WO2016049798A1 - 光纤耦合的系统和方法 - Google Patents

光纤耦合的系统和方法 Download PDF

Info

Publication number
WO2016049798A1
WO2016049798A1 PCT/CN2014/087757 CN2014087757W WO2016049798A1 WO 2016049798 A1 WO2016049798 A1 WO 2016049798A1 CN 2014087757 W CN2014087757 W CN 2014087757W WO 2016049798 A1 WO2016049798 A1 WO 2016049798A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
input
fiber
output
optical power
Prior art date
Application number
PCT/CN2014/087757
Other languages
English (en)
French (fr)
Inventor
贺继方
付红岩
章春晖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/087757 priority Critical patent/WO2016049798A1/zh
Priority to CN201480081173.9A priority patent/CN106575999B/zh
Publication of WO2016049798A1 publication Critical patent/WO2016049798A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission

Definitions

  • the present invention relates to the field of optical communications and, more particularly, to systems and methods for fiber coupling.
  • Silicon light technology is currently a hot spot in the optical communications industry and academia.
  • optical passive components such as modulators, filters, optocouplers, wavelength division multiplexers, and wave decomposition multiplexers can be implemented by silicon light technology.
  • Silicon-based optical passive devices typically include an input optical waveguide coupler and an output optical waveguide coupler for directing and extracting light from the optical fiber into optical passive components. The device can be tested and its performance verified only if the light in the fiber is successfully coupled into the optical passive device and the light in the optical passive device is successfully coupled. Therefore, the coupling of optical passive components and optical fibers has become one of the most critical technologies and the most basic prerequisites for testing and productization. The quality of fiber coupling directly affects product testing efficiency, test accuracy, product performance and yield.
  • a common fiber coupling process is: an optical signal generated by a light source is first coupled from an input fiber into an input optical waveguide coupler of an on-chip optical device (optical passive device), and coupled to an output optical waveguide of the on-chip optical device after passing through the on-chip optical device.
  • the device is coupled into the output fiber and is received by an optical power detector (PD).
  • PD optical power detector
  • the coupling of the fiber to the on-chip optical device is a two-coupled cascade of input and output and is interdependent. If no light is coupled into the device at the input (even if the deviation is only a few um), then the output will never be aligned; vice versa.
  • the fiber coupling, whether at the input or the output, is cascaded with two simultaneous couplings. This cascading adjustment is difficult and time consuming, affecting the efficiency of fiber coupling.
  • Embodiments of the present invention provide a fiber coupled system and method that can improve the efficiency of fiber coupling.
  • a fiber coupled system comprising:
  • optical coupler 110 the first optical power detector 120, the input optical fiber 130 and the first adjustment stage 140;
  • the optical coupler 110 includes a first input port 111, a second input port 112, and an output port 113.
  • the optical coupler 110 is configured to transmit incident light input from the first input port 111 from the output port 113 to the input optical fiber 130;
  • the input fiber 130 is coupled to the input optical waveguide coupler of the on-chip optical device, transmits the incident light to the input optical waveguide coupler, and transmits the reflected light reflected from the input optical waveguide coupler to the output port 113;
  • the optical coupler 110 is further configured to output the reflected light input from the output port 113 from the first input port 111 and the second input port 112;
  • the first optical power detector 120 is configured to detect optical power of the reflected light output from the second input port 112;
  • the first adjustment stage 140 is configured to adjust the position of the input optical fiber 130 according to the optical power of the reflected light detected by the first optical power detector 120.
  • the first adjustment stage 140 is specifically configured to adjust the position of the input optical fiber 130 such that the optical power of the reflected light detected by the first optical power detector 120 reaches a maximum value and Sensitive to changes in the position of the input fiber 130.
  • system further includes:
  • the output fiber 150 is coupled to the output optical waveguide coupler of the on-chip optical device, and transmits the transmitted light output from the output optical waveguide coupler to the second optical power detector 170;
  • the second optical power detector 170 is configured to detect the optical power of the transmitted light output from the output optical fiber 150;
  • the second adjustment stage 160 is for adjusting the position of the output optical fiber 150 based on the optical power of the transmitted light detected by the second optical power detector 170.
  • the second adjustment stage 160 is specifically configured to adjust the position of the output optical fiber 150 and transmit the detected light by the second optical power detector 170.
  • the optical power reaches a maximum and is sensitive to changes in the position of the output fiber 150.
  • system further includes:
  • the controller 180 is configured to control, according to the optical power of the reflected light detected by the first optical power detector 120, the first adjustment stage 140 to adjust the position of the input optical fiber 130; and the optical power of the transmitted light detected by the second optical power detector 170.
  • the second adjustment stage 160 is controlled to adjust the position of the output optical fiber 150.
  • system further includes:
  • the light source selecting means 190 is configured to select input of incident light of the visible light source or the communication band light source to the first input port 111.
  • the optical path selection device 190 is an optical switch or an optical coupler.
  • a fiber coupling method for a fiber coupled system, the system comprising an optical coupler, a first optical power detector, an input fiber, and a first conditioning stage, the optical coupler including the first Input port, second input port, and output port;
  • the method includes:
  • the reflected light input from the output port of the optical coupler is output from the first input port and the second input port of the optical coupler through the optical coupler;
  • the position of the input fiber is adjusted by the first adjustment stage such that the input fiber is in an optimal position coupled to the input optical waveguide coupler.
  • the position of the input fiber is adjusted by the first adjustment stage according to the optical power of the reflected light detected by the first optical power detector, so that the input optical fiber is in the input optical waveguide
  • the best position for coupler coupling including:
  • the position of the input fiber is adjusted by the first adjustment stage such that the optical power of the reflected light detected by the first optical power detector reaches a maximum value and is sensitive to changes in the position of the input optical fiber.
  • the system further includes an output optical fiber, a second adjustment station, and a second optical power detector;
  • the method also includes:
  • the position of the output fiber is adjusted by the second adjustment stage such that the output fiber is in an optimal position coupled to the output optical waveguide coupler.
  • the position of the output fiber is adjusted by the second adjustment stage according to the optical power of the transmitted light detected by the second optical power detector.
  • the output fiber is placed in an optimal position coupled to the output optical waveguide coupler, including:
  • the position of the output fiber is adjusted by the second adjustment stage such that the optical power of the transmitted light detected by the second optical power detector reaches a maximum value and is sensitive to changes in the position of the output fiber.
  • system further includes a controller
  • the position of the input fiber is adjusted by the first adjustment stage such that the input fiber is in an optimal position coupled to the input optical waveguide coupler, including:
  • the controller controls the first adjustment stage to adjust the position of the input optical fiber according to the optical power of the reflected light detected by the first optical power detector, so that the input optical fiber is in an optimal position coupled with the input optical waveguide coupler;
  • the position of the output fiber is adjusted by the second adjustment stage such that the output fiber is in an optimal position coupled to the output optical waveguide coupler, including:
