WO2015027606A1 - 薄膜及其制备方法、发光显示器件 - Google Patents

薄膜及其制备方法、发光显示器件 Download PDF

Info

Publication number
WO2015027606A1
WO2015027606A1 PCT/CN2013/088728 CN2013088728W WO2015027606A1 WO 2015027606 A1 WO2015027606 A1 WO 2015027606A1 CN 2013088728 W CN2013088728 W CN 2013088728W WO 2015027606 A1 WO2015027606 A1 WO 2015027606A1
Authority
WO
WIPO (PCT)
Prior art keywords
film layer
film
layer
substrate
ions
Prior art date
Application number
PCT/CN2013/088728
Other languages
English (en)
French (fr)
Inventor
王祖强
刘政
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2015027606A1 publication Critical patent/WO2015027606A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • Embodiments of the present invention relate to the field of flat panel display manufacturing technology, and in particular to a film and a method of fabricating the same, and a light emitting display device including the same. Background technique
  • An organic electroluminescence display device (also referred to as an OLED) is a device that uses an electric current to drive an organic semiconductor thin film, and has a stacked multilayer structure, usually composed of an anode, a hole injection layer, and a hole transport layer. , a light-emitting layer, an electron transport layer, and a cathode. Under the action of an external electric field, electrons and holes can be injected into the organic light-emitting layer, and then recombined in the light-emitting layer to form excitons, which are attenuated by exciton radiation to emit light. Due to its high contrast, high brightness, self-illumination, wide color gamut and thinness, OLED is considered to be a promising generation of display technology.
  • the OLED can be divided into a bottom emission structure (light from the bottom) and a top emission structure (light from the top) according to the light exit direction.
  • the transparent anode is on the transparent substrate, on the transparent anode is a multilayer organic film layer, on the organic film layer is a fully reflective metal or alloy cathode, and the light is transmitted through the anode from the bottom of the village.
  • the anode uses a totally reflective metal
  • the top cathode uses a thin, translucent metal or alloy film that emits light from the top cathode.
  • a plurality of thin film preparation processes such as an anode thin film process of a bottom emission structure light-emitting display device, a cathode thin film process of a light-emitting display device, and the like are included.
  • the main problem currently exists is that the film forming process is prone to micro pinholes, especially when depositing ultra-thin layers (thickness less than 100 angstroms) in the anode film or cathode film. The probability of a hole is very high.
  • the stability and luminous efficiency of the light-emitting display device are lowered. Summary of the invention
  • Embodiments of the present invention provide a film, a method for fabricating the same, and a light emitting display device, to solve the present There are many micro-pinholes in the film prepared by the process, which affects the stability and luminous efficiency of the light-emitting display device.
  • An embodiment of the present invention provides a film comprising: a first film layer formed on a substrate, and a second film layer formed between the first film layer and the substrate and in direct contact with the first film layer, The surface of the second film layer that is in contact with the first film layer may be subjected to an activation treatment.
  • the film may further include a third film layer formed between the substrate and the second film layer and in direct contact with the second film layer.
  • the film may further include a transition layer formed between the substrate and the third film layer, and the surface of the transition layer in direct contact with the third film layer may be subjected to an activation treatment.
  • the material of the first film layer may be a transparent conductive oxide
  • the transparent conductive oxide may be any one of indium tin oxide, indium oxide and aluminum oxide
  • the material of the second film may be gold. Any of silver, copper, aluminum and silver alloys.
  • the first film layer may have a thickness of 5 to 15 nm
  • the second film layer may have a thickness of 80 to 150 nm.
  • the material of the third film layer may be a transparent conductive oxide
  • the transparent conductive oxide may be any one of indium tin oxide, indium oxide, and aluminum oxide.
  • the third film layer may have a thickness of 5 to 15 nm.
  • the surface of the second film layer in contact with the first film layer is subjected to an activation treatment, the surface energy thereof is increased, and when the ultrathin first film layer is formed on the basis of the first film layer, the first film can be made.
  • the layer has a higher density, thereby reducing the probability of creating microneedle holes in the first film layer.
  • An embodiment of the present invention provides a light emitting display device comprising the film as described above. If the light emitting display device is a top emitting structure, the film may be an anode film or a cathode film; or, if the light emitting display device is a bottom emitting structure, The film can be a cathode film.
  • Embodiments of the present invention also provide a method of preparing a film, the film including a first film layer formed on a substrate and a second film formed between the first film layer and the substrate and in direct contact with the first film layer
  • the layer comprises: activating the surface of the second film layer before forming the first film layer.
  • the activating treatment of the surface of the second film layer may include: bombarding the surface of the second film layer with a plasma of any one of cerium ions, cerium ions, argon ions, cerium ions, cerium ions, and cerium ions.
  • the frequency of bombarding the surface of the second film layer with plasma may be 13.56 MHz, and the bombardment time may be 60 seconds to 300 seconds.
  • the method may further include forming a third film layer on the substrate, the third film layer being in direct contact with the subsequently formed second film layer.
  • the method may further include forming a transition layer on the substrate and performing an activation treatment on the surface of the transition layer, wherein the transition layer is in direct contact with the subsequently formed third film layer.
  • Activating the surface of the transition layer may include: washing the surface of the transition layer and bombarding the surface of the transition layer with any one of a hydrogen ion, an oxygen ion, and an argon ion.
