WO2015024769A1 - Verfahren zum betreiben einer dampfturbine mit zwei dampfzuführungen - Google Patents

Verfahren zum betreiben einer dampfturbine mit zwei dampfzuführungen Download PDF

Info

Publication number
WO2015024769A1
WO2015024769A1 PCT/EP2014/066775 EP2014066775W WO2015024769A1 WO 2015024769 A1 WO2015024769 A1 WO 2015024769A1 EP 2014066775 W EP2014066775 W EP 2014066775W WO 2015024769 A1 WO2015024769 A1 WO 2015024769A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
steam
steam turbine
mass flow
turbine
Prior art date
Application number
PCT/EP2014/066775
Other languages
English (en)
French (fr)
Inventor
Simon Hecker
Christian Musch
Heinrich STÜER
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to JP2016535395A priority Critical patent/JP2016528437A/ja
Priority to EP14752802.0A priority patent/EP3004566A1/de
Priority to KR1020167004191A priority patent/KR101834095B1/ko
Priority to US14/911,838 priority patent/US20160201500A1/en
Priority to RU2016110662A priority patent/RU2638689C2/ru
Priority to CN201480046503.0A priority patent/CN105492729B/zh
Publication of WO2015024769A1 publication Critical patent/WO2015024769A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • F01D17/08Arrangement of sensing elements responsive to condition of working-fluid, e.g. pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/145Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path by means of valves, e.g. for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/334Vibration measurements

