WO2021098341A1 - 一种端口识别的方法、装置、系统和分光器 - Google Patents

一种端口识别的方法、装置、系统和分光器 Download PDF

Info

Publication number
WO2021098341A1
WO2021098341A1 PCT/CN2020/113430 CN2020113430W WO2021098341A1 WO 2021098341 A1 WO2021098341 A1 WO 2021098341A1 CN 2020113430 W CN2020113430 W CN 2020113430W WO 2021098341 A1 WO2021098341 A1 WO 2021098341A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical signal
port
reflector
splitter
Prior art date
Application number
PCT/CN2020/113430
Other languages
English (en)
French (fr)
Inventor
包占京
董小龙
靳俊叶
董振华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021098341A1 publication Critical patent/WO2021098341A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal

Definitions

  • This application relates to the field of passive optical networks, and in particular to a method, device, system and optical splitter for port identification.
  • the ODN may include one or more splitters (splitter), and the one or more splitters may be divided into one-stage or multi-stage light splitters.
  • splitters splitters
  • ODN promotes that multiple ONTs are hung under the OLT in the current PON system.
  • Embodiments of the present invention provide a method, device, system, and optical splitter for port identification, which are used to solve the technical problem that the port of the optical splitter connected to the ONT cannot be identified.
  • an embodiment of the present application provides an optical splitter, including a splitting point, at least two branch fibers, reflectors and ports with the same number of branch fibers, wherein at least two branch fibers include the first branch The optical fiber and the second branch optical fiber, wherein one end of the first branch optical fiber is connected to the first port, the other end of the first branch optical fiber is connected to the light splitting point, the first reflector is provided on the first branch optical fiber, and the second branch optical fiber is provided With the second reflector, the first length of the optical fiber between the first reflector and the beam splitting point is different from the second length of the optical fiber between the second reflector and the beam splitting point.
  • the transmission time of the test signal from different ONTs through the optical fiber between the reflector and the optical splitting point is also different.
  • the test signals of different ONTs pass through The time difference between the reflected signal reflected by the reflector on different optical fibers and the attenuated optical signal generated through the beam splitting point is also different. Further, the time difference between the reflected signal and the attenuated optical signal received by different ONTs is also different.
  • the port identification device can confirm the optical splitters connected to different ONTs based on these fixed time differences. Port information of the port.
  • At least two or more branch optical fibers further include a third branch optical fiber, one end of the third branch optical fiber is connected to the third port, and the third branch optical fiber The other end of the optical fiber is connected to the light splitting point, and a third reflector is arranged on the third branch fiber.
  • the first length of the optical fiber between the first reflector and the light splitting point and the third length of the optical fiber between the third reflector and the light splitting point are Similarly, the reflectivity of the first reflector is different from the reflectivity of the third reflector.
  • this application can also set different reflectors to have different reflectivities, because the reflected light power reflected by different reflectances is different, so the port identification device can be combined with the reflected light
  • the optical power of the signal and the time difference between the fixed reflected optical signal and the attenuated optical signal confirm the port information of the optical splitter ports connected to different ONTs.
  • the reflector may be specifically a grating etched on the branch optical fiber or a reflective surface formed by coating.
  • an embodiment of the present application provides a method for port identification, which is applied to an optical splitter, and includes: a first port of the optical splitter receives a first test optical signal, and the first test optical signal comes from a first port connection
  • the first ONT generates a first reflected optical signal when the first test optical signal reaches the first reflector, and the first reflector is arranged on the first branch optical fiber between the first port and the light splitting point of the optical splitter
  • the first test optical signal reaches the light splitting point through the first branch optical fiber, a first attenuated optical signal is generated.
  • the first test optical signal will also generate some echo optical signals on the first branch optical fiber (for example: Scattered light signal or reflected light signal).
  • the second port of the optical splitter receives the second test optical signal, which comes from the second ONT connected to the second port.
  • a second reflected optical signal is generated.
  • the second reflector is arranged on the second branch fiber between the second port and the light splitting point; when the second test optical signal reaches the light splitting point through the second branch fiber, the light splitting point generates a second The optical signal is attenuated, wherein the first length of the optical fiber between the first reflector and the light splitting point is different from the second length of the optical fiber between the second reflector and the light splitting point.
  • the transmission time of the test signal from different ONTs through the optical fiber between the reflector and the optical splitting point is also different.
  • the test signals of different ONTs pass through The time difference between the reflected signal reflected by the reflector on different optical fibers and the attenuated optical signal generated through the beam splitting point is also different. Further, the time difference between the reflected signal and the attenuated optical signal received by different ONTs is also different.
  • the port identification device can confirm the optical splitters connected to different ONTs based on these fixed time differences. Port information of the port.
  • the above-mentioned first length is associated with the first port
  • the second length is associated with the second port, so that different reflectors are used.
  • the time difference between the generation of the first reflected optical signal and the generation of the first attenuated optical signal is associated with the first port, and the generated The time difference between the second reflected optical signal and the generation of the second attenuated optical signal is related to the second port, because the time difference between the generation of the reflected optical signal and the generation of the attenuated optical signal is due to the optical fiber between the reflector and the splitting point.
  • the length is divided by the speed of light, so different ports can be reflected by different time differences.
  • the method further includes: the third port of the optical splitter receives a third test optical signal, and the second test optical signal comes from the third port connected
  • the third ONT generates a third reflected optical signal when the third test optical signal reaches the third reflector, and the third reflector is arranged on the third branch optical fiber between the third port and the light splitting point.
  • the third test optical signal reaches the light splitting point through the third branch fiber, the light splitting point generates a third attenuated optical signal, wherein the first length is related to the third reflector and the light splitting point.
  • the third length of the fiber between the points is the same.
  • the optical power of the first reflected optical signal is different from the optical power of the third reflected optical signal.
  • This application can also set different reflectors to have different reflectivities, because the reflected light power reflected by different reflectances is different, so the port identification device can combine the optical power of the reflected optical signal with the fixed reflected optical signal and the attenuated light.
  • the signal time difference confirms the port information of the optical splitter ports connected to different ONTs.
  • the optical power of the first reflected optical signal is associated with the first port
  • the third The optical power of the reflected optical signal is associated with the third port. Since there is an association relationship between the optical power of the reflected optical signal and the port, the port identification device can identify the port information according to the association relationship and the optical power of the reflected optical signal.
  • an embodiment of the present application provides a method for port identification.
  • the method is applied to a port identification device.
  • the method includes: determining that an optical network terminal ONT receives an attenuated optical signal and the reflected optical signal closest to the attenuated optical signal. Time difference, where the reflected optical signal is the optical signal generated by the reflector connected to the test optical signal via the port of the optical splitter, and the attenuated optical signal is the optical signal generated by the test optical signal passing through the optical splitting point of the optical splitter, because in the optical splitter
  • Each branch optical fiber in the device is equipped with an optical splitter, so the reflected optical signal closest to the attenuated optical signal and the attenuated optical signal must come from the same optical splitter.
  • the time difference is compared with the optical fiber between the reflector and the optical splitting point. Length correlation; according to the time difference, determine the port information associated with the time difference, the port information is the port information of the port connected to the ONT testing the optical signal, the port information can be a port number, a port name, or a port identifier, as long as it can It is sufficient to uniquely identify the port. Since the length of the optical fiber between the reflector and the optical splitting point is different on different branch fibers, the transmission time of the test signal from different ONTs through the optical fiber between the reflector and the optical splitting point is also different.
  • the test signals of different ONTs pass through
  • the time difference between the reflected signal reflected by the reflector on different optical fibers and the attenuated optical signal generated through the beam splitting point is also different.
  • the time difference between the reflected signal and the attenuated optical signal received by different ONTs is also different.
  • the port identification device can confirm the optical splitters connected to different ONTs based on these fixed time differences. Port information of the port.
  • the first association relationship may be used to reflect the association relationship between the time difference and the port information.
  • the first association relationship Contains the association relationship between the time difference and the port information.
  • the first association relationship can be a table, so that the port identification device can identify the port information associated with the determined time difference based on the determined time difference and the first association relationship.
  • the port information is the port information of the port connected to the ONT that sends the test optical signal.
  • the method further includes: determining, according to the port information, the optical splitter information of the next-level optical splitter connected to the port, if the ODN contains In the case of a multi-stage optical splitter, the port of the non-final-stage optical splitter is connected to the next-stage optical splitter, so the port identification device can determine the optical splitter information of the next-stage optical splitter connected to the port through the identified port information.
  • the information of the optical splitter may be the number of the optical splitter, the name of the optical splitter or the identifier of the optical splitter, as long as the optical splitter can be uniquely identified.
  • the method can also be applied to an unequal-ratio optical distribution network, which includes n non-primary-stage two-port optical distribution networks.
  • the optical splitter whose port is connected to the ONT is an equal-ratio optical splitter with an unlimited number of ports.
  • the method further includes: the port identification device may determine the optical splitter information of the optical splitter connected to the ONT according to the number of all attenuated optical signals received by the ONT and the optical power of the last attenuated optical signal received by the ONT. Due to the particularity of the unequal-ratio optical distribution network, the number of all attenuated optical signals received by the ONT can be used to know which level of the optical splitter the ONT is connected to, and the optical power of the last attenuated optical signal can be obtained. The specific optical splitter of which level of optical splitter the optical splitter connected to the ONT is located, that is, optical splitter information. In this way, the position of the optical splitter connected to the ONT can be directly located.
  • the method may further include: determining the optical power of the reflected optical signal
  • the port information associated with the time difference and the optical power of the reflected optical signal can be determined according to the time difference and the optical power of the reflected optical signal.
  • This application can also set different reflectors to have different reflectivities, because the reflected light power reflected by different reflectances is different, so the port identification device can combine the optical power of the reflected optical signal with the fixed reflected optical signal and the attenuated light.
  • the signal time difference confirms the port information of the optical splitter ports connected to different ONTs.
  • the difference between the reflector reflection peak on the reflection curve and the spectral drop point closest to the reflector reflection peak may be determined.
  • the interval determines the time difference between the ONT receiving the attenuated optical signal and the reflected light signal closest to the attenuated optical signal, wherein the interval is related to the time difference.
  • the reflection curve is generated by the echo optical signal from the reflector, splitting point and branch fiber of the optical splitter in the ODN network sampled by the curve generating device (which can be an ONT, OLT or network management device) through the ONT.
  • the echo optical signal is Because the test optical signal sent by the ONT is formed by reflection or scattering in the ODN network.
  • the port identification device can easily determine the time difference between the ONT receiving the attenuated optical signal and the reflected optical signal closest to the attenuated optical signal, which improves the simplicity of implementation of the solution.
  • the correlation between the time difference and the port information is specifically the reflector reflection peak on the reflection curve and the distance from the The relationship between the distance between the nearest spectral drop point of the reflector reflection peak and the port information. Through the correlation between the distance between the reflector reflection peak and the spectral drop point on the reflection curve and the port information, it is easier to implement the solution.
  • the port identification device may specifically determine the optical power of the reflected light signal from the reflector reflection peak amplitude on the reflection curve, wherein the reflector reflection peak amplitude is the same as the reflected light peak amplitude.
  • the optical power of the signal is correlated.
  • the port identification device may be an ONT, an OLT or a network management device, and the port identification device may have multiple settings, which improves the flexibility of the solution.
  • an embodiment of the present application provides a device for port identification.
  • the device may include a functional module for executing the third aspect or any one of the possible implementation methods of the third aspect.
  • an embodiment of the present application provides a device including: a non-volatile memory and a processor coupled with each other, the processor calls the program code stored in the memory to execute any one of the third aspect Part or all of the steps of the method.
  • an embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores program code, wherein the program code includes the third aspect or any one of the third aspects Instructions for some or all of the steps of the method.
  • an embodiment of the present application provides a system, including: an optical splitter as in any first aspect and an identification device as in any fourth aspect.
  • an embodiment of the present application provides a system, including: an optical splitter as in any first aspect and an identification device as in any fifth aspect.
  • FIG. 1 is a schematic structural diagram of a PON system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a 1:2 optical splitter provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a reflection curve provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an OLT provided by an embodiment of the present application.
  • FIG. 5A is a schematic structural diagram of an ONT provided by an embodiment of the present application.
  • FIG. 5B is a schematic structural diagram of an ONT provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an optical splitter provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a method for port identification according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a port configuration of an optical splitter provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another port configuration method of an optical splitter provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an unequal ratio ODN provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a port identification device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a port identification device provided by an embodiment of the present application.
  • FIG. 1 is a schematic view of a system structure provided by an embodiment of the present invention.
  • the system includes: a PON system 100 and a network device 200 coupled with the PON system 100.
  • the upper-layer network device 200 may be the Internet, a community access television (CATV) network, or a public switched telephone network (Public Switched Telephone Network, PSTN) network device 200.
  • the passive optical network PON system 100 includes at least one OLT 110 on the office side, multiple ONUs 120 on the user side, or multiple optical network termination (ONT) 120 and ODN 130.
  • the OLT 110 is connected to the upper network side device 200 (such as a switch, a router, etc.), and the lower layer is connected to one or more ODN 130.
  • the ONU provides a user-side interface for the optical access network (OAN) and is connected to the ODN at the same time. If the ONU provides the user port function at the same time, for example, the ONU provides an Ethernet user port or a traditional telephone service (plain old telephone service, POTS) user port, it is called an ONT. It should be noted that, unless otherwise specified in this application, the ONT mentioned includes ONU and ONT.
  • ODN is a passive optical splitter device, which generally includes a passive optical splitter (also called a splitter), a backbone fiber, and a branch fiber. Passive optical splitter is also called optical splitter. Its function is to distribute downstream data and concentrate upstream data.
  • the optical splitter has a splitting point, which is connected to the upper-level splitter through a branch fiber or connected to the OLT through a backbone fiber.
  • the splitter has several ports, and the ports are connected to the next-level splitter or ONT through the branch fiber.
  • the splitting point here is not only physical The range of a point, but has a section of area, in the section where the splitting point is located, one branch fiber connected to the upper level of optical splitter or the backbone fiber connected to the OLT can be connected to the next level of optical splitters or ONTs.
  • the branch fibers are connected to each other, so that one optical signal can be divided into multiple optical signals.
  • the optical signal from the upstream optical interface is distributed to all downstream optical interfaces for transmission, and the optical signal from the downstream optical interface is distributed to the only upstream optical interface for transmission.
  • the transmission from the OLT to the ONT is called downlink transmission, and the transmission from the ONT to the OLT is called uplink transmission.
  • the downlink transmission is the OLT broadcasting the downlink data to each ONT, and the uplink transmission uses time division multiplexing.
  • the ONT sends upstream data to the OLT according to the transmission time slot allocated by the OLT.
  • PON includes many types, such as asynchronous transmission mode PON (ATM passive optical network, APON), broadband PON (broadband passive optical network, BPON), Ethernet PON (ethernet passive optical network, EPON), gigabit passive optical network network, GPON), 10 Gigabit Ethernet PON (10G ethernet passive optical network, 10G-EPON), 10 Gigabit symmetric passive optical network (10-gigabit-capable symmetric passive network, XGS-PON), 25 Gigabit PON (25G passive optical network, 25G GPON), 50 Gigabit PON (50G passive optical network, 50G GPON), and 100 Gigabit PON (100G passive optical network, 100G GPON), among which GPON and EPON, and 10 Gigabit Ethernet Network PON is the target mainstream PON.
  • ATM passive optical network ATM passive optical network, APON
  • broadband PON broadband passive optical network
  • BPON broadband passive optical network
  • Ethernet PON ethernet passive optical network
  • EPON
  • the embodiments of this application do not limit the type of PON. Take the current mainstream PON as an example to illustrate the upstream and downstream transmission. GPON/EPON uses 1490nm, 10G PON uses 1577nm wavelength, and the OLT will downstream The data stream is broadcast to all ONUs, and each ONU only receives data with its own identification. The entire contents of the various passive optical network systems defined by the above standards are incorporated in this application document by reference.
  • the OLT 110 can act as an intermediary between the optical network terminal 120 and the upper-layer network device 200, use data received from the upper-layer network as downlink data and forward it to the optical network terminal 120 through the ODN 130, and transfer data from the optical network terminal 120 to the optical network terminal 120.
  • the uplink data received by the network terminal 120 is forwarded to the upper network.
  • the ONU 120 can be distributed in a user-side location (such as a user's premises).
  • the optical network unit 120 may be a network device used to communicate with the optical line terminal 110 and a user. Specifically, the optical network unit 120 may act as a communication link between the optical line terminal 110 and the user. For example, the optical network unit 120 may forward the downlink data received from the optical line terminal 110 to the user, and use the data received from the user as uplink data through the optical distribution network 130 Forward to the optical line terminal 110.
  • the structure of the optical network unit 120 is similar to that of the ONT. Therefore, in the solution provided in this application document, the optical network unit and the optical network terminal can be interchanged.
  • the ODN 130 may include optical fibers, optical couplers, optical splitters, and/or other devices.
  • the optical fiber, optical coupler, optical splitter and/or other equipment may be passive optical devices. That is, the optical fiber, optical coupler, optical splitter, and/or other devices may be devices that do not require power support for distributing data signals between the OLT 110 and the optical network terminal 120.
  • the ODN130 can specifically extend from the OLT 110 to the multiple optical network terminals 120 in a two-stage optical splitting manner, but it can also be configured as any other point-to-multipoint (such as single-stage optical splitting). Or multi-level spectroscopy) or point-to-point structure, which is not specifically limited in this embodiment.
  • ODN130 uses splitters to realize data distribution.
  • ODN130 can be deployed in a two-stage splitter, including a first-stage splitter 131 and multiple second-stage splitters. ⁇ 132.
  • the first side of the first-stage optical splitter 131 is connected to the OLT 110 through a backbone fiber (Feed Fiber) 133, and the second side is respectively connected to the second-stage optical splitter 132 through a distribution fiber (Distribute Fiber) 134, each
  • Each of the second-level optical splitters 132 is further connected to the optical signal interface 1201 of the corresponding optical network terminal 120 through a drop fiber (Drop Fiber) 135 respectively.
  • Drop Fiber drop fiber
  • the downstream data signal sent by the OLT 110 passes through the first-stage optical splitter 131 for the first splitting, and then passes through the second-stage splitter 132 for the second splitting, thereby forming multiple downstream optical signals and transmitting them to Each optical network terminal 120.
  • the upstream data signal sent by each optical network terminal 120 is transmitted to the OLT 110 after being combined by the second-stage optical splitter 132 and the first-stage optical splitter 131 in sequence.
  • the first-level optical splitter 131 may be deployed in an optical distribution frame (ODF) closer to the central office
  • the second-level optical splitter 132 may be deployed in a remote node (Remote Node, ODF). RN).
  • the ODN130 can be deployed in a multi-level light splitting (three-level or more) manner.
  • the ODN network also includes a third-level optical splitter, a fourth-level optical splitter, etc. (not shown in Figure 1). display).
  • a plurality of optical splitters are connected together in a cascaded manner, the first-stage optical splitter is an optical splitter connected to the OLT, and the last-stage (also referred to as the final stage) optical splitter is an optical splitter connected to the ONT.
  • the first-stage optical splitter and the final-stage optical splitter are respectively called the second-stage optical splitter, the third-stage optical splitter, etc.
  • the last-stage optical splitter can also be called the *th-stage optical splitter, * The value is determined according to the cascading situation.
  • the following uses two-stage spectroscopy as an example to introduce the technical solution of the present application.
  • the basic unit is a 1:2 optical splitter. If the 1:2 optical splitter is an equal ratio optical splitter, the optical signal input from any port on the left side of the optical splitter will not be considered. In the case of loss, the optical signal output from the right port is 1/2 of the optical signal power input from the left port. This is because the power of the optical signal input from the left is equally divided into two parts, so each port on the right The power of the output optical signal is one part, which is 1/2 of the power of the input optical signal on the left. If the optical splitter is 1:4, the power of the optical signal output by each port on the right is 1/4 of the power of the optical signal input on the left.
  • the 1:2 optical splitter is an unequal ratio optical splitter
  • the optical signal input from the left side of the optical splitter, regardless of additional loss, for any right port the output optical signal is the left input optical signal power Multiply by the split ratio of the right port.
  • the right port includes A port and B port
  • the splitting ratio of A port is 1/3
  • the splitting ratio of B port is 2/3
  • the optical signal power output by the right A port is equal to 1/3 and the left input
  • the power of the optical signal output from the B port on the right is equal to the product of 2/3 and the power of the input optical signal on the left.
  • the type of the optical splitter is not limited, and may also be a 1:8 optical splitter, a 1:16 optical splitter, and so on.
  • the solution for identifying the ports of the optical splitter of the present invention can be applied to the scenario where the optical splitter is an equal-ratio optical splitter, and can also be applied to the scenario where the optical splitter is an unequal-ratio optical splitter.
  • the optical splitter may specifically be a planar lightwave circuit power splitter (PLC Splitter), a thin film filter, or a fusion taper splitter, etc., and there is no limitation here.
  • the PON system 100 of the present invention may further include: one or more of a curve generation device, a data extraction device and a port identification device (not shown in FIG. 1), and the curve generation device performs calculation processing on the sampling result of the echo optical signal , Thereby generating a reflection curve.
  • the data extraction device can generate reflection curve data according to the reflection curve.
  • the port identification device can obtain the port information according to the correlation between the reflection curve data and the port information and the reflection curve data.
  • the curve generation device, data extraction device and port identification device can be any one of independent devices.
  • the curve generation device (data extraction device or port identification device) is a device of the PON system other than the devices included in the ONT, OLT, and ODN.
  • the generating device may be regarded as a network element of the PON system, and the curve generating device (data extraction device or port identification device) may not be regarded as a network element of the PON system. Any one of the curve generation device, data extraction device and port identification device can also be integrated on the ONT or OLT as a part of the ONT or OLT. In this case, the curve generation device (data extraction device or port identification device) belongs to the network element of the PON system . The curve generation device, data extraction device and port identification device can also be integrated on the network management equipment as a part of the network management equipment.
  • the curve generation device (data extraction device or port identification device) can be considered as a network element of the PON system , It may not be considered as a network element of the PON system. Any two or all of the curve generation device, the data extraction device and the port identification device can also be an independent device, or all functions can be integrated in the ONT, OLT or network management equipment.
  • the echo optical signal is the signal generated by the backscattering and/or reflection of the test optical signal sent by the ONT120 during ODN130 transmission.
  • the reflection curve can be used to express the characteristics of the echo optical signal, such as specific reflection.
  • the curve may be an optical time domain reflectometer (OTDR) curve, or other types of curves, as long as the curve can reflect the characteristics of the echo optical signal.
  • ODR optical time domain reflectometer
  • the characteristics of the echo optical signal may include the power of the echo optical signal, for example, the instantaneous power, average power, or maximum power of the echo optical signal.
