WO2015025602A1 - 作業車両 - Google Patents

作業車両 Download PDF

Info

Publication number
WO2015025602A1
WO2015025602A1 PCT/JP2014/066159 JP2014066159W WO2015025602A1 WO 2015025602 A1 WO2015025602 A1 WO 2015025602A1 JP 2014066159 W JP2014066159 W JP 2014066159W WO 2015025602 A1 WO2015025602 A1 WO 2015025602A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
hydraulic oil
hydraulic
pressure
clutch
Prior art date
Application number
PCT/JP2014/066159
Other languages
English (en)
French (fr)
Inventor
誠 内藤
慎一 内藤
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Priority to JP2014547607A priority Critical patent/JP5770390B1/ja
Priority to CN201480041158.1A priority patent/CN105659003B/zh
Priority to US14/903,316 priority patent/US9625033B2/en
Priority to EP14838099.1A priority patent/EP3009715B1/en
Publication of WO2015025602A1 publication Critical patent/WO2015025602A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/16Inhibiting or initiating shift during unfavourable conditions, e.g. preventing forward reverse shift at high vehicle speed, preventing engine over speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0412Cooling or heating; Control of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/60Inputs being a function of ambient conditions
    • F16H59/64Atmospheric temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0206Layout of electro-hydraulic control circuits, e.g. arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/686Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with orbital gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1077Change speed gearings fluid pressure, e.g. oil pressure
    • B60W2710/1083Change speed gearings fluid pressure, e.g. oil pressure pressure of control fluid
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/202Mechanical transmission, e.g. clutches, gears
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2253Controlling the travelling speed of vehicles, e.g. adjusting travelling speed according to implement loads, control of hydrostatic transmission
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/226Safety arrangements, e.g. hydraulic driven fans, preventing cavitation, leakage, overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/72Inputs being a function of gearing status dependent on oil characteristics, e.g. temperature, viscosity
    • F16H2059/725Sensing or calculating temperature of friction devices, e.g. clutches to prevent overheating of friction linings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2005Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with one sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/46Gearings having only two central gears, connected by orbital gears