Definitions

  • the invention relates to a method for operating a steam turbine comprising an attached Schlos ⁇ sene to the steam turbine first steam supply and a second steam supply, and a cylinder disposed in the first steam supply the first valve and, disposed in the second steam supply second valve.
  • steam is generated in a steam generator, which is fed via feed lines to the steam turbine.
  • the supply lines open in steam feeds.
  • the steam supply valves are installed, which regulate the steam flow.
  • one or more valves are installed to control the steam turbine power in front of the steam turbine.
  • There are different modes of operation of a steam turbine conceivable. So it is possible to operate the steam turbine at full load. Another possibility is to operate the steam turbine at part load . This means that through the valves and into the steam turbine not the entire mass flow, which is generated in the steam generator, flows into the steam turbine.
  • the valves are a bit fed ⁇ go, leaving only can flow into the steam turbine part of the maximum possible Bacmas ⁇ senstroms.
  • the valves tend to perform vibrations in such a part load operation.
  • the flow conditions in the valve can change and possibly lead to an excitation of the entire structure, which is formed of valve and lines. This is to be regarded critically, because the temporally changing and possibly cyclically repeating loads the components are strongly stressed, which under certain circumstances could lead to cracks in the components, which should be avoided.
  • inadmissibly high transient forces could arise on the valve disk, which lead to damage to the valve as a whole.
  • the problem of the vibration-prone valves in partial load operation could be counteracted by the fact that either such a valve newly developed or another valve is installed, but this leads to downtime and material costs.
  • the invention has set itself the task of providing a method with which vibrations can be avoided. Furthermore, the object of the invention is to provide a steam turbine arrangement whose valves do not lead to vibrations.
  • This object is achieved by a method for operating a steam turbine comprising a attached to the steam turbine ⁇ connected first steam supply and a second steam supply, and a cylinder disposed in the first steam supply the first valve and, disposed in the second steam supply second valve, wherein upon the occurrence of oscillations gene of the first valve and / or second valve, the first valve and the second valve auffahren.
  • the invention proposes to operate in a steam ⁇ power plant, which has more than one valve, the valves such that they are actuated asymmetrically when impermissible valve vibrations occur. These are mechanical vibrations. These mechanical vibrations affect the structure of valve and pipes. This is done according to the invention in that a critical operating state of a single valve is detected. So that the mass flow into the steam turbine takes place uniformly, the second valve, which is not in the critical operating state, becomes the critical operating state of the first valve customized. This means that the valve openings are formed in opposite directions to each other. For example, when the first valve is located in the critical operating condition moves to ⁇ , the second valve is not located in the critical operating condition is ascend, thus, not to change the Intelmas ⁇ senstrom leading into the steam turbine.
  • the mass flow through the first valve and the second valve is regulated by the valve openings. Closing a valve means that the mass flow decreases and the
  • Valve opening is reduced.
  • a collision of a valve means that the mass flow is increased and the Ventilöff ⁇ voltage is increased.
  • the critical operating state of the first valve can be bridged quickly and yet a uniform mass flow change can be provided.
  • the first acceleration sensor in the first valve and a second acceleration sensor in the second valve are arranged for detecting the impermissible valve vibrations.
  • a physical variable is thus determined, which is effected by a acceleration sensor. That means the
  • Position of the valve body can be determined and from the data a potentially critical operating condition is diagnosed ⁇ tected. If there is such a critical operating state, the operating state of the second valve is checked via an acceleration sensor located in the second valve and the countermeasure according to the invention is taken, which consists in the valve bodies being operated asymmetrically with respect to one another. In other words, the two valves are controlled asymmetrically, so that when one of the oscillations occurs, one valve moves and the other rises with the aim to set the desired total mass flow and at the same time to remain as short as possible in the endangered operating ⁇ range of the individual valve.
  • Such a method according to the invention can advantageously be subsequently arranged in existing steam power plants. A programming of the valve control is possible, which leads to a low cost. Advantageously, this downtime is largely avoided.
  • the invention is advantageously produced by steam turbines ⁇ nenumbauten in a steam power plant or for upgradings a steam power plant can be used. Because the active monitoring and adaptive avoidance strategy of valve vibrations can largely prevent damage in the valves.
  • the first valve and the second valve are opened and closed in such a way that a predetermined total steam mass flow into the steam turbine is achieved.
  • the steam turbine can be operated in spite of an undesirable valve ⁇ vibration in a desired power range.
  • the invention is applicable to steam power plants with more than two valves.
  • the invention is applicable to steam power plants with, for example, three, four or more valves.
  • the valves are operated asymmetrically to one another.
  • the object is achieved by a steam turbine arrangement with a steam turbine and a first steam feed and a second steam feed, wherein a first valve in the first steam feed and a second valve in the second steam feed is arranged, wherein a first accel ⁇ n Trentsaufsacrificing in the first valve and a second acceleration transmission sensor is arranged in the second valve. Forces are measured on the valves with the accelerometers. As a result, vibrations can be detected.
  • FIG. 1 shows a schematic overview of a erfindungsge ⁇ MAESSEN steam power plant
  • Figure 1 shows part of a steam power plant 1 comprehensively a steam turbine 2 and a first valve 3, and a second valve 4.
  • the steam turbine 2 is formed with unspecified represents ⁇ provided blades and vanes, and is connected via a first steam supply 5 and a second steam supply 6 supplied with steam from a steam generator not shown with steam.
  • first valve 3 In the first steam supply 5, the first valve 3 is arranged.
  • second valve 4 In the second steam supply 6, the second valve 4 is arranged.
  • Both the first valve 3 and the second valve 4 comprise a valve body, not shown, which is designed to be movable relative to a valve disk. A movement of the valve body towards the valve plate leads to a closing of the valve. Movement of Ven ⁇ til stressess from the valve plate away leads to an upwards movement of the valve. An approaching valve will increase the steam mass flow through the valve. A movement of the valve ⁇ body towards the valve plate out leads to a reduction of the steam mass flow.
  • the first valve 3 and the second valve 4 can be made identical. In alternative embodiments, the first valve 3 and the second valve 4 may be formed different from each other.
  • the steam turbine 2 is designed to be double-flow in the embodiment shown in FIG. In alternative embodiments, the steam turbine 2 may be formed single-entry. The steam turbine 2 is now operated as follows:
  • a first accelerometer (not shown) disposed in the first valve 3 detects movement of the valve body.
  • a second acceleration receiver (not shown) is arranged in the second valve 4 and designed to detect movements of the valve body. If the first accelerometer or the second accelerometer detects unacceptable valve vibration, the first valve 3 and the second valve 4 are operated asymmetrically with each other. This means that a control intervenes in this case, which causes the first valve 3 to close and the second valve 4 to open.
  • the control is in this case designed such that the first Ven ⁇ til 3 and the second valve 4 in opposite directions to each other controls the mass flow. This means that a closing of the one, for example, the first valve 3, leads to an opening of the second valve 4 or vice versa.
  • FIG. 2 shows the mass flow on the Y axis and the time on the X axis. At the time to, which is symbolized by the broken line, a valve vibration at the second valve 4 is detected. The middle line 9 shows the Mass flow through the second valve 4. Until time to the course of the steam mass flow through the second valve 4 is uniform. At the moment to, valve vibrations are detected, which lead to a feeding of the second valve 4.
  • the mass flow of steam according to the invention is now as the bottom line 10 izes sym ⁇ , ge regulates ⁇ through the first valve. 3
  • the valve oscillations have disappeared, so that from the time t 2, the course of the steam mass flows which are Darge ⁇ provides through the central line 9 and the lower line 10, at a uniform level again.
  • the upper line 11 shows the steam mass flow flowing through the first valve 3 and through the second valve 4, in FIG

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Turbines (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft eine Dampfturbinenanordnung sowie ein Verfahren zum Betreiben einer Dampfturbine (2), wobei über ein erstes Ventil (3) in einer ersten Dampfzuführung (5) und über ein zweites Ventil (4) in einer zweiten Dampfzuführung (6) Dampf der Dampfturbine zugeführt wird, wobei die Ventile asymmetrisch zueinander geregelt werden, so dass beim Auftreten von unzulässigen Schwingungen, gemessen mittels Beschleunigungsaufnehmer, ein Ventil zufährt und das andere auffährt mit dem Ziel, den gewünschten Gesamtmassenstrom einzustellen.

Description

VERFAHREN ZUM BETREIBEN EINER DAMPFTURBINE MIT ZWEI DAMPFZUFÜHRUNGEN
Die Erfindung betrifft ein Verfahren zum Betreiben einer Dampfturbine umfassend eine an die Dampfturbine angeschlos¬ sene erste DampfZuführung und einer zweiten DampfZuführung sowie einem in der ersten DampfZuführung angeordneten ersten Ventil und einem in der zweiten DampfZuführung angeordneten zweiten Ventil.
In Dampfkraftanlagen wird Dampf in einem Dampferzeuger erzeugt, der über Zuleitungen zur Dampfturbine geführt wird. Die Zuleitungen münden in DampfZuführungen . In den DampfZuführungen sind Ventile eingebaut, die den Dampfdurchfluss regeln. Somit werden zur Regelung der Dampfturbinenleistung vor der Dampfturbine ein oder mehrere Ventile eingebaut. Es sind verschiedene Betriebsweisen einer Dampfturbine denkbar. So ist es möglich die Dampfturbine bei Volllast zu betreiben. Eine weitere Möglichkeit ist es, die Dampfturbine bei Teil¬ last zu betreiben. Das bedeutet, dass durch die Ventile und in die Dampfturbine nicht der gesamte Massenstrom, der im Dampferzeuger erzeugt wird, in die Dampfturbine strömt.
In diesem Teillastbetrieb werden die Ventile ein wenig zuge¬ fahren, so dass nur ein Teil des maximal möglichen Gesamtmas¬ senstroms in die Dampfturbine strömen kann. Allerdings neigen die Ventile in solch einem Teillastbetrieb dazu Schwingungen durchzuführen. Denn durch Androsseln in Teillast können sich die Strömungszustände im Ventil ändern und möglicherweise zu einer Anregung der ganzen Struktur, die aus Ventil und Leitungen gebildet ist, führen. Dies ist kritisch zu betrachten, da sich durch die zeitlich ändernden und möglicherweise zyklisch wiederholenden Belastungen die Bauteile stark beansprucht werden, was unter Umständen zu Rissen in den Bauteilen führen könnte, was es zu vermeiden gilt. Darüber hinaus könnten unter Umständen unzulässig hohe instationäre Kräfte auf dem Ventilteller entstehen, die zu einer Schädigung des Ventils insgesamt führen. Dem Problem der zur Schwingungen neigenden Ventile im Teillastbetrieb könnte man dadurch entgegen, dass entweder solch ein Ventil neu entwickelt oder ein anderes Ventil eingebaut wird, was allerdings zu Stillständen und Materialkosten führt .
Die Erfindung hat es sich zur Aufgabe gemacht, ein Verfahren bereit zu stellen, mit dem Schwingungen vermieden werden können . Des Weiteren besteht die Aufgabe der Erfindung darin, eine Dampfturbinenanordnung anzugeben, deren Ventile nicht zu Schwingungen führen.
Gelöst wird diese Aufgabe durch ein Verfahren zum Betreiben einer Dampfturbine umfassend eine an die Dampfturbine ange¬ schlossene erste DampfZuführung und einer zweiten Dampfzuführung sowie einem in der ersten DampfZuführung angeordneten ersten Ventil und einem in der zweiten DampfZuführung angeordneten zweiten Ventil, wobei beim Auftreten von Schwingun- gen des ersten Ventils und/oder zweiten Ventils das erste Ventil zufährt und das zweite Ventil auffährt.
Somit wird erfindungsgemäß vorgeschlagen, bei einer Dampf¬ kraftanlage, die mehr als ein Ventil besitzt, die Ventile derart zu betreiben, dass sie asymmetrisch betätigt werden, wenn unzulässige Ventilschwingungen auftreten. Darunter sind mechanische Schwingungen zu verstehen. Diese mechanischen Schwingungen betreffen die Struktur aus Ventil und Leitungen. Dies geschieht erfindungsgemäß darin, dass ein kritischer Be- triebszustand eines einzelnen Ventils erkannt wird. Damit der Massenstrom in die Dampfturbine gleichmäßig erfolgt, wird das zweite sich nicht im kritischen Betriebszustand befindliche Ventil an den kritischen Betriebszustand des ersten Ventils angepasst. Das bedeutet, dass die Ventilöffnungen gegenläufig zueinander ausgebildet werden. Wenn beispielsweise das erste sich im kritischen Betriebszustand befindliche Ventil zu¬ fährt, wird das zweite sich nicht im kritischen Betriebszu- stand befindliche Ventil auffahren, um somit den Gesamtmas¬ senstrom, der in die Dampfturbine führt, nicht zu ändern.
Der Massenstrom durch das erste Ventil und das zweite Ventil wird durch die Ventilöffnungen geregelt. Ein Zufahren eines Ventils bedeutet, dass der Massenstrom verringert und die
Ventilöffnung verkleinert wird. Ein Auffahren eines Ventils bedeutet, dass der Massenstrom vergrößert und die Ventilöff¬ nung vergrößert wird.
Dadurch kann der kritische Betriebszustand des ersten Ventils schnell überbrückt und dennoch eine gleichmäßige Massenstrom- änderung bereitgestellt werden.
In den Unteransprüchen sind vorteilhafte Weiterbildungen angegeben .
So werden in einer ersten vorteilhaften Weiterbildung der erste Beschleunigungsaufnehmer im ersten Ventil und ein zweiter Beschleunigungsaufnehmer im zweiten Ventil zur Detek- tierung der unzulässigen Ventilschwingungen angeordnet.
Zur Detektion des kritischen Betriebszustandes wird somit eine physikalische Größe ermittelt, was durch einen Be¬ schleunigungsaufnehmer erfolgt. Das bedeutet, dass die
Stellung des Ventilkörpers ermittelt werden kann und aus den Daten ein möglicherweise kritischer Betriebszustand diagnos¬ tiziert wird. Sofern ein solcher kritischer Betriebszustand vorliegt, wird über einen im zweiten Ventil befindlicher Beschleunigungsaufnehmer der Betriebszustand des zweiten Ventils überprüft und die erfindungsgemäße Gegenmaßnahme ergrif- fen, die darin besteht, dass die Ventilkörper asymmetrisch zueinander betrieben werden. Mit anderen Worten: die beiden Ventile werden asymmetrisch geregelt, so dass beim Auftreten von Schwingungen ein Ventil zufährt und das andere auffährt mit dem Ziel, den gewünschten Gesamtmassenstrom einzustellen und gleichzeitig möglichst kurz in dem gefährdeten Betriebs¬ bereich des einzelnen Ventils zu verbleiben. Solch ein erfindungsgemäßes Verfahren kann vorteilhafterweise in bestehenden Dampfkraftanlagen nachträglich angeordnet werden. Eine Programmierung der Ventilsteuerung ist möglich, was zu einem geringen Aufwand führt. Vorteilhafterweise werden dadurch Stillstandszeiten weitestgehend vermieden.
Ebenso ist die Erfindung vorteilhafterweise nach Dampfturbi¬ nenumbauten in einer Dampfkraftanlage bzw. bei Upgradings einer Dampfkraftanlage einsetzbar. Denn durch die aktive Überwachung und adaptive Vermeidungsstrategie von Ventil- Schwingungen können Schäden in den Ventilen weitestgehend vermieden werden.
In einer vorteilhaften Weiterbildung wird das erste Ventil und das zweite Ventil derart zu- und aufgefahren, dass ein vorgegebener Gesamtdampfmassenstrom in die Dampfturbine erreicht wird.
Somit kann die Dampfturbine trotz einer unerwünschten Ventil¬ schwingung in einem gewünschten Leistungsbereich betrieben werden.
In vorteilhaften Weiterbildungen ist die Erfindung anwendbar bei Dampfkraftanlagen mit mehr als zwei Ventilen. So ist die Erfindung anwendbar bei Dampfkraftanlagen mit beispielsweise drei, vier oder mehr Ventilen. Erfindungsgemäß werden die Ventile asymmetrisch zueinander betrieben.
Ferner wird die Aufgabe gelöst durch eine Dampfturbinenanord- nung mit einer Dampfturbine und einer ersten DampfZuführung und einer zweiten DampfZuführung, wobei ein erstes Ventil in der ersten DampfZuführung und ein zweites Ventil in der zweiten DampfZuführung angeordnet ist, wobei ein erster Beschleu¬ nigungsaufnehmer im ersten Ventil und ein zweiter Beschleuni- gungsaufnehmer im zweiten Ventil angeordnet ist. Mit den Beschleunigungsaufnehmern werden Kräfte auf die Ventile ermittelt. Dadurch können Schwingungen detektiert werden. Die Erfindung wird nun anhand eines Ausführungsbeispiels näher erläutert.
Das in den Figuren dargestellte Ausführungsbeispiel zeigt in schematischer Weise die Erfindung.
Es zeigen:
Figur 1 eine schematische Übersicht einer erfindungsge¬ mäßen Dampfkraftanlage,
Figur 2 Darstellung von Massenströmen.
Die Figur 1 zeigt einen Teil einer Dampfkraftanlage 1 umfas- send eine Dampfturbine 2 und ein erstes Ventil 3 sowie ein zweites Ventil 4. Die Dampfturbine 2 ist mit nicht näher dar¬ gestellten Leit- und Laufschaufeln ausgebildet und wird über eine erste DampfZuführung 5 und einer zweiten DampfZuführung 6 mit Dampf aus einem nicht näher dargestellten Dampferzeuger mit Dampf versorgt.
In der ersten DampfZuführung 5 ist das erste Ventil 3 angeordnet. In der zweiten DampfZuführung 6 ist das zweite Ventil 4 angeordnet. Sowohl das erste Ventil 3 als auch das zweite Ventil 4 umfassen einen nicht näher dargestellten Ventilkörper, der gegenüber einem Ventilteller bewegbar ausgeführt ist. Eine Bewegung des Ventilkörpers zum Ventilteller hin führt zu einem Zufahren des Ventils. Eine Bewegung des Ven¬ tilkörpers vom Ventilteller weg führt zu einem Auffahren des Ventils. Ein auffahrendes Ventil führt zu einer Erhöhung des Dampfmassenstroms durch das Ventil. Eine Bewegung des Ventil¬ körpers zu dem Ventilteller hin führt zu einer Verringerung des Dampfmassenstroms . Das erste Ventil 3 und das zweite Ventil 4 können baugleich ausgeführt werden. In alternativen Ausführungsformen kann das erste Ventil 3 und das zweite Ventil 4 unterschiedlich zuein- ander ausgebildet werden. Die Dampfturbine 2 ist in der in Figur 1 dargestellten Ausführung zweiflutig ausgebildet. In alternativen Ausführungsformen kann die Dampfturbine 2 einflutig ausgebildet sein. Die Dampfturbine 2 wird nun folgendermaßen betrieben:
Ein erster Beschleunigungsaufnehmer (nicht dargestellt), der im ersten Ventil 3 angeordnet ist, erfasst eine Bewegung des Ventilkörpers. Ebenso ist ein zweiter Beschleunigungsauf- nehmer (nicht dargestellt) im zweiten Ventil 4 angeordnet und zur Erfassung von Bewegungen des Ventilkörpers ausgebildet. Sofern der erste Beschleunigungsaufnehmer oder der zweite Beschleunigungsaufnehmer eine unzulässige Ventilschwingung detektiert, werden das erste Ventil 3 und das zweite Ventil 4 asymmetrisch zueinander betrieben. Das bedeutet, dass eine Regelung in diesem Fall eingreift, die dazu führt, dass das erste Ventil 3 zufährt und das zweite Ventil 4 auffährt. Die Regelung ist hierbei derart ausgebildet, dass das erste Ven¬ til 3 bzw. das zweite Ventil 4 gegensinnig zueinander den Massenstrom regelt. Das bedeutet, dass ein Zufahren des einen, beispielsweise ersten Ventils 3, zu einem Auffahren des zweiten Ventils 4 oder andersrum führt.
Diese asymmetrische Regelung der Ventilöffnung ist derart, dass beim Auftreten von Schwingungen der gewünschte Gesamtmassenstrom, der sich durch den Massenstrom durch das erste Ventil 3 und dem Massenstrom durch das zweite Ventil 4 zusammensetzt, möglichst nicht verändert wird. Die Figur 2 zeigt auf der Y-Achse den Massenstrom und auf der X-Achse die Zeit. Bei der Zeit to, die durch die gestrichelte Linie symbolisiert wird, wird eine Ventilschwingung bei dem zweiten Ventil 4 detektiert. Die mittlere Linie 9 zeigt den Massenstrom durch das zweite Ventil 4. Bis zum Zeitpunkt to ist der Verlauf des Dampfmassenstroms durch das zweite Ventil 4 gleichmäßig. Zum Zeitpunkt to werden Ventilschwingungen de- tektiert, die zu einem Zuführen des zweiten Ventils 4 führen. Erfindungsgemäß wird nunmehr, wie es die untere Linie 10 sym¬ bolisiert, der Dampfmassenstrom durch das erste Ventil 3 ge¬ regelt. Das bedeutet, dass zum Zeitpunkt to das erste Ventil 3 auffährt, so dass der Dampfmassenstrom vergrößert wird. Dies erfolgt bis zum Zeitpunkt ti, bei dem sich die Verhält- nisse bis zum Zeitpunkt t2 umkehren. D.h., das erste Ventil 3 fährt zu, so dass sich der Dampfmassenstrom, der durch die untere Linie 10 dargestellt wird, verringert und das zweite Ventil 4 auffährt, so dass sich der Dampfmassenstrom, der durch die mittlere Linie 9 dargestellt wird, vergrößert. Zum Zeitpunkt t2 seien die Ventilschwingungen verschwunden, so dass ab dem Zeitpunkt t2 der Verlauf der Dampfmassenströme, die durch die mittlere Linie 9 und die untere Linie 10 darge¬ stellt sind, wieder gleichmäßig verlaufen. Die obere Linie 11 zeigt den Dampfmassenstrom, der durch das erste Ventil 3 und durch das zweite Ventil 4 strömt, in
Summe. Es ist zu sehen, dass der Dampfmassenstrom, der durch die obere Linie 11 dargestellt wird, keinen Knick zeigt, weder bei dem Zeitpunkt to noch bei den Zeitpunkten ti oder t2. Somit kann der Gesamtmassenstrom gleichmäßig in die
Dampfturbine 2 strömen.

Claims

Patentansprüche
1. Verfahren zum Betreiben einer Dampfturbine (2)
umfassend eine an die Dampfturbine (2) angeschlossene erste
DampfZuführung (5) und einer zweiten DampfZuführung (6) sowie einem in der ersten DampfZuführung (5) angeordneten ersten Ventil (3) und einem in der zweiten DampfZuführung (6) angeordneten zweiten Ventil (4),
dadurch gekennzeichnet, dass
beim Auftreten von Schwingungen des ersten Ventils (3) und/oder zweiten Ventils (4) das erste Ventil (3) zufährt und das zweite Ventil (4) auffährt.
2. Verfahren nach Anspruch 1,
wobei ein erster Beschleunigungsaufnehmer im ersten Ventil (3) und ein zweiter Beschleunigungsaufnehmer im zweiten Ventil (4) zur Detektierung der unzulässigen Ventilschwin- gungen angeordnet werden.
3. Verfahren nach Anspruch 1 oder 2,
wobei das erste Ventil (3) und das zweite Ventil (4) derart zufährt und auffährt, dass ein vorgegebener Gesamtdampfmas- senstrom in die Dampfturbine (2) erreicht wird.
4. Verfahren nach einem der vorhergehenden Ansprüche,
mit einem dritten, vierten und weiteren Ventil, die asymmetrisch betrieben werden.
5. Dampfturbinenanordnung mit einer Dampfturbine (2) und einer ersten DampfZuführung (5) und einer zweiten Dampfzuführung ( 6) ,
wobei ein erstes Ventil (3) in der ersten DampfZuführung (5) und ein zweites Ventil (4) in der zweiten Dampfzuführung (6) angeordnet ist,
dadurch gekennzeichnet, dass
ein erster Beschleunigungsaufnehmer im ersten Ventil (3) und ein zweiter Beschleunigungsaufnehmer im zweiten Ventil (4) angeordnet sind.
PCT/EP2014/066775 2013-08-23 2014-08-05 Verfahren zum betreiben einer dampfturbine mit zwei dampfzuführungen WO2015024769A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016535395A JP2016528437A (ja) 2013-08-23 2014-08-05 2つの蒸気供給ラインを有する蒸気タービンを運転する方法
EP14752802.0A EP3004566A1 (de) 2013-08-23 2014-08-05 Verfahren zum betreiben einer dampfturbine mit zwei dampfzuführungen
KR1020167004191A KR101834095B1 (ko) 2013-08-23 2014-08-05 두 개의 증기 공급부를 구비한 증기 터빈의 작동 방법
US14/911,838 US20160201500A1 (en) 2013-08-23 2014-08-05 Method for operating a steam turbine with two steam supply lines
RU2016110662A RU2638689C2 (ru) 2013-08-23 2014-08-05 Способ эксплуатации паровой турбины с двумя подводящими паропроводами
CN201480046503.0A CN105492729B (zh) 2013-08-23 2014-08-05 用于运行具有两个蒸汽供给管路的蒸汽轮机的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13181441.0 2013-08-23
EP13181441.0A EP2840234A1 (de) 2013-08-23 2013-08-23 Verfahren zum Betreiben einer Dampfturbine mit zwei Dampfzuführungen

