WO2012113301A1 - 光开关系统和信号光的反馈控制方法 - Google Patents

光开关系统和信号光的反馈控制方法 Download PDF

Info

Publication number
WO2012113301A1
WO2012113301A1 PCT/CN2012/071151 CN2012071151W WO2012113301A1 WO 2012113301 A1 WO2012113301 A1 WO 2012113301A1 CN 2012071151 W CN2012071151 W CN 2012071151W WO 2012113301 A1 WO2012113301 A1 WO 2012113301A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal light
output
light
input
optical
Prior art date
Application number
PCT/CN2012/071151
Other languages
English (en)
French (fr)
Inventor
王世军
温运生
赵峻
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2012113301A1 publication Critical patent/WO2012113301A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3502Optical coupling means having switching means involving direct waveguide displacement, e.g. cantilever type waveguide displacement involving waveguide bending, or displacing an interposed waveguide between stationary waveguides
    • G02B6/3504Rotating, tilting or pivoting the waveguides, or with the waveguides describing a curved path
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • G02B6/3518Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror the reflective optical element being an intrinsic part of a MEMS device, i.e. fabricated together with the MEMS device

Definitions

  • the present invention relates to optoelectronic technology, and more particularly to an optical switch system and a feedback control method for signal light.
  • BACKGROUND OF THE INVENTION With the rapid development of Fiber To Home (FTTH) technology, the market scale is huge, and the end users and optical link branches involved in the access network are complexly distributed, and the entire network adopts all-fiber cabling. It is impossible to use electrical signals for monitoring and operation and maintenance. Therefore, it is necessary to use an optical link detection system to monitor network maintenance to ensure network quality.
  • the optical time domain Ref lectometer hereinafter referred to as OTDR
  • OTDR optical time domain Ref lectometer
  • a feedback mechanism is usually added in the optical switch system to ensure that the optical switch is selected in accordance with the factory-set parameters, thereby ensuring that the optical switch does not change its optical performance after a certain period of operation.
  • a coupler Tip
  • PD photodetector
  • FIG. 1 a feedback structure diagram of a mechanical optical switch in the prior art is mainly shown. Tap and PD are set on the input and output fibers to detect whether the optical energy of the entire optical path meets the design requirements. When the actual situation and the requirements are inconsistent, the feedback module notifies the control module to continue to adjust the optical path to select the optimal optical path.
  • Embodiments of the present invention provide an optical switch system and a feedback control method for signal light, which achieves accurate positioning of the entire optical path in a large branch optical switch, and reduces cost cost.
  • an embodiment of the present invention provides an optical switch system including an input optical fiber, an output optical fiber, and a light output control module, wherein an end surface of the output optical fiber is coated with a reflective film, and the optical switch system further includes a coupler. a photodetector, a judging module and a control module, wherein the coupler is connected to the input fiber, wherein:
  • the reflective film is configured to perform a reflection process on the signal light outputted by the light output control module to the output fiber, and reflect the reflected output signal light path back to the coupler;
  • the coupler is configured to perform spectroscopic processing on the output signal light, and extract a first preset ratio of signal light from the output signal light to the photodetector;
  • the determining module is configured to compare the light energy of the output signal light detected by the photodetector with the light energy of the initially acquired input signal light, and generate a determination result, where the determination result is the output signal light The ratio of the light energy to the light energy of the input signal light;
  • the control module is configured to control, when the determination result is that the ratio of the light energy of the output signal light to the light energy of the input signal light is not less than an upper limit threshold or not greater than a lower limit threshold, controlling the output of the light output control module The light path is adjusted;
  • the light output module is configured to output an optimal optical path under the control of the control module.
  • the embodiment of the invention provides a feedback control method for signal light, including:
  • the output optical path is adjusted to output an optimal optical path.
  • the optical switch system and the signal light feedback control method provided by the embodiments of the present invention can realize the signal outputted to the optical switch system by providing a reflective film on the end surface of the output fiber and providing a coupler connected to the input optical fiber.
  • the feedback control of the light, and the output control module of the optical switch system is adjusted and controlled according to the feedback result to determine the optimal optical path of the optical switch; this embodiment can achieve accurate positioning of the entire optical path in the large branch than the optical switch, compared with
  • the prior art greatly reduces the cost cost and reduces the influence of feedback control on the optical performance of the optical switching system.
  • FIG. 1 is a schematic diagram of a feedback structure of a mechanical optical switch in the prior art
  • Embodiment 1 of an optical switch system according to the present invention is a schematic structural view of Embodiment 1 of an optical switch system according to the present invention.
  • FIG. 3 is a schematic diagram showing the working principle of the optical switch in the second embodiment of the optical switch system of the present invention
  • FIG. 4 is a schematic diagram showing the working principle of the optical switch in the third embodiment of the optical switch system according to the present invention
  • FIG. 6 is a schematic diagram showing the working principle of the optical switch in the fifth embodiment of the optical switch system according to the present invention
  • FIG. 7 is a schematic diagram showing the working principle of the optical switch in the sixth embodiment of the optical switch system according to the present invention
  • Embodiment 1 of the optical switch system of the present invention is a schematic structural diagram of Embodiment 1 of the optical switch system of the present invention.
  • the embodiment provides an optical switch system, which can be specifically applied to a mechanical optical switch, and can also be applied to The electromechanical system (hereinafter referred to as MEMS) type light-emitting, which may specifically include an input fiber 1, an output fiber 2, and a light output control module 3.
  • the end surface of the output fiber 2 is plated with a reflective film.
  • the optical switch system provided in this embodiment may further include a coupler 4, a photodetector 5, a judging module 6, and a control module 7 connected in sequence.
  • only one coupler 4 may be included, and the coupler 4 is connected to the input fiber 1, instead of the prior art, the coupler is disposed on the input fiber and the output fiber, and the coupler 4 is set at the input.
  • the channel on which the optical fiber 1 is located will be described as an example.
  • the reflection film disposed on the output fiber 2 is used for reflecting the signal light output from the light output control module 3 to the output fiber 2, and reflecting the reflected output signal light path back to the coupler 4.
  • the signal light reflected by the reflective film may be a laser for testing the optical path, or may be a service light. When it is a service light, only a small portion of the service light is reflected.
  • the coupler 4 is configured to perform spectroscopic processing on the output signal light reflected by the reflective film, and extract a first preset ratio of signal light from the output signal light, and the first preset ratio may be set to 5%, that is, the extracted output
  • a small portion of the signal light is input to the photodetector 5.
  • the photodetector 5 is used to detect the light energy of the output signal light extracted by the coupler 4, and after detecting the light energy of a small portion of the output signal light, it is output to the judging module 6.
  • the judging module 6 is configured to use the light energy of the output signal light detected by the photodetector 5 and the light of the initially acquired input signal light The energy is compared, that is, compared with the initial value of the signal light when inputting the optical switch system, and the judgment result is the ratio of the light energy of the output signal light to the light energy of the input signal light, and the comparison judgment result is sent to the control module. 7.
  • the control module 7 is configured to control the light output control module 3 according to the determination result.
  • the control light output control module 3 adjusts the output optical path.
  • the optical output control module 3 is configured to output an optimal optical path under the control of the control module 7.
  • the upper threshold and the lower threshold in this embodiment may be specifically set according to actual conditions. For example, the upper threshold may be set to 1. 1 .
  • the lower threshold is set to 0.9.
  • the optimal optical path here is to adjust the optical path of the output signal so that the energy of the output signal light is consistent with the energy of the input signal light, or the difference between the two is controlled to one.
  • the ratio of the light energy of the output signal light to the light energy of the input signal light is within a range that is less than the upper threshold and greater than the lower threshold.
  • the input signal light first enters the input optical fiber 1, and is subjected to control processing by the optical output control module 3, and the signal light is output to the output optical fiber 2, and is reflected by the reflective film disposed on the end face of the output optical fiber 2.
  • the original path is reflected into the coupler 4 connected to the input optical fiber 1, the coupler 4 splits the reflected output signal light, and extracts a small part of the input into the photodetector 5, the photodetector 5 Outputting the detected light energy of the output signal light to the determining module 6, and comparing the light energy of the output signal light with the light energy of the input signal light by the determining module 6, and transmitting the determination result to the control module 7, by the control module 7