Definitions

  • the present invention relates to a work vehicle.
  • torque converter transmission As a work vehicle such as a wheel loader, a vehicle including a power transmission device (hereinafter referred to as “torque converter transmission”) having a torque converter and a multistage transmission is known (see Patent Document 1). ).
  • HMT hydromechanical transmission
  • EMT electro-mechanical transmission
  • the clutch in the transmission is generally controlled by hydraulic pressure. Further, the viscosity of the hydraulic fluid of the clutch increases as the oil temperature decreases. At this time, there arises a problem that the response of the clutch becomes worse. In particular, when the work vehicle is started, the oil temperature of the hydraulic fluid of the clutch is lowered, and how to raise the oil temperature is a problem.
  • the work vehicle includes a transmission, a hydraulic oil supply circuit, a hydraulic oil warm-up circuit, and a control unit.
  • the transmission changes the driving force from the engine.
  • the hydraulic oil supply circuit supplies hydraulic oil to the transmission.
  • the hydraulic oil warm-up circuit warms the hydraulic oil.
  • the control unit controls the transmission, the hydraulic oil supply circuit, and the hydraulic oil warm-up circuit.
  • the transmission includes a hydraulic clutch and a clutch control valve.
  • the clutch control valve controls the pressure of the hydraulic oil supplied to the hydraulic clutch according to a command from the control unit. If it determines with the oil temperature of hydraulic oil being low, a control part will output the warming-up command which makes a warming-up function work.
  • the hydraulic oil warm-up circuit warms the hydraulic oil by generating a pressure loss in the hydraulic oil flow path.
  • the hydraulic oil supply circuit may include a connection circuit and a transmission pump.
  • the hydraulic oil warm-up circuit may include a logic valve and a pilot circuit for the logic valve.
  • the logic valve may include a P port and an R port.
  • the connection circuit may be connected to the clutch control valve.
  • the P port may be connected to a hydraulic circuit from the transmission pump.
  • the R port may be connected to a connection circuit.
  • the hydraulic oil warm-up circuit may include a drain circuit, a solenoid valve, an auxiliary circuit, and a relief valve.
  • the auxiliary circuit may be connected to the P port and the pilot circuit.
  • the solenoid valve may communicate or block the auxiliary circuit and the drain circuit.
  • the relief valve may be provided between the pilot circuit and the drain circuit.
  • the hydraulic oil supply circuit may include an on-off valve.
  • the hydraulic oil warm-up circuit may include a relief valve provided in parallel with the on-off valve. When the on-off valve receives the warm-up command, the hydraulic oil warm-up circuit is preferably in a closed state so that the hydraulic oil flows through the hydraulic oil supply circuit via the relief valve.
  • the transmission may include a pressure switch that transmits a detection signal to the fill completion determination unit when the clutch pressure of the hydraulic clutch reaches a predetermined pressure. Then, when the fill completion determination unit receives the detection signal, the fill completion determination unit may determine that the fill completion state has been reached.
  • the transmission may further include an input shaft, an output shaft, a gear mechanism, and a motor.
  • the gear mechanism may include a planetary gear mechanism and transmit the rotation of the input shaft to the output shaft.
  • the motor may be connected to a rotating element of the planetary gear mechanism.
  • the transmission may be configured to change the rotational speed ratio of the output shaft to the input shaft by changing the rotational speed of the motor.
  • a hydraulic oil warm-up circuit different from the torque converter warms up the hydraulic oil. Therefore, even if the work vehicle does not have a torque converter, the temperature of the hydraulic oil of the clutch can be raised when the work vehicle is activated.
  • FIG. 1 is a side view of a work vehicle according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating the configuration of the work vehicle.
  • FIG. 3 is a table showing the functions of the first to third motors and the state of each clutch.
  • FIG. 4 is a graph showing changes in the rotational speeds of the first to third motors with respect to the vehicle speed.
  • FIG. 5 is a detailed view of the hydraulic oil supply circuit and the hydraulic oil warm-up circuit.
  • FIG. 6 is a flowchart showing the control contents when the hydraulic oil is warmed up.
  • FIG. 7 is a timing chart showing changes in the command current to the clutch control valve and changes in the clutch pressure when the hydraulic clutch is switched.
  • FIG. 8 is a detailed view of another hydraulic oil supply circuit and another hydraulic oil warm-up circuit.
  • FIG. 1 is a side view of a work vehicle 1 according to an embodiment of the present invention.
  • the work vehicle 1 is, for example, a wheel loader.
  • the work vehicle 1 includes a body frame 2, a work implement 3, traveling wheels 4 and 5, and a cab 6.
  • the work vehicle 1 travels when the traveling wheels 4 and 5 are driven to rotate.
  • the work vehicle 1 can perform work such as excavation using the work machine 3.
  • the work frame 3 and traveling wheels 4 and 5 are attached to the body frame 2.
  • the work machine 3 is driven by hydraulic oil from the work machine pump 23 (see FIG. 2).
  • the work machine 3 includes a boom 11 and a bucket 12.
  • the boom 11 is attached to the vehicle body frame 2.
  • the work machine 3 includes a lift cylinder 13 and a bucket cylinder 14.
  • the lift cylinder 13 and the bucket cylinder 14 are hydraulic cylinders.
  • One end of the lift cylinder 13 is attached to the vehicle body frame 2.
  • the other end of the lift cylinder 13 is attached to the boom 11.
  • the boom 11 swings up and down as the lift cylinder 13 expands and contracts with hydraulic oil from the work implement pump 23.
  • the bucket 12 is attached to the tip of the boom 11.
  • One end of the bucket cylinder 14 is attached to the vehicle body frame 2.
  • the other end of the bucket cylinder 14 is attached to the bucket 12 via a bell crank 15. As the bucket cylinder 14 expands and contracts with hydraulic oil from the work implement pump 23, the bucket 12 swings up and
  • the cab 6 and traveling wheels 5 are attached to the body frame 2.
  • the cab 6 is placed on the vehicle body frame 2.
  • a seat on which an operator is seated, an operation device to be described later, and the like are arranged.
  • the vehicle body frame 2 has a front frame 16 and a rear frame 17.
  • the front frame 16 and the rear frame 17 are attached so as to be swingable in the left-right direction.
  • the work frame 3 is attached to the front frame 16.
  • the cab 6 is placed on the rear frame 17.
  • the rear frame 17 is equipped with devices such as an engine 21, a transmission 24, and a cooling device 26, which will be described later.
  • the transmission 24 is located in front of the engine 21.
  • the cooling device 26 is located behind the engine 21.
  • the cooling device 26 has a radiator for cooling the coolant of the engine 21.
  • the work vehicle 1 has a steering cylinder 18.
  • the steering cylinder 18 is attached to the front frame 16 and the rear frame 17.
  • the steering cylinder 18 is a hydraulic cylinder. As the steering cylinder 18 expands and contracts with hydraulic oil from a steering pump 30 described later, the traveling direction of the work vehicle 1 is changed to the left and right.
  • FIG. 2 is a schematic diagram showing the configuration of the work vehicle 1.
  • the work vehicle 1 includes an engine 21, a work machine pump 23, a transmission pump 29, a steering pump 30, a transmission 24, a travel device 25, and the like.
  • Engine 21 is, for example, a diesel engine.
  • the engine 21 generates driving force for driving the traveling device 25, the work machine pump 23, the transmission pump 29, the steering pump 30, and the like.
  • the work machine pump 23, the transmission pump 29, and the steering pump 30 are hydraulic pumps.
  • the hydraulic oil discharged from these hydraulic pumps is stored in the hydraulic oil tank 29a.
  • the work machine pump 23, the transmission pump 29, and the steering pump 30 are driven by the driving force from the engine 21.
  • the work machine pump 23 is a variable displacement hydraulic pump.
  • the hydraulic oil discharged from the work implement pump 23 is supplied to the lift cylinder 13 and the bucket cylinder 14 described above via the work implement control valve 41.
  • the transmission pump 29 is a fixed displacement hydraulic pump.
  • the hydraulic oil discharged from the transmission pump 29 passes through the logic valve 32 and clutch control valves VF, VR, VL, VH, Vm1, and Vm2, which will be described in detail later, and the clutches CF, CR, CL, CH, and Cm1 of the transmission 24. , Cm2 (details will be described later).
  • the logic valve 32 has a P port and an R port.
  • a hydraulic circuit from the hydraulic oil tank 29a through the transmission pump 29 and the logic valve 32 to the clutches CF, CR, CL, CH, Cm1, and Cm2 is referred to as a hydraulic oil supply circuit 80.
  • the hydraulic oil supply circuit 80 supplies hydraulic oil to the transmission 24.
  • a hydraulic oil warm-up circuit 81 is connected to the hydraulic oil supply circuit 80.
  • the hydraulic oil warm-up circuit 81 warms the hydraulic oil due to the pressure loss of the hydraulic oil. Details of the hydraulic oil supply circuit 80 and the hydraulic oil warm-up circuit 81 will be described later.
  • the steering pump 30 is a variable displacement hydraulic pump.
  • the hydraulic oil discharged from the steering pump 30 is supplied to the above-described steering cylinder 18 via the steering control valve 43.
  • the transmission 24 transmits the driving force from the engine 21 to the traveling device 25.
  • the transmission 24 shifts and outputs the driving force from the engine 21.
  • the configuration of the transmission 24 will be described in detail later.
  • the traveling device 25 is driven by the engine 21.
  • the traveling device 25 includes a transmission shaft 46, an axle shaft 45, and the traveling wheel 5 described above.
  • the transmission shaft 46 transmits the driving force from the transmission 24 to the axle shaft 45.
  • the axle shaft 45 extends in the vehicle width direction and is connected to the traveling wheel 5.
  • the axle shaft 45 transmits the driving force from the transmission 24 to the traveling wheels 5. Thereby, the traveling wheel 5 rotates.
  • the transmission 24 includes an input shaft 61, a first power take-out mechanism 22 (hereinafter referred to as “first PTO 22”), a second power take-out mechanism 27 (hereinafter referred to as “second PTO 27”), a gear mechanism 62, An output shaft 63, a first motor MG1, a second motor MG2, and a third motor MG3 are provided.
  • Rotation from the engine 21 is input to the input shaft 61.
  • the gear mechanism 62 transmits the rotation of the input shaft 61 to the output shaft 63.
  • the output shaft 63 is connected to the traveling device 25 described above, and transmits the rotation from the gear mechanism 62 to the traveling device 25.
  • the first PTO 22 is connected to the input shaft 61 and transmits a part of the driving force from the engine 21 to the work machine pump 23 and the transmission pump 29.
  • the second rod PTO rod 27 is connected to the input shaft 61 in parallel with the first rod PTO rod 22, and transmits part of the driving force from the engine 21 to the steering pump 30.
  • the gear mechanism 62 is a mechanism that transmits the driving force from the engine 21.
  • the gear mechanism 62 is configured to change the rotation speed ratio of the output shaft 63 to the input shaft 61 in accordance with the change in the rotation speed of the motors MG1, MG2, MG3.
  • the gear mechanism 62 includes an FR switching mechanism 65 and a speed change mechanism 66.
  • the FR switching mechanism 65 has a forward clutch CF, a reverse clutch CR, a forward clutch control valve VF, a reverse clutch control valve VR, and various gears.
  • the forward clutch CF and the reverse clutch CR are hydraulic clutches.
  • the hydraulic fluid from the transmission pump 29 is supplied to the clutches CF and CR, respectively.
  • the pressure of the hydraulic oil supplied to the clutches CF and CR is controlled by clutch control valves VF and VR, respectively.
  • the clutches CF and CR may be provided with pressure switches TF and TR. That is, the transmission 24 may further include pressure switches TF and TR.
  • the pressure switches TF and TR transmit a detection signal to the control unit 31 when the clutch pressure reaches a predetermined pressure.
  • the pressure switches TF and TR output a detection signal to the fill completion determination unit 31a (details will be described later) when the clutch pressure reaches a predetermined pressure.
  • a value corresponding to the pressure (fill pressure) at the completion of filling of the hydraulic oil to the clutches CF and CR is set. Therefore, the pressure switches TF and TR detect the completion of filling and output a detection signal to the control unit 31.
  • the direction of rotation output from the FR switching mechanism 65 is switched by switching between connection and disconnection of the forward clutch CF and connection and disconnection of the reverse clutch CR.
  • the transmission mechanism 66 has an intermediate shaft 67, a first planetary gear mechanism 68, a second planetary gear mechanism 69, a Hi / Lo switching mechanism 70, and an output gear 71.
  • the intermediate shaft 67 is connected to the FR switching mechanism 65.
  • the first planetary gear mechanism 68 and the second planetary gear mechanism 69 are arranged coaxially with the intermediate shaft 67.
  • the first planetary gear mechanism 68 includes a first sun gear S1, a plurality of first planetary gears P1, a first carrier C1 that supports the plurality of first planetary gears P1, and a first ring gear R1. .
  • the first sun gear S1 is connected to the intermediate shaft 67.
  • the plurality of first planetary gears P1 mesh with the first sun gear S1 and are rotatably supported by the first carrier C1.
  • a first carrier gear Gc1 is provided on the outer periphery of the first carrier C1.
  • the first ring gear R1 meshes with the plurality of planetary gears P1 and is rotatable.
  • a first ring outer peripheral gear Gr1 is provided on the outer periphery of the first ring gear R1.
  • the second planetary gear mechanism 69 includes a second sun gear S2, a plurality of second planetary gears P2, a second carrier C2 that supports the plurality of second planetary gears P2, and a second ring gear R2. .
  • the second sun gear S2 is connected to the first carrier C1.
  • the plurality of second planetary gears P2 mesh with the second sun gear S2 and are rotatably supported by the second carrier C2.
  • the second ring gear R2 meshes with the plurality of planetary gears P2 and is rotatable.
  • a second ring outer peripheral gear Gr2 is provided on the outer periphery of the second ring gear R2.
  • the second ring outer peripheral gear Gr2 meshes with the output gear 71, and the rotation of the second ring gear R2 is output to the output shaft 63 via the output gear 71.
  • the Hi / Lo switching mechanism 70 is a mechanism for switching the driving force transmission path in the transmission 24 between a high speed mode (Hi mode) where the vehicle speed is high and a low speed mode (Lo mode) where the vehicle speed is low.
  • the Hi / Lo switching mechanism 70 has a Hi clutch CH that is turned on in the Hi mode, a Lo clutch CL that is turned on in the Lo mode, a Hi clutch control valve VH, and a Lo clutch control valve VL. .
  • the Hi clutch CH connects or disconnects the first ring gear R1 and the second carrier C2.
  • the Lo clutch CL connects or disconnects the second carrier C2 and the fixed end 72, and prohibits or allows the rotation of the second carrier C2.
  • Each clutch CH, CL is a hydraulic clutch, and hydraulic oil from the transmission pump 29 is supplied to each clutch CH, CL.
  • the pressure of the hydraulic oil supplied to the clutches CH and CL is controlled by clutch control valves VH and VL, respectively.
  • the clutches CH and CL are preferably provided with pressure switches TH and TL. That is, the transmission 24 may further include pressure switches TH and TL.
  • the pressure switches TH and TL transmit a detection signal to the control unit 31 when the clutch pressure reaches a predetermined pressure. More specifically, when the clutch pressure reaches a predetermined pressure, the pressure switches TH and TL transmit a detection signal to the fill completion determination unit 31a (details will be described later).
  • a value corresponding to the pressure (fill pressure) at the completion of filling of the hydraulic oil to the clutches CH and CL is set. Accordingly, the pressure switches TH and TL detect the completion of filling and output a detection signal to the control unit 31.
  • the first motor MG1, the second motor MG2, and the third motor MG3 function as driving motors that generate driving force by electric energy.
  • the first motor MG1, the second motor MG2, and the third motor MG3 also function as a generator that generates electric energy using the input driving force.
  • the first motor gear Gm1 is fixed to the rotation shaft Sm1 of the first motor MG1.
