EP2452078B1 - Anordnung zur bereitstellung eines veränderbaren drosselquerschnitts für einen fluidstrom - Google Patents

Anordnung zur bereitstellung eines veränderbaren drosselquerschnitts für einen fluidstrom Download PDF

Info

Publication number
EP2452078B1
EP2452078B1 EP09775737.1A EP09775737A EP2452078B1 EP 2452078 B1 EP2452078 B1 EP 2452078B1 EP 09775737 A EP09775737 A EP 09775737A EP 2452078 B1 EP2452078 B1 EP 2452078B1
Authority
EP
European Patent Office
Prior art keywords
throttle
arrangement
section
fluid
lift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09775737.1A
Other languages
English (en)
French (fr)
Other versions
EP2452078A1 (de
Inventor
Eneko Goenechea
Josef ZÜRCHER
Silvan Thuerlemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bucher Hydraulics AG
Original Assignee
Bucher Hydraulics AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bucher Hydraulics AG filed Critical Bucher Hydraulics AG
Publication of EP2452078A1 publication Critical patent/EP2452078A1/de
Application granted granted Critical
Publication of EP2452078B1 publication Critical patent/EP2452078B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • F15B13/0426Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with fluid-operated pilot valves, i.e. multiple stage valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/042Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/044Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the return line, i.e. "meter out"

Definitions

  • the invention relates to a lift control valve, a hydraulic lift system with the lift control valve and a method for operating the lift system according to the preambles of the independent claims.
  • variable throttle cross sections for fluid flows therein are used, both for the regulation of pressures and / or flow rates as well as for their detection.
  • the change in the throttle cross-section is carried out either by external Verstelling by means of mechanical, hydraulic, pneumatic or electric actuators, eg control valves, or by the pressure, a pressure difference and / or a flow force of the guided in the arrangement fluid, such as pressure relief valves or check valves.
  • the latter arrangements have the advantage that a high operational reliability is achieved due to the relatively simple hydraulic / pneumatic coupling and the independence of auxiliary power.
  • the disadvantage here, however, that these arrangements are typically used only in a flow direction.
  • the lift control valve has an arrangement for providing a variable throttle area for a flow of fluid, preferably a fluid flow, e.g. a stream of hydraulic oil, on.
  • This arrangement includes a throttle assembly and a drive assembly.
  • the throttle arrangement forms a variable by movement of a throttle body throttle cross-section.
  • the drive arrangement has a drive element arranged movably in a housing, which is coupled to the throttle body of the throttle arrangement such that the throttle cross section of the throttle arrangement can be changed by changing the relative position of the drive element in the housing.
  • the coupling between the throttle body and the drive element takes place in a hydraulic or mechanical manner, advantageously by common, in particular one-piece construction of throttle body and drive element.
  • the arrangement is designed such that the drive element is permanently acted upon by a spring force (the claimed first spring force) or can be acted upon, for example by supplying auxiliary power, with such a spring force.
  • the spring force acts in a claim according to the first direction on the drive element, in which this in the housing is mobile.
  • a spring element or a pressurized compressible medium in a suitable direction exerts a compressive force directly on the drive element and / or on the throttle body coupled to the drive element.
  • the spring force causes the drive element is positioned in a basic position in the housing in the absence of at least equally large, acting in a direction opposite to the first direction claims according to the second direction on the drive element.
  • the arrangement is such that the drive element is fluidly in contact with a first side of the throttle cross-section or can be brought into fluidic contact with this first side due to fluid pressures in a first fluid space of the arrangement, and a second fluid space of the arrangement, which is permanently in fluidic contact with the other, second side of the throttle cross-section or can be brought into fluidic contact with this second side, with a second and a third force can be acted upon, both of which act in the second direction according to claim, ie against the spring force.
  • the arrangement is designed such that due to a fluid pressure in a third fluid space of the arrangement, the drive element is acted upon by acting in the claim first direction fourth force, ie with a fourth force acting in the direction of the spring force.
  • the arrangement comprises a switching arrangement, e.g. a hydraulically operable 3/2-way valve, by means of which either either the first and the third fluid chamber of the arrangement or the second and the third fluid chamber of the arrangement are fluidically connectable to each other.
  • a switching arrangement e.g. a hydraulically operable 3/2-way valve
  • the drive element is dependent on the switching state, i. depending on whether the third fluid space is connected to the first or the second fluid chamber, either on the occurrence of a positive or negative pressure difference between the first side and the second side of the throttle gap from the home position movable to open or enlarge the throttle cross-section.
  • an arrangement for providing a throttle cross-section for a fluid flow in which the throttle cross section is variable or openable depending on a pressure difference across this and in which the polarity of the pressure difference, by means of which the throttle cross section can be changed or opened is, is switchable.
  • the arrangement is designed such that the throttle cross section is completely closed when arranged in the basic position drive element, so the two sides of the throttle cross-section are separated from each other, so that in this position, the first fluid space from the second Fluid space is separated.
  • This separation is preferably carried out such that there is a leak-free separation at the intended pressures and the intended fluids.
  • the throttle arrangement is designed as a seat valve.
  • Such embodiments of the arrangement may be used, for example, as reversible check valves, which is a preferred use thereof.
  • the arrangement has means for determining the opening of the throttle cross section of the throttle arrangement, the relative position of the drive element in the housing and / or the relative position of the throttle body of the throttle arrangement, ie means with which a variable representing the respective throttle cross section can be determined.
  • these means comprise sensors with which the relative positions of the drive element and / or the throttle body can be converted into electrical signals, so that an electronic evaluation of the determined measured values is possible.
  • Such embodiments of the arrangement may e.g. be used as flow meter with reversible flow direction, which is a further preferred use of the arrangement.
  • non-compressible fluids e.g. Water or with only very low compressible fluids such.
  • Mineral oil has the advantage that, with known characteristics of the arrangement and known viscosity of the fluid all other required for the determination of the volume flow rates, that are the throttle cross-section, the hydraulic characteristic of the arrangement in this throttle cross-section and at the given viscosity of the fluid and the Pressure difference between the first and the second side of the throttle cross-section, with good accuracy from the determined, the throttle cross-section representing size result.
  • the arrangement is such that the second force and the third force are approximately equal at identical fluid pressures in the first and second fluid spaces, e.g. It can be achieved by directly applying force without over- or reduction mechanisms, the effective areas used to generate the respective force are made the same size. In this way it can be achieved that the operating behavior of the arrangement in both switching states, i. both when the first and third fluid spaces are interconnected via the switching arrangement and when the second and third fluid spaces are interconnected via the switching arrangement, apart from the reverse polarity, the pressure differential required to actuate the drive element is substantially identical.
  • the arrangement is designed such that at identical fluid pressures in the first, second and third fluid space, the second, third and fourth forces cancel each other substantially.
  • This can be achieved, for example, by the fact that, in the case of a direct introduction of force without over or reduction mechanisms, the active surfaces used to generate the second and third forces are of the same size as the active surface used to generate the fourth force.
  • a particularly sensitive response of the arrangement can be achieved, such that even slight pressure differences between the first and the second Side of the throttle cross-section lead to an opening or increase the throttle cross-section.
  • the drive element has axial surfaces which are fluidically connected to the first, the second and the third fluid chamber for generating the second, third and fourth forces, which is preferred, a direct and loss-free introduction of force into the drive element takes place.
  • the drive element of the drive arrangement and the throttle body of the throttle arrangement are formed by one and the same one-piece or multi-piece component. This allows a simple and compact design with a lossless coupling between the drive element and throttle body realize.
  • the inventive lift control valve has a first connection for a supply line for hydraulic fluid coming from a hydraulic pump, a second connection for a return of hydraulic fluid into a tank and a third connection for a hydraulic line leading to a hydraulic drive of a lift system.
  • the lift control valve has a control arrangement with which the first side of the throttle cross section and the first fluid space of the arrangement can be fluidly connected either to the first port or to the second port, depending on whether the lift control valve is to be brought into a position which is intended to allow the passage of hydraulic fluid from a hydraulic pump to a hydraulic drive of a lift system (OPEN-drive operation) or the return of hydraulic fluid from a hydraulic drive a lift system in a tank (AB-ride operation) when used as intended.
  • the lift control valve is configured such that the second side of the throttle cross-section and the second fluid space of the arrangement are connected to the third terminal or can be connected thereto.
  • the arrangement is incorporated into the main line through which the hydraulic fluid flows in the event of normal UP-drive operation and AB-drive operation of the lift control valve and, if designed accordingly, can be used, for example.
  • the system engineering effort compared to previous lift control valves can be significantly reduced with the same functionality and save corresponding provisioning and maintenance costs.
  • the lift control valve is designed in such a way that, when the first side of the throttle cross-section and the first fluid space are connected to the first port, the second fluid space will inevitably also be connected to the third fluid space by the changeover arrangement and Connecting the first side of the throttle cross-section and the first fluid space with the second port inevitably leads to the first fluid space is connected by the switching arrangement with the third fluid space.
  • control arrangement for enabling the selective connection of the first side of the throttle cross-section with either the first or the second port of the lift control valve is preferably provided steadily acting, preferably hydraulically actuated main valve used, which is preferably designed in piston valve design.
  • main valve used which is preferably designed in piston valve design.
  • the lift control valve has a valve with which the fluid supply to the hydraulic drive of the main valve on reaching or exceeding a certain pressure at the first port fluidly is connected to the second port, ie with the port which is provided for a return of hydraulic fluid in a tank.
  • control arrangement of the lift control valve has a hydraulically actuated main valve
  • the lift control valve has an electrically actuated pilot valve for the hydraulically actuated main valve
  • the hydraulic drive of the main valve fluidly with the second side of the throttle cross-section or connected to the third port or can be disconnected.
  • the fluidic connection between the pilot valve and the hydraulic drive of the main valve to the second port i. Having throttle leading to the tank connection.
  • This throttle point advantageously has a variable depending on the valve position of the main valve throttle cross-section.
  • the throttle cross section is variable in dependence on the position of the spool, which is advantageously realized such that the throttle cross section between the spool and a fixed component of the main valve is formed. As a result, a pressure relief of the connecting line between the pilot valve and the main valve is ensured with a closed pilot valve.
  • variable throttle cross section it is also possible to specifically influence the response of the main valve.
  • the lift control valve is designed in such a way that connection of the first side of the throttle cross section of the throttle arrangement to the second connection is not possible when hydraulic fluid is present under pressure at the first connection. In this way it can be ensured that an AB drive operation of a system formed with this lift control valve is possible only when the hydraulic pump or the hydraulic fluid flow is switched off.
  • the switching arrangement of the arrangement has a hydraulically actuable changeover valve, which is switchable during normal operation by opening or closing a pressure relief opening.
  • the control arrangement of the lift control valve is designed such that it when connecting the first side of the throttle cross-section of the throttle assembly with the second port (tank port) opens the pressure relief port of the switching valve.
  • the lift control valve is designed in such a way that the actuation energy of the hydraulic fluid guided in operation in the lift control valve can be removed for the actuation of hydraulically operated valves contained in it. In this way can be dispensed with further supply and discharge lines for hydraulic fluid and there is a lift control valve unit with a minimum of interfaces.
  • a second aspect of the invention relates to a hydraulic lift system with a lift control valve according to the first aspect of the invention.
  • the lift system has a hydraulic pump connected or connectable to the first connection of the lift control valve, a tank for hydraulic fluid connected or connectable to the second connection of the lift control valve and a hydraulic drive connected or connectable to the third connection of the lift control valve, with which a lift of the lift system is driven can.
  • the hydraulic drive is preferably designed as a linear drive in the form of a hydraulic cylinder, but it may also be designed differently, e.g. as a rotary hydraulic motor.
  • the formation of such a lift system represents a proper use of the lift control valve according to the first aspect of the invention.
  • the lift system has a lift control valve with an arrangement which is equipped with means for determining the opening of the throttle cross section of the throttle arrangement, the relative position of the drive element and / or the relative position of the throttle body of the throttle arrangement.
  • this embodiment of the lift system comprises a control for the driving operation of the lift, which is so connected to the aforementioned means and is configured that they operate via this means information about the opening of the throttle cross-section, the relative position of the drive element and / or the relative position of the throttle body can receive and this can take into account in the control or regulation of the driving operation of a lift of the lift, and preferably as a parameter representing the hydraulic fluid flow which flows through the throttle cross-section of the arrangement, and in particular the associated travel speed of the lift.
  • With such hydraulic lifts it is possible to realize a very precise regulation of the travel speed of the lift with little system outlay.
  • the volume flow of hydraulic fluid delivered through the throttle cross-section of the throttle arrangement is determined by means of an algorithm exclusively from the determined opening of the throttle cross-section, the determined relative position of the drive element and / or the determined relative position of the throttle body of the throttle arrangement, possibly with additional consideration of a additionally determined temperature value of the hydraulic fluid.
  • the volume flow of hydraulic fluid delivered through the throttle cross section of the throttle arrangement is changed by the larger or smaller part of the volume flow conveyed by the hydraulic pump being diverted into the tank by the control unit of the lift control valve. In this way, the use of low-constant pumps is possible and the entire regulation via the lift control valve.
  • Fig. 1 shows a section through an inventive lift control valve in a de-energized rest state of the lift control valve.
  • the lift control valve on a solid metal housing 3, within which by inserting various functional units from the outside a hydraulically actuated 3/4-way main valve 14, an electrically actuated pilot valve 15 for the main valve 14, a pressure relief valve 18, a unlockable check valve 22 and a switching valve 8 are formed for the check valve 22.
  • the check valve 22, together with the switching valve 8, is a claimed arrangement for providing a variable throttle cross section for a hydraulic fluid flow to be controlled by the lift control valve for a hydraulic lift drive.
  • the main valve 14 is designed as a continuously acting slide valve, with a piston slide 17 which limits a control oil chamber 25 at its left end and forms at this end together with a control edge of the housing 3 a variable depending on the spool position throttle body 16.
  • a spring chamber 27 At its right end of the spool 17 limits a spring chamber 27, in which a return spring 26 is arranged, which pushes the spool 17 at unpressurized control oil chamber 25 to the left in a basic position.
  • the spring chamber 27 is limited over a part of its axial extent and at its end facing away from the spool 17 end of a throttle sleeve 28, which relieves pressure on this space 27 via a throttle point formed by them to the second port 12 (tank connection).
  • a central bore 30 is further arranged with a check valve 31, via which oil from a radial groove 32 on the circumference of the spool 17 in the spring chamber 27 can be passed.
  • the pilot valve 15 for controlling the main valve 14 is formed as a steadily acting seat valve, which forms a check valve in the illustrated currentless state in the direction of its intended flow direction.
  • the main valve 14 and the associated pilot valve 15 form the claim as appropriate control unit of the lift control valve.
  • the unlockable check valve 22 is formed in a seated construction, with a in the housing 3 against the force of a spring 23 (the claimed first force) slidable throttle body 2 and a fixedly arranged in the housing 3 valve seat body 9.
  • the throttle body 2 and the valve seat body 9 formed throttle section 1 closed in a basic position with non-deflected throttle body 2 fluid-tight and changeable by deflection of the throttle body 2 from the basic position in dependence on the position of the throttle body 2.
  • the throttle body 2 forms in the present case at the same time the claimed drive element 4 by having axial surfaces which are in direct contact with a claimed first fluid chamber 5, a claim according to the second fluid chamber 6 and a claim according third fluid chamber 7, so that due corresponding second, third and fourth forces in and against the force direction of the spring 23 can be exerted on the throttle body 2 by fluid pressures in these fluid spaces 5, 6, 7. If the sum of these second, third and fourth forces, the force of the spring 23 in the opposite direction, the throttle body 2 is lifted from the valve seat body 9 and the throttle section 1 is opened so far that a balance between the spring force and the sum of the second, third and fourth forces in the direction opposite to the spring force is present.
  • the ratios of the axial areas of the throttle body 2, 4 are selected such that the second, the third and the fourth force with identical fluid pressure in the first, second and third fluid chamber 5, 6, 7 cancel each other.
  • the throttle body 2 is coupled at its right end with a position sensor 10, with which its position in the housing 3 in the form of electrical signals can be determined, to determine the flow during operation through the throttle section 1 of the throttle valve 22 flow of hydraulic fluid.
  • the switching valve 8, which serves as a claim switching arrangement for switching the check valve 22 is formed as a switching 3/2-way valve in slide construction and is located in the in Fig. 1 illustrated situation in a position in which it fluidly connects the second fluid chamber 6 and the third fluid chamber 7 and separates them from the first fluid chamber 5.
  • the throttle cross-section 1 of the check valve 22 can only be opened if a fluid pressure is generated in the first fluid chamber 5, which exceeds the fluid pressure in the second 6 and in the third fluid chamber 7 and additionally is large enough to the force of the spring 23 in the basic position to overcome.
  • the piston valve of the switching valve 8 is loaded by a spring in this way, so that it is held in the position shown in the absence of greater forces acting in the direction opposite to the spring force.
  • This spring is arranged in a spring chamber 24, which is fluidically connected via a throttle point in the piston valve with the second 6 and third fluid chamber 7.
  • the spring chamber 24 is fluidly in contact with the end face of the throttle sleeve 28 of the main valve 14, to which a central pressure relief opening 19 for pressure relief of the spring chamber 24 is located, which in the in Fig. 1 shown operating situation is fluid-tightly closed by a spring-loaded ball, so that the spring chamber 24 is not depressurized in this operating situation.
  • the spool 17 of the main valve 14 has at its right end to an actuating pin 29, by means of which he can open the pressure relief opening 19 by lifting the spring-loaded ball from its seat in a fully controlled position and thereby the spring chamber 24 of the switching valve 8 with the spring chamber 27 of the Main valve 14 can connect fluidly.
  • Fig. 3 shows the hydraulic scheme of a hydraulic lift system formed with this lift control valve
  • the first fluid chamber 5, which is arranged on the claim Demand first side of the throttle section 1 of the check valve 22, via the main valve 14 optionally with a first port 11 for one of A supply line for hydraulic fluid coming from a hydraulic pump 33 can be connected to a second connection 12 for a return of hydraulic fluid into a tank 34.
  • the second fluid space 6, which is arranged on the claimed second side of the throttle cross-section 1 of the check valve 22, is permanently connected to a third connection 13 for a hydraulic line leading to a hydraulic drive 35 of a lift system and to the inlet side of the pilot valve 15.
  • the throttle gap 1 is completely closed, so that the first 5 and the second fluid chamber 6 are fluidly separated from each other via this.
  • the pressure relief valve 18 is located in the feed from the pilot valve 15 for the control oil to the control oil chamber 25 of the main valve 14 and is designed such that when exceeding a certain fluid pressure at the first port 11, this feed is connected to the second port 12 for the tank and thereby the control oil pressure collapses.
  • the throttle body 2 is deflected to the right.
  • the throttle cross-section 1 opens and hydraulic oil flows under pressure from the first port 11 to the third port 13 and from there to the hydraulic lift drive 35, in the present case a one-way hydraulic cylinder.
  • This state corresponds to the OPEN-drive operation of the lift control valve.
  • the position of the throttle body 2 via the sensor 10 as an electrical position signal for an electronic control can be tapped and is available for a determination of the flowing through the throttle cross-section volume flow hydraulic oil, without requiring a determination of pressure values.
  • the changeover valve 8 remains in its ON position during the OPEN-DRIVE operation, since the spring chamber 24 on the right-hand side of its piston valve, which is not relieved of pressure in this operating situation, is in fluid communication with the second fluid chamber 6 and third fluid chamber 7 via a throttle point in the piston valve and whose spring compensates for the slight overpressure in the first fluid space 5 with respect to the pressures in the second 6 and third fluid space 7 or in the spring space 24.
  • the control oil pressure can push the spool 17 of the main valve 14 into the in-port valve 13 Fig. 2 Move shown position to the right, which lifts the spring-loaded ball, which closes the discharge port 19 fluid-tight, with its actuating pin 29 from its seat.
  • the first fluid chamber 5 is connected directly via the main valve 14 and the spring chamber 24 of the changeover valve 8 indirectly via the discharge opening 19 and the throttle sleeve 28 with the second port 12 and the tank 34 and thereby relieved of pressure.
  • the fluid pressure in the second fluid space 6 in conjunction with the axial surfaces of the spool of the switching valve 8, to which it acts, is sufficient to deflect this spool against the spring force to the right.
  • the first fluid space 5 is connected to the third fluid space 7, while the second fluid space 6 is separated therefrom.
  • the fluid pressure in the second fluid chamber 6 which acts axially only on an annular surface of the throttle body 2, in conjunction with the fluid pressure in the first fluid chamber 5, which extends to the end face of the throttle body. 2 acts to move the throttle body 2 from the home position to the right and thereby open the throttle area 1.
  • the hydraulic fluid flows from the second fluid chamber 6 via the throttle cross-section 1 in the first fluid chamber 5 and from there via the main valve 14 and the second port 12 in the tank 34.
  • This state corresponds to the AB drive operation of the lift control valve, said Again, as already in the previously described ON-ride operation, the position of the throttle body 2 via the sensor 10 as an electrical position signal for an electronic control (not shown) can be tapped and so for a determination of the now in the reverse direction through the throttle section. 1 flowing volume flow hydraulic oil is available, again without the need for this purpose, a determination of system pressures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

    TECHNISCHES GEBIET
  • Die Erfindung betrifft ein Liftregelventil, eine hydraulische Liftanlage mit dem Liftregelventil sowie ein Verfahren zum Betrieb der Liftanlage gemäss den Oberbegriffen der unabhängigen Patentansprüche.
  • STAND DER TECHNIK
  • Bei hydraulischen und pneumatischen Anlagen kommen heute verschiedenste Anordnungen zur Bereitstellung von veränderbaren Drosselquerschnitten für darin geführte Fluidströme zum Einsatz, und zwar sowohl zur Regelung von Drücken und/oder Volumenströmen als auch zu deren Erfassung. Die Veränderung des Drosselquerschnitts erfolgt dabei entweder durch externen Stelleingriffs mittels mechanischer, hydraulischer, pneumatischer oder elektrischer Stellantriebe, z.B. bei Regelventilen, oder durch den Druck, eine Druckdifferenz und/oder eine Strömungskraft des in der Anordnung geführten Fluids, wie z.B. bei Druckbegrenzungsventilen oder Rückschlagventilen. Letztgenannte Anordnungen weisen den Vorteil auf, dass infolge der relativ einfachen hydraulischen/pneumatischen Kopplung und der Unabhängigkeit von Hilfsenergie eine hohe Betriebssicherheit erreicht wird. Nachteilig ist hier jedoch, dass diese Anordnungen typischerweise nur in einer Durchströmungsrichtung einsetzbar sind. Dies stellt bei Liftregelventilen für hydraulischen Liftanlagen, bei denen je nach Betriebssituation in ihrer Strömungsrichtung wechselnde Fluidströme auftreten, ein Problem dar, welches heute durch Verwendung mehrerer solcher Anordnungen und eine aufwendige Verschaltung derselben gelöst wird. Dies ist jedoch mit einem beachtlichen finanziellen und apparatetechnischen Aufwand verbunden und führt zudem oftmals zu nicht unerheblichen Unterhaltskosten.
  • Aus US 3,981,478 ist ein umschaltbares Durchflussregelventil bekannt.
  • DARSTELLUNG DER ERFINDUNG
  • Es stellt sich die Aufgabe, ein Liftregelventil zur Verfügung zu stellen, welches die zuvor genannten Nachteile des Standes der Technik nicht aufweist oder zumindest teilweise vermeidet.
  • Diese Aufgabe wird durch das Liftregelventil gemäss Patentanspruch 1 gelöst.
  • Demgemäss weist das Liftregelventil eine Anordnung zur Bereitstellung eines veränderbaren Drosselquerschnitts für einen Fluidstrom, bevorzugterweise für einen Flüssigkeitsstrom, z.B. einen Strom aus Hydrauliköl, auf. Diese Anordnung umfasst eine Drosselanordnung und eine Antriebsanordnung. Die Drosselanordnung bildet einen durch Bewegung eines Drosselkörpers veränderbaren Drosselquerschnitt. Die Antriebsanordnung weist ein beweglich in einem Gehäuse angeordnetes Antriebselement auf, welches mit dem Drosselkörper der Drosselanordnung derartig gekoppelt ist, dass der Drosselquerschnitt der Drosselanordnung durch Veränderung der Relativposition des Antriebselements im Gehäuse veränderbar ist. Bevorzugterweise erfolgt die Kopplung zwischen Drosselkörper und Antriebselement auf hydraulische oder mechanische Weise, mit Vorteil durch gemeinsame insbesondere einstückige Ausbildung von Drosselkörper und Antriebselement.
  • Dabei ist die Anordnung derartig ausgebildet, dass das Antriebselement permanent mit einer Federkraft (die anspruchsgemässe erste Federkraft) beaufschlagt ist oder, z.B. durch Zuführung von Hilfsenergie, mit einer solchen Federkraft beaufschlagt werden kann. Die Federkraft wirkt in einer anspruchsgemässen ersten Richtung auf das Antriebselement ein, in welcher dieses im Gehäuse beweglich ist. Hierzu ist es z.B. denkbar, dass ein Federelement oder ein unter Druck stehendes kompressibles Medium in geeigneter Richtung eine Druckkraft direkt auf das Antriebselement und/oder auf den mit dem Antriebselement gekoppelten Drosselkörper ausübt. Die Federkraft bewirkt, dass das Antriebselement bei Abwesenheit mindestens gleich grosser, in einer der ersten Richtung entgegen gesetzten anspruchsgemässen zweiten Richtung auf das Antriebselement einwirkender Kräfte in einer Grundposition im Gehäuse positioniert wird.
  • Weiter ist die Anordnung derartig ausgebildet, dass das Antriebselement infolge von Fluiddrücken in einem ersten Fluidraum der Anordnung, welcher mit einer ersten Seite des Drosselquerschnitts permanent in fluidischen Kontakt steht oder mit dieser ersten Seite in fluidischen Kontakt bringbar ist, und einem zweiten Fluidraum der Anordnung, welcher mit der anderen, zweiten Seite des Drosselquerschnitts permanent in fluidischen Kontakt steht oder mit dieser zweiten Seite in fluidischen Kontakt bringbar ist, mit einer zweiten und einer dritten Kraft beaufschlagbar ist, welche beide in der anspruchsgemässen zweiten Richtung wirken, also entgegen der Federkraft.
  • Auch ist die Anordnung derartig ausgebildet, dass infolge eines Fluiddruckes in einem dritten Fluidraum der Anordnung das Antriebselement mit einer in der anspruchsgemässen ersten Richtung wirkenden vierten Kraft beaufschlagbar ist, also mit einer vierten Kraft, welche in Richtung der Federkraft wirkt.
  • Durch diese Ausgestaltung ergibt sich, dass das Antriebselement für den Fall, dass keine weiteren Kräfte in der anspruchsgemässen ersten und der anspruchsgemässen zweiten Richtung auf dieses einwirken, und dass aus der zweiten, der dritten und der vierten Kraft eine Gesamtkraft resultiert, welche in der der Federkraft entgegen gesetzten anspruchsgemässen zweiten Richtung wirkt und die Federkraft in der Grundposition übersteigt, aus der Grundposition heraus bewegt wird, bis ein Kräftegleichgewicht zwischen der in der jeweiligen Relativposition auf das Antriebselement einwirkenden Federkraft und der aus der zweiten, der dritten und der vierten Kraft in Richtung entgegen der Federkraft wirkenden resultierenden Kraft eintritt oder eine maximale Bewegungsposition des Antriebselements erreicht ist.
  • Weiter umfasst die Anordnung eine Umschaltanordnung, z.B. ein hydraulisch betätigbares 3/2-Wegeventil, mittels welcher wahlweise entweder der erste und der dritte Fluidraum der Anordnung oder der zweite und der dritte Fluidraum der Anordnung fluidisch miteinander verbindbar sind. Wenn die erste Seite des Drosselquerschnitts fluidisch in Verbindung mit dem ersten Fluidraum steht und die zweite Seite des Drosselquerschnitts fluidisch in Verbindung mit dem zweiten Fluidraum steht, ist das Antriebselement je nach Schaltzustand, d.h. je nachdem, ob der dritte Fluidraum mit dem ersten oder mit den zweiten Fluidraum verbunden ist, entweder bei Auftreten einer positiven oder bei Auftreten einer negativen Druckdifferenz zwischen der ersten Seite und der zweiten Seite des Drosselspaltes aus der Grundposition heraus bewegbar, zum Öffnen bzw. Vergrössern des Drosselquerschnitts.
  • Auf diese Weise wird eine Anordnung zur Bereitstellung eines Drosselquerschnitt für einen Fluidstrom zur Verfügung gestellt, bei welcher der Drosselquerschnitt in Abhängigkeit von einer über diesem vorliegenden Druckdifferenz veränderbar bzw. öffenbar ist und bei welcher die Polarität der Druckdifferenz, mittels welcher der Drosselquerschnitt veränderbar bzw. öffenbar ist, umschaltbar ist.
  • In einer bevorzugten Ausführungsform ist die Anordnung derartig ausgebildet, dass der Drosselquerschnitt bei in der Grundposition angeordnetem Antriebselement vollständig geschlossen ist, also die beiden Seiten des Drosselquerschnitts voneinander getrennt sind, so dass in dieser Position der erste Fluidraum vom zweiten Fluidraum getrennt ist. Diese Trennung erfolgt bevorzugterweise derart, dass bei den bestimmungsgemässen Drücken und den vorgesehenen Fluiden eine leckagefreie Trennung vorliegt. Dies kann beispielsweise dadurch erreicht werden, dass die Drosselanordnung als Sitzventil ausgestaltet wird. Solche Ausführungsformen der Anordnung können z.B. als umschaltbare Rückschlagventile verwendet werden, was eine bevorzugte Verwendung derselben darstellt.
  • In einer weiteren bevorzugten Ausführungsform weist die Anordnung Mittel zur Ermittlung der Öffnung des Drosselquerschnitts der Drosselanordnung, der Relativposition des Antriebselements im Gehäuse und/oder der Relativposition des Drosselkörpers der Drosselanordnung auf, also Mittel, mit denen eine den jeweiligen Drosselquerschnitt repräsentierende Grösse ermittelt werden kann. Bevorzugterweise umfassen diese Mittel Sensoren, mit denen die Relativpositionen des Antriebselements und/oder des Drosselkörpers in elektrische Signale umwandelbar sind, so dass eine elektronische Auswertung der ermittelten Messwerte möglich ist. Solche Ausführungsformen der Anordnung können z.B. als Durchflussmesser mit umschaltbarer Durchströmungsrichtung verwendet werden, was eine weiter bevorzugte Verwendung der Anordnung darstellt. Insbesondere bei nicht-kompressiblen Fluiden wie z.B. Wasser bzw. bei nur sehr gering kompressiblen Fluiden wie z.B. Mineralöl ergibt sich der Vorteil, dass sich bei bekannter Charakteristik der Anordnung und bekannter Viskosität des Fluids alle übrigen für die Ermittlung des Volumenstroms erforderlichen Grössen, das sind der Drosselquerschnitt, die hydraulische Kennziffer der Anordnung bei diesem Drosselquerschnitt und bei der gegebenen Viskosität des Fluids sowie die Druckdifferenz zwischen der ersten und der zweiten Seite des Drosselquerschnitts, mit guter Genauigkeit aus der ermittelten, den Drosselquerschnitt repräsentierenden Grösse ergeben.
  • Besonders bevorzugt sind Ausführungsformen, welche die Merkmale der beiden zuvor erwähnten Ausführungsformen miteinander kombinieren. Diese können als kombinierte umschaltbare Durchflussmess- und Rückschlagventileinheiten verwendet werden. Diese Funktionalitäten werden beispielsweise bei Liftregelventilen benötigt, wo sie heute in aufwendiger Weise durch Kombination mehrerer Einzelanordnungen bereitgestellt werden.
  • In noch einer weiteren bevorzugten Ausführungsform ist die Anordnung derartig ausgebildet, dass die zweite Kraft und die dritte Kraft bei identischen Fluiddrücken im ersten und im zweiten Fluidraum etwa gleich gross sind, was z.B. dadurch zu erreichen ist, dass bei direkter Krafteinleitung ohne Über- bzw. Untersetzungsmechanismen die zur Erzeugung der jeweiligen Kraft verwendeten Wirkflächen gleich gross ausgebildet werden. Hierdurch kann erreicht werden, dass das Betriebsverhalten der Anordnung in beiden Schaltzuständen, d.h. sowohl wenn der erste und der dritte Fluidraum über die Umschaltanordnung miteinander verbunden sind als auch wenn der zweite und der dritte Fluidraum über die Umschaltanordnung miteinander verbunden sind, abgesehen von der umgekehrten Polarität der zur Betätigung des Antriebselements erforderlichen Druckdifferenz im Wesentlichen identisch ist.
  • In noch einer weiteren bevorzugten Ausführungsform ist die Anordnung derartig ausgebildet, dass sich bei identischen Fluiddrücken im ersten, zweiten und dritten Fluidraum die zweite, dritte und vierte Kraft im Wesentlichen gegenseitig aufheben. Dies kann z.B. dadurch erreicht werden, dass bei direkter Krafteinleitung ohne Über- bzw. Untersetzungsmechanismen die zur Erzeugung der zweiten und dritten Kraft verwendeten Wirkflächen in der Summe gleich gross ausgebildet werden wie die zur Erzeugung der vierten Kraft verwendete Wirkfläche. Hierdurch kann ein besonders feinfühliges Ansprechverhalten der Anordnung erreicht werden, derart, dass bereits geringfügige Druckdifferenzen zwischen der ersten und der zweiten Seite des Drosselquerschnitts zu einem Öffnen bzw. sich Vergrössern des Drosselquerschnitts führen.
  • Weist das Antriebselement axiale Flächen auf, die zur Erzeugung der zweiten, dritten und vierten Kraft jeweils mit dem ersten, dem zweiten und dem dritten Fluidraum fluidisch in Verbindung stehen, was bevorzugt ist, so erfolgt eine direkte und verlustfreie Krafteinleitung in das Antriebselement.
  • Mit Vorteil werden das Antriebselement der Antriebsanordnung und der Drosselkörper der Drosselanordnung von ein und demselben einstückigen oder mehrstückigen Bauteil gebildet. Hierdurch lässt sich ein einfacher und kompakter Aufbau mit einer verlustfreien Kopplung zwischen Antriebselement und Drosselkörper realisieren.
  • Weiter weist das erfindungsgemässe Liftregelventil einen ersten Anschluss für eine von einer Hydraulikpumpe kommende Zuleitung für Hydraulikflüssigkeit auf, einen zweiten Anschluss für eine Rückleitung von Hydraulikflüssigkeit in einen Tank und einen dritten Anschluss für eine zu einem Hydraulikantrieb einer Liftanlage führende Hydraulikleitung. Zudem weist das Liftregelventil eine Steueranordnung auf, mit welcher die erste Seite des Drosselquerschnitts sowie der erste Fluidraum der Anordnung fluidisch wahlweise mit dem ersten Anschluss oder mit dem zweiten Anschluss verbunden werden können, je nachdem, ob das Liftregelventil in eine Position gebracht werden soll, in welcher es bei bestimmungsgemässer Verwendung die Durchleitung von Hydraulikflüssigkeit von einer Hydraulikpumpe zu einem Hydraulikantrieb einer Liftanlage ermöglichen soll (AUF-Fahrt-Betrieb) oder die Rückleitung von Hydraulikflüssigkeit von einem Hydraulikantrieb einer Liftanlage in einen Tank (AB-Fahrt-Betrieb). Weiter ist das Liftregelventil derartig ausgebildet, dass die zweite Seite des Drosselquerschnitts sowie der zweite Fluidraum der Anordnung mit dem dritten Anschluss verbunden sind oder mit diesem verbunden werden können.
  • Auf diese Weise ist die Anordnung in die bei bestimmungsgemässem AUF-Fahrt-Betrieb und AB-Fahrt-Betrieb des Liftregelventils in wechselnder Richtung von der Hydraulikflüssigkeit durchströmte Hauptleitung desselben eingebunden und kann bei entsprechender Ausgestaltung wie bereits zuvor beschrieben z.B. Aufgaben als umschaltbares Rückschlagventil und/oder als umschaltbarer Durchflussmesser wahrnehmen, was bevorzugt ist. Besonders bevorzugt ist es, wenn die Anordnung, wie eingangs dargelegt, derartig ausgebildet ist, dass sie eine kombinierte, bezüglich der Durchströmungsrichtung umschaltbare Durchflussmess- und Rückschlagventileinheit bildet, also die beiden zuvor genannten Aufgaben gleichzeitig wahrnehmen kann. Hierdurch lassen sich der anlagentechnische Aufwand gegenüber bisherigen Liftregelventilen mit gleicher Funktionalität deutlich senken und entsprechend Bereitstellungs- und Unterhaltskosten einsparen.
  • Dabei ist das Liftregelventil in einer bevorzugten Ausführungsform derartig ausgebildet, dass es im bestimmungsgemässen Betrieb bei einem Verbinden der ersten Seite des Drosselquerschnitts sowie des ersten Fluidraums mit dem ersten Anschluss zwangsläufig auch zu einem Verbinden des zweiten Fluidraumes mit dem dritten Fluidraum durch die Umschaltanordnung kommt und dass ein Verbinden der ersten Seite des Drosselquerschnitts sowie des ersten Fluidraumes mit dem zweiten Anschluss zwangsläufig dazu führt, dass der erste Fluidraum durch die Umschaltanordnung mit dem dritten Fluidraum verbunden wird. Hierdurch wird erreicht, dass die Anordnung bei einem Umschalten der Steueranordnung des Liftregelventils von AUF-Fahrt-Betrieb auf AB-Fahrt-Betrieb und umgekehrt jeweils ebenfalls umgeschaltet wird und dadurch an die jeweilige Durchströmungsrichtung angepasst wird.
  • Mit Vorteil kommt als Steueranordnung zur Ermöglichung des wahlweisen Verbindens der ersten Seite des Drosselquerschnitts entweder mit dem ersten oder mit dem zweiten Anschluss des Liftregelventils ein bevorzugterweise stetig wirkendes, bevorzugterweise hydraulisch betätigbares Hauptventil zum Einsatz, welches bevorzugterweise in Kolbenschieberbauweise ausgeführt ist. Derartige Steueranordnungen sind erprobt, betriebssicher und wartungsarm.
  • Weiter ist es bei Ausführungsformen, bei denen die Steueranordnung des Liftregelventils ein hydraulisch betätigbares Hauptventil ist, von Vorteil, dass das Liftregelventil ein Ventil aufweist, mit welchem die Fluidzuführung zum hydraulischen Antrieb des Hauptventils bei Erreichen bzw. Überschreiten eines bestimmten Druckes am ersten Anschluss fluidisch mit dem zweiten Anschluss verbunden wird, also mit dem Anschluss, der für eine Rückleitung von Hydraulikflüssigkeit in einen Tank vorgesehen ist. Hierdurch wird es möglich, bestimmte Stellungen des Hauptventils und damit bestimmte Betriebszustände bzw. Betriebszustandsänderungen des Liftregelventils nur dann zuzulassen, wenn am Anschluss für die Zuleitung von Hydraulikflüssigkeit von einer Hydraulikpumpe (anspruchsgemässer ersten Anschluss) kein nennenswerter Fluiddruck ansteht, z.B. wenn die dort angeschlossene Hydraulikpumpe abgeschaltet oder der Hydraulikflüssigkeitsstrom abgesteuert ist.
  • Auch ist es bei Ausführungsformen, bei denen die Steueranordnung des Liftregelventils ein hydraulisch betätigbares Hauptventil aufweist, bevorzugt, wenn das Liftregelventil ein elektrisch betätigbares Vorsteuerventil für das hydraulisch betätigbare Hauptventil aufweist, mittels welchem der hydraulische Antrieb des Hauptventils fluidisch mit der zweiten Seite des Drosselquerschnitts bzw. mit dem dritten Anschluss verbunden oder getrennt werden kann. Auf diese Weise kann bei bestimmungsgemässer Verwendung des Liftregelventils der durch die Gewichtskraft eines damit betriebenen Lifts erzeugte Fluiddruck in der zum Liftantrieb führenden Leitung zur Betätigung des Hauptventils genutzt werden, wodurch sich der Vorteil ergibt, dass eine kontrollierte AB-Fahrt auch bei Ausfall der Hydraulikpumpe möglich ist.
  • Dabei ist es weiter bevorzugt, dass die fluidische Verbindung zwischen dem Vorsteuerventil und dem hydraulischen Antrieb des Hauptventils eine zum zweiten Anschluss, d.h. zum Tankanschluss führende Drosselstelle aufweist. Diese Drosselstelle weist mit Vorteil einen in Abhängigkeit von der Ventilstellung des Hauptventils veränderbaren Drosselquerschnitt auf. Bei in Kolbenschieberbauweise ausgeführtem Hauptventil ist es bevorzugt, dass der Drosselquerschnitt in Abhängigkeit von der Position des Kolbenschiebers veränderbar ist, was vorteilhafterweise derart realisiert wird, dass der Drosselquerschnitt zwischen dem Kolbenschieber und einem feststehenden Bauteil des Hauptventils gebildet wird. Hierdurch wird eine Druckentlastung der Verbindungsleitung zwischen dem Vorsteuerventil und dem Hauptventil bei geschlossenem Vorsteuerventil sichergestellt. Bei Ausführungen mit veränderbarem Drosselquerschnitt wird es zudem möglich, gezielt Einfluss auf das Ansprechverhalten des Hauptventils zu nehmen.
  • In einer weiteren bevorzugten Ausführungsform ist das Liftregelventil derartig ausgebildet, dass bei am ersten Anschluss unter Druck anstehender Hydraulikflüssigkeit ein Verbinden der ersten Seite des Drosselquerschnitts der Drosselanordnung mit dem zweiten Anschluss nicht möglich ist. Hierdurch kann sichergestellt werden, dass ein AB-Fahrt-Betrieb einer mit diesem Liftregelventil gebildeten Anlage nur bei abgestellter Hydraulikpumpe oder abgesteuertem Hydraulikfluidstrom möglich ist.
  • In noch einer weiteren bevorzugten Ausführungsform des Liftregelventils weist die Umschaltanordnung der Anordnung ein hydraulisch betätigbares Umschaltventil auf, welches bei bestimmungsgemässem Betrieb durch ein Öffnen bzw. Schliessen einer Druckentlastungsöffnung schaltbar ist. Dabei ist die Steueranordnung des Liftregelventils derartig ausgebildet, dass sie beim Verbinden der ersten Seite des Drosselquerschnitts der Drosselanordnung mit dem zweiten Anschluss (Tankanschluss) die Druckentlastungsöffnung des Umschaltventils öffnet. Hierdurch wird auf einfache und betriebssichere Weise eine Kopplung von Steueranordnung und Umschaltanordnung möglich.
  • Generell ist es bevorzugt, dass das Liftregelventil derartig ausgebildet ist, dass die für die Betätigung von in diesem beinhalteten hydraulisch betätigbaren Ventilen benötigte Betätigungsenergie der im Betrieb im Liftregelventil geführten Hydraulikflüssigkeit entnehmbar ist. Auf diese Weise kann auf weitere Zu- und Abführungsleitungen für Hydraulikflüssigkeit verzichtet werden und es ergibt sich eine Liftregelventileinheit mit einem Minimum an Schnittstellen.
  • Ein zweiter Aspekt der Erfindung betrifft eine hydraulische Liftanlage mit einem Liftregelventil gemäss dem ersten Aspekt der Erfindung. Die Liftanlage weist eine mit dem ersten Anschluss des Liftregelventils verbundene oder verbindbare Hydraulikpumpe, einen mit dem zweiten Anschluss des Liftregelventils verbundenen oder verbindbaren Tank für Hydraulikflüssigkeit und einen mit dem dritten Anschluss des Liftregelventils verbundenen oder verbindbaren Hydraulikantrieb auf, mit welchem ein Lift der Liftanlage angetrieben werden kann. Der Hydraulikantrieb ist bevorzugterweisen als Linearantrieb in Form eines Hydraulikzylinders ausgebildet, er kann jedoch auch anders ausgebildet sein, z.B. als rotatorischer Hydraulikmotor. Die Bildung einer derartigen Liftanlage stellt eine bestimmungsgemässe Verwendung des Liftregelventils gemäss dem ersten Aspekt der Erfindung dar.
  • In einer bevorzugten Ausführungsform weist die Liftanlage ein Liftregelventil mit einer Anordnung auf, welche mit Mitteln zur Ermittlung der Öffnung des Drosselquerschnitts der Drosselanordnung, der Relativposition des Antriebselements und/oder der Relativposition des Drosselkörpers der Drosselanordnung ausgestattet ist. Weiter umfasst diese Ausführungsform der Liftanlage eine Steuerung für den Fahrbetrieb des Lifts, welche derartig mit den zuvor erwähnten Mitteln verbunden ist und ausgestaltet ist, dass sie im Betrieb über diese Mittel Informationen über die Öffnung des Drosselquerschnitts, die Relativposition des Antriebselements und/oder die Relativposition des Drosselkörpers erhalten kann und diese bei der Steuerung bzw. Regelung des Fahrbetriebes eines Lifts der Liftanlage berücksichtigen kann, und zwar bevorzugterweise als Parameter, welche den Hydraulikflüssigkeitsstrom, der den Drosselquerschnitt der Anordnung durchströmt, repräsentieren, und insbesondere die damit verbundene Fahrtgeschwindigkeit des Lifts. Mit derartigen hydraulischen Liftanlagen lässt sich bei geringem anlagentechnischen Aufwand eine sehr genaue Regelung der Fahrtgeschwindigkeit des Lifts realisieren.
  • Ein dritter Aspekt der Erfindung betrifft ein Verfahren zum Betrieb einer Liftanlage gemäss dem zweiten Aspekt der Erfindung. Das Verfahren umfasst folgende Schritte:
    • Anheben eines Lifts der Liftanlage durch Förderung eines Volumenstromes von Hydraulikflüssigkeit von der Hydraulikpumpe zum Hydraulikantrieb des Lifts, wobei die Hydraulikflüssigkeit den Drosselquerschnitt der Drosselanordnung der Anordnung von der ersten Seite des Drosselquerschnitt zur zweiten Seite des Drosselquerschnitts durchströmt und der zweite Fluidraum und der dritte Fluidraum der Anordnung fluidisch über die Umschaltanordnung miteinander verbunden sind und zudem fluidisch mit der zweiten Seite des Drosselquerschnitts verbunden sind, während die erste Seite des Drosselquerschnitts fluidisch mit dem ersten Fluidraum verbunden ist
    • oder
    • Absenken eines Lifts der Liftanlage durch Förderung eines Volumenstromes von Hydraulikflüssigkeit vom Hydraulikantrieb des Lifts in den Tank, wobei die Hydraulikflüssigkeit den Drosselquerschnitt der Drosselanordnung der Anordnung von der zweiten Seite des Drosselquerschnitt zur ersten Seite des Drosselquerschnitts durchströmt und der erste Fluidraum und der dritte Fluidraum der Anordnung fluidisch über die Umschaltanordnung miteinander verbunden sind und zudem fluidisch mit der ersten Seite des Drosselquerschnitts verbunden sind, während die zweite Seite des Drosselquerschnitts fluidisch mit dem zweiten Fluidraum verbunden ist;
    • Ermitteln der Öffnung des Drosselquerschnitts der Drosselanordnung, der Relativposition des Antriebselements der Antriebsanordnung und/oder der Relativposition des Drosselkörpers der Drosselanordnung der Anordnung während der Förderung des Volumenstromes von Hydraulikflüssigkeit durch den Drosselquerschnitt;
    • Vergleichen der ermittelten Öffnung des Drosselquerschnitts, Relativposition des Antriebselements, der Relativposition des Drosselkörpers der Drosselanordnung und/oder eines aus einem oder mehreren dieser ermittelten Werte errechneten Werts mit einem Sollwert; und
    • Verändern des Volumenstromes der durch den Drosselquerschnitt geförderten Hydraulikflüssigkeit bei Feststellung einer Abweichung vom Sollwert derart, dass sich die Öffnung des Drosselquerschnitts, die Relativposition des Antriebselements, die Relativposition des Drosselkörpers und/oder der errechnete Wert dem Sollwert annähert.
  • Dabei ist es bevorzugt, dass der durch den Drosselquerschnitt der Drosselanordnung geförderte Volumenstrom von Hydraulikflüssigkeit mittels eines Algorithmus ausschliesslich aus der ermittelten Öffnung des Drosselquerschnitts, der ermittelten Relativposition des Antriebselements und/oder der ermittelten Relativposition des Drosselkörpers der Drosselanordnung ermittelt wird, allenfalls unter zusätzlicher Berücksichtigung eines zusätzlich ermittelten Temperaturwertes der Hydraulikflüssigkeit.
  • Hierdurch ist es möglich, die Liftanlage gemäss dem zweiten Aspekt der Erfindung im AUF-Fahrt-Betrieb und im AB-Fahrt-Betrieb präzise bezüglich der Fahrtgeschwindigkeit des Lift zu regeln, ohne dass hierzu die Ermittlung von Systemdrücken erforderlich ist, so dass ein kostengünstiger und besonders sicherer Betrieb möglich wird.
  • In einer bevorzugten Ausführungsform des Verfahrens wird beim Anheben des Lifts der durch den Drosselquerschnitt der Drosselanordnung geförderte Volumenstrom von Hydraulikflüssigkeit dadurch verändert, dass mit der Steuereinheit des Liftregelventils ein grösserer oder kleinerer Teil des von der Hydraulikpumpe geförderten Volumenstromes in den Tank abgesteuert wird. Auf diese Weise wird die Verwendung von günstigen Konstantpumpen möglich und die gesamte Regelung erfolgt über das Liftregelventil.
  • KURZE BESCHREIBUNG DER ZEICHNUNGEN
  • Weitere Ausgestaltungen, Vorteile und Anwendungen der Erfindung ergeben sich aus den abhängigen Ansprüchen und aus der nun folgenden Beschreibung anhand der Figuren. Dabei zeigen:
    • Fig. 1 einen Schnitt durch ein erfindungsgemässes Liftregelventil in einer ersten Betriebssituation;
    • Fig. 2 einen Schnitt durch das Liftregelventil gemäss Fig. 1 in einer zweiten Betriebssituation; und
    • Fig. 3 ein Hydraulikschema einer Liftanlage mit dem Liftregelventil gemäss den vorangehenden Figuren.
    WEGE ZUR AUSFÜHRUNG DER ERFINDUNG
  • Fig. 1 zeigt einen Schnitt durch ein erfindungsgemässes Liftregelventil in einem stromlosen Ruhezustand des Liftregelventils. Wie zu erkennen ist, weist das Liftregelventil ein massives Metallgehäuse 3 auf, innerhalb welchem durch Einsetzen verschiedener Funktionseinheiten von aussen her ein hydraulisch betätigbares 3/4-Wege-Hauptventil 14, ein elektrisch betätigbares Vorsteuerventil 15 für das Hauptventil 14, ein Druckbegrenzungsventil 18, ein entriegelbares Rückschlagventil 22 sowie ein Umschaltventil 8 für das Rückschlagventil 22 gebildet sind. Das Rückschlagventil 22 bildet zusammen mit dem Umschaltventil 8 eine anspruchsgemässe Anordnung zur Bereitstellung eines veränderbaren Drosselquerschnitts für einen mit dem Liftregelventil zu regelnden Hydraulikflüssigkeitsstrom für einen hydraulischen Liftantrieb.
  • Das Hauptventil 14 ist als stetig wirkendes Schieberventil ausgebildet, mit einem Kolbenschieber 17, der an seinem linken Ende einen Steuerölraum 25 begrenzt und an diesem Ende zusammen mit einer Steuerkante des Gehäuses 3 eine in Abhängigkeit von der Kolbenschieberstellung veränderbare Drosselstelle 16 bildet. An seinem rechten Ende begrenzt der Kolbenschieber 17 einen Federraum 27, in welchem eine Rückstellfeder 26 angeordnet ist, welche den Kolbenschieber 17 bei drucklosem Steuerölraum 25 nach links in eine Grundposition schiebt. Der Federraum 27 ist über einen Teil seiner axialen Erstreckung und an seinem dem Kolbenschieber 17 abgewandten Ende von einer Drosselhülse 28 begrenzt, welche diesen Raum 27 über eine durch sie gebildete Drosselstelle zum zweiten Anschluss 12 (Tankanschluss) hin druckentlastet. Innerhalb des Kolbenschiebers 17 ist weiter eine zentrale Bohrung 30 mit einem Rückschlagventil 31 angeordnet, über welche Öl von einer radialen Nut 32 am Umfang des Kolbenschiebers 17 in den Federraum 27 geleitet werden kann.
  • Das Vorsteuerventil 15 zur Ansteuerung des Hauptventils 14 ist als stetig wirkendes Sitzventil ausgebildet, welches im dargestellten stromlosen Zustand in Richtung seiner bestimmungsgemässen Durchströmungsrichtung ein Rückschlagventil bildet.
  • Das Hauptventil 14 und das zugehörige Vorsteuerventil 15 bilden die anspruchsgemässe Steuereinheit des Liftregelventils.
  • Das entriegelbare Rückschlagventil 22 ist in sitzbauweise ausgebildet, mit einem im Gehäuse 3 entgegen der Kraft einer Feder 23 (die anspruchsgemässe erste Kraft) verschiebbaren Drosselkörper 2 und einem fest im Gehäuse 3 angeordneten Ventilsitzkörper 9. Der zwischen Drosselkörper 2 und Ventilsitzkörper 9 gebildete Drosselquerschnitt 1 ist in einer Grundposition bei nicht-ausgelenktem Drosselkörper 2 fluiddicht geschlossen und durch Auslenkung des Drosselkörpers 2 aus der Grundposition in Abhängigkeit von der Position des Drosselkörpers 2 veränderbar.
  • Der Drosselkörper 2 bildet im vorliegenden Fall gleichzeitig auch das anspruchsgemässe Antriebselement 4, indem er axiale Flächen aufweist, die in direktem Kontakt mit einem anspruchsgemässen ersten Fluidraum 5, einem anspruchsgemässen zweiten Fluidraum 6 und einem anspruchsgemässen dritten Fluidraum 7 stehen, so dass infolge von Fluiddrücken in diesen Fluidräumen 5, 6, 7 entsprechende anspruchsgemässe zweite, dritte und vierte Kräfte in und entgegen der Kraftrichtung der Feder 23 auf den Drosselkörper 2 ausgeübt werden können. Übersteigt die Summe dieser zweiten, dritten und vierten Kräfte die Kraft der Feder 23 in entgegengesetzter Richtung, so wird der Drosselkörper 2 vom Ventilsitzkörper 9 abgehoben und der Drosselquerschnitt 1 wird soweit geöffnet, dass ein Gleichgewicht zwischen der Federkraft und der Summe der zweiten, dritten und vierten Kräfte in Richtung entgegen der Federkraft vorliegt. Bei der vorliegenden Anordnung sind die Verhältnisse der axialen Flächen des Drosselkörpers 2, 4 so gewählt, dass sich die zweite, die dritte und die vierte Kraft bei identischem Fluiddruck im ersten, zweiten und dritten Fluidraum 5, 6, 7 gegenseitig aufheben. Wie weiter zu erkennen ist, ist der Drosselkörper 2 an seinem rechten Ende mit einem Positionssensor 10 gekoppelt, mit welchem seine Position im Gehäuse 3 in Form von elektrischen Signalen ermittelt werden kann, zur Ermittlung des im Betrieb durch den Drosselquerschnitt 1 des Drosselventils 22 strömenden Volumenstromes von Hydraulikfluid.
  • Das Umschaltventil 8, welches als anspruchsgemässe Umschaltanordnung zum Umschalten des Rückschlagventils 22 dient, ist als schaltendes 3/2-Wegeventil in Schieberbauweise ausgebildet und befindet sich in der in Fig. 1 dargestellten Situation in einer Stellung, in welcher es den zweiten Fluidraum 6 und den dritten Fluidraum 7 fluidisch miteinander verbindet und diese vom ersten Fluidraum 5 trennt. Hierdurch lässt sich der Drosselquerschnitt 1 des Rückschlagventils 22 nur öffnen, wenn im ersten Fluidraum 5 ein Fluiddruck erzeugt wird, welcher den Fluiddruck im zweiten 6 und im dritten Fluidraum 7 übersteigt und zudem zusätzlich gross genug ist, um die Kraft der Feder 23 in der Grundposition zu überwinden.
  • Wie zu erkennen ist, ist der Kolbenschieber des Umschaltventils 8 durch eine Feder derartig belastet, so dass er bei Abwesenheit grösserer in Richtung entgegen der Federkraft wirkender Kräfte in der dargestellten Position gehalten wird. Diese Feder ist in einem Federraum 24 angeordnet, welcher über eine Drosselstelle im Kolbenschieber mit dem zweiten 6 und dritten Fluidraum 7 fluidisch in Verbindung steht. Weiter steht der Federraum 24 fluidisch in Kontakt mit der Stirnseite der Drosselhülse 28 des Hauptventils 14, an welcher sich eine zentrale Druckentlastungsöffnung 19 zur Druckentlastung des Federraumes 24 befindet, welche in der in Fig. 1 dargestellten Betriebssituation von einer federbelasteten Kugel fluiddicht verschlossen ist, so dass der Federraum 24 in dieser Betriebssituation nicht druckentlastet ist. Der Kolbenschieber 17 des Hauptventils 14 weist an seinem rechten Ende einen Betätigungsstift 29 auf, mittels welchem er in einer vollständig ausgesteuerten Position die Druckentlastungsöffnung 19 durch Ausheben der federbelasteten Kugel aus ihrem Sitz öffnen kann und dadurch den Federraum 24 des Umschaltventils 8 mit dem Federraum 27 des Hauptventils 14 fluidisch verbinden kann.
  • Wie weiter insbesondere in Zusammenschau mit Fig. 3 zu erkennen ist, welche das Hydraulikschema einer mit diesem Liftregelventil gebildeten hydraulische Liftanlage zeigt, ist der erste Fluidraum 5, welcher auf der anspruchsgemäsen ersten Seite des Drosselquerschnitts 1 des Rückschlagventils 22 angeordnet ist, über das Hauptventil 14 wahlweise mit einem ersten Anschluss 11 für eine von einer Hydraulikpumpe 33 kommende Zuleitung für Hydraulikflüssigkeit und mit einem zweiten Anschluss 12 für eine Rückleitung von Hydraulikflüssigkeit in einen Tank 34 verbindbar. Der zweite Fluidraum 6, welcher auf der anspruchsgemässen zweiten Seite des Drosselquerschnitts 1 des Rückschlagventils 22 angeordnet ist, ist permanent mit einem dritten Anschluss 13 für eine zu einem Hydraulikantrieb 35 einer Liftanlage führende Hydraulikleitung und mit der Zulaufseite des Vorsteuerventils 15 verbunden. In der dargestellten Grundstellung ist der Drosselspalt 1 vollständig geschlossen, so dass der erste 5 und der zweite Fluidraum 6 über diesen fluidisch voneinander getrennt sind.
  • Das Druckbegrenzungsventil 18 befindet sich in der vom Vorsteuerventil 15 kommenden Zuführung für das Steueröl zum Steuerölraum 25 des Hauptventils 14 und ist derartig ausgebildet, dass bei Übersteigen eines bestimmten Fluiddruckes am ersten Anschluss 11 diese Zuführung mit dem zweiten Anschluss 12 für den Tank verbunden wird und dadurch der Steueröldruck zusammenbricht.
  • Wird nun, wie in Fig. 3 dargestellt, ausgehend von der in Fig. 1 dargestellten Schaltsituation des Liftregelventils der ersten Anschluss 11 mittels einer Hydraulikpumpe 33 mit Hydrauliköl gespeist und der zweite Anschluss mit einem Hydrauliköltank 34 verbunden, aus welchem die Hydraulikpumpe 33 fördert, so wird das Öl durch den hohlen Hauptschieber 17 des Hauptventils 14 zum zweiten Anschluss 12 und zurück zum Tank 34 geleitet, wobei sich im Innern des Schiebers 17 ein Umlaufdruck einstellt. Dieser Umlaufdruck dringt über Spalten in den ersten Fluidraum 5 ein. Durch den am dritten Anschluss 13 des Liftregelventils angeschlossenen Hydraulikantrieb 35 einer Liftanlage, auf welchem das Gewicht des Lifts lastet, ist der Fluiddruck im zweiten 6 und im dritten Fluidraum 7 grösser als der Umlaufdruck, so dass der Drosselquerschnitt 1 des Ventils 22 geschlossen bleibt.
  • Wird nun durch ein Öffnen des Vorsteuerventils 15 der am dritten Anschluss 13 bzw. im zweiten Fluidraum 6 vorliegende Druck zumindest teilweise in den Steuerölraum 25 des Hauptventils 14 geführt und dieses dadurch angesteuert, so wird der Hauptschieber 17 des Ventils 14 nach rechts verschoben, wodurch der Abgang zum Tank verschlossen und der erste Anschluss 11 mit dem ersten Fluidraum 5 verbunden wird. Gleichzeitig wird mit zunehmender Auslenkung des Hauptschiebers 17 der Drosselquerschnitt der veränderbaren Drosselstelle 16 vergrössert, über welchen ein Teil des Steuerölstromes für das Hauptventil 14 zum zweiten Anschluss 12 und in den Tank 34 geleitet wird. Hierdurch muss für eine zunehmende Auslenkung des Kolbenschiebers 17 des Hauptventils 14 das Vorsteuerventil 15 überproportional geöffnet werden, so dass sich eine feinfühlige Einstellbarkeit des Hauptventils 14 ergibt.
  • Sobald der Druck nun im ersten Fluidraum 5 den Fluiddruck im zweiten Fluidraum 6 überschritten hat und zudem auch die Kraft der Feder 23 neutralisiert hat, wird der Drosselkörper 2 nach rechts ausgelenkt. Der Drosselquerschnitt 1 öffnet sich und Hydrauliköl strömt unter Druck vom ersten Anschluss 11 zum dritten Anschluss 13 und von dort zum hydraulischen Liftantrieb 35, im vorliegenden Fall ein einseitig wirkender Hydraulikzylinder. Dieser Zustand entspricht dem AUF-Fahrt-Betrieb des Liftregelventils. Dabei ist die Position des Drosselkörpers 2 über den Sensor 10 als elektrisches Positionssignal für eine elektronische Steuerung (nicht gezeigt) abgreifbar und steht so für eine Ermittlung des durch den Drosselquerschnitt strömenden Volumenstromes Hydrauliköl zur Verfügung, ohne dass es hierzu einer Ermittlung von Druckwerten bedarf.
  • Das Umschaltventil 8 verbleibt beim AUF-Fahrt-Betrieb in seiner Position, da der Federraum 24 auf der rechten Seite seines Kolbenschiebers, welcher in dieser Betriebssituation nicht druckentlastet ist, über eine Drosselstelle im Kolbenschieber mit dem zweiten 6 und dritten Fluidraum 7 fluidisch in Verbindung steht und dessen Feder den geringen Überdruck im ersten Fluidraum 5 gegenüber den Drücken im zweiten 6 und dritten Fluidraum 7 bzw. im Federraum 24 ausgleicht.
  • Wird das Vorsteuerventil 15 wieder geschlossen, so baut sich der Druck im Steuerölraum 25 des Hauptventils 14 über die Drosselstelle 16 ab und der Schieber 17 des Hauptventils 14 wird von der Feder 26 wieder in die in Fig. 1 gezeigte Ausgangslage zurückgeschoben.
  • Für eine Umstellung des Liftregelventils in die in Fig. 2 gezeigte Situation, welche das Liftregelventil im AB-Fahrt-Betrieb zeigt, muss der Schieber 17 des Hauptventils 14, wie zu erkennen ist, in eine vollständig nach rechts ausgelenkte Position gebracht werden.
  • Dies ist allerdings nur möglich, wenn der erste Anschluss 11 drucklos ist, also dieser nicht an eine laufende Hydraulikpumpe 33 angeschlossen ist, da ansonsten spätestens bei einer Kolbenschieberprosition, in welcher die Umfangsnut 32 mit dem Ringraum, in welchen der ersten Anschluss 11 mündet, in Überdeckung gerät, der Federraum 27 des Hauptventils 14 unter Druck gesetzt würde und dadurch eine weitere Auslenkung nach rechts des Kolbenschiebers 17 hydraulisch verhindert würde.
  • Wird nun bei drucklosem ersten Anschluss 11 und unter Druck stehendem dritten Anschluss 13 das Vorsteuerventil 15 vollständig geöffnet, so kann der Steueröldruck den Kolbenschieber 17 des Hauptventils 14 bis in die in Fig. 2 dargestellte Position nach rechts verschieben, wobei dieser die federbelastete Kugel, welche die Entlastungsöffnung 19 fluiddicht verschliesst, mit seinem Betätigungsstift 29 aus ihrem Sitz hebt. Dadurch wird der erste Fluidraum 5 direkt über das Hauptventil 14 und der Federraum 24 des Umschaltventils 8 indirekt über die Entlastungsöffnung 19 und die Drosselhülse 28 mit dem zweiten Anschluss 12 und dem Tank 34 verbunden und dadurch druckentlastet. In der Folge reicht der Fluiddruck im zweiten Fluidraum 6 in Verbindung mit den axialen Flächen des Kolbenschiebers des Umschaltventils 8, auf welche er wirkt, aus, um diesen Kolbenschieber entgegen der Federkraft nach rechts auszulenken. Dabei erhöht sich nach dem Abheben des Kolbenschiebers des Umschaltventils 8 aus seinem Sitz sich der Druck im ersten Fluidraum 5, welcher auf die Stirnseite des Kolbenschiebers wirkt und dann zusätzlich hilft, diesen vollständig nach rechts in die dargestellte Position auszulenken. In der Folge wird der erste Fluidraum 5 mit dem dritten Fluidraum 7 verbunden, während der zweite Fluidraum 6 von diesen getrennt wird. Durch das Verbinden des dritten Fluidraumes 7 mit dem ersten Fluidraum 5 reicht nun der Fluidruck im zweiten Fluidraum 6, welcher axial lediglich auf eine kreisringförmige Fläche des Drosselkörpers 2 wirkt, in Verbindung mit dem Fluiddruck im ersten Fluidraum 5, welcher auf die Stirnseite des Drosselkörpers 2 wirkt, aus, um den Drosselkörper 2 aus der Grundposition heraus nach rechts zu bewegen und dadurch den Drosselquerschnitt 1 zu öffnen. In der Folge strömt die Hydraulikflüssigkeit vom zweiten Fluidraum 6 über den Drosselquerschnitt 1 in den ersten Fluidraum 5 und von dort aus über das Hauptventil 14 und den zweiten Anschluss 12 in den Tank 34. Dieser Zustand entspricht dem AB-Fahrt-Betrieb des Liftregelventils, wobei auch hier, wie schon beim zuvor geschilderten AUF-Fahrt-Betrieb, die Position des Drosselkörpers 2 über den Sensor 10 als elektrisches Positionssignal für eine elektronische Steuerung (nicht gezeigt) abgreifbar ist und so für eine Ermittlung des nun in umgekehrter Richtung durch den Drosselquerschnitt 1 strömenden Volumenstromes Hydrauliköl zur Verfügung steht, wiederum ohne dass es hierzu einer Ermittlung von Systemdrücken bedarf.
  • Wird das Vorsteuerventil 15 wieder geschlossen, so baut sich der Druck im Steuerölraum 25 des Hauptventils 14 über die Drosselstelle 16 ab und der Schieber 17 des Hauptventils 14 wird von der Feder 26 wieder in die in Fig. 1 gezeigte Ausgangslage zurückgeschoben. In der Folge wird die Entlastungsöffnung 19 wieder durch die federbelastete Kugel verschlossen und es baut sich im Federraum 24 des Umschaltventils 8 ein Fluiddruck auf, welcher dazu führt, dass der Kolbenschieber des Umschaltventils 8 nach links zurück in die in Fig. 1 gezeigte Position gedrückt wird, wobei es den zweiten 6 und den dritten Fluidraum 7 miteinander verbindet und den ersten Fluidraum 5 von diesen trennt. Dies führt dazu, dass der Druck im Federraum 7 des Rückschlagventils 22 ansteigt und den Drosselkörper 2 nach links in die Grundstellung verschiebt, in welcher dieser fluiddicht am Ventilsitzkörper 9 anliegt und das Liftregelventil wieder vollständig den in Fig. 1 gezeigten Ruhezustand aufweist. In diesem Zustand ruht bei der in Fig. 3 dargestellten Liftanlage der Kolben des Liftantriebs 35 hydraulisch auf dem Rückschlagventil 22, dem Vorsteuerventil 15 und dem Umschaltventil 8.
  • Während in der vorliegenden Anmeldung bevorzugte Ausführungen der Erfindung beschrieben sind, ist klar darauf hinzuweisen, dass die Erfindung nicht auf diese beschränkt ist und auch in anderer Weise innerhalb des Umfangs der nun folgenden Ansprüche ausgeführt werden kann.

Claims (22)

  1. Liftregelventil mit einer Anordnung zur Bereitstellung eines veränderbaren Drosselquerschnitts für einen Fluidstrom, insbesondere für einen Flüssigkeitsstrom,
    die Anordnung umfassend
    eine Drosselanordnung (20) mit einem durch Bewegung eines Drosselkörpers (2) veränderbaren Drosselquerschnitt (1),
    eine Antriebsanordnung (21) mit einem beweglich in einem Gehäuse (3) angeordneten Antriebselement (4), welches mit dem Drosselkörper (2) der Drosselanordnung gekoppelt ist zur Veränderung des Drosselquerschnitts (1) in Abhängigkeit von seiner Relativposition im Gehäuse (3),
    wobei die Anordnung derartig ausgebildet ist,
    dass das Antriebselement (4) permanent mit einer ersten Federkraft beaufschlagt ist oder mit einer ersten Federkraft beaufschlagbar ist, welche auf das Antriebselement (4) in einer ersten Richtung von dessen Bewegbarkeit einwirkt und das Antriebselement (4) bei Abwesenheit mindestens gleich grosser, in einer zweiten, zur ersten Richtung entgegen gesetzten Richtung auf das Antriebselement (4) einwirkender Kräfte in einer Grundposition im Gehäuse (3) positioniert,
    dass infolge eines Druckes eines Fluids in einem ersten Fluidraum (5) der Anordnung, welcher mit einer ersten Seite des Drosselquerschnitts fluidisch verbunden oder verbindbar ist, das Antriebselement (4) mit einer in der zweiten Richtung wirkenden zweiten Kraft beaufschlagbar ist,
    dass infolge eines Druckes eines Fluids in einem zweiten Fluidraum (6) der Anordnung, welcher mit der zweiten Seite des Drosselquerschnitts fluidisch verbunden oder verbindbar ist, das Antriebselement (4) mit einer in der zweiten Richtung wirkenden dritten Kraft beaufschlagbar ist,
    dass infolge eines Druckes eines Fluids in einem dritten Fluidraum (7) der Anordnung das Antriebselement (4) mit einer in der ersten Richtung wirkenden vierten Kraft beaufschlagbar ist,
    so dass das Antriebselement (4) für den Fall, dass keine weiteren Kräfte in der ersten oder der zweiten Richtung auf das Antriebselement (4) einwirken und die Summe aus der zweiten, der dritten und der vierten Kraft eine resultierende Kraft ist, welche in der zweiten Richtung wirkt und die in der Grundposition auf das Antriebselement (4) in der ersten Richtung einwirkende erste Federkraft übersteigt, aus der Grundposition heraus bewegt wird, bis ein Kräftegleichgewicht zwischen der in der jeweiligen Relativposition des Antriebselements (4) auf dieses einwirkenden ersten Federkraft und der resultierenden Kraft eintritt oder eine maximale Bewegungsposition erreicht ist,
    und wobei die Anordnung weiter umfasst
    eine Umschaltanordnung (8), mittels welcher wahlweise entweder der erste Fluidraum (5) und der dritte Fluidraum (7) fluidisch miteinander verbindbar sind oder der zweite Fluidraum (6) und der dritte Fluidraum (7),
    wobei das Liftregelventil einen ersten Anschluss (11) für eine von einer Hydraulikpumpe kommende Zuleitung für Hydraulikflüssigkeit, einen zweiten Anschluss (12) für eine Rückleitung von Hydraulikflüssigkeit in einen Tank und einen dritten Anschluss (13) für eine zu einem Hydraulikantrieb einer Liftanlage führende Hydraulikleitung aufweist sowie eine Steueranordnung (14, 15), welche derartig ausgebildet ist, dass der erste Fluidraum (5) der Anordnung und die erste Seite des Drosselquerschnitts (1) fluidisch wahlweise mit dem ersten Anschluss (11) oder mit dem zweiten Anschluss (12) verbindbar sind, und wobei der zweite Fluidraum (6) der Anordnung und die zweite Seite des Drosselquerschnitts (1) mit dem dritten Anschluss (13) verbunden oder verbindbar sind.
  2. Liftregelventil nach Anspruch 1, wobei die Anordnung zur Bereitstellung des veränderbaren Drosselquerschnitts derartig ausgestaltet ist, dass der Drosselquerschnitt (1) der Drosselanordnung bei in der Grundposition angeordnetem Antriebselement (4) vollständig geschlossen ist.
  3. Liftregelventil nach einem der vorangehenden Ansprüche, wobei die Anordnung zur Bereitstellung des veränderbaren Drosselquerschnitts Mittel zur Ermittlung der Öffnung des Drosselquerschnitts (1) der Drosselanordnung, der Relativposition des Antriebselements (4) im Gehäuse (3) und/oder der Relativposition des Drosselkörpers (2) der Drosselanordnung umfasst, insbesondere Sensoren (10), mit denen die Relativpositionen des Antriebselements (4) und/oder des Drosselkörpers (2) in elektrische Signale umwandelbar sind.
  4. Liftregelventil nach einem der vorangehenden Ansprüche, wobei die Anordnung zur Bereitstellung des veränderbaren Drosselquerschnitts derartig ausgebildet ist, dass die zweite und die dritte Kraft bei identischen Fluiddrücken im ersten Fluidraum (5) und im zweiten Fluidraum (6) im Wesentlichen gleich gross sind.
  5. Liftregelventil nach einem der vorangehenden Ansprüche, wobei die Anordnung zur Bereitstellung des veränderbaren Drosselquerschnitts derartig ausgebildet ist, dass sich bei identischen Fluiddrücken im ersten, zweiten und dritten Fluidraum (5, 6, 7) die zweite, dritte und vierte Kraft im Wesentlichen gegenseitig aufheben.
  6. Liftregelventil nach einem der vorangehenden Ansprüche, wobei die Anordnung zur Bereitstellung des veränderbaren Drosselquerschnitts derartig ausgebildet ist, dass das Antriebselement (4) axiale Flächen aufweist, die zur Erzeugung der zweiten, dritten und vierten Kraft jeweils mit dem ersten, dem zweiten und dem dritten Fluidraum (5, 6, 7) fluidisch in Verbindung stehen.
  7. Liftregelventil nach einem der vorangehenden Ansprüche, wobei die Anordnung zur Bereitstellung des veränderbaren Drosselquerschnitts derartig ausgebildet ist, dass die Drosselanordnung als Sitzventil ausgebildet ist.
  8. Liftregelventil nach einem der vorangehenden Ansprüche, wobei die Anordnung zur Bereitstellung des veränderbaren Drosselquerschnitts derartig ausgebildet ist, dass das Antriebselement (4) der Antriebsanordnung und der Drosselkörper (2) der Drosselanordnung von einem gemeinsamen Bauteil gebildet sind.
  9. Liftregelventil nach einem der vorangehenden Ansprüche, wobei das Liftregelventil derartig ausgebildet ist, dass im bestimmungsgemässen Betrieb bei einem Verbinden des ersten Fluidraums (5) und der ersten Seite des Drosselquerschnitts mit dem ersten Anschluss (11) automatisch ein Verbinden des zweiten Fluidraumes (6) mit dem dritten Fluidraum (7) durch die Umschaltanordnung (8) erfolgt und bei einem bei einem Verbinden des ersten Fluidraums (5) und der ersten Seite des Drosselquerschnitts mit dem zweiten Anschluss (12) automatisch ein Verbinden des ersten Fluidraumes (5) mit dem dritten Fluidraum (7) durch die Umschaltanordnung (8) erfolgt.
  10. Liftregelventil nach einem der vorangehenden Ansprüche, wobei die Steueranordnung (14) zur Ermöglichung des wahlweisen Verbindens der ersten Seite des Drosselquerschnitts (1) mit dem ersten Anschluss (11) oder mit dem zweiten Anschluss (12) ein insbesondere stetig wirkendes, insbesondere hydraulisch betätigbares Hauptventil (14) aufweist, welches insbesondere in Kolbenschieberbauweise ausgeführt ist.
  11. Liftregelventil nach einem der vorangehenden Ansprüche, wobei ein Ventil (18) vorhanden ist, welches die Fluidzuführung zum hydraulischen Antrieb des Hauptventils (14) bei Erreichen eines bestimmten Druckes am ersten Anschluss (11) mit dem zweiten Anschluss (12) verbindet.
  12. Liftregelventil nach einem der vorangehenden Ansprüche, wobei das Liftregelventil ein elektrisch betätigbares Vorsteuerventil (15) für das hydraulisch betätigbare Hauptventil (14) umfasst, mittels welchem der hydraulische Antrieb des Hauptventils (14) wahlweise mit der zweiten Seite des Drosselquerschnitts (1) und/oder mit dem zweiten Fluidraum (6) fluidisch verbindbar ist oder fluidisch von diesen trennbar ist, zur Betätigung des Hauptventils (14).
  13. Liftregelventil nach Anspruch 12, wobei die fluidische Verbindung zwischen dem Vorsteuerventil (15) und dem hydraulischen Antrieb des Hauptventils (14) eine zum zweiten Anschluss (12) führende Drosselstelle (16) aufweist.
  14. Liftregelventil nach Anspruch 13, wobei die Drosselstelle (16) einen in Abhängigkeit von der Ventilstellung des Hauptventils (14), insbesondere bei in Kolbenschieberbauweise ausgeführtem Hauptventil (14) in Abhängigkeit von der Position des Kolbenschiebers (17) veränderbaren Drosselquerschnitt aufweist, welcher insbesondere bei in Kolbenschieberbauweise ausgeführtem Hauptventil (14) zwischen dem Kolbenschieber (17) des Hauptventils (14) und einem feststehenden Bauteil des Hauptventils (14) gebildet wird.
  15. Liftregelventil nach einem der vorangehenden Ansprüche, wobei die Steueranordnung (14, 15) derartig ausgebildet ist, dass bei am ersten Anschluss (11) unter Druck anstehender Hydraulikflüssigkeit ein Verbinden der ersten Seite des Drosselquerschnitts (1) der Drosselanordnung und/oder des ersten Fluidraumes (5) mit dem zweiten Anschluss (12) nicht möglich ist.
  16. Liftregelventil nach einem der vorangehenden Ansprüche, wobei die Umschaltanordnung (8) ein hydraulisch betätigbares Umschaltventil (8) aufweist, welches bei bestimmungsgemässem Betrieb durch ein Öffnen bzw. Schliessen einer Druckentlastungsöffnung (19) schaltbar ist und wobei die Steueranordnung (14, 15) derartig ausgebildet ist, dass sie beim Verbinden der ersten Seite des Drosselquerschnitts (1) der Drosselanordnung und/oder des ersten Fluidraumes (5) mit dem zweiten Anschluss (12) die Druckentlastungsöffnung (19) des Umschaltventils (8) öffnet.
  17. Liftregelventil nach einem der vorangehenden Ansprüche, wobei das Liftregelventil derartig ausgebildet ist, dass die für die Betätigung von dessen hydraulisch betätigbaren Ventilen (8, 14) benötigte Betätigungsenergie der im Betrieb im Liftregelventil geführten Hydraulikflüssigkeit entnehmbar ist.
  18. Hydraulische Liftanlage mit einem Liftregelventil nach einem der vorangehenden Ansprüche, wobei die Liftanlage eine mit dem ersten Anschluss (11) des Liftregelventils verbundene oder verbindbare Hydraulikpumpe (33), einen mit dem zweiten Anschluss (12) des Liftregelventils verbundenen oder verbindbaren Tank (34) und einen mit dem dritten Anschluss (13) des Liftregelventils verbundenen oder verbindbaren Hydraulikantrieb (35), insbesondere Hydraulikzylinder, mit welchem ein Lift der Liftanlage antreibbar ist, aufweist.
  19. Liftanlage nach Anspruch 18, wobei das Liftregelventil mit Mitteln (10) zur Ermittlung der Öffnung des Drosselquerschnitts (1) der Drosselanordnung, der Relativposition des Antriebselements (4) und/oder der Relativposition des Drosselkörpers (2) der Drosselanordnung ausgebildet ist, und wobei die Liftanlage weiter eine Steuerung für den Fahrbetrieb des Lifts umfasst, welche derartig mit diesen Mitteln (10) verbunden und ausgestaltet ist, dass sie im Betrieb über diese Mittel (10) Informationen über die Öffnung des Drosselquerschnitts (1), die Relativposition des Antriebselements (4) und/oder die Relativposition des Drosselkörpers (2) erhalten kann und diese bei der Steuerung bzw. Regelung des Fahrbetriebes eines Lifts der Liftanlage berücksichtigen kann, insbesondere als Parameter, welcher den Hydraulikflüssigkeitsstrom, der den Drosselquerschnitt (1) der Drosselanordnung durchströmt, und insbesondere die damit verbundene Fahrtgeschwindigkeit des Lifts repräsentiert.
  20. Verfahren zum Betrieb einer Liftanlage nach einem der Ansprüche 18 bis 19, umfassend die Schritte
    Anheben eines Lifts der Liftanlage durch Förderung eines Volumenstromes von Hydraulikflüssigkeit von der Hydraulikpumpe (33) zum Hydraulikantrieb (35) des Lifts, wobei die Hydraulikflüssigkeit den Drosselquerschnitt (1) der Drosselanordnung von der ersten Seite des Drosselquerschnitt (1) zur zweiten Seite des Drosselquerschnitts (1) durchströmt und der zweite Fluidraum (6) und der dritte Fluidraum (7) fluidisch miteinander und mit der zweiten Seite des Drosselquerschnitts (1) verbunden sind, während die erste Seite des Drosselquerschnitts (1) fluidisch mit dem ersten Fluidraum (5) verbunden ist
    oder
    Absenken eines Lifts der Liftanlage durch Förderung eines Volumenstromes von Hydraulikflüssigkeit vom Hydraulikantrieb (33) des Lifts in den Tank (34), wobei die Hydraulikflüssigkeit den Drosselquerschnitt (1) der Drosselanordnung von der zweiten Seite des Drosselquerschnitt (1) zur ersten Seite des Drosselquerschnitts (1) durchströmt und der erste Fluidraum (5) und der dritte Fluidraum (7) fluidisch miteinander und mit der ersten Seite des Drosselquerschnitts (1) verbunden sind, während die zweite Seite des Drosselquerschnitts (1) fluidisch mit dem zweiten Fluidraum (6) verbunden ist;
    Ermitteln der Öffnung des Drosselquerschnitts (1) der Drosselanordnung, der Relativposition des Antriebselements (4) der Antriebsanordnung und/oder der Relativposition des Drosselkörpers (2) der Drosselanordnung während der Förderung des Volumenstromes von Hydraulikflüssigkeit durch den Drosselquerschnitt;
    Vergleichen der ermittelten Öffnung des Drosselquerschnitts (1), der ermittelten Relativposition des Antriebselements (4), der ermittelten Relativposition des Drosselkörpers (2) der Drosselanordnung und/oder eines aus einem oder mehreren dieser ermittelten Grössen errechneten Wertes mit einem Sollwert; und
    Verändern des Volumenstromes der durch den Drosselquerschnitt (1) geförderten Hydraulikflüssigkeit bei Feststellung einer Abweichung vom Sollwert derart, dass sich die Öffnung des Drosselquerschnitts (1), die Relativposition des Antriebselements (4) die Relativposition des Drosselkörpers (2) und/oder der errechnete Wert dem Sollwert annähert.
  21. Verfahren nach Anspruch 20, wobei beim Anheben des Lifts der durch den Drosselquerschnitt (1) der Drosselanordnung geförderte Volumenstrom von Hydraulikflüssigkeit dadurch verändert wird, dass mit der Steuereinheit (14, 15) des Liftregelventils ein grösserer oder kleinerer Teil des von der Hydraulikpumpe (33) geförderten Volumenstromes in den Tank (34) abgesteuert wird.
  22. Verfahren nach einem der Ansprüche 20 bis 21, wobei der durch den Drosselquerschnitt (1) geförderte Volumenstrom von Hydraulikflüssigkeit mittels eines Algorithmus ausschliesslich aus der ermittelten Öffnung des Drosselquerschnitts (1), der ermittelten Relativposition des Antriebselements (4) und/oder der ermittelten Relativposition des Drosselkörpers (2) der Drosselanordnung, allenfalls unter zusätzlicher Berücksichtigung eines ebenfalls ermittelten Temperaturwertes der Hydraulikflüssigkeit, ermittelt wird.
EP09775737.1A 2009-07-06 2009-07-06 Anordnung zur bereitstellung eines veränderbaren drosselquerschnitts für einen fluidstrom Active EP2452078B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CH2009/000238 WO2011003210A1 (de) 2009-07-06 2009-07-06 Anordnung zur bereitstellung eines veränderbaren drosselquerschnitts für einen fluidstrom

Publications (2)

Publication Number Publication Date
EP2452078A1 EP2452078A1 (de) 2012-05-16
EP2452078B1 true EP2452078B1 (de) 2016-10-12

Family

ID=41683238

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09775737.1A Active EP2452078B1 (de) 2009-07-06 2009-07-06 Anordnung zur bereitstellung eines veränderbaren drosselquerschnitts für einen fluidstrom

Country Status (4)

Country Link
US (1) US9032861B2 (de)
EP (1) EP2452078B1 (de)
CN (1) CN102483077B (de)
WO (1) WO2011003210A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2988801C (en) * 2015-06-12 2023-12-05 Westport Power Inc. High pressure fluid control system and method of controlling pressure bias in an end use device
CN105807793A (zh) * 2016-05-24 2016-07-27 中冶焦耐工程技术有限公司 一种除尘管道尘气流量调整系统
CN114033652B (zh) * 2021-11-24 2023-03-24 中国石油化工股份有限公司 煤气化用高压煤浆泵的补排油阀的阀芯升程的调整方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK151077C (da) * 1974-10-11 1988-04-05 Dansk Ind Syndikat Fluidumstyret ventil
US4202174A (en) * 1978-05-16 1980-05-13 Bocharov Jury A Hydraulic drive
DE2928737A1 (de) * 1979-07-17 1981-01-29 Sack Gmbh Hydraulische steuerung mit rohrbruchsicherung fuer einen doppelt beaufschlagbaren antriebszylinder zum positionieren, insbesondere einer angetriebenen fuehrungsrolle in der strangfuehrung einer stranggiessanlage
JPH01133503U (de) * 1988-03-03 1989-09-12
JP3505869B2 (ja) * 1995-09-14 2004-03-15 株式会社島津製作所 流体制御弁
US5937645A (en) * 1996-01-08 1999-08-17 Nachi-Fujikoshi Corp. Hydraulic device
JP3556860B2 (ja) * 1999-05-28 2004-08-25 新キャタピラー三菱株式会社 流体圧アクチュエータ制御装置
DE10310314B4 (de) * 2003-03-10 2006-04-27 Sauer-Danfoss Aps Antriebsanordnung, insbesondere Hebevorrichtung eines Arbeitsfahrzeugs

Also Published As

Publication number Publication date
US20120125190A1 (en) 2012-05-24
US9032861B2 (en) 2015-05-19
EP2452078A1 (de) 2012-05-16
CN102483077A (zh) 2012-05-30
WO2011003210A1 (de) 2011-01-13
CN102483077B (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
EP0546300B1 (de) Elektrohydraulische Steuereinrichtung
EP2960561B1 (de) Hydraulikventil
EP2638297B1 (de) Hydraulischer oder pneumatischer antrieb zur betätigung einer armatur mit einem regel- oder schaltventil
EP1598560B1 (de) Hydraulische Ventilanordnung
CH629877A5 (de) Steuereinrichtung mit einem regelkreis zur steuerung eines hydraulischen motors, insbesondere fuer werkzeugmaschinen, baumaschinen und aufzuganlagen.
EP2220380A1 (de) Hydraulische ventilvorrichtung
DE102009019552A1 (de) Proportional-Drosselventil
EP2425159A1 (de) Proportional-drosselventil
DE4140408A1 (de) Elektrohydraulische steuereinrichtung
EP0103250B1 (de) Steuerventil zur Flüssigkeitssteuerung
DE4108915C2 (de) Hydraulische Einrichtung zur Druckmittelversorgung eines bevorrechtigten Primärlastkreises
DE3817120A1 (de) Sicherheitsventil
EP2452078B1 (de) Anordnung zur bereitstellung eines veränderbaren drosselquerschnitts für einen fluidstrom
EP2669528A2 (de) Hydrostatische Ventilanordnung und hydrostatische Steueranordnung mit der Ventilanordnung
EP2449268B1 (de) Ventilanordnung
EP0628730B1 (de) Hydraulische Anlage, insbesondere für eine Abkantpresse
EP0631056B1 (de) Stellantrieb für ein Regelventil
WO2003087585A1 (de) Hydraulische steueranordnung in load-sensing technik
EP1203161B1 (de) Pressensicherheitsventil
DE10023583B4 (de) Elektrohydraulischer Senken-Modul
DE3532591A1 (de) Hydraulische vorrichtung, insbesondere 2-wege-proportionaldrosselventil
DE19909745A1 (de) Hydrostatisches Antriebssystem
EP2241764B1 (de) Sitzventil mit Umlaufventil- und Druckwaagefunktion
DE102014007475A1 (de) Ventilanordnung zur gesteuerten Druckentlastung fluidgefüllter Leitungen unter erhöhten Sicherheitsanforderungen
DE102004023553B3 (de) Hydraulik-Ventilanordnung, insbesondere Wasserhydraulik-Ventilanordnung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160527

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 836797

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009013223

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170112

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170213

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170212

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009013223

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170112

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

26N No opposition filed

Effective date: 20170713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170706

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170706

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 836797

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161012

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230720

Year of fee payment: 15

Ref country code: CH

Payment date: 20230801

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 15

Ref country code: DE

Payment date: 20230719

Year of fee payment: 15