EP0430089B1 - Stellantrieb - Google Patents

Stellantrieb Download PDF

Info

Publication number
EP0430089B1
EP0430089B1 EP90122361A EP90122361A EP0430089B1 EP 0430089 B1 EP0430089 B1 EP 0430089B1 EP 90122361 A EP90122361 A EP 90122361A EP 90122361 A EP90122361 A EP 90122361A EP 0430089 B1 EP0430089 B1 EP 0430089B1
Authority
EP
European Patent Office
Prior art keywords
valve
oil
plate
actuating drive
drive according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90122361A
Other languages
English (en)
French (fr)
Other versions
EP0430089A1 (de
Inventor
Heinz Frey
Kamil Prochazka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Asea Brown Boveri Ltd
ABB AB
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0430089A1 publication Critical patent/EP0430089A1/de
Application granted granted Critical
Publication of EP0430089B1 publication Critical patent/EP0430089B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/20Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted
    • F01D17/22Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted the operation or power assistance being predominantly non-mechanical
    • F01D17/26Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted the operation or power assistance being predominantly non-mechanical fluid, e.g. hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/16Trip gear
    • F01D21/18Trip gear involving hydraulic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/024Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/024Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits
    • F15B2011/0243Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits the regenerative circuit being activated or deactivated automatically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40507Flow control characterised by the type of flow control means or valve with constant throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41509Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and a directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/455Control of flow in the feed line, i.e. meter-in control