  • the first motor gear Gm1 meshes with the first carrier gear Gc1. That is, the first motor MG1 is connected to the rotating element of the first planetary gear mechanism 68.
  • a second motor gear Gm2 is fixed to the rotation shaft Sm2 of the second motor MG2.
  • the second motor gear Gm2 meshes with the first ring outer peripheral gear Gr1. That is, the second motor MG2 is connected to the rotating element of the first planetary gear mechanism 68.
  • the third motor MG3 assists the first motor MG1 and the second motor MG2.
  • the speed change mechanism 66 has a motor switching mechanism 73, and the motor switching mechanism 73 selectively switches the auxiliary target by the third motor MG3 between the first motor MG1 and the second motor MG2.
  • the motor switching mechanism 73 includes a first motor clutch Cm1, a second motor clutch Cm2, a first motor clutch control valve Vm1, a second motor clutch control valve Vm2, a first connection gear Ga1, It has 2 connection gear Ga2.
  • a third motor gear Gm3 is connected to the rotation shaft Sm3 of the third motor MG3, and the third motor gear Gm3 meshes with the first connection gear Ga1.
  • the first motor clutch Cm1 switches connection and disconnection between the rotation shaft Sm1 of the first motor MG1 and the first connection gear Ga1.
  • the first connection gear Ga1 meshes with the second connection gear Ga2.
  • the second motor clutch Cm2 switches connection and disconnection between the rotation shaft Sm2 of the second motor MG2 and the second connection gear Ga2. Since one of the first motor clutch Cm1 and the second motor clutch Cm2 is connected, as a result, the third motor MG3 is connected to the rotating element of the first planetary gear mechanism 68.
  • the first motor clutch Cm1 and the second motor clutch Cm2 are hydraulic clutches.
  • the hydraulic oil from the transmission pump 29 is supplied to each of the motor clutches Cm1 and Cm2.
  • the pressures of hydraulic oil supplied to the motor clutches Cm1 and Cm2 are controlled by clutch control valves Vm1 and Vm2, respectively.
  • the clutches Cm1 and Cm2 may be provided with pressure switches Tm1 and Tm2. That is, the transmission 24 may further include pressure switches Tm1 and Tm2.
  • the pressure switches Tm1 and Tm2 transmit a detection signal to the control unit 31 when the clutch pressure reaches a predetermined pressure.
  • the pressure switches Tm1 and Tm2 transmit a detection signal to the fill completion determination unit 31a (details will be described later).
  • the set pressure a value corresponding to the pressure (fill pressure) at the completion of filling of hydraulic oil to the clutches Cm1 and Cm2 is set. Accordingly, the pressure switches Tm1 and Tm2 detect the completion of filling and output a detection signal to the control unit 31.
  • the third motor gear Gm3 assists the first motor MG1.
  • the third motor gear Gm3 assists the second motor MG2.
  • the first motor MG1 is connected to the capacitor 64 via the first inverter I1.
  • the second motor MG2 is connected to the capacitor 64 via the second inverter I2.
  • the third motor MG3 is connected to the capacitor 64 via the third inverter I3.
  • Capacitor 64 functions as an energy storage unit that stores energy generated in motors MG1, MG2, and MG3. That is, the capacitor 64 stores the electric power generated by the motors MG1, MG2, and MG3 when the total power generation amount of the motors MG1, MG2, and MG3 is large. Capacitor 64 discharges power when the total power consumption of motors MG1, MG2, and MG3 is large. That is, each motor MG1, MG2, MG3 is driven by the electric power stored in capacitor 64.
  • a battery may be used as the power storage means instead of the capacitor.
  • Work vehicle 1 includes a control unit 31.
  • Control unit 31 provides a command signal indicating a command torque to motors MG1, MG2, and MG3 to inverters I1, I2, and I3. Accordingly, the control unit 31 controls the transmission 24. Further, the control unit 31 gives a command signal for controlling the clutch hydraulic pressure of each of the clutches CF, CR, CH, CL, Cm1, and Cm2 to the clutch control valves VF, VR, VH, VL, Vm1, and Vm2. Clutch control valves VF, VR, VH, VL, Vm1, and Vm2 operate according to this command signal. Accordingly, the control unit 31 controls the transmission 24 and the hydraulic oil supply circuit 80.
  • the clutch control valves VF, VR, VH, VL, Vm1, and Vm2 include a plurality of valves for controlling the clutches CF, CR, CH, CL, Cm1, and Cm2.
  • the gear ratio and output torque of the transmission 24 are controlled by controlling the motors MG1, MG2, MG3 and the clutches CF, CR, CH, CL, Cm1, Cm2 by the command signal from the control unit 31.
  • the operation of the transmission 24 will be described.
  • FIG. 3 shows the functions of the motors MG1, MG2, and MG3 and the state of the clutch in each mode.
  • the Lo mode has an L1 mode and an L2 mode.
  • the Hi mode has an H1 mode and an H2 mode.
  • M means that the motors MG1, MG2, and MG3 function as drive motors.
  • G means that the motors MG1, MG2, and MG3 function as generators.
  • O means that the clutch is in a connected state.
  • X means that the clutch is disengaged.
  • FIG. 4 shows the rotation speed of each motor MG1, MG2, MG3 with respect to the vehicle speed.
  • the rotation speed ratio is the ratio of the rotation speed of the output shaft 63 to the rotation speed of the input shaft 61. Therefore, in FIG. 4, the change in the vehicle speed coincides with the change in the rotation speed ratio of the transmission 24. That is, FIG. 4 shows the relationship between the rotational speeds of the motors MG1, MG2, and MG3 and the rotational speed ratio of the transmission 24.
  • the solid line indicates the rotation speed of the first motor MG1
  • the broken line indicates the rotation speed of the second motor MG2
  • the alternate long and short dash line indicates the rotation speed of the third motor MG3.
  • the Lo clutch CL is connected, the Hi clutch CH is disconnected, the first motor clutch Cm1 is connected, and the second motor clutch Cm2 is disconnected (L1 mode). Since the Hi clutch CH is disconnected, the second carrier C2 and the first ring gear R1 are disconnected. Since the Lo clutch CL is connected, the second carrier C2 is fixed. Further, the first connection gear Ga1 is connected to the rotation shaft Sm3 of the first motor MG1, and the second connection gear Ga2 is disconnected from the rotation shaft Sm2 of the second motor MG2. Accordingly, the third motor MG3 is connected to the first motor MG1 via the third motor gear Gm3, the first connection gear Ga1, and the first motor clutch Cm1. Further, since the second motor clutch Cm2 is disconnected, the third motor MG3 is disconnected from the second motor MG2.
  • the driving force from the engine 21 is input to the first sun gear S1 via the intermediate shaft 67, and this driving force is output from the first carrier C1 to the second sun gear S2.
  • the driving force input to the first sun gear S1 is transmitted from the first planetary gear P1 to the first ring gear R1, and is output to the second motor MG2 via the first ring outer peripheral gear Gr1 and the second motor gear Gm2.
  • the second motor MG2 mainly functions as a generator in the L1 mode, and a part of the electric power generated by the second motor MG2 is stored in the capacitor 64.
  • the first motor MG1 and the third motor MG3 mainly function as electric motors.
  • the driving forces of the first motor MG1 and the third motor MG3 are output to the second sun gear S2 through the path of the first motor gear Gm1 ⁇ the first carrier gear Gc1 ⁇ the first carrier C1.
  • the driving force output to the second sun gear S2 as described above is transmitted to the output shaft 63 through the path of the second planetary gear P2, the second ring gear R2, the second ring outer peripheral gear Gr2, and the output gear 71.
  • the Lo clutch CL is connected, the Hi clutch CH is disconnected, the first motor clutch Cm1 is disconnected, and the second motor clutch Cm2 is connected (L2 mode).
  • the second connection gear Ga2 is connected to the rotation shaft Sm2 of the second motor MG2, and the first connection gear Ga1 is disconnected from the rotation shaft Sm1 of the first motor MG1.
  • the third motor MG3 is connected to the second motor MG2 via the third motor gear Gm3, the first connection gear Ga1, the second connection gear Ga2, and the second motor clutch Cm2. Further, since the first motor clutch Cm1 is disconnected, the third motor MG3 is disconnected from the first motor MG1.
  • the driving force from the engine 21 is input to the first sun gear S1 via the intermediate shaft 67, and this driving force is output from the first carrier C1 to the second sun gear S2.
  • the driving force input to the first sun gear S1 is transmitted from the first planetary gear P1 to the first ring gear R1, and is output to the second motor MG2 via the first ring outer peripheral gear Gr1 and the second motor gear Gm2.
  • the driving force is output from the second motor gear Gm2 to the third motor MG3 via the second motor clutch Cm2, the second connection gear Ga2, the first connection gear Ga1, and the third motor gear Gm3.
  • the second motor MG2 and the third motor MG3 function mainly as a generator in the L2 mode, and a part of the electric power generated by the second motor MG2 and the third motor MG3 is stored in the capacitor 64. .
  • the first motor MG1 mainly functions as an electric motor.
  • the driving force of the first motor MG1 is output to the second sun gear S2 through the path of the first motor gear Gm1 ⁇ the first carrier gear Gc1 ⁇ the first carrier C1.
  • the driving force output to the second sun gear S2 as described above is transmitted to the output shaft 63 through the path of the second planetary gear P2, the second ring gear R2, the second ring outer peripheral gear Gr2, and the output gear 71.
  • the Lo clutch CL is disconnected, the Hi clutch CH is connected, the first motor clutch Cm1 is disconnected, and the second motor clutch Cm2 is connected (H1 mode).
  • the H1 mode since the Hi clutch CH is connected, the second carrier C2 and the first ring gear R1 are connected. Further, since the Lo clutch CL is disengaged, the second carrier C2 is released. Accordingly, the rotation speeds of the first ring gear R1 and the second carrier C2 coincide. Further, the second connection gear Ga2 is connected to the rotation shaft Sm2 of the second motor MG2, and the first connection gear Ga1 is disconnected from the rotation shaft Sm1 of the first motor MG1.
  • the third motor MG3 is connected to the second motor MG2 via the third motor gear Gm3, the first connection gear Ga1, the second connection gear Ga2, and the second motor clutch Cm2. Further, since the first motor clutch Cm1 is disconnected, the third motor MG3 is disconnected from the first motor MG1.
  • the driving force from the engine 21 is input to the first sun gear S1, and this driving force is output from the first carrier C1 to the second sun gear S2.
  • the driving force input to the first sun gear S1 is output from the first carrier C1 to the first motor MG1 via the first carrier gear Gc1 and the first motor gear Gm1.
  • the first motor MG1 mainly functions as a generator, so that part of the electric power generated by the first motor MG1 is stored in the capacitor 64.
  • the second motor MG2 and the third motor MG3 mainly function as electric motors.
  • the driving force of the third motor MG3 is transmitted from the third motor gear Gm3 to the rotation shaft Sm2 of the second motor MG2 via the first connection gear Ga1, the second connection gear Ga2, and the second motor clutch Cm2.
  • the driving force of the second motor MG2 and the driving force of the third motor MG3 are output to the second carrier C2 through the path of the second motor gear Gm2, the first ring outer peripheral gear Gr1, the first ring gear R1, and the Hi clutch CH. Is done.
  • the driving force output to the second sun gear S2 as described above is output to the second ring gear R2 via the second planetary gear P2, and the driving force output to the second carrier C2 is the second planetary gear. Output to the second ring gear R2 via P2.
  • the driving force combined by the second ring gear R2 in this way is transmitted to the output shaft 63 via the second ring outer peripheral gear Gr2 and the output gear 71.
  • the Lo clutch CL is disconnected, the Hi clutch CH is connected, the first motor clutch Cm1 is connected, and the second motor clutch Cm2 is disconnected (H2 mode).
  • the first connection gear Ga1 is connected to the rotation shaft Sm3 of the first motor MG1
  • the second connection gear Ga2 is disconnected from the rotation shaft Sm2 of the second motor MG2.
  • the third motor MG3 is connected to the first motor MG1 via the third motor gear Gm3, the first connection gear Ga1, and the first motor clutch Cm1. Further, since the second motor clutch Cm2 is disconnected, the third motor MG3 is disconnected from the second motor MG2.
  • the driving force from the engine 21 is input to the first sun gear S1, and this driving force is output from the first carrier C1 to the second sun gear S2.
  • the driving force input to the first sun gear S1 is output from the first carrier C1 to the first motor MG1 and the third motor Gm3 via the first carrier gear Gc1 and the first motor gear Gm1.
  • the first motor MG1 and the third motor Gm3 mainly function as generators, and a part of the electric power generated by the first motor MG1 and the third motor Gm3 is stored in the capacitor 64.
  • the second motor MG2 mainly functions as an electric motor.
  • the driving force of the second motor MG2 is output to the second carrier C2 through the path of the second motor gear Gm2 ⁇ the first ring outer peripheral gear Gr1 ⁇ the first ring gear R1 ⁇ the Hi clutch CH.
  • the driving force output to the second sun gear S2 as described above is output to the second ring gear R2 via the second planetary gear P2, and the driving force output to the second carrier C2 is the second planetary gear.
  • the driving force combined by the second ring gear R2 in this way is transmitted to the output shaft 63 via the second ring outer peripheral gear Gr2 and the output gear 71.
  • the control unit 31 includes a fill completion determination unit 31a and a timer 31b.
  • the fill completion determination unit 31a determines whether or not a fill completion state is reached in which hydraulic oil is filled in the oil chambers of the hydraulic clutches CF, CR, CH, CL, Cm1, and Cm2. Detection signals from the pressure switches TF, TR, TH, TL, Tm1, and Tm2 are transmitted to the fill completion determination unit 31a.
  • the timer 31b measures the time from the start of the output of the shift command or the command current to the clutch control valves VF, VR, VH, VL, Vm1, and Vm2 until the fill completion state is reached. Details of the operations of the fill completion determination unit 31a and the timer 31b will be described later.
  • FIG. 5 is a detailed view of the hydraulic oil supply circuit 80 and the hydraulic oil warm-up circuit 81 according to the present embodiment.
  • FIG. 5 illustrates a clutch circuit 83 including a clutch control valve VL and a pressure switch TL of the clutch CL, taking the clutch CL as an example of the clutch.
  • the clutch circuits of other clutches may be considered similar to the clutch circuit 83.
  • the clutch circuit 83 includes a clutch CL, a clutch control valve VL, and a pressure switch TL.
  • the clutch control valve VL includes a pressure control valve VL1 and an electromagnetic control valve VL2.
  • the pressure control valve VL1 is a device for controlling the hydraulic pressure (that is, the clutch pressure) supplied to the clutch CL.
  • the pressure control valve VL1 is connected to the connection circuit 80a (that is, the hydraulic oil supply circuit 80), the output flow path 85, and the drain circuit 86.
  • the connection circuit 80a is connected to a logic valve 84 described later.
  • the output flow path 85 is connected to the clutch CL.
  • the drain circuit 86 is connected to the hydraulic oil tank 29a.
  • the pressure control valve VL1 adjusts the hydraulic pressure of the input flow path 80 in accordance with the magnitude of the pilot pressure of a pilot circuit PL connected to an electromagnetic control valve VL2 described later, and guides it to the output flow path 85. That is, the pressure control valve VL1 changes the clutch pressure according to the input pilot pressure. Note that the pressure control valve VL1 connects the output flow path 85 and the drain circuit 86 when the pilot pressure is not supplied to the pressure control valve VL1. As a result, the hydraulic oil is discharged from the clutch CL and collected in the hydraulic oil tank 29a.
  • a pilot circuit PL is connected to the pilot port of the pressure control valve VL1.
  • the electromagnetic control valve VL2 is a device for controlling the pilot pressure input to the pressure control valve VL1.
  • the electromagnetic control valve VL2 is connected to the connection circuit 80a via the throttle 87.
  • the pilot circuit PL described above is connected between the electromagnetic control valve VL2 and the throttle 87.
  • the electromagnetic control valve VL2 is connected to the hydraulic oil tank 29a via the drain circuit 88.
  • the electromagnetic control valve VL2 can be switched between a connection state in which the connection circuit 80a and the drain circuit 88 are connected and a cutoff state in which the connection circuit 80a and the drain circuit 88 are cut off.
  • the electromagnetic control valve VL2 can switch between a connected state and a cut-off state according to the magnitude of the command current input from the control unit 31.
  • the electromagnetic control valve VL2 can control the pilot pressure supplied to the pilot circuit PL in accordance with the command current.
  • the pressure switch TL transmits a detection signal to the fill completion determination unit 31a of the control unit 31 when the clutch CL reaches a predetermined pressure.
  • the hydraulic oil supply circuit 80 includes a connection circuit 80a and a transmission pump 29.
  • the hydraulic oil supply circuit 80 may further include a relief valve 97.
  • the connection circuit 80a is connected to the clutch control valve VL and the R port of the logic valve 84.
  • a relief valve 97 is connected to the connection circuit 80a.
  • the connection circuit 80a exceeds the cracking pressure Pc1 of the relief valve 97, the relief valve 97 connects the connection circuit 80a and the hydraulic oil tank 29a.
  • the maximum pressure of the hydraulic oil supply circuit 80 is set by the cracking pressure Pc1.
  • the hydraulic oil warm-up circuit 81 includes a logic valve 84, a solenoid valve 90, an auxiliary circuit 91, a pilot circuit 94, a drain circuit 95, and a relief valve 96.
  • the drain circuit 95 communicates with the hydraulic oil tank 29a.
  • the logic valve 84 communicates or blocks the input flow path (P port) and the output flow path (R port) according to the pilot pressure of the pilot circuit 94.
  • the P port is connected to a hydraulic circuit from the transmission pump 29.
  • the R port is connected to the connection circuit 80a as described above.
  • the logic valve 84 includes a spring that pushes the poppet toward the P and R ports.
  • the port of the logic valve 84 to which the pilot circuit 94 is connected is an X port
  • the pressure of the X port is Px
  • the pressure receiving area of the X port is Ax
  • the pressure of the P port is Pp
  • the pressure receiving area of the P port is Ap
  • the pressure of the R port is Pr
  • the pressure receiving area of the R port is Ar.
  • Fs be the force with which the spring pushes the poppet.
  • Fx (Ax ⁇ Px) + Fs ---------------- (Formula 1)
  • the P and R port side push-up force Fw is expressed as (Equation 2) below.
  • the auxiliary circuit 91 is connected to the branch point C1 of the hydraulic oil supply circuit 80 between the transmission pump 29 and the P port of the logic valve 84, and extends to the P port of the electromagnetic valve 90.
  • the auxiliary circuit 91 includes a diaphragm 92.
  • the throttle 92 serves to prevent the poppet of the logic valve 84 from moving suddenly.
  • the auxiliary circuit 91 may include other diaphragms in addition to the diaphragm 92.
  • the electromagnetic valve 90 communicates or blocks the P port and the T port. That is, the electromagnetic valve 90 communicates or blocks the auxiliary circuit 91 and the drain circuit 95.
  • the drain circuit 95 is connected to the T port of the solenoid valve 90 and the hydraulic oil tank 29a.
  • the auxiliary circuit 91 is in communication with the hydraulic oil tank 29a through the electromagnetic valve 90.
  • the solenoid valve 90 blocks between the P port and the T port. That is, when the solenoid valve 90 receives a warm-up command from the control unit 31, the solenoid valve 90 blocks the flow path from the auxiliary circuit 91 to the drain circuit 95.
  • the pilot circuit 94 branches off from the auxiliary circuit 91. That is, the auxiliary circuit 91 is connected to the pilot circuit 94.
  • the diaphragm 92 is provided in the auxiliary circuit 91 between the branch point C1 and the pilot circuit 94.
  • the pilot circuit 94 is connected to the X port of the logic valve 84 and the relief valve 96.
  • the relief valve 96 is provided between the pilot circuit 94 and the drain circuit 95.
  • the relief valve 96 normally shuts off the pilot circuit 94 and the drain circuit 95.
  • the pilot pressure of the relief valve 96 hydroaulic pressure in the pilot circuit 94
  • the relief valve 96 communicates the pilot circuit 94 and the drain circuit 95.
  • the pilot pressure Px of the relief valve 96 is close to 0 and does not reach the cracking pressure Pc2. That is, when the solenoid valve 90 has not received a warm-up command from the control unit 31, the pilot circuit 94 and the drain circuit 95 are disconnected.
  • the solenoid valve 90 When the solenoid valve 90 receives a warm-up command from the control unit 31, the P port and the T port of the solenoid valve 90 are shut off, and the pilot pressure Px of the relief valve 96 increases. When the pilot pressure Px reaches the cracking pressure Pc2, the pilot circuit 94 and the drain circuit 95 communicate with each other. That is, when the electromagnetic valve 90 receives a warm-up command from the control unit 31, the pilot pressure Px of the relief valve 96 is increased to the cracking pressure Pc2.
  • FIG. 6 is a flowchart showing the contents of control when the hydraulic oil is warmed up.
  • FIG. 7 (a) is a timing chart showing changes in the command current to the clutch control valves VF, VR, VH, VL, Vm1, and Vm2 when the hydraulic clutches CF, CR, CH, CL, Cm1, and Cm2 are switched.
  • FIG. 7 (b) is a timing chart showing changes in the clutch pressure when the hydraulic clutches CF, CR, CH, CL, Cm1, and Cm2 are switched.
  • step S1 the work vehicle 1 is activated by an operator's key operation or the like.
  • step S2 the work vehicle 1 starts warming up the hydraulic oil.
  • the control unit 31 outputs a warm-up command for operating the warm-up function to the hydraulic oil warm-up circuit 81 or the hydraulic oil supply circuit 80. That is, the control unit 31 controls the hydraulic oil warm-up circuit 81 by sending a warm-up command. More specifically, the control unit 31 outputs a warm-up command to the electromagnetic valve 90. As a result, the P port and T port of the electromagnetic valve 90 are blocked. As a result, hydraulic oil pressure loss occurs in the logic valve 84, and the temperature of the hydraulic oil rises. In other words, when the hydraulic oil warm-up circuit 81 receives the warm-up command, it generates a pressure loss in the hydraulic oil flow path to warm the hydraulic oil.
  • step S3 the control unit 31 determines whether or not a shift command has been generated.
  • the shift command is generated when the control unit 31 determines switching of the speed stage of the transmission 24 according to the vehicle speed and the engine speed, or when the operator manually operates the shift operation member (not shown) to instruct a shift.
  • the process proceeds to step S4.
  • the time point when the shift command is generated is t0 in FIG.
  • step S4 the control unit 31 starts outputting the command current to the clutch control valves VF, VR, VH, VL, Vm1, and Vm2.
  • the time point when the output of the command current is started is the time point t1 in FIG.
  • a command current having a predetermined trigger command value I1 is output from the control unit 31 to the clutch control valves VF, VR, VH, VL, Vm1, and Vm2. This trigger command is maintained from time t1 to time t2.
  • step S5 at time t1, the timer 31b is started and measurement of the time T until the hydraulic oil is filled in the oil chambers of the clutches CF, CR, CH, CL, Cm1, and Cm2 is started. Then, at a time point t2 when a predetermined time has elapsed from the start of trigger command output, the command current is reduced to a predetermined set current value I2. Then, the command current is maintained at the set current value I2 until it is determined in step S6 that the fill is complete.
  • step S6 it is determined whether or not the control unit 31 (more specifically, the fill completion determination unit 31b) is in a fill completion state.
  • the fill completion determination unit 31b receives the detection signals of the pressure switches TF, TR, TH, TL, Tm1, and Tm2, the fill completion determination unit 31b determines that the fill completion state has been reached.
  • the clutch pressure reaches a predetermined fill pressure P2
  • detection signals are sent from the pressure switches TF, TR, TH, TL, Tm1, and Tm2 to the fill completion determination unit 31b. It is determined that the fill has been completed. If it is determined that the fill has been completed, the process proceeds to step S7.
  • step S7 the timer 31b detects a time T until the hydraulic oil is filled in the oil chambers of the clutches CF, CR, CH, CL, Cm1, and Cm2.
  • T t3-t1.
  • step S8 the control unit 31 determines whether the measured time T is equal to or less than the predetermined time T0.
  • time T is equal to or less than T0 (Yes in step S8)
  • step S9 work vehicle 1 finishes warming up the hydraulic oil.
  • the control unit 31 ends outputting the warm-up command to the hydraulic oil warm-up circuit 81 or the hydraulic oil supply circuit 80. More specifically, the control unit 31 ends outputting the warm-up command to the electromagnetic valve 90. Thereby, the P port and T port of the solenoid valve 90 are communicated. For this reason, the logic valve 84 is completely opened, and the pressure difference between the P port and the R port disappears, so that the hydraulic oil flows to each clutch without being warmed.
  • step S8 If time T is longer than T0 (No in step S8), the process returns to step S3. That is, the control unit 31 continues to output the warm-up command to the hydraulic oil warm-up circuit 81 or the hydraulic oil supply circuit 80. More specifically, the control unit 31 continues to output a warm-up command to the electromagnetic valve 90. Thereby, the warming-up of the hydraulic oil is continued.
  • the hydraulic oil supply circuit 80 and the hydraulic oil warm-up circuit 81 may be variously modified in addition to the one shown in FIG.
  • a typical modification will be described with reference to FIG.
  • FIG. 8 the same components as those in FIG. 5 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the hydraulic oil supply circuit 80 extends from the transmission pump 29 to the clutch circuit 83 through the connection portions P, Q, and R in order.
  • the hydraulic oil supply circuit 80 includes an on-off valve 98.
  • the hydraulic oil warm-up circuit 81 includes an auxiliary circuit 91 and a relief valve 96.
  • the auxiliary circuit 91 branches from the hydraulic oil supply circuit 80 at the branch point P of the hydraulic oil supply circuit 80 and extends to the branch point R.
  • the relief valve 96 is provided on the auxiliary circuit 91.
  • the relief valve 96 is juxtaposed with the on-off valve 98.
  • the relief valve 96 normally shuts off the auxiliary circuit 91.
  • the hydraulic oil supply circuit 80 may further include a drain circuit 95 and a relief valve 99.
  • the drain circuit 95 is connected to the hydraulic oil supply circuit 80 (branch point Q) and the hydraulic oil tank 29a.
  • the drain circuit 95 is provided with a relief valve 99. That is, the hydraulic oil supply circuit 80 communicates with the hydraulic oil tank 29a via the relief valve 99.
  • the relief valve 99 serves to protect the clutch circuit 83 so that a hydraulic pressure greater than the cracking pressure Pc4 of the relief valve 99 is not applied to the clutch circuit 83.
  • the on-off valve 98 is provided on the hydraulic oil supply circuit 80.
  • the on-off valve 98 is in an open state when it has not received a warm-up command from the control unit 31. That is, the on-off valve 98 makes the branch point P and the branch point Q communicate with each other.
  • the on-off valve 98 When the on-off valve 98 receives a warm-up command from the control unit 31, it is closed. That is, the on-off valve 98 blocks between the branch point P and the branch point Q. For this reason, the hydraulic oil flows through the relief valve 96. When the hydraulic oil passes through the relief valve 96, hydraulic oil pressure loss occurs, and the hydraulic oil temperature rises. In other words, when the hydraulic oil warm-up circuit 81 receives the warm-up command, it generates a pressure loss in the hydraulic oil flow path to warm the hydraulic oil. The hydraulic oil warm-up circuit 81 causes the hydraulic oil to flow to the hydraulic oil supply circuit 80 via the relief valve 96.
  • step S2 the control unit 31 outputs a warm-up command to the on-off valve 98
  • step S9 the control unit 31 outputs the warm-up command. Is different from the control at the time of warming up the hydraulic oil in the hydraulic circuit shown in FIG.
  • the work vehicle 1 includes the following features.
  • the control unit 31 determines that the viscosity of the hydraulic oil is high and the oil temperature is low, and the hydraulic oil warm-up circuit 81 different from the torque converter Warm up. Therefore, even if the work vehicle 1 does not have a torque converter, the temperature of the hydraulic fluid of the clutches CF, CR, CL, CH, Cm1, and Cm2 can be raised when the work vehicle is started. Further, since the necessity / unnecessity of warm-up is determined without using a temperature sensor that measures the oil temperature of the hydraulic oil, the number of parts of the work vehicle 1 can be reduced, and the cost can be reduced.
  • the hydraulic oil warm-up circuit 81 includes a logic valve 84 and a pilot circuit 94. Therefore, the hydraulic oil warm-up circuit 81 is not a torque converter.
  • the hydraulic oil warm-up circuit 81 receives the warm-up command, the hydraulic oil pressure of the pilot circuit 94 is increased, and the pressure difference (Pp ⁇ Pr) between the hydraulic pressure Pp of the P port of the logic valve 84 and the hydraulic pressure Pr of the R port is increased. ). For this reason, when hydraulic fluid passes through the logic valve 84, pressure loss of the hydraulic fluid occurs, and the hydraulic fluid can be warmed.
  • the hydraulic oil warming circuit 81 includes a drain circuit 95, a solenoid valve 90, an auxiliary circuit 91, and a relief valve 96.
  • the auxiliary circuit 91 is connected to the branch point C1 of the hydraulic oil supply circuit between the transmission pump 29 and the P port of the logic valve 84 and the pilot circuit 94.
  • the relief valve 96 is provided between the pilot circuit 94 and the drain circuit 95.
  • the solenoid valve 90 When the solenoid valve 90 does not receive a warm-up command from the control unit 31, the solenoid valve 90 communicates with the auxiliary circuit 91 and the hydraulic oil tank 29a. At this time, the hydraulic pressure Px of the pilot circuit 94 is substantially zero. Therefore, the hydraulic pressure of pilot circuit 94 can be controlled by a warm-up command from control unit 31.
  • the hydraulic oil warm-up circuit 81 includes a relief valve 96 provided in parallel with the on-off valve 98. Therefore, the hydraulic oil warm-up circuit 81 is not a torque converter.
  • the on-off valve 98 receives a warm-up command, it closes, and the hydraulic oil warm-up circuit 81 causes the hydraulic oil to flow to the hydraulic oil supply circuit 80 via the relief valve 96. For this reason, when the hydraulic oil passes through the relief valve 96, a pressure loss of the hydraulic oil occurs, and the hydraulic oil can be warmed.
  • the transmission 24 is a pressure switch TF, TR, TH that transmits a detection signal to the fill completion determination unit 31a when the clutch pressure of the hydraulic clutches CF, CR, CH, CL, Cm1, Cm2 reaches a predetermined pressure. , TL, Tm1, Tm2.
  • the timer 31b can accurately measure the time until the hydraulic oil is filled in the oil chambers of the hydraulic clutches CF, CR, CH, CL, Cm1, and Cm2.
  • the filling completion state is detected by the pressure switches TF, TR, TH, TL, Tm1, and Tm2.
  • sensors are provided to measure the oil pressure in the oil chambers of the clutch pressures of the hydraulic clutches CF, CR, CH, CL, Cm1, Cm2.
  • the measured hydraulic pressure is transmitted to the fill completion determination unit 31 ⁇ ⁇ ⁇ a, and the fill completion determination unit 31a completes the fill when the transmitted hydraulic pressure reaches a predetermined value P2 (see FIG. 7B) after time t2. It may be determined that the state has been reached.
  • the timer 31b can accurately measure the time T until the hydraulic oil is filled in the oil chambers of the hydraulic clutches CF, CR, CH, CL, Cm1, and Cm2.
  • the work vehicle 1 may further include a lubrication pump that discharges hydraulic fluid for transmission 24 lubrication.
  • the embodiment described above may be applied not only to EMT but also to other types of transmissions such as HMT.
  • the first motor MG1 functions as a hydraulic motor and a hydraulic pump.
  • the second motor MG2 functions as a hydraulic motor and a hydraulic pump.
  • the third motor MG3 functions as a hydraulic motor and a hydraulic pump.
  • the first motor MG1, the second motor MG2, and the third motor MG3 are variable displacement pump / motors, and their capacities are controlled by the control unit 31.
  • the configuration of the transmission 24 is not limited to the configuration of the above embodiment.
  • the connection and arrangement of the elements of the two planetary gear mechanisms 68 and 69 are not limited to the connection and arrangement of the above embodiment.
  • the number of planetary gear mechanisms is not limited to two.
  • the transmission may include one planetary gear mechanism.
  • the number of motors is not limited to three.
  • the number of motors may be 1, 2, or 4 or more.
  • the third motor MG3 may be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Control Of Transmission Device (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Details Of Gearings (AREA)
  • Automation & Control Theory (AREA)

Abstract

 トルクコンバータを使わずに、作業車両起動時に、クラッチの作動油の油温を上げることができる作業車両を提供する。作業車両は、トランスミッションと、作動油供給回路と、作動油暖機回路と、制御部と、を備える。作動油供給回路は、トランスミッションに作動油を供給する。作動油暖機回路は、作動油を温める。制御部は、トランスミッション、作動油供給回路、及び作動油暖機回路を制御する。トランスミッションは、油圧クラッチと、クラッチ制御弁と、を含む。クラッチ制御弁は、油圧クラッチへ供給される作動油の圧力を制御部からの指令に従って制御する。制御部は、作動油の油温が低いと判定すると、暖機機能を働かせる暖機指令を出力する。作動油暖機回路は、作動油の流路において圧力損失を発生させて、作動油を温める。

Description

作業車両
 本発明は、作業車両に関する。
 ホイールローダ等の作業車両として、トルクコンバータと多段式の変速装置とを有する動力伝達装置(以下、「トルクコンバータ式の変速装置」と呼ぶ)を備えるものが公知となっている(特許文献1参照)。一方、近年、トルクコンバータ式の変速装置に代わる動力伝達装置として、HMT(油圧-機械式変速装置)及びEMT(電気-機械式変速装置)が知られている(特許文献2参照)。
特開2010-138924号公報 特開2006-041819号公報
 作業車両では、トルクコンバータ式の変速装置であっても、HMT及びEMTであっても、トランスミッションにおけるクラッチは、油圧により制御することが一般的である。また、クラッチの作動油は、油温が低くなると、粘度が高くなる。このとき、クラッチの応答性が悪くなる問題が発生する。特に、作業車両の起動時において、クラッチの作動油の油温が低下しており、この油温をどのようにして上げるかが課題である。
 特許文献1に係る従来の作業車両では、作業車両起動時に、クラッチの作動油をトルクコンバータにリリーフして、トルクコンバータで油を攪拌することによって油温を上げて、油温を上げた作動油をクラッチの油圧回路に戻すことによって、上述の課題を解決していた。
 しかし、特許文献2に係るHMT及びEMT式の動力伝達装置を備えた作業車両では、トルクコンバータがない。したがって、トルクコンバータを使わずに、作業車両起動時に、クラッチの作動油の油温をどのように上げるかが課題となる。
 本発明の一態様に係る作業車両は、トランスミッションと、作動油供給回路と、作動油暖機回路と、制御部と、を備える。トランスミッションは、エンジンからの駆動力を変速する。作動油供給回路は、トランスミッションに作動油を供給する。作動油暖機回路は、作動油を温める。制御部は、トランスミッション、作動油供給回路、及び作動油暖機回路を制御する。トランスミッションは、油圧クラッチと、クラッチ制御弁と、を含む。クラッチ制御弁は、油圧クラッチへ供給される作動油の圧力を制御部からの指令に従って制御する。制御部は、作動油の油温が低いと判定すると、暖機機能を働かせる暖機指令を出力する。作動油暖機回路は、作動油の流路において圧力損失を発生させて、作動油を温める。
 作動油供給回路は、接続回路とトランスミッションポンプとを含むとよい。作動油暖機回路は、ロジック弁とロジック弁のパイロット回路とを含むとよい。ロジック弁は、PポートとRポートとを含むとよい。接続回路は、クラッチ制御弁に接続するとよい。Pポートは、トランスミッションポンプからの油圧回路に接続するとよい。Rポートは、接続回路に接続するとよい。作動油暖機回路は、暖機指令を受けると、パイロット回路の油圧を高め、Pポートの油圧とRポートの油圧との間で圧力差を生じさせ、圧力差による圧力損失を利用して、PポートからRポートに作動油を流すことによって作動油を温めるとよい。
 作動油暖機回路は、ドレン回路と、電磁弁と、補助回路と、リリーフ弁とを含むとよい。補助回路は、Pポート及びパイロット回路に接続するとよい。電磁弁は、補助回路とドレン回路とを連通もしくは遮断するとよい。リリーフ弁は、パイロット回路とドレン回路との間に設けられるとよい。暖機指令を受けると、電磁弁は、補助回路からドレン回路への流路を遮断し、パイロット回路の油圧がリリーフ弁のクラッキング圧まで高められるとよい。
 作動油供給回路は、開閉弁を含むとよい。作動油暖機回路は、開閉弁に並設されたリリーフ弁を含むとよい。開閉弁が暖機指令を受けると閉状態となることによって、作動油暖機回路は、作動油を、リリーフ弁を介して作動油供給回路に流すとよい。
 トランスミッションは、油圧クラッチのクラッチ圧が所定の圧力に達したときに検知信号をフィル完了判定部に送信する圧力スイッチを含むとよい。そして、フィル完了判定部は、検知信号を受信すると、フィル完了状態となったと判定するとよい。
 トランスミッションは、入力軸と、出力軸と、歯車機構と、モータと、をさらに含むとよい。歯車機構は、遊星歯車機構を含み、入力軸の回転を出力軸に伝達するとよい。モータは、遊星歯車機構の回転要素に接続されるとよい。トランスミッションは、モータの回転速度を変化させることによって、入力軸に対する出力軸の回転速度比を変化させるように構成されているとよい。
 本発明の一態様に係る作業車両では、制御部が、油温が低いと判定すると、トルクコンバータとは異なる作動油暖機回路が作動油の暖機を行う。ゆえに、当該作業車両は、トルクコンバータを有していなくても、作業車両起動時に、クラッチの作動油の油温を上げることができる。
図1は、本発明の実施形態に係る作業車両の側面図である。 図2は、作業車両の構成を示す模式図である。 図3は、第1~第3モータの機能と各クラッチの状態とを示す表である。 図4は、車速に対する第1~第3モータの回転速度の変化を示す図である。 図5は、作動油供給回路及び作動油暖機回路の詳細図である。 図6は、作動油暖機時の制御内容を示すフローチャートである。 図7は、油圧クラッチ切換時のクラッチ制御弁への指令電流の変化、クラッチ圧の変化を示すタイミングチャートである。 図8は、他の作動油供給回路及び他の作動油暖機回路の詳細図である。
 以下、図面を参照して、本発明の実施形態について説明する。図1は、本発明の実施形態に係る作業車両1の側面図である。作業車両1は、例えば、ホイールローダである。図1に示すように、作業車両1は、車体フレーム2と、作業機3と、走行輪4,5と、運転室6とを備えている。作業車両1は、走行輪4,5が回転駆動されることにより走行する。作業車両1は、作業機3を用いて掘削等の作業を行うことができる。
 車体フレーム2には、作業機3および走行輪4,5が取り付けられている。作業機3は、作業機ポンプ23(図2参照)からの作動油によって駆動される。作業機3は、ブーム11とバケット12とを有する。ブーム11は、車体フレーム2に装着されている。作業機3は、リフトシリンダ13とバケットシリンダ14とを有している。リフトシリンダ13とバケットシリンダ14とは、油圧シリンダである。リフトシリンダ13の一端は車体フレーム2に取り付けられている。リフトシリンダ13の他端はブーム11に取り付けられている。リフトシリンダ13が作業機ポンプ23からの作動油によって伸縮することによって、ブーム11が上下に揺動する。バケット12は、ブーム11の先端に取り付けられている。バケットシリンダ14の一端は車体フレーム2に取り付けられている。バケットシリンダ14の他端はベルクランク15を介してバケット12に取り付けられている。バケットシリンダ14が、作業機ポンプ23からの作動油によって伸縮することによって、バケット12が上下に揺動する。
 車体フレーム2には、運転室6及び走行輪5が取り付けられている。運転室6は、車体フレーム2上に載置されている。運転室6内には、オペレータが着座するシートや、後述する操作装置などが配置されている。車体フレーム2は、前フレーム16と後フレーム17とを有する。前フレーム16と後フレーム17とは互いに左右方向に揺動可能に取り付けられている。
 前フレーム16には、作業機3が取り付けられている。後フレーム17には、運転室6が載置されている。また、後フレーム17には、後述するエンジン21、トランスミッション24、冷却装置26などの装置が搭載されている。トランスミッション24は、エンジン21の前方に位置している。冷却装置26は、エンジン21の後方に位置している。冷却装置26は、エンジン21の冷却液を冷却するためのラジエータを有する。
 作業車両1は、ステアリングシリンダ18を有している。ステアリングシリンダ18は、前フレーム16と後フレーム17とに取り付けられている。ステアリングシリンダ18は、油圧シリンダである。ステアリングシリンダ18が、後述するステアリングポンプ30からの作動油によって伸縮することによって、作業車両1の進行方向が左右に変更される。
 図2は、作業車両1の構成を示す模式図である。図2に示すように、作業車両1は、エンジン21、作業機ポンプ23、トランスミッションポンプ29、ステアリングポンプ30、トランスミッション24、走行装置25などを備えている。
 エンジン21は、例えばディーゼルエンジンである。エンジン21は、走行装置25、作業機ポンプ23、トランスミッションポンプ29、ステアリングポンプ30などを駆動するための駆動力を発生させる。
 作業機ポンプ23とトランスミッションポンプ29とステアリングポンプ30とは、油圧ポンプである。これらの油圧ポンプから吐出される作動油は、作動油タンク29aに貯留されている。作業機ポンプ23とトランスミッションポンプ29とステアリングポンプ30とは、エンジン21からの駆動力によって駆動される。
 作業機ポンプ23は、可変容量型の油圧ポンプである。作業機ポンプ23から吐出された作動油は、作業機制御弁41を介して、上述したリフトシリンダ13とバケットシリンダ14とに供給される。
 トランスミッションポンプ29は、固定容量型の油圧ポンプである。トランスミッションポンプ29から吐出された作動油は、詳細を後述するロジック弁32及びクラッチ制御弁VF、VR、VL、VH、Vm1、Vm2を介して、トランスミッション24のクラッチCF、CR、CL、CH、Cm1、Cm2(詳細は後述)に供給される。ロジック弁32はPポートとRポートとを備えている。本実施形態では、作動油タンク29aからトランスミッションポンプ29及びロジック弁32を介して、クラッチCF、CR、CL、CH、Cm1、Cm2に至る油圧回路を、作動油供給回路80と呼ぶ。作動油供給回路80は、トランスミッション24に作動油を供給する。
 作動油供給回路80には、作動油暖機回路81が接続されている。作動油暖機回路81は、作動油の圧力損失によって、作動油を温める。作動油供給回路80と作動油暖機回路81の詳細については後述する。
 ステアリングポンプ30は、可変容量型の油圧ポンプである。ステアリングポンプ30から吐出された作動油は、ステアリング制御弁43を介して、上述したステアリングシリンダ18に供給される。
 トランスミッション24は、エンジン21からの駆動力を走行装置25に伝達する。トランスミッション24は、エンジン21からの駆動力を変速して出力する。トランスミッション24の構成については後に詳細に説明する。
 走行装置25は、エンジン21によって駆動される。走行装置25は、伝達軸46と、アクスルシャフト45と、上述した走行輪5とを有する。伝達軸46は、トランスミッション24からの駆動力をアクスルシャフト45に伝達する。アクスルシャフト45は、車幅方向に延びており、走行輪5に接続されている。アクスルシャフト45は、トランスミッション24からの駆動力を走行輪5に伝達する。これにより、走行輪5が回転する。
 次に、トランスミッション24の構成について詳細に説明する。トランスミッション24は、入力軸61と、第1動力取り出し機構22(以下、「第1PTO22」と呼ぶ)と、第2動力取り出し機構27(以下、「第2PTO27」と呼ぶ)と、歯車機構62と、出力軸63と、第1モータMG1と、第2モータMG2と、第3モータMG3と、を備えている。
 入力軸61には、エンジン21からの回転が入力される。歯車機構62は、入力軸61の回転を出力軸63に伝達する。出力軸63は、上述した走行装置25に接続されており、歯車機構62からの回転を走行装置25に伝達する。
 第1 PTO 22は、入力軸61に接続されており、エンジン21からの駆動力の一部を作業機ポンプ23及びトランスミッションポンプ29に伝達する。第2 PTO 27は、第1 PTO 22と並列に入力軸61に接続されており、エンジン21からの駆動力の一部をステアリングポンプ30に伝達する。
 歯車機構62は、エンジン21からの駆動力を伝達する機構である。歯車機構62は、モータMG1, MG2, MG3の回転速度の変化に応じて、入力軸61に対する出力軸63の回転速度比を変化させるように構成されている。歯車機構62は、FR切換機構65と、変速機構66とを有する。
 FR切換機構65は、前進用クラッチCFと、後進用クラッチCRと、前進用クラッチ制御弁VFと、後進用クラッチ制御弁VRと、各種のギアとを有している。前進用クラッチCFと後進用クラッチCRとは、油圧式クラッチである。クラッチCF,CRには、それぞれトランスミッションポンプ29からの作動油が供給される。クラッチCF,CRへ供給される作動油の圧力は、それぞれ、クラッチ制御弁VF,VRによって制御される。クラッチCF,CRには、圧力スイッチTF,TRが設けられるとよい。つまり、トランスミッション24は、圧力スイッチTF,TRをさらに含むとよい。圧力スイッチTF,TRは、クラッチ圧が所定の圧力に達したときに、検知信号を制御部31に送信する。より詳細には、圧力スイッチTF,TRは、クラッチ圧が所定の圧力に達したときに、検知信号をフィル完了判定部31a(詳細は後述)に出力する。設定圧としては、クラッチCF,CRへの作動油のフィル完了時の圧力(フィル圧)に相当する値が設定されている。従って、圧力スイッチTF,TRは、フィル完了を検知して、制御部31に検知信号を出力する。前進用クラッチCFの接続及び切断と、後進用クラッチCRの接続及び切断とが切り換えられることによって、FR切換機構65から出力される回転の方向が切り換えられる。
 変速機構66は、中間軸67と、第1遊星歯車機構68と、第2遊星歯車機構69と、Hi/Lo切換機構70と、出力ギア71と、を有している。中間軸67は、FR切換機構65に連結されている。第1遊星歯車機構68及び第2遊星歯車機構69は、中間軸67と同軸上に配置されている。
 第1遊星歯車機構68は、第1サンギアS1と、複数の第1遊星ギアP1と、複数の第1遊星ギアP1を支持する第1キャリアC1と、第1リングギアR1とを有している。第1サンギアS1は、中間軸67に連結されている。複数の第1遊星ギアP1は、第1サンギアS1と噛み合い、第1キャリアC1に回転可能に支持されている。第1キャリアC1の外周部には、第1キャリアギアGc1が設けられている。第1リングギアR1は、複数の遊星ギアP1に噛み合うとともに回転可能である。また、第1リングギアR1の外周には、第1リング外周ギアGr1が設けられている。
 第2遊星歯車機構69は、第2サンギアS2と、複数の第2遊星ギアP2と、複数の第2遊星ギアP2を支持する第2キャリアC2と、第2リングギアR2とを有している。第2サンギアS2は、第1キャリアC1に連結されている。複数の第2遊星ギアP2は、第2サンギアS2と噛み合い、第2キャリアC2に回転可能に支持されている。第2リングギアR2は、複数の遊星ギアP2に噛み合うとともに回転可能である。第2リングギアR2の外周には、第2リング外周ギアGr2が設けられている。第2リング外周ギアGr2は出力ギア71に噛み合っており、第2リングギアR2の回転は出力ギア71を介して出力軸63に出力される。
 Hi/Lo切換機構70は、トランスミッション24における駆動力伝達経路を、車速が高い高速モード(Hiモード)と車速が低い低速モード(Loモード)で切り替えるための機構である。このHi/Lo切換機構70は、Hiモード時にオンにされるHiクラッチCHと、Loモード時にオンにされるLoクラッチCLと、Hiクラッチ制御弁VHと、Loクラッチ制御弁VLを有している。HiクラッチCHは、第1リングギアR1と第2キャリアC2とを接続又は切断する。また、LoクラッチCLは、第2キャリアC2と固定端72とを接続又は切断し、第2キャリアC2の回転を禁止又は許容する。
 なお、各クラッチCH,CLは油圧式クラッチであり、各クラッチCH,CLには、それぞれトランスミッションポンプ29からの作動油が供給される。クラッチCH,CLへ供給される作動油の圧力は、それぞれ、クラッチ制御弁VH,VLによって制御される。クラッチCH,CLには、圧力スイッチTH,TLが設けられるとよい。つまり、トランスミッション24は、圧力スイッチTH,TLをさらに含むとよい。圧力スイッチTH,TLは、クラッチ圧が所定の圧力に達したときに、検知信号を制御部31に送信する。より詳細には、圧力スイッチTH,TLは、クラッチ圧が所定の圧力に達したときに、検知信号をフィル完了判定部31a(詳細は後述)に送信する。設定圧としては、クラッチCH,CLへの作動油のフィル完了時の圧力(フィル圧)に相当する値が設定されている。従って、圧力スイッチTH,TLは、フィル完了を検知して、制御部31に検知信号を出力する。
 第1モータMG1と第2モータMG2と第3モータMG3とは、電気エネルギーによって駆動力を発生させる駆動モータとして機能する。また、第1モータMG1と第2モータMG2と第3モータMG3とは、入力される駆動力を用いて電気エネルギーを発生させるジェネレータとしても機能する。
 第1モータMG1の回転軸Sm1には第1モータギアGm1が固定されている。第1モータギアGm1は、第1キャリアギアGc1に噛み合っている。つまり、第1モータMG1は、第1遊星歯車機構68の回転要素に接続されている。第2モータMG2の回転軸Sm2には第2モータギアGm2が固定されている。第2モータギアGm2は、第1リング外周ギアGr1に噛み合っている。つまり、第2モータMG2は、第1遊星歯車機構68の回転要素に接続されている。
 第3モータMG3は、第1モータMG1と第2モータMG2とを補助する。変速機構66は、モータ切換機構73を有しており、モータ切換機構73は、第3モータMG3による補助対象を、第1モータMG1と第2モータMG2とに選択的に切り換える。
 詳細には、モータ切換機構73は、第1モータクラッチCm1と、第2モータクラッチCm2と、第1モータクラッチ制御弁Vm1と、第2モータクラッチ制御弁Vm2と、第1接続ギアGa1と、第2接続ギアGa2とを有する。第3モータMG3の回転軸Sm3には第3モータギアGm3が接続されており、第3モータギアGm3は、第1接続ギアGa1に噛み合っている。第1モータクラッチCm1は、第1モータMG1の回転軸Sm1と第1接続ギアGa1との接続及び切断を切り換える。第1接続ギアGa1は、第2接続ギアGa2と噛み合っている。第2モータクラッチCm2は、第2モータMG2の回転軸Sm2と第2接続ギアGa2との接続及び切断を切り換える。第1モータクラッチCm1と第2モータクラッチCm2の一方は接続されるので、結果的に、第3モータMG3は、第1遊星歯車機構68の回転要素に接続される。
 第1モータクラッチCm1と第2モータクラッチCm2とは油圧式のクラッチである。各モータクラッチCm1,Cm2には、それぞれトランスミッションポンプ29からの作動油が供給される。モータクラッチCm1,Cm2へ供給される作動油の圧力は、それぞれ、クラッチ制御弁Vm1,Vm2によって制御される。クラッチCm1,Cm2には、圧力スイッチTm1,Tm2が設けられるとよい。つまり、トランスミッション24は、圧力スイッチTm1,Tm2をさらに含むとよい。圧力スイッチTm1,Tm2は、クラッチ圧が所定の圧力に達したときに、検知信号を制御部31に送信する。より詳細には、圧力スイッチTm1,Tm2は、クラッチ圧が所定の圧力に達したときに、検知信号をフィル完了判定部31a(詳細は後述)に送信する。設定圧としては、クラッチCm1,Cm2への作動油のフィル完了時の圧力(フィル圧)に相当する値が設定されている。従って、圧力スイッチTm1,Tm2は、フィル完了を検知して、制御部31に検知信号を出力する。
 第1モータクラッチCm1が接続され、且つ、第2モータクラッチCm2が切断されている状態では、第3モータギアGm3は、第1モータMG1を補助する。第2モータクラッチCm2が接続され、且つ、第1モータクラッチCm1が切断されている状態では、第3モータギアGm3は、第2モータMG2を補助する。
 第1モータMG1は第1インバータI1を介してキャパシタ64に接続されている。第2モータMG2は第2インバータI2を介してキャパシタ64に接続されている。第3モータMG3は第3インバータI3を介してキャパシタ64に接続されている。
 キャパシタ64は、モータMG1,MG2,MG3で発生するエネルギーを蓄えるエネルギー蓄積部として機能する。すなわち、キャパシタ64は、各モータMG1,MG2,MG3の合計発電量が多いときに、各モータMG1,MG2,MG3で発電された電力を蓄電する。また、キャパシタ64は、各モータMG1,MG2,MG3の合計電力消費量が多いときに、電力を放電する。すなわち、各モータMG1,MG2,MG3は、キャパシタ64に蓄えられた電力によって駆動される。なお、キャパシタに代えてバッテリーが蓄電手段として用いられてもよい。
 作業車両1は、制御部31を備える。制御部31は、モータMG1,MG2,MG3への指令トルクを示す指令信号を各インバータI1, I2, I3に与える。これによって、制御部31は、トランスミッション24を制御する。また、制御部31は、各クラッチCF,CR,CH,CL,Cm1,Cm2のクラッチ油圧を制御するための指令信号をクラッチ制御弁VF,VR,VH,VL,Vm1,Vm2に与える。クラッチ制御弁VF,VR,VH,VL,Vm1,Vm2は、この指令信号に従って動作する。これによって、制御部31は、トランスミッション24及び作動油供給回路80を制御する。クラッチ制御弁VF,VR,VH,VL,Vm1,Vm2は、クラッチCF,CR,CH,CL,Cm1,Cm2を制御するための複数のバルブを含む。
 制御部31からの指令信号によってモータMG1,MG2,MG3及びクラッチCF,CR,CH,CL,Cm1,Cm2が制御されることにより、トランスミッション24の変速比及び出力トルクが制御される。以下に、トランスミッション24の動作について説明する。
 ここでは、エンジン21の回転速度を一定に保ったまま車速が0から前進側に加速する場合におけるトランスミッション24の概略動作を、図3及び図4を用いて説明する。図3は、各モードにおけるモータMG1,MG2,MG3の機能とクラッチの状態とを示している。Loモードは、L1モードとL2モードとを有する。Hiモードは、H1モードとH2モードとを有する。図3において、"M"は、モータMG1,MG2,MG3が駆動モータとして機能していることを意味する。"G"は、モータMG1,MG2,MG3がジェネレータとして機能していることを意味する。"O"は、クラッチが接続状態であることを意味する。"X"は、クラッチが切断状態であることを意味する。
 図4は、車速に対する各モータMG1,MG2,MG3の回転速度を示したものである。エンジン21の回転速度が一定である場合には、車速は、トランスミッション24の回転速度比に応じて変化する。回転速度比は、入力軸61の回転速度に対する出力軸63の回転速度の比である。従って、図4において車速の変化は、トランスミッション24の回転速度比の変化に一致する。すなわち、図4は、各モータMG1,MG2,MG3の回転速度とトランスミッション24の回転速度比との関係を示している。図4において、実線が第1モータMG1の回転速度、破線が第2モータMG2の回転速度、一点鎖線が第3モータMG3の回転速度を示している。
 車速が0以上V1未満の領域では、LoクラッチCLが接続され、HiクラッチCHが切断され、第1モータクラッチCm1が接続され、第2モータクラッチCm2が切断される(L1モード)。HiクラッチCHが切断されているので、第2キャリアC2と第1リングギアR1とが切断される。LoクラッチCLが接続されるので、第2キャリアC2が固定される。また、第1接続ギアGa1が第1モータMG1の回転軸Sm3に接続され、第2接続ギアGa2が第2モータMG2の回転軸Sm2から切断される。これにより、第3モータギアGm3と第1接続ギアGa1と第1モータクラッチCm1とを介して、第3モータMG3が第1モータMG1に接続される。また、第2モータクラッチCm2が切断されるので、第3モータMG3は第2モータMG2から切断される。
 このL1モードにおいては、エンジン21からの駆動力は、中間軸67を介して第1サンギアS1に入力され、この駆動力は第1キャリアC1から第2サンギアS2に出力される。一方、第1サンギアS1に入力された駆動力は第1遊星ギアP1から第1リングギアR1に伝達され、第1リング外周ギアGr1及び第2モータギアGm2を介して第2モータMG2に出力される。第2モータMG2は、このL1モードにおいては、主としてジェネレータとして機能しており、第2モータMG2によって発電された電力の一部は、キャパシタ64に蓄電される。
 また、L1モードにおいては、第1モータMG1及び第3モータMG3は、主として電動モータとして機能する。第1モータMG1及び第3モータMG3の駆動力は、第1モータギアGm1→第1キャリアギアGc1→第1キャリアC1の経路で第2サンギアS2に出力される。以上のようにして第2サンギアS2に出力された駆動力は、第2遊星ギアP2→第2リングギアR2→第2リング外周ギアGr2→出力ギア71の経路で出力軸63に伝達される。
 車速がV1以上V2未満の領域では、LoクラッチCLは接続され、HiクラッチCHは切断され、第1モータクラッチCm1が切断され、第2モータクラッチCm2が接続される(L2モード)。従って、第2接続ギアGa2が第2モータMG2の回転軸Sm2に接続され、第1接続ギアGa1が第1モータMG1の回転軸Sm1から切断されている。これにより、第3モータギアGm3と第1接続ギアGa1と第2接続ギアGa2と第2モータクラッチCm2とを介して、第3モータMG3が第2モータMG2に接続される。また、第1モータクラッチCm1が切断されるので、第3モータMG3は第1モータMG1から切断される。
 このL2モードにおいては、エンジン21からの駆動力は、中間軸67を介して第1サンギアS1に入力され、この駆動力は第1キャリアC1から第2サンギアS2に出力される。一方、第1サンギアS1に入力された駆動力は第1遊星ギアP1から第1リングギアR1に伝達され、第1リング外周ギアGr1及び第2モータギアGm2を介して第2モータMG2に出力される。また、駆動力は、第2モータギアGm2から第2モータクラッチCm2と第2接続ギアGa2と第1接続ギアGa1と第3モータギアGm3を介して、第3モータMG3に出力される。第2モータMG2及び第3モータMG3は、このL2モードにおいては、主としてジェネレータとして機能しており、第2モータMG2及び第3モータMG3によって発電された電力の一部は、キャパシタ64に蓄電される。
 また、L2モードにおいては、第1モータMG1は、主として電動モータとして機能する。第1モータMG1の駆動力は、第1モータギアGm1→第1キャリアギアGc1→第1キャリアC1の経路で第2サンギアS2に出力される。以上のようにして第2サンギアS2に出力された駆動力は、第2遊星ギアP2→第2リングギアR2→第2リング外周ギアGr2→出力ギア71の経路で出力軸63に伝達される。
 車速がV2以上V3未満の領域では、LoクラッチCLが切断され、HiクラッチCHが接続され、第1モータクラッチCm1が切断され、第2モータクラッチCm2が接続される(H1モード)。このH1モードでは、HiクラッチCHが接続されているので、第2キャリアC2と第1リングギアR1とが接続される。また、LoクラッチCLが切断されるので、第2キャリアC2が解放される。従って、第1リングギアR1と第2キャリアC2の回転速度とは一致する。また、第2接続ギアGa2が第2モータMG2の回転軸Sm2に接続され、第1接続ギアGa1が第1モータMG1の回転軸Sm1から切断されている。これにより、第3モータギアGm3と第1接続ギアGa1と第2接続ギアGa2と第2モータクラッチCm2とを介して、第3モータMG3が第2モータMG2に接続される。また、第1モータクラッチCm1が切断されるので、第3モータMG3は第1モータMG1から切断される。
 このH1モードでは、エンジン21からの駆動力は第1サンギアS1に入力され、この駆動力は第1キャリアC1から第2サンギアS2に出力される。また、第1サンギアS1に入力された駆動力は、第1キャリアC1から第1キャリアギアGc1及び第1モータギアGm1を介して第1モータMG1に出力される。このH1モードでは、第1モータMG1は主としてジェネレータとして機能するので、この第1モータMG1で発電された電力の一部は、キャパシタ64に蓄電される。
 また、H1モードでは、第2モータMG2と第3モータMG3とは、主として電動モータとして機能する。第3モータMG3の駆動力は、第3モータギアGm3から第1接続ギアGa1と第2接続ギアGa2と第2モータクラッチCm2とを介して第2モータMG2の回転軸Sm2に伝達される。そして、第2モータMG2の駆動力と第3モータMG3の駆動力とが、第2モータギアGm2→第1リング外周ギアGr1→第1リングギアR1→HiクラッチCHの経路で第2キャリアC2に出力される。以上のようにして第2サンギアS2に出力された駆動力は第2遊星ギアP2を介して第2リングギアR2に出力されるとともに、第2キャリアC2に出力された駆動力は第2遊星ギアP2を介して第2リングギアR2に出力される。このようにして第2リングギアR2で合わさった駆動力が、第2リング外周ギアGr2及び出力ギア71を介して出力軸63に伝達される。
 車速がV3以上V4未満の領域では、LoクラッチCLが切断され、HiクラッチCHが接続され、第1モータクラッチCm1が接続され、第2モータクラッチCm2が切断される(H2モード)。このH2モードでは、第1接続ギアGa1が第1モータMG1の回転軸Sm3に接続され、第2接続ギアGa2が第2モータMG2の回転軸Sm2から切断される。これにより、第3モータギアGm3と第1接続ギアGa1と第1モータクラッチCm1とを介して、第3モータMG3が第1モータMG1に接続される。また、第2モータクラッチCm2が切断されるので、第3モータMG3は第2モータMG2から切断される。
 このH2モードでは、エンジン21からの駆動力は第1サンギアS1に入力され、この駆動力は第1キャリアC1から第2サンギアS2に出力される。また、第1サンギアS1に入力された駆動力は、第1キャリアC1から第1キャリアギアGc1及び第1モータギアGm1を介して第1モータMG1及び第3モータGm3に出力される。このH2モードでは、第1モータMG1及び第3モータGm3は主としてジェネレータとして機能するので、この第1モータMG1及び第3モータGm3で発電された電力の一部は、キャパシタ64に蓄電される。
 また、H2モードでは、第2モータMG2は主として電動モータとして機能する。第2モータMG2の駆動力は、第2モータギアGm2→第1リング外周ギアGr1→第1リングギアR1→HiクラッチCHの経路で第2キャリアC2に出力される。以上のようにして第2サンギアS2に出力された駆動力は第2遊星ギアP2を介して第2リングギアR2に出力されるとともに、第2キャリアC2に出力された駆動力は第2遊星ギアP2を介して第2リングギアR2に出力される。このようにして第2リングギアR2で合わさった駆動力が、第2リング外周ギアGr2及び出力ギア71を介して出力軸63に伝達される。
 なお、以上は前進駆動時の説明であるが、後進駆動時においても同様の動作となる。
 図2に戻り、制御部31は、フィル完了判定部31aとタイマ31bとを含む。フィル完了判定部31aは、油圧クラッチCF,CR,CH,CL,Cm1,Cm2の油室に作動油が満たされたフィル完了状態となったか否かを判定する。フィル完了判定部31aには、各圧力スイッチTF,TR,TH,TL,Tm1,Tm2からの検知信号が送信される。タイマ31bは、変速指令、又は、クラッチ制御弁VF,VR,VH,VL,Vm1,Vm2への指令電流の出力開始後、フィル完了状態となるまでの時間を測定する。フィル完了判定部31a及びタイマ31bの動作の詳細は後述する。
 つぎに、作動油供給回路80、及び作動油暖機回路81の詳細について説明する。図5は、本実施形態に係る作動油供給回路80、及び作動油暖機回路81の詳細図である。図5では、クラッチの一例として、クラッチCLを例に挙げて、クラッチCLのクラッチ制御弁VL、圧力スイッチTLを含むクラッチ回路83を図示している。他のクラッチのクラッチ回路もクラッチ回路83と同様と考えればよい。
 クラッチ回路83は、クラッチCLと、クラッチ制御弁VLと、圧力スイッチTLとを備える。クラッチ制御弁VLは、圧力制御弁VL1と、電磁制御弁VL2とを含む。圧力制御弁VL1は、クラッチCLに供給される油圧(つまり、クラッチ圧)を制御するための装置である。圧力制御弁VL1は、接続回路80a(すなわち、作動油供給回路80)と出力流路85とドレン回路86とに接続されている。接続回路80aは後述するロジック弁84に接続されている。出力流路85はクラッチCLに接続されている。ドレン回路86は作動油タンク29aに接続されている。圧力制御弁VL1は、後述する電磁制御弁VL2に接続するパイロット回路PLのパイロット圧の大きさに応じて入力流路80の油圧を調整して出力流路85へと導く。すなわち、圧力制御弁VL1は、入力されるパイロット圧に応じてクラッチ圧を変化させる。なお、圧力制御弁VL1にパイロット圧が供給されていない状態では、圧力制御弁VL1は、出力流路85とドレン回路86とを接続する。これにより、クラッチCLから作動油が排出され作動油タンク29aに回収される。なお、圧力制御弁VL1のパイロットポートにはパイロット回路PLが接続されている。
 電磁制御弁VL2は、圧力制御弁VL1に入力されるパイロット圧を制御するための装置である。電磁制御弁VL2は、絞り87を介して接続回路80aに接続されている。電磁制御弁VL2と絞り87との間には、上述したパイロット回路PLが接続されている。また、電磁制御弁VL2は、ドレン回路88を介して作動油タンク29aに接続されている。電磁制御弁VL2は、接続回路80aとドレン回路88とを接続する接続状態と、接続回路80aとドレン回路88とを遮断する遮断状態との間で切り換え可能である。電磁制御弁VL2は、制御部31から入力される指令電流の大きさに応じて、接続状態と遮断状態とを切り換えることができる。これにより、電磁制御弁VL2は、指令電流に応じて、パイロット回路PLに供給されるパイロット圧を制御することができる。
 圧力スイッチTLは、クラッチCLが所定の圧力に達したときに、検知信号を制御部31のフィル完了判定部31aに送信する。
 作動油供給回路80は、接続回路80aとトランスミッションポンプ29とを含む。作動油供給回路80は、さらに、リリーフ弁97を含むとよい。接続回路80aは、上述するように、クラッチ制御弁VLとロジック弁84のRポートとに接続する。接続回路80aには、リリーフ弁97が接続される。リリーフ弁97は、接続回路80aが、リリーフ弁97のクラッキング圧Pc1を超えると、接続回路80aと作動油タンク29aとを連通する。このクラッキング圧Pc1によって、作動油供給回路80の最大の圧力が設定される。
 作動油暖機回路81は、ロジック弁84と、電磁弁90と、補助回路91と、パイロット回路94と、ドレン回路95と、リリーフ弁96とを含む。ドレン回路95は、作動油タンク29aに連通する。ロジック弁84は、パイロット回路94のパイロット圧に応じて、入力流路(Pポート)と出力流路(Rポート)を連通もしくは遮断する。Pポートは、トランスミッションポンプ29からの油圧回路に接続する。Rポートは、上述するように接続回路80aに接続される。ロジック弁84は、ポペットをPポート及びRポートに向かって押すバネを含む。
 ここで、パイロット回路94が接続するロジック弁84のポートをXポートとし、Xポートの圧力をPx、Xポートの受圧面積をAxとする。同様に、Pポートの圧力をPp、Pポートの受圧面積をApとし、Rポートの圧力をPr、Rポートの受圧面積をArとする。また、バネがポペットを押す力をFsとする。
まず、Ar/Ax=α(0<α<1)とすると、Ap/Ax=1-αと表される。
このとき、Xポート側押し付け力Fxは、以下の(式1)のように表される。
Fx=(Ax・Px)+Fs -------------(式1)
P,Rポート側押し上げ力Fwは、以下の(式2)のように表される。
Fw=(Ap・Pp)+( Ar・Pr)={(1-α)・Ax・Pp}+ (α・Ax ・Pr) -----(式2)
 Fx<Fwの関係を満たすとき、ロジック弁84は閉じた状態から開いた状態に変化する。そして、Fx>Fwの関係を満たすとき、ロジック弁84は開いた状態から閉じた状態に変化する。Fx=Fwの関係を満たすとき、弁が動かない平衡状態となる。
 補助回路91は、トランスミッションポンプ29とロジック弁84のPポートとの間の作動油供給回路80の分岐点C1に接続し、電磁弁90のPポートまで伸びている。補助回路91は、絞り92を含んでいる。絞り92は、ロジック弁84のポペットが急激に動くことを防止する役割を果たす。なお、補助回路91は、絞り92以外に他の絞りを含んでもよい。電磁弁90は、PポートとTポートとを連通もしくは遮断する。つまり、電磁弁90は、補助回路91とドレン回路95とを連通もしくは遮断する。ドレン回路95は、電磁弁90のTポートと作動油タンク29aとに接続されている。したがって、電磁弁90のPポートとTポートとが連通しているとき、補助回路91は、電磁弁90を介して作動油タンク29aと連通する。電磁弁90は、制御部31からの暖機指令を受けると、PポートとTポートとの間を遮断する。つまり、電磁弁90は、制御部31からの暖機指令を受けると、補助回路91からドレン回路95への流路を遮断する。
 パイロット回路94は、補助回路91から分岐している。つまり、補助回路91は、パイロット回路94に接続している。絞り92は、分岐点C1と、パイロット回路94との間の補助回路91に設けられている。パイロット回路94はロジック弁84のXポート及びリリーフ弁96に接続している。
 リリーフ弁96は、パイロット回路94とドレン回路95との間に設けられる。リリーフ弁96は、通常、パイロット回路94とドレン回路95とを遮断する。しかし、リリーフ弁96のパイロット圧(パイロット回路94における油圧)がクラッキング圧Pc2を超えると、リリーフ弁96はパイロット回路94とドレン回路95とを連通する。電磁弁90のPポートとTポートが連通されているときは、リリーフ弁96のパイロット圧Pxが0近辺となり、クラッキング圧Pc2に至らない。つまり、電磁弁90が制御部31からの暖機指令を受けていない場合、パイロット回路94とドレン回路95との間が遮断されている。電磁弁90が制御部31からの暖機指令を受けると、電磁弁90のPポートとTポートが遮断されるため、リリーフ弁96のパイロット圧Pxが上昇する。そして、パイロット圧Pxがクラッキング圧Pc2に至ると、パイロット回路94とドレン回路95とが連通する。つまり、電磁弁90が制御部31からの暖機指令を受けると、リリーフ弁96のパイロット圧Pxがクラッキング圧Pc2まで高められる。
 次に、具体的な暖機のメカニズムについて説明する。暖機を行う車両の起動状態では、ロジック弁84が閉じた状態となっており、クラッチの油室には作動油がない状態である。したがって、Pr=0である。このとき、電磁弁90は暖機指令を受けているため、PポートとTポートが遮断されている。このため、トランスミッションポンプ29から受けた油圧によって、PpとPxは、ほぼ同じ圧力で上昇する。Px=Pc2となると、リリーフ弁96に作動油が流れるようになり、絞り92によってPpとPxとの間には差圧を生じることとなる。この場合、PxはPc2から上昇しないが、Ppはさらに上昇する。そして、Ppが下記の(式3)を満たすときに弁が開く。
Pp > [Px + Fs/Fx] / (1-α) ------(式3)
 なお、上述する式におけるFs/Fxは、Pxよりも十分小さい値であり、αも0に近い値である。したがって、Ppは、Pxよりも少し大きな値である。
 ロジック弁84が開き、ロジック弁84のPポートとRポートが連通されると、圧力差のあるPポートからRポートに作動油が流れることとなり、圧力損失により作動油が温められる。そして、Rポートに作動油が流れるにつれ、Rポートの圧力Prが徐々に上昇する。ロジック弁84が開いた状態で平衡状態に保たれると、Ppは以下の(式4)を満たす値となる。
Pp = [Px -α・Pr + Fs/Fx] / (1-α) ------(式4)
 (式4)から明らかなようにPrが上昇すれば、Ppも下がる。そして、PrはPpに近い値となる。同時に、ロジック弁84が開くことにより、Xポートに溜まっていた作動油がリリーフ弁96に押し出されることにより、Pxが上昇する。そのため、Fx>Fwとなり再びロジック弁84が閉じる。ロジック弁96が閉じると、作動油がPポートからRポートへ流れなくなることから、再びPpが上昇する。そして、Ppが(式5)を満たすときに、再びロジック弁96が開く。
Pp > [Px -α・Pr + Fs/Fx] / (1-α) ------(式5)
 電磁弁90は暖機指令を受けている場合、上述する状態を繰り返すことによって、圧力差のあるPポートとRポートとを介して作動油が流れることとなる。これによって、作動油が継続的に温められる。電磁弁90が暖機指令を受けなくなると、PポートとTポートとが連通される。この場合、Pxが0に近い値となるため、Fxが小さい値となる。したがって、Fx<Fwとなり、ロジック弁84が連続的に開く状態となる。この場合、Pr=Ppとなるため、圧力損失が生じない。したがって、作動油がロジック弁84により温められなくなる。
 〔作動油暖機時の制御部〕
 以下、制御部31によって実行される作動油暖機時の制御について、図6及び図7に基づいて説明する。図6は、作動油暖機時の制御内容を示すフローチャートである。図7 (a)は、油圧クラッチCF,CR,CH,CL,Cm1,Cm2の切換時のクラッチ制御弁VF,VR,VH,VL,Vm1,Vm2への指令電流の変化を表すタイミングチャートである。図7 (b)は、油圧クラッチCF,CR,CH,CL,Cm1,Cm2の切換時のクラッチ圧の変化を示すタイミングチャートである。
 まず、ステップS1において、オペレータのキー操作などにより、作業車両1が起動される。つぎに、ステップS2において、作業車両1は、作動油の暖機を開始する。具体的には、制御部31は、暖機機能を働かせる暖機指令を作動油暖機回路81又は作動油供給回路80に出力する。つまり、制御部31は、暖機指令を送ることによって、作動油暖機回路81を制御する。より詳細には、制御部31は、暖機指令を電磁弁90に出力する。これにより、電磁弁90のPポートとTポートとが遮断される。その結果、ロジック弁84において作動油の圧力損失が発生し、作動油の温度が上昇する。つまり、作動油暖機回路81は、暖機指令を受けると、作動油の流路において圧力損失を発生させて、作動油を温める。
 つぎに、ステップS3において、制御部31は、変速指令が発生したか否かを判定する。変速指令は、車速やエンジン回転数に応じて制御部31がトランスミッション24の速度段の切換を決定した場合や、オペレータが図示しない変速操作部材を操作して手動で変速を指示した場合に発生する。変速指令が発生すると、ステップS4に進む。ここで、変速指令が発生した時点を図7のt0とする。
 ステップS4では、制御部31は、クラッチ制御弁VF,VR,VH,VL,Vm1,Vm2への指令電流の出力を開始する。ここで、指令電流の出力を開始した時点とは、図7の時点t1である。図7(a)の時点t1では、制御部31からクラッチ制御弁VF,VR,VH,VL,Vm1,Vm2に所定のトリガ指令値I1の指令電流が出力される。このトリガ指令は、時点t1から時点t2まで維持される。これにより、時点t1から時点t1までの間には、比較的大流量の作動油がクラッチCF,CR,CH,CL,Cm1,Cm2に供給され、図7(b)に示すようにクラッチ圧がやや増大する。ただし、この時点ではクラッチCF,CR,CH,CL,Cm1,Cm2の油室がまだ充満されていない。
 ステップS5では、時点t1において、タイマ31bを起動し、クラッチCF,CR,CH,CL,Cm1,Cm2の油室に作動油が満たされるまでの時間Tの計測を開始する。それから、トリガ指令の出力開始から所定時間が経過した時点t2において、指令電流が所定の設定電流値I2に低減される。そして、ステップS6においてフィル完了状態であると判定されるまで、指令電流が設定電流値I2に維持される。これにより、クラッチCF,CR,CH,CL,Cm1,Cm2に供給される作動油の流量が絞られ、図7(b)に示すように、クラッチ圧は時点t1から時点t2までの間よりも小さくなる。
 ステップS6では、制御部31(より詳細には、フィル完了判定部31b)がフィル完了状態となったか否かを判定する。ここでは、圧力スイッチTF,TR,TH,TL,Tm1,Tm2の検知信号をフィル完了判定部31bが受信すると、フィル完了判定部31bは、フィル完了状態となったと判定する。図7(b)の時点t3に示すように、クラッチ圧が所定のフィル圧P2に達した場合に、圧力スイッチTF,TR,TH,TL,Tm1,Tm2から検知信号がフィル完了判定部31bに送信され、フィル完了状態となったと判定される。フィル完了状態となったと判定された場合には、ステップS7に進む。
 ステップS7では、タイマ31bによりクラッチCF,CR,CH,CL,Cm1,Cm2の油室に作動油が満たされるまでの時間Tを検出する。図7の例では、T=t3-t1である。時点t3以降では、クラッチCF,CR,CH,CL,Cm1,Cm2のビルドアップが開始される。
 ステップS8では、制御部31は、測定した時間Tが所定時間T0以下であるか判定する。時間TがT0以下である場合(ステップS8でYes)、ステップS9において、作業車両1は、作動油の暖機を終了する。具体的には、制御部31は、暖機指令を作動油暖機回路81又は作動油供給回路80に出力するのを終了する。より詳細には、制御部31は、暖機指令を電磁弁90に出力するのを終了する。これにより、電磁弁90のPポートとTポートが連通される。このため、ロジック弁84が完全に開いた状態となり、PポートとRポートとの間で圧力差がなくなるため、作動油は温められることなく、各クラッチへ流れる。
 時間TがT0より長い場合(ステップS8でNo)、ステップS3に戻る。つまり、制御部31は、暖機指令を作動油暖機回路81又は作動油供給回路80に引き続き出力する。より詳細には、制御部31は、暖機指令を電磁弁90に引き続き出力する。これにより、作動油の暖機が引き続き行われる。
 〔他の作動油供給回路及び他の作動油暖機回路〕
 作動油供給回路80及び作動油暖機回路81は、図5に示されたもの以外に、多様に変形されてもよい。ここでは、代表的な変形例を、図8を用いて説明する。図8では、図5と同じ構成要素については、同じ符号を付しており、詳細な説明を省略する。
 図8における変形例では、作動油供給回路80は、トランスミッションポンプ29から接続部P,Q,Rを順に通って、クラッチ回路83まで伸びている。作動油供給回路80は、開閉弁98を含む。作動油暖機回路81は、補助回路91と、リリーフ弁96とを含む。補助回路91は、作動油供給回路80の分岐点Pにおいて作動油供給回路80から分岐して分岐点Rまで伸びている。リリーフ弁96は、補助回路91上に設けられている。リリーフ弁96は、開閉弁98に並設されている。リリーフ弁96は、通常、補助回路91を遮断する。しかし、リリーフ弁96のパイロット圧(分岐点Pにおける油圧)がクラッキング圧Pc3を超えると、リリーフ弁96は補助回路91を連通する。作動油供給回路80は、ドレン回路95とリリーフ弁99とをさらに含んでもよい。ドレン回路95は、作動油供給回路80(分岐点Q)と作動油タンク29aとに接続されている。ドレン回路95には、リリーフ弁99が設けられている。つまり、作動油供給回路80は、リリーフ弁99を介して作動油タンク29aに連通する。リリーフ弁99は、リリーフ弁99のクラッキング圧Pc4より大きい油圧がクラッチ回路83に加わらないように、クラッチ回路83を保護する役割を果たす。
 開閉弁98は、作動油供給回路80上に設けられている。開閉弁98は、制御部31からの暖機指令を受けていない場合、開状態となる。すなわち、開閉弁98は、分岐点Pと分岐点Qとを連通させる。
 開閉弁98は、制御部31からの暖機指令を受けると、閉状態となる。すなわち、開閉弁98は、分岐点Pと分岐点Qとの間を遮断する。このため、作動油は、リリーフ弁96を介して流れる。作動油がリリーフ弁96を通る際に、作動油の圧力損失が発生し、作動油の温度が上昇する。つまり、作動油暖機回路81は、暖機指令を受けると、作動油の流路において圧力損失を発生させて、作動油を温める。作動油暖機回路81は、作動油を、リリーフ弁96を介して作動油供給回路80に流す。
 本変形例における作動油暖機時の制御では、(1)ステップS2において、制御部31は暖機指令を開閉弁98に出力すること、(2)ステップS9において、制御部31は暖機指令を開閉弁98に出力するのを終了することのみが、図5に示された油圧回路における作動油暖機時の制御と異なる。
 〔特徴〕
 本実施形態に係る作業車両1は、以下の特徴を備える。
 (1)作業車両1では、制御部31が、変速指令、又は、クラッチ制御弁VF、VR、VL、VH、Vm1、Vm2への指令電流の出力開始後、フィル完了状態となるまでの時間Tを測定する。そして、その時間Tが所定時間T0よりも長い場合、制御部31は、作動油の粘度が高く、油温が低いものと判定し、トルクコンバータとは異なる作動油暖機回路81が作動油の暖機を行う。ゆえに、当該作業車両1は、トルクコンバータを有していなくても、作業車両起動時に、クラッチCF、CR、CL、CH、Cm1、Cm2の作動油の油温を上げることができる。また、作動油の油温を測定する温度センサを利用することなく、暖機の要/不要を判定するので、作業車両1の部品点数を減らし、低コスト化を実現できる。
 (2)作動油暖機回路81は、ロジック弁84と、パイロット回路94とを含む。したがって、作動油暖機回路81は、トルクコンバータではない。また、作動油暖機回路81は、暖機指令を受けると、パイロット回路94の油圧を高め、ロジック弁84のPポートの油圧PpとRポートの油圧Prとの間で圧力差(Pp-Pr)を生じさせる。このため、作動油がロジック弁84を通る際に、作動油の圧力損失が生じて、作動油を温めることができる。
 (3)作動油暖気回路81は、ドレン回路95と、電磁弁90と、補助回路91と、リリーフ弁96とを含む。補助回路91は、トランスミッションポンプ29とロジック弁84のPポートとの間の作動油供給回路の分岐点C1及びパイロット回路94に接続する。また、リリーフ弁96は、パイロット回路94とドレン回路95との間に設けられる。電磁弁90は、制御部31からの暖機指令を受けると、補助回路91からドレン回路95への流路を遮断する。このとき、パイロット回路94の油圧Pxは、リリーフ弁96のクラッキング圧Pc2まで上昇する。そして、電磁弁90は、制御部31からの暖機指令を受けていないとき、補助回路91と作動油タンク29aとを連通させる。このとき、パイロット回路94の油圧Pxは、ほぼ0となる。したがって、制御部31からの暖機指令により、パイロット回路94の油圧を制御することができる。
 (4)作動油暖機回路81は、開閉弁98に並設されたリリーフ弁96を含む。したがって、作動油暖機回路81は、トルクコンバータではない。開閉弁98が暖機指令を受けると閉状態となることによって、作動油暖機回路81は、作動油を、リリーフ弁96を介して作動油供給回路80に流す。このため、作動油がリリーフ弁96を通る際に、作動油の圧力損失が生じて、作動油を温めることができる。
 (5)トランスミッション24は、油圧クラッチCF,CR,CH,CL,Cm1,Cm2のクラッチ圧が所定の圧力に達したときに検知信号をフィル完了判定部31aに送信する圧力スイッチTF,TR,TH,TL,Tm1,Tm2を含む。これによって、タイマ31bは、油圧クラッチCF,CR,CH,CL,Cm1,Cm2の油室に作動油が満たされるまでの時間を正確に計測することができる。
 〔変形例〕
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
 上述の実施形態では、圧力スイッチTF,TR,TH,TL,Tm1,Tm2によって、フィル完了状態であることを検出している。しかし、圧力スイッチTF,TR,TH,TL,Tm1,Tm2に代え、油圧クラッチCF,CR,CH,CL,Cm1,Cm2のクラッチ圧の油室の油圧を測定するセンサを設けて、それらのセンサが測定した油圧をフィル完了判定部31 aに送信し、フィル完了判定部31aは、送信された油圧が時点t2以降に所定値P2(図7(b)参照)に達した場合に、フィル完了状態となったと判定してもよい。これによっても、タイマ31bは、油圧クラッチCF,CR,CH,CL,Cm1,Cm2の油室に作動油が満たされるまでの時間Tを正確に計測することができる。
 上述の実施形態では、時間Tを、T=t3-t1と求めていたが、T=t3-t0としてもよい。すなわち、タイマ31bは、変速指令が発生してからクラッチCF,CR,CH,CL,Cm1,Cm2の油室に作動油が満たされるまでの時間を計測し、その時間が所定時間より長ければ、制御部31は、暖機指令を作動油暖機回路81又は作動油供給回路80に出力する制御を行ってもよい。
 また、上述の実施形態において、作業車両1は、トランスミッション24潤滑のための作動油を吐出する潤滑用ポンプもさらに備えてもよい。
 上述の実施形態は、EMTに限らずHMTなどの他の種類の変速装置に適用されてもよい。この場合、第1モータMG1は、油圧モータ及び油圧ポンプとして機能する。第2モータMG2は、油圧モータ及び油圧ポンプとして機能する。また、第3モータMG3は、油圧モータ及び油圧ポンプとして機能する。第1モータMG1と第2モータMG2と第3モータMG3とは、可変容量型のポンプ/モータであり、制御部31によって容量が制御される。
 トランスミッション24の構成は上記の実施形態の構成に限られない。例えば、2つの遊星歯車機構68,69の各要素の連結、配置は、上記の実施形態の連結、配置に限定されるものではない。遊星歯車機構の数は2つに限らない。例えば、トランスミッションは1つの遊星歯車機構を備えてもよい。モータの数は3つに限らない。モータの数は1、2、或いは4つ以上であってもよい。例えば、第3モータMG3が省略されてもよい。
 本発明によれば、トルクコンバータを使わずに、作業車両起動時に、クラッチの作動油の油温を上げることができる作業車両を提供することができる。

