WO2021035487A1 - 确定光网络终端连接的方法、设备及系统 - Google Patents

确定光网络终端连接的方法、设备及系统 Download PDF

Info

Publication number
WO2021035487A1
WO2021035487A1 PCT/CN2019/102608 CN2019102608W WO2021035487A1 WO 2021035487 A1 WO2021035487 A1 WO 2021035487A1 CN 2019102608 W CN2019102608 W CN 2019102608W WO 2021035487 A1 WO2021035487 A1 WO 2021035487A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
ont
optical
echo
upstream
Prior art date
Application number
PCT/CN2019/102608
Other languages
English (en)
French (fr)
Inventor
杨素林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19943250.1A priority Critical patent/EP3975580B1/en
Priority to KR1020227001276A priority patent/KR102657364B1/ko
Priority to PCT/CN2019/102608 priority patent/WO2021035487A1/zh
Priority to JP2022505203A priority patent/JP7389888B2/ja
Priority to CN201980098541.3A priority patent/CN114128305B/zh
Publication of WO2021035487A1 publication Critical patent/WO2021035487A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0228Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths
    • H04J14/023Wavelength allocation for communications one-to-all, e.g. broadcasting wavelengths in WDM passive optical networks [WDM-PON]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0204Broadcast and select arrangements, e.g. with an optical splitter at the input before adding or dropping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0083Testing; Monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0088Signalling aspects

Definitions

  • This application relates to optical communication technology, and in particular, to a method, equipment, and system for determining an optical network terminal (Optical Network Termination, OTN) connection.
  • OTN optical Network Termination
  • Passive Optical Network (PON) systems include optical line terminals (OLT), multiple optical network terminals (ONUs) or optical network terminals (Optical Network Terminals) located on the user side, ONT for short), and an optical distribution network (Optical Distribution Network, ODN) for branching/coupling or multiplexing/demultiplexing the optical signal between the optical line terminal and the optical network terminal.
  • ONT optical line terminals
  • ONUs multiple optical network terminals
  • Optical Network Terminals located on the user side, ONT for short
  • ODN optical distribution network
  • the representative PON technologies are Gigabit Passive Optical Network (GPON) and Ethernet Passive Optical Network (EPON), XG(S)-PON (10G(symmetric )Passive Optical Network), 10G EPON (10G Ethernet Passive Optical Network.
  • GPON Gigabit Passive Optical Network
  • EPON Ethernet Passive Optical Network
  • XG(S)-PON and 10G EPON can be collectively referred to as 10G PON.
  • the upstream and downstream light of the PON system can be transmitted in the same fiber, and the downstream direction (from OLT to ONT) works in TDM (Time Division Multiplexing) mode.
  • the optical signal sent by the OLT will be broadcast to all branch fibers and can reach All ONTs; the upstream direction (ONT to OLT) works in TDMA (Time Division Multiple Access) mode, and the ONT only transmits in the authorized time slot.
  • the uplink and downlink can also be transmitted using different optical fibers respectively.
  • this application provides a method, device and system for determining the connection of an optical network terminal.
  • an embodiment of the present application provides an optical network terminal, including: a downlink optical signal receiver, an echo optical signal receiver, a processing module, and an uplink optical signal transmitter.
  • the downlink optical signal receiver is used to receive the first downlink optical signal
  • the first downlink optical signal instructs the optical network terminal to obtain the echo optical signal generated by the first uplink optical signal in the optical fiber network.
  • the echo optical signal receiver is used to receive the echo optical signal generated by the first uplink optical signal in the optical fiber network.
  • the processing module is configured to obtain the intensity information of the echo optical signal according to the instruction information of the first downstream optical signal.
  • the uplink optical signal transmitter is used to send a second uplink optical signal.
  • the second uplink optical signal carries the intensity information of the echo optical signal, and the intensity information of the echo optical signal reflects the relationship between the ONT and the transmission of the uplink optical signal.
  • the optical network terminal can obtain the intensity information of the echo optical signal generated by the first upstream optical signal in the optical fiber network, and the intensity signal of the echo optical signal can be used to determine the connection relationship between the optical network terminal and the optical splitter. Therefore, during the operation of the PON system, the point of failure can be quickly and correctly determined based on the connection relationship, and the point of failure can be quickly eliminated.
  • the first downstream optical signal carries the time for obtaining the echo optical signal and/or the number of measurements, so that the optical network terminal can obtain the measured intensity of the echo optical signal.
  • the optical network terminal further includes a media access control MAC module, configured to parse the indication information carried in the first downlink electrical signal, and the first downlink electrical signal is controlled by the first downlink electrical signal.
  • a media access control MAC module configured to parse the indication information carried in the first downlink electrical signal, and the first downlink electrical signal is controlled by the first downlink electrical signal.
  • the processing module is further configured to obtain the indication information in the first downlink electrical signal parsed by the MAC module.
  • the downstream optical signal receiver further receives a second downstream optical signal
  • the second downstream optical signal carries instruction information for instructing the optical network terminal to send the first upstream optical signal and the optical network
  • the terminal sends the time information of the first uplink optical signal. Therefore, the optical network terminal can determine to send the first uplink optical signal according to the instruction information.
  • the first downstream optical signal further carries an identifier of the optical network terminal that sends the first upstream optical signal, and time information for sending the first upstream optical signal.
  • the optical network terminal further includes a storage module for storing the information carried in the first downstream optical signal and/or the second downstream optical signal, and storing the intensity information of the echo optical signal.
  • the first uplink optical signal is a first first uplink optical signal sent by the optical network terminal, or a second first uplink optical signal sent by another optical network terminal.
  • the uplink optical signal transmitter is further configured to send the first uplink optical signal, the wavelength of the first uplink optical signal, the wavelength of the echo optical signal, and all the signals according to the instruction of the processing module.
  • the wavelengths of the second upstream optical signals are the same.
  • the optical network terminal further includes a first uplink optical signal transmitter, configured to send the first uplink optical signal, the wavelength of the first uplink optical signal and the The echo optical signal has the same wavelength, and the wavelength of the first upstream optical signal and the wavelength of the second upstream optical signal are different.
  • an embodiment of the present application provides a method for determining an ONT connection of an optical network terminal.
  • the optical network terminal receives a first downstream optical signal, and the first downstream optical signal instructs the optical network terminal to obtain an echo optical signal generated by the first upstream optical signal in the optical fiber network.
  • the optical network terminal receives the echo optical signal generated by the first uplink optical signal in the optical fiber network, obtains the intensity information of the echo optical signal according to the instruction of the first downlink optical signal, and sends a second Uplink optical signal, the second uplink optical signal carries intensity information of the echo optical signal, and the intensity information of the echo optical signal is used to determine the connection between the optical network terminal and the optical splitter.
  • the optical network terminal can obtain the intensity information of the echo optical signal generated by the first upstream optical signal in the optical fiber network, and the intensity signal of the echo optical signal can be used to determine the connection relationship between the optical network terminal and the optical splitter. Therefore, during the operation of the PON system, when the system fails, the point of failure can be quickly and correctly determined based on the connection relationship, and the point of failure can be quickly eliminated.
  • the optical network terminal further analyzes the indication information carried in the first downlink electrical signal, and the first downlink electrical signal is converted by the first downlink optical signal.
  • the optical network terminal further receives a second downstream optical signal, and the second downstream optical signal carries instruction information that instructs the optical network terminal to send the first upstream optical signal and the optical network terminal sends Time information of the first upstream optical signal.
  • the first downstream optical signal further carries the identifier of the optical network terminal that sends the first upstream optical signal, and the time information for sending the first upstream optical signal.
  • the optical network terminal further stores the information carried in the first downstream optical signal and the second downstream optical signal, and stores the intensity information of the echo optical signal.
  • the optical network terminal further sends the first uplink optical signal, and the wavelength of the first uplink optical signal, the wavelength of the echo optical signal, and the wavelength of the second uplink optical signal are the same.
  • the optical network terminal sends the first uplink optical signal
  • the wavelength of the first uplink optical signal is the same as the wavelength of the echo optical signal
  • the wavelength of the first uplink optical signal is the same as the wavelength of the first uplink optical signal.
  • the wavelengths of the two upstream optical signals are different.
  • an embodiment of the present application provides a method for determining the connection of an optical network terminal ONT.
  • the device receives the intensity information of the echo optical signal generated in the optical fiber network by the first upstream optical signal sent by the second ONT, and the second ONT is a passive optical network PON All ONTs in the system or ONTs other than the first ONT in the PON system.
  • the device determines a third ONT connected to the same optical splitter as the first ONT.
  • the device may determine the connection relationship between the optical network terminal and the optical splitter according to the strength signal of the echo optical signal.
  • the device determining a third ONT connected to the same optical splitter as the first ONT includes: determining, by the device, intensity information sent by the third ONT and intensity information sent by at least one second ONT The difference of is greater than the intensity difference threshold of the beam splitter.
  • the device further determines the difference between the intensity information sent by the third ONT and the intensity information sent by the fourth ONT, where the fourth ONT is connected to the first ONT among the second ONTs ONTs with different optical splitters.
  • the measurement step of the equipment determines the light splitting ratio of the first-level optical splitter.
  • the device stores the threshold range of the splitting ratio of the first-level optical splitter, and determining the splitting ratio of the first-level splitter by the device includes: the device according to the threshold range of the splitting ratio and the third The difference between the intensity information sent by the ONT and the intensity information sent by the fourth ONT determines the light splitting ratio of the primary optical splitter.
  • the device is an optical network terminal, the optical network terminal further receives a first downstream optical signal and a second downstream optical signal, and the first optical signal carries an instruction to the optical network terminal Obtain the indication information of the echo optical signal, the identifier of the optical network terminal, and the indication information instructing the optical network terminal to obtain the intensity information of the echo optical signal sent by the second ONT, the second downlink
  • the optical signal carries the identifier of the optical network terminal, and the optical network terminal obtains the indication information of the intensity information of the echo optical signal sent by the second ONT; or the optical network terminal receives the first downstream optical signal
  • the first downstream optical signal carries instruction information that instructs the optical network terminal to send the first upstream optical signal, time information for sending the first upstream optical signal, and the optical network terminal acquires the first upstream optical signal. 2. Indication information of the intensity information of the echo optical signal sent by the ONT.
  • the optical network terminal further sends a third second uplink optical signal, and the third second uplink optical signal carries information of the third ONT connected to the same optical splitter as the first ONT.
  • the device is an optical line terminal, the optical line terminal further sends a first downstream optical signal, and the first downstream optical signal carries an instruction to the second ONT to obtain the echo optical signal Indicates the intensity information of the signal, so that the second ONT can obtain the intensity information of the echo optical signal.
  • the first downstream optical signal further carries the time for measuring the echo optical signal and/or the number of measurements, so that the indication of measuring the intensity information of the echo optical signal is more accurate.
  • the optical line terminal sends a second downstream optical signal
  • the second downstream optical signal carries the identification of the optical network terminal that sent the first upstream optical signal, and the time information for sending the first upstream optical signal . Therefore, the optical network terminal that sends the first upstream optical signal can send the first upstream optical signal, so that the solution can proceed smoothly.
  • the first downstream optical signal further carries an identifier of the optical network terminal that sends the first upstream optical signal, and time information for sending the first upstream optical signal. This makes the instruction to send the first upstream optical signal clearer and more accurate, and enables smooth implementation of the solution.
  • the device is an upper-layer network device
  • the strength information of the echo optical signal generated in the optical fiber network by the first uplink optical signal obtained by the second ONT by the device includes: the upper layer
  • the network device receives the intensity information of the echo optical signal generated in the optical fiber network by the first uplink optical signal obtained by the second ONT sent by the optical line terminal. Therefore, this application can be applied to a variety of different network structures, and the flexibility of using the solution can be increased.
  • the optical line terminal sends a third downstream optical signal, and the third downstream optical signal instructs the second ONT to send intensity information of the echo optical signal. So that the OLT obtains intensity information.
  • the first ONT is the ONT that transmits the first uplink optical signal for the first time
  • the method further includes: the device determines the ONT that transmits the first uplink optical signal next, so as to determine the ONTs of all ONTs. Connection with optical splitter.
  • the optical line terminal determining the ONT that transmits the first upstream optical signal next time includes: determining from other ONTs in the PON system except the first ONT that the first upstream optical signal is transmitted next time The ONT of the optical signal; or determine the ONT that transmits the first upstream optical signal next time from ONTs other than the first ONT and the third ONT in the PON system. This ensures that all ONTs can be connected to the optical splitter.
  • an embodiment of the present application provides a passive optical network system, which is characterized by including an optical line terminal OLT, an optical distribution network ODN, and multiple optical network terminals, and the OLT is connected to the multiple optical network terminals through the ODN.
  • An optical network terminal each of the plurality of optical network terminals is an optical network terminal in any design of the first aspect, and the OLT is configured to execute the OLT in any design of the third aspect The function performed.
  • an embodiment of the present application provides a device including a memory and a processor; the memory is used to store computer-executable instructions, and when the device is running, the processor executes the computer-executable instructions stored in the memory to enable The device performs the method as described in any of the designs of the third aspect.
  • an embodiment of the present application provides a system that includes an upper-layer network device and a passive optical network PON system.
  • the passive optical network system is used to send the upper-layer network device the information obtained by the second optical network terminal ONT.
  • the intensity information of the echo optical signal generated by the first upstream optical signal in the optical fiber network, the second ONT is all ONTs in the PON system or other ONTs in the PON system except the first ONT, the first An ONT is the ONT that sends the first upstream optical signal; the upper-layer network device is used to determine the first optical splitter connected to the first ONT according to the received intensity information of the echo optical signal measured by the second ONT Three ONT.
  • the present application provides a readable storage medium in which an execution instruction is stored.
  • the message processing device executes the second aspect and the first aspect.
  • the message processing method in any possible design or the third aspect and the method in any possible design of the third aspect.
  • the present application provides a program product.
  • the program product includes an execution instruction, and the execution instruction is stored in a readable storage medium.
  • At least one processor of the device can read the execution instruction from a readable storage medium, and at least one processor executes the execution instruction to enable the message processing device to implement the method or the first method in any possible design of the second aspect and the second aspect. Any possible design method of the three aspects and the third aspect.
  • Figure 1 is a schematic structural diagram of a passive optical network system.
  • FIG. 2A is a schematic structural diagram of an optical line terminal provided by an embodiment of this application.
  • FIG. 2B is a schematic structural diagram of an optical network unit provided by an embodiment of this application.
  • FIG. 2C is a schematic structural diagram of an optical network unit provided by an embodiment of this application.
  • FIG. 3A is a schematic flowchart of a method for determining an optical splitter connected to an ONT according to an embodiment of the application.
  • FIG. 3B is a schematic diagram of the received echo optical signal intensity according to an embodiment of the application.
  • FIG. 4 is a schematic flowchart of a method for determining an optical splitter connected to an ONT according to another embodiment of the application.
  • FIG. 5 is a schematic flowchart of a method for measuring the intensity of an echo optical signal performed by an ONT after receiving a message from an OLT according to an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a device provided by an embodiment of the application.
  • FIG. 1 is a schematic view of a system structure provided by an embodiment of the present invention.
  • the system includes: a passive optical network system 100 and a network device 200 coupled with the passive optical network system 100.
  • the upper-layer network device 200 may be the Internet, a community access television (CATV) network, or a public switched telephone network (Public Switched Telephone Network, PSTN) network device 200.
  • the passive optical network PON system 100 includes at least one optical line terminal 110, a plurality of optical network terminals 120, and an optical distribution network 130.
  • the OLT 110 is connected to the plurality of optical network terminals 120 through the ODN 130.
  • the direction from the OLT 110 to the optical network terminal 120 is defined as the downstream direction
  • the direction from the optical network terminal 120 to the OLT 110 is the upstream direction.
  • the passive optical network system 100 may be a communication network that does not require any active devices to realize data distribution between the OLT 110 and the optical network terminal 120.
  • the data distribution between the OLT 110 and the optical network terminal 120 may be implemented by passive optical devices (such as optical splitters) in the ODN 130.
  • the passive optical network system 100 may be an asynchronous transmission mode passive optical network (ATM PON) system defined by the ITU-T G.983 standard, a broadband passive optical network (BPON) system, or ITU-T G.984
  • ATM PON asynchronous transmission mode passive optical network
  • BPON broadband passive optical network
  • ITU-T G.984 The Gigabit Passive Optical Network (GPON) system defined by the standard, the Ethernet Passive Optical Network (EPON) defined by the IEEE 802.3ah standard, or the next-generation passive optical network (NGA PON, such as XGPON or 10G EPON, etc.).
  • the OLT 110 is usually located in a central location (for example, Central Office, CO), and it can manage the one or more optical network terminals 120 in a unified manner.
  • the OLT 110 can act as an intermediary between the optical network terminal 120 and the upper-layer network device 200, use data received from the upper-layer network as downlink data and forward it to the optical network terminal 120 through the ODN 130, and transfer data from the optical network terminal 120 to the optical network terminal 120.
  • the uplink data received by the network terminal 120 is forwarded to the upper network.
  • the optical network unit 120 may be distributed in a user-side location (such as a user premises).
  • the optical network unit 120 may be a network device used to communicate with the optical line terminal 110 and a user.
  • the optical network unit 120 may act as a communication link between the optical line terminal 110 and the user.
  • the optical network unit 120 may forward the downlink data received from the optical line terminal 110 to the user, and use the data received from the user as uplink data through the optical distribution network 130 Forward to the optical line terminal 110.
  • ONT optical Network Terminal
  • the ODN 130 may be a data distribution system, which may include optical fibers, optical couplers, optical splitters, and/or other devices.
  • the optical fiber, optical coupler, optical splitter and/or other equipment may be passive optical devices. That is, the optical fiber, optical coupler, optical splitter, and/or other devices may be devices that do not require power support for distributing data signals between the OLT 110 and the optical network terminal 120.
  • the ODN 130 may further include one or more processing devices, for example, an optical amplifier or a relay device.
  • the ODN130 can specifically extend from the OLT 110 to the multiple optical network terminals 120 in a two-stage optical splitting manner, but it can also be configured as any other point-to-multipoint (such as single-stage optical splitting). Or multi-level spectroscopy) or point-to-point structure.
  • ODN130 uses splitters to realize data distribution.
  • ODN130 can be deployed in a two-stage splitter, including a first-stage splitter 131 and multiple second-stage splitters. ⁇ 132.
  • the common end of the first-stage optical splitter 131 is connected to the OLT 110 through a backbone fiber (Feed Fiber) 133, and its branch ends are respectively connected to the common end of the second-stage optical splitter 132 through a distribution fiber (Distribute Fiber) 134.
  • the branch end of each second-stage optical splitter 132 is further connected to the corresponding uplink interface 1201 of the optical network terminal 120 through a drop fiber (Drop Fiber) 135 respectively.
  • Drop Fiber drop fiber
  • the downstream data signal sent by the OLT 110 passes through the first-stage optical splitter 131 for the first splitting, and then passes through the second-stage splitter 132 for the second splitting, thereby forming multiple downstream optical signals and transmitting them to Each optical network terminal 120.
  • the upstream data signal sent by each optical network terminal 120 is transmitted to the OLT 110 after being combined by the second-stage optical splitter 132 and the first-stage optical splitter 131 in sequence.
  • the first-level optical splitter 131 may be deployed in an optical distribution frame (ODF) closer to the central office
  • the second-level optical splitter 132 may be deployed in a remote node (Remote Node, ODF). RN).
  • FIG. 2A is a schematic structural diagram of an OLT 110 provided in an embodiment of the application.
  • the specific structural configuration of the OLT 110 may vary depending on the specific type of the passive optical network 100.
  • the OLT 110 may include a downstream interface 1101, a coupler 1102, a downstream optical signal transmitter 1103, an upstream optical signal receiver 1104, a storage module 1105, a processing module 1106, and a MAC module 1107.
  • the downlink interface 1101 may be an optical fiber adapter, which is used as an interface connected with the ODN 130 to send or receive uplink/downlink optical signals.
  • the coupler 1102 is arranged on the main optical path along the extending direction of the optical fiber adapter 230 and has a certain angle with the main optical path.
  • the coupler 1102 can couple at least a part of the downlink optical signal transmitted by the downlink optical signal transmitter 1103 to the downlink interface 1101, and couple at least a part of the uplink optical signal input from the downlink interface 1101 to the echo optical signal reception ⁇ 1104.
  • the wavelength of the downstream optical signal is ⁇ 1.
  • the uplink optical signal received by the OLT is an uplink service optical signal
  • the uplink service optical signal may be a second uplink optical signal, a third uplink optical signal, a fourth uplink optical signal, and so on.
  • the wavelength of the upstream service optical signal is ⁇ 2.
  • the downstream optical signal transmitter 1103 may send the downstream optical signal provided by the MAC module 1107 through the downstream optical signal transmitter 1103 to the optical network terminal 120 through the coupler 1102, the downstream interface 1101, and the ODN 130.
  • the uplink optical signal receiver 1104 may receive the uplink service optical signal sent by the optical network terminal 120 through the ODN 130, and after converting the uplink optical signal into an uplink service electric signal, provide the uplink service electric signal to the MAC module 1107 Perform data analysis and processing.
  • the uplink service optical signal may include the intensity information of the echo optical signal (backscattered or reflected) generated in the ODN130 for the uplink test optical signal (also referred to as the first uplink optical signal) sent by the optical network terminal 120 through the ODN130. .
  • the processing module 1106 determines, according to the intensity information, the optical network terminal 120 that is connected to the same optical splitter 132 as the optical network terminal 120 that sends the uplink test optical signal.
  • the echo optical signal is a signal generated by backscattering or reflection of the upstream test optical signal in the ODN130.
  • the intensity information refers to measurement parameters that can characterize the power or amplitude of the echo optical signal, such as the instantaneous amplitude value of the echo optical signal, the return loss value, and the reflection peak of an optical time domain reflectometer (OTDR) curve Height etc.
  • the processing module 1106 further determines the optical splitting ratio of the primary optical splitter 131 based on the determined intensity information sent by the optical network terminal 120 connected to the same optical splitter 132 as the optical network terminal 120 sending the uplink test optical signal.
  • the downstream optical signal transmitter 1103 may be a laser diode (LD) for transmitting a downstream optical signal with a first wavelength ⁇ 1 (hereinafter referred to as the downstream optical signal ⁇ 1);
  • the upstream optical signal receiver 1104 may It is a photodiode (PD), such as an avalanche photodiode (APD), which is used to receive an uplink service optical signal with a second wavelength ⁇ 2 (hereinafter referred to as the uplink service optical signal ⁇ 2).
  • PD photodiode
  • APD avalanche photodiode
  • the coupler 1102 may be a thin film filter (TFF), which can transmit approximately 100% of the optical signal having the first wavelength ⁇ 1, and transmit about 100% of the optical signal having the second wavelength ⁇ 2.
  • THF thin film filter
  • FIG. 2B is a schematic structural diagram of an ONT 120 provided by an embodiment of this application.
  • the optical network terminal 120 may include an uplink interface 1201, a first coupler 1202, a second coupler 1203, an echo optical signal receiver 1204, an uplink optical signal transmitter 1205, and a downlink optical signal.
  • the uplink interface 1201 may be an optical fiber adapter, which is used as an interface connected to the ODN 130 to send or receive uplink/downlink optical signals.
  • the transmitted light paths of the first coupler 1202 and the second coupler 1203 overlap.
  • the uplink optical signal transmitter 1205 is coupled to the transmission optical path of the second coupler 1203.
  • the echo optical signal receiver 1204 is coupled to the reflection optical path of the second coupler 1203.
  • the downstream optical signal receiver 1206 is coupled to the reflection optical path of the first coupler 1203.
  • the upstream interface 1201 sends the upstream service optical signal with the second wavelength ⁇ 2 or the upstream test optical signal with the second wavelength ⁇ 2 (also referred to as the first upstream optical signal) to the OLT110, and receives the downstream optical signal with the first wavelength ⁇ 1 Or receive the echo optical signal of the uplink test optical signal with the second wavelength.
  • the first coupler 1202 may be a TFF, which reflects the downstream optical signal having the first wavelength ⁇ 1 sent by the OLT 110 to couple the downstream optical signal to the downstream optical signal receiver 1206, and the second wavelength ⁇ 2
  • the uplink test optical signal and the echo optical signal of the uplink test optical signal with the second wavelength ⁇ 2 (abbreviated as the echo optical signal) are transmitted to the second coupler 1203.
  • the second coupler 1203 may be a ring-type coupler, which couples the echo optical signal to the echo optical signal receiver 1204.
  • the first coupler 1202 can also transmit the uplink optical signal (including the uplink service optical signal and/or the uplink test optical signal) sent by the uplink service optical signal receiver 1205 to the uplink interface 1201.
  • the downlink optical signal receiver 1206 is configured to receive the downlink optical signal having the first wavelength through the first coupler 1202, and convert the downlink optical signal having the first wavelength into a downlink electrical signal.
  • the wavelength of the downstream optical signal may be 1490 nm or 1577 nm.
  • the uplink signal receiver 1205 is used to transmit the uplink service optical signal and the uplink test optical signal through the second coupler 1203 and the first coupler 1202, and through the uplink interface 1201.
  • the wavelength ⁇ 2 of the upstream service optical signal is the same as the wavelength ⁇ 2 of the upstream test optical signal, and ⁇ 2 can be 1310 nm or 1270 nm.
  • the echo optical signal receiver 1204 is used to receive the echo optical signal generated by the uplink test optical signal in the optical fiber network, and convert the echo optical signal into an echo electrical signal.
  • the wavelength of the echo optical signal is the same as the wavelength ⁇ 2 of the upstream test optical signal.
  • the processing module 1208 is configured to obtain the intensity of the echo optical signal of the uplink test signal received by the echo optical signal receiver 1211 according to the test parameters in the downlink optical signal analyzed by the MAC module 1209.
  • the storage module 1207 is used to store test parameters and intensity information of the echo optical signal.
  • the MAC module 1209 is used to analyze the downlink electrical signal to obtain test parameters and provide them to the processing module 1208. In the embodiment corresponding to FIG.
  • the wavelength of the test optical signal is the same as the wavelength of the uplink service optical signal.
  • the echo optical signal is an echo optical signal generated by backscattering or reflection of the uplink optical signal sent by the ONT on the ODN 130.
  • the upstream service optical signal receiver 1205 is further configured to report the intensity information of each echo optical signal to the OLT 110 through the ODN130.
  • FIG. 2C is a schematic structural diagram of another optical network terminal 120 according to an embodiment of the present invention.
  • the optical network terminal 120 provided in FIG. 2C includes an uplink interface 1201, a first coupler 1202, a third coupler 1211, and a fourth coupler 1210, an echo optical signal receiver 1213, and an uplink test optical The signal transmitter 1214, the upstream optical signal transmitter 1215, the downstream optical signal receiver 1206, the storage module 1207, the processing module 1208, and the MAC module 1209.
  • the uplink interface 1201 may be an optical fiber adapter, which is used as an interface connected to the ODN 130 to send or receive uplink/downlink optical signals.
  • the transmitted light paths of the first coupler 1202 and the third coupler 1211 overlap.
  • the uplink optical signal receiver 1205 is coupled to the transmission optical path of the first coupler 1202.
  • the downstream optical signal receiver 1206 is coupled to the reflection optical path of the first coupler 1202.
  • the transmission light path of the third coupler 1211 overlaps with the reflection light path of the fourth coupler 1212.
  • the echo optical signal receiver 1211 is coupled to the transmission optical path of the fourth coupler 1212.
  • the upstream test optical signal (also referred to as the first upstream optical signal) transmitter 1214 is coupled to the reflection optical path of the fourth coupler 1212.
  • the uplink interface 1201 and the first coupler 1202 have the same functions as in FIG. 2B, and the details of the embodiment of the present invention are not repeated here.
  • the second coupler 1202 is used for transmitting the uplink service optical signal with the second wavelength ⁇ 2 and reflecting the downlink optical signal with the first wavelength ⁇ 1.
  • the third coupler 1211 is used to reflect the uplink test signal of the third wavelength ⁇ 3 and the echo optical signal of the received uplink test optical signal with the third wavelength ⁇ 3 to realize the third wavelength of the same wavelength or wavelength band The test signal is transmitted in both directions.
  • the third coupler 1211 is also used to transmit the downlink optical signal with the first wavelength and transmit the uplink service optical signal with the second wavelength.
  • the fourth coupler 1212 is used for transmitting the echo optical signal with the third wavelength ⁇ 3 and reflecting the uplink test optical signal with the third wavelength ⁇ 3.
  • the downlink optical signal receiver 1206 is used to receive the ordinary downlink optical signal with the first wavelength ⁇ 1 through the first coupler 1202 and the fourth coupler 1211, and convert the ordinary downlink optical signal into a common downlink electrical signal.
  • the wavelength of the ordinary downstream optical signal may be 1490 nm or 1577 nm.
  • the upstream service optical signal receiver 1205 is configured to send the upstream service optical signal to the OLT 110 through the first coupler 1202 and the fourth coupler 1211, and through the upstream interface 1201.
  • the third wavelength receiver 1211 is configured to receive the echo optical signal generated by the uplink test signal sent by the first OTN 120 through the ODN 130.
  • the first ONT 120 may be any ONT 120 that sends an uplink test signal in the PON system.
  • the third wavelength transmitter 1212 is used to send the uplink test signal with the third wavelength ⁇ 3 to the OLT 110 through the ODN130.
  • the processing module 1208 is configured to control the third wavelength transmitter 1212 to send the uplink test signal or control the third wavelength receiver 1211 to receive the echo optical signal of the uplink test signal according to the data (such as instruction information) in the downlink electrical signal parsed by the MAC module 1209 .
  • the storage module 1207 is used to store the test parameters and the acquired intensity information of the echo optical signal.
  • the MAC module is used to analyze the converted electrical signal to obtain data information and provide it to the processing module 1208. In the embodiment corresponding to FIG. 2C, the wavelength of the uplink test optical signal is different from the wavelength of the uplink service signal.
  • the OTN obtains the intensity signal of the echo optical signal can be obtained from the echo optical signal measured by the OTN, or according to the result of the echo optical signal measured by the ODTR to obtain the intensity information of the echo optical signal. .
  • FIG. 3 is a method for determining optical splitters connected to each OTN provided by this application, which is applied to a passive optical network system or an active optical network system.
  • the method provided in this embodiment of the application includes:
  • Step 301 The OLT 110 sends instruction information to the ONTi 120 in the downstream direction through a downstream optical signal.
  • the indication information carries the identification of the optical network terminal that sends the uplink test optical signal (for example, the identification of ONTi 120) and the time information for sending the uplink test optical signal.
  • the instruction information ONTi 120 sends an uplink test optical signal.
  • the embodiment of the present invention refers to the ONTi sending the uplink test optical signal as the first ONT.
  • the OLT 110 may select (for example, select randomly or in other ways) an ONT that has not sent an upstream test optical signal as the first ONT. For example, the OLT 110 identifies the ONT that has sent the upstream test optical signal, and determines the first ONT that sends the upstream test optical signal next time from the ONTs that have not sent the upstream test optical signal.
  • the OLT 110 selects an ONT that has not determined the same group of ONTs as the first ONT of the ONT that sends the upstream test optical signal.
  • the ONTs in the same group are ONTs connected to the same optical splitter as the sending uplink test optical signal.
  • the uplink test signal may be a normal communication data uplink service optical signal, or a specific uplink optical signal including specific data (such as "0101" or all "1" or any coded information), or a wavelength and uplink service optical signal.
  • Special test signals with different signals The wavelength of the upstream service optical signal and the specific upstream optical signal may be the same or different.
  • the wavelength of the special test signal may be the signal sent by the upstream test optical signal transmitter 1214 of the ONT120.
  • the special test signal The wavelength can be 1650nm or 1625nm.
  • the time information for sending the uplink test signal includes the start time of sending the uplink test signal.
  • the downstream optical signal may also include the end time of sending the upstream test optical signal.
  • Step 302 The OLT 110 sends instruction information to the second ONT 120 via a downstream optical signal to instruct the second ONT 120 to obtain the intensity of the echo optical signal of the upstream test signal sent by the first ONT.
  • the ONT 120 that obtains the intensity information of the echo optical signal is called the second ONT 120.
  • the second ONT 120 may be other ONTs 120 except the first ONT 120 that sends the uplink test optical signal, or may be all ONTs 120 that include the first ONT 120.
  • the echo optical signal of the uplink test signal sent by the first ONT 120 is referred to as the echo optical signal of the ONTi, that is, the echo optical signal of the first ONT 120.
  • the control message may be sent to each second ONT 120 in the form of an authorization message, a configuration message, or a notification message. The sending of the control message and the authorization message is not limited in time sequence.
  • the instruction information also includes time information for measuring the echo optical signal of the first ONT 120.
  • the time information for measuring the echo optical signal of the first ONT 120 indicates the time (for example, time delay) at which each second ONT 120 starts to measure the echo optical signal of the first ONT 120, or indicates the ODTR measurement corresponding to each second ONT 120 The time of the echo optical signal of the first ONT120.
  • the measurement time of each second ONT 120 or the ODTR corresponding to each second ONT 120 to the echo optical signal of the first ONT 120 may be the same or different.
  • the OLT 110 may obtain the RTT (Round time trip) or RTT and Eqd (equalization Delay) of each ONT 120 before implementing the embodiment of the present application, and determine the measurement of each ONT 120 according to the RTT and /Eqd of each ONT.
  • the time delay of the echo optical signal of the first ONT refers to the time difference from the first ONT starting to send the uplink test optical signal to the second ONT starting to measure the echo optical signal of the first ONT.
  • the method for the OLT 110 to obtain the RTT and/or Eqd of each ONT 120 can refer to existing standard technologies (such as ITU-T G.984.3), and the embodiments of the present invention will not be described in detail here.
  • the time information of measuring the echo optical signal also indicates the duration of measuring the echo optical signal of the first ONT.
  • the time length for measuring the echo optical signal of the first ONT is referred to as the measurement time length.
  • the measurement duration indicates the length of time or the amount of data for each second ONT120 or the ODTR corresponding to each second ONT120 to measure the echo optical signal of the first ONT120.
  • the length of time for measuring the echo optical signal of the uplink test optical signal refers to the length of time for the second OTN or ODTR to continuously test the echo optical signal, for example, 3 seconds.
  • the measurement of the data amount of the echo optical signal of the uplink test optical signal refers to the number of times of measuring the echo optical signal, for example, once in the first second of the start of the test, once in the second second, and so on.
  • Step 303 After receiving the instruction information of the OLT 110, the first ONT 120 sends an uplink test optical signal according to the instruction information.
  • the indication information may also include the time to start sending the uplink test signal.
  • the instruction information may also include the duration of sending the uplink test signal or the time to end the sending of the uplink test signal. The first ONT 120 stops sending the uplink test signal after determining that the time to end the sending of the uplink test signal arrives. The uplink test signal.
  • the ONTi120 sends a pulse signal according to the instructions of the authorization message.
  • the authorization message may instruct the ONTi120 to send one or more short pulses, or to send a long pulse.
  • the wavelength of the upstream test optical signal may be the same as or different from the wavelength of the upstream service optical signal.
  • Step 304 After receiving the instruction information from the OLT 110, the second ONT 120 obtains the intensity information of the echo optical signal of the uplink test signal sent by the first ONT (ie, ONTi) according to the instruction.
  • each second ONT 120 or the ODTR corresponding to each second ONT 120 After each second ONT 120 or the ODTR corresponding to each second ONT 120 receives the instruction information, it measures the intensity of the echo optical signal of the uplink test optical signal according to the time information of measuring the echo optical signal. Further, each of the second ONTs ends receiving the echo optical signal of the uplink test optical signal according to the measurement duration.
  • Each second ONT obtains the intensity information of the echo optical signal measured by the second ONT 120 or the ODTR corresponding to the second ONT 120.
  • Step 305 The OLT 110 notifies each second ONT 120 to report the measurement result obtained by the second ONT.
  • the OLT 110 may notify each second ONT 120 to report the intensity of the echo optical signal measured by each second ONT according to the time information in the indication information.
  • Step 306 The OLT 110 receives the measurement result reported by each second ONT, and the measurement result may be the intensity information of the echo optical signal of the uplink test signal.
  • the measurement result may also carry the identifier of the second ONT, or the time information of the second ONT or the ODTR measurement intensity information corresponding to the second ONT, or the time information of sending the measurement result, so that the OLT can determine each Strength information sent by the second ONT.
  • Step 307 The OLT 110 determines a second ONT connected to the same optical splitter 132 as the first ONT according to the intensity information of the echo optical signal reported by the second ONT.
  • the second ONT connecting the first ONT to the same optical splitter 132 may also be referred to as a third ONT.
  • the OLT 110 stores the threshold values of the intensity difference of the echo optical signals measured by the ONT 120 of different groups.
  • the OLT 110 determines the ONT 120 in the same group as the first ONT 120, that is, the third ONT 120 according to the threshold for determining the intensity difference of the ONT 120 in the same group. For example, the OLT 110 determines that the difference between the intensity of the first echo optical signal reported by the ONTh120 and the intensity of the first echo optical signal returned by at least one second ONT is greater than the intensity difference threshold of the different groups. Then ONTh may be determined as the ONT 120 in the same group as the first ONT 120.
  • the OLT 110 stores the threshold value of the intensity difference of the echo optical signal corresponding to each split ratio of the first-stage optical splitter.
  • the echo optical signal intensity difference is the difference between the echo optical signal intensity obtained by the second ONT 132 connected to the same optical splitter as the first ONT and the echo optical signal intensity obtained by the second ONT that is not connected to the same optical splitter with the first ONT , That is, the difference between the intensity of the echo optical information obtained by the third OTN and the intensity of the echo optical signal obtained by the fourth ONT.
  • the fourth ONT is a second ONT that is not connected to the same optical splitter as the first ONT.
  • the intensity difference range corresponding to each splitting ratio of the first-stage optical splitter is referred to as the intensity difference range of the splitting ratio, which can be determined according to formula 1):
  • N is an exponent of 2.
  • the splitting ratio is 2 to the Nth power.
  • the range of the intensity difference of the splitting ratio is [3.5, 10.5].
  • Step 308 The OLT 110 determines the identity of the first ONT that sends the uplink test optical signal next time, and carries the determined identity of the first ONT in the instruction information of step 301.
  • the OLT 110 may select (for example, select randomly or in other ways) an ONT that has not sent the upstream test optical signal as the first ONT. For example, the OLT 110 can identify the ONT that has sent the upstream test optical signal. Therefore, the OLT 110 can determine the first ONT that transmits the uplink test optical signal next time from the ONTs that have not transmitted the uplink test optical signal.
  • the OLT 110 may also select an ONT that has not determined the same group of ONTs as the first ONT that sends the uplink test optical signal next time based on the determined ONTs of the same group of the first ONT.
  • Step 309 The OLT repeats steps 301-308 to determine the optical splitter to which each second ONT 120 belongs.
  • Steps 307, 308, and 309 can also be replaced with 309' and 310'. That is, after the OLT 110 receives the intensity of the echo optical signal of the uplink test optical signal sent by all ONTs, it determines the relationship with each ONT. Connected optical splitter.
  • the information for authorizing the ONTi in steps 301 and 302 to send the uplink test optical signal and notifying each second ONT to measure the echo optical signal of the first ONT may also be sent to each ONT in the same message.
  • the ODN130 includes a 2-stage optical splitter, and the splitting ratio of each stage is 1 ⁇ 4 (1 ⁇ 2 N , N is equal to 2).
  • the length of the backbone fiber 133 in the ODN, the splitting ratio of the first-stage splitter 131 (first-stage splitting ratio), the length of the distribution fiber 134, the splitting ratio of the second-stage splitter 132 (referred to as the second-stage splitting ratio), branch fiber The length 135 and the serial number of the ONT 120 are shown in Table 1.
  • serial numbers ONT1-ONT16 are not the identification of each ONT, but the serial number of the ONT connected to each optical splitter.
  • the OLT 110 may obtain the information in Table 1 and Table 2 through a signal test before executing the embodiment of the present application, that is, before sending the authorization information.
  • the OLT 110 authorizes any ONT (such as ONT1) as the first ONT to send an uplink test optical signal through the authorization information.
  • the OLT 110 notifies the second ONT (ONT2-16 in this example) to measure the intensity of the echo optical signal of the uplink test signal sent by the ONT1.
  • the average optical power of the uplink test optical signal sent by the ONT1 is 2 dBm; the average optical power of the uplink test optical signal is also referred to as the strength of the uplink test optical signal.
  • ONT2-ONT16 or the corresponding ODTR measures the intensity of the echo optical signal of the uplink test signal according to the measurement time information in the indication message. For example, ONT2-ONT16 or the corresponding ODTR can measure the echo optical signal of ONT1 one or more times according to the instruction message in step 303, and then OTN2-ONT16 obtains the intensity of the echo optical signal measured by ONT2-ONT16 or the corresponding ODTR. As an example, if each second ONT or ODTR is measured for multiple times, the intensity of the multiple measurements can be averaged, and the average value is used as the intensity value of the echo optical signal of the uplink test signal.
  • the intensity of the echo optical signal of the ONT1 measured by the second ONT (ONT under the same optical splitter) in the same group as the transmitting ONTi (ie, ONT1) is the sum of the echo optical signal on the distribution fiber 134 and the backbone fiber 133. Since the intensity of the echo optical signal on the distribution fiber 134 is greater than the intensity of the echo optical signal on the backbone fiber 133, the echo optical signal measured by the second ONT in the same group as the ONTi (that is, ONT1) sending the upstream test optical signal is mainly the distribution fiber 134 The echo from above is dominated.
  • the echo optical signal measured by the second ONT of a different group from the ONTi sending the uplink test optical signal is mainly the echo on the backbone fiber 133. Therefore, the intensity of the echo optical signal measured by the ONT in the same group as the ONTi (that is, ONT1) that sends the uplink test optical signal is greater than that of the echo optical signal measured by the ONT in the different group from the ONTi that sends the uplink test optical signal.
  • the difference between the intensities of the echo optical signals measured by the ONTs in the same group and the intensities of the echo optical signals measured by the ONTs in the different groups is greater than the threshold value of the difference in the intensities of the echo optical signals measured by the ONTs in the different groups , Such as 7.
  • Each second ONT 120 reports the measurement result of the echo optical signal of the first ONT to the OLT 110.
  • the intensity distribution of the echo optical signal measured by each second ONT120 (for example, ONT2-ONT16) obtained by the OLT 110 is shown in FIG. 3.
  • the OLT110 groups the echo optical signal strength measured by ONT2-ONT16.
  • the difference between the intensity of the echo optical signal measured by the ONT2, ONT3, and ONT4 and the intensity of the echo optical signal measured by the ONT5-16 is greater than 7. Therefore, the OLT 110 determines that ONT2, ONT3, ONT4 and ONT1 are connected to the same optical splitter, and ONT5 to ONT1 are connected to different optical splitters.
  • the OLT determines the number of stages of the optical splitter and the splitting ratio of the optical splitter in the OND network according to the intensity information of the echo information returned by each second ONT and the intensity difference domain values of the different groups.
  • the average value of the echo optical signal intensity measured by the first group of ONTs is about -42dBm
  • the average value of the echo optical signal intensity measured by ONT5-ONT16 is about -59dBm.
  • the splitting ratio of the first-stage splitter is 1 ⁇ 2 2 (that is, 1 ⁇ 4).
  • the present application also provides a method for determining the ODN topology of a passive optical network system.
  • FIG. 4 is a schematic flowchart of a method for determining an ODN topology provided by an embodiment of the application.
  • the OLT 110 first sends instructions to ONTi through a test authorization message, and then sends instructions to other ONTs in the PON system 100 except ONTi through a control message (it can also send a control message to all ONTs). Instruct the second ONT or the corresponding ODTR to measure the echo optical signal of the uplink test optical signal sent by the ONTi.
  • the OLT 110 configures the test parameters of all ONTs before starting the test. In the embodiment provided in FIG. 4, it includes:
  • Step 401 The OLT110 configures the indication information of the ONT120.
  • the indication information includes the time information for sending each uplink test signal (such as the identification of each ONT that sends the uplink test signal and the time when each ONT sends the uplink test signal) and the measurement of the uplink test signal by each ONT.
  • Time information of the echo optical signal (such as measuring the time delay, duration, and/or quantity of the echo optical signal).
  • Step 402 The OLT broadcasts instruction information to the second ONT to start measuring the echo optical signal.
  • the indication information may be a specific DBA authorization message.
  • the specific DBA authorization message can be Alloc-id (Allocation identifier), Bwmap (bandwidth map) message of broadcast Alloc-id (1021 or 1022) or A BWmap message that agrees on Alloc-id; the indication information carries the identification of the first ONT that sends the uplink test signal, or the identification of the first ONT that carries the identification of the first ONT and the identification of the second ONT that measures the echo optical signal of the first ONT.
  • step 402 is an optional step. After receiving the instruction information, each ONT can start sending the uplink test signal or measuring the echo optical signal, or send the uplink test signal or measuring the echo optical signal according to the time information in the instruction information. .
  • Steps 403-408 are consistent with the descriptions of steps 303-308, and the embodiment of the present invention is not limited herein.
  • Step 409 Repeat steps 402-409 to determine the optical splitter connected to each ONT120.
  • the second OTN 120 may also send the measurement result not to the OLT 110, but to any ONT in the PON system (for example, the ONT described in ONTk).
  • ONTk can be the same as ONTi or different).
  • the ONTk determines the second ONT in the same group as the ONTi according to the measurement result, and sends the determination result to OLT.
  • the method for the ONTk to determine the second ONT in the same group as the ONTi according to the strength of the echo information of the ONTi sent by the second ONTs 120 is the same as the method for the OLT 110 to determine the second ONT in the same group as the ONTi.
  • the application examples are not detailed here.
  • the OLT may not perform step 407, but perform step 408, and then repeat steps 402-406 and step 408 until the OLT 110 receives all ONT transmissions.
  • the optical splitters to which all ONTs are connected are determined according to the received intensity information of the echo optical signals for all ONTs.
  • the ODN130 system includes a two-stage optical splitter, ONT_2nx (n represents the nth second-stage optical splitter, and x represents the xth one connected to the nth second-stage optical splitter.
  • ONT the pulse width of the upstream test optical signal sent by the ONT is T.
  • the method for determining the ONT connection includes:
  • the OLT 110 configures indication information for all ONTs 120.
  • the indication information includes the time information for sending the uplink test signal and the time information for each ONT to measure the echo optical signal (such as measuring the time delay, time length, and/or quantity of the echo optical signal). ).
  • the OLT 110 instructs the ONT211 in the configured instruction information to send an uplink test optical signal at time t1, and arrives at ONT_21x at t2+ ⁇ t21x, and is received by the second receiver of ONT_21x.
  • Echo optical signals are generated on the common end (port connected to the backbone fiber) of the first-stage optical splitter 1 and the backbone fiber.
  • t1 is the time when the ONT211 sends the uplink test optical signal
  • t2+ ⁇ t21x is the time when the ONT21X starts to receive the echo optical signal
  • t3+ ⁇ t2nx is the time when the other ONT2nx starts to receive the echo optical signal.
  • the test parameter may also not include the time when each ONT starts to send the uplink test signal and/or does not include the time when each ONT starts to measure the echo optical signal.
  • the uplink test optical signal is sent or the uplink test signal is measured according to the information of the control message, such as the ONT identification that sends the uplink test signal and/or the ONT identification that measures the echo optical signal. Echo optical signal.
  • the control message also carries the time when the ONT sends the uplink test signal and/or the time when each second ONT measures the uplink test signal.
  • Each ONT sends an uplink test optical signal or measures an echo optical signal of the uplink test optical signal according to the information in the test start message.
  • steps 307, 308, and 310', or 407, 408, and 410 are not executed by the OLT, but are executed by the upper-layer network device 200 that is in communication with the OLT.
  • the OLT receives the uplink measured by the second ONT. After testing the strength information of the echo optical signal of the optical signal, send the strength information of the echo optical signal of the uplink test optical signal measured by the second ONT to the upper-layer network device, and the upper-layer network device confirms that it is connected to the same optical splitter as the first ONT.
  • the third ONT determines the identity of the ONT that sends the upstream test optical signal, or the OLT determines the identity of the ONT that sends the upstream test optical signal.
  • the method for the upper-layer network device to determine the third ONT connected to the same optical splitter as the first ONT is the same as the method for the OLT to determine the third ONT connected to the same optical splitter as the first ONT, which is not limited in the embodiment of the present invention. .
  • the OLT may also receive the intensity information of the echo optical signal of the uplink test optical signal sent by the ONT as the first ONT, and then send the received intensity information to the upper-layer network device 200.
  • the upper-layer network device 200 determines the optical splitter connected to each ONT 120.
  • the OLT 110 determines the relationship between the optical splitters or the relationship between the ONT and the optical splitter according to the intensity of the echo optical signal of each ONT sent by each ONT.
  • Pb ab (t) to represent the echo optical signal received by the bth (subscript b) ONT when the ath (subscript a) ONT sends an upstream wavelength optical signal.
  • Intensity t indicates that the intensity of the echo optical signal is a function of time
  • the optical signal intensity received by all ONTs is ⁇ Pb11(t),Pb12(t),Pb13(t),...,Pb1M(t) ⁇ ;
  • the optical signal intensity received by all ONTs is ⁇ Pb21(t),Pb22(t),Pb23(t),...,Pb2M(t) ⁇ ;
  • the optical signal intensity received by all ONTs is ⁇ PbM1(t), PbM2(t), PbM3(t),...,PbMM(t) ⁇ ;
  • any row of the PB(t) matrix indicates that an ONT sends an uplink test optical signal, and other ONTs measure the echo optical signal of the ONT (ie, the first ONT) that sends the uplink test optical signal; any column indicates the other received by an ONT.
  • the ONT serves as the echo optical signal strength of the uplink test optical signal sent by the first ONT.
  • the OLT 110 may further analyze or process (for example, clustering, etc.) according to the PB(t), and determine the ONTs connected to the same optical splitter. For example, the OLT 110 can obtain ONTs in the same group as the sending ONT (ONTs connected to the same optical splitter) according to each row of PB(t) or obtain ONTs in the same group as the receiving ONT (ONTs connected to the same optical splitter) according to each column. ). For example, when the time length T (or called the test pulse width) of the uplink test optical signal sent by the sending ONT is greater than the transmission time of the optical signal from the sending ONT to the OLT (for example, T is greater than the maximum RTT during registration or ranging of all ONTs). Value), you can select any value in Pbab(t), or the average value of Pb(t) as the measured value of the echo optical signal, and perform grouping calculations.
  • T time length
  • the maximum value in Pbab(t) is selected as the measured value of the echo optical signal, and the packet operation is performed .
  • the loss of the optical splitter 1 of the first-stage optical splitter is Lsp_1;
  • the strength of the upstream test optical signal sent by the ONT_211 is Pu_211.
  • Pb21x ⁇ Pu_211-Le_211-Lsp_21- ⁇ _21-Lsp_21-Le_21x
  • Pb2nx ⁇ Pu_211-Le_211-Lsp_21-Ld_21–Lsp_1- ⁇ _2n-Lsp_1-Ld_2n-Lsp_2n-Le_2nx
  • P21x–Pb2nx (Ld_21+Lsp_1+ ⁇ _2n+Lsp_1+Ld_2n+Lsp_2n+Le_21x)-( ⁇ _21-Lsp_21-Le_21x)
  • P21x–Pb2nx 2*Lsp_1+(Ld_21+Ld_2n+Le_2nx-Le_21x)+( ⁇ _2n- ⁇ _21)+(Lsp_2n-Lsp_21)
  • P21x–Pb2nx 2*Lsp_1+(Ld_21+Ld_2n+Le_2nx-Le_21x)
  • the splitting ratio is 1:2N (can also be written as 1 ⁇ 2N).
  • the loss of the splitter is N ⁇ 3.5dB, that is, P21x--Pb2nx>> (far greater than 0), so it can be easily determined that ONT_21x and ONT_211 belong to the same secondary splitter.
  • ONT_2nx belongs to another second-stage optical splitter. Repeat the above steps to obtain the connection relationship between all ONTs and the secondary optical splitter.
  • FIG. 5 is a schematic flowchart of a method for measuring the intensity of an echo optical signal performed by an ONT after receiving a message from an OLT according to an embodiment of the application. The method includes:
  • Step 502 The ONT 120 receives a downlink optical signal carrying indication information sent by the OLT 110 through an authorization message or a control message, where the indication information is used to instruct the ONT 120 to act as the first ONT to send the uplink test signal or to measure the uplink test signal.
  • the second ONT The second ONT.
  • the indication information may be the information in step 301 or 302, or the information in step 402.
  • the embodiments of the present invention are not limited herein.
  • Step 504 The ONT 120 determines whether it is the first ONT or the second ONT according to the received instruction information. If the ONT 120 determines that it is the first ONT, step 506 is executed. If the ONT 120 determines that it is the second ONT, step 508 is executed.
  • Step 506 The ONT 120 sends an uplink test signal according to the instruction in the instruction information.
  • the description in step 502 is the same as the description in step 303, which is not described in detail in this embodiment of the present invention.
  • Step 508 The ONT 120 obtains the intensity of the echo optical signal of the uplink test signal according to the instruction in the instruction information. This step is the same as the description in step 304, and will not be described in detail in this embodiment of the present invention.
  • Step 510 The ONT 120 receives a request sent by the OLT to send intensity information of the echo information. This step is the same as the description in step 305, or the request instructs the ONT 120 to send the intensity information of the echo information to another ONT.
  • Step 512 The ONT 120 sends the intensity information of the echo information.
  • the ONT 120 sends the intensity information of the echo information to the OLT 110 or to another ONT 120 according to the instruction of the request.
  • Fig. 6 is a schematic structural diagram of a device provided by this application.
  • the message processing device may be an OLT, an ONT, or an upper-layer network device.
  • the device can be used to implement the corresponding part of the method described in the foregoing method embodiment. For details, refer to the description in the foregoing method embodiment.
  • the message processing device may include one or more processors 601, and the processor 601 may also be referred to as a processing unit, which may implement certain control functions.
  • the processor 601 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as base stations, baseband chips, DU, or CU, etc.), execute software programs, and process data in software programs. .
  • the processor 601 may also store an instruction 604, and the instruction 604 may be executed by the processor, so that the packet processing device executes the method described in the foregoing method embodiment and corresponds to the terminal or network. Method of equipment.
  • the device may include a circuit, and the circuit may implement the sending or receiving or communication function in the foregoing method embodiment.
  • the message processing device may include one or more memories 602, and the memory 602 stores instructions 602 or intermediate data.
  • the instructions 605 may be executed on the processor 601 so that the message The processing device executes the method described in the above method embodiment.
  • other related data may also be stored in the memory 602.
  • instructions and/or data may also be stored in the processor 601.
  • the processor 601 and the memory 602 can be provided separately or integrated together.
  • the message processing device may further include a transceiver 603.
  • the processor 603 may be referred to as a processing unit.
  • the transceiver 603 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and is used to implement the transceiver function of the communication device.
  • the present application also provides a readable storage medium.
  • the readable storage medium stores an execution instruction.
  • the message processing device executes the message in the above method embodiment. Approach.
  • the application also provides a program product, which includes an execution instruction, and the execution instruction is stored in a readable storage medium.
  • At least one processor of the message processing device can read the execution instruction from a readable storage medium, and at least one processor executes the execution instruction to cause the message processing device to implement the message processing method in the foregoing method embodiment.

Abstract

本申请提供一种确定光网络终端ONT连接的方法,装置和系统。针对第一ONT发送的第一上行光信号,设备接收第二ONT发送的所述第一上行光信号在光纤网络中产生的回波光信号的强度信息,所述第二ONT为无源光网络PON系统中所有的ONT或PON系统中除所述第一ONT之外的其它ONT;根据所述第二ONT发送的回波光信号的强度信息,所述设备确定与所述第一ONT连接同一分光器的第三ONT。通过本方法可以确定各ONT连接的分光器,从而在PON系统的运行过程中,可以根据本方法确定的连接关系快速、正确的判断故障发生点,快速消除故障点。

Description

确定光网络终端连接的方法、设备及系统 技术领域
本申请涉及光通信技术,特别地,涉及确定光网络终端(Optical Network Termination,OTN)连接的方法、设备及系统。
背景技术
无源光网络(Passive Optical Network,简称PON)系统包括光线路终端(Optical Line Terminal,OLT)、多个位于用户侧的光网络终端(Optical Network Unit,ONU)或光网络终端(Optical Network Termination,简称ONT)、以及一个用于对光线路终端和光网络终端之间的光信号进行分支/耦合或者复用/解复用的光分配网络(Optical Distribution Network,ODN)。
目前,具有代表性的PON技术是吉比特无源光网络(Gigabit Passive Optical Network简称GPON)和以太网无源光网络(Ethernet Passive Optical Network,简称EPON),XG(S)-PON(10G(symmetric)Passive Optical Network),10G EPON(10G Ethernet Passive Optical Network。XG(S)-PON和10G EPON可以统称为10G PON.
PON系统上、下行的光可以在同一根光纤中传输,下行方向(自OLT到ONT)以TDM(Time Division Multiplexing时分复用)方式工作,OLT发送的光信号会广播到所有分支光纤,能到达所有的ONT;上行方向(ONT到OLT)以TDMA(Time Division Multple Access时分多址)方式工作,ONT只在授权的时隙进行发送。当然,上、下行也可以分别采用不同光纤来传输。
ODN在部署过程中,运营商或局端(CO Central Office)很难获得正确的PON ODN的真实拓扑结构,需要人工把分光器的位置和分光器与ONT的连接关系记录到资源管理系统。但是人工记录过程中容易出现错误,且分光器与ONT的关系也随时会变,从而导致记录的分光器与ONT的连接关系不准确。因此,在PON系统的运行过程中,在系统出现出现故障时,不能快速、正确的判断故障发生点,快速消除故障点。
发明内容
针对上述问题,本申请提供一种确定光网络终端连接的方法、设备及系统。
第一方面,本申请实施例提供一种光网络终端,包括:下行光信号接收机、回波光信号接收机、处理模块和上行光信号发送机。其中,下行光信号接收机用于接收第一下行光信号,第一下行光信号指示光网络终端获取第一上行光信号在光纤网络中产生的回波光信号。回波光信号接收机用于接收第一上行光信号在光纤网络中产生的回波光信号。处理模块,用于根据所述第一下行光信号的指示信息获取所述回波光信号的强度信息。上行光信号发送机,用于发送第二上行光信号,所述第二上行光信号中携带所述回波光信号的强度信息,所述回波光信号的强度信息反映所述ONT与发送所述上行测试信号的ONT的关系。本申请实施例中,光网络终端可以获取第一上行光信号在光纤网络中产生的回波光信号的强度信息,回波光信号的强度信号可用于确定光网络终端与分 光器的连接关系。因此,在PON系统的运行过程中,可以根据连接关系快速、正确的判断故障发生点,快速消除故障点。
一种可能的设计中,所述第一下行光信号中携带获取所述回波光信号的时间,和/或测量的次数,以使得光网络终端可以获取测量的回波光信号的强度。
一种可能的设计中,光网络终端进一步包括媒体访问控制MAC模块,用于解析所述第一下行电信号中携带的指示信息,所述第一下行电信号由所述第一下行光信号转换;所述处理模块进一步用于获取所述MAC模块解析的第一下行电信号中的指示信息。
一种可能的设计中,下行光信号接收机进一步接收第二下行光信号,所述第二下行光信号携带指示所述光网络终端发送所述第一上行光信号的指示信息和所述光网络终端发送所述第一上行光信号的时间信息。从而光网络终端可以根据指示信息确定发送第一上行光信号。
一种可能的设计中,所述第一下行光信号进一步携带发送所述第一上行光信号的光网络终端的标识,以及所述发送第一上行光信号的时间信息。
一种可能的设计中,光网络终端进一步包括存储模块,用于存储所述第一下行光信号和/或第二下行光信号中携带的信息,以及存储所述回波光信号的强度信息。
一种可能的设计中,所述第一上行光信号为所述光网络终端发送的第一第一上行光信号,或其它光网络终端发送的第二第一上行光信号。
一种可能的设计中,所述上行光信号发送机进一步用于根据处理模块的指示,发送所述第一上行光信号,所述第一上行光信号的波长、所述回波光信号波长和所述第二上行光信号的波长相同。
一种可能的设计中,所述光网络终端进一步包括第一上行光信号发送机,用于根据处理模块的指示发送所述第一上行光信号,所述第一上行光信号的波长和所述回波光信号波长相同,所述第一上行光信号的波长和所述第二上行光信号的波长不同。
第二方面,本申请实施例提供一种确定光网络终端ONT连接的方法。光网络终端接收第一下行光信号,所述第一下行光信号指示所述光网络终端获取第一上行光信号在光纤网络中产生的回波光信号。光网络终端接收所述第一上行光信号在所述光纤网络中产生的所述回波光信号,根据所述第一下行光信号的指示获取所述回波光信号的强度信息,以及发送第二上行光信号,所述第二上行光信号中携带所述回波光信号的强度信息,所述回波光信号的强度信息用于确定光网络终端与分光器的连接。本申请实施例中,光网络终端可以获取第一上行光信号在光纤网络中产生的回波光信号的强度信息,回波光信号的强度信号可用于确定光网络终端与分光器的连接关系。因此,在PON系统的运行过程中,在系统出现出现故障时,可以根据连接关系快速、正确的判断故障发生点,快速消除故障点。
一种可能的设计中,光网络终端进一步解析所述第一下行电信号中携带的指示信息,所述第一下行电信号由所述第一下行光信号转换。
一种可能的设计中,光网络终端进一步接收第二下行光信号,所述第二下行光信号携带指示所述光网络终端发送所述第一上行光信号的指示信息和所述光网络终端发送所述第一上行光信号的时间信息。
一种可能的设计中,第一下行光信号进一步携带发送所述第一上行光信号的光网络 终端的标识,以及所述发送第一上行光信号的时间信息。
一种可能的设计中,光网络终端进一步存储所述第一下行光信号、第二下行光信号中携带的信息,以及存储所述回波光信号的强度信息。
一种可能的设计中,光网络终端进一步发送所述第一上行光信号,所述第一上行光信号的波长、所述回波光信号波长和所述第二上行光信号的波长相同。
一种可能的设计中,光网络终端发送所述第一上行光信号,所述第一上行光信号的波长和所述回波光信号波长相同,所述第一上行光信号的波长和所述第二上行光信号的波长不同。
第三方面,本申请实施例提供一种确定光网络终端ONT连接的方法。设备针对第一ONT发送的第一上行光信号,接收第二ONT发送的所述第一上行光信号在光纤网络中产生的回波光信号的强度信息,所述第二ONT为无源光网络PON系统中所有的ONT或PON系统中除所述第一ONT之外的其它ONT。根据所述第二ONT发送的回波光信号的强度信息,所述设备确定与所述第一ONT连接同一分光器的第三ONT。本申请实施例中,设备可以根据回波光信号的强度信号确定光网络终端与分光器的连接关系。
一种可能的设计中,所述设备确定与所述第一ONT连接同一分光器的第三ONT包括:所述设备确定所述第三ONT发送的强度信息与至少一个第二ONT发送的强度信息的差值大于分光器的强度差阈值。
一种可能的设计中,设备进一步确定第三ONT发送的强度信息与第四ONT发送的强度信息之间的差值,所述第四ONT为所述第二ONT中与所述第一ONT连接不同分光器的ONT。设备地量步根据所述第三ONT发送的强度信息与第四ONT发送的强度信息之间的差值,确定一级分光器的分光比。
一种可能的设计中,所述设备存储一级分光器分光比的阈值范围,所述设备确定一级分光器的分光比包括:所述设备根据所述分光比的阈值范围以及所述第三ONT发送的强度信息与所述第四ONT发送的强度信息之间的差值,确定一级分光器的分光比。一种可能的设计中,所述设备为光网络端,所述光网络终端进一步接收第一下行光信号和第二下行光信号,所示第一光信号携带指示所述所述光网络终端获取所述回波光信号的指示信息、所述光网络终端的标识、以及指示所述光网络终端获取所述第二ONT发送的所述回波光信号的强度信息的指示信息,所述第二下行光信号携带所述光网络终端的标识,以及所述光网络终端获取所述第二ONT发送的所述回波光信号的强度信息的指示信息;或所述光网络终端接收第一下行光信号,所述第一下行光信号携带指示所述光网络终端发送所述第一上行光信号的指示信息、发送所述第一上行光信号的时间信息、以及所述光网络终端获取所述第二ONT发送的所述回波光信号的强度信息的指示信息。
一种可能的设计中,光网络终端进一步发送第三第二上行光信号,所述第三第二上行光信号中携带所述与所述第一ONT连接同一分光器的第三ONT的信息。
一种可能的设计中,所述设备为光线路终端,所述光线路终端进一步发送第一下行光信号,所述第一下行光信号携带指示所述第二ONT获取所述回波光信号的强度信息的指示信息,从而使得第二ONT可以获取回波光信号的强度信息。
一种可能的设计中,所述第一下行光信号进一步携带测量所述回波光信号的时间, 和/或测量的次数,从而使得测量回波光信号的强度信息的指示更为准确。
一种可能的设计中,所述光线路终端发送第二下行光信号,所述第二下行光信号携带发送第一上行光信号的光网络终端的标识,以及发送第一上行光信号的时间信息。从而使得发送第一上行光信号的光网络终端可以发送第一上行光信号,使得方案顺利进行。
一种可能的设计中,所述第一下行光信号进一步携带发送所述第一上行光信号的光网络终端的标识,以及所述发送第一上行光信号的时间信息。从而使得发送第一上行光信号的指示更为清楚、准确,使得方案顺利实施。
一种可能的设计中,所述设备为上层网络设备,所述设备接收所述第二ONT获取的所述第一上行光信号在光纤网络中产生的回波光信号的强度信息包括:所述上层网络设备接收光线路终端发送的第二ONT获取的所述第一上行光信号在光纤网络中产生的回波光信号的强度信息。从而可以使本申请适用多种不同的网络结构,增加方案使用的灵活性。
一种可能的设计中,所述光线路终端发送第三下行光信号,所述第三下行光信号指示所述第二ONT发送回波光信号的强度信息。从而使得OLT获得强度信息。
一种可能的设计中,所述第一ONT为首次发送所述第一上行光信号的ONT,该方法进一步包括:所述设备确定下一次发送第一上行光信号的ONT,从而确定所有ONT的与分光器的连接。
一种可能的设计中,光线路终端确定下一次发送第一上行光信号的ONT包括:从所述PON系统中除所述第一ONT之外的其它ONT中确定所述下一次发送第一上行光信号的ONT;或从所述PON系统中除所述第一ONT和所述第三ONT之外的ONT中确定所述下一次发送第一上行光信号的ONT。从而确保可以所有ONT的与分光器的连接。
第四方面,本申请实施例提供一种无源光网络系统,其特征在于,包括光线路终端OLT、光分配网络ODN和多个光网络终端,所述OLT通过所述ODN连接到所述多个光网络终端,所述多个光网络终端中的每一个光网络终端为第一方面任一设计中的光网络终端,所述OLT用于执行第三方面中任一设计中的所述OLT执行的功能。
第五方面、本申请实实施例提供一种设备,包括存储器、处理器;该存储器用于存储计算机执行指令,当该装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该设备执行如第三方面任一设计中描述的方法。
第六方面,本申请实施例提供一种系统,包括上层网络设备、无源光网络PON系统,所述无源光网络系统用于向所述上层网络设备发送第二光网络终端ONT获取的所述第一上行光信号在光纤网络中产生的回波光信号的强度信息,所述第二ONT为PON系统中所有的ONT或PON系统中除所述第一ONT之外的其它ONT,所述第一ONT为发送第一上行光信号的ONT;所述上层网络设备用于根据接收到的所述第二ONT测量的回波光信号的强度信息,确定与所述第一ONT连接同一分光器的第三ONT。
第七方面,本申请提供一种可读存储介质,可读存储介质中存储有执行指令,当报文处理设备的至少一个处理器执行该执行指令时,报文处理设备执行第二方面及第一方面任一种可能的设计中的报文处理方法或者第三方面及第三方面任一种可能的设计中的方法。
第八方面,本申请提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得报文处理设备实施第二方面及第二方面任一种可能的设计中的方法或者第三方面及第三方面任一种可能的设计中的方法。
附图说明
图1为一种无源光网络系统的结构示意图。
图2A为本申请一种实施例提供的光线路终端的结构示意图。
图2B为本申请一种实施例提供的光网络单元的结构示意图。
图2C为本申请一种实施例提供的光网络单元的结构示意图。
图3A为本申请一种实施例提供的确定ONT连接的分光器的方法流程示意图。
图3B为本申请一种实施例提供的接收到的回波光信号强度的示意图。
图4为本申请另一种实施例提供的确定ONT连接的分光器的方法流程示意图。
图5为本申请实施例提供的ONT收到OLT的消息后执行的测量回波光信号强度的方法流程示意图。
图6为本申请实施例提供的一种设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。本发明的“A和/或B”可解释为A或B中的任一个,或包括A和B。
请参阅图1,其为本发明实施例提供的一种系统结构示意思。所述系统包括:无源光网络系统100和与所述无源光网络系统100耦合的网络设备200。所述上层网络设备200可以为互联网Internet,社区接入电视(Community Access Television,CATV)网络、或公共交换电话网(Public Switched Telephone Network,PSTN)中的网络设备200。所述无源光网络PON系统100包括至少一个光线路终端110、多个光网络终端120和一个光分配网络130。OLT110通过ODN130连接到所述多个光网络终端120。其中,从OLT110到所述光网络终端120的方向定义为下行方向,而从所述光网络终端120到OLT110的方向为上行方向。
所述无源光网络系统100可以是不需要任何有源器件来实现OLT110与所述光网络终端120之间的数据分发的通信网络。比如,在具体实施例中,OLT110与所述光网络终端120之间的数据分发可以通过ODN130中的无源光器件(比如分光器)来实现。并且,所述无源光网络系统100可以为ITU-T G.983标准定义的异步传输模式无源光网络(ATM PON)系统或宽带无源光网络(BPON)系统、ITU-T G.984标准定义的吉比特无源光网络(GPON)系统、IEEE 802.3ah标准定义的以太网无源光网络(EPON)、或者下一代无源光网络(NGA PON,比如XGPON或10G EPON等)。上述标准定义的各种无源光网络系统的全 部内容通过引用结合在本申请文件中。
OLT110通常位于中心位置(例如中心局Central Office,CO),其可以统一管理所述一个或多个光网络终端120。OLT110可以充当所述光网络终端120与上层网络设备200之间的媒介,将从所述上层网络接收到的数据作为下行数据并通过ODN130转发到所述光网络终端120,以及将从所述光网络终端120接收到的上行数据转发到所述上层网络。
所述光网络单元120可以分布式地设置在用户侧位置(比如用户驻地)。所述光网络单元120可以为用于与所述光线路终端110和用户进行通信的网络设备,具体而言,所述光网络单元120可以充当所述光线路终端110与所述用户之间的媒介,例如,所述光网络单元120可以将从所述光线路终端110接收到的下行数据转发到所述用户,以及将从所述用户接收到的数据作为上行数据通过所述光分配网络130转发到所述光线路终端110。应当理解,所述光网络单元120的结构与光网络终端(Optical Network Terminal,ONT)相近,因此在本申请文件提供的方案中,光网络单元和光网络终端之间可以互换。
ODN130可以是一个数据分发系统,其可以包括光纤、光耦合器、分光器和/或其他设备。在一个实施例中,所述光纤、光耦合器、分光器和/或其他设备可以是无源光器件。即,所述光纤、光耦合器、分光器和/或其他设备可以是在OLT110和所述光网络终端120之间分发数据信号是不需要电源支持的器件。另外,在其他实施例中,ODN130还可以包括一个或多个处理设备,例如,光放大器或者中继设备(Relay device)。在如图1所示的分支结构中,ODN130具体可以采用两级分光的方式从OLT 110延伸到所述多个光网络终端120,但也可以配置成其他任何点到多点(如单级分光或者多级分光)或者点到点的结构。
请参阅图1,ODN130采用分光器来实现数据分发,出于可靠性和运维方面的考虑,ODN130可以采用两级分光的方式来部署,包括第一级分光器131和多个第二级分光器132。所述第一级分光器131的公共端通过主干光纤(Feed Fiber)133连接到OLT110,且其分支端分别通过分布光纤(Distribute Fiber)134对应地连接到所述第二级分光器132的公共端,每个第二级分光器132的分支端分别进一步通过分支光纤(Drop Fiber)135连接到对应的光网络终端120的上行接口1201。在下行方向,OLT110发送的下行数据信号先经过第一级分光器131进行第一次分光之后,再分别经过第二级分光器132进行第二次分光,从而形成多路下行光信号并传输给各个光网络终端120。在上行方向,各个光网络终端120发送的上行数据信号依次通过所述第二级分光器132和第一级分光器131进行合路之后传输到OLT110。其中,所述第一级分光器131可以部署在距中心局较近的光配线架(Optical Distribution Frame,ODF),而所述第二级分光器132可以部署在远端节点(Remote Node,RN)。
值得说明的是,本申请提供的方案还可以用于有源的ODN的网络中。
图2A为本申请实施例提供OLT110的结构示意图。OLT110的具体结构配置可能会因所述无源光网络100的具体类型而异。如图2A所示,OLT110可以包括下行接口1101、耦合器1102、下行光信号发送机1103、上行光信号接收机1104、存储模块1105、处理模块1106和MAC模块1107。
其中,下行接口1101可以为光纤适配器,作为与ODN130连接的接口,进行上/下行光信号的发送或接收。所述耦合器1102设置在沿所述光纤适配器230延伸方向的主光路 并与所述主光路之间具有一定的夹角。所述耦合器1102可将所述下行光信号发送机1103发射的下行光信号中至少一部分耦合下行接口1101,并将从所述下行接口1101输入的上行光信号中至少一部分耦合到回波光信号接收机1104。下行光信号的波长为λ1。OLT接收的上行光信号为上行业务光信号,上行为业务光信号可以为第二上行光信号、第三上行光信号、第四上行光信号等。上行业务光信号的波长为λ2。
下行光信号发送机1103可以通过耦合器1102、下行接口1101以及ODN130将所述MAC模块1107通过下行光信号发送机1103提供的下行光信号发送给所述光网络终端120。上行光信号接收机1104可以接收所述光网络终端120通过ODN130发送的上行业务光信号,并且将所述上行光信号转成上行业务电信号后,将上行业务电信号提供给所述MAC模块1107进行数据解析和处理。另外,上行业务光信号可以包括光网络终端120通过ODN130发送的针对上行测试光信号(也可以称为第一上行光信号)在ODN130产生的回波光信号(发生后向散射或反射)的强度信息。处理模块1106根据所述强度信息确定与发送上行测试光信号的光网络终端120连接相同分光器132的光网络终端120。所述回波光信号为上行测试光信号在ODN130中发生后向散射或反射生成的信号。所述强度信息指可以表征回波光信号的功率或者幅度大小的测量参数,例如回波光信号的瞬时幅度值、回波损耗值、光时域反射仪(optical time domain reflectometer,OTDR)曲线的反射峰高度等。处理模块1106并进一步根据确定的与发送上行测试光信的光网络终端120连接相同分光器132的光网络终端120发送的强度信息,确定一级分光器131的分光比。
其中,所述下行光信号发送机1103可以为激光二极管(Laser Diode,LD),用于发射具有第一波长λ1的下行光信号(以下记为下行光信号λ1);上行光信号接收机1104可以为光电二极管(Photo Diode,PD),比如雪崩光电二极管(Avalanche Photo Diode,APD),用于接收具有第二波长λ2的上行业务光信号(以下记为上行业务光信号λ2)。
在一种实施例中,耦合器1102可以为薄膜滤波器(thin film filter,TFF)可以对具有所述第一波长λ1的光信号进行大约100%的透射,并对具有所述第二波长λ2的上行业务光信号进行大约100%的反射。
图2B为本申请实施例提供的ONT120的结构示意图。如图2B所示,所述光网络终端120可以包上行接口1201、第一耦合器1202、第二耦合器(coupler)1203、回波光信号接收机1204、上行光信号发送机1205、下行光信号接收机1206、存储模块1207、处理模块1208、MAC模块1209。
其中,上行接口1201可以为光纤适配器,作为与ODN130连接的接口,进行上/下行光信号的发送或接收。第一耦合器1202、第二耦合器1203的透射光路重叠。上行光信号发送机1205耦合到第二耦合器1203的透射光路。回波光信号接收机1204耦合到第二耦合器1203的反射光路。下行光信号接收机1206耦合到第一耦合器1203的反射光路。
上行接口1201向OLT110发送具有第二波长λ2的上行业务光信号或具有第二波长λ2的上行测试光信号(也可以称为第一上行光信号),以及接收具有第一波长λ1的下行光信号或接收具有第二波长的上行测试光信号的回波光信号。第一耦合器1202可以为TFF,将OLT110发送的具有所述第一波长λ1的下行光信号进行反射,以将下行光信号耦合到下行光信号接收机1206,并对具有所述第二波长λ2的上行测试光信号和具有所述第二波长λ2的上行测试光信号的回波光信号(简称回波光信号)透射到第二耦合器1203。第二 耦合器1203可以为环型耦合器,将回波光信号耦合至回波光信号接收机1204。第一耦合器1202还可以对上行业务光信号接收机1205发送的上行光信号(包括上行业务光信号和/或上行测试光信号)透射至上行接口1201。
下行光信号接收机1206用于通过第一耦合器1202接收具有第一波长的下行光信号,并将具有第一波长的下行光信号转化为下行电信号。所述下行光信号的波长可以为1490nm或1577nm。上行信号接收机1205用于通过第二耦合器1203和第一耦合器1202,并经过上行接口1201发送上行业务光信号和上行测试光信号。上行业务光信号的波长λ2和上行测试光信号的波长λ2相同,λ2可以为1310nm或1270nm。
回波光信号接收机1204用于接收上行测试光信号在光纤网络中产生的回波光信号,并将所述回波光信号转换为回波电信号。回波光信号的波长与上行测试光信号的波长λ2相同。所述处理模块1208用于根据MAC模块1209解析的下行光信号中测试参数,获取回波光信号接收机1211接收的上行测试信号的回波光信号的强度。存储模块1207用于存储测试参数以及所述回波光信号的强度信息。MAC模块1209用于对下行电信号进行解析,以获取测试参数并提供给处理模块1208。与图2B对应的实施例中,所述测试光信号的波长与所述上行业务光信号的波长相同。所述回波光信号为ONT发送的上行光信号在ODN130发生后向散射或反射而产生的回波光信号。上行业务光信号接收机1205进一步用于通过ODN130向OLT110上报各回波光信号的强度信息。
图2C为本发明实施例提供的另一光网络终端120的结构示意图。与图2B的结构不同的时,图2C提供的光网络终端120包括上行接口1201、第一耦合器1202、第三耦合器1211和第四耦合器1210,回波光信号接收机1213、上行测试光信号发送机1214、上行光信号发送机1215、下行光信号接收机1206、存储模块1207、处理模块1208和MAC模块1209。
其中,上行接口1201可以为光纤适配器,作为与ODN130连接的接口,进行上/下行光信号的发送或接收。第一耦合器1202、第三耦合器1211的透射光路重叠。上行光信号接收机1205耦合到第一耦合器1202的透射光路。下行光信号接收机1206耦合到第一耦合器1202的反射光路。第三耦合器1211的透射光路与第四耦合器1212的反射光路重叠。回波光信号接收机1211耦合到第四耦合器1212的透射光路。上行测试光信号(也称为第一上行光信号)发送机1214耦合到第四耦合器1212的反射光路。
其中,上行接口1201、第一耦合器1202具有图2B中的功能相同,本发明实施例在此不再详述。第二耦合器1202用于对具有第二波长λ2的上行业务光信号进行透射和第一波长λ1的下行光信号进行反射。第三耦合器1211用于对第三波长λ3的上行测试信号进行反射和对接收的具有第三波长λ3的上行测试光信号的回波光信号的进行反射,实现同一个波长或波段的第三波长测试信号在两个方向上传输。第三耦合器1211还用于对具有第一波长的下行光入号进行透射,和对具有第二波长的上行业务光信号进行透射。第四耦合器1212用于对具有第三波长λ3回波光信号进行透射对具有第三波长λ3的上行测试光信号进行反射。
下行光信号接收机1206用于通过第一耦合器1202和第四耦合器1211接收具有第一波长λ1的普通下行光信号,并将普通下行光信号转为普通下行电信号。所述普通下行光信号的波长可以为1490nm或1577nm。上行业务光信号接收机1205用于通过第一耦合器1202和第四耦合器1211,并经过上行接口1201向OLT110发送上行业务光信号。 第三波长接收机1211用于通过ODN130接收第一OTN120发送的上行测试信号产生的回波光信号。所述第一ONT120可以为PON系统中任一发送上行测试信号的ONT120。第三波长发送机1212用于通过ODN130向OLT110发送具有第三波长λ3的上行测试信号。处理模块1208用于根据MAC模块1209解析的下行电信号中的数据(比如指示信息),控制第三波长发送机1212发送上行测试信号或控制第三波长接收机1211接收上行测试信号的回波光信号。存储模块1207用于存储测试参数以及获取的所述回波光信号的强度信息。MAC模块用于对经过转换后的电信号进行解析,以获取数据信息并提供给处理模块1208。与图2C对应的实施例中,所述上行测试光信号的波长与所述上行业务信号的波长不同。
值得说明的是,在图2B和2C中,OTN获取回波光信号的强度信号可以是根据OTN测量的回波光信号获取强度信号,或根据ODTR测量的回波光信号的结果获取回波光信号的强度信息。
图3为本申请提供的一种确定各OTN连接的分光器的方法,应用于无源光网络系统或有源光网络系统。结合图1至图2-c,为本申请实施例提供的方法包括:
步骤301、OLT110在下行方向通过下行光信号发送指示信息给ONTi 120。指示信息携带发送所述上行测试光信号的光网络终端的标识(比如ONTi 120的标识)以及所述发送上行测试光信号的时间信息。指示信息ONTi 120发送上行测试光信号。为表述方便,本发明实施例将发送上行测试光信号的ONTi称为第一ONT。
OLT110可以选择(比如随机选择或以其它方式选择)没有发送过上行测试光信号的ONT作为第一ONT。比如,OLT110标识出已发送了上行测试光信号的ONT,从没有发送过上行测试光信号的ONT中确定下一次发送上行测试光信号的第一ONT。
又比如,OLT110根据之前的确定结果,选择没有确定出同组ONT的ONT作为发送上行测试光信号的ONT的第一ONT。所述同组ONT为与所述发送上行测试光信号连接相同分光器的ONT。
所述上行测试信号可以是包括正常的通信数据上行业务光信号、或包括特定数据((例如”0101…”或全”1”或任意编码信息)的特定上行光信号、或波长与上行业务光信号不同的特殊测试信号。上行业务光信号和特定上行光信号的波长可以相同,也可以不同。特殊测试信号的波长可以为ONT120的上行测试光信号发送机1214发送的信号。所述特殊测试信号的波长可以为1650nm或1625nm。
发送上行测试信号的时间信息包括发送上行测试信号的起始时间。下行光信号还可包括发送上行测试光信号的结束时间。
步骤302、OLT110发送通过下行光信号发送指示信息给第二ONT120,以指示第二ONT120获取第一ONT发送的上行测试信号的回波光信号的强度。
为了引述方便,本发明实施例OLT110管理的所有ONT120中,将获取回波光信号的强度信息的ONT120称为第二ONT120。第二ONT120可以是除发送上行测试光信号的第一ONT120之外的其他ONT120,也可以是包含第一ONT120的所有ONT120。所述第一ONT120发送的上行测试信号的回波光信号简称ONTi的回波光信号,即第一ONT120的回波光信号。所述控制消息可以通过授权消息或配置消息或通知消息的形式发送给各第二ONT120。所述控制消息和所述授权消息的发送没有时间先后的限定。
指示信息中还包括测量所述第一ONT120的回波光信号的时间信息。所述测量第一ONT120的回波光信号的时间信息指示了各第二ONT120开始测量所述第一ONT120的回波光信号的时间(比如时延),或指示了与各第二ONT120对应的ODTR测量第一ONT120的回波光信号的时间。所述各第二ONT120或与各第二ONT120对应的ODTR对所述第一ONT120的回波光信号的测量时间可以相同,可以不同。比如,OLT110可以在实现本申请实施例之前,获得各ONT120的RTT(Round time trip往返时间)或RTT和Eqd(equalization Delay等效时延),并根据各ONT的RTT和/Eqd确定各ONT120测量所述第一ONT的回波光信号的时延。所述时延指:从第一ONT开始发送上行测试光信号至第二ONT开始测量所述第一ONT的回波光信号的时间差。OLT110获得各ONT120的所述RTT和/或Eqd的方法可以参照现有标准技术(如ITU-T G.984.3),本发明实施例在此不再详述。
进一步的,所述测量回波光信号的时间信息还指示了测量所述第一ONT的回波光信号的时长。所述测量所述第一ONT的回波光信号的时长简称测量时长。所述测量时长指示了各第二ONT120或与各第二ONT120对应的ODTR测量所述第一ONT120的回波光信号的时间长度或数据量。所述测量所述上行测试光信号的回波光信号的时间长度指所述第二OTN或ODTR连续测试回波光信号的时长,比如3秒。所述测量所述上行测试光信号的回波光信号的数据量指测量回波光信号的次数,比如开始测试的第一秒测试一次,第二秒测试一次等。
步骤303、第一ONT120收到OLT110的指示信息后,根据所述指示信息发送上行测试光信号。
进一步的,所述指示信息中还可以包括开始发送所述上行测试信号的时间,第一ONT120确定发送上行测试信号的起始时间到达时,开始发送上行测试信号。进一步的,所述指示信息中还可以包括发送所述上行测试信号的时长或结束发送所述上行测试信号的时间,第一ONT120在确定结束发送所述上行测试信号的时间到达后,停止发送所述上行测试信号。
此外,如果指示信息中指示ONTi120以脉冲的方式发送上行测试信号,则ONTi120根据授权消息的指示发送脉冲信号。所述授权消息可以指示ONTi120发送一次或多次短脉冲,或发送长脉冲。
上行测试光信号的波长可以与上行业务光信号的波长相同或不同。
步骤304、第二ONT120收到OLT110的指示信息后,根据所述指示获取所述第一ONT(即ONTi)发送的上行测试信号的回波光信号的强度信息。
各所述第二ONT120或与各第二ONT120对应的ODTR在收到所述指示信息后,根据测量回波光信号的时间信息测量所述上行测试光信号的回波光信号的强度。进一步的,各所述第二ONT根据所述测量时长结束接收所述上行测试光信号的回波光信号。
各第二ONT获取第二ONT120或与第二ONT120对应的ODTR测量的回波光信号的强度信息。
步骤305、OLT110通知各第二ONT120上报所述第二ONT获取的测量结果。
OLT110可以根据指示信息中时间信息,通知各第二ONT120上报所述各第二ONT测量到的回波光信号的强度。
步骤306、OLT110接收各第二ONT上报的所述测量结果,所述测量结果可以为上行测试信号的回波光信号的强度信息。所述测量结果中还可以携带第二ONT的标识,或携带第二ONT或与第二ONT对应的ODTR测量强度信息的时间信息,或携带发送所述测量结果的时间信息,以便于OLT确定各第二ONT发送的强度信息。
步骤307、OLT110根据第二ONT上报的所述回波光信号的强度信息,确定与所述第一ONT连接同一个分光器132的第二ONT。所述第一ONT连接同一个分光器132的第二ONT也可以称为第三ONT。
OLT110中存储了不同组的ONT120测量的回波光信号的强度差的阈值。OLT110根据确定同组ONT120的强度差的阈值确定所述与第一ONT120同组的ONT120,即第三ONT120。比如,OLT110确定ONTh120上报的第一回波光信号的强度与至少一个第二ONT返回的第一回波光信号的强度的差值大于所述不同组的强度差域值。则ONTh可以确定为所述与第一ONT120同组的ONT120。
进一步的,OLT110中存储有第一级分光器的各分光比对应的回波光信号强度差的阈值。所述回波光信号强度差为与第一ONT连接同一分光器的132的第二ONT获取的回波光信号强度与不与第一ONT连接相同分光器的第二ONT获取的回波光信号强度之差,也就是第三OTN获取的回波光信息的强度与第四ONT获取的回波光信号的强度之差。第四ONT为不与第一ONT连接相同分光器的第二ONT。
第一级分光器的各分光比对应的强度差范围简称分光比的强度差范围,可以根据公式1)确定:
公式1):2*(3.5*N)-X1,2*(3.5*N)+X2
其中,N为2的指数。分光比为2的N次幂。
因此,当第一级的分光器的分光比为2时,N=1,所述分光比的强度差值的范围为[2*(3.5*N)-X1,2*(3.5*N)+X2],其中X1和X2可以根据实际网络调值,比如X1=X2=3.5。所述分光比的强度差值的范围为[3.5,10.5]。当第一级的分光器的分光比为4时,N=2,所述分光比的强度差值的范围为[10.5,17.5]。当第一级的分光器的分光比为8时,N=3,所述分比光的强度差值的范围为[17.5,24.5]。
因此,所述不同组的强度差域值可以为大于或等于当分光比N=2时的强度差值。值得说明的是,公式2*(3.5*N)-X1中,3.5和X1均为经验值,具体实现中,可以根据ODN网络的组成,比如光纤材料或长度,或其它因素等进行适当的调整。
步骤308、OLT110确定下一次发送上行测试光信号的第一ONT的标识,并将确定出的第一ONT的标识携带在步骤301的指示信息中。
OLT110可以选择(比如随机选择或以其它方式选择)没有发送过所述上行测试光信号的ONT作为第一ONT。比如,OLT110可以标识出已发送了上行测试光信号的ONT。因此OLT110可以从没有发送过上行测试光信号的ONT中确定下一次发送上行测试光信号的第一ONT。
作为一种可选,OLT110还可以根据确定的所述第一ONT同组的ONT,选择没有确定出同组ONT的ONT作为下一次发送上行测试光信号的第一ONT。
步骤309、OLT重复执行步骤301-308,确定各第二ONT120归属的分光器。
可为一种可选方式,步骤307和308以及309还可以用309’和310’替换,即OLT110 在收到针对所有ONT发送的上行测试光信号的回波光信号的强度后,确定与各ONT连接的分光器。
作为一种可选方式,步骤301和302中的授权ONTi发送上行测试光信号以及通知各第二ONT测量第一ONT的回波光信号的信息还可以在同一条消息中发送给各ONT。
作为一个例子,ODN130包括2级分光器,每级分光比都为1×4即(1x2 N,N等于2)。ODN中主干光纤133的长度、第一级分光器131分光比(第一级分光比)、分布光纤134的长度、第二级分光器132的分光比(简称第二级分光比)、分支光纤长度135及ONT 120的序号如表1所示。
表1. 2级1×16PON系统的信息
Figure PCTCN2019102608-appb-000001
值得说明的是:序号ONT1-ONT16并不是各ONT的标识,而表示连接在各分光器的ONT的序号。
假定光纤的损耗为0.3dB/Km,第一级分光器131和第二级分光器132的每个分支的插损随机分布,各分支的插损值的不一致性为1.5dB。则表1所示的ODN130的各部分的损耗如表2所示。
表2. 2级1×16ODN130中各部件的损耗
Figure PCTCN2019102608-appb-000002
Figure PCTCN2019102608-appb-000003
值得说明的是,OLT110可以在执行本申请实施例之前即在发送授权信息之前,通过信号测试获得上述表一和表二的信息。
假定瑞利散射信号强度为-77dB/ns(此值为经验值),忽略ODN130上所有的反射和额外的损耗。在步骤301中,OLT110通过授权信息授权任一ONT(比如ONT1)作为第一ONT发送上行测试光信号。在步骤302中,OLT110通知除第二ONT(本例子为ONT2-16)测量ONT1发送的上行测试信号的回波光信号的强度。ONT1发送的上行测试光信号的平均光功率为2dBm;所述上行测试光信号的平均光功率也称为上行测试光信号的强度。
当ONT1发送的上行测试光信号充满主干和分布光纤时,ONT2-ONT16或对应的ODTR根据指示消息中的测量时间信息测量所述上行测试信号的回波光信号的强度。比如,ONT2-ONT16或对应的ODTR可以根据步骤303中的指示消息,对ONT1的回波光信号测量一次或多次,然后OTN2-ONT16获取ONT2-ONT16或对应的ODTR测量的回波光信号的强度。作为一个例子,如果各第二ONT或ODTR是多次测量,可以对多次测量的强度取平均值,以平均值作为上行测试信号的回波光信号的强度值。
比如,1×4分光器的等效损耗约3.5*N(N=2)。由于所述上行测试信号要经过一次第一级分光器131才能到达主干光纤133,主干光纤133上的回波光信号要经过第一级分光器131才能到达分布光纤134。忽略分布光纤134和主干光纤131的光纤长度差异等因素,主干光纤133上的回波光信号强度比分布光纤134的回波光信号强度低2*(3.5*N)dB。因此,与发送ONTi(即ONT1)同组的第二ONT(同在一个分光器下的ONT)测量到的ONT1的回波光信号的强度是分布光纤134和主干光纤133上回波光信号的和。由于分布光纤134上的回波光信号的强度大于主干光纤133上的回波光信号强度,与发送上行测试光信号的ONTi(即ONT1)同组的第二ONT测量的回波光信号主要以分布光纤134上的回波为主。而所述第二ONT(如ONT2-ONT16)中与所述发送上行测试光信号的ONTi不同组的第二ONT测量的回波光信号主要以主干光纤133上的回波为主。因此,所述与发送上行测试光信号的ONTi(即ONT1)同组的ONT测量的回波光信号的强度大于所述与所述发送上行测试光信号的ONTi不同组的ONT测量的回波光信号的强度,且所述同组的ONT测量的回波光信号的强度与所述不同组的ONT测量的回波光信号的强度的差值大于所述不同组的ONT测量的回波光信号的强度 差的阈值,比如7。
各第二ONT120(比如ONT2-ONT16)把第一ONT的回波光信号的测量结果上报给OLT110。OLT110获得的各第二ONT120(比如ONT2-ONT16)测得的回波光信号强度分布如图3所示。OLT110对ONT2-ONT16测量的回波光信号强度进行分组。ONT2、ONT3、ONT4测量的回波光信号的强度与所述ONT5-16测量的回波光信号的强度的差值大于7。因此,OLT110确定ONT2、ONT3、ONT4与ONT1连接同一个分光器,ONT5~16与ONT1连接不同的分光器。
进一步的,OLT根据各第二ONT返回的回波信息的强度信息以及所述不同组的强度差域值,确定OND网络中分光器的级数以及分光器的分光比。
作为一个例子,由图3a所示,第一组ONT(ONT2-ONT4)测量到的回波光信号强度均值约为-42dBm,ONT5-ONT16测量到的回波光信号强度均值约为-59dBm。ONT2-ONT4测量的回波光信号的强度均值与ONT5-ONT16测量的回波光信号的强度均值的差值约为17Db。由于17属于[2*(3.5*N)-3.5(N=2),2*(3.5*N)+3.5(N=3)]范围内(即[10.5,17.5]之内),则可以判断第一级分光器的分光比为1×2 2(即1×4)。
基于上述PON系统100,本申请还提供了一种无源光网络系统的确定ODN拓扑的方法。请参阅图4,其为本申请实施例提供的确定ODN拓扑的方法的流程示意图。在图3提供实施例中OLT110先向ONTi通过测试授权消息发送指示信息,然后再向PON系统100中除了ONTi以外的其它ONT通过控制消息(也可以是向所有的ONT发送控制消息)发送指示,指示所述第二ONT或对应的ODTR测量ONTi发送的上行测试光信号的回波光信号。而在图4对应的实施例中,OLT110在启动测试之前配置所有ONT的测试参数。在图4所提供的实施例中,包括:
步骤401、OLT110配置ONT120的指示信息,所述指示信息包括发送各上行测试信号的时间信息(比如发送上行测试信号的各ONT的标识以及各ONT发送上行测试信号的时间)以及各ONT测量所述回波光信号的时间信息(比如测量回波光信号的时延、时长和或数量)。本发明实施例在此不再详述。
步骤402、OLT广播指示信息给第二ONT以启动测量回波光信号。所述指示信息可以为特定的DBA授权消息。对GPON/XG(S)PON,所述的特定的DBA授权消息可以为Alloc-id(Allocation identifier分配标识)为广播Alloc-id(1021或1022)的Bwmap(bandwidth map,带宽映射)消息或者为约定Alloc-id的BWmap消息;所述指示信息中携带发送上行测试信号的第一ONT标识,或携第一ONT标识和测量第一ONT的回波光信号的第二ONT标识。
值得说明的是,步骤402为可选步骤,各ONT可以在收到指示信息后开始发送上行测试信号或测量回波光信号,或根据指示信息中的时间信息进行发送上行测试信号或测量回波光信号。
步骤403-408与步骤303-308的描述一致,本发明实施例在此不再限定。
步骤409、重复执行步骤402-409至确定各ONT120连接的分光器。
作为一种可选方式,在图3和图4对应的流程中,所述第二OTN120还可以将测量结果不发送给OLT110,而发送给所述PON系统中的任一ONT(比如ONTk所述ONTk可以与ONTi相同,也可以不同)。ONTk在收到所述第二ONT120发送的针对ONTi发 送的上行测试光信号的回波光信号的强度后,根据所述测量结果确定与所述ONTi同组的第二ONT,并将确定结果发送给OLT。所述ONTk根据所述各第二ONT120发送的ONTi的回波信息的强度确定与所述ONTi同组的第二ONT的方法与OLT110确定与所述ONTi同组的第二ONT的方法相同,本申请实施例在此不再详述。
作为一种可选方式,在图4所提供实施例,在步骤406之后,OLT还可以不执行步骤407,而执行步骤408然后重复执行步骤402-406以及步骤408,至OLT110接收了所有ONT发送的针对的所有ONT的回波光信号的强度信息,然后根据接收到的针对所有ONT的回波光信号的强度信息,确定所有ONT连接的分光器。
作为一个例子,在图4对应的实施例中,ODN130系统包括两级分光器,ONT_2nx(n表示第n个第二级分光器,x表示连接第n个第二级分光器下的第x个ONT),ONT发送的上行测试光信号的脉冲宽度为T。在图4所提供的实施例中,所述确定ONT连接的方法包括:
在步骤401、OLT110给所有ONT120配置指示信息,所述指示信息包括发送上行测试信号的时间信息以及各ONT测量所述回波光信号的时间信息(比如测量回波光信号的时延、时长和或数量)。
例如,OLT110在配置的指示信息中指示ONT211在t1时刻发送上行测试光信号,在t2+Δt21x到达ONT_21x,被ONT_21x的第二接收机接收。在第一级分光器1的公共端(与主干光纤连接的端口)和主干光纤上会产生回波光信号,回波光信号经过分光器1、分布光纤、分光器2n,在t3+Δt2nx到达ONT_2nx(n=1,2,3,…;x=1,2,3,…)。
t1为ONT211发送上行测试光信号的时间,t2+Δt21x为ONT21X开始接收回波光信号的时间。t3+Δt2nx为所述其它ONT2nx开始接收回波光信号的时间。
作为一种可选方式,所述测试参数还可以不包括各ONT开始发送上行测试信号的开始时间和/或不包括各ONT开始测量回波光信号的时间。而在步骤402中收到控制消息后,根据控制消息的信息,比如发送上行测试信号的ONT标识和/或测量回波光信号的ONT标识进行发送所述上行测试光信号或测量所述上行测试信号的回波光信号。进一步,所述控制消息还携带ONT发送上行测试信号的时间和/或各第二ONT测量上行测试信号的时间。各ONT根据所述测试启动消息中的信息发送上行测试光信号或测量所述上行测试光信号的回波光信号。
作为一种可选方式,步骤307、308以及310’,或407、408以及410不是由OLT执行,而是由与OLT通信连接的上层网络设备200执行,OLT在收到第二ONT测量的上行测试光信号的回波光信号的强度信息后,将第二ONT测量的上行测试光信号的回波光信号的强度信息发送给上层网络设备,则上层网络设备确写与第一ONT连接同一分光器的第三ONT。然由上层网络设备确定上送上行测试光信号的ONT标识,或由OLT确定发送上行测试光信号的ONT标识。对于由上层网络设备确定与第一ONT连接同一分光器的第三ONT的方法,与由OLT确定与第一ONT连接同一分光器的第三ONT的方法相同,本发明实施例在此不做限定。
作为另一种可选方式,OLT还可以收到所述的ONT作为第一ONT发送的上行测试光信号的回波光信号的强度信息后,再将收到的强度信息发送给上层网络设备200,由上层网络设备200确定与各ONT120连接的分光器。
在步骤310或410中,OLT110根据各ONT发送的各ONT的回波光信号的强度确定分光器之间的关系或ONT与分光器的关系。
作为一个例子,PON系统中有M个的ONT用Pb ab(t)表示第a个(下标a)ONT发送上行波长光信号时,第b个(下标b)ONT收到的回波光信号强度(t表示回波光信号强度是时间的函数),a=b时,表示ONT收到自身发送的上行波长光信号的回波光信号强度。
第一个ONT发送时,所有ONT收到的光信号强度为{Pb11(t),Pb12(t),Pb13(t),…,Pb1M(t)};
第二个ONT发送时,所有ONT收到的光信号强度为{Pb21(t),Pb22(t),Pb23(t),…,Pb2M(t)};
第M个ONT发送时,所有ONT收到的光信号强度为{PbM1(t),PbM2(t),PbM3(t),…,PbMM(t)};
Figure PCTCN2019102608-appb-000004
或者当发送的ONT不测量自己发送的信号的回波光信号时,可以得到如下第二矩阵数据:
Figure PCTCN2019102608-appb-000005
PB(t)矩阵的任意一行表示一个ONT发送上行测试光信号,其他ONT测量所述发送上行测试光信号的ONT(即第一ONT)的回波光信号;任意一列表示一个ONT分别收到的其他ONT作为第一ONT发送的上行测试光信号的回波光信号强度。
OLT110可以根据PB(t)进一步分析或处理(例如聚类等),确写连接同一分光器的ONT。比如,OLT110可以分别根据PB(t)的每一行获得与发送ONT同组的ONT(连接同一个分光器的ONT)或根据每一列获得与接收ONT同组的ONT(连接同一个分光器的ONT)。比如,当发送ONT发送的上行测试光信号的时间长度T(或称为测试脉宽)大于光信号从发送ONT传输到OLT的时间(例如T大于所有ONT注册或测距过程中的RTT的最大值),可以选择Pbab(t)中的任何一个值,或Pb(t)的平均值作为回波光信号的测量值,进行分组运算。
或者当发送ONT发送的上行测试光信号的脉冲宽度T远小于从发送ONT传输到OLT的时间(例如T=10uS),选择Pbab(t)中最大值作为回波光信号的测量值,进行分组 运算。
可选的,由于每个ONT发送的上行波长光信号的强度(即光功率)不同,可以对PB(t)进行归一化处理后,在进行进一步分析或处理。具体的为,Pb’ab(t)=Pbab(t)–Pa,其中Pa表示第a个ONT发送的上行测试光信号的强度。得到PB’(t),用PB’(t)分析或处理,重建或还原ODN拓扑结构。
假定:ONT_2nx(n=1,2,…;x=1,2,…)所连接的分支光纤的损耗为Le_2nx;
分光器2n(n=1,2,…)所连的分布光纤损耗为Ld_2n,回波损耗为α_2n;
第二级分光器2n(n=1,2,…)的损耗为Lsp_2n(n=1,2,…);
第一级分光器分光器1的损耗为Lsp_1;
ONT_211发送的上行测试光信号的强度是Pu_211。
则:与ONT_211同组的ONT_21x接收到的回波光信号强度:
Pb21x~=Pu_211-Le_211-Lsp_21-α_21-Lsp_21-Le_21x
与ONT_211不同第二级分光器下的ONT_2nx接收到的回波光信号强度:
Pb2nx~=Pu_211-Le_211-Lsp_21-Ld_21–Lsp_1-α_2n-Lsp_1-Ld_2n-Lsp_2n-Le_2nx
则P21x–Pb2nx=(Ld_21+Lsp_1+α_2n+Lsp_1+Ld_2n+Lsp_2n+Le_21x)-(α_21-Lsp_21-Le_21x)
P21x–Pb2nx=2*Lsp_1+(Ld_21+Ld_2n+Le_2nx-Le_21x)+(α_2n-α_21)+(Lsp_2n-Lsp_21)
当同级分光器的分光比相同时,则Lsp_21~=Lsp_2n;且正常ODN线路上的回波损耗相当时
P21x–Pb2nx=2*Lsp_1+(Ld_21+Ld_2n+Le_2nx-Le_21x)
分光比为1:2N(也可以写成1×2N)分光器的损耗为N×3.5dB,即P21x–Pb2nx>>(远大于0),因此可以很容易的确定ONT_21x与ONT_211同属一个二级分光器,而ONT_2nx属于另外的第二级分光器。重复以上的步骤,就可以得到所有ONT与二级分光器的连接关系。
图5为本申请实施例提供的ONT收到OLT的消息后执行的测量回波光信号强度的方法流程示意图。该方法包括:
步骤502、ONT120接收OLT110通过授权消息或控制消息发送的携带指示信息的下行光信号,所述指示信息用于指示所述ONT120作为发送上行测试信号的第一ONT或作为测量所述上行测试信号的第二ONT。
比如,指示信息可以是步骤301或302中的信息,或步骤402中的信息。本发明实施例在此不作限定。
步骤504、ONT120根据接收到的指示信息确定自己是第一ONT还是第二ONT。如果ONT120确定自己为第一ONT,执行步骤506。如果ONT120确定自己为第二ONT,执行步骤508。
步骤506、ONT120根据指示信息中的指示发送上行测试信号。步骤502与步骤303中的描述相同,本发明实施例在此不再详述。
步骤508、ONT120根据指示信息中的指示获取上行测试信号的回波光信号的强度。 此步骤与步骤304中的描述相同,本发明实施例在此不再详述。
步骤510、ONT120接收OLT发送的发送回波信息的强度信息的请求。此步骤与步骤305中的描述相同,或者所述请求中指示ONT120将所述回波信息的强度信息发送给别的ONT。
步骤512、ONT120发送所述回波信息的强度信息。所述ONT120根据所述请求的指示,将所述回波信息的强度信息发送给OLT110或发送给别的ONT120。
图6为本申请提供的一种设备的结构示意图。所述报文处理设备可以是OLT、ONT或上层网络设备。设备可用于实现上述方法实施例中描述的对应部分的方法,具体参见上述方法实施例中的说明。
所述报文处理设备可以包括一个或多个处理器601,所述处理器601也可以称为处理单元,可以实现一定的控制功能。所述处理器601可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,DU,或CU等)进行控制,执行软件程序,处理软件程序的数据。
在一种可能的设计中,处理器601也可以存有指令604,所述指令604可以被所述处理器运行,使得所述报文处理设备执行上述方法实施例中描述的对应于终端或者网络设备的方法。
在又一种可能的设计中,设备可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选地,所述报文处理设备中可以包括一个或多个存储器602,存储器602存有指令602或者中间数据,所述指令605可在所述处理器601上被运行,使得所述报文处理设备执行上述方法实施例中描述的方法。可选地,所述存储器602中还可以存储有其他相关数据。可选地,处理器601中也可以存储指令和/或数据。所述处理器601和存储器602可以单独设置,也可以集成在一起。
可选地,所述报文处理设备还可以包括收发器603。所述处理器603可以称为处理单元。所述收发器603可以称为收发单元、收发机、收发电路、或者收发器等,用于实现通信装置的收发功能。
本申请还提供一种可读存储介质,可读存储介质中存储有执行指令,当报文处理设备的至少一个处理器执行该执行指令时,报文处理设备执行上述方法实施例中的报文处理方法。
本申请还提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。报文处理设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得报文处理设备实施上述方法实施例中的报文处理方法。以上所述,仅为本申请较佳的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (38)

  1. 一种光网络终端ONT,其特征在于,包括:
    下行光信号接收机,用于接收第一下行光信号,所述第一下行光信号指示所述ONT获取第一上行光信号在光纤网络中产生的回波光信号;
    回波光信号接收机,用于接收所述第一上行光信号在所述光纤网络中产生的所述回波光信号;
    处理模块,用于根据所述第一下行光信号的指示信息获取所述回波光信号的强度信息;
    上行光信号发送机,用于发送第二上行光信号,所述第二上行光信号中携带所述回波光信号的强度信息。
  2. 如权利要求1所述的ONT,其特征在于,
    所述第一下行光信号中携带测量所述回波光信号的时间,和/或测量的次数。
  3. 如权利要求1-2任一所述的ONT,其特征在于,进一步包括媒体访问控制MAC模块,用于解析所述第一下行电信号中携带的指示信息,所述第一下行电信号由所述第一下行光信号转换;
    所述处理模块进一步用于获取所述MAC模块解析的第一下行电信号中的指示信息。
  4. 如权利要求1-3任一所述的ONT,其特征在于,所述下行光信号接收机进一步用于接收第二下行光信号,所述第二下行光信号携带指示所述ONT发送所述第一上行光信号的指示信息和所述ONT发送所述第一上行光信号的时间信息。
  5. 如权利要求1-3任一所述的ONT,其特征在于,所述第一下行光信号进一步携带发送所述第一上行光信号的ONT的标识,以及所述发送第一上行光信号的时间信息。
  6. 如权利要求1-5任一所述的ONT,其特征在于,进一步包括:
    存储模块,用于存储所述第一下行光信号和/或第二下行光信号中携带的信息,以及存储所述回波光信号的强度信息。
  7. 如权利要求1-6任一所述的ONT,其特征在于,所述第一上行光信号为所述ONT发送的第一第一上行光信号,或其它ONT发送的第一上行光信号。
  8. 如权利要求1-7任一所述的ONT,其特征在于,所述上行光信号发送机进一步用于根据处理模块的指示,发送第一上行光信号,所述第一上行光信号的波长、所述回波光信号波长和所述第二上行光信号的波长相同。
  9. 如权利要求7所述的ONT,其特征在于,所述ONT进一步包括上行测试光信号发送机,用于根据处理模块的指示发送所述第一上行光信号,所述第一上行光信号的波长和 所述回波光信号波长相同,所述第一上行光信号的波长和所述第二上行光信号的波长不同。
  10. 一种确定光网络终端ONT连接的方法,其特征在于,包括:
    接收第一下行光信号,所述第一下行光信号指示所述ONT获取第一上行光信号在光纤网络中产生的回波光信号;
    接收所述第一上行光信号在所述光纤网络中产生的所述回波光信号;
    根据所述第一下行光信号的指示获取所述回波光信号的强度信息;
    发送第二上行光信号,所述第二上行光信号中携带所述回波光信号的强度信息。
  11. 如权利要求10所述的方法,其特征在于,该方法进一步包括:
    解析所述第一下行电信号中携带的指示信息,所述第一下行电信号由所述第一下行光信号转换。
  12. 如权利要求10或11所述的方法,其特征在于,该方法进一步包括:
    接收第二下行光信号,所述第二下行光信号携带指示所述ONT发送所述第一上行光信号的指示信息和所述ONT或其它ONT发送所述第一上行光信号的时间信息。
  13. 如权利要求10或11所述的方法,其特征在于,所述第一下行光信号进一步携带发送所述第一上行光信号的ONT的标识以及所述发送第一上行光信号的时间信息。
  14. 如权利要求10-13任一所述的方法,其特征在于,该方法进一步包括:
    存储所述第一下行光信号、第二下行光信号中携带的信息,以及存储所述回波光信号的强度信息。
  15. 如权利要求10-14任一所述的方法,其特征在于,该方法进一步包括:
    发送第一上行光信号,所述第一上行光信号的波长、所述回波光信号波长和所述第二上行光信号的波长相同。
  16. 如权利要求10-14任一所述的方法,其特征在于,该方法进一步包括:
    发送第一上行光信号,所述第一上行光信号的波长和所述回波光信号波长相同,所述第一上行光信号的波长和所述第二上行光信号的波长不同。
  17. 一种确定光网络终端ONT连接的方法,其特征在于,包括:
    设备接收第二ONT发送的回波光信号的强度信息,所述回波光信号为第一ONT发送的第一上行光信号在光纤网络中产生的回波光信号,所述第二ONT为无源光网络PON系统中所有的ONT或PON系统中除所述发送所述第一上行光信号的第一ONT之外的其它ONT;
    根据所述第二ONT发送的回波光信号的强度信息,所述设备确定与所述第一ONT 连接同一分光器的第三ONT。
  18. 如权利要求17所述的方法,其特征在于,所述设备确定与所述第一ONT连接同一分光器的第三ONT包括:
    所述设备确定所述第三ONT发送的强度信息与至少一个第二ONT发送的强度信息的差值大于分光器的强度差阈值。
  19. 如权利要求18所述的方法,其特征在于,进一步包括:
    所述设备确定第三ONT发送的强度信息与第四ONT发送的强度信息之间的差值,所述第四ONT为所述第二ONT中与所述第一ONT连接不同分光器的ONT;
    根据所述第三ONT发送的强度信息与第四ONT发送的强度信息之间的差值,所述设备确定一级分光器的分光比。
  20. 如权利要求19所述的方法,其特征在于,所述设备存储一级分光器分光比的阈值范围,所述设备确定一级分光器的分光比包括:
    所述设备根据所述分光比的阈值范围以及所述第三ONT发送的强度信息与所述第四ONT发送的强度信息之间的差值,确定一级分光器的分光比。
  21. 如权利要求17-20任一所述的方法,其特征在于:所述设备为光网络终端ONT,所述方法进一步包括:
    所述ONT接收第一下行光信号和第二下行光信号,所示第一光信号携带指示所述所述ONT获取所述回波光信号的指示信息、所述ONT的标识、以及指示所述ONT获取所述第二ONT发送的所述回波光信号的强度信息的指示信息,所述第二下行光信号携带所述ONT的标识,以及所述ONT获取所述第二ONT发送的所述回波光信号的强度信息的指示信息;或
    所述ONT接收第一下行光信号,所述第一下行光信号携带指示所述ONT发送所述第一上行光信号的指示信息、发送所述第一上行光信号的时间信息、以及所述ONT获取所述第二ONT发送的所述回波光信号的强度信息的指示信息。
  22. 如权利要求21所述的方法,所述方法进一步包括:
    发送第三上行光信号,所述第三上行光信号中携带所述与所述第一ONT连接同一分光器的第三ONT的信息。
  23. 如权利要求17-20任一所述的方法,其特征在于,所述设备为光线路终端,所述方法进一步包括:
    第一下行光信号携带指示所述第二ONT获取所述回波光信号的强度信息的指示信息。
  24. 如权利要求23所述的方法,其特征在于,所述第一下行光信号进一步携带测量所 述回波光信号的时间,和/或测量的次数。
  25. 如权利要求23或24所述的方法,其特征在于,所述光线路终端发送第二下行光信号,所述第二下行光信号携带发送所述第一上行光信号的ONT的标识,以及发送所述第一上行光信号的时间信息。
  26. 如权利要求23或24所述的方法,其特征在于,所述第一下行光信号进一步携带发送所述第一上行光信号的ONT的标识,以及所述发送第一上行光信号的时间信息。
  27. 如权利要求17-20任一所述的方法,其特征在于,所述设备为上层网络设备,所述设备接收所述第二ONT获取的所述第一上行光信号在光纤网络中产生的回波光信号的强度信息包括:所述上层网络设备接收光线路终端发送的第二ONT获取的所述第一上行光信号在光纤网络中产生的回波光信号的强度信息。
  28. 如权利要求17-21任一所述的方法,其特征在于,该方法进一步包括:
    所述光线路终端发送第三下行光信号,所述第三下行光信号指示所述第二ONT发送回波光信号的强度信息。
  29. 如权利要求17-28任一所述的方法,其特征在于,所述第一ONT为首次发送所述第一上行光信号的ONT,该方法进一步包括:
    所述设备确定下一次发送第一上行光信号的ONT。
  30. 如权利要求29所述的方法,其特征在于,所述确定下一次发送第一上行光信号的ONT包括:
    从所述PON系统中除所述第一ONT之外的其它ONT中确定所述下一次发送第一上行光信号的ONT;或
    从所述PON系统中除所述第一ONT和所述第三ONT之外的ONT中确定所述下一次发送第一上行光信号的ONT。
  31. 一种无源光网络系统,其特征在于,包括光线路终端OLT、光分配网络ODN和多个光网络终端ONT,所述OLT通过所述ODN连接到所述多个ONT,所述多个ONT中的每一个ONT为权利要求1-9任一所述的ONT。
  32. 如权利要求31所述的系统,其特征在于,所述OLT用于执行权利要求17-29中所述OLT执行的功能。
  33. 一种设备,其特征在于,包括存储器、处理器;该存储器用于存储计算机执行指令,当该装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该设备执行如权利要求17-30任一所述的方法。
  34. 一种光线路终端,其特征在于,包括:
    上行光信号发送机,用于针对第一ONT发送的第一上行光信号,接收第二ONT发送的所述第一上行光信号在光纤网络中产生的回波光信号的强度信息,所述第二ONT为无源光网络PON系统中所有的ONT或PON系统中除所述第一ONT之外的其它ONT;
    处理模块,用于根据所述第二ONT发送的回波光信号的强度信息,所述设备确定与所述第一ONT连接同一分光器的第三ONT。
  35. 如权利要求34所述的光线路终端,其特征在于,所述处理模块进一步用于执行权利要求18-20、29-30任一所述的方法。
  36. 如权利标注34或35所述的光线路终端,其特征在于,进一步包括下行光信号发送机,用于执行权利要求23-26、28任一所述的终端。
  37. 一种系统,其特征在于,包括上层网络设备、无源光网络PON系统,
    所述无源光网络系统用于向所述上层网络设备发送第二ONTONT获取的所述第一上行光信号在光纤网络中产生的回波光信号的强度信息,所述第二ONT为PON系统中所有的ONT或PON系统中除所述第一ONT之外的其它ONT,所述第一ONT为发送第一上行光信号的ONT;
    所述上层网络设备用于根据接收到的所述第二ONT测量的回波光信号的强度信息,确定与所述第一ONT连接同一分光器的第三ONT。
  38. 如权利要求37所述的系统,其特征在于,所述上层网络设备进一步用于执行权利要求18-20、以及27任一所述的方法。
PCT/CN2019/102608 2019-08-26 2019-08-26 确定光网络终端连接的方法、设备及系统 WO2021035487A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19943250.1A EP3975580B1 (en) 2019-08-26 2019-08-26 Method for determining connection of optical network terminals, apparatus and system
KR1020227001276A KR102657364B1 (ko) 2019-08-26 광 네트워크 단말들의 접속을 결정하기 위한 방법, 장치 및 시스템
PCT/CN2019/102608 WO2021035487A1 (zh) 2019-08-26 2019-08-26 确定光网络终端连接的方法、设备及系统
JP2022505203A JP7389888B2 (ja) 2019-08-26 2019-08-26 光ネットワーク終端装置接続を決定する方法、装置及びシステム
CN201980098541.3A CN114128305B (zh) 2019-08-26 2019-08-26 确定光网络终端连接的方法、设备及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/102608 WO2021035487A1 (zh) 2019-08-26 2019-08-26 确定光网络终端连接的方法、设备及系统