  • the light output control module 3 is controlled according to the judgment result to determine the optimal optical path of the optical switch.
  • the light output control module 3 in this embodiment may include a movable member.
  • the control module 7 is specifically configured to: when the determination result is that the ratio of the light energy of the output signal light to the light energy of the input signal light is not less than an upper limit threshold or not greater than a lower limit threshold, a rotation angle of the movable component Make adjustments until the rotation angle is adjusted and output The ratio of the optical energy of the output signal light of the optical path to the optical energy of the input signal light is less than the upper threshold and greater than the lower threshold to determine an optimal optical path of the optical switch.
  • the photodetector 5 in this embodiment may specifically include a microlens array, a large lens, and a microelectromechanical system mirror.
  • the control module 7 is specifically configured to: when the result of the determination is that the ratio of the light energy of the output signal light to the light energy of the input signal light is not less than an upper limit threshold or not greater than a lower limit threshold, the rotation angle of the electromechanical system mirror is performed. Adjusting until the ratio of the light energy of the output signal light of the optical path outputted to the optical path and the light energy of the input signal light after adjusting the rotation angle is less than the upper limit threshold and greater than the lower limit threshold to determine an optimal optical path of the optical switch.
  • the embodiment provides an optical switch system. By providing a reflective film on the end surface of the output fiber and only providing a coupler connected to the input fiber, feedback control of the signal light outputted by the optical switch system can be realized, and The feedback result adjusts and controls the output control module of the optical switch system to determine the optimal optical path of the optical switch.
  • This embodiment can achieve accurate positioning of the entire optical path in the large branch ratio optical switch, which is greatly reduced compared with the prior art.
  • the cost cost reduces the impact of feedback control on the optical performance of the optical switching system.
  • the optical switch system in this embodiment is specifically applied to a MEMS optical switch, which is a 1*N MEMS optical switch.
  • the light output control module 3 specifically includes a microlens array 31, a large lens 32, and a MEMS mirror 33, and the input fiber and the output fiber constitute an optical fiber array.
  • the optical fiber array in this embodiment is a fiber group that is arranged according to certain rules and requirements, that is, a fiber group that satisfies a certain spacing requirement.
  • the fiber located at the center is an input fiber, and the rest is an output fiber.
  • the microlens array 31 is composed of a plurality of minute lenses, and the diameter of the minute lenses is usually less than 1 ⁇ , and each of the minute lenses corresponds to each of the fiber channels.
  • the optical fiber array and the lens array in this embodiment may be a one-dimensional array or a two-dimensional array.
  • the MEMS mirror is deflected in two directions.
  • the large lens 32 is a general optical lens, which may be a single lens or lens group, or a spherical or aspheric lens.
  • MEMS mirror 33 is made using MEMS technology. An electronic chip that rotates by controlling the mirror surface on the chip by voltage, current, or other parameters.
  • the optical path in the middle of the optical fiber array is the input end, and the input signal light passes through the microlens array and the large lens, and then is directed to the center of the MEMS mirror; then the signal light is output by controlling the rotation angle of the MEMS mirror.
  • the output signal light is converted into parallel light by a large lens, and then shaped and contracted by a lens in the microlens array, and finally enters the optical fiber at a specific output end, thereby realizing the optical path selection of the 1*N optical switch.
  • the optical switch system may include a built-in laser source (hereinafter referred to as LD) 8 and a combiner 9, a built-in laser light source 8 for outputting a laser, and a combiner 9 for outputting the laser light of the LD 8. Input to the input fiber.
  • the combiner 9 can be a three-port wavelength division multiplexer (WDM) or other passive optical device such as a circulator.
  • the input signal light of the optical switch system in this embodiment may include a laser having a non-operating wavelength for testing the optical switch system, and the reflective film plated on the output fiber is matched with the non-working wavelength of the laser, specifically only The laser performs a reflection process to reflect the original laser path outputted to the output fiber back into the coupler 4 without reflecting the business light.
  • the photodetector PD 5 in this embodiment may be specifically an output photodetector, that is, only one PD is disposed in this embodiment, and the coupler 4 may be specifically a 1:2 unequal ratio coupler.
  • the coupler 4 is specifically configured to perform spectroscopic processing on the output signal light entering the coupler, extract a first predetermined proportion of the signal light from the output signal light, and input the extracted signal light into the output photodetector.
  • the first preset ratio here can be set to 5%.
  • the output photodetector is specifically used for detecting the energy of the signal light input thereto.
  • the LD when the optical switch starts to work up, the LD outputs laser light, and the laser light is input into the input fiber through the combiner, and then passes through the microlens and the large lens in the microlens array corresponding to the fiber channel of the input fiber.
  • the processing is incident on the MEMS mirror, and the MEMS mirror is initially set to its deflection angle. After being reflected by the MEMS mirror, the laser is output to the corresponding output fiber at a specific angle, and then reflected by the reflective film plated on the end face of the output fiber, and returned to the input light through the original path.
  • Fiber this embodiment connects the coupler on the input fiber, and the reflected light reaches the coupler.
  • the coupler splits the output signal light reflected back from the reflective film to extract a small portion (such as
  • the PD After the splitting process of the coupler, a small portion of the light is extracted to reach the PD, and the PD detects the light energy of the extracted light, and transmits the detected light energy of the output signal light to the judging module.
  • the judging module compares the optical energy of the output signal light detected by the PD with the light energy of the input signal light to determine whether it is necessary to correct the deflection angle of the MEMS mirror at present; when the detected light energy of the output signal light and the input signal light When the light energy is not equal, and the deviation is large, it indicates that the deflection angle needs to be corrected. Otherwise, the optical switch is in a stable working state, and there is no need to adjust the rotation angle of the MEMS.
  • the determining module may specifically generate a determination result according to the comparison process, and the determination result is a ratio of the light energy of the output signal light to the light energy of the input signal light, and the determination result is sent to the control module, and the control module controls the deflection of the MEMS mirror according to the determination result. Specifically, when the ratio of the two is not less than the upper limit threshold or not greater than the lower limit threshold, the deflection angle of the MEMS mirror is adjusted, and the above process is further repeated to obtain the judgment result after the deflection until the light energy of the output signal light and the input signal light are output. When the ratio of the light energy is less than the upper threshold and greater than the lower threshold, it is finally determined that the optical path of the optical switch is optimal at this time.
  • the embodiment provides an optical switch system, which can realize feedback control of the signal light outputted by the optical switch system by providing a reflective film on the end face of the output fiber and being disposed on the coupler connected to the input fiber, and according to the feedback As a result, the output control module of the optical switch system is adjusted and controlled to determine the optimal optical path of the optical switch.
  • This embodiment can accurately position the entire optical path in the large branch ratio optical switch, which greatly reduces the cost compared with the prior art. At the cost, the effect of feedback control on the optical performance of the optical switching system is reduced.
  • the embodiment provides an optical switch system, which is based on the above-mentioned embodiment of FIG.
  • the photodetector can be set to two, that is, the input photodetector 51 and the output photodetector 52, and the coupler 4 is specifically a 2:2 unequal ratio coupler.
  • the coupler 4 is specifically configured to enter the input signal light a line splitting process, extracting a first preset ratio of signal light from the input signal light to the input photodetector 51; the coupler 4 is further configured to perform spectroscopic processing on the obtained output signal light, and extract the output signal light
  • the signal light of the first predetermined ratio is input to the output photodetector 52.
  • the input photodetector 51 is for detecting the light energy of the input signal light
  • the output photodetector 52 is for detecting the light energy of the output signal light.
  • the judging module 6 is configured to obtain the energy of the input signal light and the output signal light respectively detected by the input photodetector 51 and the output photodetector 52, compare the energy detected by the two PDs, and generate energy of the input signal light.
  • the control module 7 is configured to control the rotation angle of the MEMS mirror when the ratio of the light energy of the output signal light to the light energy of the input signal light is not less than the upper limit threshold or not greater than the lower limit threshold, until the two PDs are detected.
  • the optical path of the optical switch is finally determined to be optimal.
  • the input light is spectrally processed and the energy is detected to accurately obtain the input information in real time, thereby improving the accuracy of the provided feedback information.
  • FIG. 5 is a schematic diagram showing the working principle of the optical switch in the fourth embodiment of the optical switch system according to the present invention.
  • the embodiment provides an optical switch system based on the embodiment shown in FIG. 3 above.
  • the photodetectors can be set to two, that is, the input photodetector 51 and the output photodetector 52, and two couplers, that is, the input coupler 41 and the output coupler 42 can also be disposed correspondingly.
  • the input coupler 41 is specifically configured to perform spectroscopic processing on the acquired input signal light, extract a first preset ratio of signal light input from the input signal light to the input photodetector 51, and the output coupler 42 is specifically configured to output the signal light.
  • the input photodetector 51 is for detecting the light energy of the input signal light
  • the output photodetector 52 is for detecting the light energy of the output signal light.
  • the judging module 6 is configured to obtain the energy of the input signal light and the output signal light respectively detected by the input photodetector 51 and the output photodetector 52, compare the energy detected by the two PDs, and generate energy of the input signal light. The ratio of the energy to the output signal light.
  • the control module 7 is configured to rotate the MEMS mirror when the ratio of the light energy of the output signal light to the light energy of the input signal light is not less than an upper threshold or not greater than a lower threshold. The angle is controlled until the energy ratio of the two PD probes is less than the upper threshold and greater than the lower threshold, and finally the optical path of the optical switch is determined to be optimal.
  • the input light is spectrally processed and the energy is detected to accurately obtain the input information in real time, thereby improving the accuracy of the provided feedback information.
  • FIG. 6 is a schematic diagram of the working principle of the optical switch in the fifth embodiment of the optical switch system of the present invention.
  • the embodiment provides an optical switch system, and the optical switch system in this embodiment is the same as FIG. 4 or FIG. Compared with the embodiment shown in FIG. 5, it is not necessary to provide an LD and a combiner.
  • the input signal light of the optical switch system in this embodiment may include service light having a working wavelength, a reflective film coated on the output fiber, and a working wave of the service light. Long-phase matching, specifically for reflecting the MEMS mirror to the output light of the output fiber, the second predetermined proportion of the signal light is reflected back to the coupler, where the second preset ratio can be specifically set according to the actual situation.
  • the premise of not affecting the normal operation of the business light can also be set to 1%.
  • the input service light passes through the 2:2 coupler 4, and a small portion of the service light (such as 5%) is output from the coupler 4 to the input photodetector 51, and Most of the business light passes through the optical switch and reaches the output.
  • a small portion of the business light is reflected back to the optical switch, and most of the light is output from the output terminal.
  • a small portion of the business light reflected by the reflective film is subjected to the spectroscopic processing of the coupler 4, and a small portion of the light (e.g., 5%) is extracted therefrom and output to the output photodetector 52.
  • the input photodetector 51 and the output photodetector 52 respectively detect the energy of the service light input thereto, and transmit the detected energy to the judging module 6.
  • the judging module 6 obtains the energy of the input signal light and the output signal light respectively detected by the input photodetector 51 and the output photodetector 52, compares the energy detected by the two PDs, and generates energy and output signals of the input signal light. The ratio of the energy of light.
  • the control module 7 is configured to control the rotation angle of the MEMS mirror according to the energy ratio generated by the determination module 6, until the energy ratio of the two PD detections is maximum, and finally determine the optical path of the optical switch to be optimal.
  • the embodiment provides an optical switch system, which is specifically applied to a MEMS optical switch.
  • the signal light outputted to the optical switch system can be realized by providing a reflective film on the end surface of the output optical fiber and a coupler connected to the input optical fiber.
  • Feedback control and based on the feedback results, the output control of the optical switch system
  • the module performs adjustment control to determine the optimal optical path of the optical switch.
  • This embodiment can achieve accurate positioning of the entire optical path in the large branch ratio optical switch, which greatly reduces the cost cost and reduces the feedback control pair compared with the prior art.
  • the optical performance of the optical switching system is specifically applied to a MEMS optical switch.
  • FIG. 7 is a schematic diagram of the working principle of the optical switch in the sixth embodiment of the optical switch system of the present invention.
  • the embodiment provides an optical switch system.
  • the optical switch system in this embodiment is specifically applied to mechanical light.
  • Switch which is a 1*N mechanical optical switch.
  • the light output control module specifically includes a movable component 34.
  • the control module 7 in this embodiment is specifically configured to control the rotation angle of the movable component 34 according to the determination result of the determination module 6 to determine The best light path for the optical switch.
  • the rotation angle of the movable collimator is adjusted to be aligned with a specific output fiber of the N collimators, and then the input signal light is output to the output optical fiber, thereby realizing 1 * Optical path selection of N optical switch.
  • the input signal light of the optical switch system may be laser or service light.
  • the optical switching system may also include a built-in laser light source 8 and a combiner 9.
  • a reflection film is plated on the end face of the output fiber, and the reflection film is matched with the non-operating wavelength of the laser light, and only the laser light is reflected, and the laser original path outputted to the output fiber is reflected back to the coupler 4.
  • the input signal light is the service light with the working wavelength
  • the reflective film plated on the output fiber matches the working wavelength of the service light, specifically for reflecting the MEMS mirror to the service light of the output fiber.
  • the second predetermined proportion of the signal light path is reflected back into the coupler.
  • a PD can be set to detect only the energy of the output signal light, and a 1:2 unequal ratio coupler can be set accordingly.
  • two PDs can also be set, respectively. The energy of the signal light and the output signal light are detected, and a 2:2 unequal ratio coupler can be set accordingly.
  • the embodiment provides an optical switch system, which is specifically applied to a mechanical optical switch.
  • a reflective film on an end face of the output fiber and a coupler connected to the input fiber, the pair can be realized.
  • the feedback control of the signal light outputted by the optical switch system, and the output control module of the optical switch system is adjusted and controlled according to the feedback result to determine the optimal optical path of the optical switch; this embodiment can realize the entire optical path in the large branch ratio optical switch
  • the precise positioning reduces the cost cost compared to the prior art and reduces the influence of feedback control on the optical performance of the optical switching system.
  • FIG. 8 is a flowchart of an embodiment of a feedback control method for signal light according to the present invention.
  • the embodiment provides a feedback control method for signal light, and the method is applied to the above-mentioned FIG. 2 to FIG.
  • the optical switch system it will not be described here.
  • the optical switch system includes an input optical fiber, an output optical fiber, a light output control module, a coupler connected to the input optical fiber, a photodetector, a judging module, and a control module.
  • the feedback control method of the signal light in this embodiment may specifically include the following steps:
  • Step 801 The coupler performs spectral processing on the acquired output signal light, and extracts a first preset ratio of signal light from the output signal light to the photodetector; the output signal light is set in the The reflective film on the end face of the output fiber reflects the signal light outputted by the light output control module to the output fiber, and is reflected back to the signal light in the coupler.
  • Step 802 The photodetector detects the extracted output signal light.
  • Step 803 The determining module compares the optical energy of the output signal light detected by the photodetector with the optical energy of the initially acquired input signal light, and generates a determination result, where the determination result is the output signal light. The ratio of the light energy to the light energy of the input signal light.
  • Step 804 when the result of the determination is that the ratio of the light energy of the output signal light to the light energy of the input signal light is not less than an upper threshold or not greater than a lower threshold, the control module adjusts the output optical path to obtain an optimal output. Light path.
  • the embodiment provides a feedback control method for signal light.
  • the signal light outputted to the output fiber is reflected by a reflective film disposed on an end surface of the output fiber, and the signal light path is reflected to the coupling with the input fiber.
  • the signal light passes through the splitting process of the coupler to reach the photodetector, and the photodetector sends the energy of the detected output signal light to the judging module, and judges the module to output
  • the control module After comparing the light energy of the signal light and the input signal light, the control module performs corresponding control on the light output module according to the judgment result, thereby realizing feedback control of the signal light outputted by the optical switch system, and the optical switch system according to the feedback result
  • the output control module performs adjustment control to determine the optimal optical path of the optical switch; this embodiment can achieve precise positioning of the entire optical path in the large branch ratio optical switch, which greatly reduces the cost cost and reduces the cost compared with the prior art.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Description