Definitions

  • the invention is based on an actuator according to the preamble of claim 1.
  • An actuator for the actuation of a control valve with which, for example, the steam supply to a turbine of a power plant is regulated, has a main piston which is acted upon on the one hand by spring force and on the other hand by oil under pressure.
  • the spring force securely closes the control valve, thereby interrupting the steam supply. This ensures that the turbine does not get out of control if the pressure of the oil should fail.
  • the oil pressure in a drive volume which acts on the main piston and actuates the control valve via it, is generated by an electro-hydraulic converter. When the control valve moves in the opening direction, oil is fed into the drive volume under pressure, however, because this movement comparatively slow, comparatively small cross-sections are sufficient for the supply of the oil.
  • control valve must close at a speed about ten times higher. This requires a comparatively quick emptying of the drive volume, which however cannot be achieved due to the small cross-sections of the oil supply.
  • An actuator for operating a control valve is known for example from DE-A-3 432 890.
  • the drive volume is emptied by means of a plate valve during a rapid closing process, the advantage of the large cross-section released by the plate valve being fully effective.
  • the plate valve With the help of the plate valve, a comparatively high dynamics of the actuator when closing can be achieved.
  • the valve plate opens only for a very short time to allow the comparatively small amounts of oil to pass through. The comparatively large mass of the valve plate to be moved can influence the result in fine control processes.
  • the invention solves the problem of creating an actuator for a control valve which has a plate valve, the valve plate of which does not need to be moved in normal control operation.
  • the advantages achieved by the invention are essentially to be seen in the fact that the actuator can be constructed in a comparatively simple and reliable manner. Furthermore, normal control operation is simplified in that any moving masses that have a delaying effect are completely eliminated or are reduced to a minimum.
  • FIG. 1 shows an actuator 1, which actuates a control valve 2, which regulates the amount of hot steam flowing through a hot steam line 3 to a turbine (not shown).
  • the control valve 2 is connected by a valve spindle 4 to a main piston 6 sliding in a master cylinder 5.
  • a drive volume 7 pressurized with oil is arranged below the main piston 6. Instead of the oil, another hydraulic fluid or a gaseous medium can also be provided.
  • An oil-filled buffer volume 8 is provided above the main piston 6, in which an additional one Spring 9 is arranged, which counteracts the oil pressure in the drive volume 7.
  • a rod 10 is provided on the spring side on the main piston 6 and connects it to a displacement measuring device 11.
  • the rod 10 and the valve stem 4 penetrate the master cylinder 5 on opposite sides. The design of these pressure-tight penetrations is known and need not be described further here.
  • a tubular connecting piece 15 is attached to the master cylinder 5 in the area of the drive volume 7, the end 16 of which is remote from the master cylinder 5 is designed as a sealing seat. This end 16 is closed by a plate valve 17 shown in simplified form.
  • a plate 18 is pressed against the end 16 by a compression spring 19.
  • the compression spring 19 is arranged in a spring chamber 20 which is pressurized with oil.
  • the plate 18 simultaneously closes pressure-tightly a volume 21 which concentrically surrounds the connecting piece 15 and which merges into a comparatively short, direct connecting line 22 which leads along the master cylinder 5 into the buffer volume 8.
  • This connecting line 22 has a comparatively large cross section.
  • the size of the spring chamber 20 is approximately 1,000 times smaller than the drive volume 7 with which it is in operative connection.
  • the spring chamber 20 is also operatively connected to a proportional directional valve 25.
  • a proportional directional control valve 25 for example, the directly operated proportional directional control valve with position control of the type KFDG 4V - 3/5, series 20, from Vickers Systems GmbH, D 6380 Bad Homburg vdH can be used.
  • the proportional directional valve 25 has two actuating magnets 26, 27, which cooperate with return springs, not shown, and in this case three hydraulic connections 28, 29, 30.
  • the proportional directional control valve 25 is shown in the so-called "fail-safe" position.
  • the proportional directional valve 25 has a stroke measurement 31 connected to a slide of the valve, which measures the respective position of the slide and, as indicated by an action line 32, passes this information on to a position controller 33 with an integrated power amplifier.
  • the actuating magnets 26, 27 receive their commands from this position controller 33 with an integrated power amplifier.
  • a power amplifier EEA-PAM-533-A, series 20, from Vickers Systems GmbH, D 6380 Bad Homburg vdH, which is specially matched to the proportional control valve 25, can be used as the position controller 33, for example.
  • This position controller 33 works together with a higher-order controller 36, as indicated by an action line 37.
  • the controller 36 has further inputs 38, through which information and commands are fed in by a higher-level plant control system which controls the entire power plant. Furthermore, it has an input 39 for feeding in an electrical signal, as indicated by an action line 40, from the displacement measuring device 11.
  • Oil is fed in under pressure through a line 45, and the necessary oil pressure is generated by a pump (not shown).
  • the flow rate of the oil is limited to a maximum amount by an orifice 46 arranged in the line 45.
  • This aperture 46 can have a constant or an adjustable cross section.
  • the line 45 leads to the connection 28 of the proportional directional control valve 25, which in the illustration in FIG. 1 is not connected to the connection 29.
  • the connection 29 is connected on the one hand to a line 47 which leads into the spring chamber 20 of the plate valve 17, and on the other hand with a line 48 which leads to a normally closed safety valve 49 designed as a plate valve. After the safety valve 49, a line 50 leads into the buffer volume 8 of the master cylinder 5.
  • a line 51 branches off from the line 50 and establishes the connection with the connection 30 of the proportional directional valve 25.
  • a line 52 leads from the buffer volume 8 to a drain device, not shown. From this drain device, the oil continues through the aforementioned pump back into line 45.
  • the safety valve 49 is designed as a plate valve with a cylinder 53, a volume 55 which is pressurized with oil under pressure from a safety oil circuit through a line 54 and which is delimited by a valve plate 56 and with a valve spring 57 which controls the oil pressure acting on the valve plate 56 counteracts. It cannot be seen from the schematic illustration of the safety valve 49 that the valve plate 56 is designed in such a way that it is impossible to jam it.
  • the line 54 normally leads through a directional valve 58.
  • the directional control valve 58 is actuated by an electromagnet 59.
  • An action line 60 indicates the path of the trigger command for the electromagnet 59. For safety reasons, this trigger command is usually locked with the higher-level system control system, so that no unwanted false triggers can occur.
  • a line 61 which branches off from line 45, leads to directional control valve 58. Via this line, if e.g. the safety oil circuit is depressurized, the oil pressure from line 45 after switching directional control valve 58, apply volume 55 and keep safety valve 49 closed.
  • the proportional directional control valve 25 is connected to the plate valve 17 and the master cylinder 5 to form a monolithic unit.
  • the lines 47 and 48 like the lines 50 and 51, can be made comparatively short, so that the oil-filled line volumes are correspondingly small, which increases the dynamics.
  • the actuator is therefore very versatile.
  • the interaction of the position controller 33 with the integrated power amplifier and the controller 36 as a common electronic control arrangement of a control circuit is particularly advantageous because the position controller 33 is specially adapted to the proportional directional control valve 25, so that no additional adjustments and adjustments are necessary.
  • this electronic control system it is entirely possible to assemble this electronic control system from other elements or to transfer its function to a higher-level system control system if, for example, the protection concept of the power plant would require this.
  • signals originating from the displacement measuring device 11 and from the stroke measurement 31 are processed continuously together with at least one setpoint value specified by the higher-level system control system according to a specified logic. In the event of deviations from this target value, this control arrangement generates correction signals which act on the actuating magnets 26, 27 of the proportional directional control valve 25 and cause the same to be reversed accordingly.
  • FIG. 2 part of the plate 18 of the plate valve 17 is shown schematically in section.
  • the spring chamber side surface 65 of the plate 18 is arranged on the right; this also applies to the following figures.
  • a breakthrough through the plate 18 has a cylindrical opening 66, which is followed by a conical extension.
  • a ball 67 is pressed into this conical extension by a spring 68, which is supported against a holder 69 connected to the plate 18, and closes the opening 66.
  • Oil 66 can flow under pressure into the drive volume 7 as soon as one Pressure difference occurs that is large enough to overcome the force of the spring 68 and the oil pressure acting on the ball 67.
  • FIG. 3 is similar to FIG. 2, except that in this case an opening with the opening 66 through the plate 18 is designed in such a way that oil can flow from the drive volume 7 into the spring chamber 20.
  • the cross section of the diaphragm 70 is designed to be significantly smaller than that of the opening 66.
  • FIG. 5 shows a plate 18 with two valve arrangements similar to that shown in FIG. 2, but which allow oil to pass through in opposite directions with a corresponding differential pressure.
  • the opening 66 which leads from the drive volume 7 into the spring chamber 20, has a substantially larger cross section than the second opening 66.
  • FIG. 1 is considered in more detail.
  • the control valve 2 must be able to be closed comparatively quickly during operation.
  • the closing speed is normally around 1 m / sec, while the opening speed, on the other hand, only requires speeds around 0.02 m / sec.
  • These speed specifications are guide values; depending on the design of the power plant, there may also be significant deviations from these specifications.
  • the actuator 1 can be adapted to the respective operating conditions with comparatively little effort.
  • the proportional directional control valve 25 is actuated by the position controller 33, namely that it is actuated in such a way that the scheme to the left of the position shown applies.
  • the connections 28 and 29 are then connected through and oil under pressure flows from the line 45 through the proportional directional control valve 25. No oil can flow through line 48 in normal operation, since the safety valve 49 closes this line 48.
  • the oil flows through the line 47 into the spring chamber 20 of the plate valve 17 and from there through the opening of the plate 18 and the connector 15 into the drive volume 7.
  • the oil pressure in the drive volume 7 moves the main piston 6 upwards and thus via the valve spindle 4 the control valve 2 in the opening direction.
  • the displacement measuring device 11 monitors the stroke of the main piston 6 and reports its position continuously to the controller 36. As soon as the predetermined setpoint of the stroke has been reached, the controller 36 controls the proportional directional control valve 25 via the position controller 33 such that the oil flow is interrupted.
  • the proportional directional control valve 25 is reversed such that the scheme to the right of the position shown applies.
  • the connections 29 and 30 are connected to one another and oil from the spring chamber 20 flows out through the line 47, through the proportional directional valve 25, through the lines 51 and 50 further through the buffer volume 8 and the line 52 into the drain device.
  • this flow process takes only a very short time because, as soon as the pressure in the spring chamber 20 is less than the pressure in the drive volume 7, the plate 18 moves to the right against the pressure of the spring 19 and the oil from the drive volume 7 through the volume 21 and the connecting line 22 can flow into the buffer volume 8 filled with oil under low pressure and from there further into the drain device.
  • the spring 9 presses the main piston 6 down and thus the oil from the drive volume 7 into the buffer volume 8 until the end position of the control valve 2 is reached.
  • the oil flows out very quickly, since the cross section released by the plate valve 17 and also the cross section of the direct connecting line 22 are comparatively large and do not adversely affect the flow process.
  • the movement of the main piston 6 creates a suction in the buffer volume 8, which additionally supports this oil flow and increases the dynamics of the actuator 1.
  • the closing movement of the control valve is initiated, as already described, by lowering the oil pressure in the spring chamber 20, whereupon, if only a small stroke is to be made in the closing direction, the plate valve 17 only for a short time opens and oil can escape through the connecting line 22 into the buffer volume 8. As soon as the desired value is reached, the plate valve 17 closes again immediately.
  • the design of the plate 18 according to FIG. 5 also allows a small closing movement, for larger strokes of the main piston 6 it is also necessary to open the plate valve 17 in this case.
  • the proportional directional control valve 25 is shown in the central position in FIG. 1. This position is assumed if, for example, the actuating magnets 26, 27 should not receive any voltage due to a power failure. Reaching this position is ensured by spring force of springs provided in the interior of the proportional directional valve 25 under all circumstances. In this position, the spring chamber 20 is relieved of pressure by the lines 47, 51 and 50, so that the plate valve 17 opens, which, as already described, leads to a quick closing of the control valve 2. In this way it is ensured that the control valve 2 is always definitely closed even in the event of a fault, so that under no circumstances can damage to the turbine being operated as a result of a defect in the actuator 1.
  • the safety valve 49 normally prevents a pressure drop in the line 48 in the direction of the drain device. However, if the pressure in the safety oil circuit drops, the pressure in the volume 55 also drops and the safety valve 49 releases the line 48, regardless of the position of the proportional directional control valve 25, so that the pressure can escape from the spring chamber 20 of the plate valve 17 the lines 47, 48 and 50, whereby, as already described, a quick closing process of the control valve 2 is initiated. This measure can also be used to reliably shut off the steam supply to the turbine.
  • the directional control valve 58 is installed, which, as soon as it is switched electromagnetically to the diagram shown to the right of the position shown, enables oil to act on the volume 55 under pressure from line 45 through line 61 and through directional control valve 58 can, whereby the safety valve 49 is closed.
  • the command route for the directional control valve 58 as indicated by the line of action 60, must be blocked as soon as it is switched to normal operation, since otherwise the safety oil circuit may no longer be able to act on the safety valve 49, so that the protective function of this circuit can no longer be guaranteed would.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Turbines (AREA)
  • Fluid-Driven Valves (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

