WO2012103851A2 - 一种远端节点和无源光网络系统 - Google Patents

一种远端节点和无源光网络系统 Download PDF

Info

Publication number
WO2012103851A2
WO2012103851A2 PCT/CN2012/074159 CN2012074159W WO2012103851A2 WO 2012103851 A2 WO2012103851 A2 WO 2012103851A2 CN 2012074159 W CN2012074159 W CN 2012074159W WO 2012103851 A2 WO2012103851 A2 WO 2012103851A2
Authority
WO
WIPO (PCT)
Prior art keywords
division multiplexer
wavelength division
band
optical
port
Prior art date
Application number
PCT/CN2012/074159
Other languages
English (en)
French (fr)
Other versions
WO2012103851A3 (zh
Inventor
刘德坤
徐之光
林华枫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201280000453.3A priority Critical patent/CN102754453B/zh
Priority to PCT/CN2012/074159 priority patent/WO2012103851A2/zh
Publication of WO2012103851A2 publication Critical patent/WO2012103851A2/zh
Publication of WO2012103851A3 publication Critical patent/WO2012103851A3/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0261Optical medium access at the optical multiplex section layer
    • H04J14/0265Multiplex arrangements in bidirectional systems, e.g. interleaved allocation of wavelengths or allocation of wavelength groups