光开关系统和信号光的反馈控制方法
技术领域 本发明涉及光电技术, 尤其涉及一种光开关系统和信号光的反馈控制方 法。 背景技术 随着光纤到户 (Fiber To Home; 以下简称: FTTH )技术的迅速发展, 其 市场规模巨大, 接入网中涉及的终端用户和光链路分支分布复杂, 且整个网 络采用全光纤布线, 无法利用电信号进行监控和运维, 因此需要利用光链路 检测系统来进行网络维护的监测, 确保网络质量。 目前监测系统中主要采用 光时域反射计 ( Optical Time Domain Ref lectometer; 以下简称: OTDR )来 探测链路性能, 但其成本较高, 因此采用 1*N光开关通过 N个接入端来降低 使用成本。
为保证光开关长期工作的稳定性, 通常在光开关系统中增加反馈机制来 确保光开关的选择与出厂设定的参数一致, 从而保证光开关在工作一定时间 后其光学性能不发生任何改变。 现有技术中通过在输出端增加耦合器(Tap) 和光电探测器(Photodetector; 以下简称: PD)进行监测, 如图 1所示为现 有技术中机械式光开关的反馈结构示意图, 其主要在输入输出光纤上均设置 Tap和 PD, 以探测整个光路的光能量是否满足设计要求, 当出现实际情况与 要求不一致时, 反馈模块则通知控制模块继续调整光路, 以选择最佳光路。
然而, 现有技术的光开关系统的每个支路均需要一个 Tap和 PD, 这对于大 分支比的光开关来说成本非常高, 且对光路定位的准确性较低。 发明内容 本发明实施例在于提供一种光开关系统和信号光的反馈控制方法, 在大 分支比光开关中实现整个光路的精确定位的同时, 降低成本代价。
为了实现上述目的, 本发明实施例提供了一种光开关系统, 包括输入光 纤、 输出光纤和光输出控制模块, 在所述输出光纤的端面镀有反射膜, 所述 光开关系统还包括耦合器、 光探测器、 判断模块和控制模块, 所述耦合器与 所述输入光纤相连, 其中:
所述反射膜用于对所述光输出控制模块输出到所述输出光纤的信号光进 行反射处理, 将反射处理后的输出信号光原路反射回到所述耦合器中;
所述耦合器用于对所述输出信号光进行分光处理, 从所述输出信号光中 提取第一预设比例的信号光输入到所述光探测器;
所述判断模块用于对所述光探测器探测到的输出信号光的光能量与初始 获取的输入信号光的光能量进行比较处理, 并生成判断结果, 所述判断结果 为所述输出信号光的光能量与输入信号光的光能量的比值;
所述控制模块用于当所述判断结果为所述输出信号光的光能量与输入信 号光的光能量的比值不小于上限阈值或不大于下限阈值时, 控制所述光输出 控制模块对输出的光路进行调整;
所述光输出模块用于在所述控制模块的控制下输出最佳光路。
本发明实施例提供了一种信号光的反馈控制方法, 包括:
对获取的输出信号光进行分光处理, 从所述输出信号光中提取第一预设 比例的信号光; 所述输出信号光为通过设置在所述输出光纤的端面上的反射 膜对所述输出光纤的信号光进行反射处理后, 并原路反射回的信号光;
对提取的输出信号光进行探测处理;
将探测到的输出信号光的光能量与初始获取的输入信号光的光能量进行 比较处理, 并生成判断结果, 所述判断结果为所述输出信号光的光能量与输 入信号光的光能量的比值; 当所述判断结果为所述输出信号光的光能量与输入信号光的光能量的比 值不小于上限阈值或不大于下限阈值时, 对输出的光路进行调整, 以输出最 佳光路。
本发明实施例提供的一种光开关系统和信号光的反馈控制方法, 通过在 输出光纤的端面上设置反射膜, 并设置与输入光纤相连的耦合器, 便可实现 对光开关系统输出的信号光的反馈控制, 并根据反馈结果对光开关系统的输 出控制模块进行调整控制, 以确定光开关的最佳光路; 本实施例能够实现在 大分支比光开关中整个光路的精确定位, 相比于现有技术大大降低了成本代 价, 减小了反馈控制对光开关系统的光学性能的影响。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术中机械式光开关的反馈结构示意图;
图 2为本发明光开关系统实施例一的结构示意图;
图 3为本发明光开关系统实施例二中光开关的工作原理示意图; 图 4为本发明光开关系统实施例三中光开关的工作原理示意图; 图 5为本发明光开关系统实施例四中光开关的工作原理示意图; 图 6为本发明光开关系统实施例五中光开关的工作原理示意图; 图 7为本发明光开关系统实施例六中光开关的工作原理示意图; 图 8为本发明信号光的反馈控制方法实施例的流程图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
图 2为本发明光开关系统实施例一的结构示意图, 如图 2所示, 本实施例 提供了一种光开关系统, 该光开关系统可以具体应用于机械式光开关, 也可 以应用于敖机电系统 ( Mi cro E l ec t ro Mechan i ca l Sys tems ; 以下简称: MEMS ) 式光开光, 其可以具体包括输入光纤 1、输出光纤 2和光输出控制模块 3。其中, 在所述输出光纤 2的端面镀有反射膜。 本实施例提供的光开关系统还可以包括 依次连接的耦合器 4、 光探测器 5、 判断模块 6和控制模块 7。 本实施例中可以 只包括一个耦合器 4 , 该耦合器 4与输入光纤 1相连, 而不是现有技术中的在输 入光纤和输出光纤上均设置耦合器, 图中以耦合器 4设置在输入光纤 1所在的 通道上为例进行说明。 其中, 设置在输出光纤 2上的反射膜用于对光输出控制 模块 3输出到输出光纤 2的信号光进行反射处理 , 将反射处理后的输出信号光 原路反射回到耦合器 4中。 在本实施例中, 被反射膜反射的信号光可以为用于 测试光路的激光, 也可以为业务光, 当其为业务光时, 则只将业务光中的一 小部分进行反射处理, 大部分业务光则输出到输出光纤 2中, 且反射膜则根据 所反射的信号光类型不同来选择相匹配的反射膜。 耦合器 4用于对被反射膜反 射回的输出信号光进行分光处理, 从输出信号光中提取出第一预设比例的信 号光, 该第一预设比例可以设置为 5% , 即提取输出信号光中的一小部分输入 到光探测器 5中。 光探测器 5用于探测耦合器 4提取的输出信号光的光能量, 在 探测到小部分输出信号光的光能量后, 将其输出到判断模块 6。 判断模块 6用 于将光探测器 5探测到的输出信号光的光能量与初始获取的输入信号光的光 能量进行比较, 即与信号光在输入光开关系统时的初始值进行比较, 生成判 断结果为输出信号光的光能量与输入信号光的光能量的比值, 并将比较判断 结果发发送到控制模块 7。 控制模块 7用于根据判断结果对光输出控制模块 3进 行控制, 当判断结果为所述输出信号光的光能量与输入信号光的光能量的比 值不小于上限阈值或不大于下限阈值时, 即当判断结果为输出信号光的光能 量与输入信号光的光能量的比值大于或等于上限阈值, 或者该比值小于或等 于下限阈值时控制光输出控制模块 3对输出的光路进行调整。 光输出控制模块 3则用于在控制模块 7的控制下输出最佳光路, 其中, 本实施例中的上限阈值 和下限阈值可以根据实际情况来具体设定, 例如可以将上限阈值设置为 1. 1 , 下限阈值设置为 0. 9 , 此处的最佳光路为通过对输出的光路进行调整, 使得输 出信号光的能量尽量与输入信号光的能量保持一致, 或者将二者的差别控制 在一个很小的范围之内, 即输出信号光的光能量与输入信号光的光能量的比 值处于小于上限阈值且大于下限阈值的范围内。
在本实施例中, 输入的信号光先进入输入光纤 1中, 经过光输出控制模块 3的控制处理, 信号光被输出到输出光纤 2中, 经过设置在输出光纤 2端面上的 反射膜的反射, 按照原路被反射到与输入光纤 1相连的耦合器 4中, 耦合器 4对 反射后的输出信号光进行分光处理, 提取出其中一小部分输入到光探测器 5 中, 光探测器 5将探测到的输出信号光的光能量输出到判断模块 6 , 由判断模 块 6将输出信号光的光能量与输入信号光的光能量进行比较, 并将判断结果发 送到控制模块 7 , 由控制模块 7根据判断结果对光输出控制模块 3进行控制, 以 实现光开关的最佳光路的确定。
具体地, 当应用于机械式光开关时, 本实施例中的光输出控制模块 3 可 以包括可移动部件。 此时, 控制模块 7 具体用于当判断结果为所述输出信号 光的光能量与输入信号光的光能量的比值不小于上限阈值或不大于下限阈值 时, 对所述可移动部件的旋转角度进行调整, 直到调整所述旋转角度后输出 的光路的输出信号光的光能量与输入信号光的光能量的比值小于所述上限阈 值且大于所述下限阈值,以确定光开关的最佳光路。 当应用于 MEMS光开关时, 本实施例中的光探测器 5 可以具体包括微透镜阵列、 大透镜和微机电系统反 射镜。 此时, 控制模块 7 具体用于当判断结果为所述输出信号光的光能量与 输入信号光的光能量的比值不小于上限阈值或不大于下限阈值时, 对 机电 系统反射镜的旋转角度进行调整, 直到调整所述旋转角度后输出的光路的输 出信号光的光能量与输入信号光的光能量的比值小于所述上限阈值且大于所 述下限阈值, 以确定光开关的最佳光路。
本实施例提供了一种光开关系统, 通过在输出光纤的端面上设置反射膜, 并只设置于输入光纤相连的耦合器, 便可实现对光开关系统输出的信号光的 反馈控制, 并根据反馈结果对光开关系统的输出控制模块进行调整控制, 以 确定光开关的最佳光路; 本实施例能够实现在大分支比光开关中整个光路的 精确定位, 相比于现有技术大大降低了成本代价, 减小了反馈控制对光开关 系统的光学性能的影响。
图 3为本发明光开关系统实施例二中光开关的工作原理示意图, 如图 3所 示,本实施例中的光开关系统具体应用于 MEMS光开关,其为 1 *N的 MEMS光开关。 在本实施例中, 上述光输出控制模块 3具体包括微透镜阵列 31、 大透镜 32和微 机电系统 MEMS反射镜 33 , 输入光纤和输出光纤组成光纤阵列。 本实施例中的 光纤阵列为根据一定规律和要求排列而成的光纤组, 即满足一定间距要求的 光纤组, 图 3中光纤阵列中位于中心的光纤为输入光纤, 其余为输出光纤。 微 透镜阵列 31由多个微小透镜组成, 微小透镜的直径通常小于 1匪, 每个微小透 镜与每个光纤通道——对应。 具体地, 本实施例中的光纤阵列和透镜阵列可 以为一维阵列, 也可以为二维阵列, 当其为二维阵列时, 则相应地 MEMS反射 镜在两个方向进行偏转。 大透镜 32为普通光学透镜, 其可以为单个透镜或透 镜组, 也可以为球面或非球面透镜。 MEMS反射镜 33是指利用 MEMS技术制作的 电子芯片, 其通过电压、 电流或其他参数控制芯片上的镜面进行转动。
当光开关工作时, 光纤阵列中位于最中间的光路为输入端, 输入信号光 经过微透镜阵列和大透镜后, 射向 MEMS反射镜中心; 然后通过控制 MEMS反射 镜的转动角度, 输出信号光以特定角度输出, 输出信号光经过大透镜转换成 平行光后利用微透镜阵列中的透镜进行整形和收缩, 最后进入特定输出端的 光纤, 从而实现 1 *N光开关的光路选择。
在本实施例中, 光开关系统可以包括内置激光光源 ( Laser Source; 以下 简称: LD ) 8和合波器 9, 内置激光光源 8用于输出激光, 合波器 9用于将 LD 8 输出的激光输入到输入光纤中。 合波器 9通常可以为三端口的波分复用器 ( Wavelength Div i s ion Mul t iplexing; 以下简称: WDM ) , 也可以为其他无 源光器件, 如环行器等。 本实施例中的光开关系统的输入信号光可以包括激 光, 激光具有非工作波长, 用于对光开关系统进行测试, 输出光纤上镀的反 射膜与激光的非工作波长相匹配, 具体只对激光进行反射处理, 将输出到输 出光纤的激光原路反射回到耦合器 4中, 而不反射业务光。
本实施例中的光探测器 PD 5可以具体为输出光探测器, 即本实施例中只 设置一个 PD, 耦合器 4可以具体为 1 : 2不等比耦合器。 此时耦合器 4具体用于 对进入到耦合器中的输出信号光进行分光处理, 从输出信号光中提取第一预 设比例的信号光, 并将提取的信号光输入到输出光探测器中, 此处的第一预 设比例可以设定为 5%。 输出光探测器具体用于对输入到其中的信号光的能量 进行探测处理。
在本实施例中, 当光开关开始工作上电时, LD输出激光, 激光通过合波 器输入到输入光纤中, 再经过与输入光纤的光纤通道对应的微透镜阵列中的 微透镜以及大透镜的处理,入射到 MEMS反射镜上, MEMS反光镜根据初始设 置其偏转角度。 激光经过 MEMS反射镜反射后, 以特定角度输出到相应的输 出光纤, 然后被该输出光纤端面镀设的反射膜反射, 经过原路返回到输入光 纤, 本实施例在输入光纤上连接耦合器, 进而被反射回的光到达耦合器。 耦 合器将反射膜反射回来的输出信号光进行分光处理, 从中提取一小部分(如
5% )输入到 PD中。经过耦合器的分光处理后,其中一小部分光被提取到达 PD, PD探测所提取的光的光能量, 将探测的输出信号光的光能量发送到判断模块 中。 判断模块将 PD探测到的输出信号光的光能量与输入信号光的光能量进行 比较, 判断当前是否需要纠正 MEMS反射镜的偏转角度; 当探测到的输出信 号光的光能量与输入信号光的光能量不等, 且偏差较大时, 则表明需要纠正 偏转角度, 否则表明光开关处于稳定工作状态, 无需调整 MEMS的旋转角度。 判断模块具体可以根据比较过程生成判断结果, 判断结果为输出信号光的光 能量与输入信号光的光能量的比值, 将判断结果发送到控制模块, 控制模块 根据判断结果控制 MEMS反射镜的偏转, 具体地当二者的比值不小于上限阈 值或不大于下限阈值时对 MEMS反射镜的偏转角度进行调整, 并进一步重复 上述过程获取偏转后的判断结果, 直到输出信号光的光能量与输入信号光的 光能量的比值小于上限阈值且大于下限阈值时时, 则最终确定此时光开关的 光路为最佳。
本实施例提供了一种光开关系统, 通过在输出光纤的端面上设置反射膜, 并设置于输入光纤连接的耦合器, 便可实现对光开关系统输出的信号光的反 馈控制, 并根据反馈结果对光开关系统的输出控制模块进行调整控制, 以确 定光开关的最佳光路; 本实施例能够实现在大分支比光开关中整个光路的精 确定位, 相比于现有技术大大降低了成本代价, 减小了反馈控制对光开关系 统的光学性能的影响。
图 4为本发明光开关系统实施例三中光开关的工作原理示意图, 如图 4所 示,本实施例提供了一种光开关系统,其在上述图 3所示的实施例的基石出之上, 可以将光探测器设置为两个, 即输入光探测器 51和输出光探测器 52 , 而耦合 器 4具体为 2: 2不等比耦合器。 其中, 耦合器 4具体用于对获取的输入信号光进 行分光处理, 从所述输入信号光中提取第一预设比例的信号光输入到输入光 探测器 51 ; 耦合器 4还用于对获取的输出信号光进行分光处理, 从输出信号光 中提取第一预设比例的信号光输入到输出光探测器 52。 而输入光探测器 51用 于探测输入信号光的光能量, 输出光探测器 52用于探测输出信号光的光能量。 判断模块 6则用于获取输入光探测器 51和输出光探测器 52分别探测到的输入 信号光和输出信号光的能量, 将两个 PD探测到的能量进行对比, 并生成输入 信号光的能量与输出信号光的能量的比值。 控制模块 7则用于在所述输出信号 光的光能量与输入信号光的光能量的比值不小于上限阈值或不大于下限阈值 时对 MEMS反射镜的旋转角度进行控制, 直到两个 PD探测的能量比值小于上限 阈值且大于下限阈值时时, 最终确定光开关的光路最佳。 本实施例通过对输 入光进行分光处理并探测其能量, 以实时准确地获取输入信息, 进而提高了 提供的反馈信息的精度。
图 5 为本发明光开关系统实施例四中光开关的工作原理示意图, 如图 5 所示, 本实施例提供了一种光开关系统, 其在上述图 3 所示的实施例的基础 之上, 本实施例中可以将光探测器设置为两个, 即输入光探测器 51和输出光 探测器 52 , 也可以相应地设置两个耦合器, 即输入耦合器 41 和输出耦合器 42。 输入耦合器 41具体用于对获取的输入信号光进行分光处理, 从输入信号 光中提取第一预设比例的信号光输入到输入光探测器 51 ,输出耦合器 42具体 用于对输出信号光进行分光处理, 从输出信号光中提取第一预设比例的信号 光输入到输出光探测器 52。而输入光探测器 51用于探测输入信号光的光能量, 输出光探测器 52用于探测输出信号光的光能量。 判断模块 6则用于获取输入 光探测器 51和输出光探测器 52分别探测到的输入信号光和输出信号光的能 量, 将两个 PD探测到的能量进行对比, 并生成输入信号光的能量与输出信号 光的能量的比值。 控制模块 7 则用于当所述输出信号光的光能量与输入信号 光的光能量的比值不小于上限阈值或不大于下限阈值时对 MEMS反射镜的旋转 角度进行控制, 直到两个 PD探测的能量比值小于上限阈值且大于下限阈值时 时, 最终确定光开关的光路最佳。 本实施例通过对输入光进行分光处理并探 测其能量, 以实时准确地获取输入信息, 进而提高了提供的反馈信息的精度。
图 6 为本发明光开关系统实施例五中光开关的工作原理示意图, 如图 6 所示, 本实施例提供了一种光开关系统, 本实施例中的光开关系统与上述图 4 或图 5所示的实施例相比, 无需设置 LD和合波器, 本实施例中的光开关系统 的输入信号光可以包括具有工作波长的业务光, 输出光纤上镀的反射膜与业 务光的工作波长相匹配, 具体用于将 MEMS反射镜反射到输出光纤的业务光中 第二预设比例的信号光原路反射回到耦合器中, 此处的第二预设比例可以根 据实际情况具体设定, 以不影响业务光的正常工作为前提, 具体也可以设定 为 1%。 在本实施例中, 当光开关工作时, 输入的业务光经过 2: 2耦合器 4后, 其中小部分业务光(如 5% )从耦合器 4中输出到输入光探测器 51 , 而绝大部 分业务光经过光开关后达到输出端。 经过镀在输出光纤 2 上的特定反射膜的 反射处理后, 其中小部分业务光被反射回光开关, 而绝大部分光从输出端输 出。 被反射膜反射的小部分业务光再经过耦合器 4 的分光处理后, 从中提取 小部分光(如 5% )输出到输出光探测器 52。 输入光探测器 51和输出光探测 器 52分别对输入其中的业务光的能量进行探测处理, 将探测到的能量发送到 判断模块 6。判断模块 6获取输入光探测器 51和输出光探测器 52分别探测到 的输入信号光和输出信号光的能量, 将两个 PD探测到的能量进行对比, 并生 成输入信号光的能量与输出信号光的能量的比值。 控制模块 7 则用于根据判 断模块 6生成的能量比值对 MEMS反射镜的旋转角度进行控制, 直到两个 PD 探测的能量比值最大时, 最终确定光开关的光路最佳。
本实施例提供了一种光开关系统, 具体应用于 MEMS光开关, 通过在输出 光纤的端面上设置反射膜, 并在与输入光纤相连的耦合器, 便可实现对光开 关系统输出的信号光的反馈控制, 并根据反馈结果对光开关系统的输出控制 模块进行调整控制, 以确定光开关的最佳光路; 本实施例能够实现在大分支 比光开关中整个光路的精确定位, 相比于现有技术大大降低了成本代价, 减 小了反馈控制对光开关系统的光学性能的影响。
图 7为本发明光开关系统实施例六中光开关的工作原理示意图, 如图 7所 示, 本实施例提供了一种光开关系统, 本实施例中的光开关系统具体应用于 机械式光开关, 其为 1 *N的机械式光开关。 在本实施例中, 上述光输出控制模 块具体包括可移动部件 34 , 则本实施例中的控制模块 7具体用于根据判断模块 6的判断结果对可移动部件 34的旋转角度进行控制, 以确定光开关的最佳光 路。 当光开关工作时, 通过调整可移动准直器的旋转角度, 使其对准 N个准直 器中的某个特定的输出光纤, 进而将输入信号光输出到该输出光纤上, 从而 实现 1 * N光开关的光路选择。
进一步地, 在本实施例中, 光开关系统的输入信号光可以为激光或业务 光。 当输入信号光为具有非工作波长的激光时, 光开关系统也可以包括内置 激光光源 8和合波器 9。 本实施例在输出光纤的端面上镀有反射膜, 且反射膜 与激光的非工作波长相匹配, 只对激光进行反射处理, 将输出到输出光纤的 激光原路反射回到耦合器 4中。 当输入信号光为具有工作波长的业务光时, 无 需设置 LD和合波器, 输出光纤上镀的反射膜与业务光的工作波长相匹配, 具 体用于将 MEMS反射镜反射到输出光纤的业务光中第二预设比例的信号光原路 反射回到耦合器中。
进一步地, 本实施例中可以设置一个 PD, 只对输出信号光的能量进行探 测, 相应地可以设置一个 1 : 2不等比耦合器; 本实施例中也可以设置两个 PD, 分别对输入信号光和输出信号光的能量进行探测, 相应地可以设置一个 2:2不 等比耦合器。
本实施例提供了一种光开关系统, 具体应用于机械式光开关, 通过在输 出光纤的端面上设置反射膜, 并设置于输入光纤相连的耦合器, 便可实现对 光开关系统输出的信号光的反馈控制, 并根据反馈结果对光开关系统的输出 控制模块进行调整控制, 以确定光开关的最佳光路; 本实施例能够实现在大 分支比光开关中整个光路的精确定位, 相比于现有技术大大降低了成本代价, 减小了反馈控制对光开关系统的光学性能的影响。
图 8为本发明信号光的反馈控制方法实施例的流程图, 如图 8所示, 本 实施例提供了一种信号光的反馈控制方法, 该方法应用于上述图 2-图 7所示 的光开关系统中, 此处不再贅述。 由上述实施例可知, 该光开关系统包括输 入光纤、 输出光纤、 光输出控制模块、 与输入光纤相连的耦合器、 光探测器、 判断模块和控制模块。 其中, 本实施例的信号光的反馈控制方法可以具体包 括如下步骤:
步骤 801 , 耦合器对获取的输出信号光进行分光处理,从所述输出信号光 中提取第一预设比例的信号光输入到所述光探测器; 所述输出信号光为通过 设置在所述输出光纤的端面上的反射膜对所述光输出控制模块输出到所述输 出光纤的信号光进行反射处理后, 并原路反射回到所述耦合器中的信号光。
步骤 802 , 光探测器对提取的输出信号光进行探测处理。
步骤 803 ,判断模块将所述光探测器探测到的输出信号光的光能量与初始 获取的输入信号光的光能量进行比较处理, 并生成判断结果, 所述判断结果 为所述输出信号光的光能量与输入信号光的光能量的比值。
步骤 804 ,当所述判断结果为所述输出信号光的光能量与输入信号光的光 能量的比值不小于上限阈值或不大于下限阈值时, 控制模块对输出的光路进 行调整, 以输出最佳光路。
本实施例提供了一种信号光的反馈控制方法, 通过设置在输出光纤的端 面上的反射膜对输出到输出光纤的信号光进行反射处理, 将信号光原路反射 到与输入光纤相连的耦合器中, 信号光经过耦合器的分光处理到达光探测器 中, 光探测器将探测的输出信号光的能量发送到判断模块, 判断模块对输出 信号光和输入信号光的光能量进行比较后, 控制模块根据判断结果对光输出 模块进行相应的控制, 便可实现对光开关系统输出的信号光的反馈控制, 并 根据反馈结果对光开关系统的输出控制模块进行调整控制, 以确定光开关的 最佳光路; 本实施例能够实现在大分支比光开关中整个光路的精确定位, 相 比于现有技术大大降低了成本代价, 减小了反馈控制对光开关系统的光学性 能的影响。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤可 以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读取存 储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储 介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其限 制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术人员 应当理解: 其依然可以对前述实施例所记载的技术方案进行修改, 或者对其中 部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案的本 质脱离本发明实施例技术方案的精神和范围。

Claims

权 利 要 求 书
1、 一种光开关系统, 包括输入光纤、 输出光纤和光输出控制模块, 其特征 在于, 在所述输出光纤的端面镀有反射膜, 所述光开关系统还包括耦合器、 光 探测器、 判断模块和控制模块, 所述耦合器与所述输入光纤相连, 其中:
所述反射膜用于对所述光输出控制模块输出到所述输出光纤的信号光进行 反射处理, 将反射处理后的输出信号光原路反射回到所述耦合器中;
所述耦合器用于对所述输出信号光进行分光处理, 从所述输出信号光中提 取第一预设比例的信号光输入到所述光探测器;
所述判断模块用于对所述光探测器探测到的输出信号光的光能量与初始获 取的输入信号光的光能量进行比较处理, 并生成判断结果, 所述判断结果为所 述输出信号光的光能量与输入信号光的光能量的比值;
所述控制模块用于当所述判断结果为所述输出信号光的光能量与输入信号 光的光能量的比值不小于上限阈值或不大于下限阈值时, 控制所述光输出控制 模块对输出的光路进行调整;
所述光输出模块用于在所述控制模块的控制下输出最佳光路。
2、 根据权利要求 1所述的光开关系统, 其特征在于, 所述光输出控制模块 包括微透镜阵列、 大透镜和微机电系统反射镜;
所述控制模块具体用于当所述判断结果为所述输出信号光的光能量与输入 信号光的光能量的比值不小于上限阈值或不大于下限阈值时, 对所述 机电系 统反射镜的旋转角度进行调整, 直到调整所述旋转角度后输出的光路的输出信 号光的光能量与输入信号光的光能量的比值小于所述上限阈值且大于所述下限 阈值。
3、 根据权利要求 1所述的光开关系统, 其特征在于, 所述光输出控制模块 包括可移动部件;
所述控制模块具体用于当所述判断结果为所述输出信号光的光能量与输入 信号光的光能量的比值不小于上限阈值或不大于下限阈值时, 对所述可移动部 件的旋转角度进行调整, 直到调整所述旋转角度后输出的光路的输出信号光的 光能量与输入信号光的光能量的比值小于所述上限阈值且大于所述下限阈值。
4、 根据权利要求 2或 3所述的光开关系统, 其特征在于, 所述光探测器包 括输出光探测器, 所述耦合器为 1 : 2不等比耦合器;
所述耦合器具体用于对所述输出信号光进行分光处理, 从所述输出信号光 中提取第一预设比例的信号光输入到所述输出光探测器。
5、 根据权利要求 2或 3所述的光开关系统, 其特征在于, 所述光探测器包 括输入光探测器和输出光探测器, 所述耦合器为 2 : 2不等比耦合器;
所述耦合器具体用于对获取的输入信号光进行分光处理, 从所述输入信号 光中提取第一预设比例的信号光输入到所述输入光探测器, 并对所述输出信号 光进行分光处理, 从所述输出信号光中提取第一预设比例的信号光输入到所述 输出光探测器。
6、 根据权利要求 2或 3所述的光开关系统, 其特征在于, 所述光探测器包括 输入光探测器和输出光探测器, 所述耦合器包括输入耦合器和输出耦合器;
所述输入耦合器用于对获取的输入信号光进行分光处理, 从所述输入信号 光中提取第一预设比例的信号光输入到所述输入光探测器;
所述输出耦合器用于对所述输出信号光进行分光处理, 从所述输出信号光 中提取第一预设比例的信号光输入到所述输出光探测器。
7、 根据权利要求 2或 3所述的光开关系统, 其特征在于, 还包括内置激光 光源和合波器; 所述输入信号光包括具有非工作波长的激光;
所述内置激光光源用于输出所述激光, 所述合波器用于将所述激光输入到 所述输入光纤中;
所述反射膜为与所述非工作波长相匹配的反射膜, 具体用于将所述光输出 控制模块输出到所述输出光纤的激光原路反射回到所述耦合器中。
8、 根据权利要求 2或 3所述的光开关系统, 其特征在于, 所述输入信号光 包括具有工作波长的业务光;
所述反射膜为与所述工作波长相匹配的反射膜, 具体用于将所述光输出控 制模块输出到所述输出光纤的业务光中第二预设比例的信号光原路反射回到所 述耦合器中。
9、 一种信号光的反馈控制方法, 其特征在于, 包括:
对获取的输出信号光进行分光处理, 从所述输出信号光中提取第一预设比 例的信号光; 所述输出信号光为通过设置在所述输出光纤的端面上的反射膜对 所述输出光纤的信号光进行反射处理后, 并原路反射回的信号光;
对提取的输出信号光进行探测处理;
将探测到的输出信号光的光能量与初始获取的输入信号光的光能量进行比 较处理, 并生成判断结果, 所述判断结果为所述输出信号光的光能量与输入信 号光的光能量的比值; 当所述判断结果为所述输出信号光的光能量与输入信号光的光能量的比值 不小于上限阈值或不大于下限阈值时, 对输出的光路进行调整, 以输出最佳光 路。
PCT/CN2012/071151 2011-02-21 2012-02-15 光开关系统和信号光的反馈控制方法 WO2012113301A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201110042215 CN102135647A (zh) 2011-02-21 2011-02-21 光开关系统和信号光的反馈控制方法
CN201110042215.6 2011-02-21

Publications (1)

Publication Number Publication Date
WO2012113301A1 true WO2012113301A1 (zh) 2012-08-30

Family

ID=44295481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071151 WO2012113301A1 (zh) 2011-02-21 2012-02-15 光开关系统和信号光的反馈控制方法

Country Status (2)

Country Link
CN (1) CN102135647A (zh)
WO (1) WO2012113301A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102135645B (zh) 2011-02-21 2013-11-06 华为技术有限公司 光开关系统和信号光的反馈控制方法
CN102135647A (zh) * 2011-02-21 2011-07-27 华为技术有限公司 光开关系统和信号光的反馈控制方法
CN104181690B (zh) 2013-05-28 2017-05-10 华为技术有限公司 一种3d‑mems光开关
CN104635334B (zh) 2013-11-15 2017-09-12 华为技术有限公司 一种3d‑mems光开关
CN106094113A (zh) * 2016-08-18 2016-11-09 桂林创研科技有限公司 可调光衰减器
WO2018035865A1 (zh) * 2016-08-26 2018-03-01 华为技术有限公司 一种用于波长选择开关wss的信号监控方法及装置
CN110244307B (zh) * 2018-03-08 2022-11-01 姚晓天 一种基于光技术测量物体距离和空间位置的方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4978190A (en) * 1988-09-20 1990-12-18 Alcatel N.V. Servo-controlled light coupling between a light-emitting component and an optical fiber
CN2557967Y (zh) * 2002-04-06 2003-06-25 鸿富锦精密工业(深圳)有限公司 机械式光开关
US20060093264A1 (en) * 2004-11-01 2006-05-04 Fujitsu Limited Optical fiber device, optical monitor and optical switch
CN1797062A (zh) * 2004-12-27 2006-07-05 富士通株式会社 光开关以及用于控制光开关的装置和方法
CN1831574A (zh) * 2005-03-07 2006-09-13 富士通株式会社 波长选择开关
CN201673276U (zh) * 2010-05-12 2010-12-15 深圳新飞通光电子技术有限公司 一种带监控反馈的光开关
CN102135647A (zh) * 2011-02-21 2011-07-27 华为技术有限公司 光开关系统和信号光的反馈控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047917A (ja) * 2007-08-20 2009-03-05 Fujitsu Ltd 光波長選択スイッチおよび制御方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4978190A (en) * 1988-09-20 1990-12-18 Alcatel N.V. Servo-controlled light coupling between a light-emitting component and an optical fiber
CN2557967Y (zh) * 2002-04-06 2003-06-25 鸿富锦精密工业(深圳)有限公司 机械式光开关
US20060093264A1 (en) * 2004-11-01 2006-05-04 Fujitsu Limited Optical fiber device, optical monitor and optical switch
CN1797062A (zh) * 2004-12-27 2006-07-05 富士通株式会社 光开关以及用于控制光开关的装置和方法
CN1831574A (zh) * 2005-03-07 2006-09-13 富士通株式会社 波长选择开关
CN201673276U (zh) * 2010-05-12 2010-12-15 深圳新飞通光电子技术有限公司 一种带监控反馈的光开关
CN102135647A (zh) * 2011-02-21 2011-07-27 华为技术有限公司 光开关系统和信号光的反馈控制方法

Also Published As

Publication number Publication date
CN102135647A (zh) 2011-07-27

Similar Documents

Publication Publication Date Title
WO2012113301A1 (zh) 光开关系统和信号光的反馈控制方法
US8891915B2 (en) Optical switch system and feedback control method of signal light
CN108780113B (zh) 用于校准光学距离传感器的系统及方法
US9338528B2 (en) Optimal positioning of reflecting optical devices
CN103338068B (zh) 一种基于多通道并行光信号的分光监测装置
US10429591B2 (en) Integrated optical components with variable attenuation or switching, and tap detector functions
WO2015027859A1 (zh) 光路处理方法和装置
US20130343758A1 (en) Wavelength division multiplexer, optical switch device and control method of optical switch
CN102790644B (zh) 光纤检测系统、光纤检测装置及其方法
CN102706461B (zh) 新型Mach-Zehnder偏振分束干涉仪
KR100445905B1 (ko) 다중파장 광 전송 시스템에서 광 신호 성능 측정 장치 및그 방법
KR20210029257A (ko) 수직 표면광 레이저 및 다중모드 광섬유를 기반으로 하는 단파장 대역 능동 광학 부품
WO2012119412A1 (zh) 一种多通道光学组件以及测试系统
WO2021169518A1 (zh) 波长计、获取波长计的参数的方法以及在线校准的方法
US9525267B2 (en) Vertical cavity surface emitting laser assembly
WO2019169525A1 (zh) 一种光性能监测装置及方法
JP6780845B6 (ja) 検出装置
WO2016049798A1 (zh) 光纤耦合的系统和方法
CN109029245B (zh) 透射波前检测干涉仪
CN217902184U (zh) 一种用于激光检测装置的光源调节机构
EP1432088A1 (en) Semiconductor laser diode wavelength stabilisation
KR102158520B1 (ko) 분광편광계의 광경로차를 자동으로 조절하는 장치
US11143819B2 (en) Optical filter control
JP6555110B2 (ja) 光受信装置
KR20220122331A (ko) 실리콘 포토닉스 인터로게이터를 구비한 반사 광파장 스캐닝 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12749408

Country of ref document: EP

Kind code of ref document: A1