    TECHNISCHES GEBIET
  • Die Erfindung geht aus von einem Stellantrieb gemäss dem Oberbegriff des Patentanspruchs 1.
  • STAND DER TECHNIK
  • Aus der Schrift US-A-3 495 501 ist ein Plattenventil bekannt, welches als Sicherheitsventil arbeitet, um ein schnelles Schliessen eines nachgeschalteten Ventils sicherzustellen. Für Regelfunktionen ist dieses Ventil nicht vorgesehen.
  • Ein Stellantrieb für die Betätigung eines Regelventils mit welchem beispielsweise die Dampfzufuhr zu einer Turbine einer Kraftwerksanlage geregelt wird, weist einen Hauptkolben auf, der einerseits mit Federkraft und andererseits mit Öl unter Druck beaufschlagt ist. Bei nachlassendem Druck des Öls schliesst die Federkraft sicher das Regelventil, wodurch die Dampfzufuhr unterbrochen wird. Hierdurch wird sichergestellt, dass die Turbine nicht ausser Kontrolle gerät, wenn der Druck des Öls einmal ausfallen sollte. Der Öldruck in einem Antriebsvolumen, der auf den Hauptkolben einwirkt und über diesen das Regelventil betätigt, wird durch einen elektrohydraulischen Wandler erzeugt. Bei einer Bewegung des Regelventils in Öffnungsrichtung wird Öl unter Druck in das Antriebsvolumen eingespeist, da diese Bewegung jedoch vergleichsweise langsam erfolgt, genügen vergleichsweise kleine Querschnitte für die Zuführung des Öls. Eine Schliessbewegung des Regelventils hat jedoch mit einer um etwa das Zehnfache höheren Geschwindigkeit zu erfolgen. Dies bedingt eine vergleichsweise schnelle Entleerung des Antriebsvolumens, welche jedoch durch die kleinen Querschnitte der Ölzuführung nicht erreicht werden kann. Ein Stellantrieb für die Betätigung eines Regelventils ist beispielsweise aus der DE-A-3 432 890 bekannt. Bei diesem Stellantrieb wird das Antriebsvolumen bei einem raschen Schliessvorgang mittels eines Plattenventils entleert, der Vorteil des durch das Plattenventil freigegebenen grossen Querschnitts wird so voll wirksam. Mit Hilfe des Plattenventils lässt sich demnach eine vergleichsweise hohe Dynamik des Stellantriebs beim Schliessen erreichen. Im Regelbetrieb, wenn nur kleine Hübe des Stellantriebs nötig sind, öffnet die Ventilplatte nur ganz kurze Zeit, um die vergleichsweise kleinen Ölmengen passieren zu lassen. Die vergleichsweise grosse Masse der zu bewegenden Ventilplatte kann bei feinen Regelvorgängen das Resultat beeinflussen.
  • Zudem zeigt es sich, dass infolge der Vergrösserung der Turbinenleistungen auch die Regelventile und damit auch die sie betätigenden Stellantriebe grösser bzw. stärker ausgelegt werden müssen. Eine entsprechende proportionale Vergrösserung der Stellantriebe führt zu Anordnungen mit vergleichsweise grossen Mengen Öl unter Druck für deren Betätigung. Mit handelsüblichen Ventilen lassen sich derartige Mengen von Öl nur noch schwierig beherrschen, zudem leidet so auch mit zunehmender Grösse die Dynamik des Stellantriebes.
  • DARSTELLUNG DER ERFINDUNG
  • Die Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, löst die Aufgabe, einen Stellantrieb für ein Regelventil zu schaffen, der ein Plattenventil aufweist, dessen Ventilplatte im normalen Regelbetrieb nicht bewegt zu werden braucht.
  • Die durch die Erfindung erreichten Vorteile sind im wesentlichen darin zu sehen, dass der Stellantrieb vergleichsweise einfach und betriebssicher aufgebaut werden kann. Ferner wird der normale Regelbetrieb dadurch vereinfacht, dass etwaige verzögernd wirkende, bewegte Massen ganz entfallen bzw. auf ein Minimum reduziert sind.
  • Die weiteren Ausgestaltungen der Erfindung sind Gegenstände der abhängigen Ansprüche.
  • Die Erfindung, ihre Weiterbildung und die damit erzielbaren Vorteile werden nachstehend anhand der Zeichnung, welche lediglich einen möglichen Ausführungsweg darstellt, näher erläutert.
  • KURZE BESCHREIBUNG DER ZEICHNUNG
  • Es zeigen:
  • Fig.1
    eine Prinzipskizze eines erfindungsgemässen Stellantriebes,
    Fig.2
    eine erste Ausgestaltung eines Details eines Plattenventils,
    Fig.3
    eine zweite Ausgestaltung eines Details eines Plattenventils,
    Fig.4
    eine dritte Ausgestaltung eines Details eines Plattenventils, und
    Fig. 5
    eine vierte Ausgestaltung eines Details eines Plattenventils.
    Bei allen Figuren sind gleich wirkende Elemente mit gleichen Bezugszeichen versehen. WEGE ZUR AUSFÜHRUNG DER ERFINDUNG
  • Die Figur 1 zeigt einen Stellantrieb 1, der ein Regelventil 2 betätigt, welches die durch eine Heissdampfleitung 3 zu einer nicht dargestellten Turbine strömende Heissdampfmenge regelt. Das Regelventil 2 ist durch eine Ventilspindel 4 mit einem in einem Hauptzylinder 5 gleitenden Hauptkolben 6 verbunden. Unterhalb des Hauptkolbens 6 ist ein mit Öl unter Druck beaufschlagtes Antriebsvolumen 7 angeordnet. Anstelle des Öls kann auch eine andere Hydraulikflüssigkeit oder ein gasförmiges Medium vorgesehen werden. Oberhalb des Hauptkolbens 6 ist ein ölgefülltes Puffervolumen 8 vorgesehen, in welchem zudem eine Feder 9 angeordnet ist, welche dem Öldruck im Antriebsvolumen 7 entgegenwirkt. Am Hauptkolben 6 ist federseitig eine Stange 10 vorgesehen, welche denselben mit einer Wegmesseinrichtung 11 verbindet. Die Stange 10 und die Ventilspindel 4 durchdringen den Hauptzylinder 5 an entgegengesetzten Seiten. Die konstruktive Ausführung dieser druckdicht ausgeführten Durchdringungen ist bekannt und braucht hier nicht weiter beschrieben werden.
  • Am Hauptzylinder 5 ist im Bereich des Antriebsvolumens 7 ein rohrförmiger Stutzen 15 angebracht, dessen dem Hauptzylinder 5 abgewandtes Ende 16 als Dichtungssitz ausgebildet ist. Dieses Ende 16 wird durch ein vereinfacht dargestelltes Plattenventil 17 abgeschlossen. Eine Platte 18 wird durch eine Druckfeder 19 gegen das Ende 16 gedrückt. Die Druckfeder 19 ist in einem mit Öl unter Druck beaufschlagten Federraum 20 angeordnet. Neben dem Ende 16 des rohrförmigen Stutzens 15 verschliesst die Platte 18 gleichzeitig druckdicht ein den Stutzen 15 konzentrisch umgebendes Volumen 21, welches in eine vergleichsweise kurze, direkte Verbindungsleitung 22 übergeht, die dem Hauptzylinder 5 entlang in das Puffervolumen 8 führt. Diese Verbindungsleitung 22 weist einen vergleichsweise grossen Querschnitt auf. Der Federraum 20 ist der Grössenordnung nach etwa tausendfach kleiner ausgelegt als das Antriebsvolumen 7, mit dem er in Wirkverbindung steht. Der Federraum 20 steht zudem in Wirkverbindung mit einem Proportional-Wegeventil 25.
  • Als Proportional-Wegeventil 25 kann beispielsweise das direktbetätigte Proportional-Wegeventil mit Lageregelung des Typs KFDG 4V - 3/5, Serie 20, der Firma Vickers Systems GmbH, D 6380 Bad Homburg v.d.H. verwendet werden. Das Proportional-Wegeventil 25 weist zwei Betätigungsmagnete 26, 27, die mit nicht dargestellten Rückstellfedern zusammenwirken, und in diesem Fall drei hydraulische Anschlüsse 28, 29, 30 auf. In Fig. 1 ist das Proportional-Wegeventil 25 in der sogenannten "fail-safe" Stellung dargestellt. Das Proportional-Wegeventil 25 weist eine mit einem Schieber des Ventils verbundene Hubmessung 31 auf, welche die jeweilige Stellung des Schiebers misst und, wie durch eine Wirkungslinie 32 angedeutet, diese Information in einen Positionsregler 33 mit integriertem Leistungsverstärker weitergibt. Die Betätigungsmagnete 26, 27 erhalten, wie durch Wirkungslinien 34, 35 angedeutet, ihre Befehle von diesem Positionsregler 33 mit integriertem Leistungsverstärker. Als Positionsregler 33 kann beispielsweise ein speziell auf das Proportional-Regelventil 25 abgestimmter Leistungsverstärker EEA-PAM-533-A, Serie 20, der Firma Vickers Systems GmbH, D 6380 Bad Homburg v.d.H. eingesetzt werden. Dieser Positionsregler 33 wirkt zusammen mit einem übergeordneten Regler 36, wie eine Wirkungslinie 37 andeutet. Der Regler 36 weist weitere Eingänge 38 auf, durch welche Informationen und Befehle von einer übergeordneten Anlagenleittechnik, welche die gesamte Kraftwerksanlage steuert, eingespeist werden. Ferner weist er einen Eingang 39 auf für die Einspeisung eines, wie eine Wirkungslinie 40 andeutet, von der Wegmesseinrichtung 11 gelieferten elektrischen Signals.
  • Durch eine Leitung 45 wird Öl unter Druck eingespeist, der nötige Öldruck wird durch eine nicht dargestellte Pumpe erzeugt. Die Durchflussmenge des Öls wird durch eine im Verlauf der Leitung 45 angeordnete Blende 46 begrenzt auf eine maximale Menge. Diese Blende 46 kann einen konstanten oder einen einstellbaren Querschnitt aufweisen. Die Leitung 45 führt zum Anschluss 28 des Proportional-Wegeventils 25, der in der Darstellung der Fig. 1 nicht durchverbunden ist zum Anschluss 29. Der Anschluss 29 ist einerseits mit einer Leitung 47 verbunden, die in den Federraum 20 des Plattenventils 17 führt, und andererseits mit einer Leitung 48, die zu einem im Normalfall geschlossenen, als Plattenventil ausgebildeten Sicherheitsventil 49 führt. Nach dem Sicherheitsventil 49 führt eine Leitung 50 in das Puffervolumen 8 des Hauptzylinders 5. Eine Leitung 51 zweigt von der Leitung 50 ab und stellt die Verbindung her mit dem Anschluss 30 des Proportional-Wegeventils 25. Vom Puffervolumen 8 führt eine Leitung 52 zu einer nicht dargestellten Ablaufvorrichtung. Von dieser Ablaufvorrichtung gelangt das Öl weiter durch die erwähnte Pumpe zurück in die Leitung 45.
  • Das Sicherheitsventil 49 ist als Plattenventil ausgebildet mit einem Zylinder 53, einem von einem Sicherheitsölkreis her durch eine Leitung 54 mit Öl unter Druck beaufschlagten Volumen 55, welches durch eine Ventilplatte 56 begrenzt wird und mit einer Ventilfeder 57, welche dem auf die Ventilplatte 56 einwirkenden Öldruck entgegenwirkt. Aus der schematischen Darstellung des Sicherheitsventils 49 ist nicht ersichtlich, dass die Ventilplatte 56 so gestaltet ist, dass ein Verklemmen derselben unmöglich ist. Die Leitung 54 führt im Normalfall durch ein Wegeventil 58 hindurch. Das Wegeventil 58 wird durch einen Elektromagneten 59 betätigt. Eine Wirkungslinie 60 deutet den Weg des Auslösebefehls für den Elektromagneten 59 an. Dieser Auslösebefehl ist in der Regel aus Sicherheitsgründen mit der übergeordneten Anlagenleittechnik verriegelt, sodass keine ungewollten Fehlauslösungen vorkommen können. Eine Leitung 61, welche von der Leitung 45 abzweigt, führt zum Wegeventil 58 hin. Über diese Leitung kann, wenn z.B. der Sicherheitsölkreis drucklos ist, der Öldruck aus der Leitung 45 nach einem Umschalten des Wegeventils 58, das Volumen 55 beaufschlagen und das Sicherheitsventil 49 geschlossen halten.
  • Besonders vorteilhaft im Hinblick auf eine erhöhte Dynamik des Stellantriebes wirkt es sich aus, wenn das Proportional-Wegeventil 25 mit dem Plattenventil 17 und dem Hauptzylinder 5 zu einer monolithischen Einheit verbunden ist. Die Leitungen 47 und 48 lassen sich in diesem Fall, ebenso wie die Leitungen 50 und 51, vergleichsweise kurz ausführen, sodass die ölgefüllten Leitungsvolumina entsprechend klein ausfallen, was die Dynamik erhöht. Es ist jedoch auch möglich anstatt des Plattenventils 17 ein oder mehrere andere Ventile vorzusehen, wenn dies von den Betriebsanforderungen her, die an den Stellantrieb 1 gestellt werden, wünschenswert erscheint. Ebenso ist es möglich das Proportional-Wegeventil 25 durch mindestens ein elektrohydraulisches Ventil oder durch eine Kombination verschiedener elektrohydraulischer Ventile zu ersetzen, um den Stellantrieb bzw. dessen dynamisches Verhalten den vorgegebenen Betriebsbedingungen anzupassen. Der Stellantrieb ist demnach sehr vielseitig einsetzbar.
  • Das Zusammenwirken des Positionsreglers 33 mit integriertem Leistungsverstärker und des Reglers 36 als gemeinsame elektronische Regelanordnung eines Regelkreises ist besonders deshalb vorteilhaft, da der Positionsregler 33 speziell an das Proportional-Wegeventil 25 angepasst ist, sodass keine zusätzlichen Anpassungen und Abgleichungen nötig sind. Es ist jedoch durchaus möglich diese elektronische Regelanordnung aus anderen Elementen zusammenzusetzten oder ihre Funktion in eine übergeordnete Anlagenleittechnik zu verlegen, wenn beispielsweise das Schutzkonzept der Kraftwerksanlage dies erfordern würde. In der elektronischen Regelanordnung werden von der Wegmesseinrichtung 11 und von der Hubmessung 31 herrührende Signale kontinuierlich zusammen mit mindestens einem, durch die übergeordnete Anlagenleittechnik vorgegebenen Sollwert nach einer vorgegebenen Logik verarbeitet. Bei Abweichungen von diesem Sollwert generiert diese Regelanordnung Korrektursignale, welche auf die Betätigungsmagnete 26, 27 des Proportional-Wegeventils 25 einwirken und ein entsprechendes Umsteuern desselben bewirken.
  • In der Fig. 2 ist ein Teil der Platte 18 des Plattenventils 17 im Schnitt schematisch dargestellt. Die federraumseitige Fläche 65 der Platte 18 ist rechts angeordnet; dies gilt auch für die folgenden Figuren. Ein Durchbruch durch die Platte 18 weist eine zylindrische Öffnung 66 auf, welcher sich eine konische Erweiterung anschliesst. Eine Kugel 67 wird durch eine Feder 68, welche sich gegen eine mit der Platte 18 verbundene Halterung 69 abstützt, in diese konische Erweiterung gedrückt und verschliesst die Öffnung 66. Durch die Öffnung 66 kann Öl unter Druck in das Antriebsvolumen 7 nachströmen, sobald eine Druckdifferenz auftritt, die gross genug ist, um die Kraft der Feder 68 und den auf die Kugel 67 einwirkenden Öldruck zu überwinden.
  • Die Fig. 3 ist der Fig. 2 ähnlich, nur dass in diesem Fall ein Durchbruch mit der Öffnung 66 durch die Platte 18 so ausgestaltet ist, dass Öl vom Antriebsvolumen 7 in den Federraum 20 strömen kann. Zusätzlich ist noch eine starre Blende 70 vorhanden, welche einen Ölfluss in beide Richtungen zulässt. Der Querschnitt der Blende 70 ist hier wesentlich kleiner ausgelegt als der der Öffnung 66.
  • Es ist natürlich auch möglich, wie Fig. 4 zeigt, lediglich eine starre Blende 70 in die Platte 18 als Durchbruch einzufügen und durch diese den Öldurchtritt zu begrenzen.
  • Fig. 5 zeigt eine Platte 18 mit zwei Ventilanordnungen ähnlich wie in Fig. 2 dargestellt, die jedoch in einander entgegengesetzte Richtungen bei entsprechendem Differenzdruck einen Öldurchtritt erlauben. Die Öffnung 66, welche vom Antriebsvolumen 7 in den Federraum 20 führt weist einen wesentlich grösseren Querschnitt auf als die zweite Öffnung 66.
  • Zur Erläuterung der Wirkungsweise sei die Fig. 1 näher betrachtet. Das Regelventil 2 muss im Betrieb vergleichsweise schnell geschlossen werden können. Die Schliessgeschwindigkeit liegt im Normalfall im Bereich um 1 m/sec, als Öffnungsgeschwindigkeit dagegen werden lediglich Geschwindigkeiten im Bereich um 0,02 m/sec verlangt. Diese Geschwindigkeitsangaben sind Richtwerte, je nach Auslegung der Kraftwerksanlage können auch erhebliche Abweichungen von diesen Angaben auftreten. Der Stellantrieb 1 kann mit vergleichsweise geringem Aufwand an die jeweiligen Betriebsbedingungen angepasst werden.
  • Soll das Regelventil 2 in Öffnungsrichtung bewegt werden, so wird durch den Positionsregler 33 das Proportional-Wegeventil 25 betätigt, und zwar wird es so angesteuert, dass das links der eingezeichneten Stellung stehende Schema gilt. Die Anschlüsse 28 und 29 sind dann durchverbunden und Öl unter Druck strömt von der Leitung 45 her durch das Proportional-Wegeventil 25 durch. Durch die Leitung 48 kann im Normalbetrieb kein Öl strömen, da das Sicherheitsventil 49 diese Leitung 48 abschliesst. Das Öl strömt durch die Leitung 47 in den Federraum 20 des Plattenventils 17 und von dort weiter durch den Durchbruch der Platte 18 und den Stutzen 15 in das Antriebsvolumen 7. Der Öldruck im Antriebsvolumen 7 bewegt den Hauptkolben 6 nach oben und damit über die Ventilspindel 4 das Regelventil 2 in Öffnungsrichtung. Die Wegmesseinrichtung 11 überwacht den Hub des Hauptkolbens 6 und meldet seine Stellung kontinuierlich an den Regler 36. Sobald der vorgegebene Sollwert des Hubes erreicht ist, steuert der Regler 36 über den Positionsregler 33 das Proportional-Wegeventil 25 so ab, dass der Ölfluss unterbrochen wird. Die Hubmessung 31, deren Signale im Positionsregler 33 verarbeitet werden, überwacht das Betriebsverhalten des Proportional-Wegeventils 25. Die Bewegung des Hauptkolbens 6 wird gleichzeitig mit dieser Absteuerung beendet.
  • Soll dagegen das Regelventil 2 aus einer Offenstellung rasch in einen geschlossenen Zustand überführt werden, so wird das Proportional-Wegeventil 25 so umgesteuert, dass das rechts der gezeichneten Stellung stehende Schema gilt. Die Anschlüsse 29 und 30 sind miteinander verbunden und Öl aus dem Federraum 20 strömt ab durch die Leitung 47, durch das Proportional-Wegeventil 25, durch die Leitungen 51 und 50 weiter durch das Puffervolumen 8 und die Leitung 52 in die Ablaufvorrichtung. Dieser Strömungsvorgang dauert jedoch nur sehr kurze Zeit, da sich, sobald der Druck im Federraum 20 kleiner ist als der Druck im Antriebsvolumen 7, die Platte 18 gegen den Druck der Feder 19 nach rechts bewegt und das Öl aus dem Antriebsvolumen 7 durch das Volumen 21 und die Verbindungsleitung 22 in das mit Öl unter geringem Druck gefüllte Puffervolumen 8 abströmen kann und von dort aus weiter in die Ablaufvorrichtung. Die Feder 9 drückt den Hauptkolben 6 nach unten und damit das Öl aus dem Antriebsvolumen 7 solange hinaus in das Puffervolumen 8 bis die Endstellung des Regelventils 2 erreicht ist. Das Herausströmen des Öls erfolgt sehr rasch, da der durch das Plattenventil 17 freigegebene Querschnitt und auch der Querschnitt der direkten Verbindungsleitung 22 vergleichsweise gross sind und den Strömungsvorgang nicht negativ beeinflussen. Durch die Bewegung des Hauptkolbens 6 entsteht im Puffervolumen 8 ein Sog, welcher diese Öl-strömung zusätzlich unterstützt und die Dynamik des Stellantriebes 1 erhöht.
  • Eine derartige schnelle Druckentlastung des Antriebsvolumens 7 und ein derartig schnelles Abströmen des Öls aus demselben wäre durch die vergleichsweise kleinen Querschnitte der Leitungen 47, 51 und 50 nicht möglich. Würde man diese Querschnitte und das Proportional-Wegeventil 25 entsprechend vergrössern, so liesse sich wegen der grossen, auf vergleichsweise langen Wegen zu bewegenden Ölmengen keine auch nur annähernd so gute Dynamik des Stellantriebes 1 erreichen wie mit der erfindungsgemässen Ausführung.
  • Für die Beaufschlagung des im Vergleich zum Antriebsvolumen 7 sehr kleinen Federraumes 20 wird nur eine vergleichsweise kleine Menge Öl unter Druck benötigt. Dieser Federraum 20 ist deshalb auch sehr schnell durch die Leitungen 47, 51 und 50 druckentlastet, wenn ein entsprechender Steuerbefehl das Proportional-Wegeventil 25 erreicht. Das hat zur Folge, dass unmittelbar nach dem Steuerbefehl bereits das Plattenventil 17 öffnet und die rasche Schliessbewegung des Hauptkolbens 6 und damit des Regelventils 2 einleitet. Das Volumen der Leitungen 47, 51, 50 beeinflusst demnach die Dynamik des Stellantriebes nicht bzw. nur äusserst geringfügig negativ.
  • Im Normalbetrieb werden kleine Abweichungen vom Sollwert durch den Regler 36 erkannt und entsprechende Korrektursignale werden über den Positionsregler 33 auf das Proportional-Wegeventil 25 übertragen. Soll das Regelventil 2 noch etwas öffnen, so wird nur eine kleine Menge Öl unter Druck in das Antriebsvolumen 7 nachgespeist, bis der Sollwert wieder erreicht ist. Für Öffnungsbewegungen des Regelventils genügt der mindestens eine Durchbruch durch die Platte 18, wie er in Fig. 2 durch die Öffnung 66, in Fig. 3 und Fig. 4 durch die Blende 70 und in Fig. 5 durch die obere Öffnung 66 schematisch dargestellt ist. Wenn die Platte 18 nach Fig. 2 ausgestaltet ist, so wird die Schliessbewegung des Regelventils, wie bereits beschrieben, durch ein Absenken des Öldrucks im Federraum 20 eingeleitet, worauf, wenn nur ein kleiner Hub in Schliessrichtung zu machen ist, das Plattenventil 17 nur kurzzeitig öffnet und Öl durch die Verbindungsleitung 22 in das Puffervolumen 8 entweichen lässt. Sobald der Sollwert erreicht ist, schliesst das Plattenventil 17 sofort wieder.
  • Bei der Ausführung der Platte 18 gemäss Fig. 3 können kleinere Schliessbewegungen ohne ein Öffnen des Plattenventils 17 stattfinden, da durch die Öffnung 66 und durch die Blende 70 Öl aus dem Antriebsvolumen 7 in den Federraum 20 abströmen kann bis ein Druckausgleich hergestellt ist, sobald der Sollwert erreicht ist. Sind in diesem Fall grössere Sollwertabweichungen auszugleichen, so öffnet, falls die Querschnitte der Öffnung 66 und der Blende 70 nicht genügen, zusätzlich auch noch kurzzeitig das Plattenventil 17. Der Ablauf des Schliessvorganges erfolgt bei der Ausführung gemäss Fig. 4 ähnlich wie der bei Fig. 3.
  • Die Ausführung der Platte 18 gemäss Fig. 5 erlaubt ebenfalls eine kleine Schliessbewegung, für grössere Hube des Hauptkolbens 6 ist auch in diesem Fall ein Öffnen des Plattenventils 17 nötig.
  • Das Proportional-Wegeventil 25 ist in Fig. 1 in der Mittelstellung dargestellt. Diese Stellung nimmt es ein, wenn beispielsweise die Betätigungsmagnete 26, 27 keine Spannung erhalten sollten wegen eines Netzausfalles. Das Erreichen dieser Stellung wird durch Federkraft von im Innern des Proportional-Wegeventils 25 vorgesehenen Federn unter allen Umständen sichergestellt. In dieser Stellung wird der Federraum 20 durch die Leitungen 47, 51 und 50 druckentlastet, sodass das Plattenventil 17 öffnet, was wie bereits beschrieben, zu einem schnellen Schliessen des Regelventils 2 führt. Auf diese Art ist gewährleistet, dass das Regelventil 2 auch im Falle einer Störung stets definitv geschlossen wird, sodass unter keinen Umständen Schäden an der betriebenen Turbine infolge eines Defektes im Stellantrieb 1 auftreten können.
  • Das Sicherheitsventil 49 verhindert im Normalfall einen Druckabfall in der Leitung 48 in Richtung Ablaufvorrichtung. Wenn jedoch der Druck im Sicherheitsölkreislauf sinkt, so sinkt auch der Druck im Volumen 55 und das Sicherheitsventil 49 gibt, unabhängig von der Stellung des Proportional-Wegeventils 25, die Leitung 48 frei, sodass der Druck aus dem Federraum 20 des Plattenventils 17 entweichen kann über die Leitungen 47, 48 und 50, wodurch, wie bereits beschrieben, ein schneller Schliessvorgang des Regelventils 2 eingeleitet wird. Auch durch diese Massnahme lässt sich in jedem Fall eine sichere Absperrung der Dampfversorgung der Turbine erreichen.
  • Bei Inbetriebsetzungsversuchen kann es vorkommen, dass der Sicherheitsölkreis noch nicht unter Druck gesetzt ist, bzw. noch nicht unter Druck gesetzt werden kann. Für diesen Fall ist das Wegeventil 58 eingebaut, welches ermöglicht, sobald es elektromagnetisch umgeschaltet wird auf das rechts von der gezeichneten Stellung dargestellte Schema, dass Öl unter Druck von der Leitung 45 her durch die Leitung 61 und durch das Wegeventil 58 hindurch das Volumen 55 beaufschlagen kann, wodurch das Sicherheitsventil 49 geschlossen wird. Der Befehlsweg für das Wegeventil 58, wie er durch die Wirkungslinie 60 angedeutet ist, muss jedoch, sobald auf Normalbetrieb umgeschaltet wird, blockiert werden, da sonst eventuell ein Einwirken des Sicherheitsölkreises auf das Sicherheitsventil 49 nicht mehr möglich ist, sodass die Schutzfunktion dieses Kreises nicht mehr gewährleistet wäre.

Claims (10)

  1. Stellantrieb (1) für ein Regelventil (2) mit einem Regelkreis, welcher den Stellantrieb (1) entsprechend einem von einer übergeordneten Anlagenleittechnik vorgegebenen Sollwert einstellt, mit einem in einem Hauptzylinder (5) gleitenden Hauptkolben (6), mit einem gesteuert mit Öl unter Druck beaufschlagbaren Antriebsvolumen (7) auf einer Seite des Hauptkolbens (6) und mit einem ölgefüllten Puffervolumen (8) auf der anderen Seite des Hauptkolbens (6), wobei das Antriebsvolumen (7) und das Puffervolumen (8) durch eine mit mindestens einem ersten Ventil (17) abschliessbare Verbindungsleitung (22) verbindbar sind, und, das mindestens eine erste Ventil über mindestens ein gesteuertes zweites Ventil (25) direkt hydraulisch betätigbar ist, das mindestens eine erste Ventil als Plattenventil (17) mit einer durch eine in einem Federraum (20) angeordnete Druckfeder (19) in Schliessrichtung beaufschlagten Platte (18) ausgebildet ist, dadurch gekennzeichnet,
    - dass die Platte (18) mindestens einen Durchbruch aufweist, welcher ein Zusammenwirken des Öls unter Druck im Federraum (20) und des Öls im Antriebsvolumen (7) ermöglicht.
  2. Stellantrieb nach Anspruch 1, dadurch gekennzeichnet,
    - dass der Federraum (20) ein Volumen aufweist, welches der Grössenordnung nach etwa tausendfach kleiner ist als das Antriebsvolumen (7).
  3. Stellantrieb nach Anspruch 1, dadurch gekennzeichnet,
    - dass der mindestens eine Durchbruch durch die Platte (18) als eine starre Blende (70) oder als eine Ventilanordnung ausgebildet ist, welche in beiden Richtungen einen gleichen oder einen unterschiedlichen Durchtrittsquerschnitt aufweist.
  4. Stellantrieb nach Anspruch 1, dadurch gekennzeichnet,
    - dass der mindestens eine Durchbruch durch die Platte (18) als ein drittes Ventil ausgebildet ist, welches einen Ölfluss in das Antriebsvolumen (7) hinein ermöglicht.
  5. Stellantrieb nach Anspruch 1, dadurch gekennzeichnet,
    - dass der mindestens eine Durchbruch durch die Platte (18) eine starre Blende (70) und zusätzlich ein viertes Ventil aufweist, welches einen Ölfluss aus dem Antriebsvolumen (7) heraus ermöglicht.
  6. Stellantrieb nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet,
    - dass das mindestens eine zweite Ventil als elektrohydraulisches Proportional-Wegeventil (25) mit mindestens einem Betätigungsmagnet (26, 27) und einer Hubmessung (31) ausgebildet ist.
  7. Stellantrieb nach Anspruch 6, dadurch gekennzeichnet,
    - dass das Proportional-Wegeventil (25) mit dem Plattenventil (17) und dem Hauptzylinder (5) zu einer monolithischen Einheit verbunden ist.
  8. Stellantrieb nach Anspruch 6, dadurch gekennzeichnet,
    - dass im Regelkreis eine elektronische Regelanordnung vorgesehen ist,
    - dass in der elektronischen Regelanordnung von einer Wegmesseinrichtung (11) und von der Hubmessung (31) herrührende Signale kontinuierlich zusammen mit dem jeweils vorgegebenen Sollwert nach einer vorgegebenen Logik verarbeitet werden, und
    - dass diese Regelanordnung bei Sollwertabweichungen Korrektursignale generiert, welche die Betätigungsmagnete (26, 27) anregen.
  9. Stellantrieb nach Anspruch 8, dadurch gekennzeichnet,
    - dass die elektronische Regelanordnung einen Positionsregler (33) mit integriertem Leistungsverstärker und einen mit diesem zusammenwirkenden Regler (36) aufweist, und
    - dass das von der Hubmessung (31) herrührende Signal in den Regler (36) und das von der Wegmesseinrichtung (11) herrührende Signal in den Positionsregler (33) eingespeist wird.
  10. Stellantrieb nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet,
    - dass bei Störungen das Schliessen des Regelventils (2) durch das Einwirken eines Sicherheitsventils (49) sichergestellt ist.
EP90122361A 1989-12-01 1990-11-23 Stellantrieb Expired - Lifetime EP0430089B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH431589 1989-12-01
CH4315/89 1989-12-01

Publications (2)

Publication Number Publication Date
EP0430089A1 EP0430089A1 (de) 1991-06-05
EP0430089B1 true EP0430089B1 (de) 1994-03-02

Family

ID=4273790

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90122361A Expired - Lifetime EP0430089B1 (de) 1989-12-01 1990-11-23 Stellantrieb

Country Status (4)

Country Link
US (1) US5137253A (de)
EP (1) EP0430089B1 (de)
DE (1) DE59004774D1 (de)
ES (1) ES2052136T3 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59203461D1 (de) * 1991-11-04 1995-10-05 Asea Brown Boveri Speiseschaltung für eine Zweirohr-Hydraulik.
DE4244304A1 (de) * 1992-12-28 1994-06-30 Asea Brown Boveri Betätigungsvorrichtung für einen hydraulischen Stellantrieb mit druckproportionalem Stellsignal
DE4320937A1 (de) * 1993-06-24 1995-01-05 Abb Management Ag Stellantrieb für ein Regelventil
DE59402560D1 (de) * 1993-10-29 1997-05-28 Siemens Ag Stellmotor, insbesondere für ein schnellschlussventil
DE19748758B4 (de) * 1997-11-05 2004-08-12 Techno Alpin Gmbh/S.R.L. Motorischer Stellantrieb
DE102014226666B3 (de) * 2014-12-19 2015-12-24 Voith Patent Gmbh Stellantrieb für ein Regelventil, insbesondere Dampfturbinenregelventil und Verfahren zum Betreiben desselben
EP3445978B1 (de) * 2016-04-19 2021-03-10 Clearmotion, Inc. Verfahren und systeme zur aktiven aufhebung von hydraulischer welligkeit
DE102017131004A1 (de) * 2017-12-21 2019-06-27 Moog Gmbh Stellantrieb mit hydraulischem Abflussverstärker
CN109404065B (zh) * 2018-10-12 2021-12-17 上海华电电力发展有限公司 防止主机汽门遮断电磁阀故障引起机组跳闸的控制方法
JP7297617B2 (ja) * 2019-09-13 2023-06-26 日本ムーグ株式会社 電動油圧アクチュエータシステム、電動油圧アクチュエータシステムの油圧回路、及びそれを含む蒸気タービンシステム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE285195C (de) * 1914-05-13
DE519057C (de) * 1929-02-16 1931-02-23 Siemens Schuckertwerke Akt Ges Steuerung der Hilfsoelpumpe einer Dampfturbine
FR1156683A (fr) * 1955-10-17 1958-05-20 Licentia Gmbh Soupape de démarrage et à fermeture instantanée actionnée hydrauliquement, notamment pour turbines à gaz et à vapeur
DE1257158B (de) * 1956-10-22 1967-12-28 Gen Electric Hydraulische Regeleinrichtung fuer eine Dampfturbine mit Zwischenueberhitzung
US3495501A (en) * 1968-06-04 1970-02-17 Gen Electric Valve operating and emergency closing mechanism
SE372055B (de) * 1973-03-23 1974-12-09 Stal Laval Turbin Ab
US4043533A (en) * 1975-08-14 1977-08-23 Atwood & Morrill Co. Auxiliary closing force for valves
US4149565A (en) * 1977-02-02 1979-04-17 International Harvester Company Pilot controlled poppet valve assembly
US4335867A (en) * 1977-10-06 1982-06-22 Bihlmaier John A Pneumatic-hydraulic actuator system
DE2835771A1 (de) * 1978-08-16 1980-02-28 Schwelm & Towler Hydraulics Anordnung zur aussteuerung eines cartridgeelementes
US4215844A (en) * 1978-08-28 1980-08-05 The Babcock & Wilcox Company Valve actuator system
DE3469777D1 (en) * 1983-05-30 1988-04-14 Bbc Brown Boveri & Cie Electro-hydraulic actuator for turbine valves
CH666132A5 (de) * 1984-07-20 1988-06-30 Bbc Brown Boveri & Cie Einrichtung zur ueberwachung von physikalischen groessen an anlagen.

Also Published As

Publication number Publication date
ES2052136T3 (es) 1994-07-01
EP0430089A1 (de) 1991-06-05
US5137253A (en) 1992-08-11
DE59004774D1 (de) 1994-04-07

Similar Documents

Publication Publication Date Title
EP0496021B1 (de) Zuschaltventil und hydraulisches Sicherheits- und Kraftölsystem, in welchem das Zuschaltventil verwendet wird
EP0126291B1 (de) Druckmediumbetätigtes Ventil
DE3323363A1 (de) Vorgesteuertes druckreduzierventil
EP0430089B1 (de) Stellantrieb
EP0433791B1 (de) Antrieb für ein Speiseventil
EP0540963B1 (de) Speiseschaltung für eine Zweirohr-Hydraulik
EP0451543B1 (de) Antrieb für ein Dampfstellventil
EP0054602A1 (de) Eigenmediumgesteuertes Absperrventil
EP0631056B1 (de) Stellantrieb für ein Regelventil
EP1082560B1 (de) Steuereinrichtung für ein sicherheitsventil
DE4036564A1 (de) Hydraulische einrichtung zur steuerung eines arbeitszylinders einer presse
LU84377A1 (de) Einstellbares drosselventil
DE3300662A1 (de) Niveauregeleinrichtung fuer fahrzeuge
EP0604805B1 (de) Betätigungsvorrichtung für einen hydraulischen Stellantrieb mit druckproportionalem Stellsignal
EP0041247A2 (de) Vorgesteuerte Vorrichtung zur lastunabhängigen Volumenstromregelung
DE19646500A1 (de) Einrichtung zur Rollstabilisierung eines Fahrzeugs
DE10139773A1 (de) Steuervorrichtung für Druckluftbremsen
DE3225132A1 (de) Hydraulisches sicherheitsbremsventil
EP1203161B1 (de) Pressensicherheitsventil
EP2452078B1 (de) Anordnung zur bereitstellung eines veränderbaren drosselquerschnitts für einen fluidstrom
EP3037678B1 (de) Hubmodul
EP0111617A1 (de) Druckmittelbetätigte Stellmotoranordnung mit Arretierglied
DE69012051T2 (de) Hydraulikventilanordnung.
DE3418261C2 (de)
EP0419946B1 (de) Stellantrieb

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES FR GB IT LI SE

17P Request for examination filed

Effective date: 19911014

17Q First examination report despatched

Effective date: 19930315

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FR GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19940302

Ref country code: BE

Effective date: 19940302

REF Corresponds to:

Ref document number: 59004774

Country of ref document: DE

Date of ref document: 19940407

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940520

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2052136

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19941130

Ref country code: CH

Effective date: 19941130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19961022

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19961118

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19971124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001013

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001102

Year of fee payment: 11

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011123

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020702

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20011123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051123