  • an ultrathin first film formed on the basis of the surface of the second film layer in contact with the first film layer is activated before the formation of the ultrathin first film layer
  • the layer has a high density, thereby reducing the probability of generating microneedle holes in the first film layer and improving the yield of the film.
  • FIG. 1 is a schematic view of a film according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of an anode film having micro pinholes according to an embodiment of the present invention
  • FIG. 3 is a schematic view of an anode film having micro pinholes after directional corrosion treatment according to an embodiment of the present invention.
  • an embodiment of the present invention provides a film, which may include: a first film layer
  • the second film layer 12 is formed between the first film layer 11 and the substrate 10 and is in direct contact with the first film layer 11 , wherein the first film layer 12 and the first film layer
  • the surface of the 11 contact can be activated.
  • the activated surface 121 of the second film layer 12 is shown in FIG. It should be noted that in the actual production process, the human eye may not be able to distinguish the surface 121, the surface 121 and the second film.
  • the thickness ratio of the portion of layer 12 that has not been activated may depend on the actual situation. The thickness ratio shown in Fig. 1 is not true, and the surface 121 is clearly shown by way of example only. Since the surface 121 of the activated second film layer 12 has a higher density, the first film layer 11 formed thereon has fewer micro pinholes.
  • the material of the first film layer 11 may be a transparent conductive oxide
  • the transparent conductive oxide may be any one of a metal oxide such as indium tin oxide, indium oxide, or aluminum oxide.
  • the material of the second film layer 12 may be any one of gold, silver, copper, aluminum, and a silver alloy.
  • different metal materials may be selected depending on the application of the film. For example, when the film is applied to the anode of an OLED device of a top emission structure, the film may be made of silver or a silver alloy, or other total reflection metal.
  • the film may further include a third film layer 13, and a third film layer 13 is formed between the substrate 10 and the second film layer 12 and in direct contact with the second film layer 12.
  • the material of the third film layer 13 may be a transparent conductive oxide, and the transparent conductive oxide may be any one of a metal oxide such as indium tin oxide, indium oxide or aluminum oxide.
  • the second film layer 12 is usually a metal material, and the third film layer 13 can prevent or reduce the influence of the second film layer 12 by oxygen or moisture, thereby providing a certain protection.
  • the film may further include a transition layer 14, a transition layer 14 formed between the substrate 10 and the third film layer 13, and a surface of the transition layer 14 in direct contact with the third film layer 13 may be subjected to an activation treatment.
  • a transition layer 14 similar to the surface 121 of the second film layer 12, in the actual production process, the human eye is not necessarily able to distinguish the surface 141 of the transition layer 14 that has been activated, and the surface 141 and the transition layer 14 are not activated.
  • the thickness ratio of the portion depends on the actual situation, and the thickness ratio of FIG. 1 is not true, and the surface 141 is clearly shown by way of example only.
  • the surface 141 of the activated transition layer 14 is capable of providing greater adhesion to the third film layer 13 in contact therewith.
  • the first film layer 11 may have a thickness of 5 to 15 nm
  • the second film layer 12 may have a thickness of 80 to 150 nm.
  • the third film layer 13 may have a thickness of 5 to 15 nm.
  • the surface of the second film layer in contact with the first film layer is subjected to an activation treatment, the surface energy thereof is increased, so that when the ultra-thin first film layer is formed on the basis of the first film layer, the first film layer can have high compactness. Thereby reducing the probability of creating microneedle holes in the first film layer.
  • Embodiments of the present invention also provide an illuminating display device comprising the film provided in the above embodiment.
  • the film can be used as an anode film or a cathode film of the light emitting display device; or, when the light emitting display device is a bottom emitting structure, the film can be used as a light emitting A cathode film of the display device.
  • Embodiments of the present invention also provide a method of preparing a film, the film including a first film layer formed on a substrate and a second film formed between the first film layer and the substrate and in direct contact with the first film layer
  • the layer may include: activating the surface of the second film layer before forming the first film layer.
  • the activating the surface of the second film layer may include: bombarding the second film layer with a plasma of any one of a cerium ion, a cerium ion, an argon ion, a cerium ion, a cerium ion, and a cerium ion. surface.
  • a plasma of any one of a cerium ion, a cerium ion, an argon ion, a cerium ion, a cerium ion, and a cerium ion. surface may be noted that the plasmas listed above are merely examples and are not intended to limit the present invention as long as the plasma does not chemically react with the bombarded second film layer.
  • the frequency and time at which the surface of the second film layer is bombarded with the plasma may be determined according to the material of the second film layer and the design requirements of the surface treatment of the second film layer. For example, when the material of the second film layer is a silver alloy, the frequency at which the plasma bombards the surface of the second film layer may be 13.56 MHz, and the bombardment time may be 180 seconds. Of course, at the same frequency, the plasma bombardment time can be set to a better range, for example, 60 to 360 seconds.
  • the method may further comprise the step of forming a third film layer on the substrate, the third film layer being in direct contact with the subsequently formed second film layer.
  • the method may further include the step of forming a transition layer on the substrate and subjecting the surface of the transition layer to an activation process, the transition layer being in direct contact with the subsequently formed third film layer.
  • the act of activating the surface of the transition layer may include: washing the surface of the transition layer and bombarding the surface of the transition layer with any one of hydrogen ions, oxygen ions, and argon ions.
  • the activation treatment of the surface of the transition layer may be similar to the activation treatment of the surface of the second membrane layer, and will not be exemplified herein.
  • the surface of the second film layer that is in contact with the first film layer is subjected to an activation treatment before the formation of the ultrathin first film layer, so that the ultrathin first film layer formed thereon has The higher the density, thereby reducing the probability of micro-needle holes in the first film layer and improving the yield of the film.
  • an anode film for a light-emitting display device is taken as an example to provide a method for preparing a more specific film, and the method may include:
  • the substrate is subjected to heat shrinkage treatment, and a transition layer is formed on the substrate after the heat shrinkage treatment.
  • the transition layer prevents the stress and thermal expansion coefficients from mismatching when the film is heterogeneously grown.
  • the transition layer can be prepared using a polymethyl methacrylate film or a silicon oxide film.
  • the surface of the transition layer is wet-washed or dry-cleaned, and the surface of the transition layer is bombarded with any one of hydrogen ions, oxygen ions, and argon ions.
  • different ions may be selected depending on the material of the transition layer to be treated, so that the selected ions do not react with the surface of the transition layer.
  • Deionized water can be used for the wet washing of the surface of the transition layer.
  • the bombardment power of the hydrogen plasma should not be too large to avoid damage to the transition layer, which is related to the material of the transition layer.
  • the bombardment power of the plasma is also related to the area of the transition layer to be treated. The larger the area of the transition layer, the greater the power required, and the smaller the area of the transition layer, the smaller the power required.
  • the bombardment frequency of the plasma can be selected as
  • the bombardment time can be set to 120 seconds.
  • the material of the third film layer in this step may be a transparent conductive oxide, and the transparent conductive oxide may be any one of a metal oxide such as indium tin oxide, indium oxide, or aluminum oxide, and the thickness may be 5 ⁇ . 15 nanometers.
  • the second film layer in this step may be a total reflection metal material, which may be silver, aluminum or a silver alloy, and has a thickness of preferably 80 to 150 nm.
  • the surface of the second film layer may be bombarded with any one of inert ions such as helium ions, strontium ions, argon ions, strontium ions, strontium ions, and strontium ions.
  • the frequency at which the plasma bombards the surface of the second film layer can be selected to be 13.56 MHz, and the bombardment time can be set to 120 seconds.
  • the material of the first film layer may be a transparent conductive oxide, and the transparent conductive oxide may be any one of a metal oxide such as indium tin oxide, indium oxide or aluminum oxide, and may have a thickness of 5 to 15 nm.
  • the surface of the second film layer that is in contact with the first film layer is subjected to an activation treatment before the formation of the ultrathin first film layer, so that the ultrathin first film layer formed on the basis of the first film layer has The higher the density, thereby reducing the probability of micro-needle holes in the first film layer and improving the yield of the film.
  • Embodiments of the present invention also provide a method of detecting microneedle holes on an anode film of a light emitting display device.
  • an anode film shown in Fig. 2 (the portions of the anode film are referred to Fig. 1) is exemplified, wherein the first film layer 11 has a pinhole 15.
  • the first film layer 11 and the second film layer 12 have a higher etching selectivity ratio with respect to one or more etching liquids, that is, the first film layer 11 and the second film layer.
  • the corrosion rate of 12 has a large difference.
  • the material of the first film layer 11 and the third film layer 13 is indium tin oxide
  • the material of the second film layer 12 is a silver alloy.
  • the detecting method comprises the following steps: Step one, the anodic film provided in the above embodiment is subjected to directional etching treatment.
  • the corrosive solution for corrosion can be prepared from phosphoric acid, nitric acid, acetic acid and a sustained release agent in a prescribed ratio.
  • the prepared etching solution corrodes the first film layer 11 slowly, and the second film layer 12 corrodes faster.
  • the etching solution is immersed for 30-60 seconds, the etching solution penetrates through the pinhole 15 and the corrosion of the second film layer 12 is as shown in FIG. 3, in the second film.
  • Corrosion holes 16 are formed in the layer 12 at positions corresponding to the microneedle holes 15.
  • the etched anode film is detected by a scanning electron microscope (SEM). Due to the presence of the etching holes 16, information such as the position, number and size of the micro pinholes 15 can be scanned, thereby judging the possible defects in the anode film production process based on the information of the scanned micro pinholes 15.
  • SEM scanning electron microscope
  • the material of the first film layer 11 and the third film layer 13 is indium tin oxide, and the material of the second film layer 12 is a silver alloy as an example, but the implementation of the present invention is described. The example is not limited to this.
  • the first film layer 11 and the second film layer 12 have a higher etching selectivity ratio with respect to one or more kinds of etching liquids, that is, the etching speeds of the first film layer 11 and the second film layer 12 are largely different.
  • the first film layer and the second film layer of the anodic anode film are directionally etched, and when the anode film has a micro pinhole type defect, the etching solution erodes the second film layer at a higher rate than the first film layer The speed, so that after the anodic film is subjected to directional etching, the second film layer having the micro pinhole-like defect position is drilled, and the precise position, number and size of the micro pinhole can be determined by scanning electron microscopy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种薄膜及其制备方法以及发光显示器件,包括:形成于基板(10)之上的第一膜层(11),以及形成于第一膜层(11)与基板(10)之间且与第一膜层(11)直接接触的第二膜层(12),其中第二膜层(12)的与第一膜层(11)接触的表面(121)经过活化处理。由于第二膜层(12)的与第一膜层(11)接触的表面(121)经过活化处理,其表面能增加,所以在此基础上形成的第一膜层(11)具有较高的致密性,减小了产生微针孔的概率。

Description

薄膜及其制备方法、 发光显示器件 技术领域
本发明的实施例涉及平板显示器制造技术领域, 具体地, 涉及一种薄膜 及其制备方法、 以及包括该薄膜的发光显示器件。 背景技术
有机电致发光显示器件 ( Organic Electroluminesence Display, 也称为 OLED )是一种利用电流驱动有机半导体薄膜发光的器件, 其具有堆叠的多 层结构, 通常由阳极、 空穴注入层、 空穴传输层、 发光层、 电子传输层和阴 极等组成。 在外电场的作用下, 电子和空穴可以被注入到有机发光层, 然后 在发光层内复合而形成激子, 通过激子辐射衰减而发光。 由于 OLED具有高 对比度、 高亮度、 自发光、 宽色域和轻薄等特点, 所以 OELD被视为比较具 有发展前景的一代显示技术。
OLED按照出光方向可以分为底发射结构(从底部出光)和顶发射结构 (从顶部出光)。 对于底发射 OLED 器件, 透明阳极位于透明村底上, 在透 明阳极上是多层有机薄膜层,在有机薄膜层上面是全反射的金属或合金阴极, 光线透射穿过阳极从村底方向发射出去。对于顶发射 OLED 器件,其阳极采 用全反射金属, 顶部阴极采用很薄的半透明金属或合金薄膜, 光线从顶部阴 极发射出去。
在 OLED器件的制造工艺中, 包括多种薄膜制备工艺, 例如底发射结构 发光显示器件的阳极薄膜工艺、 发光显示器件的阴极薄膜工艺等。 但是目前 存在的主要问题是, 成膜工艺容易产生微针孔(pin-hole ) , 尤其是在沉积阳 极薄膜或阴极薄膜中的各超薄膜层(厚度小于 100埃的薄膜) 时, 出现微针 孔的概率非常高。 当该薄膜用于发光显示器件时, 将会降低发光显示器件的 稳定性和发光效率。 发明内容
本发明的实施例提供一种薄膜及其制备方法、 发光显示器件, 以解决现 有工艺制备的薄膜的微针孔较多从而影响发光显示器件的稳定性和发光效率 的问题。
本发明的实施例提供一种薄膜, 该薄膜包括: 形成于基板之上的第一膜 层, 以及形成于第一膜层与基板之间且与第一膜层直接接触的第二膜层, 其 中该第二膜层的与第一膜层接触的表面可以经过活化处理。
在实施例中, 薄膜还可以包括第三膜层, 该第三膜层形成于基板与第二 膜层之间且与第二膜层直接接触。
在实施例中, 薄膜还可以包括过渡层, 该过渡层形成于基板与第三膜层 之间, 该过渡层的与第三膜层直接接触的表面可以经过活化处理。
在实施例中, 第一膜层的材料可以透明导电氧化物, 该透明导电氧化物 可以为氧化铟锡、 氧化铟辞和氧化辞铝中的任意一种, 第二膜层的材料可以 为金、 银、 铜、 铝和银合金中的任意一种。
在实施例中, 第一膜层的厚度可以为 5~15 纳米, 第二膜层的厚度可以 为 80~150纳米。
在实施例中, 第三膜层的材料可以为透明导电氧化物, 该透明导电氧化 物可以为氧化铟锡、 氧化铟辞和氧化辞铝中的任意一种。
在实施例中, 第三膜层的厚度可以为 5~15纳米。
根据本发明的实施例, 由于第二膜层的与第一膜层接触的表面经过活化 处理, 其表面能增加, 当在此基础上形成超薄的第一膜层时, 可以使第一膜 层具有较高的致密性, 从而减小第一膜层中产生微针孔的概率。
本发明实施例提供一种发光显示器件, 包括如上所述的薄膜, 如果发光 显示器件为顶发射结构, 则该薄膜可以为阳极薄膜或阴极薄膜; 或者, 如果 发光显示器件为底发射结构, 则该薄膜可以为阴极薄膜。
当上述薄膜应用于发光显示器件时, 能够提高发光显示器件的稳定性和 发光效率。
本发明的实施例还提供一种薄膜的制备方法, 该薄膜包括形成于基板之 上的第一膜层以及形成于第一膜层与基板之间且与第一膜层直接接触的第二 膜层, 该方法包括: 在形成第一膜层之前, 对第二膜层的表面进行活化处理。
对第二膜层的表面进行活化处理可以包括: 用氦离子、 氖离子、氩离子、 氪离子、氙离子和氡离子中的任意一种离子的等离子体轰击第二膜层的表面。 用等离子体轰击第二膜层的表面的频率可以为 13.56MHz, 轰击时间可 以为 60秒〜 300秒。
在形成第二膜层之前, 该方法还可以包括在基板上形成第三膜层, 该第 三膜层与后续形成的第二膜层直接接触。
在形成第三膜层之前, 该方法还可以包括在基板上形成过渡层以及对过 渡层的表面进行活化处理, 其中该过渡层与后续形成的第三膜层直接接触。
对过渡层的表面进行活化处理可以包括: 清洗过渡层的表面, 并用氢离 子、 氧离子和氩离子中的任意一种等离子体轰击过渡层的表面。