  • the characteristics of the echo optical signal may also include the transmission distance (or time) of the echo optical signal.
  • reflectors are provided at the ports of branch fibers in each level of optical splitter, and by setting the lengths of the branch fibers to be different, the positions of the reflectors on the ODN130 are different, so that the positions of the reflectors are different from each other.
  • the ports correspond one to one, and each port is connected to only one ONT120, or set to empty.
  • the optical power of the test optical signal is attenuated during the transmission of the ONT120, so the optical power of the echo optical signal corresponding to the test optical signal received on the ONT120 side is attenuated. The power is gradually attenuated.
  • a reflector is provided at the port position of each optical splitter, so when the test optical signal reaches the reflector, the optical power of the echo optical signal will suddenly increase.
  • the echo optical signal formed after the test optical signal passes through the optical splitter reaches a certain ONT, the echo optical signal will suddenly attenuate due to the action of the optical splitter.
  • the ONT120 samples the received echo optical signal, obtains the sampling result, and sends the sampling result to the curve generating device.
  • the sampling result includes the power of the echo optical signal and the transmission distance (or time).
  • the curve generating device performs calculation processing on the sampling result and can generate a reflection curve.
  • the reflection curve can record the transmission distance of the echo optical signal along the optical fiber transmission direction and the power of the echo optical signal.
  • Figure 3 is a schematic diagram of the reflection curve.
  • the ordinate is the power of the echo optical signal generated at the distance
  • the abscissa indicates the transmission distance of the echo optical signal.
  • the abscissa of the reflection curve can also be the time of the echo optical signal transmission, and the echo optical signal transmission The time multiplied by the transmission speed is equal to the transmission distance of the echo optical signal. Therefore, it can be considered that the transmission time of the echo optical signal represents the transmission distance of the echo optical signal.
  • the sudden increase in the power of the above-mentioned echo optical signal is manifested as a "bump" phenomenon in the reflection curve, and the suddenly convex area on the reflection curve can be called a reflection peak.
  • the above-mentioned echo optical signal (attenuation)
  • the sudden attenuation of optical signal power appears as a "drop" phenomenon in the reflection curve, and the area that suddenly drops on the reflection curve can be called the drop point.
  • the reflection peak if the slope of the reflection curve is greater than the first threshold within a certain distance (or time), the area of the reflection curve corresponding to the distance can be called the reflection peak, that is to say within a certain distance ,
  • the optical power of the echo optical signal corresponding to the reflection peak increases.
  • the reflection curve area corresponding to this distance can be called the drop point, that is, within a certain distance, the drop point corresponds to the echo light
  • the optical power of the signal is attenuated. Due to the bending, fouling or breaking of the optical fiber in the PON network, some additional reflection peaks or drop points will also be generated on the curve.
  • the reflection peak in the embodiment of the present application is a reflector at a certain port
  • the drop point in the embodiment of this application is caused by the optical splitter.
  • the reflector reflection peak is the reflector reflection peak closest to the spectroscopic drop point on the reflection curve, and the position of the reflector reflection peak on the reflection curve is on the reflection curve than the spectroscopic drop point The position is closer to the origin.
  • Figure 3 shows two reflector reflection peaks and two split light drop points, as well as the distance between the two reflector reflection peaks and the split light drop point.
  • the first threshold, second threshold, and third threshold can be set according to actual needs. , There is no limitation here.
  • the reflector reflection peak is caused by the transmission of the test optical signal through the reflector provided at the port.
  • the reflector reflection peak or the spectral drop point can be a point or a section of the reflection curve, so the distance between the reflector reflection peak and the spectral drop point on the reflection curve (also called the reflector reflection peak and the spectral drop The distance between points) can be the start position, center point, highest peak or end position of the reflector reflection peak, and the other end of the distance between the reflector reflection peak and the spectral drop point on the reflection curve can be the start of the spectral drop point Position, center point, lowest point or end position; no matter which way, just make sure that the pre-stored reflection curve data and the reflection curve data obtained during the recognition process are set in the same way as the reflector reflection peak and spectroscopic drop point That's it.
  • the reflector reflection peak amplitude on the reflection curve represents the optical power of the echo optical signal reflected by the reflector, which can be represented by the distance between the highest point of
  • the reflection curve data can be used to identify the port information of different optical splitter ports.
  • the reflection curve data can include the distance between the reflector reflection peak on the reflection curve and the split light drop point on the reflection curve, and the reflection curve data can also include The number of spectroscopic drop points on the reflection curve or the reflector reflection peak amplitude on the reflection curve.
  • the ONT, OLT, network management equipment, or an independent device can store the relationship between reflection curve data and port information, so that when the ONT, OLT, network management equipment, or an independent device obtains the reflection curve data, it can Combining the correlation between the reflection curve data and the port information to obtain the reflection curve data-associated port information.
  • the port information may specifically be a port number, a port identifier, or a port name, etc.
  • the port information may further include information about the optical splitter where the port is located, and the information of the optical splitter may specifically be the optical splitter number, optical splitter identifier, or optical splitter name, etc.
  • FIG. 4 is a schematic structural diagram of an OLT 110 provided by an embodiment of the application.
  • the specific structure and configuration of OLT110 may vary depending on the specific type of ODN100.
  • the OLT 110 may include a processing component 1100, an optical signal interface 1101, and an optical component 1102.
  • the optical component 1101 includes a downstream optical signal transmitter 1103 and an upstream optical signal receiver 1104, and the processing component 1100 includes a storage module 1105 and The processor 1107.
  • the optical signal interface 1101 may be an optical fiber adapter, which is used as an interface connected with the ODN 130 to send or receive uplink/downlink optical signals.
  • the wavelength of the downstream optical signal is ⁇ 1.
  • the wavelength of the upstream optical signal received by the OLT 110 is ⁇ 2, and the upstream optical signal is an upstream service optical signal, that is, the optical signal used to transmit data sent by the ONT 120 to the OLT 110 in the time slot allocated by the OLT 110.
  • the processor 1107 can be a MAC chip or a general-purpose CPU.
  • the processor 1107 will send instructions to a laser detector diode (LDD) (not shown in the figure), so that the LDD 1106 is a downstream optical signal transmission
  • LDD laser detector diode
  • the machine 1103 supplies power, so that the downstream optical signal transmitter 1103 can send the downstream optical signal to the ONT 120.
  • the uplink optical signal receiver 1104 can receive the uplink optical signal sent by the ONT120 through the ODN130, and after the optical component 1102 converts the uplink optical signal into an uplink electrical signal, the optical component 1102 provides the uplink electrical signal to the MAC chip 1107 for data analysis and processing .
  • the storage module 1105 may store the first association relationship, which may include the association relationship between the time difference between the ONT receiving the attenuated optical signal and the reflected optical signal closest to the attenuated optical signal and the port information, or includes the attenuated optical signal and the attenuation
  • the time difference of the most recent reflected optical signal of the optical signal, the optical power of the reflected optical signal, and the port information are associated with each other.
  • the first associated relationship may include the associated relationship between the reflection curve data of the echoed optical signal and the port information.
  • the OLT 110 may further include a communication interface for communicating with the network management device 140.
  • the communication interface can use any device such as a transceiver to communicate with the network management device 140 through a communication network, such as Ethernet, wireless access network (RAN), wireless local area network (Wireless Local Area Networks, WLAN), etc. .
  • FIG. 5A is a schematic structural diagram of an ONT 120-1 provided by an embodiment of the application.
  • the ONT 120-1 can include an optical signal interface 1201, an optical component 1202, and a processing component 1200.
  • the optical component 1202 includes an echo optical signal receiver 1204, an upstream optical signal transmitter 1205, and a downstream optical signal receiver 1206.
  • the processing component 1200 includes a storage module 1207 and a processor 1209.
  • the optical signal interface 1201 may be an optical fiber adapter, which serves as an interface connected to the ODN 130 for sending or receiving uplink/downlink optical signals.
  • the optical signal interface 1201 sends an uplink service optical signal with a second wavelength ⁇ 2 (upstream service optical signal ⁇ 2) or a test optical signal with a second wavelength ⁇ 2 (test optical signal ⁇ 2) to the OLT 110, and receives a downlink with the first wavelength ⁇ 1
  • An optical signal (downstream optical signal ⁇ 1) or an echo optical signal receiving a test optical signal ⁇ 2 with a second wavelength ⁇ 2 hereinafter referred to as echo optical signal ⁇ 2).
  • the upstream service optical signal is the optical signal sent by the ONT120 to the OLT110 for data transmission, such as the upstream optical signal used to report the reflection curve data of the echo optical signal to the OLT110, or the port information used to report the ONT120 connection port to the OLT110 ;
  • the test optical signal is the optical signal sent by the ONT120 for testing.
  • the upstream service optical signal can also be used as a test optical signal.
  • a certain upstream optical signal is used to transmit data to the OLT 110 and can also be used to measure the ODN 130.
  • the downstream optical signal receiver 1206 is used to receive the downstream optical signal ⁇ 1, and other components of the optical component 1202 (such as photoelectric converters, etc., which will not be described here) convert the downstream optical signal ⁇ 1 into a downstream electrical signal.
  • the first wavelength ⁇ 1 may be 1490 nm, 1577 nm, or the like.
  • the signal transmitter 1205 supplies power, so that the uplink optical signal transmitter 1205 transmits the uplink service optical signal ⁇ 2 and/or the uplink test optical signal ⁇ 2 through the optical signal interface 1201.
  • the wavelengths of the upstream service optical signal ⁇ 2 and the upstream test optical signal ⁇ 2 are the same, and ⁇ 2 can be 1310 nm or 1270 nm, and so on.
  • the echo optical signal receiver 1204 is used to receive the echo optical signal ⁇ 2 generated by the test optical signal ⁇ 2 in the optical fiber network, and other components of the optical component 1202 (such as photoelectric converters, etc., which will not be described here) will also convert the echo optical signal ⁇ 2 into Echo electrical signals.
  • the wavelength ⁇ 2 of the echo optical signal is the same as the wavelength ⁇ 2 of the test optical signal.
  • the storage module 1207 is used to store the first association relationship.
  • FIG. 5B is a schematic structural diagram of an ONT 120-2 provided by an embodiment of the application.
  • the ONT120-2 can include an optical signal interface 1201, an optical component 1202, and a processing component 1200.
  • the optical component 1202 includes an echo optical signal receiver 1213, an uplink test optical signal transmitter 1214, and an uplink service optical signal transmitter. 1215 and the downstream optical signal receiver 1206, and the processing component 1200 includes a storage module 1207 and a processor 1209.
  • the optical signal interface 1201 may be an optical fiber adapter, which serves as an interface connected to the ODN 130 for sending or receiving uplink/downlink optical signals.
  • the optical signal interface 1201 sends an uplink service optical signal with a second wavelength ⁇ 2 (upstream service optical signal ⁇ 2) or a test optical signal with a second wavelength ⁇ 2 (test optical signal ⁇ 2) to the OLT 110, and receives a downlink with the first wavelength ⁇ 1
  • An optical signal (downstream optical signal ⁇ 1) or an echo optical signal receiving a test optical signal ⁇ 2 with a second wavelength ⁇ 2 hereinafter referred to as echo optical signal ⁇ 2).
  • the upstream service optical signal is an optical signal sent by the ONT120 to the OLT110 for data transmission, for example, an upstream optical signal used to report the reflection curve data of the echo optical signal to the OLT110, or a certain port connected to the ONT120 to the OLT110 Port information; and the test optical signal is the optical signal sent by the ONT120 for testing.
  • the downstream optical signal receiver 1206 is used to receive the downstream optical signal ⁇ 1, and other components of the optical component 1202 (such as photoelectric converters, etc., which will not be described here) convert the downstream optical signal ⁇ 1 into a downstream electrical signal.
  • the first wavelength ⁇ 1 may be 1490 nm, 1577 nm, or the like.
  • the processor 1209 will send an instruction to the LDD so that the LDD powers the upstream service optical signal transmitter 1215, so that the upstream test optical signal transmitter 1215 sends the upstream service optical signal through the optical signal interface 1202 ⁇ 2.
  • the processor 1209 When the ONT120-2 needs to send a test optical signal (for example, according to the indication information and/or time information of the upstream test optical signal, the ONT120-2 determines that the optical signal needs to be sent), the processor 1209 will send an instruction to the LDD to make the LDD1208 upstream
  • the test optical signal transmitter 1214 is powered, so that the uplink test optical signal transmitter 1214 transmits the uplink test optical signal ⁇ 3 through the optical signal interface 1201.
  • the echo optical signal receiver 1213 is used to receive the echo optical signal ⁇ 3 generated by the test optical signal ⁇ 3 in the optical fiber network, and other components of the optical component 1202 (such as photoelectric converters, etc., which will not be described here) will also convert the echo optical signal ⁇ 3 into Echo electrical signals.
  • the wavelength ⁇ 3 of the echo optical signal is the same as the wavelength ⁇ 3 of the test optical signal.
  • the storage module 1207 is used to store the first association relationship.
  • the optical splitter 600 includes a beam splitting point 601, a reflector 602, a branch fiber 603, and a port 604. One end of the optical splitting point 601 is connected to the upper-level optical splitter through the branch fiber or the backbone fiber is connected to the OLT.
  • the optical splitting point 601 is connected to the port 604 through multiple branch fibers 603, and the port 604 is connected to the ONT or the next-level optical splitter through the branch fiber. 604 can also be suspended without any equipment connected.
  • the optical splitter 600 may be a first-stage optical splitter, a second-stage optical splitter, or a third-stage optical splitter, and other optical splitters of any level.
  • the number of branch fibers 603 is related to the type of optical splitter 600. For example, if the optical splitter 600 is a 1:2 optical splitter, the number of branch fibers 603 is two, and the optical splitter 600 is a 1:4 optical splitter, and the branch fibers 603 are 4.
  • the splitter 600 is a 1:8 splitter, and there are 8 branch fibers 603.
  • a reflector 602 is set on each analysis fiber 603. The lengths between the beam splitting point 1 and the different reflectors 602 are different. Assume that there are 4 reflectors 602 as shown in FIG. 6, which are the first reflector 602.
  • the length of the light splitting point 601 and the third reflector 602 is 110 meters, and the length of the light splitting point 601 and the fourth reflector 602 is 160 meters.
  • the lengths of the aforementioned beam splitting point 601 and the reflector 602 are not specifically limited.
  • the branch fiber 603 is sometimes called a pigtail.
  • the reflector may be a reflective surface, for example, a grating or coating formed on the branch optical fiber to form a reflective surface, for example, a groove is formed on the branch optical fiber by etching or photolithography.
  • the optical splitter is a 1:8 type optical splitter
  • the optical splitter has 8 ports. For the convenience of description, these 8 ports are called the first port, the second port..., the eighth port, and they are connected separately
  • the first ONT, the second ONT..., the eighth ONT, a first reflector, a second reflector..., and an eighth reflector are respectively arranged at each port and the light splitting point.
  • the echo optical signal generated when the test optical signal reaches the reflector is referred to as the reflected optical signal
  • the echo optical signal generated when the test optical signal reaches the light splitting point is referred to as the attenuated optical signal.
  • the reflectivity of each reflector may be different, and the optical power of the reflected optical signal generated by the test optical signal of the same optical power through the reflector of different reflectivity is also different.
  • the accuracy of the difference in length between the branch fibers is related to the processing capacity of the ONT. For example, if the processing capacity of the ONT is strong, the length between the branch fibers can be 1 meter, for example, the first branch fiber 603 is 1. Meters, the second branch fiber 603 is 2 meters and so on. For another example, if the processing capability of the ONT is weaker, the length between branch fibers can be 10 meters, for example, the first branch fiber 603 is 10 meters, the second branch fiber 603 is 20 meters, and so on.
  • the solution is applied in a two-stage optical splitter scenario, where the first ONT is connected to port 1 of the second-stage optical splitter No. 1, and the second ONT is connected to port 2 of the second-stage optical splitter No. 1.
  • a reflected optical signal (referred to herein as the first reflected optical signal) will be generated.
  • the optical signal will be transmitted to the first ONT, and the first ONT will receive the first reflected optical signal.
  • the optical signal will continue to produce scattered light signal or reflected light signal during the transmission process of optical fiber.
  • the test light signal reaches the light splitting point of the No.
  • the attenuated attenuated optical signal (herein referred to as the first attenuated optical signal), the first attenuated optical signal will be transmitted to the first ONT, and the first ONT will receive the first attenuated optical signal.
  • the test optical signal reaches the first reflector of the first-stage optical splitter, a second reflected optical signal is generated, and the second reflected optical signal is transmitted to the first ONT, and the first ONT receives the second reflected optical signal.
  • a second attenuated optical signal with a large attenuation of optical power is generated due to the splitting of the splitting point.
  • the second attenuated optical signal will be transmitted to the first ONT.
  • An ONT receives the second attenuated optical signal, so that the first ONT receives the first reflected optical signal, the first attenuated optical signal, the second reflected optical signal, and the second attenuated optical signal in chronological order.
  • the port identification device can respectively determine the moment when the first ONT receives the second attenuated optical signal, the moment when the second reflected optical signal, the moment when the first attenuated optical signal, and the moment when the first reflected optical signal is received by the first ONT, thereby determining that the first ONT receives the first optical signal.
  • the port identification device may determine the port information associated with the first time difference and the port information associated with the second time difference according to the reverse order or sequence of the time when the first ONT receives the attenuated optical signal and the reflected optical signal.
  • the port information associated with the first time difference is the port information of the first ONT connected to the second-level optical splitter (specifically port 1)
  • the port information associated with the second time difference is the port information of the first-level optical splitter (specifically port 1).
  • the port identification device can identify the port information of the optical splitter connected to the ONT, and further, the port identification device can identify the network location of the ODN connected to the ONT, that is, the first optical splitter and the second optical splitter No. 1 Port 1 of the device.
  • the first time difference is related to the length of the branch fiber between the first reflector and the splitting point inside the second-stage optical splitter No. 1
  • the second time difference is related to the first-stage optical splitter inside the first-stage optical splitter.
  • the length of the branch fiber between a reflector and the splitting point is related.
  • the port identification device can respectively determine the moment when the second ONT receives the third attenuated optical signal (the third attenuated optical signal is the arrival of the test optical signal sent by the second ONT).
  • the optical signal generated by the light splitting point of the first-stage optical splitter the moment of the third reflected optical signal (the third reflected optical signal is the light generated by the test optical signal sent by the second ONT reaching the first reflector of the first-stage optical splitter) Signal
  • the moment of the fourth attenuated optical signal is the optical signal generated by the test optical signal sent by the second ONT reaching the optical splitting point of the second-stage optical splitter No.
  • the fourth The reflected optical signal is the moment when the test optical signal sent by the second ONT reaches the optical signal generated by the second reflector of the second-stage optical splitter No. 1, so that the second ONT receives the third reflected optical signal, The third attenuated optical signal, the fourth reflected optical signal, and the fourth attenuated optical signal.
  • the port identification device can respectively determine the time when the second ONT receives the third attenuated optical signal, the time when the third reflected optical signal, the time when the fourth attenuated optical signal, and the time when the fourth reflected optical signal is received by the second ONT, thereby determining that the second ONT receives the third optical signal.
  • the port identification device may respectively determine the port information associated with the third time difference and the port information associated with the fourth time difference.
  • the port information associated with the third time difference is the port information of the second ONT connected to the second-level optical splitter (specifically port 2)
  • the port information associated with the fourth time difference is the port information of the first-level optical splitter (specifically port 1 )
  • the port identification device can identify the port information of the optical splitter connected to the second ONT, and further, the port identification device can identify the network location of the ODN connected to the ONT, that is, the first optical splitter and the No.
  • the port identification device also stores a first association relationship, and the first association relationship includes an association relationship between the time difference and the port information.
  • the first association relationship also includes the time difference, the optical power of the reflected optical signal, and the port information.
  • the port is the device also needs to know the optical power of each reflected optical signal, and then according to the time difference, the optical power of the reflected optical signal The power and the first association relationship determine port information.
  • the time difference between the reflected optical signal and the attenuated optical signal and/or the optical power of the reflected optical signal may be reflected by the reflection curve, and the quantity of the attenuated optical signal may be reflected by the reflection curve.
  • the curve generating device may generate a reflection curve according to the sampling result of the echo optical signal received by the sampled ONT
  • the curve extraction device may extract the reflection curve data through the reflection curve
  • the port identification device may use the reflection curve data and storage
  • the associated relationship between the reflected data and the port information is used to identify the port information.
  • FIG. 7 takes the curve generation device, the data extraction device and the port identification device all integrated in the ONT as an example for description.
  • the process of generating the reflection curve is the same as the process of generating the reflection curve when the curve generating device is integrated on the ONT.
  • the process of generating reflection curve data is the same as the process of generating reflection curve data when the data extraction device is integrated on the ONT.
  • the process of acquiring port information is the same as the process of acquiring the port information of the branch fiber when the port identification device is integrated on the ONT.
  • an embodiment of the present application provides a method for port identification.
  • Step 701 The network management device may pre-store the association relationship between the reflection curve data and the port information.
  • the association relationship between the reflection curve data and the port information is referred to as the first association relationship.
  • the network management device may also send the first association relationship to each ONT through the OLT.
  • the OLT may also store the first association relationship.
  • the OLT may send the first association relationship to each ONT.
  • This step is optional. If the port information is not identified on the ONT side, the network management device or the OLT does not need to send the aforementioned first association relationship to the ONT. Or if the above-mentioned first association relationship can also be directly stored on the ONT side, the network management device or the OLT does not need to send the above-mentioned first association relationship to the ONT.
  • the reflection curve data is referred to as the distance between the reflection peak of the reflector on the reflection curve and the drop point of the light splitting for short.
  • the reflection curve data is the distance between the first reflector reflection peak on the reflection curve and the first spectroscopic drop point for short as the first distance
  • the reflection curve data is the second reflector reflection peak and the second reflection curve on the reflection curve.
  • the distance between the spectroscopic drop points is referred to as the second distance.
  • the first association relationship includes the association relationship between the interval and the port information.
  • Table 1 is a specific example of the first association relationship.
  • the reflection curve data can also include a sequence number.
  • the sequence number is the sequence number of the spectroscopic drop point or the sequence number of the pitch, or the pitch of the reflection curve data itself is sequential.
  • the first correlation can also be additional Including the relationship between the sequence number or the order of the spacing and the series of the optical splitter, as shown in Table 2 is another specific example of the first relationship.
  • the first correlation includes the correlation between the pitch, the amplitude of the reflector reflection peak and the port information, as shown in Table 3 for another specific first Examples of association relationships. If the reflection curve data also includes the number of spectroscopic drop points, the first correlation may additionally include the correlation between the series of the spectroscope where the reflector reflection peak is located and the number of spectroscopic drop points, as shown in Table 4 for another Specific examples of the first association relationship.
  • Number of spectroscopic drop points The number of stages of the beam splitter where the reflector reflection peak is located N Nth class optical splitter N-1 N-1 class optical splitter ... ...
  • Step 702 The OLT sends a downstream optical signal to the ONT.
  • the downstream optical signal may carry instruction information instructing a certain ONT to send a test optical signal.
  • the downstream optical signal may further include time information instructing a certain ONT to send the test optical signal.
  • this embodiment of the present application refers to the ONT that sends the test optical signal as the first ONT.
  • the OLT may select (for example, randomly selected or according to the needs or service requirements of the OLT, etc.) an ONT that has not sent a test optical signal as the first ONT. For example, the OLT identifies the ONT that has sent the test optical signal, and determines the first ONT that sends the test optical signal next time from the ONTs that have not sent the test optical signal. The first ONT may also be the ONT connected to the ODN for the first time. For example, before step 702, the first ONT sends a registration request to the OLT via an upstream optical signal, and the OLT determines that the first ONT is the first access according to the registration request. ONT.
  • the first ONT requests the OLT to authorize the port connection identification through the upstream optical signal.
  • the first ONT sends an optical signal to the OLT to request the OLT to authorize the first ONT to send the test optical signal, which specifically includes requesting the OLT to allocate the test time, such as time information for sending the test optical signal.
  • the indication information may include the identification of the first ONT, such as the MAC address of the first ONT, the ONU ID allocated by the OLT to the first ONT, and so on.
  • the indication information may also include a control bit that identifies whether to send a test light signal as a preset value, for example, the control bit is 1, indicating that the test light signal is sent.
  • the time information for sending the test light signal may include the start time of sending the test light signal, the end time of sending the test light signal, or the duration of sending the test light signal, and so on.
  • the first ONT is allowed to send the test optical signal to the OLT instead of the service optical signal.
  • Step 703 The first ONT receives the instruction information, and sends a test optical signal to the OLT according to the instruction information.
  • the first ONT may reuse the service wavelength or use an independent wavelength different from the service wavelength to send the test optical signal to the OLT.
  • the first ONT starts to send the test optical signal when it determines that the time for sending the test optical signal arrives. Further, the first ONT may also send the test optical signal according to the end time or duration of sending the test optical signal carried in the downlink optical signal.
  • the manner of sending the test optical signal may also be configured in the downstream optical signal, for example, sending one or more short pulses, or sending a long pulse, etc., and the pulse width may also be configured in the downstream optical signal.
  • the optical power of the test optical signal may also be configured in the downlink optical signal, for example, the average optical power of the test optical signal is 0 dBm.
  • the first ONT may send the test optical signal at a preset time. For example, the OLT will not allocate bandwidth for the connected ONT for two frames every 5 seconds (each frame time is 125 ⁇ s), thus restricting any ONT from sending optical signals to the OLT. This process is called windowing. No service is transmitted during the process, and lasts for 250 ⁇ s. The ONT can send a test optical signal to the OLT during the windowing period.
  • the first ONT also includes a transmitter for transmitting the independent wavelength test optical signal, so that the first ONT is still normal during the period when the first ONT transmits the test optical signal Send business optical signals, so you can send photometric signals without waiting for the window period.
  • Step 704 The first ONT receives the echo optical signal generated by the test optical signal in the ODN, and samples the echo optical signal to obtain a sampling result.
  • the service wavelength is reused to send test optical signals, since the first ONT sends the test optical signal during this time, other ONTs will not send any optical signals. During the time when the first ONT sends the test optical signal, only this optical signal exists in the ODN. The test optical signal, therefore, the echo optical signal received by the first ONT is generated by the above-mentioned test optical signal in the ODN. If it is a test optical signal sent with an independent wavelength, only the test optical signal will be transmitted on the channel of the independent wavelength. Therefore, the echo optical signal received on the channel of the independent wavelength can only be the above-mentioned test optical signal in the ODN. produced.
  • the specific sampling process is not limited here.
  • Step 705 The first ONT performs processing according to the sampling result to generate a reflection curve.
  • the first ONT may send the test optical signal multiple times, so that the first ONT also receives multiple echo optical signals and performs multiple samplings, resulting in multiple sampling results.
  • the reflection curve is obtained after the first ONT performs multiple superposition operations and equalization calculations.
  • the specific method of generating the reflection curve is not limited, and the type of the reflection curve is not limited, as long as the reflection curve can reflect the optical power of the echo optical signal and the transmission distance of the echo optical signal.
  • the first ONT realizes the function of the curve generating device.
  • Step 706 The first ONT may obtain the pitch from the reflection curve, thereby obtaining reflection curve data.
  • the first ONT may further obtain the reflector reflection peak amplitude and/or the number of spectral drop points on the reflection curve from the reflection curve, so that the reflection curve data further includes the reflector reflection peak amplitude and/or the spectral drop on the reflection curve.
  • the spacing and reflector reflection peak amplitude appear in pairs, such as: (N meters, -34dBm), (N+100 meters, -34dBm).
  • the first ONT can further obtain the serial number of the spectroscopic drop point, the serial number of the interval, or the order of the interval from the reflection curve, so that the reflection curve data further includes the serial number of the spectroscopic drop point and the serial number of the interval.
  • the interval and the serial number are in pairs Appears, such as: (1, N meters), (2, N+100 meters), or the spacing, reflector reflection peak amplitude and serial number appear in pairs, such as: (1, N meters, -34dBm), ( 2. N+100 meters, -34dBm).
  • multiple spacings are in order, for example, the reflection curve data is (N meters, N+100 meters), and the spacing corresponding to N meters in the reflection curve is closer to the origin than the spacing corresponding to N+100 meters.
  • the first ONT realizes the function of the data extraction device.
  • Step 707 The first ONT may also obtain a recognition result according to the first association relationship and the reflection curve data.
  • the recognition result is port information, thus completing port recognition, and the ONT may also send the recognition result to the OLT. From the port information, it can be seen specifically which port of the last-stage optical splitter is connected to the first ONT, which port of the previous stage the last-stage optical splitter is connected to, until the first-stage optical splitter to which the penultimate optical splitter is connected Which port.
  • the order of the spectroscopic drop points can be the sequence number of the spectroscopic drop point, the pitch number or the order of the pitch Order;
  • the process for the first ONT to obtain the recognition result according to the first association relationship and the reflection curve data is: the first ONT confirms the first ONT according to the order of the first spectroscopic drop point, the first distance, and the first association relationship
  • the reflector reflection peak corresponds to the port information, and then according to the order of the second light splitting drop point, the second distance and the first association relationship, the port information corresponding to the second reflector reflection peak is confirmed.
  • the process for the first ONT to obtain the identification result according to the first correlation and the reflection curve data is: the first ONT according to the amplitude of the reflector reflection peak on the reflection curve, The distance and the first association relationship determine the port information corresponding to the reflection curve data.
  • the pitch includes the third pitch and the fourth pitch; the amplitude of the reflector reflection peak on the reflection curve includes the amplitude of the third reflector reflection peak and the amplitude of the fourth reflector reflection peak; the reflection curve data also includes the light splitting The order of the drop points.
  • the first ONT determines the port information corresponding to the reflection curve data according to the reflector reflection peak amplitude, the distance, and the first correlation, specifically: according to the order of the third spectroscopic drop point, the third The amplitude of the reflection peak of the reflector, the third distance and the first correlation, confirm the port information corresponding to the reflection peak of the third reflector; according to the order of the fourth light splitting point, the fourth reflector The amplitude of the reflection peak, the fourth distance, and the first association relationship are confirmed, and port information corresponding to the reflection peak of the fourth reflector is confirmed.
  • the unequal ratio ODN here includes n unequal ratio splitters with two ports that are non-primary splitters and n non-primary splitters with an unlimited number of ports.
  • Equal-ratio optical splitter wherein the optical splitter whose port is connected to the next-stage optical splitter is the unequal-ratio optical splitter with two ports, and the optical splitter whose port is connected to the ONT is the equal-ratio optical splitter with an unlimited number of ports
  • the reflection curve data also includes the number of drop points on the reflection curve and the amplitude of the reflector reflection peak on the reflection curve.
  • the port identification module first determines the fifth reflector closest to the origin on the reflection curve according to the number of light splitting points on the reflection curve and the amplitude of the reflection peak of the sixth reflector that is the farthest from the origin on the reflection curve. Spectrometer information corresponding to the location of the reflection peak. Then the port identification module is based on the splitter information of the optical splitter corresponding to the reflection peak of the fifth reflector and the fifth distance between the reflection peak of the fifth reflector and the fifth spectroscopic drop point closest to the reflection peak of the fifth reflector.
  • the first association relationship determine the port information corresponding to the reflection peak of the fifth reflector; or the port identification module according to the spectrometer information of the spectroscope corresponding to the reflection peak of the fifth reflector, the fifth spacing, and the The amplitude of the reflection peak of the fifth reflector and the first association relationship determine port information corresponding to the reflection peak of the fifth reflector.
  • the first ONT realizes the function of the port identification device.
  • Step 708 The OLT receives the identification result sent by the first ONT.
  • the OLT and other ONTs repeat steps 702-708 until the OLT can determine the topology of the PON.
  • the OLT determines the identity of the first ONT that sends the test optical signal next time, and carries the determined identity of the first ONT in the instruction information of step 702.
  • the OLT may select (for example, select randomly or in other ways) an ONT that has not sent the test optical signal as the first ONT. For example, the OLT can identify the ONT that has sent the test optical signal. Therefore, the OLT can determine the first ONT that sends the test optical signal next time from among the ONTs that have not sent the test optical signal. Furthermore, the OLT repeats steps 702-708 with the determined first ONT. Since the OLT can determine the port information of the ports connected to each ONT, the port information of the ports connected to the ONT can determine the topology of the PON.
  • the OLT can determine which port of the last-stage optical splitter each ONT connected to the ODN is connected to; the OLT can also determine which port of the upper-stage optical splitter each last-stage optical splitter in the ODN is connected to, thereby determining each The connection relationship of each ONT in the ODN determines the topological structure of the PON.
  • a first-stage optical splitter and two second-stage optical splitters are schematically shown. These two second-stage optical splitters are connected to ports 01 and 02 of the first-stage optical splitter; There are six second-stage optical splitters that are not shown, and these six second-stage optical splitters are respectively connected to port 03-08 of the first-stage optical splitter. Each port of the second-stage optical splitter on the figure is connected to different ONTs (not shown in the figure). In this way, the ODN system shown in Figure 8-9 can achieve a 1:64 splitting effect after two-stage splitting.
  • the pigtail lengths of different ports in the same splitter can be different, such as: port 01 of the branch fiber
  • the pigtail length is N meters
  • the pigtail length included in port 02 of the branch fiber is N+10 meters
  • the pigtail length included in port 08 of the branch fiber is N+80 meters.
  • the above-mentioned pigtail length is not limited, and different pigtail lengths change the optical path transmission distance.
  • a reflector Since a reflector is set at the port, the echo optical signal reflected by the reflector will form a reflector reflection peak on the reflection curve; and the optical power of the echo optical signal when the echo optical signal passes through the optical splitter will be abrupt due to the splitting reason. Attenuation, a spectroscopic drop point will be displayed on the reflection curve. In this way, by setting the difference in the length of the pigtails connected to different ports, the distance between the reflector reflection peak and the split light drop point on the reflection curve can be different. Because Fig. 10 shows the ODN of the secondary spectroscopy, there will be two reflector reflection peaks and two spectroscopic drop points in the reflection curve, so the data extraction device can obtain the reflection curve from the curve generation device. Taking FIG.
  • the data extraction device confirms the position of the first spectroscopic drop point from the reflection curve shown in FIG. 3, and the data extraction device further determines the reflection peak of the first reflector according to the position of the first spectroscopic point.
  • the first distance is determined by the position of the reflection peak of the first reflector and the position of the first split light drop point.
  • the reflector reflection peak that appears for the first time from the origin to the abscissa is the first reflector reflection peak
  • the spectroscopic drop point that appears for the first time from the origin to the abscissa is the first spectroscopic drop point
  • the reflection peak of the first reflector is formed by the reflector of the port on the secondary beam splitter
  • the first light splitting point is formed by the light splitting of the secondary (last stage) beam splitter.
  • the data extraction device can determine the position of the reflection peak of the second reflector and the position of the second spectral drop point from the reflection curve, and determine the second distance through the position of the reflection peak of the second reflector and the position of the second spectral drop point
  • the reflection peak of the second reflector is formed by the reflector of the port on the first-stage optical splitter
  • the second light splitting drop point is formed by the first-stage optical splitter.
  • the reflector reflection peak amplitude characterizes the optical power of the echo optical signal.
  • the amplitude of the reflector reflection peaks of different reflectors can be obtained. Therefore, the amplitude of the reflection peak of the reflector needs to be of a limited type, and the corresponding reflector is set to a limited specification.
  • the reflector reflection peak amplitude is 3 types, for example: -34dBm, -38dBm, -42dBm.
  • the pigtail length of different ports in the same splitter is a specific number of types.
  • the pigtail length of ports 01, 02, and 03 is N meters
  • the length of pigtails included in ports 04, 05, and 06 is N+20.
  • M the length of the pigtail included in the ports 07 and 08 of the branch fiber is N+50 meters.
  • the above-mentioned pigtail length is not limited, and different pigtail lengths change the optical path transmission distance.
  • three unequal length pigtails combined with three different sizes of reflector reflection peak amplitudes can be used to determine different port information, which can shorten the types of pigtail lengths, which is beneficial to engineering implementation.
  • Specific implementation mode 3 kinds of unequal length pigtails are set in the second-stage optical splitter or the first-stage optical splitter, 3 different reflectors are set at the ports, the fiber length is L, and the port reflection amplitude is A, A/L two
  • the data extraction device also needs to extract the amplitude of the reflector reflection peak from the reflection curve, and then send the amplitude and spacing of the reflector reflection peak as reflection curve data to the port identification device.
  • the ODN network may be a unequal-ratio multi-stage optical splitter.
  • the 1:2 beam splitter is an unequal ratio beam splitter, such as 7:3.
  • the light splitting ratio of each 1:2 optical splitter is not limited.
  • the light splitting ratio of all 1:2 optical splitters may be the same, and the light splitting ratio of each 1:2 optical splitter may also be different.
  • the 1:8 splitter is an equal ratio splitter.
  • the ports of the two branch fibers of the 1:2 splitter can be connected to the 1:2 splitter, or one of the two branch fiber ports of the 1:2 splitter is connected to the 1:2 splitter and the other is connected to the 1:8 splitter ; Or, the ports of the two branch fibers of the 1:2 splitter can be connected to the 1:8 splitter.
  • each branch fiber port of the 1:8 optical splitter can be connected to one ONT, as shown in Figure 10. Since the splitter itself has a certain loss, unequal ratio splitting will introduce different losses.
  • the multi-stage splitter will show multiple drop points on the reflection curve, and the two of the 7:3 splitter
  • the height of the port steps is different, and the unequal-length pigtails will introduce reflector reflection peaks with different relative positions.
  • the data extraction device obtains the number of spectroscopic drop points from the reflection curve, and obtains the spacing and the amplitude of the reflector reflection peak, and uses the number and spacing of spectroscopic drop points as reflection curve data, or the number of spectroscopic drop points, The pitch and the amplitude of the reflector reflection peak are used as reflection curve data.
  • the data extraction device sends the reflection curve data to the port identification device.
  • the port identification device first determines which level of optical splitter the optical splitter connected to the ONT belongs to according to the number of optical splitting points in the reflection curve data. For example, if the number of optical splitting points is 3, the optical splitter connected to this ONT belongs to The third-stage optical splitter. Then, the port identification device determines the port information of the port connected to the ONT according to the distance, or the distance between the reflector reflection peak and the spectral drop point on the reflection curve, and the reflector reflection peak amplitude.
  • the port identification process of the ONT connection of the port identification device can be:
  • the port identification device determines the time difference between the first ONT receiving the attenuated optical signal and the reflected optical signal closest to the attenuated optical signal according to the optical signal reflected by the ODN received by the first ONT, where the reflected optical signal is the test optical signal after the optical splitting The optical signal reflected by the reflector of the optical splitter.
  • the attenuated optical signal is the signal reflected by the test optical signal through the optical splitting point of the optical splitter.
  • the time difference and the optical fiber between the reflector and the optical splitting point connected to the port of the optical splitter are Is associated with the length.
  • the ODN includes a multi-level optical splitter
  • the ODN includes a total of 5 levels of optical splitter. Then, there are 5 sets of time differences between the first ONT receiving the dimming signal and the reflected optical signal closest to the attenuated optical signal obtained by the port identification device.
  • the first ONT will sequentially receive the reflected light signal reflected by the reflector of the last-stage optical splitter, the attenuated optical signal reflected by the optical splitting point of the last-stage optical splitter, and the reflector of the penultimate-stage optical splitter. Reflected light signal, the attenuated light signal reflected from the beam splitting point of the penultimate beam splitter, until the reflected light signal reflected by the reflector of the first beam splitter, and the attenuated light reflected back by the beam splitting point of the penultimate beam splitter signal.
  • the port identification device respectively determines the time when the first ONT receives the attenuated optical signal and the reflected optical signal reflected from each optical splitter according to the sampling result, so that it can be determined that multiple groups of the first ONT receive the attenuated optical signal and are closest to the attenuated optical signal The time difference of the reflected light signal.
  • the port identification device can determine the last optical splitter (first-stage optical splitter) that the test optical signal passes through in chronological order according to the time difference between the last attenuated optical signal received by the first ONT and the reflected optical signal closest to the last attenuated optical signal Port information of the port.
  • the port identification device may further determine the penultimate optical splitter through which the test optical signal passes in time sequence according to the time difference between the first ONT receiving the penultimate attenuated optical signal and the reflected optical signal closest to the penultimate attenuated optical signal (Second-level optical splitter) Port information of the port.
  • the port identification device can determine the first optical splitter that the test optical signal passes through in chronological order based on the time difference between the first attenuated optical signal received by the first ONT and the reflected optical signal closest to the first attenuated optical signal ( The port information of the last-stage optical splitter) port.
  • the port information of the last-stage optical splitter can be determined.
  • the port recognition device recognizes the position of each ONT in the optical optical network, then the topology of the optical network can be constructed, so that the visualization of the ports of the ONT connected to the optical splitter can be further realized.
  • the port identification device stores a first association relationship, and the first association relationship includes the corresponding relationship between the time difference between the ONT receiving the attenuated optical signal and the reflected optical signal and the port information.
  • the first correlation also includes the attenuated optical signal received by the ONT and the reflection closest to the attenuated optical signal.
  • the port identification device determines the time difference and the optical power of the reflected optical signal according to the time difference between the ONT receiving the attenuated optical signal and the reflected optical signal closest to the attenuated optical signal, the optical power of the reflected optical signal, and the first correlation.
  • the associated port information is the time difference and the optical power of the reflected optical signal according to the time difference between the ONT receiving the attenuated optical signal and the reflected optical signal closest to the attenuated optical signal, the optical power of the reflected optical signal, and the first correlation.
  • the port identification device determines the optical power of the last attenuated optical signal received by the ONT and the number of all attenuated optical signals received by the ONT.
  • the splitter information of the splitter may further determine the port information of the optical splitter connected to the ONT based on the time difference between the first attenuated optical signal received by the ONT and the reflected optical signal closest to the first attenuated optical signal and the first correlation. .
  • the port identification device may further determine the time difference between the first attenuated optical signal received by the ONT and the reflected optical signal closest to the first attenuated optical signal, the optical power of the reflected optical signal, and the first correlation.
  • Port information of the optical splitter connected to the ONT may
  • FIG. 11 is a schematic structural diagram of a port identification device provided by this application.
  • the port identification device may be an OLT or an ONT or a network management device.
  • the port identification device can be used to implement the corresponding part of the method described in the foregoing method embodiment. For details, refer to the description in the foregoing method embodiment.
  • the port identification device may include one or more processors 1101, and the processor 1101 may also be referred to as a processing unit, which may implement certain control functions.
  • the processor 1101 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as base stations, baseband chips, DU, or CU, etc.), execute software programs, and process data in software programs. .
  • the processor 1101 may also store an instruction 1104, and the instruction 1104 may be executed by the processor, so that the port identification apparatus executes the method corresponding to the device described in the foregoing method embodiment.
  • the port identification device may include a circuit, and the circuit may implement the sending or receiving or communication function in the foregoing method embodiment.
  • the port identification device may include one or more memories 1102, and the memory 1102 stores instructions 1102 or intermediate data.
  • the instructions 1105 may be executed on the processor 1101, so that the port identification device executes the foregoing method implementation.
  • the method described in the example may also be stored in the memory 1102.
  • instructions and/or data may also be stored in the processor 1101.
  • the processor 1101 and the memory 1102 can be provided separately or integrated together.
  • the port identification device may further include a transceiver 1103.
  • the processor 1103 may be referred to as a processing unit.
  • the transceiver 1103 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and is used to implement the transceiver function of the communication device.
  • the present application also provides a readable storage medium in which an execution instruction is stored.
  • the port identification device executes the port identification method in the above method embodiment .
  • the application also provides a program product, which includes an execution instruction, and the execution instruction is stored in a readable storage medium.
  • At least one processor of the port identification device can read the execution instruction from a readable storage medium, and at least one processor executes the execution instruction to cause the port identification device to implement the port identification method in the foregoing method embodiment.
  • FIG. 12 is a schematic structural diagram of a port identification device provided by this application.
  • the port identification device may be an OLT or an ONT or a network management device.
  • the port identification device can be used to implement the corresponding part of the method described in the foregoing method embodiment. For details, refer to the description in the foregoing method embodiment.
  • Port identification devices include:
  • the time determining module 1201 is used to determine the time difference between the optical network terminal ONT receiving the attenuated optical signal and the reflected optical signal closest to the attenuated optical signal, wherein the reflected optical signal is the test optical signal connected through the port of the optical splitter The optical signal reflected by the reflector.
  • the attenuated optical signal is the optical signal reflected by the test optical signal through the light splitting point of the optical splitter.
  • the time difference is related to the length, and the length is the reflector and the optical signal. The length of the optical fiber between the beam splitting points;
  • the port information determining module 1202 is configured to determine port information associated with the time difference according to the time difference, where the port information is port information of the port.
  • the port identification device further includes a storage module 1203, configured to store a first association relationship, and the first association relationship includes an association relationship between the time difference and the port information.
  • the port information determining module 1202 is specifically configured to determine the port information associated with the time difference according to the time difference and the first association relationship.
  • the port identification device further includes an optical splitter information confirmation module 1204, the optical splitter information confirmation module 1204 is used to determine the optical splitter information of the next-level optical splitter connected to the port according to the port information; or The optical splitter information of the optical splitter is determined according to the number of all attenuated optical signals received by the ONT and the optical power of the last attenuated optical signal received by the ONT.
  • the port identification device further includes an optical power determining module 1205, configured to determine the optical power of the reflected optical signal; the port information determining module 1202 is specifically configured to determine the optical power according to the time difference and the reflected optical signal determined by the optical power determining module 1205 Optical power, determining the port information associated with the time difference and the optical power of the reflected optical signal.
  • the time determination module 1201 is specifically configured to determine the distance between the reflector reflection peak on the reflection curve and the spectral drop point closest to the reflector reflection peak to determine the attenuated optical signal received by the ONT and the distance between the attenuated optical signal and the attenuated optical signal. The time difference of the closest reflected light signal, wherein the distance and the time difference are correlated.
  • the optical power determination module 1205 is specifically configured to determine the optical power of the reflected optical signal from the reflector reflection peak amplitude on the reflection curve, wherein the reflector reflection peak amplitude is the same as the optical power of the reflected optical signal. Are related.
  • the transmission time of the test signal from different ONTs through the optical fiber between the reflector and the optical splitting point is also different.
  • the test signals of different ONTs pass through The time difference between the reflected signal reflected by the reflector on different optical fibers and the attenuated optical signal generated through the beam splitting point is also different. Further, the time difference between the reflected signal and the attenuated optical signal received by different ONTs is also different.
  • the port identification device can confirm the optical splitters connected to different ONTs based on these fixed time differences. Port information of the port.
  • the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable medium to another computer-readable medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center through a cable (Such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请实施例应用在PON领域,提供了一种端口识别的方法、装置、系统和分光器,其中分光器,包括分光点,至少两根以上的分支光纤,与分支光纤数量相同的反射器和端口,其中至少两根以上的分支光纤包括了第一分支光纤和第二分支光纤,其中,第一分支光纤的一端连接了第一端口,第一分支光纤的另一端连接分光点,第一分支光纤上设置了第一反射器,第二分支光纤上设置了第二反射器,第一反射器和分光点之间光纤的第一长度与所述第二反射器和分光点之间光纤的第二长度是不同的。由于不同分支光纤上,反射器和分光点之间光纤的长度不同,不同ONT接收反射信号与衰减光信号的时间差是不同的。根据这些固定的时间差确认不同ONT所连接分光器端口的端口信息。