Publications (1)

Publication Number Publication Date
WO2021035487A1 true WO2021035487A1 (zh) 2021-03-04

Family

ID=74685349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102608 WO2021035487A1 (zh) 2019-08-26 2019-08-26 确定光网络终端连接的方法、设备及系统

Country Status (4)

Country Link
EP (1) EP3975580B1 (zh)
JP (1) JP7389888B2 (zh)
CN (1) CN114128305B (zh)
WO (1) WO2021035487A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117479050A (zh) * 2022-07-21 2024-01-30 华为技术有限公司 拓扑还原方法、第一光网络及通信装置
CN117674986A (zh) * 2022-09-06 2024-03-08 华为技术有限公司 一种光接入网拓扑的确定方法、装置及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080267089A1 (en) * 2007-04-30 2008-10-30 Futurewei Technologies, Inc. Passive Optical Network Topology Estimation
CN101321022A (zh) * 2008-07-22 2008-12-10 电子科技大学 光纤网络传感系统
CN201369727Y (zh) * 2008-11-17 2009-12-23 华为技术有限公司 一种光线路终端
EP2141832A1 (en) * 2008-07-03 2010-01-06 Nokia Siemens Networks OY Automatic topology discovery for passive optical networks

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1624593A1 (en) * 2004-08-05 2006-02-08 Alcatel Optical distribution network monitoring method and system
ATE377871T1 (de) * 2004-12-21 2007-11-15 Alcatel Lucent Passives optisches netzwerk und dessen überwachungsverfahren
CN101291176B (zh) * 2007-04-18 2012-07-04 华为技术有限公司 一种光分布网络的故障检测方法、系统及装置
CN102035597B (zh) * 2009-09-30 2014-12-31 华为技术有限公司 一种无源光网络的主备切换方法、装置和系统
WO2012095044A2 (zh) * 2012-02-21 2012-07-19 华为技术有限公司 光收发模块、无源光网络系统、光纤检测方法和系统
EP2602946B1 (en) * 2012-03-07 2015-08-19 Huawei Technologies Co., Ltd. Single-fiber bi-directional optical module and passive optical network system
EP3410615B1 (en) * 2017-06-02 2022-05-04 Nokia Technologies Oy An equalization delay adjustment device and method for protected optical network units

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080267089A1 (en) * 2007-04-30 2008-10-30 Futurewei Technologies, Inc. Passive Optical Network Topology Estimation
EP2141832A1 (en) * 2008-07-03 2010-01-06 Nokia Siemens Networks OY Automatic topology discovery for passive optical networks
CN101321022A (zh) * 2008-07-22 2008-12-10 电子科技大学 光纤网络传感系统
CN201369727Y (zh) * 2008-11-17 2009-12-23 华为技术有限公司 一种光线路终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3975580A4 *

Also Published As

Publication number Publication date
EP3975580A1 (en) 2022-03-30
CN114128305A (zh) 2022-03-01
EP3975580B1 (en) 2024-02-21
JP2022542906A (ja) 2022-10-07
KR20220019817A (ko) 2022-02-17
EP3975580A4 (en) 2022-06-08
CN114128305B (zh) 2023-07-18
JP7389888B2 (ja) 2023-11-30

Similar Documents

Publication Publication Date Title
WO2021098341A1 (zh) 一种端口识别的方法、装置、系统和分光器
KR101352715B1 (ko) 패시브 광 통신망 인밴드 otdr
CN110996193B (zh) 识别光网络单元连接端口的方法、相关装置及系统
US8750703B2 (en) Tunable coherent optical time division reflectometry
CN110226299B (zh) 无源光网络系统中通信的方法、光线路终端和光网络单元
US9998214B2 (en) Optical time domain reflectometer implementation apparatus and system
CN102714545B (zh) 光收发模块、无源光网络系统、光纤检测方法和系统
EP2602946B1 (en) Single-fiber bi-directional optical module and passive optical network system
WO2009006837A1 (fr) Système de détection de fibre optique, système de réseau à multiplexage par division de longueurs d'onde optique et procédé de localisation de défaut de fibre optique
WO2012149813A1 (zh) 光网络系统、光网络系统升级的方法以及光分配网
CN102244541A (zh) 点到多点光纤网络的检测方法、系统和装置
WO2021035487A1 (zh) 确定光网络终端连接的方法、设备及系统
CN106506069B (zh) 光线路终端、光收发模块、系统以及光纤检测方法
CN112583475B (zh) 一种测试方法、光线路终端以及光网络终端
KR102657364B1 (ko) 광 네트워크 단말들의 접속을 결정하기 위한 방법, 장치 및 시스템
WO2024051286A1 (zh) 一种光接入网拓扑的确定方法、装置及系统
TW200939656A (en) System and method for monitoring passive optical network
Premadi et al. Protection scheme of fiber to the home passive optical network using access control system
JP2012173184A (ja) 光多重反射点特定装置及び方法
KR20100130835A (ko) 모듈화 된 광통신용 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943250

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019943250

Country of ref document: EP

Effective date: 20211221

ENP Entry into the national phase

Ref document number: 20227001276

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022505203

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE