processing unit through the first branch waveguide.
  • the wavelength of the first common waveguide is the same as the wavelength of the second common waveguide, the bandwidth of the first common waveguide is smaller than the bandwidth of the second common waveguide; the laser is connected to the branch port; the mirror and the mirror
  • the first public port is connected.
  • the number of the lasers 51 is the same as the number of the first branch waveguides.
  • the second common port ⁇ is an optical signal output port of the self-injecting laser.
  • the light processing unit is configured to receive, by the first branch waveguide, an optical signal sent by the laser from the branch port, and use the first common waveguide to transmit the received optical signal from the first common.
  • the port is sent to the mirror to perform intracavity filtering; the received optical signal is multiplexed from the second common port to the backbone fiber by the second common waveguide and transmitted to the peer device.
  • wavelength division multiplexing/demultiplexer 52 The specific functions and structures of the wavelength division multiplexing/demultiplexer 52 can be described in the corresponding embodiment of FIG. 1A, and details are not described herein again.
  • the mirror 53 may be a partial mirror or a total reflection mirror. It is used to reflect all or part of the optical signal output from the common port A back.
  • the mirror is a Faraday Rotator Mirror (FRM).
  • FRM Faraday Rotator Mirror
  • the Faraday spin cylinder forms the FRM.
  • the wide-spectrum spontaneous emission spectrum of the broad-spectrum gain laser 51 is rotated by FRM and its polarization direction is rotated by 90°.
  • the broad-spectrum self-radiation spectrum of the broad-spectrum gain laser emitted in the TE mode is reflected by the FRM to become the TM mode, and the broad-spectrum spontaneous emission spectrum emitted in the TM mode is reflected by the TE to become the TE mode.
  • the polarization gain correlation in the self-injected laser can be attenuated, and the system is more resistant to random polarization interference.
  • the wide-spectrum gain laser may be an LD laser with a modulation function, such as a Reflective Semiconductor Optical Amplifier (RSOA) laser, or an injection-locked Fabry-Perot with low front-end reflection.
  • RSOA Reflective Semiconductor Optical Amplifier
  • IL FP-LD Laser Diode
  • the wavelength division multiplexing/demultiplexer in the self-injection fiber laser is an AWG, and the wide-spectrum gain laser first emits a wide-spectrum Amplified Spontaneous Emission (ASE), and the ASE passes through one of the branch ports of the AWG.
  • the final self-injection laser operates at the transmission peak wavelength determined by the AWG common port A channel.
  • the gain medium connected to all the branch ports forms a lasing optical signal, and a part of the energy is emitted through the second common port B.
  • the first common port A can only function as an intracavity filter, it can separately optimize the bandwidth design, design its bandwidth to be narrow, and the transmission peak is consistent with the center wavelength of the channel, thereby improving the performance of the transmitted signal.
  • the second common port B can only multiplex all the different wavelengths of light from all the branch gain media into one fiber, so the 3dB bandwidth can be designed to be wider and the transmission curve is flat, so that the pair All of the spectrum in the signal has almost the same insertion loss, thus improving the performance of the multiplexed optical signal.
  • an optical isolator or optical circulator may be added between the trunk fiber and the second common port B.
  • the wavelength division multiplexing/demultiplexer 52 is also provided with a third common port C.
  • the third common port is coupled to the light processing unit through the third common waveguide.
  • the optical processing unit is further configured to receive, by using the third common waveguide, an optical signal sent by the opposite device from the third common port, and demultiplex the optical signal to the first branch waveguide.
  • the specific functions and structures of the wavelength division multiplexing/demultiplexer 52 can be referred to in the corresponding embodiment of FIG. 2, and details are not described herein again.
  • FIG. 6 is a schematic structural diagram of an optical network system according to an embodiment of the present invention. As shown in Fig.
  • the optical line terminal 61 includes a wavelength division multiplexing/demultiplexing device having two common ports as shown in FIG. 1; or, as shown in FIG. 7, the optical network unit 63 includes two as shown in FIG. 1A.
  • a wavelength division multiplexing/demultiplexing device of the common port; or, as shown in Fig. 8, both the optical line terminal and the optical network unit include the wavelength division multiplexing/demultiplexing device having two common ports as shown in Fig. 1.
  • the wavelength division multiplexing/demultiplexing device in Fig. 6, Fig. 7, or Fig. 8 may also be a wavelength division multiplexing/demultiplexing device having three common ports as shown in Fig. 2.
  • For the specific connection mode refer to the description in the corresponding embodiment in FIG. 1A to FIG. 1F, and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明提供一种波分复用/解复用器、自注入光纤激光器和光网络系统。该波分复用/解复用器包括:分支端口、第一分支波导、光处理单元、至少两个公共波导和至少两个公共端口,其中,第一公共波导的波长与第二公共波导的波长相同,第一公共波导的带宽小于第二公共波导的带宽;光处理单元,用于通过第一分支波导从分支端口接收光信号,通过第一公共波导将接收到的光信号从第一公共端口发送到反射镜,完成腔内滤波;通过第二公共波导将接收的光信号从第二公共端口复用到主干光纤并发送到对端设备。本发明提供的波分复用/解复用器可同时优化激射性能和信号复用性能,显著提高了自注入WDM-PON系统的性能。

Description

波分复用 /解复用器、 自注入光纤激光器和光网络系统 技术领域 本发明实施例涉及通信技术, 尤其涉及一种波分复用 /解复用器、 自注 入光纤激光器和光网络系统。 背景技术
WDM-PON ( Wave Division Multiplexing Passive Optical Network, 波 分复用无源光网络) 系统在远端结点采用的是 AWG(Arrayed Waveguide Grating, 简称阵列波导光栅)或 WGR(Waveguide Grating Router, 波导光栅 路由器), 因此, 每个 ONU收发模块所连接的 AWG或 WGR端口上的波 长都是不相同的,会导致每个 ONU收发模块的激光器各不相同(因为不同 的 ONU收发模块要求采用不同波长的激光器),在光通信领域称之为有色 光模块。 ONU 采用有色光模块会导致一系列的有色问题, 例如: 各自用 户家的 ONU各不相同, 无法通用; 给运营商的业务发放带了很大的困难, 运营商给用户发放 ONU时, 还需获知用户家的光纤接的是 AWG的哪个 端口(或哪个波长), 同时给运营商也带来仓储问题。
为了解决 ONU的有色问题, 保证所有 WDM-PON的 ONU都是一样 的, 业界提出了 WDM-PON无色光源的概念。 所谓无色光源, 是指 ONU 收发模块是与波长无关的,其收发模块的激光器发射波长可以自动适应所 连接的 AWG或 WGR的端口波长, 实现在任何一个 AWG端口或 WGR 端口上都可以即插即可。 为了实现低成本的 WDM-PON无色激光器, 业 界提出了各种解决方案,如自种子 WDM - PON系统。自种子 WDM - PON 系统, 无需昂贵的宽谱种子光源, 结构简洁, 具有低成本的潜力。 自种子 WDM - PON系统中, 发射端的 AWG同时承担着发射端的腔内滤波器和 发射端多个用户的复用器的功能。 一方面, AWG的每一个通道是自种子 激光器的腔内滤波器, 其要求 AWG通道的滤波曲线能够具有较窄的 3dB 带宽, 并且在通道的中心波长处具有最大的透射率; 另外一个方面, AWG 还起着将多个用户的激光器发出的信号复用到同一根主干光纤上的复用 功能, 其要求 AWG具有较宽的 3dB带宽, 通道内透射曲线比较平坦。 然而, 现有 AWG只有一个公共波导, 无法同时优化发射端的激射性 能和信号复用性能, 使得基于现有 AWG的自注入 WDM - PON系统性能 非常有限, 无法满足实际需求。 发明内容
本发明实施例提供一种波分复用 /解复用器、自注入光纤激光器和光网 络系统,用以解决现有波分复用 /解复用器不能同时优化发射端自注入激光 器的激射性能和信号复用性能的缺陷。
本发明第一方面提供一种波分复用 /解复用器, 包括: 分支端口、 第一 分支波导、 光处理单元、 至少两个公共波导和至少两个公共端口; 所述光 处理单元通过所述第一公共波导与所述第一公共端口连接, 通过所述第二 公共波导与所述第二公共端口连接; 所述分支端口通过所述第一分支波导 与所述光处理单元连接; 其中, 第一公共波导的波长与第二公共波导的波 长相同, 第一公共波导的带宽小于第二公共波导的带宽;
所述光处理单元, 用于通过所述第一分支波导从所述分支端口接收光 信号, 通过所述第一公共波导将所述接收到的光信号从所述第一公共端口 发送到反射镜, 完成腔内滤波; 通过所述第二公共波导将所述接收的光信 号从所述第二公共端口复用到主干光纤并发送到对端设备。
本发明第二方面提供一种自注入光纤激光器, 包括: 激光器、 波分复 用 /解复用器和反射镜; 所述波分复用 /解复用器包括: 分支端口、 第一分 支波导、 光处理单元、 至少两个公共波导和至少两个公共端口;
所述光处理单元通过所述第一公共波导与所述第一公共端口连接, 通 过所述第二公共波导与所述第二公共端口连接, 所述分支端口通过所述第 一分支波导与所述光处理单元连接; 其中, 所述第一公共波导的波长与第 二公共波导的波长相同, 第一公共波导的带宽小于第二公共波导的带宽; 所述激光器与所述分支端口连接; 所述反射镜与所述第一公共端口连接; 所述光处理单元, 用于通过所述第一分支波导从所述分支端口接收所 述激光器发送的光信号, 通过所述第一公共波导将所述接收到的光信号从 所述第一公共端口发送到反射镜, 完成腔内滤波; 通过所述第二公共波导 将所述接收的光信号从所述第二公共端口复用到主干光纤并发送到对端 设备。
本发明第三方面提供一种光网络系统, 包括: 光线路终端, 光分配网 和光网络单元, 所述光线路终端通过光分配网与所述光网络单元连接, 其 特征在于, 所述光线路终端和 /或所述光网络单元中包括上述波分复用 /解 复用器。
本发明实施例提供的波分复用 /解复用器、自注入光纤激光器和光网络 系统, 波分复用 /解复用器有两个公共波导波长相同但带宽不同, 可利用带 宽窄的公共波导对发射信号进行腔内滤波, 利用带宽宽的公共波导用于对 发射信号进行复用, 因此, 本发明实施例提供的波分复用 /解复用器可同时 优化激射性能和信号复用性能, 显著提高了自注入 WDM - PON系统的性 能。 附图说明
图 1A为本发明实施例提供的一种波分复用 /解复用器结构示意图; 图 1B为 OLT侧 AWG采用本发明实施例提供的具有两个公共端口的 AWG向用户侧 AWG发送信号的情况下, OLT侧 AWG与用户侧 AWG 的一种连接方式示意图;
图 1C为 OLT侧 AWG采用本发明实施例提供的具有两个公共端口的 AWG向用户侧 AWG发送信号的情况下, OLT侧 AWG与用户侧 AWG 的另一种连接方式示意图;
图 1D为用户侧 AWG采用本发明实施例提供的具有两个公共端口的 AWG向用户侧 AWG发送信号的情况下, OLT侧 AWG与用户侧 AWG 的一种连接方式示意图;
图 1E为用户侧 AWG采用本发明实施例提供的具有两个公共端口的
AWG向用户侧 AWG发送信号的情况下, OLT侧 AWG与用户侧 AWG 的另一种连接方式示意图;
图 1F为用户侧 AWG和 OLT侧 AWG均采用本发明实施例提供的具 有两个公共端口的 AWG的情况下, OLT侧 AWG与用户侧 AWG的连接 方式示意图; 图 2为本发明实施例提供的另一种 AWG结构示意图;
图 3为 OLT侧与用户侧均采用本发明实施例提供的具有三个公共端 口的 AWG时, OLT侧 AWG与用户侧 AWG的一种连接方式示意图; 图 4为本发明实施例提供的对具有一个公共端口的 AWG改进后形成 的具有两个公共端口的 AWG的结构示意图;
图 5A为本发明实施例提供的一种自注入光纤激光器的结构示意图; 图 5B 为本发明实施例提供的另一种自注入光纤激光器的结构示意 图;
图 6为本发明实施例提供的一种光网络系统结构示意图;
图 7为本发明实施例提供的另一种网络系统结构示意图;
图 8为本发明实施例提供的又一种光网络系统结构示意图。 具体实施方式 本发明实施例提供的波分复用 /解复用器可以是 AWG, 也可以是 WGR。
图 1A为本发明实施例提供的一种波分复用 /解复用器结构示意图。 如 图 1A所示, 波分复用 /解复用器包括: 分支端口、 第一分支波导 1 1 , 光处 理单元 12和至少两个公共波导以及至少两个公共端口。 波分复用 /解复用 器可以有多个分支端口, 相应地, 可以有多个第一分支波导 11。
所述光处理单元通过所述第一公共波导 13与所述第一公共端口 A连 接, 通过所述第二公共波导 14与所述第二公共端口 B连接, 所述分支端 口通过所述第一分支波导与所述光处理单元连接; 其中, 第一公共波导的 波长与第二公共波导的波长相同, 第一公共波导的带宽小于第二公共波导 的带宽。本发明实施例提供的波分复用 /解复用器至少具有两个波长相同但 带宽不同的公共端口。
光处理单元, 用于通过所述第一分支波导从所述分支端口接收光信 号, 通过所述第一公共波导将所述接收到的光信号从所述第一公共端口发 送到反射镜, 完成腔内滤波; 通过所述第二公共波导将所述接收的光信号 从所述第二公共端口复用到主干光纤并发送到对端设备。 因此, 本发明实 施例提供的波分复用 /解复用器可以设置在电信机房的局端, 分支端口与 OLT发送模块中的激光器连接; 也可以设置在用户侧, 分支端口与 ONU 发送模块中的激光器或多个 ONT发送模块中的激光器连接。
当光波信号 λ1、 光波信号 λ2...光波信号 λΝ 分别从第 1个分支端口, 第 2个分支端口… 第 Ν个分支端口进入后, 通过与各分支端口连接的各 第一分支波导送入光处理单元, 经光处理单元处理后, 所有光波的一部分 能量经带宽窄的第一公共波导从第一公共端口 Α输出,并通过与第一公共 端口 A连接的反射镜反射回来, 从而起到腔内滤波作用; 另外一部分能量 会经带宽宽的公共波导从第二公共端口 B输出。 进一步, 从第一公共端口 输出的带宽窄的光信号通过反射镜反射回来后,可再经第二公共端口 B复 用到主光纤网。
由于本发明提供的波分复用 /解复用器至少具有两个公共波导,光处理 单元通过第一公共波导可起到腔内滤波器的作用, 可以对第一公共波导单 独进行带宽设计优化, 将其带宽设计得比较窄, 且透射峰值与通道的中心 波长一致, 从而提升发射信号的性能。 而第二公共波导可起到将接收到的 所有不同波长的光信号复用到一根光纤中的作用, 因此可以将该公共波导 的带宽设计得较宽, 透射曲线很平坦, 使得其对信号中所有的频谱都具有 几乎相同的插入损耗, 因而能够提高复用光信号的性能。
进一步, 可将第一公共波导设置为高斯型, 可将第二公共波导设置为 平坦型, 从而第一公共波导与各所述第一分支波导构成的通道对波长的透 射曲线为高斯型, 第一公共端口 A输出的透射曲线是高斯型, 所述第二公 共波导与各所述第一分支波导构成的通道对波长的透射曲线为平坦型, 第 二公共端口 B输出的透射曲线是平坦型。 因此, 第一公共端口 A可为高 斯端口, 第二公共端口 B可为平坦型端口。
进一步, 光处理单元, 还用于通过所述第一公共波导从所述第一公共 端口接收对端设备发送的光信号, 将所述光信号分别解复用到所述第一分 支波导。 或者, 所述光处理单元, 还用于通过所述第二公共波导从所述第 二公共端口接收对端设备发送的光信号, 将所述光信号分别解复用到所述 第一分支波导。 因此, 本发明实施例提供的波分复用 /解复用器可以设置在 电信机房的局端, 分支端口与 OLT发送模块中的接收机连接; 也可以设 置在用户侧,分支端口与 ONU发送模块中的接收机或 ONT接收模块中的 接收机连接。此外 ,分支端口也可通过 WDM分别与激光器和接收机连接, 利用波分复用 /解复用器的周期性,使不同传输方向的信号分别利用波分复 用 /解复用器内不同的自由传输区,即不同传输方向的信号分别利用不同的 波段, 从而波分 /复用器可以同时进行信号发射和信号接收。
以下以 AWG为例分情况说明 OLT侧的 AWG 1与用户侧的 AWG2的 连接方式。
将 OLT侧信号转发到用户侧的情况下: AWG1 为本发明实施例提供 的具有两个公共端口的 AWG , AWG2可以是本发明提供的具有两个公共 端口的 AWG,也可以是具有一个公共端口的 AWG。 AWG1上带宽窄的第 一公共端口 A连接一个反射镜。 如果 AWG2是本发明提供的具有两个公 共端口的 AWG, 如图 1B所示, 可以将 AWG1上带宽宽的第二公共端口 B经主干光纤连接至 AWG2上带宽宽的第二公共端口 B, AWG2的第二公 共端口 B对应的公共波导将 AWG1发送的信号解复用到 AWG2的各个分 支波导; 如图 1C所示, 也可以将 AWG1上带宽宽的第二公共端口 B经主 干光纤连接至 AWG2上带宽窄的第一公共端口 A, AWG2的第一公共端 口 A对应的公共波导将 AWG1发送的信号解复用到 AWG2的各个分支波 导。
将用户侧信号转发到 OLT侧的情况下: AWG2为本发明实施例提供 的具有两个公共端口的 AWG , AWG 1可以是本发明提供的具有两个公共 端口的 AWG,也可以是具有一个公共端口的 AWG。 AWG2上带宽窄的第 一公共端口 A连接一个反射镜。 如果 AWG1是本发明提供的具有两个公 共端口的 AWG, 如图 1D所示, 可以将 AWG2上带宽宽的第二公共端口 B经主干光纤连接至 AWG1上带宽宽的第二公共端口 B; 如图 1E所示, 也可以将 AWG2上带宽宽的第二公共端口 B经主干光纤连接至 AWG1上 带宽窄的第一公共端 P A。
如图 IF所示, AWG1设置在电信机房的局端, AWG1的分支端口与 OLT收发送模块连接, AWG2设置在用户侧, AWG2的分支端口与 ONU 收发模块或 ONT收发模块连接。 AWG1和 AWG2均为本发明提供的具有 两个公共端口的 AWG, AWG2上带宽宽的第二公共端口 B经主干光纤连 接至 AWG1上带宽宽的第二公共端口 B, 可以利用 AWG的周期性, 使上 行信号和下行信号分别利用 AWG不同的自由传输区 (FSR ) , 即上行信 号和下行信号分别利用不同的波段, 从而, AWG1 可以向 AWG2发送信 号, 也可以接收 AWG2的信号, 同样, AWG2可以向 AWG1发送信号, 也可以接收 AWG1的信号。 因此, 与 OLT连接的 AWG1可以同时用于复 用下行信号和解复用上行信号, 同样与 ONU连接的 AWG2也以同时用于 解复用下行信号和复用上行信号。
本发明实施例提供的波分复用 /解复用器,有两个公共波导波长相同但 带宽不同, 可利用带宽窄的公共波导对发射信号进行腔内滤波, 利用带宽 宽的公共波导用于对发射信号进行复用, 因此, 本发明实施例提供的波分 复用 /解复用器可同时优化激射性能和信号复用性能, 显著提高了自注入 WDM - PON系统的性能。
图 2为本发明实施例提供的另一种波分复用 /解复用器结构示意图。如 图 2所示, 本实施例提供的波分复用 /解复用器还具有第三公共波导 15和 第三公共端口 C。 第三公共端口通过所述第三公共波导与所述光处理单元 连接。三公共波导的波长与对端波分复用 /解复用器的第一公共波导和第二 公共波导的波长相同。
光处理单元, 还用于通过所述第三公共波导从所述第三公共端口接收 对端设备发送的光信号, 将所述光信号分别解复用到所述第一分支波导。
本实施例提供的波分复用 /解复用器,可将从对端设备接收的信号解复 用到各个第一分支波导。 第三公共波导可以设置为高斯型, 也可以设置为 平坦型。
如图 3所示, AWG1和 AWG2分别为本发明实施例提供的具有三个 公共端口的 AWG, 其中, AWG1的第三公共端口 C的波长与 AWG2的公 共端口 A和 B的波长相同。 AWG1的第二公共端口 B连接至一个环形器 , 之后经主干光纤和另一个环形器与 AWG2的第三公共端口 C连接, AWG2 的第二公共端口 B连接至第二环形器, 之后经主干光纤与 AWG1 的第三 公共端口 C连接。 因此, AWG1向 AWG2发送的信号经第二公共端口 B 复用到主干光纤, 经主干光纤传输到 AWG2时, 通过 AWG2的第三公共 端口 C解复用到 AWG2的各个第一分支波导。 同样, AWG2向 AWG1发 送的信号经第二公共端口 B 复用到主干光纤, 经主干光纤传输到 AWG1 时,通过 AWG1的第三公共端口 C解复用到 AWG1的各个第一分支波导。 本发明实施例提供的具有两个公共端口的波分复用 /解复用器,可以由 两个不同带宽的波分复用 /解复用器和多个光分束器组成。 以 AWG为例, 由两个不同带宽 AWG 和多个光分束器组成了一个 2xN AWG。 其中, AWG1和 AWG2可以分别是具有一个公共波导的 AWG。 AWG1的分支波 导的个数和 AWG2的分支波导的个数相同, 光分束器的个数与 AWG1的 分支波导的个数相同。 AWG1 的公共波导为带宽比 AWG2的公共波导带 宽窄。 每个分支波导连接有一个光分束器, 每个光分束器分别连接至 AWG1和 AWG2。 相应地, 具有三个公共端口的 AWG, 可由三个具有一 个公共端口的 AWG和多个光分束器组成。
另外,也可以对具有一个公共端口的一个波分复用 /解复用器进行改进 后形成本发明实施例提供的具有两个公共端口的波分复用 /解复用器。具体 地, 在图 1A对应的实施例的基础上, 波分复用 /解复用器还包括: 光分束 器和第二分支波导。 所述分支端口与所述第一分支波导连接, 所述第一分 支波导与所述光分束器连接, 所述光分束器通过所述第二分支波导与所述 光处理单元连接。 所述光分束器, 用于将第一分支波导收到的光信号分别 通过所述第二分支波导发送给所述光处理单元进行处理。 以下以 AWG为 例说明由对具有一个公共端口的一个波分复用 /解复用器进行改进后组成 的具有两个公共端口的波分复用 /解复用器。
图 4为本发明实施例提供的对具有一个公共端口的 AWG改进后形成 的具有两个公共端口的 AWG的结构示意图。 如图 4所示, 本实施例提供 的 AWG包括: 多个分支波导 41 , 多个光分束器 42、 第一自由传输区 (Free propagation range, 简称 FPR)43、 若干个波导组成的阵列波导 44和第二自 由传输区 45 以及两个公共波导。 其中, 光分束器、 第一自由传输区、 阵 列波导和第二自由传输区组成了光处理单元。 第一自由传输区和第二自由 传输区可以是罗圆形状。
每个分支波导与所述第一自由传输区连接, 第一自由传输区通过阵列 波导与第二自由传输区连接。 将每个分支波导设置成一个 Y分支, 即每个 分支波导分别经一个光分束器分解成两个分支波导, 分解后分支波导连接 至第一自由传输区, 第二自由传输区连接有第一公共波导 46和第二公共 波导 47。
每个分支波导进入的光信号入射到第一自由传输区的一个点上, 这些 光信号在第二自由传输区上产生一个成像点, 第二自由传输区在该点处连 接一个公共波导。每个所述分支波导上增设一个 Y分支后, 使得从每个分 支波导进入的光信号的其中一部分入射到第一自由传输区的另外一个点 上, 这部分光信号在第二自由传输区的成像也会移动到另外一个点, 在该 新成像点上增加一个公共波导。 因此, 第二自由传输区的两个成像点分别 连接一个公共波导。 其中, 为带宽宽的公共波导增加平坦化设计, 例如将 带宽宽的公共波导设计成锥形, 让其与罗兰圆相连的一侧的公共波导的宽 度大于分支波导的宽度, 从而使得带宽宽的公共波导的透射曲线变成平坦 型。 还可以采用其他的 AWG平坦化技术, 例如将带宽宽的公共波导设置 为多模波导结构 ( Multimode Interferometer , 简称 ΜΜΙ ) , 或者设置为马 赫曾德干涉仪结构 ( Mach-Zehnder interferometer , 简称 ΜΖΙ ) 。 进一 步, 为了减少增加的分支波导对相邻波导的串扰, 可以适当增加 AWG罗 兰圆的半径, 使得原有各个分支波导在罗兰圆上的间距更大一些。
进一步, 还可在第二自由传输区上再连接一个公共波导, 即第三公共 波导, 从而 AWG可向外部提供三个公共端口。
图 5Α为本发明实施例提供的一种自注入光纤激光器的结构示意图。 如图 5Α所示, 本实施例包括: 激光器 51、 波分复用 /解复用器 52和反射 镜 53。 其中, 波分复用 /解复用器 52可以是 AWG, 也可以是 WGR; 激光 器 51可以是宽谱增益激光器。
波分复用 /解复用器 52包括: 分支端口、 第一分支波导、 光处理单元、 至少两个公共波导和至少两个公共端口, 所述光处理单元通过所述第一公 共波导与所述第一公共端口连接, 通过所述第二公共波导与所述第二公共 端口连接, 所述分支端口通过所述第一分支波导与所述光处理单元连接。 其中, 所述第一公共波导的波长与第二公共波导的波长相同, 第一公共波 导的带宽小于第二公共波导的带宽; 所述激光器与所述分支端口连接; 所 述反射镜与所述第一公共端口连接。 其中, 激光器 51 的个数与第一分支 波导的个数相同。 第二公共端口 Β 为所述自注入激光器的光信号输出端 口。 所述光处理单元, 用于通过所述第一分支波导从所述分支端口接收所 述激光器发送的光信号, 通过所述第一公共波导将所述接收到的光信号从 所述第一公共端口发送到反射镜, 完成腔内滤波; 通过所述第二公共波导 将所述接收的光信号从所述第二公共端口复用到主干光纤并发送到对端 设备。
波分复用 /解复用器 52具体功能和结构, 可参见图 1A对应实施例中 描述, 在此不再赘述。
进一步, 反射镜 53 可以是部分反射镜, 也可以是全反射镜。 用于将 从公共端口 A输出的光信号全部或者部分反射回去。 进一步, 反射镜为法 拉第旋转反射镜(Faraday Rotator Mirror, 简称 FRM ) 。 例如, 在反射镜 前面增加一个单程 45。 的法拉第旋转筒形成 FRM。 宽谱增益激光器 51发 出的宽谱自发辐射谱经过 FRM反射后, 其偏振方向会旋转 90° 。 宽谱增 益激光器以 TE模式发射出的宽谱自发辐射谱经过 FRM反射后成为 TM模 式, 以 TM模式发射出的宽谱自发辐射谱经过 TE反射后成为 TE模式。 基于这种原理可以减弱自注入激光器中的偏振增益相关性, 也更有利于提 高系统抗随机偏振干扰的能力。
其中, 宽谱增益激光器可以是具有调制功能的 LD激光器, 例如可以 是反射半导体放大器 (Reflective Semiconductor Optical Amplifier, 简称 RSOA )激光器,或低前端面反射的注入锁定法布里-珀罗( Fabry-Perot Laser Diode , 简称 IL FP-LD )激光器, 或其它激光器。 例如自注入光纤激光器 中的波分复用 /解复用器为 AWG, 宽谱增益激光器首先发出宽谱的放大自 发辐射光 (Amplified Spontaneous Emission, 简称 ASE), ASE经过 AWG其 中的一个分支端口,只有 AWG该分支端口通道通带范围内的光可以通过, 通带以外的光被过滤或损耗掉,而且只有第一公共端 A对应的通道范围内 的光能经反射镜反射回来再次注入到激光器中, 这样多次往返形成谐振放 大。 最终自注入激光器工作在 AWG公共端口 A通道所决定的透射峰值波 长处。 同时, 所有分支端口上连接的增益介质形成激射后的光信号, 都会 有一部分能量通过第二公共端口 B发射出来。 由于第一公共端口 A可仅 起腔内滤波器的作用, 可以对其单独进行带宽设计优化, 将其带宽设计得 比较窄, 且透射峰值与通道的中心波长一致, 从而提升发射信号的性能。 而第二公共端口 B 可仅起将所有分支的增益介质发出来的不同波长的光 全部复用到一根光纤中, 因此可以将其 3dB带宽设计得较宽, 透射曲线很 平坦, 使得其对信号中所有的频谱都具有几乎相同的插入损耗, 因而能够 提高复用光信号的性能。
进一步, 为了防止主干光纤上的一些杂散反射光进入到腔内, 影响自 注入激光器的谐振,可以在主干光纤和第二公共端口 B之间增加光隔离器 或者光环行器。
如图 5B所示, 波分复用 /解复用器 52还提供有第三公共端口 C。 所 述第三公共端口通过所述第三公共波导与所述光处理单元连接。 其中, 所 述光处理单元, 还用于通过所述第三公共波导从所述第三公共端口接收对 端设备发送的光信号, 将所述光信号分别解复用到所述第一分支波导。 波 分复用 /解复用器 52具体功能和结构, 可参见图 2对应实施例中描述, 在 此不再赘述。 图 6为本发明实施例提供的一种光网络系统结构示意图。如图 6所示, 光线路终端 61 , 光分配网 62和光网络单元 63 , 所述光线路终端 61通过 光分配网 62与光网络单元 63连接。 其中, 光线路终端 61 中包括图 1所 示的具有两个公共端口的波分复用 /解复用器; 或者, 如 7所示, 光网络单 元 63中包括图 1A所示的具有两个公共端口的波分复用 /解复用器; 或者, 如 8所示, 光线路终端和光网络单元中均包括图 1所示的具有两个公共端 口的波分复用 /解复用器。 进一步, 图 6、 图 7或图 8中波分复用 /解复用器 也可以是如图 2所示的具有三个公共端口的波分复用 /解复用器。具体连接 方式, 可参见图 1A至图 1F对应实施例中描述, 在此不再赘述。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种波分复用 /解复用器, 其特征在于, 包括: 分支端口、 第一分 支波导、 光处理单元、 至少两个公共波导和至少两个公共端口; 所述光处 理单元通过所述第一公共波导与所述第一公共端口连接, 通过所述第二公 共波导与所述第二公共端口连接; 所述分支端口通过所述第一分支波导与 所述光处理单元连接; 其中, 第一公共波导的波长与第二公共波导的波长 相同, 第一公共波导的带宽小于第二公共波导的带宽;
所述光处理单元, 用于通过所述第一分支波导从所述分支端口接收光 信号, 通过所述第一公共波导将所述接收到的光信号从所述第一公共端口 发送到反射镜, 完成腔内滤波; 通过所述第二公共波导将所述接收的光信 号从所述第二公共端口复用到主干光纤并发送到对端设备。
2、 根据权利要求 1所述波分复用 /解复用器, 其特征在于, 所述波分 复用 /解复用器还包括: 光分束器和第二分支波导; 所述第一分支波导与所 述光分束器连接, 所述光分束器通过所述第二分支波导与所述光处理单元 连接; 所述光分束器, 用于将所述接收到的光信号分别通过所述第二分支 波导发送给所述光处理单元进行处理。
3、 根据权利要求 1或 2所述波分复用 /解复用器, 其特征在于, 所述 波分复用 /解复用器还包括: 第三公共波导以及第三公共端口; 所述第三公 共端口通过所述第三公共波导与所述光处理单元连接; 其中, 所述光处理 单元, 还用于通过所述第三公共波导从所述第三公共端口接收对端设备发 送的光信号, 将所述光信号分别解复用到所述第一分支波导。
4、 根据权利要求 1或 2所述波分复用 /解复用器, 其特征在于, 所述 光处理单元, 还用于通过所述第一公共波导从所述第一公共端口接收对端 设备发送的光信号,将所述光信号分别解复用到所述第一分支波导;或者, 所述光处理单元, 还用于通过所述第二公共波导从所述第二公共端口接收 对端设备发送的光信号, 将所述光信号分别解复用到所述第一分支波导。
5、 一种自注入光纤激光器, 包括: 激光器、 波分复用 /解复用器和反 射镜; 其特征在于, 所述波分复用 /解复用器包括: 分支端口、 第一分支波 导、 光处理单元、 至少两个公共波导和至少两个公共端口;
所述光处理单元通过所述第一公共波导与所述第一公共端口连接, 通 过所述第二公共波导与所述第二公共端口连接; 所述分支端口通过所述第 一分支波导与所述光处理单元连接; 其中, 所述第一公共波导的波长与第 二公共波导的波长相同, 第一公共波导的带宽小于第二公共波导的带宽; 所述激光器与所述分支端口连接; 所述反射镜与所述第一公共端口连接; 所述光处理单元, 用于通过所述第一分支波导从所述分支端口接收所 述激光器发送的光信号, 通过所述第一公共波导将所述接收到的光信号从 所述第一公共端口发送到反射镜, 完成腔内滤波; 通过所述第二公共波导 将所述接收的光信号从所述第二公共端口复用到主干光纤并发送到对端 设备。
6、 根据权利要求 5 所述自注入光纤激光器, 其特征在于, 所述波分 复用 /解复用器还包括: 光分束器和第二分支波导; 所述第一分支波导与所 述光分束器连接, 所述光分束器通过所述第二分支波导与所述光处理单元 连接; 所述光分束器, 用于将所述接收到的光信号分别通过所述第二分支 波导发送给所述光处理单元进行处理。
7、 根据权利要求 5或 6所述自注入光纤激光器, 其特征在于, 所述 波分复用 /解复用器还包括: 第三公共波导以及第三公共端口; 所述第三公 共端口通过所述第三公共波导与所述光处理单元连接; 其中, 所述光处理 单元, 还用于通过所述第三公共波导从所述第三公共端口接收对端设备发 送的光信号, 将所述光信号分别解复用到所述第一分支波导。
8、 根据权利要求 5或 6所述自注入光纤激光器, 其特征在于, 所述 光处理单元, 还用于通过所述第一公共波导从所述第一公共端口接收对端 设备发送的光信号,将所述光信号分别解复用到所述第一分支波导;或者, 所述光处理单元, 还用于通过所述第二公共波导从所述第二公共端口接收 对端设备发送的光信号, 将所述光信号分别解复用到所述第一分支波导。
9、 根据权利要求 7所述自注入光纤激光器, 其特征在于, 所述反射 镜为法拉第旋转反射镜。
10、 一种光网络系统, 包括: 光线路终端, 光分配网和光网络单元, 所述光线路终端通过光分配网与所述光网络单元连接, 其特征在于, 所述 光线路终端和 /或所述光网络单元中包括如权利要求 1-4 所述的任意一波 分复用 /解复用器。
PCT/CN2011/085044 2011-12-30 2011-12-30 波分复用/解复用器、自注入光纤激光器和光网络系统 WO2013097185A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180003264.7A CN102725981B (zh) 2011-12-30 2011-12-30 波分复用/解复用器、自注入光纤激光器和光网络系统
PCT/CN2011/085044 WO2013097185A1 (zh) 2011-12-30 2011-12-30 波分复用/解复用器、自注入光纤激光器和光网络系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/085044 WO2013097185A1 (zh) 2011-12-30 2011-12-30 波分复用/解复用器、自注入光纤激光器和光网络系统

Publications (1)

Publication Number Publication Date
WO2013097185A1 true WO2013097185A1 (zh) 2013-07-04

Family

ID=46950476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/085044 WO2013097185A1 (zh) 2011-12-30 2011-12-30 波分复用/解复用器、自注入光纤激光器和光网络系统

Country Status (2)

Country Link
CN (1) CN102725981B (zh)
WO (1) WO2013097185A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017219946A1 (en) * 2016-06-23 2017-12-28 Huawei Technologies Co., Ltd. Optical transceiver with a mirrored submount and a laser diode for laser-to-fiber coupling

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11115146B2 (en) 2017-03-31 2021-09-07 Nec Corporation Optical signal demultiplexing device, optical signal reception device, and optical signal demultiplexing method
CN109459823A (zh) * 2018-12-18 2019-03-12 青岛海信宽带多媒体技术有限公司 一种波分复用器及其光模块

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110033187A1 (en) * 2009-08-04 2011-02-10 Cisco Technology, Inc. Split/smart channel allocated wdm-pon architecture
WO2011110126A2 (zh) * 2011-04-22 2011-09-15 华为技术有限公司 自注入光收发模块和波分复用无源光网络系统
CN102204037A (zh) * 2011-05-10 2011-09-28 华为技术有限公司 自注入激光器、波分复用无源光网络系统及光线路终端

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69431513T2 (de) * 1993-07-07 2003-08-07 Nec Tokin Corp Fühler für elektrische felder
JP3013799B2 (ja) * 1997-01-28 2000-02-28 日本電気株式会社 波長多重光伝送用送信装置と受信装置
WO2008117713A1 (ja) * 2007-03-27 2008-10-02 Sumitomo Osaka Cement Co., Ltd. 光導波路素子の光軸調整方法及び光導波路素子
CN102082610B (zh) * 2009-12-01 2014-07-30 华为技术有限公司 自注入锁定光源、光源自注入锁定方法和系统
CN102143407B (zh) * 2010-01-29 2014-09-03 华为技术有限公司 一种波分复用的无源光网络的传输方法、系统及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110033187A1 (en) * 2009-08-04 2011-02-10 Cisco Technology, Inc. Split/smart channel allocated wdm-pon architecture
WO2011110126A2 (zh) * 2011-04-22 2011-09-15 华为技术有限公司 自注入光收发模块和波分复用无源光网络系统
CN102204037A (zh) * 2011-05-10 2011-09-28 华为技术有限公司 自注入激光器、波分复用无源光网络系统及光线路终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017219946A1 (en) * 2016-06-23 2017-12-28 Huawei Technologies Co., Ltd. Optical transceiver with a mirrored submount and a laser diode for laser-to-fiber coupling

Also Published As

Publication number Publication date
CN102725981B (zh) 2014-08-13
CN102725981A (zh) 2012-10-10

Similar Documents

Publication Publication Date Title
TWI452852B (zh) Optical transceivers and wavelength division multiplexing passive optical network system
US7706688B2 (en) Wavelength reconfigurable optical network
EP2819325B1 (en) Distributed base-station signal transmission system and communication system
US8543001B2 (en) Cascaded injection locking of fabry-perot laser for wave division multiplexing passive optical networks
US20140161446A1 (en) Optical amplifier (oa)-based reach extender and passive optical network system including the same
EP2732514B1 (en) Laser array mux assembly with external reflector for providing a selected wavelength or multiplexed wavelengths
WO2011124164A2 (zh) 自注入激光器、波分复用无源光网络系统及光线路终端
US9341774B2 (en) Optically matched laser array coupling assembly for coupling laser array to arrayed waveguide grating
US7398021B2 (en) Optical transmitter and passive optical network using the same
US9214790B2 (en) Filtered laser array assembly with external optical modulation and WDM optical system including same
CN103703710A (zh) 光接入网络
WO2012103847A2 (zh) 波分复用器及无源光网络系统
Grobe et al. PON Evolution from TDMA to WDM-PON
WO2013097185A1 (zh) 波分复用/解复用器、自注入光纤激光器和光网络系统
WO2012106920A1 (zh) 光模块及其突发发射方法、激光器及光网络系统
US9602216B2 (en) Reflective light-emitting device for a WDM PON optical access network, the device including a light source with an optical gain medium
EP2408125B1 (en) Optical transmitter for wdm passive optical network
TW201213910A (en) Reflective semiconductor optical amplifier for optical networks
WO2012103851A2 (zh) 一种远端节点和无源光网络系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180003264.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11878682

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11878682

Country of ref document: EP

Kind code of ref document: A1