Claims (8)

  1.  エンジンと、
     前記エンジンからの駆動力を変速するトランスミッションと、
     前記トランスミッションに作動油を供給する作動油供給回路と、
     前記作動油を温める作動油暖機回路と、
     前記トランスミッション、前記作動油供給回路、及び前記作動油暖機回路を制御する制御部と、
    を備え、
     前記トランスミッションは、
      油圧クラッチと、
      前記油圧クラッチへ供給される前記作動油の圧力を前記制御部からの指令に従って制御するクラッチ制御弁と、
    を含み、
     前記制御部は、前記作動油の油温が低いと判定すると、暖機機能を働かせる暖機指令を出力し、
     前記作動油暖機回路は、前記作動油の流路において圧力損失を発生させて、前記作動油を温める、
    作業車両。
  2.  前記作動油供給回路は、
      前記クラッチ制御弁に接続する接続回路と、
      トランスミッションポンプと、
    を含み、
     前記作動油暖機回路は、
      ロジック弁と、
      前記ロジック弁のパイロット回路と、
    を含み、
     前記ロジック弁は、
      前記トランスミッションポンプからの油圧回路に接続するPポートと、
      前記接続回路に接続するRポートと、
    を含み、
     前記作動油暖機回路は、前記暖機指令を受けると、前記パイロット回路の油圧を高め、前記Pポートの油圧と前記Rポートの油圧との間で圧力差を生じさせ、前記圧力差による圧力損失を利用して、前記Pポートから前記Rポートに前記作動油を流すことによって前記作動油を温める、請求項1に記載の作業車両。
  3.  前記作動油暖機回路は、
      ドレン回路と、
      前記Pポート及び前記パイロット回路に接続する補助回路と、
      前記補助回路と前記ドレン回路とを連通もしくは遮断する電磁弁と、
      前記パイロット回路と前記ドレン回路との間に設けられるリリーフ弁と、
    を含み、
     前記暖機指令を受けると、前記電磁弁は、前記補助回路から前記ドレン回路への流路を遮断し、前記パイロット回路の油圧が前記リリーフ弁のクラッキング圧まで高められる、請求項2に記載の作業車両。
  4.  前記作動油供給回路は、開閉弁を含み、
     前記作動油暖機回路は、前記開閉弁に並設されたリリーフ弁を含み、
     前記開閉弁が前記暖機指令を受けると閉状態となることによって、前記作動油暖機回路は、前記作業油を、前記リリーフ弁を介して前記作動油供給回路に流す、請求項1に記載の作業車両。
  5.   前記制御部は、
      前記油圧クラッチの油室に前記作動油が満たされたフィル完了状態となったか否かを判定するフィル完了判定部と、
      変速指令、又は、前記クラッチ制御弁への指令電流の出力開始後、前記フィル完了状態となるまでの時間を測定するタイマと、
    を含み、
     前記制御部は、前記タイマにより測定された時間が所定時間より長い場合、前記油温が低いと判定する、請求項1に記載の作業車両。
  6.  前記トランスミッションは、前記油圧クラッチのクラッチ圧が所定の圧力に達したときに検知信号を前記フィル完了判定部に送信する圧力スイッチを含み、
     前記フィル完了判定部は、前記検知信号を受信すると、前記フィル完了状態となったと判定する、請求項5に記載の作業車両。
  7.  前記トランスミッションは、前記油圧クラッチの油室の油圧を測定し、前記測定した油圧を前記フィル完了判定部に送信する油圧センサを含み、
     前記フィル完了判定部は、前記油圧センサから送信された油圧が所定値に到達すると、前記フィル完了状態となったと判定する、請求項5に記載の作業車両。
  8.  前記トランスミッションは、
      入力軸と、
      出力軸と、
      遊星歯車機構を含み、前記入力軸の回転を前記出力軸に伝達する歯車機構と、
      前記遊星歯車機構の回転要素に接続されるモータと、
    をさらに含み、
     前記トランスミッションは、前記モータの回転速度の変化に応じて、前記入力軸に対する前記出力軸の回転速度比を変化させるように構成されている、請求項1から7のいずれかに記載の作業車両。
PCT/JP2014/066159 2013-08-20 2014-06-18 作業車両 WO2015025602A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014547607A JP5770390B1 (ja) 2013-08-20 2014-06-18 作業車両
CN201480041158.1A CN105659003B (zh) 2013-08-20 2014-06-18 作业车辆
US14/903,316 US9625033B2 (en) 2013-08-20 2014-06-18 Work vehicle
EP14838099.1A EP3009715B1 (en) 2013-08-20 2014-06-18 Working vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013170213 2013-08-20
JP2013-170213 2013-08-20

Publications (1)

Publication Number Publication Date
WO2015025602A1 true WO2015025602A1 (ja) 2015-02-26

Family

ID=52483387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066159 WO2015025602A1 (ja) 2013-08-20 2014-06-18 作業車両

Country Status (5)

Country Link
US (1) US9625033B2 (ja)
EP (1) EP3009715B1 (ja)
JP (1) JP5770390B1 (ja)
CN (1) CN105659003B (ja)
WO (1) WO2015025602A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016070006A (ja) * 2014-09-30 2016-05-09 株式会社クボタ 作業機

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6320741B2 (ja) * 2013-12-16 2018-05-09 株式会社小松製作所 作業車両及び作業車両の制御方法
FR3026811B1 (fr) * 2014-10-03 2016-12-09 Poclain Hydraulics Ind Procede d'assistance hydraulique de l'entrainement d'un vehicule a basse vitesse
US9932799B2 (en) * 2015-05-20 2018-04-03 Canadian Oilfield Cryogenics Inc. Tractor and high pressure nitrogen pumping unit
JP6345194B2 (ja) * 2016-01-25 2018-06-20 本田技研工業株式会社 ハイブリッド車両
CN109797802A (zh) * 2019-02-14 2019-05-24 青岛雷沃工程机械有限公司 一种挖掘机自动预热的控制装置
JP7419064B2 (ja) * 2019-12-27 2024-01-22 株式会社クボタ 作業車両
US11585428B2 (en) 2020-09-08 2023-02-21 Deere & Company Cold start lubricant distribution systems and work vehicles including the same
CN112412550B (zh) * 2020-12-01 2024-08-16 沧州华润热电有限公司 一种汽轮机的暖机方法及暖机系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726588A (ja) * 1993-07-15 1995-01-27 Hitachi Constr Mach Co Ltd 建設機械のパイロット操作油圧回路
JP2005299699A (ja) * 2004-04-06 2005-10-27 Toyota Motor Corp 液圧制御装置
JP2006041819A (ja) 2004-07-26 2006-02-09 Hitachi Ltd ストリーム配信サーバ、移動端末、ストリーム配信システム、およびストリーム配信方法
JP2006329244A (ja) * 2005-05-24 2006-12-07 Komatsu Ltd 変速装置
JP2009287676A (ja) * 2008-05-29 2009-12-10 Toyota Motor Corp 作動油温制御装置
JP2010025333A (ja) * 2008-06-19 2010-02-04 Kawasaki Heavy Ind Ltd 流体式トルクコンバータ付きトランスミッションの油圧回路
JP2010138924A (ja) 2008-12-09 2010-06-24 Komatsu Ltd 作業車両の油圧システムおよび油圧システムの制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2897358B2 (ja) * 1990-07-11 1999-05-31 日産自動車株式会社 自動変速機の液圧制御装置
JP2567878Y2 (ja) 1991-05-14 1998-04-08 三菱重工業株式会社 油圧漸増装置
US6120408A (en) * 1999-03-08 2000-09-19 Mclaren Automotive Group, Inc. Limited slip differential with temperature compensating valve
US6295497B1 (en) 1999-10-27 2001-09-25 Caterpillar Inc. Method and apparatus for adaptively shifting ranges in a continuously variable transmission
US7267633B2 (en) 2004-06-25 2007-09-11 General Motors Corporation Transmission control method for increasing engine idle temperature
US7874226B2 (en) * 2007-08-01 2011-01-25 GM Global Technology Operations LLC Transmission heater system and method
JP5176184B2 (ja) 2008-03-28 2013-04-03 本田技研工業株式会社 クラッチ制御装置
JP2014005894A (ja) * 2012-06-26 2014-01-16 Suzuki Motor Corp 自動変速機の変速制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726588A (ja) * 1993-07-15 1995-01-27 Hitachi Constr Mach Co Ltd 建設機械のパイロット操作油圧回路
JP2005299699A (ja) * 2004-04-06 2005-10-27 Toyota Motor Corp 液圧制御装置
JP2006041819A (ja) 2004-07-26 2006-02-09 Hitachi Ltd ストリーム配信サーバ、移動端末、ストリーム配信システム、およびストリーム配信方法
JP2006329244A (ja) * 2005-05-24 2006-12-07 Komatsu Ltd 変速装置
JP2009287676A (ja) * 2008-05-29 2009-12-10 Toyota Motor Corp 作動油温制御装置
JP2010025333A (ja) * 2008-06-19 2010-02-04 Kawasaki Heavy Ind Ltd 流体式トルクコンバータ付きトランスミッションの油圧回路
JP2010138924A (ja) 2008-12-09 2010-06-24 Komatsu Ltd 作業車両の油圧システムおよび油圧システムの制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016070006A (ja) * 2014-09-30 2016-05-09 株式会社クボタ 作業機

Also Published As

Publication number Publication date
CN105659003A (zh) 2016-06-08
EP3009715B1 (en) 2017-12-27
CN105659003B (zh) 2017-07-21
JPWO2015025602A1 (ja) 2017-03-02
EP3009715A4 (en) 2016-08-17
JP5770390B1 (ja) 2015-08-26
US9625033B2 (en) 2017-04-18
US20160144860A1 (en) 2016-05-26
EP3009715A1 (en) 2016-04-20

Similar Documents

Publication Publication Date Title
JP5770390B1 (ja) 作業車両
EP2798240B1 (en) Hydro-mechanical continuously variable transmission for producing high torque output
JP4800014B2 (ja) 油圧回路の制御装置
JP6327846B2 (ja) 作業車両及びその制御方法
CN101093017B (zh) 具有互锁保护的电液控制系统
US8322135B2 (en) Hydraulic device and work machine
JP6267949B2 (ja) 作業車両及び作業車両の制御方法
JP2017532238A (ja) デュアル駆動ドライブライン
JP2006336549A (ja) ハイブリッド式駆動装置
WO2016057265A1 (en) Control systems for hydraulically actuated transmissions of electric vehicles
JPH07280064A (ja) 油圧機械式動力伝達装置の動力伝達方法
JP6181418B2 (ja) 遊星歯車セットを有する駆動システムの制御
CN108602431B (zh) 传动系统
CN106687325B (zh) 用于控制机动车辆的静液压传动装置的方法
JP2013256280A (ja) 遊星歯車セットを有する駆動システム
KR102324433B1 (ko) 변속 시스템
CN108602432B (zh) 传动系统
JP4908010B2 (ja) 車両の動力断接用油圧回路
KR102324421B1 (ko) 변속 시스템
JP2008039013A (ja) 無段変速機の油圧制御装置
JP2007327530A (ja) 変速機の制御装置
EP3830453B1 (en) Hydraulic energy management system for hydrostatic transmission
WO2020255893A1 (ja) 作業車両及び作業車両の制御方法
KR100497662B1 (ko) 동일한 펌프로부터 토출된 유량을 사용하는 정유압트랜스미션
JP2009036299A (ja) 車両用油圧式変速機の制御装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014547607

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838099

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14903316

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014838099

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE