TW200939656A - System and method for monitoring passive optical network - Google Patents

System and method for monitoring passive optical network Download PDF

Info

Publication number
TW200939656A
TW200939656A TW097108589A TW97108589A TW200939656A TW 200939656 A TW200939656 A TW 200939656A TW 097108589 A TW097108589 A TW 097108589A TW 97108589 A TW97108589 A TW 97108589A TW 200939656 A TW200939656 A TW 200939656A
Authority
TW
Taiwan
Prior art keywords
optical
waveform
monitoring
reflection
signals
Prior art date
Application number
TW097108589A
Other languages
Chinese (zh)
Inventor
Ching-Wen Hsino
Fu-Chu Hung
Original Assignee
Inventec Multimedia & Telecom
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventec Multimedia & Telecom filed Critical Inventec Multimedia & Telecom
Priority to TW097108589A priority Critical patent/TW200939656A/en
Publication of TW200939656A publication Critical patent/TW200939656A/en

Links

Abstract

A system and a method for monitoring passive optical network are provided. A plurality of optical monitoring signals with various wavelengths is emitted by a board-band optical time-domain reflector module; at least a optical monitoring signal is selected by an optical wavelength selection module; the optical monitoring signal with the wavelength in need of monitoring is filtered for monitoring the optical fiber between the optical splitter and one of the optical network units by one of a plurality of filters configured between the optical splitter and the optical network unit. Therefore, the problem that the prior monitoring system could not obtain the correct broken positions of optical fibers from the monitoring results while the optical fibers broke at over two client terminals simultaneously may be solved, and the efficacy of providing the broken positions of optical fibers to the maintain staffs exactly and quickly may be achieved.

Description

200939656 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種光纖網路監測系統及方法,且特 別是有關於一種被動式光纖網路監測系統及方法。 【先前技術】 目前被動式光纖網路(Passive Optical Network,P01SQ 無疑疋光接取網路(optical access network)中最熱門的一 項技術’但現今對於光纖品質的監控技術仍舊未有所突 「第1A圖」緣示為習知以光時域反射儀(0pticai time-domain reflector, OTDR)監測被動式光纖網路的方塊 示意圖。請參照「第1A圖」,光時域反射儀11〇是與光 路終端機(optical line terminal, OLT)103各別耦接至光分 歧器(optical splitter)102 ’其所發出的光監測訊號是經由光 分歧器102而分別傳遞至各光網路單元(optical network unit,ONU)(也就是用戶端)〇NU-l、ONU-2、…、〇NU-n 〇 之後’這些光監測訊號會被反射回光時域反射儀110,而 相關人員即可將光時域反射儀11〇所接收到的反射波形 R1與此被動式光纖網路建構完成時所建立的參考波形r 進^^亍比對(如「第1Β圖」所示)’以判斷各用戶端的光 纖線路是否異常,並可進一步由反射波形R1與參考波形 R在「第1Β圖」中的相對距離’判斷出光纖的實際斷線 位置。 然而,當兩個以上的用戶端發生光纖斷線的情況 200939656 時’雖然由光時域反射儀110所接收到的反射波形R2可 知共有幾個用戶端發生光纖斷線的情況,如「第1C圖」 所不’但其並無法判斷出光纖的實際斷線位置。 由上述可知’利用習知被動式光纖網路監測技術所得 的監測結果’並無法使相關人貞在兩似上_戶端發生 光纖斷線的情況時,科地纖出各個光麟線的位置, 因此有必要提出改進的技術手段來解決此一問題。 A 【發明内容】 Ο 有雲於先前技術無法準確地判斷出光纖斷線的位 置’本發明遂揭露一種被動式光纖網路監測系統及方法, 其監測結果可供相關人員在多個用戶端之光纖斷線時,迅 速地判斷出光纖的斷線位置。 本發明提供一種被動式光纖網路監測系統,適於監測 一被動式光纖網路,該被動式光纖網路包括多條光纖、光 路終端機、光分歧器與多個光網路單元。該被動式光纖網 〇 路監測系統包括寬頻光時域反射模組、光波長選擇模組、 多個濾波器以及控制模組。寬頻光時域反射模組是透過該 些光纖而耦接至該光分歧器,並用以發出多個不同波長的 光監測訊號,以及接收該些光監測訊號的光反射訊號。該 些濾波器是耦接於該光分歧器與該些光網路單元之間,且 各濾波器係用以允許該些光監測訊號其中之一通過。光波 長選擇模組是耦接於寬頻光時域反射模組與光分歧器之 間,用以允許該些光監測訊號至少其中之一通過。控制模 組則是用以依據寬頻光時域反射模組所接收到的光反射 200939656 訊號來控制光波長選擇模組。 本發明提供一種被動式光纖網路監測方法,適於監測 一被動式光纖網路,該被動式光纖網路包括多條光纖、一 光路終端機、光分歧器與多個光網路單元,該方法包括下 列步驟:建立一參考波形圖;發出多個不同波長之光監測 虎,將各該光監測訊號傳送至耦接於該些光網路單元的 該些光纖其中之一内;接收該些光監測訊號的光反射訊 號,依據該些光反射訊號的能量,生成一反射波形圖;將 該反射波形圖與該參考波形圖進行比對’其中當該反射波 开y圖中至少一波形與參考波形圖不一致時,先依次傳送反 射波形與參考波形圖不一致之該些光監測訊號至該些光 纖’接著依次接收該些光監測訊號的光反射訊號’並分次 生成各該光反射訊號之波形,然後再將各該光反射訊號的 波开>與該反射波形圖進行比對,以找出各該反射訊號之波 形在該反射波形圖上的位置。 本發明所揭露之系統與方法如上,與先前技術之間的 差異在於本發明是以多個不同波長之光監測訊號來對各 用戶端之光纖進行監測,以便於同時獲得各用戶端之光纖 所反射回來的光訊號。在將這些光訊號的反射波形與參考 波形比對後’即可得知各用戶端之光纖是否有發生斷線的 情形。 當兩個以上的用戶端之光纖發生斷線時,先依次傳送 反射波形與參考波形圖不一致的光監測訊號至用戶端之 光纖’並分次生成各光監測訊號之反射波形,然後再這些 200939656 反射波形與反射波形圖進行比對,以便於進—步區分出各 用戶端之光纖的斷線位置。 透過上述的技術手段,本發明能夠使相關人員迅速得 知光纖的實際斷線位置,以縮短維修人員查找光纖斷線位 置所需耗費的時間。 【實施方式】 本發明之被動式光纖網路監測系統及方法適用於監 ❹測被動式光纖網路中的光纖是否發生斷線,並且在其所監 測之被動式光纖網路發生光纖斷線情況時,提供光纖斷線 位置的相關資訊給維修人員,以節省維修人員在確認斷線 位置時所需耗費的時間。以下將配合圖式及實施例來詳細 說明本發明之實施方式,藉此對本發明如何應用技術手段 來解決技術問題並達成技術功效的實現過程能充分理解 並據以實施。 第2圖」纟會示為本發明之第一實施例中的被動式光 〇 纖網路監測系統應用於一被動式光纖網路中的電路方塊 示思圖。凊參照「第2圖」,本實施例之被動式光纖網路 監測系統是應用於由光纖101、光路終端機(optical line terminal,〇LT) 103、光分歧器(optical splitter) 102 以及多個 光網路單元(optical network unit, 〇NU;)〇mJ-l、 OMU-2、···、〇NU-n所構成的被動式光纖網路中,其中光 路終端機103通常可被設置於電信業者的機房中,且其所 發出之傳輸光訊號TS在傳遞至光分歧器1〇2之後,是分 別經由光纖101而傳遞至代表各個用戶端之終端設備的各 200939656 光網路單元 ONU-l、〇NU-2.....〇NU_n〇 被動式光纖網路監測系統包括寬頻光時域反射 (wide-band optical time-domain reflector, wideband OTDR) 模組210、光波長選擇模組22〇、多個滤波器24〇以及控 制模組260。其中,寬頻光時域反射模組21〇是透過光纖 101而耗接至光分歧H 1G2,収發出多個不同波長之光 監測訊號。具體來說,寬頻光時域反射模組21〇可以包括 光訊號產生單元212與光訊號接收單元214,其中光訊號 產生單元212即是用以發出不同波長的光監測訊號ws, 而光訊號接收單S214貝ij是用以接蚊些光監測訊號的光 反射訊號。 在本實施例中,光訊號產生單元2i2例如是一自發性 放射頻譜(amplified spontaneous emission,ASE)光源。光訊 號接收單元214則例如是一光功率計(〇ptical p〇wer meter),用以量測反射回來之光反射訊號ws,的功率。 此外’寬頻光時域反射模組210還可以包括有一分光 單元216,而光訊號產生單元212所發出的光監測訊號即 是藉由分光單元216而傳遞至光波長選擇模組22〇,且光 反射號亦是經由分光單元216而傳遞至光訊號接收單元 214。 光波長選擇模組220是耦接於寬頻光時域反射模組 210與光分歧器102之間,且寬頻光時域反射模組21〇所 發出的這些光監測訊號中,至少有一光監測訊號ws可通 過光波長選擇模組220。詳細來說,光波長選擇模組220 200939656 例如是由多個切換單元222與一可調式滤波器(tunaWe filter)224所構成。在本實施例中’光波長選擇模組22〇是 包3兩個切換單元222 ’其-端是分別耦接至寬頻光時域 反射模組210與光分歧器1〇2,另一端則是分別在第一通 路CH1與第二通路CH2之間作切換。 可調式濾波器224是配置在第二通路CH2中,且當 這』切換單元222切換至輕接於第二通路CH2時,可調 〇 式濾波器224之兩端即分別耦接至寬頻光時域反射模組 2匕與光分歧器102。其甲,可調式濾波器224是用以允 許寬頻光時域反射模組21〇所發出的光監測訊號ws依次 通過。舉例來說,當切換單元224切換至與第二通路CH2 搞接’且可調錢波器224是調整為僅允許波長為^的 光監測訊號ws通過時,則在波長為λι、又2、…、λη 的光皿測成號中,僅有波長為又2的光監測訊號能夠 傳遞至光分歧器〗〇2。同理,若可調式濾波器Μ4是調整 Ο 為僅允許波長為λ !的光監測訊號通過時,則在這些光監 測Λ號中財波長為λι的光監觀號ws能夠傳遞至光 分歧器102。 +由上述可知,本實施例之被動式光纖網路監測系統可 以藉由光波長選擇模組22〇而在寬頻光時域反射模組21〇 所發出之光監測訊號中選擇特定波長的光監測訊號WS, 、傳遞至用戶^進彳亍光纖斷線的監測。而且,光波長選擇 杈組220例如是藉由一控制模組260來控制。其中,控制 模組260是依據寬頻光時域反射模組210所接收到的光反 200939656 射訊號ws,來控制光波長選擇模組22(^具體而古,护制 模組260可以依據寬頻光時域反射模组21〇所接““ 反射訊號WS,觸出用戶端的域是否有斷線的狀況發 生’並且在判斷出用戶端的光纖有斷線狀況時控制波長選 擇模組220,使其在寬頻光時域反射模組21〇所發出的光 監測訊號WS巾,選擇適當波長的光監測訊號進行傳遞, 以便於進一步確認光纖斷線位置。 ❾ 在本實施例中,控制模組260例如是包括波形圖生成 單元262與比對單元264,其中波形圖生成單元262是用 以建立一參考波形圖,而此處所謂之「參考波形圖」是在 被動式光纖網路剛架設完成且確定無斷線的情況下,將寬 頻光時域反射模組210所發出之各光監測訊號ws分別傳 送至各用戶端之光纖1〇丨,再由寬頻光時域反射模組21〇 接收各光纖101所反射之光反射訊號ws,,以藉由波形圖 生成單元262依據這些光反射訊號之能量所生成的波形 〇 圖。本實施例之參考波形圖如「第5圖」所示,其中、 W2.....Wn分別為各光監測訊號的反射波形,而圖中標 示為S之處則為訊號在光分歧器1〇2所在處所產生的衰減 量。 而且’波形圖生成單元262更可以依據寬頻光時域反 射模組210所接收到的光反射訊號WS,之能量,生成一反 射波形圖。比對單元264則是用以將此反射波形圖與參考 波形圖進行比對。詳細來說,當反射波形圖與參考波形圖 不一致時’控制模組260會控制光波長選擇模組220,使 12 200939656 其切換單元222切換至第二通路CH2而與可調式濾波器 224耗接’並且調整可調式遽波器224,以使其允許具適 當波長的光監測訊號通過。換言之,本實施例之控制模組 260是依據反射波形圖與參考波形圖的比對結果來控制光 波長選擇模組220。 值得一提的是’控制模組260除了可以控制光波長選 擇模組220之外,更可以用來控制寬頻光時域反射模組 ❹ 210的啟動與否。具體來說,本實施例可以利用額外配置 的光功率計(圖未示)來測量各用戶端所接收到光路終端 機103發射出來的傳輸信號TS,並且在測量到的光功率 量異常時,透過控制模組260來啟動寬頻光時域反射模組 21〇,以發出光監測訊號WS。之後再透過系統的後續作 動’找出光纖的實際斷線位置。 請繼續參照「第2圖」,光分歧器102與各光網路單 兀之間之耦接有一濾波器240,且濾波器240僅允許具有 〇 某特定波長的光監測訊號通過。舉例來說,耦接於光分歧 器102與光網路單元ONU4之間的濾波器24〇僅允許波 長為λ 1的光監測訊號通過;耦接於光分歧器102與光網 路單元ONU-2之間的滤波器24〇僅允許波長為乂 2的光監 測訊號通過。由此推知’搞接於光分歧器1〇2與光網路單 元ONU η之間的濾波器24〇僅允許波長為入^的光監測訊 號通過。 特別的是’本發明之被動式光纖網路監測系統係在被 動式光纖網路運作的㈤時,即時監測此光纖網路中的光纖 13 200939656 101是否斷線。換言之,由光波長選擇模組22〇所傳送出 的光監測訊號WS會與光路終端機103所發出的傳輸訊號 TS同時經由光纖101傳遞至光分歧器102,再藉由光分歧 器102將傳輸訊號TS與監測訊號ws分別送至各用戶端 的光網路單元。為此,本發明更在被動式光纖網路監測系 統中設置多個光波長耦合器,以便於將光路終端機103所 發出的傳輸訊號TS與光波長選擇模組220所傳送出的光 ❹監測訊號WS耦合之後,再將此耦合光透過光纖1〇1傳遞 至用戶端。在本實施例中,光波長耦合器可以是波長分波 多工器(wavelength division multiplexer,WDM) 270 。 詳細來說’光路終端機103所發出之傳輸訊號ts與 光波長選擇模組220所傳送出的光監測訊號ws會先經由 波長分波多工器270將其耦合,以便於以耦合光的形式通 過光分歧器102。之後同樣再利用波長分波多工器27〇將 通過光分歧器102的耦合光分成傳輸訊號TS與光監測訊 〇 號WS。其中,波長分波多工器270例如是將光監測訊號 WS分送至搞接有滤波器240的光纖通路,並且將傳輸訊 號TS分送至未耦接有濾波器240的光纖通路。 此外,為了使光監測訊號WS的光反射訊號WS,之波 形更佳均勻以利於測量,本發明之被動式光纖網路監測系 統在第三實施例更可以包括有光反射模組250,用以增強 通過濾波器240之光監測訊號WS的光反射訊號WS’,如 「第3圖」所示。在本實施例中,光反射模組250例如是 與光網路單元ONU-1、ONUI-2、…、ONU-n同時配置於 14 200939656 用戶端,且每一網路單元均對應至光反射模組25〇中的一 個光反射單元252。 為使熟習此技藝者更加瞭解本發明,以下將舉實施例 配合圖式說明本發明之被動式光纖網路監測系統的運作 流程。 「第4圖」繪示為本發明之被動式光纖網路監測方法 在第一實施例中的步驟流程圖。請同時參照「第2圖」與 _ 「第4圖」,首先透過控制模組260的波形圖生成單元262 來建立一參考波形圖(步驟400 ),再藉由寬頻光時域反射 模組210發出多個不同波長的光監測訊號(步驟41〇),此 時由於光波長選擇模組220中的切換單元222之預設位置 是切換至與第一通路CH1耦接,因此步驟41〇所發出的 所有光監測訊號會一併從光纖1〇1傳遞至光分歧器1〇2。 接著,光分歧器102會藉其分支的光路將這些光監測 甙號傳送至各個用戶端。在此,由於各用戶端與光分歧器 Q 1〇2之間均設置有濾波器240,且各個濾波器240僅允許 單一波長的光監測訊號WS通過,因此各個光監測訊號 WS將經由其所對應之濾波器240,而分別被傳送至耦接 於光網路單元ONIM、ONU-2.....ONU-n其中之—的 光纖101内(步驟420)。 之後,這些光監測訊號WS會經由光纖1〇1而傳遞至 光網路單元ONU-1、〇nuI-2、...、〇NU-n ’並反射光反 射訊號ws’回寬頻光時域反射模組21〇,而被寬頻光時域 反射模組210中的光訊號接收單元214所接收(步驟 15 200939656 430)。然後,依據這些光反射訊號ws,的能量,生成一反 射波形圖(步驟440)。其中,步驟440例如是藉由控制模 組260中的波形圖生成單元262來執行。 在本實施例中,光訊號接收單元214為一光功率計, 因此步驟44G所生成的波_可以是這些光反射訊號的距 離-動態範圍之關係曲線圖。此處所謂之「動態範圍」例 如是指寬頻光時域反射模組210中光訊號產生單元212的 ❹發射光功率與末端雜訊之間的相對比值,但本發明所產生 的波形圖並不限定於此。 在生成反射波形圖之後,將此反射波形圖與步驟4〇〇 所建立的參考波形圖進行比對(步驟45〇),以判斷步驟 440中所生成的反射波形圖中,是否有兩個以上的波形與 參考波形圖不一致(步驟460)。其中,步驟450例如是藉 由控制模組260中的比對單元264來執行。 值得注意的是,「第4圖」僅♦示出單次的監測流程, 〇 而在此單次監測流程中,當步驟460判斷出步驟440中所 生成的反射波形圖沒有兩個以上的波形與參考波形圖不 一致時,被動式光纖網路監測系統不會再執行後續步驟。 但實際上,即使步驟460判斷出步驟44〇中所生成的反射 波形圖沒有兩個以上的波形與參考波形圖不一致,本發明 之被動式光纖網路監測系統仍會持續地即時監測被動式 光纖網路。 在步驟450的比對結果中,若反射波形圖完全與參考 波形圖一致’表示此被動式光纖網路沒有光纖斷線的情況 16 200939656 發生。另外,若反射波形圖中僅有一個反射波形wA與參 考波形圖不一致,如「第6圖」所示,則可直接得知是波 長為λ 1的光監測訊號未能順利地經由光纖101傳遞至光 網路早元ONU-1 ’並由此推得搞接於光分歧器102與光網 路單元ONU-1之間的光纖101發生斷線的情況。此外, 更可以依據反射波形WA在反射波形圖上的位置推算出光 纖101的實際斷線位置。以反射波形在圖上的位置推算出 光纖實際斷線位置的詳細技術内容應為熟習此項技藝者 所熟知,此處不再贅述。 當反射波形圖中有兩個以上的反射波形與參考波形 圖不一致時,則依次傳送反射波形與參考波形圖不一致的 光監測訊號至其所對應之光纖101 (步驟470),再依次接 收這些光監測訊號的光反射訊號(步驟480) ’並且分次生 成各個光反射訊说之波形(步驟490),然後再與步驟44〇 中所生成之反射波形圖進行比對,以找出各該反射訊號之 〇 波形在反射波形圖上的位置(步驟495),並藉此判斷出各 條光纖的實際斷線位置。 在本實施例中,當反射波形圖中有兩個以上的反射波 形與參考波形圖不一致時,即可藉由控制模組26〇來控制 光波長選擇模組220,以使其切換單元222切換至第二通 路CH2而與可調式濾波器224耦接,並透過控制模組mo 依據步驟中所產生的比對結果來調整可調式遽波器 224,以執行步驟470。 舉實例來說,若步驟440所生成的反射波形圖如「第 17 200939656 7圖」所示’且在步驟450中得知反射波形圖中有兩個反 射波形WA& Wb與參考波形圖不一致,且光纖發生 斷線所在處為光分歧器102與光網路單元與 ONU-2之間,則此時可將光波長選擇模組22〇中的切換單 元222切換至耦接於配置在第二通路CH2中的可調式滅 波器224,並調整可調式濾波器224,以使其僅允許波長 為入2的光監測訊號通過。之後即可在步驟490中得到波 長為λ2之光監測訊號的光反射訊號波形,如「第8 所示。 」 接著,將「第8圖」與「第7圖」進行比對,則可得 知「第7圖」中的反射波形WB即為波長為;t2之光監測訊 號的光反射訊號波形,並藉此判斷出光分歧器1〇2與光網 路單元0NU-1之間的光纖1〇1之實際斷線位置。此時, 亦可得知「第7圖」中的反射波形Wa即為波長為心之 光監測訊號的光反射訊號波形,而光分歧器1〇2與光網路 單元0NU-2之間的光纖1〇1之實際斷線位置同樣可藉由 反射波形WA在「第7圖」上的位置推算出來。 雖然此處僅舉例說明當步驟440中所生成的反射波形 圖中有兩個波形與參考波形圖不符時的作法,但熟習此技 藝者應該可以自行推知,若步驟44〇中所生成的反射波形 圖中有兩個以上的波形與參考波形圖不符時,則以上述實 例之作法來實行步驟470至步驟495,即可得知每條光纖 的實際斷線位置。 综上所述,本發明在由光監測訊號所反射的波形得知 200939656 有哪幾個用戶端的光纖發生斷線狀況後,則依次傳送反射 波形與參考波形圖不一致的光監測訊號至用戶端之光 纖’並分次生成各光監測訊號之反射波形,然後再這些反 射波形與反射波形圖進行比對,以便於進一步區分出各用 戶端之光纖的斷線位置。藉此,可解決習知監測系統在兩 個以上的用戶端光纖同時發生斷線狀況時無法由監測結 果迅速得知光纖實際斷線位置的問題,進而達成快速且準 確地提供相關維修人員光纖斷線位置的功效。 雖然本發明所揭露之實施方式如上,惟所述之内容並 非用以直接限定本發明之專利保護範圍。任何本發明所屬 技術領域中具有通常知識者,在不脫離本發明所揭露之精 神和範圍的前提下’可以在實施的形式上及細節上作些許 之更動。本發明之專利保護範圍,仍須以所附之申請專利 範圍所界定者為準。 【圖式簡單說明】 第1A圖為習知以光時域反射儀監測被動式光纖網路 的方塊示意圖。 第1B圖為習知被動式光纖網路單一用戶端之光纖發 生斷線時’光時域反射儀所接收到之反射波形與參考波形 的比較示意圖。 第1C圖為習知被動式光纖網路多個用戶端之光纖發 生斷線時,光時域反射儀所接收到之反射波形與參考波形 的比較示意圖》 第2圖為本發明之第一實施例中的被動式光纖網路龄 200939656 測系統應用於一被動式光纖網路中的電路方塊示意圖。 第3圖為本發明之第二實施例中的被動式光纖網路監 測系統應用於一被動式光纖網路中的電路方塊示意圖。 第4圖為本發明之被動式光纖網路監測方法在第一實 施例中的步驟流程圖。 第5圖為本發明之第一實施例中的參考波形圖。 第6圖為本發明之第一實施例中的反射波形圖。BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a fiber optic network monitoring system and method, and more particularly to a passive fiber optic network monitoring system and method. [Prior Art] Passive Optical Network (P01SQ is undoubtedly one of the hottest technologies in optical access networks), but today's fiber-optic quality monitoring technology is still not outstanding. Figure 1A shows the block diagram of a passive optical network using a 0pticai time-domain reflector (OTDR). Please refer to Figure 1A for an optical time domain reflectometer. The optical line terminals (OLTs) 103 are respectively coupled to the optical splitter 102. The optical monitoring signals emitted by the optical line terminals (OLTs) 103 are respectively transmitted to the optical network units via the optical splitters 102. , ONU) (that is, the user terminal) 〇NU-l, ONU-2, ..., 〇NU-n 〇 'These light monitoring signals will be reflected back to the optical time domain reflectometer 110, and the relevant personnel can turn the light time The reflected waveform R1 received by the domain reflectometer 11 is compared with the reference waveform r established when the passive optical network is constructed (as shown in "1") "to determine the fiber of each user end" Is the line abnormal? Further, the actual disconnection position of the optical fiber can be determined by the relative distance between the reflected waveform R1 and the reference waveform R in the "first map". However, when two or more user terminals are broken, the case of the optical fiber breaks 200939656 It can be seen from the reflected waveform R2 received by the optical time domain reflectometer 110 that a plurality of user terminals have broken the optical fiber, and the "1C picture" does not mean that the actual disconnection position of the optical fiber cannot be determined. As can be seen from the above, 'the monitoring results obtained by using the conventional passive optical fiber network monitoring technology' can not make the relevant people squat in the case of the occurrence of the fiber breakage in the two terminals, the position of the optical ray line is broken. It is necessary to propose an improved technical means to solve this problem. A [Summary of the Invention] Ο There is a cloud in the prior art that cannot accurately determine the position of the fiber breakage. The present invention discloses a passive optical network monitoring system and method, The monitoring result can be used by the relevant personnel to quickly determine the disconnection position of the optical fiber when the fiber ends of the plurality of subscriber ends are disconnected. The present invention provides a passive optical fiber network. The road monitoring system is adapted to monitor a passive optical network comprising a plurality of optical fibers, an optical path terminal, an optical splitter and a plurality of optical network units. The passive optical network monitoring system includes broadband light a domain reflection module, an optical wavelength selection module, a plurality of filters, and a control module. The broadband optical time domain reflection module is coupled to the optical splitter through the optical fibers, and is configured to emit light of different wavelengths. Monitoring signals, and receiving light reflection signals of the optical monitoring signals. The filters are coupled between the optical splitter and the optical network units, and each filter is configured to allow one of the optical monitoring signals to pass. The optical wavelength selection module is coupled between the broadband optical time domain reflection module and the optical splitter to allow at least one of the optical monitoring signals to pass. The control module is used to control the optical wavelength selection module according to the light reflection 200939656 signal received by the broadband optical time domain reflection module. The present invention provides a passive optical network monitoring method suitable for monitoring a passive optical network comprising a plurality of optical fibers, an optical path terminal, an optical splitter and a plurality of optical network units, the method comprising the following Step: establishing a reference waveform diagram; emitting a plurality of light monitors of different wavelengths, and transmitting the optical monitoring signals to one of the optical fibers coupled to the optical network units; receiving the optical monitoring signals The light reflection signal generates a reflection waveform according to the energy of the light reflection signals; and compares the reflection waveform with the reference waveform image, wherein at least one waveform and the reference waveform in the y image In case of inconsistency, the optical monitoring signals in which the reflected waveform and the reference waveform are inconsistent are sequentially transmitted to the optical fibers, and then the optical reflection signals of the optical monitoring signals are sequentially received and the waveforms of the optical reflection signals are generated in stages, and then And comparing the wave opening of each of the light reflection signals with the reflection waveform pattern to find a waveform of each of the reflection signals in the reflection waveform Position. The system and method disclosed in the present invention are as above, and the difference from the prior art is that the present invention monitors the optical fibers of each user end by using a plurality of optical monitoring signals of different wavelengths, so as to obtain the optical fibers of each user end at the same time. The reflected light signal. After the reflected waveforms of the optical signals are compared with the reference waveforms, it is known whether or not the optical fibers of the respective terminals are disconnected. When two or more optical fibers of the user end are disconnected, the optical monitoring signals whose reflected waveforms are inconsistent with the reference waveform patterns are sequentially transmitted to the optical fibers of the user end, and the reflected waveforms of the respective optical monitoring signals are generated in stages, and then these 200939656 The reflected waveform is compared with the reflected waveform waveform to facilitate further distinguishing the disconnection position of the fiber of each user end. Through the above technical means, the present invention enables the relevant personnel to quickly know the actual disconnection position of the optical fiber, so as to shorten the time required for the maintenance personnel to find the position of the optical fiber disconnection. [Embodiment] The passive optical network monitoring system and method of the present invention are suitable for monitoring whether a fiber in a passive optical network is disconnected, and providing a fiber breakage in a passive optical network monitored by the present invention. Information about the position of the fiber break is given to the maintenance personnel to save time spent by the maintenance personnel in confirming the disconnection position. The embodiments of the present invention will be described in detail below with reference to the drawings and the embodiments, so that the application of the technical means to solve the technical problems and achieve the technical effects can be fully understood and implemented. Fig. 2 is a circuit block diagram of a passive optical fiber network monitoring system used in a passive optical network in the first embodiment of the present invention. Referring to "Fig. 2", the passive optical network monitoring system of the present embodiment is applied to an optical fiber 101, an optical line terminal (〇LT) 103, an optical splitter 102, and a plurality of lights. In a passive optical network composed of optical network units (〇NU;) 〇mJ-1, OMU-2, . . . , 〇NU-n, wherein the optical path terminal 103 can be generally set up by a carrier. In the equipment room, and after the transmission optical signal TS is transmitted to the optical splitter 1〇2, it is respectively transmitted to the 200939656 optical network unit ONU-1 of the terminal device representing each user terminal via the optical fiber 101, 〇NU-2.....〇NU_n〇 Passive optical network monitoring system includes wide-band optical time-domain reflector (wideband OTDR) module 210, optical wavelength selection module 22〇, multi Filters 24 and control module 260. The broadband optical time domain reflection module 21 耗 is transmitted through the optical fiber 101 to the optical divergence H 1G2 to transmit and receive a plurality of optical monitoring signals of different wavelengths. Specifically, the broadband optical time domain reflection module 21A can include an optical signal generating unit 212 and an optical signal receiving unit 214, wherein the optical signal generating unit 212 is configured to emit optical monitoring signals ws of different wavelengths, and the optical signal receiving Single S214 Bay ij is a light reflection signal for receiving some light monitoring signals. In the present embodiment, the optical signal generating unit 2i2 is, for example, an autonomously emitted spectrum (ASE) light source. The optical signal receiving unit 214 is, for example, an optical power meter (Measurement) for measuring the power of the reflected light reflected signal ws. In addition, the broadband optical time domain reflection module 210 may further include a light splitting unit 216, and the light monitoring signal emitted by the optical signal generating unit 212 is transmitted to the optical wavelength selection module 22 by the light splitting unit 216, and the light is transmitted. The reflection number is also transmitted to the optical signal receiving unit 214 via the beam splitting unit 216. The optical wavelength selection module 220 is coupled between the broadband optical time domain reflection module 210 and the optical splitter 102, and at least one of the optical monitoring signals emitted by the broadband optical time domain reflection module 21 is at least one optical monitoring signal. Ws can pass through the optical wavelength selection module 220. In detail, the optical wavelength selection module 220 200939656 is composed of, for example, a plurality of switching units 222 and a tunable filter (tunaWe filter) 224. In the present embodiment, the 'optical wavelength selection module 22' is the packet 2 and the two switching units 222' are coupled to the broadband optical time domain reflection module 210 and the optical splitter 1〇2, respectively, and the other end is Switching between the first path CH1 and the second path CH2, respectively. The tunable filter 224 is disposed in the second path CH2, and when the switching unit 222 is switched to the second path CH2, the two ends of the tunable filter 224 are respectively coupled to the broadband light. The domain reflection module 2 is coupled to the optical splitter 102. The adjustable filter 224 is configured to allow the light monitoring signal ws emitted by the broadband optical time domain reflection module 21 to pass through. For example, when the switching unit 224 is switched to connect with the second path CH2 and the adjustable money filter 224 is adjusted to allow only the optical monitoring signal ws of the wavelength to pass, then the wavelength is λι, and 2 Among the measuring plates of ..., λη, only the light monitoring signal with the wavelength of 2 can be transmitted to the optical splitter 〇2. Similarly, if the tunable filter Μ4 is adjusted to allow only the optical monitoring signal of the wavelength λ! to pass, then the optical monitoring signal ws of the λι in the optical monitoring nickname can be transmitted to the optical splitter. 102. As can be seen from the above, the passive optical network monitoring system of the present embodiment can select a specific wavelength of the light monitoring signal from the optical monitoring signal emitted by the broadband optical time domain reflection module 21 by the optical wavelength selection module 22〇. WS, , is passed to the user to monitor the fiber breakage. Moreover, the optical wavelength selection group 220 is controlled, for example, by a control module 260. The control module 260 controls the optical wavelength selection module 22 according to the light anti-200939656 radio number ws received by the broadband optical time domain reflection module 210. (The specificity is that the protection module 260 can be based on the broadband light. The time domain reflection module 21 is connected to the ""reflection signal WS, whether the state of the user terminal is disconnected or not occurs" and controls the wavelength selection module 220 when it is determined that the optical fiber of the user end is disconnected. The optical monitoring signal WS towel emitted by the broadband optical time domain reflection module 21 选择 selects an optical monitoring signal of an appropriate wavelength for transmission to further confirm the fiber break position. ❾ In this embodiment, the control module 260 is, for example, The waveform generating unit 262 and the comparing unit 264 are included, wherein the waveform generating unit 262 is used to establish a reference waveform, and the so-called "reference waveform" is simply completed in the passive optical network and is determined to be unbroken. In the case of the line, the optical monitoring signals ws sent by the broadband optical time domain reflection module 210 are respectively transmitted to the optical fiber 1各 of each user end, and then by the broadband optical time domain reflection module 21〇. The light reflection signal ws reflected by each of the optical fibers 101 is obtained by the waveform diagram generating unit 262 according to the energy generated by the energy of the light reflection signals. The reference waveform diagram of the embodiment is as shown in FIG. , where W2.....Wn is the reflected waveform of each light monitoring signal, and the point marked as S in the figure is the amount of attenuation generated by the signal at the position of the optical splitter 1〇2. The unit 262 can generate a reflection waveform according to the energy of the light reflection signal WS received by the broadband optical time domain reflection module 210. The comparison unit 264 is configured to compare the reflection waveform with the reference waveform. In detail, when the reflected waveform diagram does not coincide with the reference waveform diagram, the control module 260 controls the optical wavelength selection module 220 to switch the switching unit 222 to the second path CH2 and the adjustable filter 224 by 12 200939656. The adjustable chopper 224 is adjusted to allow the optical monitoring signal with the appropriate wavelength to pass. In other words, the control module 260 of the embodiment is based on the ratio of the reflected waveform to the reference waveform. As a result, the optical wavelength selection module 220 is controlled. It is worth mentioning that the control module 260 can be used to control the activation of the broadband optical time domain reflection module ❹ 210 in addition to the optical wavelength selection module 220. Specifically, in this embodiment, an optical power meter (not shown) configured by an additional configuration may be used to measure the transmission signal TS transmitted by the optical terminal terminal 103 received by each user terminal, and when the measured optical power amount is abnormal. The broadband optical time domain reflection module 21A is activated by the control module 260 to emit the light monitoring signal WS. Then, the subsequent operation of the system is used to find the actual disconnection position of the optical fiber. Please continue to refer to "Fig. 2" A filter 240 is coupled between the optical splitter 102 and each optical network unit, and the filter 240 only allows the optical monitoring signal having a certain wavelength to pass. For example, the filter 24 耦 coupled between the optical splitter 102 and the optical network unit ONU4 only allows the optical monitoring signal of the wavelength λ 1 to pass; the optical splitter 102 and the optical network unit ONU- The filter 24 between 2 only allows the light monitoring signal of wavelength 乂2 to pass. It is thus inferred that the filter 24 that is connected between the optical splitter 1〇2 and the optical network unit ONU η only allows the optical monitoring signal of the wavelength to pass. In particular, the passive optical network monitoring system of the present invention immediately monitors whether the optical fiber 13 200939656 101 in the optical network is disconnected when the passive optical network operates (5). In other words, the optical monitoring signal WS transmitted by the optical wavelength selection module 22 is transmitted to the optical splitter 102 via the optical fiber 101 simultaneously with the transmission signal TS sent by the optical path terminal 103, and then transmitted by the optical splitter 102. The signal TS and the monitoring signal ws are respectively sent to the optical network unit of each client. Therefore, the present invention further provides a plurality of optical wavelength couplers in the passive optical network monitoring system, so as to facilitate the transmission signal TS sent by the optical path terminal 103 and the optical monitoring signal transmitted by the optical wavelength selection module 220. After the WS is coupled, the coupled light is transmitted to the user end through the optical fiber 1〇1. In this embodiment, the optical wavelength coupler may be a wavelength division multiplexer (WDM) 270. In detail, the transmission signal ts sent by the optical path terminal 103 and the optical monitoring signal ws transmitted by the optical wavelength selection module 220 are first coupled via the wavelength division multiplexing multiplexer 270 to facilitate passage in the form of coupled light. Light splitter 102. Thereafter, the wavelength splitting multiplexer 27 is also used to split the coupled light passing through the optical splitter 102 into the transmission signal TS and the optical monitor signal WS. The wavelength division multiplexing multiplexer 270 distributes the optical monitoring signal WS to the optical fiber path to which the filter 240 is connected, and distributes the transmission signal TS to the optical fiber path to which the filter 240 is not coupled. In addition, in order to make the light reflection signal WS of the light monitoring signal WS more uniform and convenient for measurement, the passive optical fiber network monitoring system of the present invention may further include a light reflection module 250 for enhancing the third embodiment. The light reflection signal WS' of the signal WS is monitored by the light of the filter 240, as shown in "Fig. 3". In this embodiment, the light reflection module 250 is disposed at the same time as the optical network unit ONU-1, ONUI-2, ..., ONU-n at the 14 200939656 client, and each network unit corresponds to the light reflection. One light reflecting unit 252 of the module 25A. In order to make the present invention more familiar with the present invention, the operation of the passive optical network monitoring system of the present invention will be described below with reference to the drawings. Fig. 4 is a flow chart showing the steps of the passive optical network monitoring method of the present invention in the first embodiment. Referring to FIG. 2 and FIG. 4 simultaneously, a reference waveform diagram is first established by the waveform map generation unit 262 of the control module 260 (step 400), and then the wideband optical time domain reflection module 210 is used. A plurality of optical monitoring signals of different wavelengths are generated (step 41). At this time, since the preset position of the switching unit 222 in the optical wavelength selection module 220 is switched to be coupled to the first path CH1, the step 41 is issued. All of the optical monitoring signals are transmitted from the optical fiber 1〇1 to the optical splitter 1〇2. Then, the optical splitter 102 transmits the optical monitoring nicknames to the respective clients by the optical path of its branches. Here, since each of the user terminals and the optical splitter Q 1〇2 are provided with a filter 240, and each filter 240 allows only a single wavelength of the light monitoring signal WS to pass, each light monitoring signal WS will pass through Corresponding filters 240 are respectively transmitted to the optical fibers 101 coupled to the optical network unit ONIM, ONU-2, . . . , ONU-n (step 420). After that, the optical monitoring signals WS are transmitted to the optical network unit ONU-1, 〇nuI-2, ..., 〇NU-n ' via the optical fiber 1〇1 and reflect the light reflection signal ws' back to the broadband optical time domain. The reflection module 21 is received by the optical signal receiving unit 214 in the broadband optical time domain reflection module 210 (step 15 200939656 430). Then, based on the energy of these light reflecting signals ws, a reflection waveform is generated (step 440). The step 440 is performed, for example, by the waveform map generating unit 262 in the control module 260. In this embodiment, the optical signal receiving unit 214 is an optical power meter, so the wave generated by the step 44G may be a relationship between the distance and the dynamic range of the light reflecting signals. The "dynamic range" as used herein refers to the relative ratio between the emitted light power of the optical signal generating unit 212 and the end noise in the wide-band optical time domain reflection module 210, but the waveform generated by the present invention is not Limited to this. After generating the reflected waveform diagram, the reflected waveform diagram is compared with the reference waveform diagram established in step 4 (step 45A) to determine whether there are more than two reflection waveforms generated in step 440. The waveform is inconsistent with the reference waveform (step 460). The step 450 is performed, for example, by the comparison unit 264 in the control module 260. It should be noted that "Fig. 4" only shows a single monitoring process, and in this single monitoring process, when step 460 determines that the reflected waveform generated in step 440 has no more than two waveforms. When the reference waveform is inconsistent, the passive fiber network monitoring system will not perform the next steps. In practice, however, even if step 460 determines that no more than two waveforms in the reflected waveform pattern generated in step 44 are inconsistent with the reference waveform, the passive optical network monitoring system of the present invention continuously monitors the passive optical network continuously. . In the comparison result of step 450, if the reflected waveform diagram is completely consistent with the reference waveform diagram, it indicates that the passive optical network has no fiber breakage 16 200939656. In addition, if only one reflected waveform wA in the reflected waveform diagram does not coincide with the reference waveform diagram, as shown in "Fig. 6," it can be directly known that the optical monitoring signal of wavelength λ 1 is not successfully transmitted through the optical fiber 101. The optical network early ONU-1' is connected to the optical fiber 101 that is disconnected between the optical splitter 102 and the optical network unit ONU-1. Further, the actual disconnection position of the optical fiber 101 can be derived from the position of the reflected waveform WA on the reflected waveform map. The detailed technical content of the actual disconnection position of the optical fiber from the position of the reflected waveform on the map should be well known to those skilled in the art and will not be described herein. When two or more reflected waveforms in the reflected waveform diagram do not coincide with the reference waveform, the optical monitoring signals whose reflected waveforms are inconsistent with the reference waveforms are sequentially transmitted to the corresponding optical fibers 101 (step 470), and then the lights are sequentially received. The light reflection signal of the signal is monitored (step 480)' and the waveforms of the respective light reflections are generated in steps (step 490), and then compared with the reflection waveforms generated in step 44, to find each of the reflections. The position of the signal waveform on the reflected waveform (step 495), and thereby determining the actual disconnection position of each fiber. In this embodiment, when there are two or more reflected waveforms in the reflected waveform waveform that are inconsistent with the reference waveform, the optical wavelength selection module 220 can be controlled by the control module 26 to switch the switching unit 222. The second filter CH2 is coupled to the adjustable filter 224, and the adjustable chopper 224 is adjusted by the control module mo according to the comparison result generated in the step to perform step 470. For example, if the reflected waveform generated by step 440 is as shown in "17th 200939656 7" and it is known in step 450 that there are two reflected waveforms WA&Wb inconsistent with the reference waveform, And the optical fiber is disconnected between the optical splitter 102 and the optical network unit and the ONU-2, then the switching unit 222 in the optical wavelength selection module 22〇 can be switched to be coupled to the second configuration. The tunable filter 224 in path CH2 adjusts the tunable filter 224 such that only light monitoring signals having a wavelength of 2 are allowed to pass. Then, in step 490, the light reflection signal waveform of the light monitoring signal with the wavelength λ2 can be obtained, as shown in "8." Then, comparing "Fig. 8" with "Fig. 7", It is known that the reflected waveform WB in "Fig. 7" is the light reflection signal waveform of the wavelength monitoring signal of t2, and the optical fiber 1 between the optical splitter 1〇2 and the optical network unit 0NU-1 is judged by this. The actual disconnection position of 〇1. At this time, it can be known that the reflected waveform Wa in the "Fig. 7" is the light reflection signal waveform of the wavelength of the light monitoring signal, and the optical splitter 1 〇 2 and the optical network unit 0NU-2 The actual disconnection position of the optical fiber 1〇1 can also be derived from the position of the reflected waveform WA on the “Fig. 7”. Although only the example in the case where the two waveforms generated in the step 440 do not match the reference waveform pattern are described herein, those skilled in the art should be able to infer by themselves that the reflected waveform generated in step 44. If there are more than two waveforms in the figure that do not match the reference waveform diagram, then steps 470 to 495 are performed by the above example to know the actual disconnection position of each fiber. In summary, the present invention knows which of the optical fibers of the 200939656 are disconnected from the waveform reflected by the optical monitoring signal, and then sequentially transmits the optical monitoring signal whose reflected waveform and the reference waveform are inconsistent to the user. The optical fiber's and the reflected waveforms of the optical monitoring signals are generated in stages, and then the reflected waveforms are compared with the reflected waveforms to further distinguish the broken positions of the optical fibers of the respective users. Therefore, the problem that the conventional monitoring system can not quickly know the actual disconnection position of the optical fiber from the monitoring result when the two or more customer end fibers are disconnected at the same time can be solved, thereby achieving the fast and accurate provision of the relevant maintenance personnel fiber break. The effect of the line position. While the embodiments of the present invention are as described above, the above description is not intended to directly limit the scope of the invention. Any changes in the form and details of the embodiments may be made without departing from the spirit and scope of the invention. The scope of the invention is to be determined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1A is a block diagram showing the conventional monitoring of a passive optical network by an optical time domain reflectometer. Fig. 1B is a schematic diagram showing the comparison between the reflected waveform and the reference waveform received by the optical time domain reflectometer when the optical fiber of the single-end end of the conventional passive optical network is broken. FIG. 1C is a schematic diagram showing a comparison between a reflected waveform received by an optical time domain reflectometer and a reference waveform when a fiber of a plurality of users of a passive optical fiber network is disconnected. FIG. 2 is a first embodiment of the present invention. The passive fiber optic network age 200939656 test system is applied to a circuit block diagram in a passive optical network. Figure 3 is a block diagram showing the circuit of a passive optical network monitoring system in a passive optical network in a second embodiment of the present invention. Figure 4 is a flow chart showing the steps of the passive optical network monitoring method of the present invention in the first embodiment. Fig. 5 is a reference waveform diagram in the first embodiment of the present invention. Fig. 6 is a view showing a reflection waveform in the first embodiment of the present invention.

第7圖為本發明之第二實施例中的反射波形圖。 第8圖為本發明之第二實施例中波長為凡丨之光監測 訊號的光反射訊號波形圖。 【主要元件符號說明】 101 光纖 102 光分歧器 103 光路終端機 110 光時域反射儀 210 寬頻光時域反射模組 212 光訊號產生單元 214 光訊號接收單元 216 分光單元 220 光波長選擇模組 222 切換單元 224 可調式濾波器 240 濾波器 250 光反射模組 ❹ 20 200939656Fig. 7 is a reflection waveform diagram in the second embodiment of the present invention. Fig. 8 is a view showing the waveform of the light reflection signal of the light monitoring signal of the wavelength in the second embodiment of the present invention. [Major component symbol description] 101 Optical fiber 102 optical splitter 103 Optical path terminal 110 Optical time domain reflectometer 210 Broadband optical time domain reflection module 212 Optical signal generating unit 214 Optical signal receiving unit 216 Splitting unit 220 Optical wavelength selecting module 222 Switching unit 224 adjustable filter 240 filter 250 light reflecting module ❹ 20 200939656

252 光反射單元 260 控制模組 262 波形圖生成單元 264 比對單元 270 波長分波多工器(WDM) CHI 第一通路 CH2 第二通路 ONU-1 光網路單元 ONU-2 光網路單元 ONU-n 光網路單元 R 參考波形 R1 反射波形 R2 反射波形 S 訊號衰減量 TS 光傳輸訊號 WS 光監測訊號 WS, 光反射訊號 W! 反射波形 W2 反射波形 w3 反射波形 WA 反射波形 Wb 反射波形 Wn 反射波形 步驟400 建立參考波形圖 21 200939656 步驟410發出多個不同波長的光監測訊號 步驟42G分職各光監測滅傳送執接於一光網 路單元的光纖内 步驟430接收各光監測訊號的光反射訊號 步驟440依據這些光反射訊號的能量,生成一反射 波形圖 步驟450將此反射波形圖與參考波形圖進行比對 步驟460反射波形圖中是否有兩個以上的波形與參 考波形圖不一致 步驟470依次傳送反射波形與參考波形圖不一致的 光監測訊號至其所對應之光纖 步驟480依次接收這些光監測訊號的光反射訊號 步驟490分次生成各光反射訊號之波形 步驟495與反射波形圖進行比對,以找出各反射訊 號之波形在反射波形圖上的位置252 Light reflection unit 260 Control module 262 Waveform generation unit 264 Comparison unit 270 Wavelength division multiplexer (WDM) CHI First path CH2 Second path ONU-1 Optical network unit ONU-2 Optical network unit ONU- n Optical network unit R Reference waveform R1 Reflection waveform R2 Reflection waveform S Signal attenuation amount TS Optical transmission signal WS Optical monitoring signal WS, Light reflection signal W! Reflection waveform W2 Reflection waveform w3 Reflection waveform WA Reflection waveform Wb Reflection waveform Wn Reflection waveform Step 400: Establishing a reference waveform FIG. 21 200939656 Step 410 is to emit a plurality of optical monitoring signals of different wavelengths. Step 42G is divided into optical fibers. The optical transmission is performed in an optical fiber unit connected to an optical network unit. Step 430 receives light reflection signals of the optical monitoring signals. Step 440 generates a reflected waveform according to the energy of the light reflecting signals. Step 450 compares the reflected waveform with the reference waveform. Step 460: Whether there are two or more waveforms in the reflected waveform and the reference waveform are inconsistent. Transmitting the optical monitoring signal whose reflected waveform is inconsistent with the reference waveform to its corresponding Step 480 sequentially receives these fiber optical supervisory signals reflected signal light 490 divided step waveform is generated in step 495 of each of the reflected signal light and the reflection waveform diagram for comparison, waveforms of the reflection to identify the position of the information on the number of the reflected waveform of FIG.

22twenty two

Claims (1)

200939656 十、申請專利範圍: 1. 一種被動式光纖網路監測系統,適於監測一被動式光 纖網路,該被動式光纖網路包括多條光纖、一光路終 端機、一光分歧器與多個光網路單元,該系統包括·· 一寬頻光時域反射模組,透過該些光纖而耦接至 該光分歧器,用以發出多個不同波長之光監測訊號以 及接收該些光監測訊號的光反射訊號; & 多個遽波器,耗接於該光分歧器與該些光網路單 元之間,各該濾波器用以允許該些光監測訊號其中之 一通過; 一光波長選擇模組,耦接於該寬頻光時域反射模 組與該光分歧器之間,用以允許該些光監測訊號至少 其中之一通過;以及 控制換組,用以依據該寬頻光時域反射模組所 接收到的該些光反射訊號控制該光波長選擇模組。 Q 2.如申請專利範圍第1項所述之被動式光纖網路監測系 統,其中該寬頻帶光時域反射模組包括: 一光訊號產生單元,用以發出該些光監測訊號; 以及 一光訊號接收單元’用以接收該些光反射訊號。 3. 如申請專利範圍第2項所述之被動式光纖網路監測系 統,其中該光訊號產生單元為自發性放射頻譜 (amplified spontaneous emission,ASE)光源。 4. 如申請專利範圍第2項所述之被動式光纖網路監測系 23 200939656 統’其中該光訊號接收單元為一光功率計。 5. 如申清專利範圍第1項所述之被動式光纖網路監測系 統’其中該光波長選擇模組包括: 多個切換單元’該些切換單元之一端是分別耦接 至該寬頻光時域反射模組及該光分歧器,另一端則是 分別在一第一通路與一第二通路之間作切換;以及200939656 X. Patent application scope: 1. A passive optical network monitoring system suitable for monitoring a passive optical network including multiple optical fibers, an optical terminal, an optical splitter and multiple optical networks. The circuit unit includes a broadband optical time domain reflection module coupled to the optical splitter through the optical fibers for emitting a plurality of optical monitoring signals of different wavelengths and receiving the optical monitoring signals a plurality of choppers, between the optical splitter and the optical network unit, each of the filters for allowing one of the optical monitoring signals to pass; an optical wavelength selection module And being coupled between the broadband optical time domain reflection module and the optical splitter to allow at least one of the optical monitoring signals to pass; and controlling the switching to be used according to the broadband optical time domain reflective module The received light reflection signals control the optical wavelength selection module. The passive optical fiber network monitoring system of claim 1, wherein the broadband optical time domain reflection module comprises: an optical signal generating unit for transmitting the optical monitoring signals; and a light The signal receiving unit ' is configured to receive the light reflection signals. 3. The passive optical network monitoring system of claim 2, wherein the optical signal generating unit is an autonomously emitted spectrum (ASE) source. 4. The passive optical fiber network monitoring system described in claim 2, wherein the optical signal receiving unit is an optical power meter. 5. The passive optical network monitoring system as described in claim 1, wherein the optical wavelength selection module comprises: a plurality of switching units, wherein one of the switching units is coupled to the broadband optical time domain respectively The reflective module and the optical splitter are respectively switched between a first path and a second path; 一可調式濾波器,配置在該第二通路中而與該些 切換單元耦接,用以允許該些光監測訊號至少其中之 一通過; 其中當該些切換單元切換至耦接於該第二通路 時’該可調式濾波器之兩端分別耦接至該寬頻光時域 反射模組及該光分歧器。 6. 如申請專利範圍第1項所述之被動式光纖網路監測系 統,其中該控制模組更包括: 一波形圖生成單元,用以建立一參考波形圖,以 及依據該些光反射訊號之能量生成一反射波形圖;以 及 一比對單元,用以將該反射波形圖與該參考波形 圖進行比對; 其中該控制模組是依據該反射波形圖與該參考波 形圖的比對結果來控制該光波長選擇模組,以找出該 些光反射訊號之波形在該反射波形圖上的位置。 7.如申請專利範圍第1項所述之被動式光纖網路監測系 統,其中該控制模組更包括用以控制該寬頻光時域反 24 200939656 射模組的啟動與否。 8. 如申請專利範圍第1項所述之被動式光纖網路監測系 統,更包括一光反射模組,耦接於該些濾波器,用以 反射通過各該濾波器之該些光監測訊號。 9. 如申請專利範圍第1項所述之被動式光纖網路監測系 統,更包括多個光耦合器,其中該光路終端機所發出 之一光傳輸说號與該寬頻光時域反射模組所發出之該 些光監/則sfl號係經由該些光搞合器而傳遞至該些光 纖。 10. 如申請專利範圍第9項所述之被動式光纖網路監測系 統’其中該些光耦合器為波長分波多工器。 11. 一種被動式光纖網路監測方法’適於監測·一被動式光纖 網路’該被動式光纖網路包括多條光纖、一光路終端 機、光分歧器與多個光網路單元,該方法包括下列步 驟: 建立一參考波形圖; 發出多個不同波長之光監測訊號; 將各該光監測訊號傳送至耦接於該些光網路單元 的該些光纖其中之一内; 接收該些光監測訊號的光反射訊號; 依據該些光反射訊號的能量,生成一反射波形 圖;以及 將該反射波形圖與該參考波形圖進行比對,其中 當該反射波形圖中至少二波形與參考波形圖不一致 25 200939656 時,進行下列步驟: 依次傳送反射波形與參考波形圖不一致之該 些光監測訊號至該些光纖; 依次接收該些光監測訊號的光反射訊號; 分次生成各該光反射訊號之波形;以及 將各該光反射訊號的波形與該反射波形圖進 行比對,以找出各該反射訊號之波形在該反射波 形圖上的位置。 12.如申請專利範圍第11項所述之被動式光纖網路監測方 法,其中在依次傳送反射波形與參考波形不一致之該 些光監測訊號至該些光纖的步驟中,包括使用一可調 式濾波器來限定該些光監測訊號依次通過。An adjustable filter is disposed in the second path and coupled to the switching units to allow at least one of the optical monitoring signals to pass through; wherein when the switching units are switched to be coupled to the second The two ends of the adjustable filter are respectively coupled to the broadband optical time domain reflection module and the optical splitter. 6. The passive optical network monitoring system of claim 1, wherein the control module further comprises: a waveform generating unit for establishing a reference waveform and the energy of the light reflecting signals Generating a reflection waveform diagram; and a comparison unit for comparing the reflection waveform diagram with the reference waveform diagram; wherein the control module is controlled according to a comparison result between the reflection waveform diagram and the reference waveform diagram The optical wavelength selection module is configured to find a position of the waveform of the light reflection signals on the reflection waveform. 7. The passive optical network monitoring system of claim 1, wherein the control module further comprises: controlling the activation of the broadband optical time domain anti-2009. 8. The passive optical network monitoring system of claim 1, further comprising a light reflecting module coupled to the filters for reflecting the light monitoring signals passing through the filters. 9. The passive optical network monitoring system according to claim 1, further comprising a plurality of optical couplers, wherein the optical transmission terminal emits an optical transmission number and the broadband optical time domain reflection module The light monitors/sfls that are issued are transmitted to the optical fibers via the optical combiners. 10. The passive optical network monitoring system of claim 9, wherein the optical couplers are wavelength division multiplexers. 11. A passive optical network monitoring method 'suitable for monitoring · a passive optical network' comprising a plurality of optical fibers, an optical path terminal, an optical splitter and a plurality of optical network units, the method comprising the following Step: establishing a reference waveform diagram; emitting a plurality of optical monitoring signals of different wavelengths; transmitting the optical monitoring signals to one of the optical fibers coupled to the optical network units; receiving the optical monitoring signals a light reflection signal; generating a reflection waveform according to the energy of the light reflection signals; and comparing the reflection waveform with the reference waveform, wherein at least two waveforms in the reflection waveform are inconsistent with the reference waveform 25 200939656, the following steps are performed: sequentially transmitting the optical monitoring signals in which the reflected waveform and the reference waveform are inconsistent to the optical fibers; sequentially receiving the optical reflected signals of the optical monitoring signals; and generating the waveforms of the optical reflected signals in stages And comparing the waveform of each of the light reflection signals with the reflection waveform to find each of the reflections Position waveform in the number of reflected waveform of FIG. 12. The passive optical network monitoring method according to claim 11, wherein the step of sequentially transmitting the optical monitoring signals inconsistent with the reference waveform to the optical fibers comprises using a tunable filter To limit the passage of the light monitoring signals. 2626
TW097108589A 2008-03-11 2008-03-11 System and method for monitoring passive optical network TW200939656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097108589A TW200939656A (en) 2008-03-11 2008-03-11 System and method for monitoring passive optical network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097108589A TW200939656A (en) 2008-03-11 2008-03-11 System and method for monitoring passive optical network

Publications (1)

Publication Number Publication Date
TW200939656A true TW200939656A (en) 2009-09-16

Family

ID=44867774

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097108589A TW200939656A (en) 2008-03-11 2008-03-11 System and method for monitoring passive optical network

Country Status (1)

Country Link
TW (1) TW200939656A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI474635B (en) * 2012-02-08 2015-02-21 Broadcom Corp An optical line terminal (olt) for performing in-band and out-band otdr measurements

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI474635B (en) * 2012-02-08 2015-02-21 Broadcom Corp An optical line terminal (olt) for performing in-band and out-band otdr measurements

Similar Documents

Publication Publication Date Title
CN102244538B (en) System and method for detecting sub-optical fibers, ODN (optical distribution network) and optical splitter
EP3282242B1 (en) Optical time-domain reflectometer
KR101352715B1 (en) Passive optical netwok(pon) in-band optical time domain peflectometer(otdr)
CA2809318C (en) Method and system for detecting fiber fault in passive optical network
JP4324581B2 (en) Optical fiber condition monitoring device and method in optical network
CN105451840B (en) A kind of optical time domain reflectometer realization device and system
WO2012024982A1 (en) System and method for detecting fiber failure
JPH07303266A (en) Optical communication network
JP2004023300A (en) Gain shape measuring method and system therefor, and gain shape adjusting method and system therefor
US20140072296A1 (en) Method and a system for physical layer monitoring in passive optical networks
WO2013097785A1 (en) Optical fiber fault detection method and device
JP4797102B2 (en) Optical network monitoring system and method
WO2021035487A1 (en) Method for determining connection of optical network terminals, apparatus and system
GB2516368A (en) Optical network fault location and identification
JP2015070358A (en) Optical line fault detection device and optical line fault detection method
TW200939656A (en) System and method for monitoring passive optical network
WO2013082771A1 (en) Optical fiber link detection method, optical line terminal, and passive optical network system
CN101540636A (en) Passive fiber network monitoring system and method
EP1578039A1 (en) Device and method for real-time optical network monitoring
CN105337660A (en) Methods for monitoring drop fiber link fault in TDM/TWDM-PON system and apparatuses
JP4819165B2 (en) Optical communication system and monitoring method thereof
Willner et al. Optical characterization, diagnosis, and performance monitoring for PON
KR102657364B1 (en) Method, apparatus and system for determining connectivity of optical network terminals
WO2024051286A1 (en) Method, apparatus and system for determining optical access network topology
WO2022195724A1 (en) Optical line test system, optical line test method, operation terminal device, and program