Description

一种端口识别的方法、装置、系统和分光器
本申请要求于2019年11月19日提交中国国家知识产权局、申请号为201911137089.5、发明名称为“一种端口识别的方法、装置、系统和分光器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无源光网络领域,尤其涉及一种端口识别的方法、装置、系统和分光器。
背景技术
在无源光网络(passive optical network,PON)系统中,包括至少三种设备:光线路终端(optical Line Termination,OLT)、光分配网络(optical distribution network,ODN)和光网络单元(optical network unit,ONU)。其中,ODN内可以包括一个或多个分光器(splitter),该一个或多个分光器又可以分为一级或多级分光。ODN促使当前PON系统中OLT下挂着多个ONT,当分光器的某一分支光纤出现问题,则需要断开与该分光器连接的ONU并进行线路修复,同时不影响正常工作的ONU,此时就需要判断每个ONU与哪一个端口相连;此外,当某一用户不再使用运营商业务从而拆除了某一ONU,但该分光器分支光纤下的端口连接的光纤没有被拆除,即端口仍被光纤占用,在有新用户入网时,运营商无法分辨哪一端口下的光纤没有连接ONU,此时就需要对ONU连接的端口进行识别,当ONU停用时,准确知道哪一端口可以复用。
然而,当前运营商或局端(Central Office,CO)无法获知每个ONT连接到的分光器分支光纤的端口信息,或者,需要人工记录,才能确定每个ONT连接到的分光器分支光纤的端口信息,这使得在PON网络的ONT的管理运维效率低下。
发明内容
本发明实施例提供一种端口识别的方法、装置、系统和分光器,用于解决对无法识别ONT连接的分光器的端口的技术问题。
第一方面,本申请实施例提供一种分光器,包括分光点,至少两根以上的分支光纤,与分支光纤数量相同的反射器和端口,其中至少两根以上的分支光纤包括了第一分支光纤和第二分支光纤,其中,第一分支光纤的一端连接了第一端口,第一分支光纤的另一端连接分光点,第一分支光纤上设置了第一反射器,第二分支光纤上设置了第二反射器,第一反射器和分光点之间光纤的第一长度与所述第二反射器和分光点之间光纤的第二长度是不同的。由于不同分支光纤上,反射器和分光点之间光纤的长度不同,来自于不同ONT的测试信号经过反射器和分光点之间光纤的传输的时间也不同,相应地,不同ONT的测试信号经过不同光纤上的反射器反射的反射信号与经过分光点产生的衰减光信号的时间差也不同,进一步地,不同ONT接收反射信号与衰减光信号的时间差也是不同的。并且由于反射器和分光点之间的长度是固定的,因此不同的ONT接收反射信号与衰减光信号的时间差也是固定的,因此端口识别装置就可以根据这些固定的时间差确认不同ONT所连接分光器端口的端口信息。
结合第一方面,在第一方面的第一种可能的实现方式中,至少两根以上的分支光纤还包含了第三分支光纤,该第三分支光纤的一端连接了第三端口,第三分支光纤的另一端连接分 光点,第三分支光纤上设置了第三反射器,第一反射器和分光点之间光纤的第一长度与第三反射器和分光点之间光纤的第三长度是相同的,第一反射器的反射率与第三反射器的反射率不同。为了减少分光器内部分支光纤的长度的种类,本申请还可以通过设定不同反射器具有不同的反射率,因为不同反射率所反射的反射光功率是不同的,因此端口识别装置可以结合反射光信号的光功率和固定反射光信号和衰减光信号的时间差确认不同ONT所连接分光器端口的端口信息。
结合第一方面,在第一方面的第二种可能的实现方式中,反射器可以具体为在分支光纤上刻蚀的光栅或者镀膜形成的反射面。
第二方面,本申请实施例提供一种端口识别的方法,该方法应用在分光器,包括:分光器的第一端口接收第一测试光信号,该第一测试光信号来自于第一端口连接的第一ONT,当所述第一测试光信号到达第一反射器时产生第一反射光信号,第一反射器设置在第一端口与所述分光器的分光点之间的第一分支光纤上,当第一测试光信号经过所述第一分支光纤到达所述分光点时产生第一衰减光信号,当然第一测试光信号在第一分支光纤上也会产生一些回波光信号(比如:散射光信号或者反射光信号)。分光器的第二端口接收第二测试光信号,该第二测试光信号来自于第二端口连接的第二ONT,当第二测试光信号到达第二反射器产生第二反射光信号,所述第二反射器设置在所述第二端口与分光点之间的第二分支光纤上;当第二测试光信号经过所述第二分支光纤到达所述分光点时,所述分光点产生第二衰减光信号,其中,所述第一反射器和所述分光点之间光纤的第一长度与所述第二反射器和所述分光点之间光纤的第二长度是不同的。由于不同分支光纤上,反射器和分光点之间光纤的长度不同,来自于不同ONT的测试信号经过反射器和分光点之间光纤的传输的时间也不同,相应地,不同ONT的测试信号经过不同光纤上的反射器反射的反射信号与经过分光点产生的衰减光信号的时间差也不同,进一步地,不同ONT接收反射信号与衰减光信号的时间差也是不同的。并且由于反射器和分光点之间的长度是固定的,因此不同的ONT接收反射信号与衰减光信号的时间差也是固定的,因此端口识别装置就可以根据这些固定的时间差确认不同ONT所连接分光器端口的端口信息。
结合第二方面,在第二方面的第一种可能的实现方式中,上述第一长度与第一端口是关联的,第二长度与所述第二端口是关联的,这样通过不同的反射器和分光点之间光纤的长度与端口的不同对应关系,从而可以通过长度不同体现出不同的端口。
结合第二方面,在第二方面的第二种可能的实现方式中,产生所述第一反射光信号和产生所述第一衰减光信号的时间差与所述第一端口是关联的,产生所述第二反射光信号和产生所述第二衰减光信号的时间差与所述第二端口是关联的,因为产生反射光信号和产生衰减光信号的时间差是有反射器和分光点之间光纤的长度除以光速得到的,因此通过不同的时间差可以体现出不同的端口。
结合第二方面,在第二方面的第三种可能的实现方式中,该方法还包括:分光器的第三端口接收第三测试光信号,该第二测试光信号来自于第三端口连接的第三ONT,当第三测试光信号到达第三反射器时产生第三反射光信号,该第三反射器设置在所述第三端口与所述分光点之间的第三分支光纤上。所述第三测试光信号经过所述第三分支光纤到达所述分光点时,所述分光点产生第三衰减光信号,其中,所述第一长度与所述第三反射器和所述分光点之间光纤的第三长度是相同的。并且第一反射光信号的光功率与所述第三反射光信号的光功率是不同的。本申请还可以通过设定不同反射器具有不同的反射率,因为不同反射率所反射的反 射光功率是不同的,因此端口识别装置可以结合反射光信号的光功率和固定反射光信号和衰减光信号的时间差确认不同ONT所连接分光器端口的端口信息。
结合第二方面的第三种可能的实现方式中,在第二方面的第四种可能的实现方式中,第一反射光信号的光功率与所述第一端口是关联的,所述第三反射光信号的光功率与所述第三端口是关联的。由于反射光信号的光功率与端口之间存在关联关系,因此端口识别装置可以根据该关联关系和反射光信号的光功率来识别出端口信息。
第三方面,本申请实施例提供一种端口识别的方法,该方法应用在端口识别装置,方法包括:确定光网络终端ONT接收衰减光信号以及与所述衰减光信号最接近的反射光信号的时间差,其中,反射光信号是测试光信号经分光器的端口连接的反射器产生的光信号,所述衰减光信号是测试光信号经所述分光器的分光点产生的光信号,因为在分光器中的每根分支光纤设置了分光器,因此与衰减光信号最接近的反射光信号与该衰减光信号必然来自于同一个分光器,该时间差与反射器和所述分光点之间光纤的长度相关联;根据所述时间差,确定所述时间差关联的端口信息,所述端口信息为测试光信号的ONT相连接端口的端口信息,端口信息可以为端口编号,端口名称或者端口标识,只要能够唯一标识出端口就可以。由于不同分支光纤上,反射器和分光点之间光纤的长度不同,来自于不同ONT的测试信号经过反射器和分光点之间光纤的传输的时间也不同,相应地,不同ONT的测试信号经过不同光纤上的反射器反射的反射信号与经过分光点产生的衰减光信号的时间差也不同,进一步地,不同ONT接收反射信号与衰减光信号的时间差也是不同的。并且由于反射器和分光点之间的长度是固定的,因此不同的ONT接收反射信号与衰减光信号的时间差也是固定的,因此端口识别装置就可以根据这些固定的时间差确认不同ONT所连接分光器端口的端口信息。
结合第三方面,在第三方面的第一种可能的实现方式中,为了方案实施的方便性,可以通过第一关联关系来体现上述时间差与所述端口信息的关联关系,该第一关联关系包含了时间差与端口信息的关联关系,具体来说第一关联关系可以是一张表格,这样端口识别装置可以根据确定的时间差和第一关联关系,可以识别确定的时间差所关联的端口信息,这个端口信息为与发送测试光信号的ONT相连接端口的端口信息。
结合第三方面,在第三方面的第二种可能的实现方式中,方法还包括:根据所述端口信息,确定所述端口所连接的下一级分光器的分光器信息,如果ODN中包含了多级分光器,非末级分光器的端口连接了下一级分光器,因此端口识别装置可以通过识别出来的端口信息确定出该端口所连接的下一级分光器的分光器信息,分光器信息可以为分光器编号,分光器名称或者分光器标识,只要能够唯一标识出该分光器就可以。
结合第三方面,在第三方面的第三种可能的实现方式中,方法还可以应用在不等比光分配网络,该不等比光分配网络包含了n个具有两个端口的非一级分光器的不等比分光器和n个端口数量不限定的非一级分光器的等比分光器,其中端口连接下一级分光器的分光器为所述具有两个端口的不等比分光器,端口连接所述ONT的分光器为所述端口数量不限定的等比分光器。此时方法还包括:端口识别装置可以根据ONT接收到的所有衰减光信号数量和所述ONT接收到的最后一个衰减光信号的光功率,确定所述ONT连接的分光器的分光器信息。由于不等比光分配网络的特殊性,通过ONT接收到的所有衰减光信号数量就可以获知该ONT连接的分光器在哪一级分光器,再通过最后一个衰减光信号的光功率就可以获知该ONT连接的分光器在哪一级分光器的具体哪一个分光器,即分光器信息。那这样就可以直接定位到ONT连接的分光器的位置。
结合第三方面以及第三方面的第一种至第三种可能的实现方式中,在第三方面的第四种可能的实现方式中,方法还可以包括:确定所述反射光信号的光功率,这样就可以根据所述时间差和所述反射光信号的光功率,确定所述时间差和所述反射光信号的光功率所关联的端口信息。本申请还可以通过设定不同反射器具有不同的反射率,因为不同反射率所反射的反射光功率是不同的,因此端口识别装置可以结合反射光信号的光功率和固定反射光信号和衰减光信号的时间差确认不同ONT所连接分光器端口的端口信息。
结合第三方面,在第三方面的第五种可能的实现方式中,在一个具体实施例中,可以通过反射曲线上的反射器反射峰与离所述反射器反射峰最近的分光跌落点的间距,确定所述ONT接收衰减光信号以及与所述衰减光信号最接近的反射光信号的时间差,其中,所述间距与所述时间差是相关联的。反射曲线是由曲线生成设备(可以是ONT、OLT或者网络管理设备)通过ONT采样的来自于ODN网络中分光器的反射器、分光点和分支光纤的回波光信号所生成的,回波光信号是因为ONT发送的测试光信号在ODN网络中的因反射或者散射等所形成的。通过反射曲线,端口识别装置可以很容易地确定所述ONT接收衰减光信号以及与所述衰减光信号最接近的反射光信号的时间差,提高了方案实现的简便性。
结合第三方面的第五种可能的实现方式,在第三方面的第六种可能的实现方式中,时间差与所述端口信息的关联关系具体为反射曲线上的反射器反射峰与离所述反射器反射峰最近的分光跌落点的间距和所述端口信息的关联关系。通过反射曲线上的反射器反射峰和分光跌落点的间距和端口信息的关联关系,对于方案实现更加简便。
结合第三方面的第七种可能的实现方式,端口识别装置具体可以从反射曲线上的反射器反射峰幅度,确定所述反射光信号的光功率,其中反射器反射峰幅度与所述反射光信号的光功率是相关联的。
结合第三方面的第八种可能的实现方式,端口识别装置可以为ONT、OLT或者网络管理设备,端口识别装置可以是多种设置,提高了方案的灵活性。
第四方面,本申请实施例提供一种端口识别的装置,该装置可以包括用于执行第三方面或第三方面的任一种可能的实现方式的方法的功能模块。
第五方面,本申请实施例提供一种设备,包括:相互耦合的非易失性存储器和处理器,所述处理器调用存储在所述存储器中的程序代码以执行第三方面的任意一种方法的部分或全部步骤。
第六方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储了程序代码,其中,所述程序代码包括用于执行第三方面或第三方面的任意一种方法的部分或全部步骤的指令。
第七方面,本申请实施例提供了一种系统,包括:如任意第一方面的分光器和如任意第四方面的识别的装置。
第八方面,本申请实施例提供了一种系统,包括:如任意第一方面的分光器和如任意第五方面的识别的装置。
附图说明
图1是本申请实施例提供的一种PON系统的结构示意图;
图2是本申请实施例提供的一种1:2分光器的结构示意图;
图3是本申请实施例提供的一种反射曲线的示意图;
图4是本申请实施例提供的一种OLT的结构示意图;
图5A是本申请实施例提供的一种ONT的结构示意图;
图5B是本申请实施例提供的一种ONT的结构示意图;
图6是本申请实施例提供的一种分光器的结构示意图;
图7是本申请实施例提供的一种端口识别的方法示意图;
图8是本申请实施例提供的一种分光器的端口配置的示意图;
图9是本申请实施例提供的另一种分光器的端口配置的方法示意图;
图10是本申请实施例提供的一种不等比ODN示意图;
图11是本申请实施例提供的一种端口识别装置的结构示意图;
图12是本申请实施例提供的一种端口识别装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。本发明的“A和/或B”可解释为A或B中的任一个,或包括A和B。
为了更好的理解本方案,在介绍本方案的实施例之前,先对PON进行介绍。
请参阅图1,其为本发明实施例提供的一种系统结构示意思。所述系统包括:PON系统100和与PON系统100耦合的网络设备200。所述上层网络设备200可以为互联网Internet,社区接入电视(Community Access Television,CATV)网络、或公共交换电话网(Public Switched Telephone Network,PSTN)中的网络设备200。所述无源光网络PON系统100包括至少一个局侧的OLT110、用户侧的多个ONU120或者多个光网络终端(optical network termination,ONT)120以及ODN130组成。OLT110连接上层的网络侧设备200(如交换机、路由器等),下层连接一个或者多个ODN130。ONU为光接入网(optical access network,OAN)提供用户侧接口,同时与ODN相连。如果ONU同时提供用户端口功能,如ONU提供Ethernet用户端口或者传统电话业务(plain old telephone service,POTS)用户端口,则称为ONT。需要说明的是,本申请中如无特殊说明,提到的ONT包括ONU和ONT。ODN为无源分光器件,一般包括无源光分路器(也称splitter)、主干光纤和分支光纤。无源光分路器也被称为分光器,它的功能是分发下行数据,并集中上行数据。分光器有一个分光点,通过分支光纤连接上一级分光器或者通过主干光纤连接OLT,分光器有若干端口,端口通过分支光纤连接下一级分光器或者ONT,这里的分光点在物理不是只有一个点的范围,而是具有一段区域,在分光点所在的该段区域内可以实现将一个接上一级分光器的分支光纤或者接OLT的主干光纤与多个连接下一级分光器或者ONT的分支光纤相连接,从而实现了将一路光信号分成多路光信号。从上行光接口过来的光信号被分配到所有的下行光接口传输出去,从下行光接口过来的光信号被分配到唯一的上行光接口传输出去。在PON系统中,从OLT到ONT方向的传输称为下行传输,从ONT到OLT方向的传输称为上行传输,下行传输是由OLT将下行数据广播到各ONT,上行传输采用时分复用,各ONT按照OLT分配的发送时隙将上行数据发送到OLT。
PON包括多种类型,如异步传输模式PON(ATM passive optical network,APON)、宽带 PON(broadband passive optical network,BPON)、以太网PON(ethernet passive optical network,EPON)、千兆PON(gigabit passive optical network,GPON)、10千兆以太网PON(10G ethernet passive optical network,10G-EPON)、10千兆对称无源光网络(10-gigabit-capable symmetric passive optical network,XGS-PON)、25千兆PON(25G passive optical network,25G GPON)、50千兆PON(50G passive optical network,50G GPON)和100千兆PON(100G passive optical network,100G GPON)等,其中,GPON和EPON以及10千兆以太网PON是目标主流的PON,本申请实施例并不限制PON的类型,以目前主流的PON为例对上下行传输举例说明,GPON/EPON采用1490nm、10G PON采用1577nm的波长,由OLT将下行数据流广播到所有ONU,各个ONU只接收带有自身标识的数据。上述标准定义的各种无源光网络系统的全部内容通过引用结合在本申请文件中。
OLT110可以充当所述光网络终端120与上层网络设备200之间的媒介,将从所述上层网络接收到的数据作为下行数据并通过ODN130转发到所述光网络终端120,以及将从所述光网络终端120接收到的上行数据转发到所述上层网络。
所述ONU120可以分布式地设置在用户侧位置(比如用户驻地)。所述光网络单元120可以为用于与所述光线路终端110和用户进行通信的网络设备,具体而言,所述光网络单元120可以充当所述光线路终端110与所述用户之间的媒介,例如,所述光网络单元120可以将从所述光线路终端110接收到的下行数据转发到所述用户,以及将从所述用户接收到的数据作为上行数据通过所述光分配网络130转发到所述光线路终端110。应当理解,所述光网络单元120的结构与ONT)相近,因此在本申请文件提供的方案中,光网络单元和光网络终端之间可以互换。
ODN130可以包括光纤、光耦合器、分光器和/或其他设备。在一个实施例中,所述光纤、光耦合器、分光器和/或其他设备可以是无源光器件。即,所述光纤、光耦合器、分光器和/或其他设备可以是在OLT110和所述光网络终端120之间分发数据信号是不需要电源支持的器件。在如图1所示的分支结构中,ODN130具体可以采用两级分光的方式从OLT 110延伸到所述多个光网络终端120,但也可以配置成其他任何点到多点(如单级分光或者多级分光)或者点到点的结构,具体在本实施例中不做限定。
请参阅图1,ODN130采用分光器来实现数据分发,出于可靠性和运维方面的考虑,ODN130可以采用两级分光的方式来部署,包括第一级分光器131和多个第二级分光器132。所述第一级分光器131第一侧的通过主干光纤(Feed Fiber)133连接到OLT110,第二侧分别通过分布光纤(Distribute Fiber)134对应地连接到所述第二级分光器132,每个第二级分光器132分别进一步通过分支光纤(Drop Fiber)135连接到对应的光网络终端120的光信号接口1201。在下行方向,OLT110发送的下行数据信号先经过第一级分光器131进行第一次分光之后,再分别经过第二级分光器132进行第二次分光,从而形成多路下行光信号并传输给各个光网络终端120。在上行方向,各个光网络终端120发送的上行数据信号依次通过所述第二级分光器132和第一级分光器131进行合路之后传输到OLT110。其中,所述第一级分光器131可以部署在距中心局较近的光配线架(Optical Distribution Frame,ODF),而所述第二级分光器132可以部署在远端节点(Remote Node,RN)。在本发明实施例中,ODN130可以采用多级分光(三级或三级以上)的方式来部署,此时ODN网络中还包括第三级分光器,第四级分光器等(图1中未显示)。在具体实施方式中,多个分光器通过级联的方式连接在一起,第一级分光器是连接OLT的分光器,最后一级(也称为末级)分光器为连接ONT的分光器,第一级分光器 和末级分光器之间按照级联的顺序分别称为第二级分光器,第三级分光器等等;末级分光器也可以称为第*级分光器,*的取值是根据级联的情况来确定。下面以两级分光为例来进行介绍本申请的技术方案。
在图2所示的分光器中,基本单元是1:2的分光器,若1:2的分光器为等比分光器,从分光器的左侧任何一个端口输入的光信号,不考虑额外损耗时,从右侧端口输出的光信号均为左侧端口输入的光信号功率的1/2,这是由于左侧输入的光信号的功率被均等分为两份,因此右侧每个端口输出的光信号的功率分别为其中的一份,均为左侧输入的光信号的功率的1/2。若分光器为1:4,此时右侧每个端口输出的光信号的功率均为左侧输入的光信号的功率的1/4。若1:2的分光器是不等比分光器,从分光器的左侧输入的光信号,不考虑额外损耗时,对于任一右侧端口,输出的光信号均为左侧输入光信号功率乘以该右侧端口的分光比例。例如,右侧端口包括A端口和B端口,A端口的分光比例为1/3,B端口的分光比例为2/3,那么右侧A端口输出的光信号功率等于1/3与左侧输入光信号功率的乘积,右侧B端口输出的光信号功率等于2/3与左侧输入光信号功率的乘积。本发明实施例中,分光器类型不做限定,还可以为1:8分光器,1:16分光器等等。本发明的对分光器端口识别的方案既可以应用在分光器为等比分光器的场景下,又可以应用在不等比分光器的场景下。分光器具体可以是平面光波导功率分光器(Planar Lightwave Circuit Splitter,PLC Splitter)、薄膜式滤光片(Thin Film Filter)、或者熔融拉锥分光器等,这里不做限制。本发明的PON系统100还可以进一步包括:曲线生成装置,数据提取装置和端口识别装置中的一个或多个(图1中未显示),曲线生成装置执行对回波光信号的采样结果进行计算处理,从而生成反射曲线。数据提取装置可以根据反射曲线生成反射曲线数据。端口识别装置可以根据反射曲线数据与端口信息的关联关系和反射曲线数据,获取端口信息。曲线生成装置,数据提取装置和端口识别装置中任意一个可以是独立装置,此时曲线生成装置(数据提取装置或端口识别装置)是PON系统除了ONT和OLT以及ODN包含的装置外的设备,曲线生成装置(数据提取装置或端口识别装置)可以被认为PON系统的网元,曲线生成装置(数据提取装置或端口识别装置)也可以不被认为PON系统的网元。曲线生成装置,数据提取装置和端口识别装置中任意一个也可以集成在ONT或者OLT上,作为ONT或者OLT的一部分,此时曲线生成装置(数据提取装置或端口识别装置)属于PON系统的网元。曲线生成装置,数据提取装置和端口识别装置还可以集成在网络管理设备上,作为网络管理设备的一部分,此时曲线生成装置(数据提取装置或端口识别装置)可以被认为属于PON系统的网元,也可以不被认为属于PON系统的网元。曲线生成装置,数据提取装置和端口识别装置中任意两个或全部还可以为一个独立设备,或者全部功能集成在ONT,OLT或者网络管理设备中。接着,对本申请中会用到的一些术语做简单介绍。
回波光信号为ONT120发送的测试光信号在ODN130传输过程中发生后向散射和/或反射生成的信号,在本申请实施例中,可以利用反射曲线来表示回波光信号的特征,比如:具体反射曲线可以为光时域反射仪(optical time domain reflectometer,OTDR)曲线,也可以为其它类型的曲线,只要该曲线能够体现出该回波光信号的特征即可。回波光信号的特征可以为包含回波光信号的功率等,例如回波光信号的瞬时功率、平均功率或最大功率等。回波光信号的特征还可以包含该回波光信号传输的距离(或者时间)。
本申请实施例中,各级分光器中的分支光纤的端口设置反射器,且通过设定分支光纤的长度不同,使得反射器在ODN130的位置各不相同,这样可以实现反射器的位置与各端口一 一对应,每一个端口仅连接一个ONT120,或者设置为空。通常来说,如果在ODN130中各个位置均没有设置反射器时,由于测试光信号的光功率在ONT120传输过程中是衰减的,因此在ONT120侧接收到的测试光信号对应的回波光信号的光功率也是渐渐衰减的,而本申请实施例中,在各个分光器的端口位置处设置反射器,因此当测试光信号到达该反射器所形成的回波光信号的光功率将突然增大。另外,当测试光信号经过分光器后所形成的回波光信号到达某个ONT时,由于分光器的作用,其回波光信号将突然衰减。ONT120对接收到的回波光信号进行采样,获得了采样结果,并将采样结果发送给曲线生成装置。采样结果包含了回波光信号的功率和传输的距离(或者时间)。曲线生成装置对采样结果进行计算处理,可以生成反射曲线。反射曲线可以记录回波光信号沿光纤传输方向传输的距离与回波光信号的功率。
图3为反射曲线的示意图。示例性地,纵坐标为在该距离处产生的回波光信号的功率,横坐标表示了回波光信号传输的距离,反射曲线的横坐标也可以是回波光信号传输的时间,而回波光信号传输的时间乘以传输速度等于回波光信号传输的距离,因此,可以认为回波光信号传输的时间表征的也是回波光信号传输的距离。
进一步地,上述回波光信号(反射光信号)功率突然增大在反射曲线中表现为“凸起”现象,在反射曲线上突然凸起的区域可以称之为反射峰,上述回波光信号(衰减光信号)功率突然衰减在反射曲线中表现为“跌落”现象,在反射曲线上突然跌落的区域可以称之为跌落点。在反射曲线中,如果在某段距离(或者时间)内,其反射曲线的斜率大于第一阈值时,可以称该段距离对应的反射曲线的区域为反射峰,也就是说在某段距离内,反射峰对应回波光信号的光功率是增长的。如果在某段距离(或者时间)内,其反射曲线的斜率小于第二阈值时,可以称该段距离对应的反射曲线区域为跌落点,也就是说在某段距离内,跌落点对应回波光信号的光功率是衰减的。由于PON网络中的光纤弯折、污损或者断裂等故障也会在曲线上会额外产生了一些反射峰或跌落点,为了进一步明确本申请实施例中的反射峰为某个端口处的反射器所形成的,本申请实施例中的跌落点为分光器所导致的,我们引入了反射器反射峰和分光跌落点的概念,其中,分光跌落点指的是回波光信号的光功率衰减的值超过第三阈值的跌落点,反射器反射峰为在反射曲线上离分光跌落点最近的反射器反射峰,并且该反射器反射峰在反射曲线上的位置比所述分光跌落点在反射曲线上的位置更靠近原点。图3示意了两处反射器反射峰和两处分光跌落点,以及两处反射器反射峰和分光跌落点的间距,根据实际需要进行设定第一阈值、第二阈值和第三阈值的大小,这里不做限定。在本申请实施例中,反射器反射峰是测试光信号的传输经过设置在端口处的反射器所导致的。反射器反射峰或者分光跌落点在反射曲线上可以为一点,也可以为一段区域,因此反射曲线上反射器反射峰与分光跌落点之间的距离(也可以称为反射器反射峰和分光跌落点的间距)的一端可以为反射器反射峰的起始位置、中心点、最高峰或者终点位置,反射曲线上反射器反射峰和分光跌落点的间距的另一端可以为分光跌落点的起始位置、中心点、最低点或者终点位置;不管是哪种方式,只要确保预先存储的反射曲线数据与在识别过程中所获取的反射曲线数据在反射器反射峰和分光跌落点的设定方式相同即可。反射曲线上反射器反射峰幅度表示了经过反射器所反射的回波光信号的光功率,可以以反射曲线中纵坐标上反射器反射峰的最高点和原点之间的距离来表示。
在本申请实施例中,可以利用反射曲线数据来识别不同分光器端口的端口信息,反射曲线数据可以包括反射曲线上反射器反射峰与反射曲线上分光跌落点的间距,反射曲线数据还可以包括反射曲线上分光跌落点的个数或反射曲线上反射器反射峰幅度。在PON网络中,ONT、 OLT、网络管理设备或者某个独立设备可以存储反射曲线数据与端口信息的关联关系,这样当ONT、OLT、网络管理设备或者某个独立设备获得反射曲线数据时,可以结合反射曲线数据与端口信息的关联关系获知反射曲线数据关联端口信息。端口信息可以具体为端口编号、端口标识或者端口名称等,端口信息还可以进步包括端口所在的分光器信息,分光器的信息可以具体为分光器编号、分光器标识或者分光器名称等。
图4为本申请实施例提供的OLT110的结构示意图。OLT110的具体结构配置可能会因ODN100的具体类型而异。如图4所示,OLT110可以包括处理组件1100、光信号接口1101和光组件1102,其中光组件1101包含了下行光信号发送机1103和上行光信号接收机1104,处理组件1100包含了存储模块1105和处理器1107。
其中,光信号接口1101可以为光纤适配器,作为与ODN130连接的接口,进行上/下行光信号的发送或接收。下行光信号的波长为λ1。OLT110接收的上行光信号的波长为λ2,且所述上行光信号为上行业务光信号,即ONT120在OLT110分配的时隙向OLT110发送的用于传输数据的光信号。
处理器1107可以为MAC芯片或者通用CPU,当OLT需要发送光信号时,处理器1107将向激光检波二极管(laser detector diode,LDD)(图中未显示)发送指令,使得LDD1106为下行光信号发送机1103供电,这样下行光信号发送机1103就可以向ONT120发送下行光信号了。上行光信号接收机1104可以接收ONT120通过ODN130发送的上行光信号,并经过光组件1102将上行光信号转成上行电信号后,光组件1102将上行电信号提供给MAC芯片1107进行数据解析和处理。存储模块1105可以存储第一关联关系,第一关联关系可以包含ONT接收衰减光信号与离该衰减光信号最近的反射光信号的时间差与端口信息的关联关系,或者包含衰减光信号与离该衰减光信号最近的反射光信号的时间差、反射光信号光功率与端口信息三者之间关联关系,第一关联关系可以包含回波光信号的反射曲线数据与端口信息的关联关系。
在一种实施例中,OLT110还可以包括与网络管理设备140进行通信的通信接口。所述通信接口可以使用任何收发器一类的装置,用于与网络管理设备140通过通信网络进行通信,例如以太网,无线接入网(RAN),无线局域网(Wireless Local Area Networks,WLAN)等。
图5A为本申请实施例提供的ONT120-1的结构示意图。如图5A所示,ONT120-1可以包光信号接口1201、光组件1202、处理组件1200,其中光组件1202包括回波光信号接收机1204、上行光信号发送机1205和下行光信号接收机1206,处理组件1200包括存储模块1207和处理器1209。
其中,光信号接口1201可以为光纤适配器,作为与ODN130连接的接口,进行上/下行光信号的发送或接收。光信号接口1201向OLT110发送具有第二波长λ2的上行业务光信号(上行业务光信号λ2)或具有第二波长λ2的测试光信号(测试光信号λ2),以及接收具有第一波长λ1的下行光信号(下行光信号λ1)或接收具有第二波长λ2的测试光信号λ2的回波光信号(以下记为回波光信号λ2)。
其中,上行业务光信号为ONT120向OLT110发送的用于传输数据的光信号,例如用于向OLT110上报回波光信号的反射曲线数据的上行光信号、或者用于向OLT110上报ONT120连接端口的端口信息;而测试光信号为ONT120发送的用于测试的光信号。应理解,上行业务光信号也可以作为测试光信号,比如某上行光信号既用于向OLT110传输数据,又可以用于对ODN130进行测量。
下行光信号接收机1206用于接收下行光信号λ1,光组件1202的其它部件(比如光电转 换器等,这里不再赘述)还将下行光信号λ1转化为下行电信号。所述第一波长λ1可以为1490nm或1577nm等。当ONT120-1需要发送光信号时(比如:根据上行测试光信号的指示信息和/或时间信息,ONT120-1确定需要发送光信号),处理器1209将向LDD发送指令,使得LDD为上行光信号发送机1205供电,这样上行光信号发送机1205经过光信号接口1201发送上行业务光信号λ2和/或上行测试光信号λ2。上行业务光信号λ2和上行测试光信号λ2的波长相同,且λ2可以为1310nm或1270nm等。
回波光信号接收机1204用于接收测试光信号λ2在光纤网络中产生的回波光信号λ2,光组件1202的其它部件(比如光电转换器等,这里不再赘述)还将回波光信号λ2转换为回波电信号。回波光信号的波长λ2与测试光信号的波长λ2相同。存储模块1207用于存储第一关联关系。
图5B为本申请实施例提供的ONT120-2的结构示意图。如图5A所示,ONT120-2可以包光信号接口1201、光组件1202、处理组件1200,其中光组件1202包括回波光信号接收机1213、上行测试光信号发送机1214、上行业务光信号发送机1215和下行光信号接收机1206,处理组件1200包括存储模块1207和处理器1209。
其中,光信号接口1201可以为光纤适配器,作为与ODN130连接的接口,进行上/下行光信号的发送或接收。光信号接口1201向OLT110发送具有第二波长λ2的上行业务光信号(上行业务光信号λ2)或具有第二波长λ2的测试光信号(测试光信号λ2),以及接收具有第一波长λ1的下行光信号(下行光信号λ1)或接收具有第二波长λ2的测试光信号λ2的回波光信号(以下记为回波光信号λ2)。
其中,上行业务光信号为ONT120向OLT110发送的用于传输数据的光信号,例如用于向OLT110上报回波光信号的反射曲线数据的上行光信号、或者用于向OLT110上报ONT120连接的某个端口的端口信息;而测试光信号为ONT120发送的用于测试的光信号。
下行光信号接收机1206用于接收下行光信号λ1,光组件1202的其它部件(比如光电转换器等,这里不再赘述)还将下行光信号λ1转化为下行电信号。所述第一波长λ1可以为1490nm或1577nm等。当ONT120-2需要发送业务光信号时,处理器1209将向LDD发送指令,使得LDD为上行业务光信号发送机1215供电,这样上行测试光信号发送机1215经过光信号接口1202发送上行业务光信号λ2。当ONT120-2需要发送测试光信号时(比如:根据上行测试光信号的指示信息和/或时间信息,ONT120-2确定需要发送光信号),处理器1209将向LDD发送指令,使得LDD1208为上行测试光信号发送机1214供电,这样上行测试光信号发送机1214经过光信号接口1201发送上行测试光信号λ3。
回波光信号接收机1213用于接收测试光信号λ3在光纤网络中产生的回波光信号λ3,光组件1202的其它部件(比如光电转换器等,这里不再赘述)还将回波光信号λ3转换为回波电信号。回波光信号的波长λ3与测试光信号的波长λ3相同。存储模块1207用于存储第一关联关系。
图6为本申请实施例提供的一种分光器600,分光器600包括分光点601、反射器602、分支光纤603和端口604。分光点601一端通过分支光纤外接上一级分光器或者通过主干光纤外接OLT,分光点601通过多支分支光纤603连接到端口604,端口604通过分支光纤连接到ONT或者下一级分光器,端口604也可以为悬空,不接任何设备。分光器600既可以为第一级分光器,也可以为第二级分光器,或者第三级分光器等等任意级别的分光器。分支光纤603的数量是与分光器600的类型相关,比如:分光器600为1:2分光器,则分支光纤603 为2个,分光器600为1:4分光器,则分支光纤603为4个,分光器600为1:8分光器,则分支光纤603为8个。在每支分析光纤603上均设置一个反射器602,分光点1与不同的反射器602之间的长度不同的,假设如图6所示反射器602有4个,分别为第一反射器602,第二反射器603,第三反射器603和第四反射器604,比如:分光点601与第一反射器602的长度为10米,分光点601与第二反射器602的长度为60米,分光点601与第三反射器602的长度为110米,分光点601与第四反射器602的长度为160米。上述分光点601与反射器602的长度不做明确的限定。分支光纤603有时候也被称为尾纤。反射器可以为反射面,例如通过在分支光纤上刻蚀的光栅、或者镀膜等形成反射面,具体比如:在分支光纤上通过刻蚀或者光刻形成凹槽。假设分光器为1:8类型的分光器,则该分光器存在8个端口,为了描述方便,将这8个端口分别称作为第一端口,第二端口……,第八端口,它们分别连接第一ONT,第二ONT…….,第八ONT,在每个端口与分光点分别设置第一反射器,第二反射器……,第八反射器。为了方便描述,将测试光信号到达反射器所产生的回波光信号称作为反射光信号,将测试光信号到达分光点所产生的回波光信号称作为衰减光信号。进一步的,各个反射器设置的反射率可以不同,则相同光功率的测试光信号经过不同的反射率的反射器产生的反射光信号的光功率也是不同的。进一步地,上述分支光纤之间的长度之差的精度跟ONT的处理能力相关的,比如:ONT的处理能力强,则分支光纤之间的长度可以1米,比如,第一分支光纤603为1米,第二分支光纤603为2米等等。再比如:ONT的处理能力弱一些,则分支光纤之间的长度可以10米,比如,第一分支光纤603为10米,第二分支光纤603为20米等等。
例如:假设方案应用在二级分光的场景下,第一ONT连接了1号第二级分光器的1号端口,第二ONT连接了1号第二分光器的2号端口。在光信号传输过程中,来自于第一ONT的光信号到达1号第二级分光器的第一反射器后,将产生反射光信号(这里称为第一反射光信号),该第一反射光信号将向第一ONT传输,第一ONT接收该第一反射光信号。光信号在光纤中传输过程中将持续产生了散射光信号或者反射光信号,当测试光信号到达该1号第二级分光器的分光点后,由于分光点分光的原因产生了光功率大幅度衰减的衰减光信号(这里称为第一衰减光信号),该第一衰减光信号将向第一ONT传输,第一ONT接收该第一衰减光信号。当测试光信号到达第一级分光器的第一反射器后,产生第二反射光信号,该第二反射光信号将向第一ONT传输,第一ONT接收该第二反射光信号。当测试光信号到达该第一级分光器的分光点后,由于分光点分光的原因产生了光功率大幅度衰减的第二衰减光信号,该第二衰减光信号将向第一ONT传输,第一ONT接收到该第二衰减光信号,这样第一ONT就按照时间顺序分别接收到第一反射光信号、第一衰减光信号、第二反射光信号和第二衰减光信号。端口识别装置可以分别确定第一ONT接收第二衰减光信号的时刻、第二反射光信号的时刻、第一衰减光信号的时刻和第一反射光信号的时刻,从而确定第一ONT接收第一衰减光信号和第一反射光信号的第一时间差,以及第二ONT接收第二衰减光信号和第二反射光信号的第二时间差。端口识别装置可以按照第一ONT接收衰减光信号和反射光信号的时间的倒序或者顺序,分别确定第一时间差关联的端口信息和第二时间差关联的端口信息。第一时间差关联的端口信息为第一ONT连接第二级分光器的端口信息(具体为1号端口),第二时间差关联的端口信息为第一级分光器的端口信息(具体为1号端口),这样端口识别装置就可以识别出该ONT连接的分光器的端口信息,进一步地,端口识别装置就可以识别出该ONT所连接ODN的网络位置,即第一分光器以及1号第二分光器的1号端口。根据分光器的结构特性来看,第一时间差与1号第二级分光器内部的第一反射器和分光点之间的分支光纤长度 有关联,第二时间差与第一级分光器内部的第一反射器和分光点之间的分支光纤长度有关联。类似的,当第二ONT向ODN网络发送测试光信号时,端口识别装置可以分别确定第二ONT接收该第三衰减光信号的时刻(第三衰减光信号为第二ONT发送的测试光信号到达第一级分光器的分光点产生的光信号)、第三反射光信号的时刻(第三反射光信号为第二ONT发送的测试光信号到达第一级分光器的第一反射器产生的光信号)、第四衰减光信号的时刻(第四衰减光信号为第二ONT发送的测试光信号到达1号第二级分光器的分光点产生的光信号)和第四反射光信号(第四反射光信号为第二ONT发送的测试光信号到达1号第二级分光器的第二反射器产生的光信号)的时刻,这样第二ONT就按照时间顺序分别接收到第三反射光信号、第三衰减光信号、第四反射光信号和第四衰减光信号。端口识别装置可以分别确定第二ONT接收第三衰减光信号的时刻、第三反射光信号的时刻、第四衰减光信号的时刻和第四反射光信号的时刻,从而确定第二ONT接收第三衰减光信号和第三反射光信号的第三时间差,以及第二ONT接收第四衰减光信号和第四反射光信号的第四时间差。端口识别装置可以分别确定第三时间差关联的端口信息和第四时间差关联的端口信息。第三时间差关联的端口信息为第二ONT连接第二级分光器的端口信息(具体为2号端口),第四时间差关联的端口信息为第一级分光器的端口信息(具体为1号端口),这样端口识别装置就可以识别出该第二ONT连接的分光器的端口信息,进一步地,端口识别装置就可以识别出该ONT所连接ODN的网络位置,即第一分光器以及1号第二分光器的2号端口。进一步地:端口识别装置还保存了第一关联关系,该第一关联关系包含了时间差和端口信息的关联关系。另外,第一关联关系还包含了时间差、反射光信号的光功率和端口信息的关联关系,此时端口是装置还需要知道每个反射光信号的光功率,然后根据时间差、反射光信号的光功率和第一关联关系确定端口信息。
为了技术方案实现的简便性,可以通过反射曲线来体现出上述反射光信号和衰减光信号的时间差和/或反射光信号的光功率,以及通过反射曲线来体现出衰减光信号的数量,本申请可实施例中,曲线生成装置可以根据采样的ONT接收到的回波光信号的采样结果来生成反射曲线,曲线提取装置可以通过反射曲线提取出反射曲线数据,端口识别装置可以通过反射曲线数据和存储的反射数据与端口信息的关联关系进行识别出端口信息。下面图7的实施例以曲线生成装置、数据提取装置和端口识别装置均集成在ONT为例来进行说明。曲线生成装置作为独立网元或者曲线生成装置集成在OLT或者网络管理设备时,其执行反射曲线的生成过程和曲线生成装置集成在ONT上执行反射曲线的生成过程是相同的。数据提取装置作为独立网元或者数据提取装置集成在OLT或者网络管理设备时,其执行反射曲线数据的生成过程和数据提取装置集成在ONT上执行反射曲线数据的生成过程是相同的。同样的,端口识别装置作为独立网元或者端口识别装置集成在OLT或者网络管理设备时,其执行端口信息获取过程和端口识别装置集成在ONT上执行分支光纤的端口信息获取过程是相同的。
如图7所示,本申请实施例提供了一种端口识别的方法。
步骤701:网络管理设备可以预先存储反射曲线数据与端口信息的关联关系,为了方便描述将反射曲线数据与端口信息的关联关系称为第一关联关系。网络管理设备通过OLT还可以将第一关联关系发送给各个ONT。
在进行接入光网络布局或者改造时,在分光器的不同端口处或者端口与分光点之间的分支光纤任意位置上设置反射器,并且设置反射器到分光点之间的光纤长度各不相同,其中,光纤长度不同的端口连接了不同的ONT。
可选的,OLT也可以存储第一关联关系,此时OLT可以将第一关联关系发送给各个ONT。
该步骤是可选的,如果不在ONT侧识别端口信息时,则网络管理设备或者OLT无需向ONT发送上述第一关联关系。或者如果上述第一关联关系还可以直接存储在ONT侧,网络管理设备或者OLT也无需向ONT发送上述第一关联关系。
为了描述的方便,将反射曲线数据为反射曲线上的反射器反射峰与分光跌落点的间距简称为间距。依次类推,将反射曲线数据为反射曲线上的第一反射器反射峰与第一分光跌落点的间距简称为第一间距,将反射曲线数据为反射曲线上的第二反射器反射峰与第二分光跌落点的间距简称为第二间距。
如果反射曲线数据为间距时,则第一关联关系包含间距与端口信息的关联关系,如表一为具体的第一关联关系的例子。如果间距有多个时,则反射曲线数据还可以包含序号,序号为分光跌落点的序号或者间距的序号,或者反射曲线数据的间距本身是具有顺序性的,此时第一关联关系还可以额外包括序号或者的间距的顺序与分光器的级数的关联关系,如表二为另一种具体的第一关联关系的例子。如果反射曲线数据为反射曲线上的反射器反射峰的幅度时,则第一关联关系包含了间距、反射器反射峰的幅度与端口信息的关联关系,如表三为另一种具体的第一关联关系的例子。如果反射曲线数据还包括分光跌落点的数量,则第一关联关系还可以额外包括了反射器反射峰所在的分光器的级数与分光跌落点的数量的关联关系,如表四为另一种具体的第一关联关系的例子。
间距 端口信息
N米 01
N+100米 02
…… ……
表一
间距的顺序 反射器反射峰所在的分光器的级数
1 第一级分光器
2 第二级分光器
…… ……
表二
Figure PCTCN2020113430-appb-000001
表三
分光跌落点数量 反射器反射峰所在分光器的级数
N 第N级分光器
N-1 第N-1级分光器
…… ……
表四
步骤702:OLT向ONT发送下行光信号,该下行光信号可以携带了指示某个ONT发送测试光信号的指示信息,该下行光信号进一步还可以包括指示某个ONT发送测试光信号的时间信息。为表述方便,本申请实施例将发送测试光信号的ONT称为第一ONT。
OLT可以选择(比如随机选择或根据OLT的需求或业务需求等)没有发送过测试光信号的ONT作为第一ONT。比如,OLT标识出已发送了测试光信号的ONT,并从没有发送过测试光信号的ONT中确定下一次发送测试光信号的第一ONT。第一ONT还可以是第一次连接到ODN中的ONT,比如,在步骤702之前,第一ONT通过上行光信号向OLT发送注册请求,OLT根据注册请求确定第一ONT为第一次接入的ONT。作为一种可选方式,在步骤702之前,第一ONT通过上行光信号请求OLT授权进行端口连接的识别。例如,第一ONT向OLT发送光信号以请求OLT授权第一ONT发送测试光信号,具体包括请求OLT分配测试的时间,如发送测试光信号的时间信息。
指示信息可以包括第一ONT的标识,例如第一ONT的MAC地址、OLT为第一ONT分配的ONU ID等。指示信息还可以包括标识是否发送测试光信号的控制位为预设值,例如所述控制位为1,表示发送测试光信号。
发送测试光信号的时间信息可以包括发送测试光信号的起始时间、发送测试光信号的结束时间、或者发送测试光信号的持续时间等。在发送测试光信号的时间内,第一ONT被允许向OLT发送测试光信号而非业务光信号。
步骤703:第一ONT接收该指示信息,并根据该指示信息向OLT发送测试光信号。第一ONT可以重用业务波长或者使用不同于业务波长的独立波长向OLT发送测试光信号。
若下行光信号包括发送测试光信号的时间信息,则第一ONT确定发送测试光信号的时间到达时,开始发送测试光信号。进一步地,第一ONT还可以根据下行光信号中携带的发送测试光信号的结束时间、或者持续时间等来发送测试光信号。发送测试光信号的方式也可以是下行光信号中配置的,例如发送一次或者多次短脉冲、或者发送长脉冲等,并且脉冲宽度也可以是下行光信号中配置的。所述测试光信号的光功率也可以是下行光信号中配置的,例如测试光信号的平均光功率为0dBm等。
应理解,若下行光信号不包括时间信息,则第一ONT可以按预置的时间来发送测试光信号。比如:OLT每隔5秒会有两帧时间(每帧时间为125μs)不给连接的ONT分配带宽,从而限制了任何ONT向OLT发送光信号,这一过程称为开窗,ONT在这一过程中不传输业务,持续250μs,ONT可以在开窗期间向OLT发送测试光信号。如果使用不同于业务波长的独立波长发送测试光信号时,则第一ONT还包含了用于发送独立波长测试光信号的发射机,这样第一ONT在发送测试光信号期间,第一ONT仍然正常发送业务光信号,因此无需等待开窗期也可以发送测光信号。
步骤704:第一ONT接收到上述测试光信号在ODN中所产生的回波光信号,并对回波光信号进行采样,获得采样结果。
如果重用业务波长发送测试光信号时,由于在第一ONT发送测试光信号这个时间内,其它ONT不会发送任何光信号,在第一ONT发送测试光信号这个时间内,在ODN中只存在该测试光信号,因此第一ONT接收到的回波光信号为上述测试光信号在ODN中所产生的。如果是用独立波长发送的测试光信号,在该独立波长的通道上只会传输该测试光信号,因此该独立波长的通道上所接收的回波光信号也只可能是上述测试光信号在ODN中所产生的。具体的采样过程这里不做限制。
步骤705:第一ONT根据采样结果进行处理,生成反射曲线。
为了识别结果的准确性,第一ONT可以多次发送测试光信号,这样第一ONT也接收到多次的回波光信号,以及进行多次采样,产生了多次采样结果。第一ONT对多次进行叠加运算和均衡计算后得到反射曲线。本申请实施例中,不限定生成反射曲线的具体方式,以及反射曲线的类型不做限定,只要该反射曲线能够体现出回波光信号的光功率和回波光信号传输的距离即可。本步骤中,第一ONT实现了曲线生成装置的功能。
步骤706:第一ONT可以从反射曲线上获取间距,从而获得反射曲线数据。
第一ONT还可以进一步从反射曲线上获取反射曲线上的反射器反射峰幅度和/或分光跌落点的数量,这样反射曲线数据还进一步包含反射曲线上的反射器反射峰幅度和/或分光跌落点的数量。此时间距和反射器反射峰幅度是成对出现的,比如:(N米,-34dBm),(N+100米,-34dBm)。
第一ONT还可以进一步从反射曲线上获取分光跌落点的序号、间距的序号或者间距的顺序,这样反射曲线数据还进一步包含分光跌落点的序号、间距的序号,此时间距和序号是成对出现的,比如:(1,N米),(2,N+100米),或者间距、反射器反射峰幅度和序号是成对出现的,比如:(1,N米,-34dBm),(2,N+100米,-34dBm)。或者多个间距是具有顺序的,比如:反射曲线数据为(N米,N+100米),在反射曲线中N米对应的间距比N+100米对应的间距的更靠近原点。
本步骤中,第一ONT实现了数据提取装置的功能。
步骤707:第一ONT还可以根据第一关联关系以及反射曲线数据获得识别结果,该识别结果为端口信息,从而完成了端口识别,ONT还可以将该识别结果发送给OLT。从端口信息具体可以看出第一ONT连接到末级分光器的哪个端口,所述末级分光器连接到前一级的哪个端口,直至倒数第二分光器连接到的第一级分光器的哪个端口。
如果间距包括第一间距和第二间距,以及反射曲线数据还包括第一分光跌落点的顺序和第二分光跌落点的顺序,分光跌落点顺序可以为分光跌落点的序号、间距序号或者间距的顺序;则第一ONT根据第一关联关系以及反射曲线数据获得识别结果的过程为:第一ONT根据第一分光跌落点的顺序、所述第一间距和所述第一关联关系,确认第一反射器反射峰对应端口信息,然后根据第二分光跌落点的顺序,所述第二间距和所述第一关联关系,确认所述第二反射器反射峰对应端口信息。
如果反射曲线数据还包括反射曲线上反射器反射峰的幅度,则第一ONT根据第一关联关系以及反射曲线数据获得识别结果的过程为:第一ONT根据反射曲线上反射器反射峰的幅度,间距,以及第一关联关系,确定所述反射曲线数据对应的端口信息。进一步地,如果间距包括第三间距和第四间距;反射曲线上反射器反射峰的幅度包括第三反射器反射峰的幅度和第四反射器反射峰的幅度;所述反射曲线数据还包括分光跌落点顺序。则第一ONT根据反射器反射峰幅度,间距,以及所述第一关联关系,确定所述反射曲线数据对应的端口信息,具体为:根据所述第三分光跌落点的顺序、所述第三反射器反射峰的幅度、所述第三间距和所述第一关联关系,确认所述第三反射器反射峰对应端口信息;根据所述第四分光跌落点的顺序、所述第四反射器反射峰的幅度、所述第四间距和所述第一关联关系,确认所述第四反射器反射峰对应端口信息。
如果该ODN网络为不等比ODN,这里的不等比ODN包含了n个具有两个端口的非一级分 光器的不等比分光器和n个端口数量不限定的非一级分光器的等比分光器,其中端口连接下一级分光器的分光器为所述具有两个端口的不等比分光器,端口连接所述ONT的分光器为所述端口数量不限定的等比分光器,这时反射曲线数据还包括反射曲线上分光跌落点的数量和反射曲线上反射器反射峰的幅度。此时端口识别模块首先根据所述反射曲线上分光跌落点的数量和反射曲线上离原点距离最远的第六反射器反射峰的幅度,确定所述反射曲线上离原点最近的第五反射器反射峰所在位置对应的分光器信息。然后端口识别模块根据所述第五反射器反射峰对应分光器的分光器信息以及所述第五反射器反射峰与离所述第五反射器反射峰最近的第五分光跌落点的第五间距,以及所述第一关联关系,确定所述第五反射器反射峰对应端口信息;或者端口识别模块根据所述第五反射器反射峰对应分光器的分光器信息、所述第五间距、所述第五反射器反射峰的幅度,以及所述第一关联关系,确定所述第五反射器反射峰对应端口信息。
本步骤中,第一ONT实现了端口识别装置的功能。
步骤708:OLT接收第一ONT发送识别结果。
OLT和其他ONT重复执行步骤702-708,直到OLT可以确定出PON的拓扑结构。
OLT确定下一次发送测试光信号的第一ONT的标识,并将确定出的第一ONT的标识携带在步骤702的指示信息中。OLT可以选择(比如随机选择或以其它方式选择)没有发送过所述测试光信号的ONT作为第一ONT。比如,OLT可以标识出已发送了测试光信号的ONT。因此OLT可以从没有发送过测试光信号的ONT中确定下一次发送测试光信号的第一ONT。进而OLT与确定的第一ONT重复执行步骤702-708,由于OLT可以确定各个ONT所连接端口的端口信息,这样ONT所连接端口的端口信息就可以确定出PON的拓扑结构。
具体地,OLT可以确定连接到ODN的每个ONT连接到末级分光器的哪个端口;OLT还可以确定ODN中每个末级分光器连接到上一级分光器中的哪个端口,从而确定每个ONT在ODN中的连接关系,即确定了PON的拓扑结构。
下面以两级分光和1:8的等比分光器为例来说明反射曲线数据提取和端口识别的过程,其它更多级的分光或者非1:8的分光器的过程可以参考该过程。
如图8-9所示,示意性地显示了一个第一级分光器和两个第二级分光器,这两个二级分光器连接了第一级分光器的端口01和02;另外还有六个第二级分光器未显示出来,这六个第二级分光器分别连接了第一级分光器的端口03-08。图上的第二级分光器的各个端口分别连接了不同的ONT(图中未显示)。这样如图8-9所示的ODN系统,通过两级分光之后,可以实现了1:64的分光效果。
如图8所示,在同一个分光器内的不同端口的尾纤长度(这里特指的是反射器到分光点之间光纤的长度)是可以不相同的,比如:分支光纤的端口01的尾纤长度为N米,分支光纤的端口02包含的尾纤长度为N+10米,依次类推,分支光纤的端口08包含的尾纤长度为N+80米。上述尾纤长度是不限定,不同尾纤长度改变了光路传输距离。由于在端口处设置了反射器,经该反射器所反射的回波光信号在反射曲线上将形成反射器反射峰;而分光器由于分光的原因,回波光信号经分光器时的光功率将突然衰减,在反射曲线上会显示出一个分光跌落点。这样,通过设置连接不同端口的尾纤长度的不同可以使得在反射曲线上的反射器反射峰与分光跌落点的间距不同。因为图10为二级分光的ODN,因此反射曲线中会存在两个反射器反射峰和两个分光跌落点,因此数据提取装置可以从曲线生成装置出获得反射曲线。再以图3为例来进行说明,数据提取装置从如图3所示的反射曲线确认出第一分光跌落点的位置, 数据提取装置进一步根据第一分光点的位置确定第一反射器反射峰的位置,并且通过第一反射器反射峰的位置和第一分光跌落点的位置确定第一间距。如果从原点开始往横坐标的方向第一次出现的反射器反射峰为第一反射器反射峰,如果从原点开始往横坐标的方向第一次出现的分光跌落点为第一分光跌落点,第一反射器反射峰为二级分光器上的端口的反射器所形成的,第一分光跌落点为二级(末级)分光器分光所形成的。类似的,数据提取装置可以从反射曲线确定第二反射器反射峰的位置和第二分光跌落点的位置,并且通过第二反射器反射峰的位置和第二分光跌落点的位置确定第二间距,根据前面的分析可知,第二反射器反射峰为第一级分光器上的端口的反射器所形成的,第二分光跌落点为第一级分光器分光所形成的。然后数据提取装置将第一间距和第二间距作为反射曲线数据发送给端口识别装置。
如图9所示,由于从反射曲线中不仅可获得反射器反射峰的位置,还可以获得反射器反射峰幅度,图9所示的实施例基于图8所示的实施例基础上,由于反射器反射峰幅度表征了回波光信号的光功率,通过对不同的端口设定不同规格的反射器,可以获得不同的反射器反射峰的幅度。因此将反射器反射峰的幅度需要为有限种类,则对应的反射器设定为有限的规格。例如:将反射器设定为3种,则反射器反射峰幅度为3种,例如:-34dBm、-38dBm、-42dBm。在同一个分光器内的不同端口的尾纤长度为特定数量的种类,比如:端口01,02,03的尾纤长度为N米,端口04,05,06包含的尾纤长度为N+20米,分支光纤的端口07,08包含的尾纤长度为N+50米。上述尾纤长度是不限定,不同尾纤长度改变了光路传输距离。在本申请实施例中,可以采用三种不等长尾纤结合三种不同大小的反射器反射峰幅度从而确定不同的端口信息,这样可以缩短尾纤长度的种类,有利于工程实施。具体实施方式:在第二级分光器或第一级分光器中设置3种不等长尾纤,端口处设置3种不同的反射器,光纤长度L,端口反射幅度为A,A/L两个变量都有3种选择,共有3 2=9种组合,取8种组合对应8个端口的端口信息。如果是1:16的分光器,则可以光纤长度L选取4种长度,在端口处设定4种不同的反射器,则有4 2=16种组合。上述连接端口的尾纤的长度的种类数量可以根据需要设定,上述设定端口处的反射器的规格类别数量可以根据需要设定,这里不做限定。在该实施例基本情况下,数据提取装置还需要从反射曲线上提取反射器反射峰的幅度,然后将反射器反射峰的幅度,以及间距作为反射曲线数据发送给端口识别装置。
在人口稀少的场景下,ODN网络可能为是不等比多级分光的场景,在这种场景下,存在两类分光器,一类为1:2分光器,另一类为1:8分光器,通常来说,除了一级分光器之外,1:2分光器为不等比分光器,比如:7:3。需要说明的是,每个1:2分光器的分光比例是不做限制的,所有的1:2分光器分光比例可以是相同的,各个1:2分光器分光比例也可以是不同的。1:8分光器为等比分光器。1:2分光器两个分支光纤的端口都可以接1:2分光器,或者,1:2分光器两个分支光纤的端口中一个连接1:2分光器,另一个连接1:8分光器;或者,1:2分光器两个分支光纤的端口都可以连接1:8分光器。而1:8分光器的每个分支光纤的端口可以连接1个ONT,具体如图10所示。由于分光器自身带有一定损耗,不等比分光会引入不同的损耗,在上述ODN网络中,多级分光器在反射曲线上会显示为多个分光跌落点,且7:3分光器的两端口台阶高度不同,而不等长尾纤会引入相对位置不同的反射器反射峰,结合分光跌落点位置及反射器反射峰位置,可以精确定位是哪一级分光器的哪一个端口。此时,数据提取装置从反射曲线中获取分光跌落点的数量,以及获取间距和反射器反射峰的幅度,并将分光跌落点的数量和间距作为反射曲线数据,或者将分光跌落点的数量、间距、反射器反射峰的幅度作为反射曲线数据。数据提取装置将反射曲线数据发送给端口识别装置。端口识 别装置首先根据反射曲线数据中的分光跌落点的数量,确定该ONT所连接分光器属于第几级分光器,例如:如果分光跌落点的数量为3个,则此ONT连接的分光器属于第三级分光器。接着,端口识别装置根据间距,或者反射曲线上反射器反射峰和分光跌落点之间的间距与反射器反射峰幅度来确定该ONT所连接端口的端口信息。
基于上述介绍的无源光网络系统及各个设备的结构,端口识别装置在进行ONT连接的端口识别过程可以为:
端口识别装置根据第一ONT接收ODN反射回来的光信号,确定第一ONT接收衰减光信号以及与所述衰减光信号最接近的反射光信号的时间差,其中,反射光信号是测试光信号经分光器的反射器反射回来的光信号,衰减光信号是测试光信号经所述分光器的分光点反射回来的信号,所述时间差和所述分光器的端口连接的反射器与分光点之间光纤的长度相关联。
如果ODN包含了多级分光器,那么端口识别装置获得的第一ONT接收衰减光信号以及与所述衰减光信号最接近的反射光信号的时间差有多组,比如:ODN一共包含了5级分光器,则端口识别装置获得的第一ONT接收减光信号以及与所述衰减光信号最接近的反射光信号的时间差有5组。
第一ONT按照时间顺序会依次接收最后一级分光器的反射器反射回来的反射光信号、最后一级分光器的分光点反射回来的衰减光信号、倒数第二级分光器的反射器反射回来的反射光信号、倒数第二级分光器的分光点反射回来的衰减光信号,直至第一级分光器的反射器反射回来的反射光信号、倒数第一分光器的分光点反射回来的衰减光信号。端口识别装置根据采样结果分别确定第一ONT接收各个分光器反射回来的衰减光信号和反射光信号的时刻,这样就可以确定多组第一ONT接收衰减光信号以及与所述衰减光信号最接近的反射光信号的时间差了。
端口识别装置可以根据第一ONT接收最后一个衰减光信号和离最后一个衰减光信号最近的反射光信号的时间差,确定该测试光信号按照时间顺序经过的最后一个分光器(第一级分光器)端口的端口信息。端口识别装置进一步可以根据第一ONT接收倒数第二个衰减光信号和离倒数第二个衰减光信号最近的反射光信号的时间差,确定该测试光信号按照时间顺序经过的倒数第二个分光器(第二级分光器)端口的端口信息。依次类推,端口识别装置可以根据第一ONT接收第一个衰减光信号和离第一个衰减光信号最近的反射光信号的时间差,确定该测试光信号按照时间顺序经过的第一个分光器(末级分光器)端口的端口信息。从而可以确定该第一ONT在光网络中的位置。按照该方式,如果该端口识别装置识别出每个ONT在光光网络中的位置,那么就可以构造成光网络的拓扑结构,从而进一步可以实现对ONT连接分光器端口的可视化。端口识别装置存储了第一关联关系,该第一关联关系包含了ONT接收衰减光信号和反射光信号的时间差与端口信息的对应关系。
在同一个分光器内分支光纤603长度相同,相同的分支光纤603上的反射器的反射率不同的场景下,第一关联关系还包含了ONT接收衰减光信号和离该衰减光信号最近的反射光信号的时间差、反射光信号的光功率与端口信息三者之间的对应关系。端口识别装置根据ONT接收衰减光信号和离该衰减光信号最近的反射光信号的时间差、所述反射光信号的光功率以及第一关联关系,确定所述时间差和所述反射光信号的光功率所关联的端口信息。
在如图10所述的不等比分光的应用场景下,端口识别装置根据所述ONT接收到的所有衰减光信号数量和所述ONT接收到的最后一个衰减光信号的光功率,确定所述分光器的分光器信息。端口识别装置进一步可以根据ONT接收到第一个衰减光信号和离第一个衰减光信号最近的反射光信号之间的时间差和第一关联关系,就确定出该ONT连接的分光器的端口信息。 或者端口识别装置进一步可以根据ONT接收到第一个衰减光信号和离第一个衰减光信号最近的反射光信号之间的时间差、该反射光信号的光功率和第一关联关系,就确定出该ONT连接的分光器的端口信息。
图11为本申请提供的一种端口识别装置的结构示意图。所述端口识别装置可以是OLT或、ONT或网络管理设备。端口识别装置可用于实现上述方法实施例中描述的对应部分的方法,具体参见上述方法实施例中的说明。
所述端口识别装置可以包括一个或多个处理器1101,所述处理器1101也可以称为处理单元,可以实现一定的控制功能。所述处理器1101可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,DU,或CU等)进行控制,执行软件程序,处理软件程序的数据。
在一种可能的设计中,处理器1101也可以存有指令1104,所述指令1104可以被所述处理器运行,使得所述端口识别装置执行上述方法实施例中描述的对应于设备的方法。
在又一种可能的设计中,端口识别装置可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选地,端口识别装置中可以包括一个或多个存储器1102,存储器1102存有指令1102或者中间数据,所述指令1105可在所述处理器1101上被运行,使得端口识别装置执行上述方法实施例中描述的方法。可选地,所述存储器1102中还可以存储有其他相关数据。可选地,处理器1101中也可以存储指令和/或数据。所述处理器1101和存储器1102可以单独设置,也可以集成在一起。
可选地,所述端口识别装置还可以包括收发器1103。所述处理器1103可以称为处理单元。所述收发器1103可以称为收发单元、收发机、收发电路、或者收发器等,用于实现通信装置的收发功能。
本申请还提供一种可读存储介质,可读存储介质中存储有执行指令,当端口识别装置的至少一个处理器执行该执行指令时,端口识别装置执行上述方法实施例中的端口识别的方法。
本申请还提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。端口识别装置的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得端口识别装置实施上述方法实施例中的端口识别的方法。
图12为本申请提供的一种端口识别装置的结构示意图。所述端口识别装置可以是OLT或、ONT或网络管理设备。端口识别装置可用于实现上述方法实施例中描述的对应部分的方法,具体参见上述方法实施例中的说明。端口识别装置包括:
时间确定模块1201,用于确定光网络终端ONT接收衰减光信号以及与所述衰减光信号最接近的反射光信号的时间差,其中,所述反射光信号是测试光信号经分光器的端口连接的反射器反射回来的光信号,所述衰减光信号是测试光信号经所述分光器的分光点反射回来的光信号,所述时间差与长度相关联,所述长度为所述反射器和所述分光点之间光纤的长度;
端口信息确定模块1202,用于根据所述时间差,确定所述时间差关联的端口信息,所述端口信息为所述端口的端口信息。
进一步地,端口识别装置还包括存储模块1203,用于存储第一关联关系,所述第一关联关系包含了所述时间差与所述端口信息的关联关系。该端口信息确定模块1202具体用于根据所述时间差和所述第一关联关系,确定所述时间差关联的端口信息。
进一步地,端口识别装置还包括分光器信息确认模块1204,所述分光器信息确认模块1204用于根据所述端口信息,确定所述端口所连接的下一级分光器的分光器信息;或者用于根据所述ONT接收到的所有衰减光信号数量和所述ONT接收到的最后一个衰减光信号的光功率,确定所述分光器的分光器信息。
进一步地,端口识别装置还包括光功率确定模块1205,用于确定所述反射光信号的光功率;该端口信息确定模块1202具体用于根据所述时间差和光功率确定模块1205确定的反射光信号的光功率,确定所述时间差和所述反射光信号的光功率所关联的端口信息。
进一步地,时间确定模块1201具体用于从反射曲线上的反射器反射峰与离所述反射器反射峰最近的分光跌落点的间距,确定所述ONT接收衰减光信号以及与所述衰减光信号最接近的反射光信号的时间差,其中,所述间距与所述时间差是相关联的。
进一步地,光功率确定模块1205具体用于从反射曲线上的反射器反射峰幅度,确定所述反射光信号的光功率,其中,所述反射器反射峰幅度与所述反射光信号的光功率是相关联的。
由于不同分支光纤上,反射器和分光点之间光纤的长度不同,来自于不同ONT的测试信号经过反射器和分光点之间光纤的传输的时间也不同,相应地,不同ONT的测试信号经过不同光纤上的反射器反射的反射信号与经过分光点产生的衰减光信号的时间差也不同,进一步地,不同ONT接收反射信号与衰减光信号的时间差也是不同的。并且由于反射器和分光点之间的长度是固定的,因此不同的ONT接收反射信号与衰减光信号的时间差也是固定的,因此端口识别装置就可以根据这些固定的时间差确认不同ONT所连接分光器端口的端口信息。
在上述各个本申请实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读介质向另一个计算机可读介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种分光器,其特征在于,包括:第一分支光纤、第二分支光纤、第一反射器、第二反射器、第一端口、第二端口和分光点;其中,所述第一分支光纤的一端连接所述第一端口,所述第一分支光纤的另一端连接所述分光点,所述第一分支光纤上设置所述第一反射器,所述第二分支光纤上设置所述第二反射器,所述第一反射器和所述分光点之间光纤的第一长度与所述第二反射器和所述分光点之间光纤的第二长度是不同的。
  2. 根据权利要求1所述的分光器,其特征在于,还包括:第三分支光纤、第三反射器和第三端口;其中,所述第三分支光纤的一端连接所述第三端口,所述第三分支光纤的另一端连接所述分光点,所述第三分支光纤上设置所述第三反射器,所述第一反射器和所述分光点之间光纤的第一长度与所述第三反射器和所述分光点之间光纤的第三长度是相同的。
  3. 根据权利要求2所述的分光器,其特征在于,所述第一反射器的反射率与所述第三反射器的反射率是不同的。
  4. 如权利要求1-3任意所述的分光器,其特征在于,包括:反射器具体为在分支光纤上刻蚀的光栅或者镀膜形成的反射面。
  5. 一种端口识别的方法,其特征在于,该方法应用在分光器,包括:
    所述分光器的第一端口接收第一测试光信号,当所述第一测试光信号到达所述第一端口与所述分光器的分光点之间的第一分支光纤上设置的第一反射器时,所述第一反射器产生第一反射光信号;
    所述第一测试光信号经过所述第一分支光纤到达所述分光点时,所述分光点产生第一衰减光信号;
    所述分光器的第二端口接收第二测试光信号,当所述第二测试光信号到达所述第二端口与所述分光点之间的第二分支光纤上设置的第二反射器时,所述第二反射器产生第二反射光信号;
    所述第二测试光信号经过所述第二分支光纤到达所述分光点时,所述分光点产生第二衰减光信号,其中,所述第一反射器和所述分光点之间光纤的第一长度与所述第二反射器和所述分光点之间光纤的第二长度是不同的。
  6. 根据权利要求5所述的方法,其特征在于,所述第一长度与所述第一端口是关联的,所述第二长度与所述第二端口是关联的。
  7. 根据权利要求5-6任一所述的方法,其特征在于,产生所述第一反射光信号和产生所述第一衰减光信号的时间差与所述第一端口是关联的,产生所述第二反射光信号和产生所述第二衰减光信号的时间差与所述第二端口是关联的。
  8. 根据权利要求5-7任一所述的方法,其特征在于,还包括:所述分光器的第三端口接收第三测试光信号,当所述第三测试光信号到达所述第三端口与所述分光点之间的第三分支光纤上设置的第三反射器时,所述第三反射器产生第三反射光信号;
    所述第三测试光信号经过所述第三分支光纤到达所述分光点时,所述分光点产生第三衰减光信号,其中,所述第一长度与所述第三反射器和所述分光点之间光纤的第三长度是相同 的。
  9. 根据权利要求8所述的方法,其特征在于,所述第一反射光信号的光功率与所述第三反射光信号的光功率是不同的。
  10. 根据权利要求8-9任一所述的方法,其特征在于,所述第一反射光信号的光功率与所述第一端口是关联的,所述第三反射光信号的光功率与所述第三端口是关联的。
  11. 一种端口识别的方法,其特征在于,所述方法包括:
    确定光网络终端ONT接收衰减光信号以及与所述衰减光信号最接近的反射光信号的时间差,其中,所述反射光信号是测试光信号经分光器的端口连接的反射器反射回来的光信号,所述衰减光信号是测试光信号经所述分光器的分光点反射回来的光信号,所述时间差与长度相关联,所述长度为所述反射器和所述分光点之间光纤的长度;
    根据所述时间差,确定所述时间差关联的端口信息,所述端口信息为所述端口的端口信息。
  12. 根据权利要求11所述的方法,其特征在于,第一关联关系包含了所述时间差与所述端口信息的关联关系;
    所述根据所述时间差,确定所述时间差关联的端口信息,具体为:根据所述时间差和所述第一关联关系,确定所述时间差关联的端口信息。
  13. 根据权利要求11或12任一所述的方法,其特征在于,还包括:根据所述端口信息,确定所述端口所连接的下一级分光器的分光器信息。
  14. 根据权利要求11-13任一所述的方法,其特征在于,所述方法应用于不等比光分配网络,所述不等比光分配网络包含了n个具有两个端口的非一级分光器的不等比分光器和n个端口数量不限定的非一级分光器的等比分光器,其中端口连接下一级分光器的分光器为所述具有两个端口的不等比分光器,端口连接所述ONT的分光器为所述端口数量不限定的等比分光器,所述方法还包括:根据所述ONT接收到的所有衰减光信号数量和所述ONT接收到的最后一个衰减光信号的光功率,确定所述ONT连接的分光器的分光器信息。
  15. 根据权利要求11-14任一所述的方法,其特征在于,还包括:确定所述反射光信号的光功率;
    所述根据所述时间差,确定所述时间差关联的端口信息,具体为:
    根据所述时间差和所述反射光信号的光功率,确定所述时间差和所述反射光信号的光功率所关联的端口信息。
  16. 根据权利要求11-15任一所述的方法,其特征在于,所述确定光网络终端ONT接收衰减光信号以及与所述衰减光信号最接近的反射光信号的时间差,具体为:
    根据反射曲线上的反射器反射峰与离所述反射器反射峰最近的分光跌落点的间距,确定所述ONT接收衰减光信号以及与所述衰减光信号最接近的反射光信号的时间差,其中,所述间距与所述时间差是相关联的。
  17. 根据权利要求16所述的方法,其特征在于,所述时间差与所述端口信息的关联关系 具体为反射曲线上的反射器反射峰与离所述反射器反射峰最近的分光跌落点的间距和所述端口信息的关联关系。
  18. 根据权利要求15所述的方法,其特征在于,所述确定所述反射光信号的光功率,具体为:
    从反射曲线上的反射器反射峰幅度,确定所述反射光信号的光功率,其中,所述反射器反射峰幅度与所述反射光信号的光功率是相关联的。
  19. 根据权利要求11-18任一所述的方法,其特征在于,所述方法执行主体为所述ONT、光线路终端OLT或者网络管理设备。
  20. 一种端口识别的装置,其特征在于,包括:
    时间确定模块,用于确定光网络终端ONT接收衰减光信号以及与所述衰减光信号最接近的反射光信号的时间差,其中,所述反射光信号是测试光信号经分光器的端口连接的反射器反射回来的光信号,所述衰减光信号是测试光信号经所述分光器的分光点反射回来的光信号,所述时间差与长度相关联,所述长度为所述反射器和所述分光点之间光纤的长度;
    端口信息确定模块,用于根据所述时间差,确定所述时间差关联的端口信息,所述端口信息为所述端口的端口信息。
  21. 根据权利要求20所述的装置,其特征在于,还包括存储模块,用于存储第一关联关系,所述第一关联关系包含了所述时间差与所述端口信息的关联关系;
    所述端口信息确定模块具体用于根据所述时间差和所述第一关联关系,确定所述时间差关联的端口信息。
  22. 根据权利要求20或21所述的装置,其特征在于,还包括分光器信息确认模块,所述分光器信息确认模块用于根据所述端口信息,确定所述端口所连接的下一级分光器的分光器信息;或者
    所述分光器信息确认模块用于根据所述ONT接收到的所有衰减光信号数量和所述ONT接收到的最后一个衰减光信号的光功率,确定所述分光器的分光器信息。
  23. 根据权利要求20-22任一所述的装置,其特征在于,还包括光功率确定模块,用于确定所述反射光信号的光功率;
    所述端口信息确定模块具体用于:所述根据所述时间差和所述反射光信号的光功率,确定所述时间差和所述反射光信号的光功率所关联的端口信息。
  24. 根据权利要求20-23任一所述的装置,其特征在于,所述时间确定模块具体用于从反射曲线上的反射器反射峰与离所述反射器反射峰最近的分光跌落点的间距,确定所述ONT接收衰减光信号以及与所述衰减光信号最接近的反射光信号的时间差,其中,所述间距与所述时间差是相关联的。
  25. 根据权利要求23所述的装置,其特征在于,所述光功率确定模块具体用于从反射曲线上的反射器反射峰幅度,确定所述反射光信号的光功率,其中,所述反射器反射峰幅度与所述反射光信号的光功率是相关联的。
  26. 根据权利要求20-25任一所述的装置,其特征在于,所述装置具体为所述ONT、光线路终端OLT或者网络管理设备。
  27. 一种设备,其特征在于,包括存储器、处理器;该存储器用于存储计算机执行指令,当该装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该设备执行如权利要求11-18任一所述的方法。
  28. 一种无源光网络系统,包括分光器和端口识别的装置,所述分光器如权利要求1至4任一项所示,所述端口识别的装置如权利要求20至26任一项所示。
  29. 根据权利要求28所述的系统,其特征在于,还包括所述ONT,所述ONT用于向所述分光器发送所述测试光信号,并接收来自于分光器的衰减光信号和反射光信号。
PCT/CN2020/113430 2019-11-19 2020-09-04 一种端口识别的方法、装置、系统和分光器 WO2021098341A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911137089.5A CN111010228B (zh) 2019-11-19 2019-11-19 一种端口识别的方法、装置、系统和分光器
CN201911137089.5 2019-11-19

Publications (1)

Publication Number Publication Date
WO2021098341A1 true WO2021098341A1 (zh) 2021-05-27

Family

ID=70112700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113430 WO2021098341A1 (zh) 2019-11-19 2020-09-04 一种端口识别的方法、装置、系统和分光器

Country Status (2)

Country Link
CN (1) CN111010228B (zh)
WO (1) WO2021098341A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4160178A1 (en) * 2021-09-14 2023-04-05 Viavi Solutions Inc. Fiber element offset length-based optical reflector peak analysis
WO2024017022A1 (zh) * 2022-07-21 2024-01-25 华为技术有限公司 拓扑还原方法、第一光网络及通信装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110996193B (zh) * 2019-11-19 2021-10-26 华为技术有限公司 识别光网络单元连接端口的方法、相关装置及系统
CN111010228B (zh) * 2019-11-19 2023-01-13 华为技术有限公司 一种端口识别的方法、装置、系统和分光器
CN111669221B (zh) * 2020-04-29 2021-09-21 华为技术有限公司 故障定位的方法、装置和系统
CN113572520B (zh) * 2020-04-29 2022-10-04 华为技术有限公司 光网络终端和确定光网络终端连接的端口的方法
CN111885434B (zh) * 2020-06-18 2021-06-15 华为技术有限公司 端口识别的方法、装置和系统
CN114430512B (zh) * 2020-10-29 2023-04-28 华为技术有限公司 端口识别的方法和装置
CN114567376A (zh) * 2020-11-27 2022-05-31 华为技术有限公司 光分配网络、光网络系统、分光器及分光器的端口识别方法
CN112653940B (zh) * 2020-11-27 2022-04-08 华为技术有限公司 光分配网络、光网络系统、分光器及分光器的端口识别方法
CN114584472B (zh) * 2020-11-30 2023-11-03 中移(苏州)软件技术有限公司 一种确定分光器连通性的方法、装置、电子设备和介质
CN112562910B (zh) * 2020-12-24 2022-10-21 江苏亨通光电股份有限公司 5g室外微基站用光电快速连接光缆及其使用方法
CN115529077A (zh) * 2022-10-28 2022-12-27 武汉邮电科学研究院有限公司 光纤端口管理方法、装置、设备及可读存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090268197A1 (en) * 2005-10-24 2009-10-29 Stephane Perron Method and apparatus for identification of multiple fibers using an OTDR
CN102265533A (zh) * 2008-12-31 2011-11-30 泰科电子瑞侃有限公司 采用otdr的单向绝对光衰减测量
CN202206397U (zh) * 2011-08-30 2012-04-25 上海波汇通信科技有限公司 无源光网络故障监测装置
CN103227677A (zh) * 2013-04-28 2013-07-31 桂林聚联科技有限公司 一种光纤反射器及利用该器件实现pon网络监测的方法
CN103905112A (zh) * 2012-12-26 2014-07-02 中国电信股份有限公司 无源光网络故障检测方法、装置和系统
CN105959058A (zh) * 2016-06-07 2016-09-21 太原理工大学 一种快速检测时分复用光网络链路故障的装置及方法
CN111010228A (zh) * 2019-11-19 2020-04-14 华为技术有限公司 一种端口识别的方法、装置、系统和分光器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118658B (zh) * 2009-12-31 2014-02-19 华为技术有限公司 分光器端口识别的方法和装置
CN105530046B (zh) * 2014-09-30 2018-06-12 中国电信股份有限公司 实现光功率和分支衰减故障自动测试的方法和系统
JP5811259B2 (ja) * 2014-12-24 2015-11-11 住友電気工業株式会社 光線路監視システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090268197A1 (en) * 2005-10-24 2009-10-29 Stephane Perron Method and apparatus for identification of multiple fibers using an OTDR
CN102265533A (zh) * 2008-12-31 2011-11-30 泰科电子瑞侃有限公司 采用otdr的单向绝对光衰减测量
CN202206397U (zh) * 2011-08-30 2012-04-25 上海波汇通信科技有限公司 无源光网络故障监测装置
CN103905112A (zh) * 2012-12-26 2014-07-02 中国电信股份有限公司 无源光网络故障检测方法、装置和系统
CN103227677A (zh) * 2013-04-28 2013-07-31 桂林聚联科技有限公司 一种光纤反射器及利用该器件实现pon网络监测的方法
CN105959058A (zh) * 2016-06-07 2016-09-21 太原理工大学 一种快速检测时分复用光网络链路故障的装置及方法
CN111010228A (zh) * 2019-11-19 2020-04-14 华为技术有限公司 一种端口识别的方法、装置、系统和分光器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KITO CHIHIRO, TAKAHASHI HIROSHI, TOGE KUNIHIRO, OHNO SHINGO, MANABE TETSUYA: "Field Measurement of PON Branches With End-Reflection-Assisted Brillouin Analysis", JOURNAL OF LIGHTWAVE TECHNOLOGY, IEEE, USA, vol. 34, no. 19, 1 October 2016 (2016-10-01), USA, pages 4454 - 4459, XP055813978, ISSN: 0733-8724, DOI: 10.1109/JLT.2016.2531081 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4160178A1 (en) * 2021-09-14 2023-04-05 Viavi Solutions Inc. Fiber element offset length-based optical reflector peak analysis
WO2024017022A1 (zh) * 2022-07-21 2024-01-25 华为技术有限公司 拓扑还原方法、第一光网络及通信装置

Also Published As

Publication number Publication date
CN111010228B (zh) 2023-01-13
CN111010228A (zh) 2020-04-14

Similar Documents

Publication Publication Date Title
WO2021098341A1 (zh) 一种端口识别的方法、装置、系统和分光器
WO2021098330A1 (zh) 识别光网络单元连接端口的方法、相关装置及系统
US8948589B2 (en) Apparatus and method for testing fibers in a PON
US7386234B2 (en) Apparatus for remotely determining fault of subscriber terminals and method thereof
US9319139B2 (en) Long distance multi-mode communication
US8290364B2 (en) Method, optical network and network device for locating fiber events
US8913888B2 (en) In-band optical frequency division reflectometry
CN110933531A (zh) 一种端口检测的方法以及装置
US8971704B2 (en) Optical networks
US20080031624A1 (en) Passive optical network optical time-domain reflectometry
US7894362B2 (en) Passive optical network topology estimation
WO2011140912A1 (zh) 分支光纤检测系统及方法、光分配网络和分光器
CN103548287A (zh) 波分复用光网络的监管
CN104205676B (zh) 光线路终端、光收发模块、系统以及光纤检测方法
WO2021227446A1 (zh) 端口检测方法和装置
WO2021035487A1 (zh) 确定光网络终端连接的方法、设备及系统
US20230261757A1 (en) Port Identification Method and Apparatus
CN102742184A (zh) 光纤链路检测方法、光线路终端和无源光网络系统
US11424825B2 (en) Multi-wavelength power sensing
CN118802056A (zh) 光网络系统和光网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889881

Country of ref document: EP

Kind code of ref document: A1