  • the controller controls the second stage to adjust the position of the output fiber based on the optical power of the transmitted light detected by the second optical power detector such that the output fiber is in an optimal position coupled to the output optical waveguide coupler.
  • the system further includes a light source selecting device
  • the method further includes: before transmitting, by the optical coupler, the first incident light input from the first input port of the optical coupler from the output port of the optical coupler to the input optical fiber, the method further comprising:
  • the optical path selecting device is an optical switch or an optical coupler.
  • the fiber coupling system and method of the embodiment of the present invention uses the optical coupler to output the reflected light reflected from the input optical waveguide coupler for optical power detection, and the first adjustment station detects the optical power detector according to the optical power detector.
  • the optical power of the reflected light adjusts the position of the input fiber, and the coupling of the input end can be achieved without relying on the coupling of the output end, which reduces the coupling difficulty and shortens the coupling time, thereby improving the efficiency of fiber coupling.
  • Figure 1 is a schematic illustration of a fiber coupled system in accordance with one embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a fiber coupled system in accordance with another embodiment of the present invention.
  • FIG 3 is a schematic view showing a coupling section of an optical waveguide coupler according to an embodiment of the present invention.
  • FIG. 4 is a graph showing the relationship between the position of an optical fiber and optical power in an embodiment of the present invention.
  • Figure 5 is a schematic illustration of a fiber coupled system in accordance with yet another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a fiber coupled system in accordance with yet another embodiment of the present invention.
  • FIG. 7 is a schematic flow chart of a method of fiber coupling in accordance with an embodiment of the present invention.
  • FIG. 8 is a schematic flow chart of a method of fiber coupling according to another embodiment of the present invention.
  • FIG. 1 shows a schematic diagram of a fiber coupled system 100 in accordance with an embodiment of the present invention.
  • system 100 includes an optical coupler 110, a first optical power detector 120, an input fiber 130, and a first conditioning station 140.
  • the optical coupler 110 includes a first input port 111, a second input port 112, and an output port 113. That is, the optical coupler 110 has two input ports and one output port.
  • the first input port 111 can be coupled to a light source for inputting incident light from the light source.
  • the second input port 112 is coupled to the first optical power detector 120.
  • the output port 113 is connected to the input fiber 130.
  • the optical coupler 110 is for transmitting incident light input from the first input port 111 from the output port 113 to the input fiber 130. That is, the incident light of the light source is input from the first input port 111 of the optical coupler 110, and is output from the output port 113 of the optical coupler 110 to the input optical fiber 130.
  • the input fiber 130 is for coupling with an input optical waveguide coupler of the on-chip optical device, transmits the incident light to the input optical waveguide coupler, and transmits the reflected light reflected back from the input optical waveguide coupler to the output port 113.
  • the incident light hits the input optical waveguide coupler, reflected light is generated, and the magnitude of the reflected optical power is related to the coupling position of the input optical fiber 130 and the input optical waveguide coupler.
  • the reflected light is transmitted through the input fiber 130 to the output port 113 of the optical coupler 110.
  • the optical coupler 110 is also for outputting the reflected light input from the output port 113 from the first input port 111 and the second input port 112.
  • the optical coupler 110 can couple the two paths of light input from the first input port 111 and the second input port 112 and output it from the output port 113. According to the principle of optical path reversibility, the optical coupler 110 can output the reflected light input from the output port 113 from the first input port 111 and the second input port 112.
  • the reflected light output from the first input port 111 is isolated, and the reflected light output from the second input port 112 can be used to detect the optical power.
  • the first optical power detector 120 is configured to detect the optical power of the reflected light output from the second input port 112.
  • the first optical power detector 120 is coupled to the second input port 112 of the optical coupler 110, for example, by fiber optic connections.
  • the first optical power detector can detect the optical power of the reflected light output from the second input port 112.
  • the optical power of the reflected light detected by the first optical power detector 120 can be used as a basis for adjusting the position of the input optical fiber 130.
  • the first conditioning stage 140 is operative to adjust the position of the input fiber 130 based on the optical power of the reflected light detected by the first optical power detector 120 such that the input fiber 130 is in an optimal position coupled to the input optical waveguide coupler.
  • the first adjustment stage 140 can adjust the position of the input fiber 130.
  • the input optical fiber 130 may be fixed on the first adjustment stage 140, and the first adjustment stage 140 may be a multi-dimensional adjustment stage.
  • the dimension of the first adjustment stage 140 may be 2, 3, 4, 5 or 6 or the like.
  • the position of the input fiber 130 is adjusted.
  • the large optical power of the reflected light detected by the first optical power detector 120 indicates that the coupling position is good.
  • the first adjustment stage 140 is specifically configured to adjust the position of the input optical fiber 130 such that the optical power of the reflected light detected by the first optical power detector 120 reaches a maximum value and is sensitive to a change in position of the input optical fiber 130. That is, the optimal position at which the input fiber 130 is coupled to the input optical waveguide coupler satisfies the following conditions:
  • the optical power of the reflected light reaches a maximum value
  • the optical power of the reflected light is sensitive to changes in the position of the input fiber 130. For example, the position deviates by a few um, and the optical power of the reflected light drops by more than 3 dB.
  • Adjusting the position of the input fiber according to the optical power of the reflected light can achieve the coupling of the input end without relying on the coupling of the output end, which reduces the coupling difficulty and shortens the coupling time.
  • the reflected light output reflected from the input optical waveguide coupler is used for optical power detection by the optical coupler, and the light of the reflected light detected by the first adjusting station according to the optical power detector is
  • the position of the power adjustment input fiber can achieve the coupling of the input end without relying on the coupling of the output end, which reduces the coupling difficulty and shortens the coupling time, thereby improving the efficiency of fiber coupling.
  • system 100 further includes:
  • the output fiber 150, the second adjustment stage 160, and the second optical power detector 170 are connected to The output fiber 150, the second adjustment stage 160, and the second optical power detector 170.
  • the output fiber 150 is for coupling with an output optical waveguide coupler of the on-chip optical device to transmit the transmitted light output from the output optical waveguide coupler to the second optical power detector 170.
  • the second optical power detector 170 is for detecting the optical power of the transmitted light output from the output optical fiber 150.
  • the second adjustment stage 160 is operative to adjust the position of the output fiber 150 based on the optical power of the transmitted light detected by the second optical power detector 170 such that the output fiber 150 is in an optimal position coupled to the output optical waveguide coupler.
  • the second adjustment stage 160 can adjust the position of the output fiber 150.
  • the output fiber 150 may be fixed to the second adjustment stage 160
  • the second adjustment stage 160 may be a multi-dimensional adjustment stage
  • the second adjustment stage 160 may have a dimension of 2, 3, 4, 5 or 6, or the like.
  • the position of the output fiber 150 is still adjusted according to the optical power of the transmitted light detected by the second optical power detector 170.
  • the large optical power of the transmitted light detected by the second optical power detector 170 indicates that the coupling position is good.
  • the second adjustment stage 160 is specifically configured to adjust the position of the output optical fiber 150 such that the optical power of the transmitted light detected by the second optical power detector 170 reaches a maximum value and is sensitive to changes in the position of the output optical fiber 150.
  • the input fiber 130 and the output fiber 150 may be further Fine-tune the position.
  • the fine adjustment is based on the optical power of the transmitted light detected by the second optical power detector 170 to maximize the optical power of the transmitted light.
  • step 1 is performed.
  • Fig. 3 shows a schematic view of a coupling section of an optical waveguide coupler.
  • light travels along the X axis.
  • the fiber position can be adjusted in all directions of X, Y and Z.
  • Figure 4 shows the relationship between fiber position and optical power.
  • the change in the optical power of the reflected light and the transmitted light is uniform regardless of the direction in which the vertical light propagates or the direction in which the light travels. That is to say, the optical power of the reflected light is used as the adjustment basis, and the optical power of the transmitted light is used as the adjustment basis, and the optimal coupling position obtained is consistent. Therefore, it is feasible to use the optical power of the reflected light to determine whether the input optical fiber reaches the optimal coupling position provided by the embodiment of the present invention.
  • optical waveguide coupler in the embodiment of the present invention may be a side coupler or a grating coupler, which is not limited by the embodiment of the present invention.
  • system 100 further includes:
  • the controller 180 is configured to control the first adjustment stage 140 to adjust the position of the input optical fiber 130 according to the optical power of the reflected light detected by the first optical power detector 120, so that the input optical fiber 130 is coupled to the input optical waveguide coupler. a good position; controlling the second adjustment stage 160 to adjust the position of the output optical fiber 150 according to the optical power of the transmitted light detected by the second optical power detector 170, so that the output optical fiber 150 In the optimum position coupled to the output optical waveguide coupler.
  • the controller 180 is connected to the first optical power detector 120, the first adjustment stage 140, the second adjustment stage 160, and the second optical power detector 170.
  • the position adjustment of the adjustment stage is controlled by the controller 180, and the optimal position can be automatically found by the closed loop feedback to maximize the optical power.
  • the controller 180 may select the value of the first optical power detector 120 (the optical power of the reflected light) as the standard of the closed loop feedback, or may select the value of the second optical power detector 170 (transmission).
  • the optical power of the light is used as a closed-loop feedback criterion; when the controller controls the second adjustment stage 160, only the value of the second optical power detector 170 (the optical power of the transmitted light) can be selected as the closed-loop feedback criterion.
  • system 100 further includes:
  • the light source selecting means 190 is configured to select input of incident light of the visible light source or the communication band light source to the first input port 111.
  • a light source selecting means 190 is added before the first input port 111.
  • the optical path selection device 190 can be an optical switch or an optical coupler.
  • the light source selection device 190 can select to input incident light of the visible light source or the communication band light source to the first input port 111.
  • the light source selection means 190 may first select the incident light of the visible light source. The coarse adjustment is accomplished by positioning the spot of visible light at the input optical waveguide coupler. Then, the light source selecting means 190 selects the incident light of the communication band light source again, and the fiber coupling is completed in the manner as in the foregoing embodiment.
  • the use of visible light can shorten the time required for the entire process.
  • the fiber-coupled system of the embodiment of the invention decouples the input end and the output end, reduces the coupling difficulty, shortens the coupling time, and has a simple structure and low additional cost.
  • FIG. 7 shows a schematic flow diagram of a method 700 of fiber coupling in accordance with an embodiment of the present invention.
  • the method 700 is for the aforementioned fiber coupled system 100 in accordance with an embodiment of the present invention.
  • the method 700 includes:
  • the reflected light output reflected from the input optical waveguide coupler is used for optical power detection by the optical coupler, and the position of the input optical fiber is adjusted according to the optical power of the reflected light detected by the optical power detector.
  • the coupling of the input end can be achieved without relying on the coupling of the output end, the coupling difficulty is reduced, the coupling time is shortened, and the efficiency of the fiber coupling can be improved.
  • the position of the input fiber is adjusted by the first adjustment stage according to the optical power of the reflected light detected by the first optical power detector, so that the input fiber is coupled to the input optical waveguide coupler.
  • the best location including:
  • the position of the input fiber is adjusted by the first adjustment stage such that the optical power of the reflected light detected by the first optical power detector reaches a maximum value and is sensitive to changes in the position of the input optical fiber.
  • the method 700 further includes:
  • the position of the output fiber is adjusted by the second adjustment stage according to the optical power of the transmitted light detected by the second optical power detector, so that the output optical fiber is in the output optical waveguide coupler
  • the best location for coupling including:
  • the position of the output fiber is adjusted by the second adjustment stage such that the optical power of the transmitted light detected by the second optical power detector reaches a maximum value and is sensitive to changes in the position of the output fiber.
  • the position of the input optical fiber is adjusted by the first adjustment stage, so that the input optical fiber is in and out.
  • the best position for coupling into the optical waveguide coupler including:
  • the controller controls the first adjustment stage to adjust the position of the input optical fiber according to the optical power of the reflected light detected by the first optical power detector, so that the input optical fiber is in an optimal position coupled with the input optical waveguide coupler;
  • the position of the output fiber is adjusted by the second adjustment stage such that the output fiber is in an optimal position coupled to the output optical waveguide coupler, including:
  • the controller controls the second stage to adjust the position of the output fiber based on the optical power of the transmitted light detected by the second optical power detector such that the output fiber is in an optimal position coupled to the output optical waveguide coupler.
  • the method 700 is performed prior to transmitting the first incident light input from the first input port of the optical coupler through the optical coupler from the output port of the optical coupler to the input optical fiber. Also includes:
  • the first incident light of the communication band source is input to the first input port of the optocoupler by the light source selection means.
  • the optical path selecting device is an optical switch or an optical coupler.
  • the fiber coupling method of the embodiment of the invention decouples the input end and the output end, reduces the coupling difficulty, shortens the coupling time, and can improve the efficiency of fiber coupling.
  • the disclosed systems, systems, and methods may be implemented in other ways.
  • the system embodiment described above is merely illustrative.
  • the division of the unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, system or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本发明公开了一种光纤耦合的系统和方法。该系统包括:光耦合器(110)、第一光功率探测器(120)、输入光纤(130)和第一调节台(140);光耦合器(110)用于将从第一输入端口(111)输入的入射光从输出端口(113)传输到输入光纤(130);输入光纤(130)用于将入射光传输到输入光波导耦合器,并将从输入光波导耦合器反射回来的反射光传输到输出端口(113);光耦合器(110)还用于将反射光从第一输入端口(111)和第二输入端口(112)输出;第一光功率探测器(120)用于探测从第二输入端口(112)输出的反射光的光功率;第一调节台(140)用于根据反射光的光功率,调节输入光纤(130)的位置。本发明实施例能够提高光纤耦合的效率。

Description

光纤耦合的系统和方法 技术领域
本发明涉及光通信领域,并且更具体地,涉及光纤耦合的系统和方法。
背景技术
硅光技术是目前光通信产业界和学术界的热点。几乎所有光无源器件如调制器、滤波器、光耦合器、波分复用器和波分解复用器等器件,都可以通过硅光技术来实现。基于硅光的光无源器件一般包含一个输入光波导耦合器和一个输出光波导耦合器,分别用于将光纤中的光导入和导出光无源器件。只有将光纤中的光成功耦合到光无源器件中,再将光无源器件中的光成功耦合出来,才能对器件进行测试,验证其性能。因此,光无源器件与光纤的耦合,成为其测试和产品化的最关键技术之一和最基本前提条件。光纤耦合的好坏,直接影响到产品的测试效率、测试准确性、产品性能和成品率。
常见的光纤耦合流程为:光源产生的光信号首先从输入光纤被耦合进入片上光器件(光无源器件)的输入光波导耦合器,经过片上光器件后,从片上光器件的输出光波导耦合器被耦合进入输出光纤,进而被光功率探测器(power detector,PD)接收。输入光纤和输出光纤的位置依据光功率探测器探测的从片上光器件透射出来的光的功率进行调节。
光纤与片上光器件的耦合是输入端和输出端的两次耦合级联,且彼此相互依赖。如果输入端没有光被耦合进入器件(即使偏差只有几um),那么输出端就永远无法对准;反之亦然。无论是输入端还是输出端的光纤耦合都是两次对准耦合的同时级联调节。这种级联调节难度大,耗时长,影响光纤耦合的效率。
发明内容
本发明实施例提供了一种光纤耦合的系统和方法,能够提高光纤耦合的效率。
第一方面,提供了一种光纤耦合的系统,包括:
光耦合器110、第一光功率探测器120、输入光纤130和第一调节台140;
光耦合器110包括第一输入端口111、第二输入端口112和输出端口113, 光耦合器110用于将从第一输入端口111输入的入射光从输出端口113传输到输入光纤130;
输入光纤130用于与片上光器件的输入光波导耦合器耦合,将入射光传输到输入光波导耦合器,并将从输入光波导耦合器反射回来的反射光传输到输出端口113;
光耦合器110还用于将从输出端口113输入的反射光从第一输入端口111和第二输入端口112输出;
第一光功率探测器120用于探测从第二输入端口112输出的反射光的光功率;
第一调节台140用于根据第一光功率探测器120探测的反射光的光功率,调节输入光纤130的位置。
结合第一方面,在第一种可能的实现方式中,第一调节台140具体用于调节输入光纤130的位置,使第一光功率探测器120探测的反射光的光功率达到极大值并且对输入光纤130的位置变化敏感。
结合第一方面或第一方面的第一种可能的实现方式,在第二种可能的实现方式中,该系统还包括:
输出光纤150、第二调节台160和第二光功率探测器170;
输出光纤150用于与片上光器件的输出光波导耦合器耦合,将从输出光波导耦合器输出的透射光传输到第二光功率探测器170;
第二光功率探测器170用于探测从输出光纤150输出的透射光的光功率;
第二调节台160用于根据第二光功率探测器170探测的透射光的光功率,调节输出光纤150的位置。
结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中,第二调节台160具体用于调节输出光纤150的位置,使第二光功率探测器170探测的透射光的光功率达到极大值并且对输出光纤150的位置变化敏感。
结合第一方面的第二或三种可能的实现方式,在第四种可能的实现方式中,该系统还包括:
控制器180,用于根据第一光功率探测器120探测的反射光的光功率,控制第一调节台140调节输入光纤130的位置;根据第二光功率探测器170探测的透射光的光功率,控制第二调节台160调节输出光纤150的位置。
结合第一方面或第一方面的第一至四种可能的实现方式中的任一种可能的实现方式,在第五种可能的实现方式中,该系统还包括:
光源选择装置190,用于选择将可见光源或通信波段光源的入射光输入到第一输入端口111。
结合第一方面的第五种可能的实现方式,在第六种可能的实现方式中,光路选择装置190为光开关或者光耦合器。
第二方面,提供了一种光纤耦合的方法,该方法用于光纤耦合的系统,该系统包括光耦合器、第一光功率探测器、输入光纤和第一调节台,光耦合器包括第一输入端口、第二输入端口和输出端口;
该方法包括:
通过光耦合器将从光耦合器的第一输入端口输入的第一入射光从光耦合器的输出端口传输到输入光纤;
通过输入光纤将第一入射光传输到片上光器件的输入光波导耦合器,并将从输入光波导耦合器反射回来的反射光传输到光耦合器的输出端口;
通过光耦合器将从光耦合器的输出端口输入的反射光从光耦合器的第一输入端口和第二输入端口输出;
通过第一光功率探测器探测从光耦合器的第二输入端口输出的反射光的光功率;
根据第一光功率探测器探测的反射光的光功率,通过第一调节台调节输入光纤的位置,以使输入光纤处于与输入光波导耦合器耦合的最佳位置。
结合第二方面,在第一种可能的实现方式中,根据第一光功率探测器探测的反射光的光功率,通过第一调节台调节输入光纤的位置,以使输入光纤处于与输入光波导耦合器耦合的最佳位置,包括:
通过第一调节台调节输入光纤的位置,使第一光功率探测器探测的反射光的光功率达到极大值并且对输入光纤的位置变化敏感。
结合第二方面或第二方面的第一种可能的实现方式,在第二种可能的实现方式中,该系统还包括输出光纤、第二调节台和第二光功率探测器;
该方法还包括:
通过输出光纤将从片上光器件的输出光波导耦合器输出的透射光传输到第二光功率探测器;
通过第二光功率探测器探测从输出光纤输出的透射光的光功率;
根据第二光功率探测器探测的透射光的光功率,通过第二调节台调节输出光纤的位置,以使输出光纤处于与输出光波导耦合器耦合的最佳位置。
结合第二方面的第二种可能的实现方式,在第三种可能的实现方式中,根据第二光功率探测器探测的透射光的光功率,通过第二调节台调节输出光纤的位置,以使输出光纤处于与输出光波导耦合器耦合的最佳位置,包括:
通过第二调节台调节输出光纤的位置,使第二光功率探测器探测的透射光的光功率达到极大值并且对输出光纤的位置变化敏感。
结合第二方面的第二或三种可能的实现方式,在第四种可能的实现方式中,该系统还包括控制器;
根据第一光功率探测器探测的反射光的光功率,通过第一调节台调节输入光纤的位置,以使输入光纤处于与输入光波导耦合器耦合的最佳位置,包括:
控制器根据第一光功率探测器探测的反射光的光功率,控制第一调节台调节输入光纤的位置,以使输入光纤处于与输入光波导耦合器耦合的最佳位置;
根据第二光功率探测器探测的透射光的光功率,通过第二调节台调节输出光纤的位置,以使输出光纤处于与输出光波导耦合器耦合的最佳位置,包括:
控制器根据第二光功率探测器探测的透射光的光功率,控制第二调节台调节输出光纤的位置,以使输出光纤处于与输出光波导耦合器耦合的最佳位置。
结合第二方面或第二方面的第一至四种可能的实现方式中的任一种可能的实现方式,在第五种可能的实现方式中,该系统还包括光源选择装置;
在通过光耦合器将从光耦合器的第一输入端口输入的第一入射光从光耦合器的输出端口传输到输入光纤之前,该方法还包括:
通过光源选择装置选择将可见光源的第二入射光输入到光耦合器的第一输入端口;
通过光耦合器将第二入射光从光耦合器的输出端口传输到输入光纤;
通过第一调节台调节输入光纤的位置,以使输入光纤将第二入射光传输到输入光波导耦合器;
通过光源选择装置选择将通信波段光源的第一入射光输入到光耦合器 的第一输入端口。
结合第二方面的第五种可能的实现方式,在第六种可能的实现方式中,光路选择装置为光开关或者光耦合器。
基于上述技术方案,本发明实施例的光纤耦合的系统和方法,通过光耦合器将从输入光波导耦合器反射回来的反射光输出用于光功率探测,第一调节台根据光功率探测器探测的反射光的光功率调节输入光纤的位置,可以不依赖输出端的耦合而达到输入端的耦合,降低了耦合难度,缩短了耦合时间,从而能够提高光纤耦合的效率。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例的光纤耦合的系统的示意图。
图2是本发明另一实施例的光纤耦合的系统的示意图。
图3是本发明实施例的光波导耦合器的耦合截面的示意图。
图4是本发明实施例的光纤位置与光功率的关系曲线。
图5是本发明又一实施例的光纤耦合的系统的示意图。
图6是本发明又一实施例的光纤耦合的系统的示意图。
图7是本发明一个实施例的光纤耦合的方法的示意性流程图。
图8是本发明另一实施例的光纤耦合的方法的示意性流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
图1示出了根据本发明实施例的光纤耦合的系统100的示意图。
如图1所示,系统100包括:光耦合器110、第一光功率探测器120、输入光纤130和第一调节台140。
光耦合器110包括第一输入端口111、第二输入端口112和输出端口113。也就是说,光耦合器110具有两个输入端口和一个输出端口。第一输入端口111可以与光源连接,用于输入光源的入射光。第二输入端口112与第一光功率探测器120连接。输出端口113与输入光纤130连接。
光耦合器110用于将从第一输入端口111输入的入射光从输出端口113传输到输入光纤130。也就是说,光源的入射光从光耦合器110的第一输入端口111输入,从光耦合器110的输出端口113输出到输入光纤130。
输入光纤130用于与片上光器件的输入光波导耦合器耦合,将入射光传输到输入光波导耦合器,并将从输入光波导耦合器反射回来的反射光传输到输出端口113。
入射光打到输入光波导耦合器上时,会产生反射光,反射光功率的大小跟输入光纤130与输入光波导耦合器的耦合位置相关。反射光通过输入光纤130传输到光耦合器110的输出端口113。
光耦合器110还用于将从输出端口113输入的反射光从第一输入端口111和第二输入端口112输出。光耦合器110可以将从第一输入端口111和第二输入端口112输入的两路光耦合后从输出端口113输出。按照光路可逆性原理,光耦合器110可以将从输出端口113输入的反射光从第一输入端口111和第二输入端口112输出。从第一输入端口111输出的反射光会被隔离,从第二输入端口112输出的反射光可以用来探测光功率。
第一光功率探测器120用于探测从第二输入端口112输出的反射光的光功率。第一光功率探测器120与光耦合器110的第二输入端口112连接,例如,可以通过光纤连接。第一光功率探测器可以探测从第二输入端口112输出的反射光的光功率。第一光功率探测器120探测的反射光的光功率可以作为调节输入光纤130的位置的依据。
第一调节台140用于根据第一光功率探测器120探测的反射光的光功率,调节输入光纤130的位置,以使输入光纤130处于与输入光波导耦合器耦合的最佳位置。
第一调节台140可以调节输入光纤130的位置。例如,输入光纤130可以固定在第一调节台140上,第一调节台140可以是多维调节台,第一调节台140的维数可以是2、3、4、5或6等。
在本发明实施例中,根据第一光功率探测器120探测的反射光的光功率, 调节输入光纤130的位置。第一光功率探测器120探测的反射光的光功率大表示耦合位置佳。
可选地,第一调节台140具体用于调节输入光纤130的位置,使第一光功率探测器120探测的反射光的光功率达到极大值并且对输入光纤130的位置变化敏感。也就是说,输入光纤130与输入光波导耦合器耦合的最佳位置满足以下条件:
1、反射光的光功率达到极大值;
2、反射光的光功率对输入光纤130的位置变化敏感。例如,位置偏离几um,反射光的光功率下降3dB以上。
根据反射光的光功率调节输入光纤的位置,可以不依赖输出端的耦合而达到输入端的耦合,降低了耦合难度,缩短了耦合时间。
因此,本发明实施例的光纤耦合的系统,通过光耦合器将从输入光波导耦合器反射回来的反射光输出用于光功率探测,第一调节台根据光功率探测器探测的反射光的光功率调节输入光纤的位置,可以不依赖输出端的耦合而达到输入端的耦合,降低了耦合难度,缩短了耦合时间,从而能够提高光纤耦合的效率。
可选地,在本发明另一个实施例中,如图2所示.系统100还包括:
输出光纤150、第二调节台160和第二光功率探测器170。
输出光纤150用于与片上光器件的输出光波导耦合器耦合,将从输出光波导耦合器输出的透射光传输到第二光功率探测器170。
第二光功率探测器170用于探测从输出光纤150输出的透射光的光功率。
第二调节台160用于根据第二光功率探测器170探测的透射光的光功率,调节输出光纤150的位置,以使输出光纤150处于与输出光波导耦合器耦合的最佳位置。
第二调节台160可以调节输出光纤150的位置。例如,输出光纤150可以固定在第二调节台160上,第二调节台160可以是多维调节台,第二调节台160的维数可以是2、3、4、5或6等。
在本发明实施例中,输出光纤150的位置仍然根据第二光功率探测器170探测的透射光的光功率进行调节。第二光功率探测器170探测的透射光的光功率大表示耦合位置佳。
可选地,第二调节台160具体用于调节输出光纤150的位置,使第二光功率探测器170探测的透射光的光功率达到极大值并且对输出光纤150的位置变化敏感。
在本发明实施例中,可选地,在分别根据反射光的光功率和透射光的光功率调节完输入光纤130和输出光纤150的位置后,还可以再对输入光纤130和输出光纤150的位置进行微调。微调以第二光功率探测器170探测的透射光的光功率为依据,以使透射光的光功率达到最大值。
具体地,可以按照以下步骤进行微调:
1、保持输出光纤150的当前位置不动,调节输入光纤130的位置,判断第二光功率探测器170探测的透射光的光功率是否达到更高的最大值,若不能达到更高的最大值,则将输入光纤130恢复到原位置,耦合结束,若达到更高的最大值,则进行步骤2;
2、保持输入光纤130的当前位置不动,调节输出光纤150的位置,判断第二光功率探测器170探测的透射光的光功率是否达到更高的最大值,若不能达到更高的最大值,则将输出光纤150恢复到原位置,耦合结束,若达到更高的最大值,则进行步骤1。
图3示出了光波导耦合器的耦合截面的示意图。图3中,光线沿X轴传播。光纤位置可在X、Y和Z各个方向上调节。
图4示出了光纤位置与光功率的关系曲线。从图4中可以看出,不管是垂直光线传播的方向,还是沿光线传播的方向,反射光和透射光的光功率的变化是一致的。也就是说,利用反射光的光功率作为调节依据,与利用透射光的光功率作为调节依据,得到的最佳耦合位置是一致的。因此,本发明实施例提供的利用反射光的光功率来判断输入光纤是否达到最佳耦合位置的条件是可行的。
应理解,本发明实施例中的光波导耦合器既可以是边耦合器,也可以是光栅耦合器,本发明实施例对此并不限定。
可选地,在本发明另一个实施例中,如图5所示.系统100还包括:
控制器180,用于根据第一光功率探测器120探测的反射光的光功率,控制第一调节台140调节输入光纤130的位置,以使输入光纤130处于与输入光波导耦合器耦合的最佳位置;根据第二光功率探测器170探测的透射光的光功率,控制第二调节台160调节输出光纤150的位置,以使输出光纤150 处于与输出光波导耦合器耦合的最佳位置。
控制器180与第一光功率探测器120、第一调节台140、第二调节台160、第二光功率探测器170相连。通过控制器180控制调节台进行位置调整,能够通过闭环反馈自动寻找最佳位置使光功率达到最大。控制器180在控制第一调节台140时,可以选择第一光功率探测器120的数值(反射光的光功率)作为闭环反馈的标准,也可以选择第二光功率探测器170的数值(透射光的光功率)作为闭环反馈标准;控制器控制第二调节台160时,只能选择第二光功率探测器170的数值(透射光的光功率)作为闭环反馈标准。
可选地,在本发明另一个实施例中,如图6所示.系统100还包括:
光源选择装置190,用于选择将可见光源或通信波段光源的入射光输入到第一输入端口111。
通信波段光源的入射光为不可见光时,不便于光纤位置的粗调。在本实施例中,在第一输入端口111之前,添加一个光源选择装置190。光路选择装置190可以为光开关或者光耦合器。光源选择装置190能够选择将可见光源或通信波段光源的入射光输入到第一输入端口111。
在对输入光纤130的位置进行调节时,光源选择装置190可先选择可见光源的入射光。通过使可见光的光斑定位在输入光波导耦合器处,完成粗调。然后,光源选择装置190再选择通信波段光源的入射光,按照前述实施例中的方式,完成光纤耦合。利用可见光的指示作用,能够缩短整个流程所需的时间。
本发明实施例的光纤耦合的系统,将输入端和输出端解耦,降低了耦合难度,缩短了耦合时间,而且结构简单,附加成本低。
以上详细描述了根据本发明实施例的光纤耦合的系统,下面描述根据本发明实施例的光纤耦合的方法。
图7示出了根据本发明实施例的光纤耦合的方法700的示意性流程图。该方法700用于前述根据本发明实施例的光纤耦合的系统100。该方法700包括:
S710,通过光耦合器将从光耦合器的第一输入端口输入的第一入射光从光耦合器的输出端口传输到输入光纤;
S720,通过输入光纤将第一入射光传输到片上光器件的输入光波导耦合器,并将从输入光波导耦合器反射回来的反射光传输到光耦合器的输出端 口;
S730,通过光耦合器将从光耦合器的输出端口输入的反射光从光耦合器的第一输入端口和第二输入端口输出;
S740,通过第一光功率探测器探测从光耦合器的第二输入端口输出的反射光的光功率;
S750,根据第一光功率探测器探测的反射光的光功率,通过第一调节台调节输入光纤的位置,以使输入光纤处于与输入光波导耦合器耦合的最佳位置。
本发明实施例的光纤耦合的方法,通过光耦合器将从输入光波导耦合器反射回来的反射光输出用于光功率探测,根据光功率探测器探测的反射光的光功率调节输入光纤的位置,可以不依赖输出端的耦合而达到输入端的耦合,降低了耦合难度,缩短了耦合时间,从而能够提高光纤耦合的效率。
在本发明一个实施例中,可选地,根据第一光功率探测器探测的反射光的光功率,通过第一调节台调节输入光纤的位置,以使输入光纤处于与输入光波导耦合器耦合的最佳位置,包括:
通过第一调节台调节输入光纤的位置,使第一光功率探测器探测的反射光的光功率达到极大值并且对输入光纤的位置变化敏感。
在本发明另一个实施例中,可选地,如图8所示,该方法700还包括:
S760,通过输出光纤将从片上光器件的输出光波导耦合器输出的透射光传输到第二光功率探测器;
S770,通过第二光功率探测器探测从输出光纤输出的透射光的光功率;
S780,根据第二光功率探测器探测的透射光的光功率,通过第二调节台调节输出光纤的位置,以使输出光纤处于与输出光波导耦合器耦合的最佳位置。
在本发明另一个实施例中,可选地,根据第二光功率探测器探测的透射光的光功率,通过第二调节台调节输出光纤的位置,以使输出光纤处于与输出光波导耦合器耦合的最佳位置,包括:
通过第二调节台调节输出光纤的位置,使第二光功率探测器探测的透射光的光功率达到极大值并且对输出光纤的位置变化敏感。
在本发明另一个实施例中,可选地,根据第一光功率探测器探测的反射光的光功率,通过第一调节台调节输入光纤的位置,以使输入光纤处于与输 入光波导耦合器耦合的最佳位置,包括:
控制器根据第一光功率探测器探测的反射光的光功率,控制第一调节台调节输入光纤的位置,以使输入光纤处于与输入光波导耦合器耦合的最佳位置;
根据第二光功率探测器探测的透射光的光功率,通过第二调节台调节输出光纤的位置,以使输出光纤处于与输出光波导耦合器耦合的最佳位置,包括:
控制器根据第二光功率探测器探测的透射光的光功率,控制第二调节台调节输出光纤的位置,以使输出光纤处于与输出光波导耦合器耦合的最佳位置。
在本发明另一个实施例中,可选地,在通过光耦合器将从光耦合器的第一输入端口输入的第一入射光从光耦合器的输出端口传输到输入光纤之前,该方法700还包括:
通过光源选择装置选择将可见光源的第二入射光输入到光耦合器的第一输入端口;
通过光耦合器将第二入射光从光耦合器的输出端口传输到输入光纤;
通过第一调节台调节输入光纤的位置,以使输入光纤将第二入射光传输到输入光波导耦合器;
通过光源选择装置选择将通信波段光源的第一入射光输入到光耦合器的第一输入端口。
在本发明另一个实施例中,可选地,光路选择装置为光开关或者光耦合器。
本发明实施例的光纤耦合的方法700的相应流程可分别由前述本发明实施例的光纤耦合的系统100中的各个装置执行,为了简洁,在此不再赘述。
本发明实施例的光纤耦合的方法,将输入端和输出端解耦,降低了耦合难度,缩短了耦合时间,从而能够提高光纤耦合的效率。
应理解,本发明中的具体的例子只是为了帮助本领域技术人员更好地理解本发明实施例,而非限制本发明实施例的范围。
还应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的方法的具体流程,可以参考前述系统实施例中的相应描述,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、系统和方法,可以通过其它的方式实现。例如,以上所描述的系统实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、系统或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部 分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (14)

  1. 一种光纤耦合的系统,其特征在于,包括:
    光耦合器(110)、第一光功率探测器(120)、输入光纤(130)和第一调节台(140);
    所述光耦合器(110)包括第一输入端口(111)、第二输入端口(112)和输出端口(113),所述光耦合器(110)用于将从所述第一输入端口(111)输入的入射光从所述输出端口(113)传输到所述输入光纤(130);
    所述输入光纤(130)用于与片上光器件的输入光波导耦合器耦合,将所述入射光传输到所述输入光波导耦合器,并将从所述输入光波导耦合器反射回来的反射光传输到所述输出端口(113);
    所述光耦合器(110)还用于将从所述输出端口(113)输入的所述反射光从所述第一输入端口(111)和所述第二输入端口(112)输出;
    所述第一光功率探测器(120)用于探测从所述第二输入端口(112)输出的所述反射光的光功率;
    所述第一调节台(140)用于根据所述第一光功率探测器(120)探测的所述反射光的光功率,调节所述输入光纤(130)的位置。
  2. 根据权利要求1所述的系统,其特征在于,所述第一调节台(140)具体用于调节所述输入光纤(130)的位置,使所述第一光功率探测器(120)探测的所述反射光的光功率达到极大值并且对所述输入光纤(130)的位置变化敏感。
  3. 根据权利要求1或2所述的系统,其特征在于,所述系统还包括:
    输出光纤(150)、第二调节台(160)和第二光功率探测器(170);
    所述输出光纤(150)用于与所述片上光器件的输出光波导耦合器耦合,将从所述输出光波导耦合器输出的透射光传输到所述第二光功率探测器(170);
    所述第二光功率探测器(170)用于探测从所述输出光纤(150)输出的所述透射光的光功率;
    所述第二调节台(160)用于根据所述第二光功率探测器(170)探测的所述透射光的光功率,调节所述输出光纤(150)的位置。
  4. 根据权利要求3所述的系统,其特征在于,所述第二调节台(160)具体用于调节所述输出光纤(150)的位置,使所述第二光功率探测器(170) 探测的所述透射光的光功率达到极大值并且对所述输出光纤(150)的位置变化敏感。
  5. 根据权利要求3或4所述的系统,其特征在于,所述系统还包括:
    控制器(180),用于根据所述第一光功率探测器(120)探测的所述反射光的光功率,控制所述第一调节台(140)调节所述输入光纤(130)的位置;根据所述第二光功率探测器(170)探测的所述透射光的光功率,控制所述第二调节台(160)调节所述输出光纤(150)的位置。
  6. 根据权利要求1至5中任一项所述的系统,其特征在于,所述系统还包括:
    光源选择装置(190),用于选择将可见光源或通信波段光源的入射光输入到所述第一输入端口(111)。
  7. 根据权利要求6所述的系统,其特征在于,所述光路选择装置(190)为光开关或者光耦合器。
  8. 一种光纤耦合的方法,其特征在于,所述方法用于光纤耦合的系统,所述系统包括光耦合器、第一光功率探测器、输入光纤和第一调节台,所述光耦合器包括第一输入端口、第二输入端口和输出端口;
    所述方法包括:
    通过所述光耦合器将从所述光耦合器的第一输入端口输入的第一入射光从所述光耦合器的输出端口传输到所述输入光纤;
    通过所述输入光纤将所述第一入射光传输到片上光器件的输入光波导耦合器,并将从所述输入光波导耦合器反射回来的反射光传输到所述光耦合器的输出端口;
    通过所述光耦合器将从所述光耦合器的输出端口输入的所述反射光从所述光耦合器的第一输入端口和第二输入端口输出;
    通过所述第一光功率探测器探测从所述光耦合器的第二输入端口输出的所述反射光的光功率;
    根据所述第一光功率探测器探测的所述反射光的光功率,通过所述第一调节台调节所述输入光纤的位置,以使所述输入光纤处于与所述输入光波导耦合器耦合的最佳位置。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述第一光功率探测器探测的所述反射光的光功率,通过所述第一调节台调节所述输入光 纤的位置,以使所述输入光纤处于与所述输入光波导耦合器耦合的最佳位置,包括:
    通过所述第一调节台调节所述输入光纤的位置,使所述第一光功率探测器探测的所述反射光的光功率达到极大值并且对所述输入光纤的位置变化敏感。
  10. 根据权利要求8或9所述的方法,其特征在于,所述系统还包括输出光纤、第二调节台和第二光功率探测器;
    所述方法还包括:
    通过所述输出光纤将从所述片上光器件的输出光波导耦合器输出的透射光传输到所述第二光功率探测器;
    通过第二光功率探测器探测从所述输出光纤输出的所述透射光的光功率;
    根据所述第二光功率探测器探测的所述透射光的光功率,通过所述第二调节台调节所述输出光纤的位置,以使所述输出光纤处于与所述输出光波导耦合器耦合的最佳位置。
  11. 根据权利要求10所述的方法,其特征在于,所述根据所述第二光功率探测器探测的所述透射光的光功率,通过所述第二调节台调节所述输出光纤的位置,以使所述输出光纤处于与所述输出光波导耦合器耦合的最佳位置,包括:
    通过所述第二调节台调节所述输出光纤的位置,使所述第二光功率探测器探测的所述透射光的光功率达到极大值并且对所述输出光纤的位置变化敏感。
  12. 根据权利要求10或11所述的方法,其特征在于,所述系统还包括控制器;
    所述根据所述第一光功率探测器探测的所述反射光的光功率,通过所述第一调节台调节所述输入光纤的位置,以使所述输入光纤处于与所述输入光波导耦合器耦合的最佳位置,包括:
    所述控制器根据所述第一光功率探测器探测的所述反射光的光功率,控制所述第一调节台调节所述输入光纤的位置,以使所述输入光纤处于与所述输入光波导耦合器耦合的最佳位置;
    所述根据所述第二光功率探测器探测的所述透射光的光功率,通过所述 第二调节台调节所述输出光纤的位置,以使所述输出光纤处于与所述输出光波导耦合器耦合的最佳位置,包括:
    所述控制器根据所述第二光功率探测器探测的所述透射光的光功率,控制所述第二调节台调节所述输出光纤的位置,以使所述输出光纤处于与所述输出光波导耦合器耦合的最佳位置。
  13. 根据权利要求8至12中任一项所述的方法,其特征在于,所述系统还包括光源选择装置;
    在所述通过所述光耦合器将从所述光耦合器的第一输入端口输入的第一入射光从所述光耦合器的输出端口传输到所述输入光纤之前,所述方法还包括:
    通过光源选择装置选择将可见光源的第二入射光输入到所述光耦合器的第一输入端口;
    通过所述光耦合器将所述第二入射光从所述光耦合器的输出端口传输到所述输入光纤;
    通过所述第一调节台调节所述输入光纤的位置,以使所述输入光纤将所述第二入射光传输到所述输入光波导耦合器;
    通过所述光源选择装置选择将通信波段光源的所述第一入射光输入到所述光耦合器的第一输入端口。
  14. 根据权利要求13所述的方法,其特征在于,所述光路选择装置为光开关或者光耦合器。
PCT/CN2014/087757 2014-09-29 2014-09-29 光纤耦合的系统和方法 WO2016049798A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/087757 WO2016049798A1 (zh) 2014-09-29 2014-09-29 光纤耦合的系统和方法
CN201480081173.9A CN106575999B (zh) 2014-09-29 2014-09-29 光纤耦合的系统和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/087757 WO2016049798A1 (zh) 2014-09-29 2014-09-29 光纤耦合的系统和方法

Publications (1)

Publication Number Publication Date
WO2016049798A1 true WO2016049798A1 (zh) 2016-04-07

Family

ID=55629227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087757 WO2016049798A1 (zh) 2014-09-29 2014-09-29 光纤耦合的系统和方法

Country Status (2)

Country Link
CN (1) CN106575999B (zh)
WO (1) WO2016049798A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909732A (zh) * 2021-05-07 2021-06-04 中国科学院西安光学精密机械研究所 一种激光器和plc耦合对准系统及对准方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112859249B (zh) * 2021-01-21 2022-08-16 深圳市易捷通光电技术有限公司 一种光纤耦合使用装置及其使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1274427A (zh) * 1998-05-27 2000-11-22 康宁股份有限公司 对准光波导阵列的方法和设备
CN1428642A (zh) * 2001-12-27 2003-07-09 中国科学院半导体研究所 具有自动调节功能的光学衰减器模块
CN103078241A (zh) * 2013-01-16 2013-05-01 山西大学 全光纤激光噪声过滤装置
CN103235389A (zh) * 2013-05-02 2013-08-07 哈尔滨理工大学 基于光纤耦合的光纤旋转准直器及其机械轴和光轴同轴调试方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6404955B1 (en) * 2001-07-03 2002-06-11 Corning, Incorporated System and method for fabricating arrayed optical fiber collimators
US8254417B2 (en) * 2010-06-14 2012-08-28 Ipg Photonics Corporation Fiber laser system with controllably alignable optical components thereof
CN102735190B (zh) * 2011-04-07 2015-03-25 上海微电子装备有限公司 一种用于激光束偏转角的检测装置及检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1274427A (zh) * 1998-05-27 2000-11-22 康宁股份有限公司 对准光波导阵列的方法和设备
CN1428642A (zh) * 2001-12-27 2003-07-09 中国科学院半导体研究所 具有自动调节功能的光学衰减器模块
CN103078241A (zh) * 2013-01-16 2013-05-01 山西大学 全光纤激光噪声过滤装置
CN103235389A (zh) * 2013-05-02 2013-08-07 哈尔滨理工大学 基于光纤耦合的光纤旋转准直器及其机械轴和光轴同轴调试方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909732A (zh) * 2021-05-07 2021-06-04 中国科学院西安光学精密机械研究所 一种激光器和plc耦合对准系统及对准方法

Also Published As

Publication number Publication date
CN106575999B (zh) 2019-06-11
CN106575999A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
JP6552060B2 (ja) 非接触光パワー測定のためのシステム及び方法
US20160313505A1 (en) Polarization Control Device and Polarization Control Method
US10224696B2 (en) Optical module
WO2012113320A1 (zh) 光开关系统和信号光的反馈控制方法
TW200640097A (en) Tunable laser, optical module, and control method thereof
JP2021517775A (ja) 光通信信号を検出する平衡光受信機及び方法
US8786843B2 (en) Testing of passive optical components
US9838112B2 (en) Method and apparatus for providing a differential latency
WO2012113301A1 (zh) 光开关系统和信号光的反馈控制方法
US9485026B2 (en) Scheme for remote control of the wavelength of a tunable transmitter in a smart transceiver
CN109164663A (zh) 一种小型化纠缠源及其制备方法、以及设备无关量子随机数发生器
WO2016049798A1 (zh) 光纤耦合的系统和方法
WO2018107452A1 (zh) 自由空间通信系统中的光通信装置和方法以及发射天线
US20130259439A1 (en) Optical device
US8525981B2 (en) Return loss measurement system
CN109375449B (zh) 一种操控双光子量子干涉曲线的方法
CN110192359B (zh) 跟踪光波长的装置和方法
WO2021218146A1 (zh) 光网络终端和确定光网络终端连接的端口的方法
EP3137940B1 (en) Polarization rotator-combiner for optical communications
US20150381275A1 (en) Optical Coupler Device and an Optical Monitoring Device for Monitoring One or More Optical Point-to-Point Transmission Links
EP3761526A1 (en) Optical performance monitoring apparatus and method
CN107306150A (zh) 高功率光纤放大器冗余备份系统
EP3008515A1 (en) Voltage controlled optical directional coupler
KR102390948B1 (ko) 레이저 발진 장치, 레이저 발진 방법 및 상기 방법을 실행시키기 위하여 기록매체에 저장된 컴퓨터 프로그램
JP4653034B2 (ja) 双方向光空間通信システムおよび光送受信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14902900

Country of ref document: EP

Kind code of ref document: A1