Definitions

  • a PON Passive Optical Network
  • OLT Optical Line Terminal
  • ODN Optical Network for branching/coupling or multiplexing/demultiplexing.
  • Optical Distribution Network optical distribution network
  • ONU Optical Network Unit
  • P0N can be divided into different types, namely ATM (Asynchronous Transfer Mode) based ATM-PON, Ethernet (Ethernet) based EPON (Ethernet over PON), with gigabit rate.
  • the OCMDA-PON generally the direction in which the optical signal is transmitted from the optical line terminal to the optical network unit is referred to as the downlink direction, and the direction in which the optical signal is transmitted from the optical network unit to the optical line terminal is referred to as the uplink direction.
  • Embodiments of the present invention provide a remote node and a passive optical network system capable of simultaneously realizing transmission of an optical signal in an uplink direction and an optical signal in a downlink direction with a large branch ratio.
  • an embodiment of the present invention provides a passive optical network system, including: an optical line terminal, a plurality of optical network units, and the optical line terminal and a remote node between the optical network units,
  • the optical network unit includes a first laser, and the first laser is configured to generate an optical signal of a first wavelength band;
  • the optical line terminal includes: at least one second laser, at least one third laser, and a first wavelength division multiplexer, wherein the second laser is connected to an odd or even branch port of the first wavelength division multiplexer, The third laser is connected to the even or odd branch port of the first wavelength division multiplexer, and the common port of the first wavelength division multiplexer is connected to the trunk fiber;
  • the second laser and the third laser are respectively used to generate optical signals of the second band and the third band;
  • the first wavelength division multiplexer is configured to multiplex the optical signal of the second wavelength band and the optical signal of the third wavelength band into the trunk optical fiber through a common port of the first wavelength division multiplexer, or
  • the optical signal of the autonomous optical fiber is demultiplexed to the respective branch ports of the first wavelength division multiplexer through a common port of the first wavelength division multiplexer;
  • the remote node includes a first band pass filter, a second band pass filter, a second wavelength division multiplexer and a first optical beam splitter, and the two common ports of the second wavelength division multiplexer respectively Connected to the two branch ports of the first optical beam splitter by a first band pass filter and a second band pass filter, the common port of the first optical beam splitter being connected to the trunk optical fiber;
  • the first optical beam splitter is configured to decompose the optical signal of the trunk optical fiber into optical signals of two branches, or multiplex the optical signals of the two branches to the main light Fiber
  • the first band pass filter is configured to pass optical signals of the first band and the third band and filter an optical signal of the second band
  • the second band pass filter is configured to pass the first band And the optical signal of the second wavelength band and filtering the optical signal of the third wavelength band
  • the second wavelength division multiplexer is configured to demultiplex optical signals of two common ports of the second wavelength division multiplexer to respective branch ports of the second wavelength division multiplexer or to multiplex the The optical signals of the respective branch ports of the second wavelength division multiplexer are to the two common ports of the second wavelength division multiplexer.
  • a remote node including: a first band pass filter, a second band pass filter, a second wavelength division multiplexer, and a first optical beam splitter,
  • Two common ports of the second wavelength division multiplexer are respectively connected to two branch ports of the first optical beam splitter through a first band pass filter and a second band pass filter, wherein the optical beam splitter Also includes a public port;
  • the first optical beam splitter is configured to decompose an optical signal of a common port of the first optical beam splitter into optical signals of two branches, or multiplex optical signals of the two branches To the public port;
  • the first band pass filter is configured to pass optical signals of the first band and the third band and filter the optical signals of the second band
  • the second band pass filter is configured to pass the optical signals of the first band and the second band Filtering the optical signal of the third band
  • the second wavelength division multiplexer is configured to demultiplex optical signals of two common ports of the second wavelength division multiplexer to respective branch ports of the second wavelength division multiplexer or to multiplex the The optical signals of the respective branch ports of the second wavelength division multiplexer are to the two common ports of the second wavelength division multiplexer.
  • the passive optical network system provided by the embodiment of the present invention adopts a dual common port parity-wavelength division multiplexer at the remote node, thereby simultaneously realizing the uplink signal and the downlink signal of the large branch ratio. transmission.
  • FIG. 2 is a schematic structural diagram of a passive optical network according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a passive optical network according to another embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a passive optical network according to another embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a passive optical network according to another embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a remote node according to another embodiment of the present invention. detailed description
  • AWG 1 have the frequency interval of adjacent channels in the first band of the band (referred to as Y band) as ⁇ f , and the channel spacing of the other AWG 2 in the Y band is also ⁇ f, but AWG2
  • the wavelength of each channel is offset by ⁇ 72 relative to the wavelength of the corresponding channel of AWG1.
  • the wavelength of the AWG channel has cyclic Cyclic characteristics, we will record the other two FSR (free spectral range) of AWG1 and AWG2 as the second and third bands, respectively, as X-band and z-band. This is only for the convenience of distinguishing the individual bands in the embodiment.
  • a name is defined for each band according to the order of wavelengths.
  • the names of the bands can be defined in other orders, and the arrows indicate the arrangement direction of the wavelength ⁇ .
  • the same wavelength division multiplexer used in the present invention the channel wavelength characteristic of the Waveguide Grating Router or the Etched Diffraction Grating is also the same.
  • an embodiment of the present invention provides a passive optical network system, including: an optical line terminal 101, a plurality of optical network units 102 (102-1 to 102-2n), and an optical line terminal 101 and an optical network unit.
  • the optical line terminal 101 includes a plurality of second lasers 1011 (1011-1 to 1011-n), a plurality of third lasers 1012 (1012-1 to 1012-n), and a first wavelength division multiplexer 1013.
  • the second wavelength division multiplexer 103 1 is configured to demultiplex the optical signals of the two common ports of the second wavelength division multiplexer 103 1 to the second wavelength division multiplexer 1 03 1 each branch port or an optical signal for multiplexing each branch port of the second wavelength division multiplexer 103 1 to two common ports of the second wavelength division multiplexer 103 1 ; wherein each of the first lasers 1021 are respectively connected To the branch port of the second wavelength division multiplexer 103 1 .
  • each branch port of the wavelength division multiplexer used in the system is also connected to the signal receiver Rx, and the system.
  • Each of the signal receivers and each of the lasers is a band-pass filter (BPF) that uses a bandpass for each of the transmitted or received wavelengths, wherein the bandpass filter can be implemented by a wavelength division multiplexer. That is, the WDM in Figure 2 (shown in Figure 2) is coupled to each branch port of the wavelength division multiplexer; the center wavelength of each second laser corresponds to the branch port of the wavelength division multiplexer connected thereto in the second band. The center wavelengths are consistent.
  • the center wavelength of each of the third lasers corresponds to the center wavelength of the third band corresponding to the branch port of the wavelength division multiplexer to which it is connected.
  • the first band pass filter and the second band pass filter in Fig. 2 are also realized by a wavelength division multiplexer WDM.
  • the passive optical network system provided by the embodiment of the present invention adopts a dual common port parity division multiplexer at the remote node to simultaneously realize the transmission of the optical signal in the uplink direction and the optical signal in the downlink direction with the large branch ratio. .
  • the second wavelength division multiplexer 103 1 includes two common ports and 2 XN branch ports; the band distribution according to the channel wavelength of the AWG according to FIG. 1 (ie, the wavelength band of the channel wavelength of the wavelength division multiplexer) Distribution case), it can be seen that the adjacent channel of each channel formed by an ordinary port and an odd or even branch port of 2 x N branch ports has a frequency interval of Af in each band; another common port and 2 x N Branch end
  • the adjacent channels of the even or odd branch ports in the port have a frequency interval of Af in each band; the respective channels formed by the common port and the odd branch port and the corresponding other common port and even branch port
  • Each channel has a frequency spacing of Af/2 over each band.
  • the remote node further includes: at least one mirror; a mirror connected to any common port of the second odd-pass waveguide wavelength division multiplexer, the first-band laser and the second odd-wavelength waveguide wavelength division multiplexer
  • the branch ports are connected to form a self-injection laser; the mirror is used to reflect a part of the optical signal as a seed source of the first laser; wherein the laser in the first band is a wide-spectrum gain laser;
  • FIG. 3 is a schematic structural diagram of a passive optical network system according to another embodiment of the present invention, wherein the wavelength division multiplexer takes an arrayed waveguide grating as an example, and the second wavelength division multiplexer in FIG. 3 is a 1 XN.
  • the grating structure consisting of the odd-array waveguide grating of the channel and the even-array waveguide grating of 1 XN channel, namely AWG 1 and AWG2 in Fig. 3, here assumes that AWG 1 is an odd AWG and AWG2 is an even AWG. Of course, the parity of the AWG is relative. It is also possible to set AWG 1 as an even AWG and AWG2 as an odd AWG. The following is a description of AWG 1 as an odd AWG and AWG2 as an even AWG.
  • This ASE passes through one of the AWG1 channels. Only AWG1 can pass light in the passband of the channel, and the light outside the passband is filtered or lost.
  • the ASE of the AWG1 in the passband of the channel is reflected back by the mirror 3303-1 on the common port, and is injected again into the laser, so that multiple round trips form resonance amplification.
  • the mirror is used to reflect a part of the optical signal as the seed light source of the first laser 3021. Therefore, the mirror 3303-1 can use a partial reflection mirror (PRM), and finally the RSOA is determined by the channel in the AWG1.
  • PRM partial reflection mirror
  • the lasing is formed at the transmission peak wavelength ⁇ , which constitutes a self-injecting laser with an emission wavelength of ⁇ , that is, a lasing light corresponding to the center wavelength of the channel is formed on each channel of the AWG1, and the implementation principle of the process on the AWG2 is the same. No longer repeat them.
  • the channel spacing in the Y-band FSR range is ⁇ f, respectively.
  • the channel wavelength of AWG1 is, in order, ⁇ ,, ... ⁇ 1 ⁇ _, and the channel wavelength of AWG2 is 2 , ⁇ 4 , ... ⁇ 2 ⁇ .
  • the X-band and ⁇ bands are the other two FSRs of AWG1 and AWG2, and their channel wavelengths in the X-band are respectively denoted as ⁇ , ⁇ ⁇ 3 , ...
  • the channel wavelengths in the ⁇ band are respectively " ⁇ , ⁇ ⁇ , ... ⁇ ⁇ 2 ⁇ _ ⁇ ⁇ , ⁇ ⁇ 4 , .j z 2N .
  • AWG1 , AWG2 Each branch channel is connected to an RSOA with gain amplification in the Y-band (ie, the first band), and a mirror is connected to the common port of the AWG1 and AWG2. The RSOA connected to a channel of the AWG1 is first issued.
  • ASE Analog Spontaneous Emission
  • this ASE passes through one channel of AWG1, only AWG1 can pass the ASE in the passband of the channel, and the light outside the passband is filtered or lost.
  • AWG1 The light in the range of this channel is reflected back by the mirror on the common port and injected into the laser again, so that multiple round trips form resonance amplification.
  • RSOA forms a lasing at the transmission peak wavelength determined by the AWG1 channel, which constitutes a self-injection laser with an emission wavelength of ⁇ .
  • the RSOA is connected to the channel of the AWG1, it and the channel of the AWG1 form a self-injection laser with an emission wavelength of ⁇ .
  • RSOA constitutes 2N lasers with emission wavelengths of 4, ⁇ 2 , , , ..j 2jV .
  • the wavelength is 4, ⁇ ,, .. j 2jV —
  • the light exits from the common port of the AWG1 passes through the mirror 3033-1 and the X-band band-stop to the Y-band and Z-band bandpass (ie can pass the first band and
  • the third band optical signal filters the first band pass filter 3032-1 of the second band optical signal to one branch port of the first beam splitter 3034; the wavelength is 2 , ⁇ 4 , ...
  • the channel of the first waveguide grating 3013AWG3 has a frequency interval of ⁇ f/2 in each band, where AWG3 includes one common port and 2 XN branch ports;
  • the adjacent channel of each channel consisting of an odd or even branch port of 2 ⁇ one branch port has a frequency interval of Af in each band; an even port or an odd branch port of the common port and 2 x N branch ports
  • the frequency interval of adjacent channels in each channel formed by each channel is Af; the frequency of each channel formed by each channel formed by the common port and the odd branch port and the corresponding common port and even branch port in each band range
  • the interval is Af/2, and the optical waves received by the AWG3 from the trunk fiber through the common port are respectively ⁇ 2 , ⁇ , , ... 2 ⁇ are demultiplexed into each corresponding receiver Rx.
  • the odd-numbered channels of the AWG3 all use the laser 3011 with the wavelength of the Z-band as the transmitter, and the emission wavelengths thereof are, in order, ⁇ ⁇ 3 ... ⁇ ⁇ _ ⁇
  • the even-numbered band of AWG3 uses the AWG X-band laser 3012 as the transmitter, and the emission wavelengths are, in order, ⁇ ⁇ 4 , ... ⁇ ⁇ 2 ⁇ .
  • ⁇ ⁇ _ ⁇ ⁇ ⁇ 2 , ⁇ ⁇ 4 , .../I enter the trunk fiber through the common port of AWG3, and then the first beam splitter 3034 enters the light beam Two branch ports of the beamer.
  • a branching port of the first beam splitter 3034 passes through the first band pass filter 3032-1 (WDM1) to sequentially sequence the X-band wavelengths, ⁇ 4 , ... ⁇ Filtered out , remaining, 3 , ..
  • the other branch port of the first beam splitter 3034 passes through the second band pass filter 3032-2 (WDM2) to sequentially sequence the Z-band wavelength as ⁇ , ⁇ , .. j z 2 V - the light wave is filtered out, and the remaining ⁇ ⁇ 4 ⁇ Enters the public port of AWG2 and then demultiplexes it into the receivers of the 2nd, 4th, 2nd users.
  • WDM2 second band pass filter
  • each branch port of the arrayed waveguide grating used in the system is also connected with a signal receiver Rx, and each signal receiver used in the system
  • Each optical amplifier or each laser is a band-pass filter (BPF) that is band-passed with a wavelength that is transmitted or received.
  • the band-pass filter can be implemented by a wavelength division multiplexer (WDM in the figure). As shown in the figure), it is connected to the arrayed waveguide grating; in addition, the first band pass filter and the second band pass filter are also realized by a wavelength division multiplexer WDM.
  • WDM wavelength division multiplexer
  • the wavelength division multiplexer used in FIG. 3 is an arrayed waveguide grating
  • the arrayed waveguide grating portion of FIG. 3 can also be a Waveguide Grating Router or an Etched Diffraction. Grating ) instead.
  • the first parity division multiplexer at the optical line terminal 401 can also adopt an l ⁇ N channel odd wavelength division multiplexer 4013-1 and an l xN channel octave division multiplexing.
  • the optical line terminal 401 in the system further includes: a comb filter 4014 (ITL, interleaver); a common port of the x-N channel odd-wavelength division multiplexer 4013-1 and a 1 XN channel
  • the common ports of the even wavelength division multiplexer 4013-2 are respectively connected to the two branch ports of the comb filter 4014 for the optical network unit in the trunk optical fiber received through the common port of the comb filter 4014 to the optical line terminal.
  • the optical signals are respectively demultiplexed to the common port of the odd-wavelength division multiplexer 4013-1 of the 1 x N channel and the common port of the even-wavelength division multiplexer 4013-2 of the 1 XN channel, for example, the backbone fiber in the figure Connected to the common port of the comb filter 4014 via the circulator 4016, the common port of the comb filter 4014 is connected to the port 3 of the circulator 4016, wherein the optical network unit to the light due to the unidirectionality of the circulator to the optical signal transmission
  • the optical signal of the line terminal can only be from the end of the circulator 2 is transmitted to the fiber backbone of the comb filter 4014
  • the public port, where the circulator only functions as a connection port of course, other devices having the same function can also be used.
  • the branch port on the multiplexer 4013-2 uses an X-band transmitter, and then uses the third band pass filter to multiplex the 1 x N channel odd-wavelength division multiplexer 4013-1, 1 N channel
  • the transmitted optical signal on the common port of the 4013-2 is multiplexed onto port 1 of the circulator 4016 and then transmitted over port 2 to the backbone fiber, here using a bandpass filter 4015 (WDM3, for X) Band and Z-band bandpass, for Y-band band-stopping)
  • WDM3 bandpass filter
  • the odd-wavelength division multiplexer 4013-1, the 1 XN channel, the octave-multiplexer 4013-2 the transmitted optical signal on the common port
  • an exemplary band-pass filter WDM is also used on the common port of the odd-wavelength division multiplexer 4013-1 of the 1 ⁇ channel, and the even-wavelength division multiplexer 4013-2 of the N-channel as shown in the figure. To couple the light waves of a particular band that it emits or receives.
  • each branch port of the wavelength division multiplexer used in the system is also connected with a signal receiver Rx, and each signal reception used in the system is also adopted.
  • each of the optical amplifiers or each of the lasers is a band-pass filter (BPF) that is band-passed with a wavelength that is transmitted or received.
  • the band-pass filter can be realized by a wavelength division multiplexer.
  • Medium WDM shown in Figure 4
  • the wavelength division multiplexer unit in Figure 4 The Array Waveguide Grating, the Waveguide Grating Router or the Etched Diffraction Grating can be used.
  • the mirror used in the above embodiment can also be a Faraday Rotator Mirror (FRM, Faraday Rotator Mirror).
  • FRM Faraday Rotator Mirror
  • the broad spectrum spontaneous emission spectrum emitted by the laser is subjected to Faraday rotation.
  • the mirror is reflected, its polarization direction will be rotated by 90 °.
  • the TE mode emitted by the laser is reflected back by the FRM to become the TM mode, and the emitted TM mode is converted back to TE by the TE mode.
  • the polarization gain correlation in self-injected lasers is also more conducive to improving the system's ability to resist random polarization interference.
  • the above embodiment is described by taking an autonomous input laser as an example.
  • the system provided by the embodiment of the present invention is applicable to a passive optical network using a seed light source or a tunable laser, but the system does not need to be used at this time.
  • the mirror provides the self-injected light seed, but uses the seed source or the tunable laser directly as the first laser of the optical network unit as the user end, that is, the mirror is not needed in the system, as shown in FIGS.
  • the center wavelength of each of the first lasers corresponds to the center wavelength of the first wavelength band corresponding to the branch port of the wavelength division multiplexer connected thereto, and the center wavelength of each of the second lasers and the wavelength division multiplexer connected thereto
  • the branch ports correspond to the center wavelengths of the second band
  • the center wavelength of each of the third lasers corresponds to the center wavelength of the third band corresponding to the branch port of the wavelength division multiplexer connected thereto.
  • an embodiment of the present invention provides a remote node 7, including: a first band pass filter 72-1, a second band pass filter 72-2, a second wavelength division multiplexer 73, and a a beam splitter 7 1 ,
  • the two common ports of the second wavelength division multiplexer 73 are connected to the two branch ports of the first optical beam splitter 71 through the first band pass filter 72-1 and the second band pass filter 72-2, respectively.
  • the optical beam splitter further includes a common port;
  • the first optical beam splitter 71 is configured to decompose the optical signal received by the common port into optical signals of two branches, or multiplex the optical signals of the two branches to its common port; Pass filter 72-1 for transmitting optical signals through the first and third bands And filtering the optical signal of the second band, and the second band pass filter 72-2 is configured to pass the optical signals of the first band and the second band and filter the optical signals of the third band;
  • the second wavelength division multiplexer 73 is configured to demultiplex the optical signals of the two common ports of the second wavelength division multiplexer 73 to the respective branch ports of the second wavelength division multiplexer 73 or to multiplex the second wavelength division
  • the optical signals of the respective branch ports of the multiplexer 73 are to the two common ports of the second wavelength division multiplexer 73.
  • the second wavelength division multiplexer 73 includes two common ports and two ⁇ branch ports; the band distribution according to the channel wavelength of the AWG according to FIG. 1 (ie, the wavelength band of the channel wavelength of the wavelength division multiplexer) Distribution case), it can be seen that the adjacent channel of each channel formed by an ordinary port and an odd or even branch port of 2 XN branch ports has a frequency interval of Af in each band; another common port and 2 ⁇ ⁇ An adjacent channel of each channel formed by an even or odd branch port in the branch port has a frequency interval of Af in each band; in addition, each channel formed by one common port and an odd branch port and another corresponding common port and The frequency interval of each channel formed by the even branch ports in each band range is Af/2.
  • the remote node provided by the embodiment of the present invention simultaneously realizes the simultaneous transmission of the optical signal in the uplink direction and the optical signal in the downlink direction of the large branch ratio by using a dual-port octave wavelength division multiplexer.
  • the first bandpass filter and the second bandpass filter in Figure 7 can be implemented by the wavelength division multiplexer WDM (as shown in Figure 7).
  • the second wavelength division multiplexer is an lx N channel odd wavelength division multiplexer 73-1 and a 1 XN channel even wavelength division multiplexer 73-2, the odd wave
  • the frequency division of the channel corresponding to the sub-multiplexer 73-1 and the even-wavelength division multiplexer 73-2 is Af/2 in each band range.
  • the remote node further includes: at least one mirror; and the mirror is configured to reflect a part of the optical signal. Each mirror is connected to any common port of the second odd-pass waveguide wavelength division multiplexer. Referring to FIG.
  • FRM Faraday Rotator Mirror
  • a Faraday Rotating Mirror When a Faraday Rotating Mirror is used instead of a normal mirror, the broad spectrum of spontaneous emission spectrum emitted by the laser can be rotated by 90° after being reflected by the Faraday rotator. The TE mode that emerges is reflected back by the FRM and becomes the TM mode. The emitted TM mode is converted back to TE by the TE mode. Based on this principle, the polarization gain correlation in the self-injected laser can be weakened, and it is also more beneficial to improve. The ability of the system to resist random polarization interference.
  • the remote node provided in the above embodiments can be applied to the passive optical network system provided by the embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Description

一种远端节点和无源光网络系统 技术领域
本发明涉及光通讯领域, 尤其涉及一种远端节点和无源光网络 系统。 背景技术
随着用户对带宽需求的不断增长, 传统的铜线宽带接入系统越 来越面临带宽瓶颈; 与此同时, 带宽容量巨大的光纤通信技术日益 成熟, 应用成本逐年下降, 光纤接入网成为下一代宽带接入网的有 力竟争者, 其中尤其以无源光网络更具竟争力。
通常而言, 一个 PON ( Passive Optical Network,无源光网络) 系统包括一个位于中心局的 OLT ( Optical Line Terminal , 光线路终 端 ), 一个用 于分支 /耦合或者复用 /解复用 的 0DN ( Optical Distribution Network , 光分配网 ) 以及若干 0NU ( Optical Network Unit , 光网络单元)。 居 P0N 实现的不同, P0N 可以分成不同的 类型, 分别是基于 ATM ( Asynchronous Transfer Mode , 异步传输模 式 ) 的 ATM-PON , 基于 Ethernet (以太网 ) 的 EPON ( Ethernet over PON ) ,具有千兆比特速率的 GPON( Gigabit Passive Optical Network, 千兆比特速率无源光网络),采用 WDM( Wave Division Multiplexing , 波分复用 )的 WDM-PON , 以及采用 OCDMA ( Optical Code Division Multiple Addressing , 光码分多址) 的 OCMDA-PON , —般从光线路 终端发送光信号给光网络单元的方向称为下行方向, 从光网络单元 发送光信号给光线路终端的方向称为上行方向。
由于现有的 WDM-PON系统应用有限, 一般应用在上行方向的 光信号的传输中, 或者应用在下行方向的光信号的传输, 无法同时 实现上行方向和下行方向的光信号的 同 时传输, 并且现有的 WDM-PON 系统支持的上行方向或者下行方向的光信号的分支比数 量有限, 无法满足大分支比的光信号的传输。 发明内容
本发明的实施例提供一种远端节点和无源光网络系统, 能够同 时实现大分支比的上行方向的光信号和下行方向的光信号的传输。
为达到上述目 的, 本发明的实施例采用如下技术方案: 一方面, 本发明实施例提供一种无源光网络系统, 包括: 光线 路终端、 多个光网络单元以及在所述光线路终端和所述光网络单元 之间的远端节点,
所述光网络单元包括第一激光器, 所述第一激光器用于产生第 一波段的光信号;
所述光线路终端包括: 至少一个第二激光器、 至少一个第三激 光器和第一波分复用器, 所述第二激光器连接所述第一波分复用器 的奇数或偶数分支端口, 所述第三激光器连接所述第一波分复用器 的偶数或奇数分支端口, 所述第一波分复用器的公共端口连接至主 干光纤; 其中,
所述第二激光器和第三激光器分别用于产生第二波段和第三波 段的光信号;
所述第一波分复用器用于将所述第二波段的光信号和所述第三 波段的光信号通过所述第一波分复用器的公共端口复用到所述主干 光纤, 或者, 将来自主干光纤的光信号通过所述第一波分复用器的 公共端口解复用到所述第一波分复用器的各个分支端口;
所述远端节点包括第一带通滤波器、 第二带通滤波器、 第二波 分复用器和第一光分束器, 所述第二波分复用器的两个公共端口分 别通过第一带通滤波器和第二带通滤波器连接至第一光分束器的两 个分支端口, 所述第一光分束器的公共端口连接至所述主干光纤; 其中,
所述第一光分束器, 用于将所述主干光纤的光信号分解为两个 支路的光信号, 或者, 将所述两个支路的光信号复用到所述主干光 纤;
所述第一带通滤波器用于通过所述第一波段和所述第三波段的 光信号并过滤所述第二波段的光信号, 所述第二带通滤波器用于通 过所述第一波段和所述第二波段的光信号并过滤所述第三波段的光 信号;
所述第二波分复用器用于解复用所述第二波分复用器的两个公 共端口的光信号至所述第二波分复用器各个分支端口或用于复用所 述第二波分复用器各个分支端口的光信号至所述第二波分复用器的 两个公共端口。
其中每个所述第一波段的激光器分别连接至所述第二波分复用 器的分支端口。
另一方面, 提供一种远端节点, 包括: 第一带通滤波器、 第二 带通滤波器、 第二波分复用器和第一光分束器,
所述第二波分复用器的两个公共端口分别通过第一带通滤波器 和第二带通滤波器连接至第一光分束器的两个分支端口, 其中所述 光分束器还包括一个公共端口; 其中,
所述第一光分束器, 用于将所述第一光分束器的公共端口的光 信号分解为两个支路的光信号, 或者, 将所述两个支路的光信号复 用到所述公共端口;
所述第一带通滤波器用于通过第一波段和第三波段的光信号并 过滤第二波段的光信号, 所述第二带通滤波器用于通过第一波段和 第二波段的光信号并过滤第三波段的光信号;
所述第二波分复用器用于解复用所述第二波分复用器的两个公 共端口的光信号至所述第二波分复用器各个分支端口或用于复用所 述第二波分复用器各个分支端口的光信号至所述第二波分复用器的 两个公共端口。
本发明的实施例提供的无源光网络系统, 在远端节点采用了一 个双公共端口的奇偶波分复用器, 进而能够同时实现大分支比的上 行方向的光信号和下行方向的信号的传输。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下 面将对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于 本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其他的附图。
图 1 为阵列波导光栅的通道波长示意图;
图 2为本发明实施例提供的一种无源光网络结构示意图; 图 3为本发明另一实施例提供的一种无源光网络结构示意图; 图 4为本发明又一实施例提供的一种无源光网络结构示意图; 图 5为本发明再一实施例提供的一种无源光网络结构示意图; 图 6为本发明另一实施例提供的一种无源光网络结构示意图; 图 7为本发明实施例提供的一种远端节点结构示意图;
图 8为本发明另一实施例提供的一种远端节点结构示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术 方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明 一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本 领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明保护的范围。
本发明实施例应用的波分复用器为包括: 阵列波导光栅 ( Array Waveguide Grating ) , 波导光栅路由器 ( Waveguide Grating Router ) 或者 刻蚀衍射光栅 ( Etched Diffraction Grating ), 其内部构造和工作原理相同, 参照图 1 所示, 示例性的以阵列波导光栅为例, 给出了阵列波导光 栅 ( AWG , arrayed waveguide grating )的通道波长示意图(其中 AWG 的每个分支端口和公共端口构成一条通道)。设 AWG 1在某个波段第 一波段(记为 Y波段) 光谱范围内相邻通道的频率间隔为为△ f , 而 另一 AWG2在 Y波段范围内其通道间隔也同样为△ f, 但是 AWG2 每个通道的波长相对于 AWGl 的对应通道的波长都偏移了 Δ ί72, 对 于这样的一对 AWG, 我们通常将其中一个称为奇 AWG, 另外一个 为偶 AWG。 由于 AWG通道的波长都有循环 Cyclic特性, 我们把 AWG1、 AWG2的另外两个 FSR( free spectral range, 自由光"普范围 ) 为第二波段和第三波段分别记为 X波段和 z波段, 当然这里只是为 了在实施例中方便区分各个波段, 因此按照波长的排列顺序给各个 波段定义的一个名称, 当然也可以是按照其他顺序给各个波段定义 名称, 图中箭头所示为波长 λ的排列方向, 相同的本发明中应用的 波分复用器: 波导光栅路由器 ( Waveguide Grating Router ) 或者刻蚀衍 射光栅 ( Etched Diffraction Grating ) 的通道波长特性也是这样的。
参照图 2所示, 本发明实施例提供一种无源光网络系统, 包括: 光线路终端 101、 多个光网络单元 102 ( 102-l〜102-2n ) 以及在光线 路终端 101 和光网络单元 102之间的远端节点 103, 其中, 每个光 网络单元 102 包括第一激光器 1021 ( 1021-l〜1021-2n ), 第一激光器 1021 ( 1021-l〜1021-2n ) 用于产生第一波段的光信号; 光线路终端 101 包括多个第二激光器 1011 ( 1011-l〜1011-n)、 多个第三激光器 1012 ( 1012-l〜1012-n )、 第一波分复用器 1013, 第二激光器 1011连 接第一波分复用器 1013 的奇数或偶数分支端口, 第三激光器 1012 连接第一波分复用器 1013 的偶数或奇数分支端口, 第一波分复用器 1013 的公共端 口 连接至主干光纤; 其中 , 第二激光器 1011 ( 1011-l〜1011-n )和第三激光器 1012 ( 1012-l〜1012-n )分别用于产 生第二波段和第三波段的光信号, 第一波分复用器 1013用于将第二 波段的光信号和第三波段的光信号通过第一波分复用器 1013 的公 共端口复用到主干光纤或将来自主干光纤的光信号通过第一波分复 用器 1013的公共端口解复用到第一波分复用器 1013各个分支端口; 远端节点 103 包括第二波分复用器 1031, 第一带通滤波器 1032-1、 第二带通滤波器 1032-2和第一光分束器 1033,第二波分复用器 1031 的两个公共端口分别通过第一带通滤波器 1032-1和第二带通滤波器 1032-2 连接至第一光分束器 1033 的两个分支端口, 第一光分束器 1033 的公共端口连接至主干光纤; 其中, 第一光分束器 1033 用于 将主干光纤的光信号分解为两个支路的光信号, 或者, 将两个支路 的光信号复用到主干光纤, 第一带通滤波器 1032- 1通过第一波段和 第三波段的光信号并过滤第二波段的光信号, 第二带通滤波器 1032-2 用于通过第一波段和第二波段的光信号并过滤第三波段的光 信号; 第二波分复用器 103 1 用于解复用第二波分复用器 103 1 两个 公共端口的光信号至第二波分复用器 1 03 1 各个分支端口或用于复 用第二波分复用器 103 1 各个分支端口的光信号至第二波分复用器 103 1 两个公共端口; 其中每个第一激光器 1021 分别连接至第二波 分复用器 103 1 的分支端口。
需要说明的是由于涉及到该系统涉及的信号有上行方向的光信 号和下行方向的光信号, 因此系统中采用的波分复用器的个各分支 端口还连接又信号接收机 Rx , 此外系统中采用的各信号接收机和各 激光器均是采用对各自发射或接收的波长带通的带通滤波器 ( BPF , band-pass filter ) , 其中带通滤波器可以通过波分复用器实现, 即图 2 中 WDM (如图 2所示) 与波分复用器的个各分支端口耦合; 另每个 第二激光器的中心波长与其相连的波分复用器的分支端口对应在第 二波段的中心波长相一致。 每个第三激光器的中心波长与其相连的 波分复用器的分支端口对应在第三波段的中心波长相一致。 此外图 2 中第一带通滤波器和第二带通滤波器也是通过波分复用器 WDM 实现。
这里本发明实施例提供的无源光网络系统在远端节点采用了一 个双公共端口的奇偶波分复用器进而同时实现了大分支比的上行方 向的光信号和下行方向的光信号的传输。
其中, 第二波分复用器 103 1 包括两个公共端口及 2 X N个分支 端口; 根据图 1 示出的按照 AWG的通道波长的波段分布情况( 即波 分复用器的通道波长的波段分布情况), 可知一公共端口和 2 x N个 分支端口中的奇数或偶数分支端口构成的各个通道中的相邻通道在 各个波段范围内的频率间隔为 Af; 另一公共端口和 2 x N 个分支端 口中的偶数或奇数分支端口构成的各个通道中的相邻通道在各个波 段范围内的频率间隔为 Af; —公共端口和奇数分支端口构成的各个 通道与相应的另一公共端口和偶数分支端口构成的各个通道在各个 波段范围内的频率间隔为 Af/2。
进一步的, 第二波分复用器 103 1 为一个 1 x N通道的奇波分复 用器和一个 1 x N通道的偶波分复用器,该奇波分复用器和该偶波分 复用器对应的通道在各个波段范围内的频率间隔为 Af/2。
可选的, 远端节点还包括: 至少一个反射镜; 一个反射镜与第 二奇偶波导波分复用器的任一公共端口相连, 第一波段的激光器与 第二奇偶波导波分复用器分支端口相连构成一个自注入激光器; 反 射镜用于反射一部分光信号用作第一激光器的种子光源; 其中第一 波段的激光器为宽谱增益激光器;
参照图 3 本发明另一实施例提出的一种无源光网络系统结构示 意图, 其中波分复用器以阵列波导光栅为例, 则图 3 中以第二波分 复用器为一个 1 X N通道的奇阵列波导光栅和一个 1 X N通道的偶阵 列波导光栅组成的光栅结构, 即图 3 中 AWG 1 和 AWG2 , 这里假设 AWG 1 为奇 AWG , AWG2为偶 AWG当然 AWG的奇偶是相对的因此 也可以设 AWG 1 为偶 AWG , AWG2为奇 AWG , 以下以 AWG 1 为奇 AWG , AWG2为偶 AWG进行说明。
此外, 用户端光网络单元 302 以采用 自注入式激光器为例, 则 第一激光器 3021采用一个反射式半导体光放大器( RSOA , reflective semiconductor optical amplifier ) 的宽谱增益激光器, 此时在远端节 点 303 还包括两个反射镜 3033 , 反射镜 3033 分别耦合在与第一带 通滤波器 3032- 1、 第二带通滤波器 3032-2连接的第二奇偶的两个公 共端口上,这里第二奇偶阵列波导光栅为一个 1 X N通道的奇阵列波 导光栅和一个 1 χ Ν通道的偶阵列波导光栅组成的光栅, 因此一个反 射镜 3033- 1 耦合在与第一带通滤波器 3032- 1 连接的 AWG 1 的公共 端口上、另一个反射镜 3033-2耦合在第二带通滤波器 3032-2连接的 AWG2 的公共端口上, 这样连接在 AWG 1 某个波长 ^的通道上的 RSOA首先发出宽语的放大自发辐射光(ASE, Amplified Spontaneous Emission), 此 ASE经过 AWGl 其中的一个通道, 只有 AWG1 该通 道通带范围 内的光可以通过, 通带以外的光被过滤或损耗掉了 , AWG1该通道通带范围内的 ASE在公共端口上又经过反射镜 3303-1 反射回来, 再次注入到激光器中, 这样多次往返形成谐振放大。 这 里反射镜用于反射一部分光信号用作第一激光器 3021 的种子光源, 以此这里的反射镜 3303-1 可以采用部分反射镜 ( PRM, partial reflection mirror ),最终 RSOA就在 AWGl该通道所决定的透射峰值 波长 ^处形成激射, 构成了一个发射波长为 ^的自注入激光器, 即在 AWG1 每个通道上形成一个对应该通道中心波长的激射光, 该过程 在 AWG2上的实现原理是相同的不再贅述。
对于光网络单元到光线路终端的光信号,即上行方向的光信号, 由于 AWG1、 AWG2分别为上述的奇 AWG、 偶 AWG, 其分别在 Y波段 FSR范围 内的通道间隔均为 △ f , 而 AWG1 的通道波长依次为 , λ,, ... λ_,, 而 AWG2的通道波长依次为 2, λ 4, ... λ 。 X波段和 Ζ 波段为 AWG1、 AWG2 的另外两个 FSR, 其在 X波段的通道波长分别 依次记为 ^, λχ 3, ... λΝ_γΆ. λχ 2, λχ 4, ... ΛΧ ; 同理其在 Ζ波段的通道波 长分别依次" ^己为 ^, λζ, ... λζ _^ λ\, λζ 4, .jz 2N。 AWG1、 AWG2 的 每个分支通道上都连接一个在 Y波段( 即第一波段)具有增益放大特 性的 RSOA, 在 AWG1、 AWG2的公共端口上连接一个反射镜。 这样 连接在 AWG1某个通道 ^上的 RSOA首先发出宽"普的放大自发辐射光 (ASE, Amplified Spontaneous Emission), 此 ASE经过 AWGl其中的 一个通道, 只有 AWG1 该通道通带范围内的 ASE可以通过, 通带以 外的光被过滤或损耗掉了, AWG1 该通道范围内的光在公共端口上 又经过反射镜反射回来, 再次注入到激光器中, 这样多次往返形成 谐振放大。 最终 RSOA就在 AWG1该通道所决定的透射峰值波长 处 形成激射, 构成了一个发射波长为 ^的自注入激光器。 当 RSOA连接 在 AWG1 的通道 ^上时,其与 AWG1 的 ^通道就又构成了一个发射波 长为 ^的 自注入激光器。 这样与 AWG1、 AWG2 每个通道相连的 RSOA就构成了 2N个发射波长依次为 4, λ2, ,, ..j2jV的激光器。 其 中波长为 4, λ,, .. j2jV— ,光从 AWG1 的公共端口 出射, 通过反射镜 3033-1 和对 X波段带阻对 Y波段和 Z波段带通 (即可以通过第一波段 和第三波段的光信号过滤第二波段的光信号 ) 的第一带通滤波器 3032-1 至第一光分束器 3034 的一个分支端口; 波长为 2, λ 4, ... λ 的光从 AWG2 的公共端口出射, 通过反射镜 3033-2 和对 Ζ波段 带阻对 Υ波段和 X波段带通 (即可以通过第一波段和第二波段的光信 号过滤第三波段的光信号 ) 的第二带通滤波器 3032-2至第一光分束 器 3034的另一个分支端口, 此处第一光分束器 3034为 1 χ 2的光分 束器包括两个分支端口和一个公共端口 , 然后通过第一光分束器 3034的公共端口进入主干光纤。在光线路终端 301( OLT, optical line terminal ), 第一波导光栅 3013AWG3 的通道在各个波段范围内的频 率间隔为△ f/2 , 这里 AWG3 包括一个公共端口和 2 X N个分支端口; 其中公共端口和 2 χ Ν个分支端口 中的奇数或偶数分支端口构成的 各个通道中的相邻通道在各个波段范围内的频率间隔为 Af; 公共端 口和 2 x N个分支端口 中的偶数或奇数分支端口构成的各个通道中 的相邻通道在各个波段范围内的频率间隔为 Af; 公共端口和奇数分 支端口构成的各个通道与相应的公共端口和偶数分支端口构成的各 个通道在各个波段范围内的频率间隔为 Af/2 , AWG3通过公共端口从 主干光纤收到的波长分别为 λ2, λ,, ... 2^的光波分别解复用到每 个相应的接收机 Rx中。
对于光线路终端到光网络单元的光信号, 即下行方向上的光信 号, AWG3的奇数通道全部采用波长为 Z波段的激光器 3011作为发 射机,其发射波长依次为 , λζ 3, ...λΝ_χ, 而 AWG3 的偶数波段则要 采用 AWG的 X波段的激光器 3012作为发射机,发射波长依次为 , λχ 4, ...λχ 。 波长为 ^, λ\ , ... λΝ_^ λχ 2, λχ 4, .../I 的光波经过 AWG3 的公共端口进入到主干光纤, 再第一光分束器 3034进入光分束器的 两个分支端口。 在第一分束器 3034的一个分支端口经过第一带通滤 波器 3032-1 ( WDM1 ) 将 X波段波长依次为 , χ 4, ... ^的光波过 滤掉, 剩余 , 3, .. jz 2Ar— i进入到 AWG1 的公共端口, 然后依次解复 用到第 1、 3...2N-1 个用户的接收机 Rx 中; 同理, 而在第一分束器 3034的另一分支端口经过第二带通滤波器 3032-2 ( WDM2 ) 将 Z波 段波长依次为 ^, λ , .. jz 2 V— 光波过滤掉, 剩余 λχ 4, ^进入 到 AWG2 的公共端口, 然后依次解复用到第 2、 4...2Ν 个用户的接 收机中。
同样的由于该系统涉及的上行方向的光信号和下行方向的光信 号, 因此系统中采用的阵列波导光栅的个各分支端口还连接有信号 接收机 Rx, 此外系统中采用的各信号接收机和各光放大器或各激光 器均是采用对各自发射或接收的波长带通的带通滤波器 ( BPF , band-pass filter), 其中带通滤波器可以通过波分复用器实现即图中 WDM (如图所示) 与阵列波导光栅连接; 此外图中第一带通滤波器 和第二带通滤波器也是通过波分复用器 WDM实现。 当然, 由于在图 3中所采用的波分复用器是以阵列波导光栅为例, 因此图 3中阵列波导光 栅部分也可采用波导光栅路由器( Waveguide Grating Router )或者刻蚀衍 射光栅 ( Etched Diffraction Grating ) 代替。
进一步的, 参照图 4所示, 在光线路终端 401 第一奇偶波分复 用器还可以采用一个 l xN通道的奇波分复用器 4013-1和一个 l xN 通道的偶波分复用器 4013-2; 此时该系统中的光线路终端 401 还包 括: 梳状滤波器 4014 ( ITL, interleaver ); l xN通道的奇波分复用 器 4013-1 的公共端口和 1 X N通道的偶波分复用器 4013-2的公共端 口分别与梳状滤波器 4014的两个分支端口相连, 用以将通过梳状滤 波器 4014 的公共端口接收的主干光纤中光网络单元到光线路终端 的光信号分别解复用到 1 xN通道的奇波分复用器 4013-1 的公共端 口和 1 X N通道的偶波分复用器 4013-2 的公共端口, 示例性的, 图 中主干光纤通过环形器 4016与梳状滤波器 4014 的公共端口相连, 梳状滤波器 4014的公共端口与环形器 4016的端口 3相连, 其中由 于环形器对光信号传递的单向性, 光网络单元到光线路终端的光信 号只能从与环形器端口 2相连的主干光纤传递到梳状滤波器 4014的 公共端口, 这里环形器只起到一个连接端口的作用, 当然采用其他 具有相同功能的装置亦可。 此外, 梳状滤波器的公共端口与一个分 支端口构成的通道波长与 l x N 通道的奇波分复用器在第一波段的 中心波长一致。 梳状滤波器的公共端口与另一个分支端口构成的通 道波长与 1 X N通道的偶波分复用器在第一波段的中心波长一致。在 光网络单元到光线路终端的光信号处理中, 梳状滤波器 4014将光网 络单元到光线路终端的光信号的全部波长按照奇偶通道的波长分别 解复用到 1 X N通道的奇波分复用器 4013-1和 1 X N通道的偶波分复 用器 4013-2 的公共端口上, 然后再经过 1 x N通道的奇波分复用器 4013-1、 1 X N通道的偶波分复用器 4013-2分别解复用到相对应的接 收机中。光线路终端到光网络单元的光信号处理中依然是 1 X N通道 的奇波分复用器 4013-1上的分支端口全部采用 Z波段的激光器作为 发射机, 而 1 x N通道的偶波分复用器 4013-2上的分支端口采用 X 波段的发射机,然后利用第三带通滤波器将 1 x N通道的奇波分复用 器 4013-1、 1 N通道的偶波分复用器 4013-2公共端口上的发射的 光信号复用到环形器 4016的端口 1上然后通过端口 2发送到主干光 纤上, 这里示例性的图中采用采用带通滤波器 4015 ( WDM3, 对 X 波段和 Z波段带通, 对 Y波段带阻) 对 1 x N通道的奇波分复用器 4013-1、 1 X N通道的偶波分复用器 4013-2公共端口上的发射的光信 号进行复用, 当然采用光分束器等具有相同功能的其他装置亦可。 这里示例性的如图中所示在 1 χ Ν通道的奇波分复用器 4013-1、 1 N通道的偶波分复用器 4013-2的公共端口上同样用到了带通滤波器 WDM来耦合其发出或接收的特定波段的光波。
同样的由于该系统涉及到上行方向的光信号和下行方向的光信 号, 因此系统中采用的波分复用器的个各分支端口还连接有信号接 收机 Rx, 此外系统中采用的各信号接收机和各光放大器或各激光器 均是采用对各自发射或接收的波长带通的带通滤波器 ( BPF , band-pass filter), 所述带通滤波器可以通过波分复用器实现即图中 WDM (如图 4所示) 与波分复用器连接, 当然图 4中波分复用器部 分可以采用阵列波导光栅( Array Waveguide Grating ), 波导光栅路由器 ( Waveguide Grating Router ) 或者刻蚀衍射光栅 ( Etched Diffraction Grating )。
对于以上实施例中采用的反射镜, 还可以是法拉第旋转反射镜 ( FRM , Faraday Rotator Mirror )„ 当利用法拉第旋转反射镜代替普 通的部分反射镜以后, 激光器发出的宽谱自发辐射谱经过法拉第旋 转镜反射后, 其偏振方向会旋转 90 ° 。 这样激光器发出来的 TE模 式经过 FRM反射回去就成为了 TM模式, 发出的 TM模式经过 TE 反射回去就变成了 TE模式。基于这种原理可以减弱 自注入激光器中 的偏振增益相关性, 也更有利于提高系统抗随机偏振干扰的能力。
这里是以上实施例中均以以自主入式激光器为例进行说明, 当 然本发明实施例提供的系统同时适用于在采用种子光源或可调激光 器的无源光网络, 只是此时系统便不需要反射镜来提供自注入光种 子, 而是将作为用户端的光网络单元的第一激光器直接采用种子光 源或可调激光器, 即系统中不需要反射镜, 如图 5、 6所示, 只是这 时每个第一激光器的中心波长和与其连接的波分复用器的分支端口 对应在第一波段的中心波长相一致, 此外每个第二激光器的中心波 长和与其相连的波分复用器的分支端口对应在第二波段的中心波长 相一致, 每个第三激光器的中心波长和与其相连的波分复用器的分 支端口对应在第三波段的中心波长相一致。
参照图 7 所示, 本发明实施例提供一种远端节点 7 , 包括: 第 一带通滤波器 72- 1、 第二带通滤波器 72-2、 第二波分复用器 73和第 一光分束器 7 1 ,
第二波分复用器 73 的两个公共端口分别通过第一带通滤波器 72- 1 和第二带通滤波器 72-2连接至第一光分束器 71 的两个分支端 口, 其中所述光分束器还包括一个公共端口;
其中,第一光分束器 7 1用于将其公共端口接收的光信号分解为 两个支路的光信号, 或者, 将两个支路的光信号复用到其公共端口; 第一带通滤波器 72- 1 用于通过第一波段和第三波段的光信号 并过滤第二波段的光信号, 第二带通滤波器 72-2用于通过第一波段 和第二波段的光信号并过滤第三波段的光信号;
第二波分复用器 73用于解复用第二波分复用器 73 的两个公共 端口的光信号至第二波分复用器 73 各个分支端口或用于复用第二 波分复用器 73 各个分支端口的光信号至第二波分复用器 73 的两个 公共端口。
其中, 第二波分复用器 73 包括两个公共端口和 2 χ Ν个分支端 口; 根据图 1示出的按照 AWG的通道波长的波段分布情况 (即波分 复用器的通道波长的波段分布情况), 可知一个公共端口和 2 X N个 分支端口中的奇数或偶数分支端口构成的各个通道中的相邻通道在 各个波段范围内的频率间隔为 Af; 另一公共端口和 2 χ Ν 个分支端 口中的偶数或奇数分支端口构成的各个通道中的相邻通道在各个波 段范围内的频率间隔为 Af; 此外, 一个公共端口和奇数分支端口构 成的各个通道与相应的另一公共端口和偶数分支端口构成的各个通 道在各个波段范围内的频率间隔为 Af/2。
本发明实施例提供的远端节点通过采用了一个双公共端口的奇 偶波分复用器进而同时实现了大分支比的上行方向的光信号和下行 方向的光信号的同时传输。 此外图 7 中第一带通滤波器和第二带通 滤波器均可以通过波分复用器 WDM (如图 7所示) 实现。
进一步可选的, 参照图 8 , 第二波分复用器为一个 l x N通道的 奇波分复用器 73- 1 和一个 1 X N通道的偶波分复用器 73-2 , 该奇波 分复用器 73- 1和该偶波分复用器 73 -2对应的通道在各个波段范围内 的频率间隔为 Af/2。 可选的, 在用户端的光网络单元自主入式激光 器时, 远端节点还包括: 至少一个反射镜; 反射镜用于反射一部分 光信号。 每个反射镜与第二奇偶波导波分复用器的任一公共端口相 连, 参照图 8以采用两个反射镜 74- 1、 74-2为例, 其中反射镜 74- 1 与波分复用器 73- 1 的公共端口相连,反射镜 74-2与波分复用器 73-2 的公共端口相连, 图中反射镜 74- 1、 74-2为采用部分反射镜( PRM , partial reflection mirror )。 对于以上实施例中采用的反射镜, 还可以是法拉第旋转反射镜
( FRM , Faraday Rotator Mirror )„ 当利用法拉第旋转反射镜代替普 通的反射镜以后, 便可以配合激光器发出的宽谱自发辐射谱经过法 拉第旋转镜反射后, 其偏振方向会旋转 90° 。 这样激光器发出来的 TE模式经过 FRM反射回去就成为了 TM模式, 发出的 TM模式经 过 TE反射回去就变成了 TE模式。 基于这种原理可以减弱自注入激 光器中的偏振增益相关性, 也更有利于提高系统抗随机偏振干扰的 能力。
以上实施例提供的远端节点均可应用于本发明实施例提供的无 源光网络系统。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围 并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技 术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应所述以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种无源光网络系统, 包括: 光线路终端、 多个光网络单元 以及在所述光线路终端和所述光网络单元之间的远端节点, 其特征在 于,
所述光网络单元包括第一激光器,所述第一激光器用于产生第一 波段的光信号;
所述光线路终端包括: 至少一个第二激光器、 至少一个第三激光 器和第一波分复用器, 所述第二激光器连接所述第一波分复用器的奇 数或偶数分支端口, 所述第三激光器连接所述第一波分复用器的偶数 或奇数分支端口, 所述第一波分复用器的公共端口连接至主干光纤; 其中,
所述第二激光器和第三激光器分别用于产生第二波段和第三波 段的光信号;
所述第一波分复用器用于将所述第二波段的光信号和所述第三 波段的光信号通过所述第一波分复用器的公共端口复用到所述主干 光纤, 或者, 将来自主干光纤的光信号通过所述第一波分复用器的公 共端口解复用到所述第一波分复用器的各个分支端口;
所述远端节点包括第一带通滤波器、 第二带通滤波器、 第二波分 复用器和第一光分束器, 所述第二波分复用器的两个公共端口分别通 过第一带通滤波器和第二带通滤波器连接至第一光分束器的两个分 支端口, 所述第一光分束器的公共端口连接至所述主干光纤; 其中, 所述第一光分束器,用于将所述主干光纤的光信号分解为两个支 路的光信号, 或者, 将所述两个支路的光信号复用到所述主干光纤; 所述第一带通滤波器用于通过所述第一波段和所述第三波段的 光信号并过滤所述第二波段的光信号, 所述第二带通滤波器用于通过 所述第一波段和所述第二波段的光信号并过滤所述第三波段的光信 号;
所述第二波分复用器用于解复用所述第二波分复用器的两个公 共端口的光信号至所述第二波分复用器各个分支端口或用于复用所 述第二波分复用器各个分支端口的光信号至所述第二波分复用器的 两个公共端口;
其中每个所述第一波段的激光器分别连接至所述第二波分复用 器的分支端口 。
2、 根据权利要求 1 所述的系统, 其特征在于, 所述第二波分复 用器包括两个公共端口和 2 x N个分支端口;
其中一个所述公共端口和所述 2 X N个分支端口中的奇数或偶数 分支端口构成的各个通道中的相邻通道在所述各个波段范围内的频 率间隔为 Af;
另一所述公共端口和所述 2 x N个分支端口中的偶数或奇数分支 端口构成的各个通道中的相邻通道在所述各个波段范围内的频率间 隔为 Af;
一个所述公共端口和所述奇数分支端口构成的各个通道与相应 的另一所述公共端口和所述偶数分支端口构成的各个通道在所述各 个波段范围内的频率间隔为 Af/2。
3、 根据权利要求 2所述的系统, 其特征在于, 所述远端节点还 包括: 至少一个反射镜;
一个所述反射镜与所述第二波导波分复用器的任一公共端口相 连, 所述第一激光器与第二波导波分复用器分支端口相连构成一个自 注入激光器; 所述反射镜用于反射一部分光信号用作所述第一激光器 的种子光源;
其中第一激光器为宽谱增益激光器。
4、 根据权利要求 1 所述的系统, 其特征在于, 所述第一波分复 用器包括一个公共端口和 2 x N个分支端口;
其中所述公共端口和所述 2 x N个分支端口中的奇数或偶数分支 端口构成的各个通道中的相邻通道在所述各个波段范围内的频率间 隔为 Af;
所述公共端口和所述 2 x N个分支端口中的偶数或奇数分支端口 构成的各个通道中的相邻通道在所述各个波段范围内的频率间隔为 Af;
所述公共端口和所述奇数分支端口构成的各个通道与相应的所 述公共端口和所述偶数分支端口构成的各个通道在所述各个波段范 围内的频率间隔为 Af/2。
5、 根据权利要求 4所述的系统, 其特征在于,
所述第一波分复用器包括一个 1 x N通道的奇波分复用器和一个 1 N通道的偶波分复用器;
所述光线路终端还包括: 梳状滤波器;
所述梳状滤波器包括一个公共端口和两个分支端口;
所述 1 χ Ν通道的奇波分复用器的公共端口和所述 1 χ Ν通道的 偶波分复用器的公共端口分别与所述梳状滤波器的两个分支端口相 连, 用以将通过所述梳状滤波器的公共端口接收的主干光纤光信号分 别解复用到所述 1 χ Ν 通道的奇波分复用器的公共端口和所述 l x N 通道的偶波分复用器的公共端口;
对于所述 1 x N通道的奇波分复用器的公共端口和所述 1 χ Ν通 道的偶波分复用器的公共端口发射的光信号直接复用到主干光纤。
6、 根据权利要求 1〜5任一所述系统, 其特征在于, 所述第二波 分复用器为一个 1 x N通道的奇波分复用器和一个 l x N通道的偶波 分复用器, 所述奇波分复用器和所述偶波分复用器对应的通道在所述 各个波段范围内的频率间隔为 Af/2。
7、 根据权利要求 3〜6所述的系统, 其特征在于, 所述反射镜为 法拉第旋转反射镜。
8、 权利要求 1〜7所述的系统, 其特征在于, 所述波分复用器为: 阵列波导光栅, 波导光栅路由器或者刻蚀衍射光栅。
9、 一种远端节点, 其特征在于, 包括: 第一带通滤波器、 第二 带通滤波器、 第二波分复用器和第一光分束器,
所述第二波分复用器的两个公共端口分别通过第一带通滤波器 和第二带通滤波器连接至第一光分束器的两个分支端口, 其中所述光 分束器还包括一个公共端口; 其中, 所述第一光分束器,用于将所述第一光分束器的公共端口的光信 号分解为两个支路的光信号, 或者, 将所述两个支路的光信号复用到 所述公共端口;
所述第一带通滤波器用于通过第一波段和第三波段的光信号并 过滤第二波段的光信号, 第二带通滤波器用于通过第一波段和第二波 段的光信号并过滤第三波段的光信号;
所述第二波分复用器用于解复用所述第二波分复用器的两个公 共端口的光信号至所述第二波分复用器各个分支端口或用于复用所 述第二波分复用器各个分支端口的光信号至所述第二波分复用器的 两个公共端口。
10、 根据权利要求 9所述的远端节点, 其特征在于, 所述第二波 分复用器包括两个公共端口和 2 χ Ν个分支端口;
其中一个所述公共端口和所述 2 X N个分支端口中的奇数或偶数 分支端口构成的各个通道中的相邻通道在所述各个波段范围内的频 率间隔为 Af;
另一所述公共端口和所述 2 χ Ν个分支端口中的偶数或奇数分支 端口构成的各个通道中的相邻通道在所述各个波段范围内的频率间 隔为 Af;
此外,一各所述公共端口和所述奇数分支端口构成的各个通道与 相应的另一所述公共端口和所述偶数分支端口构成的各个通道在所 述各个波段范围内的频率间隔为 Af/2。
11、 根据权利要求 9或 10所述的远端节点, 其特征在于, 所述 远端节点还包括: 至少一个反射镜;
一个所述反射镜与所述第二波导波分复用器的任一公共端口相 连; 所述反射镜用于反射一部分光信号。
12、 根据权利要求 10〜1 1任一所述系统, 其特征在于, 所述第 二波分复用器为一个 1 x N通道的奇波分复用器和一个 l x N通道的 偶波分复用器, 所述奇波分复用器和所述偶波分复用器对应的通道在 所述各个波段范围内的频率间隔为 Af/2。
13、 根据权利要求 1 1或 12所述的远端节点, 其特征在于, 所 述反射镜为法拉第旋转反射镜。
14、 权利要求 10〜13所述的远端节点, 其特征在于, 所述波分 复用器为: 阵列波导光栅, 波导光栅路由器或者刻蚀衍射光栅。
PCT/CN2012/074159 2012-04-17 2012-04-17 一种远端节点和无源光网络系统 WO2012103851A2 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280000453.3A CN102754453B (zh) 2012-04-17 2012-04-17 一种远端节点和无源光网络系统
PCT/CN2012/074159 WO2012103851A2 (zh) 2012-04-17 2012-04-17 一种远端节点和无源光网络系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/074159 WO2012103851A2 (zh) 2012-04-17 2012-04-17 一种远端节点和无源光网络系统

Publications (2)

Publication Number Publication Date
WO2012103851A2 true WO2012103851A2 (zh) 2012-08-09
WO2012103851A3 WO2012103851A3 (zh) 2013-03-21

Family

ID=46603151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074159 WO2012103851A2 (zh) 2012-04-17 2012-04-17 一种远端节点和无源光网络系统

Country Status (2)

Country Link
CN (1) CN102754453B (zh)
WO (1) WO2012103851A2 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106788862B (zh) * 2015-11-19 2019-09-24 中兴通讯股份有限公司 光网络分配方法及光分配网络
CN117434664A (zh) * 2022-07-12 2024-01-23 中兴通讯股份有限公司 分光装置、光配线网络单元和网络系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136701A (zh) * 2006-08-28 2008-03-05 华为技术有限公司 波分复用光接入传输系统及方法
US20090297152A1 (en) * 2008-05-27 2009-12-03 Nortel Networks Limited Wdm pon protection scheme using a dual port arrayed waveguide grating (awg)
CN101755410A (zh) * 2007-06-15 2010-06-23 艾劳普提克公司 一种用于提供双向射频服务的无源光网络系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136701A (zh) * 2006-08-28 2008-03-05 华为技术有限公司 波分复用光接入传输系统及方法
CN101755410A (zh) * 2007-06-15 2010-06-23 艾劳普提克公司 一种用于提供双向射频服务的无源光网络系统
US20090297152A1 (en) * 2008-05-27 2009-12-03 Nortel Networks Limited Wdm pon protection scheme using a dual port arrayed waveguide grating (awg)

Also Published As

Publication number Publication date
CN102754453B (zh) 2015-07-29
CN102754453A (zh) 2012-10-24
WO2012103851A3 (zh) 2013-03-21

Similar Documents

Publication Publication Date Title
TWI452852B (zh) Optical transceivers and wavelength division multiplexing passive optical network system
US20140161446A1 (en) Optical amplifier (oa)-based reach extender and passive optical network system including the same
WO2011124164A2 (zh) 自注入激光器、波分复用无源光网络系统及光线路终端
US20110158650A1 (en) Optical network
US9407395B2 (en) Optical network unit (ONU) wavelength self-tuning
WO2008019612A1 (fr) Source de lumière commune, système de réseau optique passif à multiplexage par répartition en longueur d'onde et procédé permettant au système de partager la source de lumière
WO2013053249A1 (zh) 光信号传输方法及装置
WO2006116519A1 (en) Methods and apparatuses to increase wavelength channels in a wavelength-division-multiplexing passive-optical-network
WO2012103847A2 (zh) 波分复用器及无源光网络系统
US20130016971A1 (en) Wdm optical system and method including multi-channel transmitters with filtered output for channel wavelength selection
TW201828621A (zh) 無源光網路pon的通信方法、裝置和系統
WO2012103851A2 (zh) 一种远端节点和无源光网络系统
US20150229429A1 (en) Multiplexer with Non-Interleaved Channel Plan
US9602216B2 (en) Reflective light-emitting device for a WDM PON optical access network, the device including a light source with an optical gain medium
WO2013097185A1 (zh) 波分复用/解复用器、自注入光纤激光器和光网络系统
Al-Rubaye et al. Next Generation Optical Access Network Using CWDM Technology.
Feng et al. Flexible, low-latency peer-to-peer networking over long-reach WDM/TDM PON systems
Kirmani et al. A Metro WDM Star Network with a Hybrid MAC protocol based on an arrayed waveguide grating
Rasheed et al. Triple play services over ethernet passive optical networks

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280000453.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742496

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12742496

Country of ref document: EP

Kind code of ref document: A2