根据本发明的实施例, 在形成超薄的第一膜层之前, 通过对第二膜层的 与第一膜层接触的表面进行活化处理, 使得在此基础上形成的超薄的第一膜 层具有较高的致密性, 从而减小第一膜层中产生微针孔的概率, 提高薄膜的 良品率。 附图说明
图 1为本发明实施例提供的薄膜的示意图;
图 2为本发明实施例提供的具有微针孔的阳极薄膜的结构示意图; 以及 图 3为本发明实施例提供的具有微针孔的阳极薄膜在定向腐蚀处理后的 示意图。 具体实施方式
下面结合说明书附图对本发明实施例的实现过程进行详细说明。 需要注 意的是, 自始至终相同或类似的标号表示相同或类似的元件或具有相同或类 似功能的元件。 下面通过参照附图描述的实施例是示例性的, 仅用于解释本 发明, 而不能理解为对本发明的限制。
参照图 1 , 本发明的实施例提供一种薄膜, 该薄膜可以包括: 第一膜层
11 , 形成于基板 10之上; 和第二膜层 12, 形成在第一膜层 11与基板 10之 间且与第一膜层 11直接接触,其中第二膜层 12的与第一膜层 11接触的表面 可以经过活化处理。为了更清楚地对经过表面活化处理的第二膜层 12进行说 明, 在图 1中示出了第二膜层 12的经活化处理的表面 121。 需要说明的, 在 实际的生产过程中, 人眼不一定能够分辨该表面 121 , 该表面 121与第二膜 层 12未被活化处理的部分的厚度比例会依实际情况而定。图 1所示并非真实 的厚度比例, 仅以此为例来清楚示出该表面 121。 由于经过活化处理的第二 膜层 12的表面 121具有更高的致密性, 所以在此基础上所形成的第一膜层 11具有较少的微针孔。
可选地,第一膜层 11的材料可以为透明导电氧化物,该透明导电氧化物 可以为氧化铟锡、 氧化铟辞和氧化辞铝等金属氧化物中的任意一种。 第二膜 层 12的材料可以为金、银、铜、 铝和银合金中等金属中的任意一种。 在实际 应用中, 根据薄膜应用的不同, 可以选择不同的金属材料, 例如当该薄膜应 用于顶发射结构的 OLED器件的阳极时, 该薄膜可以选用银或银合金、 或其 他的全反射金属。
可选地, 薄膜还可以包括第三膜层 13, 第三膜层 13形成于基板 10与第 二膜层 12之间且与第二膜层 12直接接触。可选地,第三膜层 13的材料可以 为透明导电氧化物, 该透明导电氧化物可以为氧化铟锡、 氧化铟辞和氧化辞 铝等金属氧化物中的任意一种。 第二膜层 12通常为金属材料, 第三膜层 13 可以避免或减少第二膜层 12被氧气或水汽所影响, 起到一定的保护作用。
优选地, 薄膜还可以包括过渡层 14, 过渡层 14形成于基板 10与第三膜 层 13之间, 过渡层 14的与第三膜层 13直接接触的表面可以经过活化处理。 需要说明的, 与第二膜层 12的表面 121相似, 在实际的生产过程中,人眼不 一定能够分辨过渡层 14被活化处理的表面 141 , 该表面 141与过渡层 14未 被活化处理的部分的厚度比例依实际情况而定, 图 1所示并非真实的厚度比 例,仅以此为例来清楚示出该表面 141。经过活化处理的过渡层 14的表面 141 能够为与其接触的第三膜层 13提供更大的附着力。
优选地,第一膜层 11的厚度可以为 5~15纳米,第二膜层 12的厚度可以 为 80~150纳米。
优选地, 第三膜层 13的厚度可以为 5~15纳米。
由于第二膜层的与第一膜层接触的表面经过活化处理, 其表面能增加, 所以当在此基础上形成超薄的第一膜层时,第一膜层能够具有较高的致密性, 从而减小了第一膜层中产生微针孔的概率。
本发明的实施例还提供一种发光显示器件,包括如上实施例提供的薄膜。 当发光显示器件为顶发射结构时, 该薄膜可以作为发光显示器件的阳极薄膜 或阴极薄膜; 或者, 当发光显示器件为底发射结构时, 该薄膜可以作为发光 显示器件的阴极薄膜。
当上述薄膜应用于发光显示器件时, 能够提高发光显示器件的稳定性和 发光效率。
本发明的实施例还提供一种薄膜的制备方法, 该薄膜包括形成于基板之 上的第一膜层以及形成于第一膜层与基板之间且与第一膜层直接接触的第二 膜层, 该方法可以包括: 在形成第一膜层之前, 对第二膜层的表面进行活化 处理。
可选地, 对第二膜层的表面进行活化处理可以包括: 用氦离子、 氖离子、 氩离子、 氪离子、 氙离子和氡离子中的任意一种离子的等离子体轰击第二膜 层的表面。 需要说明的是, 以上列出的等离子体只是举例, 并非对本发明的 限制, 等离子体只要不与被轰击的第二膜层发生化学反应即可。
用等离子体轰击第二膜层的表面的频率和时间可以根据第二膜层的材料 及第二膜层的表面处理的设计要求而定。 例如, 当第二膜层的材料为银合金 时, 等离子体轰击第二膜层的表面的频率可以为 13.56MHz, 轰击时间可以 为 180秒。 当然在同一频率下, 等离子体轰击的时间可以设定一个较佳的范 围, 例如 60~360秒。
可选地, 在形成第二膜层之前, 该方法还可以包括在基板上形成第三膜 层的步骤, 该第三膜层与后续形成的第二膜层直接接触。
可选地, 在形成第三膜层之前, 该方法还可以包括在基板上形成过渡层 并对过渡层的表面进行活化处理的步骤, 该过渡层与后续形成的第三膜层直 触。
可选地, 对过渡层的表面进行活化处理可以包括: 清洗过渡层的表面, 并用氢离子、 氧离子和氩离子中的任意一种等离子体轰击过渡层的表面。 过 渡层的表面的活化处理可以与第二膜层的表面的活化处理相似, 在此不再举 例。
在本实施例中, 通过在形成超薄的第一膜层之前对第二膜层的与第一膜 层接触的表面进行活化处理, 使得在此基础上形成的超薄的第一膜层具有较 高的致密性, 从而减小第一膜层产生微针孔的概率, 提高薄膜的良品率。
这里以一种用于发光显示器件的阳极薄膜为例, 提供一种较具体的薄膜 的制备方法, 该方法可以包括:
101、 对基板进行热收缩处理, 并在热收缩处理后的基板上形成过渡层。 过渡层可以防止薄膜异质生长时应力和热膨胀系数不匹配。在本步骤中, 过渡层可以采用聚甲基丙烯酸甲酯薄膜或氧化硅薄膜制备。
102、对过渡层的表面进行湿洗或干洗, 并使用氢离子、 氧离子和氩离子 等中的任意一种等离子体轰击过渡层的表面。 在实际应用中, 可以根据需要 处理的过渡层的材料而选择不同的离子, 以选择的离子不与过渡层的表面发 生反应为准。
对过渡层的表面进行湿洗可以采用去离子水。
在用氢等离子体轰击过渡层的表面时,氢等离子体的轰击功率不宜过大, 以免对过渡层造成损伤, 这与过渡层的材料有关。 当然等离子体的轰击功率 还与所要处理的过渡层的面积相关,过渡层的面积越大,则所需的功率越大, 过渡层的面积越小, 则所需功率越小。 等离子体的轰击频率可以选择为
13.56MHz, 轰击时间可以设定为 120秒。
103、在完成上述步骤的基板上形成第三膜层。本步骤中的第三膜层的材 料可以为透明导电氧化物, 该透明导电氧化物可以为氧化铟锡、 氧化铟辞和 氧化辞铝等金属氧化物中的任意一种, 厚度可以为 5~15纳米。
104、在完成上述步骤的基板上形成第二膜层,并对形成在基板上的第二 膜层进行表面活化处理。 本步骤中的第二膜层可以采用全反射金属材料, 该 全反射金属材料可以为银、 铝或银合金, 厚度优选为 80~150纳米。 本步骤 中可以使用氦离子、 氖离子、 氩离子、 氪离子、 氙离子和氡离子等惰性离子 中的任意一种等离子体轰击第二膜层的表面。 等离子体轰击第二膜层的表面 的频率可以选择为 13.56MHz, 轰击时间可以设定为 120秒。
105、在完成上述步骤的基板上形成第一膜层。第一膜层的材料可以为透 明导电氧化物, 该透明导电氧化物可以为氧化铟锡、 氧化铟辞和氧化辞铝等 金属氧化物中的任意一种, 厚度可以为 5~15纳米。
在本实施例中, 在形成超薄的第一膜层之前通过对第二膜层的与第一膜 层接触的表面进行活化处理, 使得在此基础上形成的超薄的第一膜层具有较 高的致密性, 从而减小第一膜层产生微针孔的概率, 提高薄膜的良品率。
本发明的实施例还提供一种检测发光显示器件的阳极薄膜上的微针孔的 方法。 这里以图 2 (阳极薄膜各部分标号参考图 1 )所示的阳极薄膜为例, 其 中第一膜层 11具有 针孔 15。 通常情况下, 第一膜层 11和第二膜层 12相 对于某一种或几种腐蚀液具有较高的刻蚀选择比,即第一膜层 11和第二膜层 12的腐蚀速度具有较大差异。 本实施例中, 以第一膜层 11和第三膜层 13的 材料为氧化铟锡,第二膜层 12的材料为银合金为例。检测方法包括如下步骤: 步骤一, 对上述实施例提供的阳极薄膜进行定向腐蚀处理。 腐蚀用的腐 蚀液可以由磷酸、 硝酸、 醋酸和緩释剂按规定的比例配制。 本实施例中, 配 制好的腐蚀液对第一膜层 11腐蚀较慢, 对第二膜层 12腐蚀较快。 在温度为 20-60°C的环境下, 经腐蚀液浸泡时间 30-60秒, 腐蚀液经该 针孔 15渗透 并对第二膜层 12腐蚀的结果如图 3所示,在第二膜层 12的对应于微针孔 15 的位置会形成腐蚀孔 16。
步骤二, 采用扫描电子显微镜(Scanning Electron Microscope, SEM )对 经过腐蚀处理的阳极薄膜进行检测。 由于腐蚀孔 16的存在, 即可扫描出该微 针孔 15的位置、 数量和大小等信息, 从而根据扫描到的微针孔 15的信息, 判断阳极薄膜生产工艺过程中可能存在的缺陷。
需要说明的是, 本实施例中, 仅以第一膜层 11和第三膜层 13的材料为 氧化铟锡,第二膜层 12的材料为银合金为例进行说明,但是本发明的实施例 不限于此。 在第一膜层 11和第二膜层 12相对于某一种或几种腐蚀液具有较 高的刻蚀选择比, 即第一膜层 11与第二膜层 12的腐蚀速度具有较大差异的 根据本发明的实施例, 定向腐蚀阳极薄膜的第一膜层和第二膜层, 当阳 极薄膜有微针孔类缺陷时,腐蚀液腐蚀第二膜层的速度高于第一膜层的速度, 从而在阳极薄膜经过定向腐蚀后,具有微针孔类缺陷位置的第二膜层被钻刻, 利用扫描电子显微镜即可确定微针孔的精确位置、 数量和大小。 尽管以上实 施例以阳极薄膜为例进行说明, 但是本发明的实施例不限于此, 例如可以应 用于阴极薄膜。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权利要求书
1、 一种薄膜, 包括:
形成于基板之上的第一膜层; 和
第二膜层, 形成于所述第一膜层与所述基板之间且与所述第一膜层直接 接触,
其中与所述第一膜层接触的所述第二膜层的表面经过活化处理。
2、如权利要求 1所述的薄膜, 其中所述薄膜还包括第三膜层, 所述第三 膜层形成于所述基板与所述第二膜层之间, 且与所述第二膜层直接接触。
3、如权利要求 2所述的薄膜, 其中所述薄膜还包括过渡层, 所述过渡层 形成于所述基板与所述第三膜层之间, 所述过渡层的与所述第三膜层直接接 触的表面经过活化处理。
4、如权利要求 1至 3中任一项所述的薄膜,其中所述第一膜层的材料为 透明导电氧化物, 所述透明导电氧化物为氧化铟锡、 氧化铟辞和氧化辞铝中 的任意一种, 所述第二膜层的材料为金、银、铜、 铝和银合金中的任意一种。
5、 如权利要求 4所述的薄膜, 其中所述第一膜层的厚度为 5~15纳米, 所述第二膜层的厚度为 80~150纳米。
6、如权利要求 2或 3所述的薄膜,其中所述第三膜层的材料为透明导电 氧化物, 所述透明导电氧化物为氧化铟锡、 氧化铟辞和氧化辞铝中的任意一 种。
7、 如权利要求 6所述的薄膜, 其中所述第三膜层的厚度为 5~15纳米。
8、一种发光显示器件, 包括如权利要求 1至 7中任一项所述的薄膜, 其 中当所述发光显示器件为顶发射结构时, 所述薄膜为阳极薄膜或阴极薄膜; 或者, 当所述发光显示器件为底发射结构时, 所述薄膜为阴极薄膜。
9、一种薄膜的制备方法,所述薄膜包括形成于基板之上的第一膜层以及 形成于所述第一膜层与所述基板之间且与所述第一膜层直接接触的第二膜 层, 其中所述制备方法包括: 在形成所述第一膜层之前, 对所述第二膜层的 表面进行活化处理。
10、 如权利要求 9所述的方法, 其中对所述第二膜层的表面进行活化处 理包括:
用氦离子、 氖离子、 氩离子、 氪离子、 氙离子和氡离子中的任意一种离 子的等离子体轰击所述第二膜层的表面。
11、如权利要求 10所述的方法,其中用等离子体轰击所述第二膜层的表 面的频率为 13.56MHz, 轰击时间为 60秒 ~ 300秒。
12、如权利要求 9至 11中任一项所述的方法,其中在形成所述第二膜层 之前, 所述方法还包括在所述基板上形成第三膜层, 所述第三膜层与后续形 成的所述第二膜层直接接触。
13、如权利要求 12所述的方法, 其中在形成所述第三膜层之前, 所述方 法还包括在所述基板上形成过渡层以及对所述过渡层的表面进行活化处理, 所述过渡层与后续形成的所述第三膜层直接接触。
14、如权利要求 13所述的方法,其中对所述过渡层的表面进行活化处理 包括:
清洗所述过渡层的表面, 并用氢离子、 氧离子和氩离子中的任意一种等 离子体轰击所述过渡层的表面。
PCT/CN2013/088728 2013-08-28 2013-12-06 薄膜及其制备方法、发光显示器件 WO2015027606A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310381468.5A CN103500804B (zh) 2013-08-28 2013-08-28 一种薄膜及其制备方法、发光显示器件
CN201310381468.5 2013-08-28

Publications (1)

Publication Number Publication Date
WO2015027606A1 true WO2015027606A1 (zh) 2015-03-05

Family

ID=49865990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088728 WO2015027606A1 (zh) 2013-08-28 2013-12-06 薄膜及其制备方法、发光显示器件

Country Status (2)

Country Link
CN (1) CN103500804B (zh)
WO (1) WO2015027606A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107305908A (zh) * 2016-04-20 2017-10-31 三星显示有限公司 有机发光二极管和有机发光显示面板

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108281567A (zh) * 2018-01-22 2018-07-13 重庆京东方光电科技有限公司 封装结构及其制作方法、阵列基板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1575078A (zh) * 2003-06-03 2005-02-02 三星Sdi株式会社 采用多层型像素电极的有机电致发光器件及其制造方法
CN1610472A (zh) * 2003-05-23 2005-04-27 株式会社丰田自动织机 有机场致发光器件及其制备方法
CN102110780A (zh) * 2009-11-18 2011-06-29 精工爱普生株式会社 发光元件、发光装置、显示装置和电子机器
WO2012173040A1 (ja) * 2011-06-15 2012-12-20 コニカミノルタホールディングス株式会社 水蒸気バリアフィルム、及びその製造方法、並びにこれを用いた電子機器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SK287455B6 (sk) * 2006-06-08 2010-10-07 Fakulta Matematiky, Fyziky A Informatiky Univerzity Komensk�Ho Zariadenie a spôsob čistenia, leptania, aktivácie a následné úpravy povrchu skla, povrchu skla pokrytého kysličníkmi kovov a povrchu iných materiálov pokrytých SiO2
CN102810360B (zh) * 2012-07-31 2016-03-30 中国科学院物理研究所 一种减薄碳纳米管薄膜的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1610472A (zh) * 2003-05-23 2005-04-27 株式会社丰田自动织机 有机场致发光器件及其制备方法
CN1575078A (zh) * 2003-06-03 2005-02-02 三星Sdi株式会社 采用多层型像素电极的有机电致发光器件及其制造方法
CN102110780A (zh) * 2009-11-18 2011-06-29 精工爱普生株式会社 发光元件、发光装置、显示装置和电子机器
WO2012173040A1 (ja) * 2011-06-15 2012-12-20 コニカミノルタホールディングス株式会社 水蒸気バリアフィルム、及びその製造方法、並びにこれを用いた電子機器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107305908A (zh) * 2016-04-20 2017-10-31 三星显示有限公司 有机发光二极管和有机发光显示面板

Also Published As

Publication number Publication date
CN103500804A (zh) 2014-01-08
CN103500804B (zh) 2016-03-16

Similar Documents

Publication Publication Date Title
JP4985898B2 (ja) 有機電界発光デバイス用浸透バリヤー
JP2011107476A (ja) 電子デバイスの製造方法
JP4755728B2 (ja) 有機el素子に用いられるアノード構造体およびその製造方法ならびに有機el素子
US9484553B2 (en) Organic light-emitting diode device and manufacturing method thereof
JP2005235733A (ja) 表面が改質された有機膜層を用いる有機電界発光ディスプレーデバイス及びこれの製造方法
US20230084617A1 (en) Opto-electronic device including an auxiliary electrode and a partition
Zhang et al. Ultra-smooth and robust graphene-based hybrid anode for high-performance flexible organic light-emitting diodes
WO2015027606A1 (zh) 薄膜及其制备方法、发光显示器件
JP2008159347A (ja) 透明導電膜の製造方法、有機エレクトロルミネッセンス装置の製造方法、およびプラズマ処理装置
US7915059B2 (en) Method for fabricating organic light emitting diode with fluorine-ion-doped electrode
US8665509B2 (en) Method of bonding metal and glass using optical contact bonding, method of manufacturing display apparatus using the method of bonding, and display apparatus manufactured by the method of bonding
JP2011091093A (ja) 有機el素子
US11991899B2 (en) Display panel, including a scattering layer with micropores preparation method, and display device
JP2005243604A (ja) 有機エレクトロルミネセンス装置及びそれを製造する方法
KR100784487B1 (ko) 유기 전계 발광 소자의 전극 형성 방법 및 그를 이용하여제조된 유기 전계 발광 소자
JP2011040173A (ja) 有機エレクトロルミネセンス装置
KR100685832B1 (ko) 무기막 및 그의 제조 방법
JP2011113758A (ja) 有機el素子及びその製造方法
JP2008293957A (ja) 有機発光装置の製造方法
US7075230B2 (en) Organic light emitting diode structure
JP2015088604A (ja) 孔を有する誘電体層の製造方法および孔を有する誘電体層を含む素子の製造方法
JP2009004103A (ja) 有機発光素子の製造方法
JP4817609B2 (ja) 有機エレクトロルミネッセンス素子の製造方法及び表示装置の製造方法
KR100738792B1 (ko) 유기 발광 소자 및 이의 제조방법
Kim et al. P‐107: Mechanism of Peel‐Off of Metal Substrate for Flexible Devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 04.05.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13892522

Country of ref document: EP

Kind code of ref document: A1