Publications (1)

Publication Number Publication Date
WO2015024769A1 true WO2015024769A1 (de) 2015-02-26

Family

ID=49084747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/066775 WO2015024769A1 (de) 2013-08-23 2014-08-05 Verfahren zum betreiben einer dampfturbine mit zwei dampfzuführungen

Country Status (7)

Country Link
US (1) US20160201500A1 (de)
EP (2) EP2840234A1 (de)
JP (1) JP2016528437A (de)
KR (1) KR101834095B1 (de)
CN (1) CN105492729B (de)
RU (1) RU2638689C2 (de)
WO (1) WO2015024769A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10626749B2 (en) * 2016-08-31 2020-04-21 General Electric Technology Gmbh Spindle vibration evaluation module for a valve and actuator monitoring system
CN113914941B (zh) * 2021-09-30 2023-07-14 杭州意能电力技术有限公司 抑制大型汽轮发电机组汽流激振的阀序优化方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187685A (en) * 1977-02-18 1980-02-12 Hitachi, Ltd. Method and system for effecting control governing of a steam turbine
JPS60215182A (ja) * 1984-04-06 1985-10-28 Hitachi Ltd 蒸気弁の診断方法
JPH0942211A (ja) * 1995-07-25 1997-02-10 Hitachi Ltd Pwm制御弁の制御方法および流体圧エレベーターの制御方法
DE102008015588A1 (de) * 2007-03-29 2008-10-02 General Electric Co. Verfahren und Vorrichtungen zur Überwachung von Dampfturbinenventilanordnungen
US20110056201A1 (en) * 2009-09-08 2011-03-10 General Electric Company Method and apparatus for controlling moisture separator reheaters
EP2503105A2 (de) * 2011-03-25 2012-09-26 Kabushiki Kaisha Toshiba Dampfventilvorrichtung und Dampfturbinenanlage

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3706201A (en) * 1970-01-12 1972-12-19 United Aircraft Corp Dual fluid crossover control
US3998058A (en) * 1974-09-16 1976-12-21 Fast Load Control Inc. Method of effecting fast turbine valving for improvement of power system stability
JPS58187505A (ja) * 1982-04-27 1983-11-01 Toshiba Corp 蒸気タ−ビンの暖管装置
JPS6153405A (ja) * 1984-08-22 1986-03-17 Toshiba Corp 蒸気タ−ビンの制御装置
US4604028A (en) * 1985-05-08 1986-08-05 General Electric Company Independently actuated control valves for steam turbine
JPH083757B2 (ja) * 1986-11-04 1996-01-17 株式会社東芝 蒸気加減弁の開度制御装置
JPH02125903A (ja) * 1988-11-07 1990-05-14 Toshiba Corp 蒸気加減弁振動診断装置
JP2815894B2 (ja) * 1989-04-19 1998-10-27 株式会社東芝 蒸気タービンノズル浸食防止システム
JPH041401A (ja) * 1990-04-16 1992-01-06 Toshiba Corp 蒸気加減弁振動診断装置
JPH05296001A (ja) * 1992-04-22 1993-11-09 Mitsubishi Heavy Ind Ltd 蒸気管路
JP3638307B2 (ja) * 1994-06-08 2005-04-13 株式会社東芝 原子力発電プラントの再熱蒸気管装置
JPH10184313A (ja) * 1996-12-24 1998-07-14 Hitachi Ltd 蒸気タービン
RU2116464C1 (ru) * 1997-01-24 1998-07-27 Акционерное общество закрытого типа "Энерготех" Разгруженный регулирующий клапан паровой турбины
US20040101396A1 (en) * 2001-09-07 2004-05-27 Heinrich Oeynhausen Method for regulating a steam turbine, and corresponding steam turbine
RU2211338C2 (ru) * 2001-11-12 2003-08-27 Открытое акционерное общество "Ленинградский Металлический завод" Устройство соплового парораспределения цилиндра высокого давления паровой турбины

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187685A (en) * 1977-02-18 1980-02-12 Hitachi, Ltd. Method and system for effecting control governing of a steam turbine
JPS60215182A (ja) * 1984-04-06 1985-10-28 Hitachi Ltd 蒸気弁の診断方法
JPH0942211A (ja) * 1995-07-25 1997-02-10 Hitachi Ltd Pwm制御弁の制御方法および流体圧エレベーターの制御方法
DE102008015588A1 (de) * 2007-03-29 2008-10-02 General Electric Co. Verfahren und Vorrichtungen zur Überwachung von Dampfturbinenventilanordnungen
US20110056201A1 (en) * 2009-09-08 2011-03-10 General Electric Company Method and apparatus for controlling moisture separator reheaters
EP2503105A2 (de) * 2011-03-25 2012-09-26 Kabushiki Kaisha Toshiba Dampfventilvorrichtung und Dampfturbinenanlage

Also Published As

Publication number Publication date
RU2638689C2 (ru) 2017-12-15
US20160201500A1 (en) 2016-07-14
RU2016110662A (ru) 2017-09-28
EP2840234A1 (de) 2015-02-25
KR101834095B1 (ko) 2018-03-02
JP2016528437A (ja) 2016-09-15
CN105492729B (zh) 2017-12-01
CN105492729A (zh) 2016-04-13
KR20160030316A (ko) 2016-03-16
EP3004566A1 (de) 2016-04-13

Similar Documents

Publication Publication Date Title
EP1630425B1 (de) Sicherheitsschaltung für medienbetriebene Verbraucher und Verfahren zum Betrieb derselben
EP2033057B1 (de) Vorrichtung und verfahren zum durchführen eines stellorganfunktionstests an einer strömungsmaschine
DE112015003698B4 (de) Hydraulische Antriebsvorrichtung für ein Dampfventil, kombiniertes Dampfventil und Dampfturbine
DE102006013538A1 (de) Druckregelvorrichtung, insbesondere für ein Sauerstoffnotversorgungssystem in einem Flugzeug
EP2237128B1 (de) Vorgesteuerte Druckproportionalventilanordnung mit einer durch eine elektronische Regelungseinrichtung angesteuerten Vorsteuerstufe
DE102010055241A1 (de) Fluidik-Versorgungssystem mit einer Mehrzahl von Verbrauchern
DE102009004814A1 (de) Verfahren und Vorrichtung zur Steuerung eines Drehflügelflugzeugs
DE102013007705B4 (de) Vorrichtung und Verfahren zum Betreiben einer pneumatischen Förderanlage im Dichtstrom mittels gesteuerter Überström-Ventile
WO2015024769A1 (de) Verfahren zum betreiben einer dampfturbine mit zwei dampfzuführungen
EP2992183B1 (de) Ventil für eine strömungsmaschine
EP0430089B1 (de) Stellantrieb
WO2015003960A2 (de) Verstellpumpe und getriebesteuerung
EP2993310A1 (de) Vorrichtung zur entnahme von zapfluft und flugzeugtriebwerk mit mindestens einer vorrichtung zur entnahme von zapfluft
EP0631056B1 (de) Stellantrieb für ein Regelventil
EP2382410B1 (de) Schnellschlussventil
EP3246538A1 (de) Verfahren zum kuppeln einer dampfturbine und einer gasturbine mit einem gewünschten differenzwinkel unter nutzung einer sollbeschleunigung
DE19621824C2 (de) Verfahren zum Regeln von Gasdrücken bei Einsatz von Gasentspannungsturbinen
EP0443384A2 (de) Verfahren zur redundanten Drehzahlregelung und Vorrichtung zur Durchführung dieses Verfahrens
DE102012000766A1 (de) Regelanordnung zum Regeln der Position eines Ankers eines Magnetaktors und Detektionsanordnung zum Detektieren der Position eines Ankers eines Magnetaktors
DE102015210274A1 (de) Mehrwegeventil, insbesondere ein 6/2-Wegeventil und Mehrwegeventilanordnung
DE202020102558U1 (de) Stelleinrichtung für Systeme mit strömendem Fluid sowie System mit Stelleinrichtung
DE102021118978B3 (de) Hydraulische Maschine vom Typ Pelton und Betriebsverfahren
EP0748970A2 (de) Verfahren und Vorrichtung zur Dämpfung des Ventilhubes an federbelasteten Ventilen
WO2018054811A1 (de) Anordnung zur zuleitung eines zusatzmassenstroms in einen hauptmassenstrom
DE102008042383A1 (de) Ventilanordnung einer hydraulischen Steuerung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480046503.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14752802

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014752802

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016535395

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14911838

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167004191

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016110662

Country of ref document: RU

Kind code of ref document: A