EP2840234A1 - Verfahren zum Betreiben einer Dampfturbine mit zwei Dampfzuführungen - Google Patents

Verfahren zum Betreiben einer Dampfturbine mit zwei Dampfzuführungen Download PDF

Info

Publication number
EP2840234A1
EP2840234A1 EP13181441.0A EP13181441A EP2840234A1 EP 2840234 A1 EP2840234 A1 EP 2840234A1 EP 13181441 A EP13181441 A EP 13181441A EP 2840234 A1 EP2840234 A1 EP 2840234A1
Authority
EP
European Patent Office
Prior art keywords
valve
steam
steam turbine
mass flow
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13181441.0A
Other languages
English (en)
French (fr)
Inventor
Simon Hecker
Christian Musch
Heinrich STÜER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP13181441.0A priority Critical patent/EP2840234A1/de
Priority to PCT/EP2014/066775 priority patent/WO2015024769A1/de
Priority to JP2016535395A priority patent/JP2016528437A/ja
Priority to RU2016110662A priority patent/RU2638689C2/ru
Priority to US14/911,838 priority patent/US20160201500A1/en
Priority to EP14752802.0A priority patent/EP3004566A1/de
Priority to CN201480046503.0A priority patent/CN105492729B/zh
Priority to KR1020167004191A priority patent/KR101834095B1/ko
Publication of EP2840234A1 publication Critical patent/EP2840234A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/141Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path
    • F01D17/145Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of shiftable members or valves obturating part of the flow path by means of valves, e.g. for steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • F01D17/08Arrangement of sensing elements responsive to condition of working-fluid, e.g. pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/334Vibration measurements

Definitions

  • the invention relates to a method for operating a steam turbine comprising a first steam supply connected to the steam turbine and a second steam feed and a first valve arranged in the first steam feed and a second valve arranged in the second steam feed.
  • steam is generated in a steam generator, which is fed via feed lines to the steam turbine.
  • the supply lines lead to steam supply.
  • valves are installed, which regulate the steam flow.
  • one or more valves are installed to control the steam turbine power in front of the steam turbine.
  • There are different modes of operation of a steam turbine conceivable. So it is possible to operate the steam turbine at full load. Another option is to operate the steam turbine at partial load. This means that through the valves and into the steam turbine not the entire mass flow, which is generated in the steam generator, flows into the steam turbine.
  • valves In this partial load operation, the valves are closed a little, so that only a part of the maximum possible total mass flow can flow into the steam turbine. However, the valves tend to perform vibrations in such a part load operation.
  • the flow conditions in the valve can change and possibly lead to an excitation of the entire structure, which is formed of valve and lines. This is to be regarded critically, because the temporally changing and possibly cyclically repeating loads the components are strongly stressed, which under certain circumstances could lead to cracks in the components, which should be avoided.
  • the invention has set itself the task of providing a method with which vibrations can be avoided.
  • the object of the invention is to provide a steam turbine arrangement whose valves do not lead to vibrations.
  • This object is achieved by a method for operating a steam turbine comprising a first steam supply connected to the steam turbine and a second steam supply and a first valve arranged in the first steam supply and a second valve arranged in the second steam supply, wherein the first Valve approaches and the second valve ascends.
  • the invention proposes to operate in a steam power plant having more than one valve, the valves such that they are actuated asymmetrically. This is done according to the invention in that a critical operating state of a single valve is detected. So that the mass flow into the steam turbine takes place uniformly, the second valve, which is not in the critical operating state, is adapted to the critical operating state of the first valve. This means that the valve openings are formed in opposite directions to each other. For example, if the first valve is in critical operating condition, the second valve, which is not in the critical operating state, will start up in order not to change the total mass flow which leads into the steam turbine.
  • the critical operating state of the first valve can be bridged quickly and yet a uniform mass flow change can be provided.
  • first accelerometer in the first valve and a second accelerometer in the second valve for detecting the impermissible valve vibrations are arranged.
  • a physical variable is thus determined, which is done by an acceleration sensor. This means that the position of the valve body can be determined and the data is used to diagnose a potentially critical operating condition. If there is such a critical operating state, the operating state of the second valve is checked via an acceleration sensor located in the second valve and the countermeasure according to the invention is taken, which consists in the valve bodies being operated asymmetrically with respect to one another. In other words, the two valves are controlled asymmetrically, so that when a vibration occurs, a valve approaches and the other ascends with the aim to set the desired total mass flow and at the same time to remain as short as possible in the vulnerable operating range of the individual valve.
  • Such a method according to the invention can advantageously be subsequently arranged in existing steam power plants.
  • a programming of the valve control is possible, which leads to a low cost.
  • this downtime is largely avoided.
  • the invention can advantageously be used after steam turbine conversions in a steam power plant or in upgrades of a steam power plant. Because the active monitoring and adaptive avoidance strategy of valve vibrations, damage in the valves can be largely avoided.
  • the first valve and the second valve are opened and closed in such a way that a predetermined total steam mass flow into the steam turbine is achieved.
  • the steam turbine can be operated in spite of undesirable valve vibration in a desired power range.
  • the invention is applicable to steam power plants with more than two valves.
  • the invention is applicable to steam power plants with, for example, three, four or more valves.
  • the valves are operated asymmetrically to one another.
  • a steam turbine arrangement with a steam turbine and a first steam supply and a second steam supply, wherein a first valve in the first steam supply and a second valve in the second steam supply is arranged, wherein a first accelerometer in the first valve and a second accelerometer is arranged in the second valve.
  • the steam turbine arrangement is formed with a control according to the method according to the invention.
  • FIG. 1 shows a part of a steam power plant 1 comprising a steam turbine 2 and a first valve 3 and a second valve 4.
  • the steam turbine 2 is formed with guide and blades not shown and is a first steam supply 5 and a second steam supply 6 with steam from a Steam generator not shown supplied with steam.
  • first valve 3 In the first steam supply 5, the first valve 3 is arranged.
  • second valve 4 In the second steam supply 6, the second valve 4 is arranged.
  • Both the first valve 3 and the second valve 4 comprise a valve body, not shown, which is designed to be movable relative to a valve disk. A movement of the valve body towards the valve plate leads to a closing of the valve. A movement of the valve body away from the valve head leads to a valve opening. An approaching valve will increase the steam mass flow through the valve. A movement of the valve body towards the valve disk leads to a reduction of the steam mass flow.
  • the first valve 3 and the second valve 4 can be made identical. In alternative embodiments, the first valve 3 and the second valve 4 may be formed different from each other.
  • the steam turbine 2 is in the in FIG. 1 illustrated embodiment formed two columns. In alternative embodiments, the steam turbine 2 may be designed to be single-flow.
  • the steam turbine 2 is now operated as follows:
  • a first accelerometer (not shown) disposed in the first valve 3 detects movement of the valve body.
  • a second acceleration sensor (not shown) is arranged in the second valve 4 and designed to detect movements of the valve body. If the first accelerometer or the second accelerometer detects unacceptable valve vibration, the first valve 3 and the second valve 4 are operated asymmetrically with each other. This means that a control intervenes in this case, which causes the first valve 3 to close and the second valve 4 to open.
  • the control is in this case designed such that the first valve 3 and the second valve 4 controls the mass flow in opposite directions to each other. This means that a closing of the one, for example, the first valve 3, leads to an opening of the second valve 4 or vice versa.
  • This asymmetrical regulation of the valve opening is such that, when possible, the desired total mass flow, which is composed of the mass flow through the first valve 3 and the mass flow through the second valve 4, is not changed as much as possible.
  • FIG. 2 shows the mass flow on the Y axis and the time on the X axis.
  • a valve vibration at the second valve 4 is detected.
  • the middle line 9 shows the mass flow through the second valve 4.
  • time t 0 the course of the steam mass flow through the second valve 4 is uniform.
  • valve vibrations are detected, which lead to a supply of the second valve 4.
  • the steam mass flow is now regulated by the first valve 3. This means that at the time t 0, the first valve 3 rises, so that the steam mass flow is increased. This takes place until time t 1 at which the conditions reverse until time t 2 .
  • the first valve 3 is closing, so that the steam mass flow, which is represented by the lower line 10, decreases and the second valve 4 rises, so that the steam mass flow, which is represented by the middle line 9, increases.
  • the valve oscillations have disappeared, so that from the time t 2 the course of the steam mass flows, which are represented by the middle line 9 and the lower line 10, again run smoothly.
  • the upper line 11 shows the steam mass flow flowing through the first valve 3 and through the second valve 4 in total. It can be seen that the steam mass flow represented by the upper line 11 shows no kink, neither at the time t 0 nor at the times t 1 or t 2 . Thus, the total mass flow can flow evenly into the steam turbine 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Turbines (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft eine Dampfturbinenanordnung sowie ein Verfahren zum Betreiben einer Dampfturbine (2), wobei über ein erstes Ventil (3) in einer ersten Dampfzuführung (5) und über ein zweites Ventil (4) in einer zweiten Dampfzuführung (6) Dampf der Dampfturbine zugeführt wird, wobei die Ventile (3, 4) asymmetrisch zueinander geregelt werden, so dass beim Auftreten von unzulässigen Schwingungen ein Ventil zufährt und das andere auffährt mit dem Ziel, den gewünschten Gesamtmassenstrom einzustellen.

Description

  • Die Erfindung betrifft ein Verfahren zum Betreiben einer Dampfturbine umfassend eine an die Dampfturbine angeschlossene erste Dampfzuführung und einer zweiten Dampfzuführung sowie einem in der ersten Dampfzuführung angeordneten ersten Ventil und einem in der zweiten Dampfzuführung angeordneten zweiten Ventil.
  • In Dampfkraftanlagen wird Dampf in einem Dampferzeuger erzeugt, der über Zuleitungen zur Dampfturbine geführt wird. Die Zuleitungen münden in Dampfzuführungen. In den Dampfzuführungen sind Ventile eingebaut, die den Dampfdurchfluss regeln. Somit werden zur Regelung der Dampfturbinenleistung vor der Dampfturbine ein oder mehrere Ventile eingebaut. Es sind verschiedene Betriebsweisen einer Dampfturbine denkbar. So ist es möglich die Dampfturbine bei Volllast zu betreiben. Eine weitere Möglichkeit ist es, die Dampfturbine bei Teillast zu betreiben. Das bedeutet, dass durch die Ventile und in die Dampfturbine nicht der gesamte Massenstrom, der im Dampferzeuger erzeugt wird, in die Dampfturbine strömt.
  • In diesem Teillastbetrieb werden die Ventile ein wenig zugefahren, so dass nur ein Teil des maximal möglichen Gesamtmassenstroms in die Dampfturbine strömen kann. Allerdings neigen die Ventile in solch einem Teillastbetrieb dazu Schwingungen durchzuführen. Denn durch Androsseln in Teillast können sich die Strömungszustände im Ventil ändern und möglicherweise zu einer Anregung der ganzen Struktur, die aus Ventil und Leitungen gebildet ist, führen. Dies ist kritisch zu betrachten, da sich durch die zeitlich ändernden und möglicherweise zyklisch wiederholenden Belastungen die Bauteile stark beansprucht werden, was unter Umständen zu Rissen in den Bauteilen führen könnte, was es zu vermeiden gilt.
  • Darüber hinaus könnten unter Umständen unzulässig hohe instationäre Kräfte auf dem Ventilteller entstehen, die zu einer Schädigung des Ventils insgesamt führen.
  • Dem Problem der zur Schwingungen neigenden Ventile im Teillastbetrieb könnte man dadurch entgegen, dass entweder solch ein Ventil neu entwickelt oder ein anderes Ventil eingebaut wird, was allerdings zu Stillständen und Materialkosten führt.
  • Die Erfindung hat es sich zur Aufgabe gemacht, ein Verfahren bereit zu stellen, mit dem Schwingungen vermieden werden können.
  • Des Weiteren besteht die Aufgabe der Erfindung darin, eine Dampfturbinenanordnung anzugeben, deren Ventile nicht zu Schwingungen führen.
  • Gelöst wird diese Aufgabe durch ein Verfahren zum Betreiben einer Dampfturbine umfassend eine an die Dampfturbine angeschlossene erste Dampfzuführung und einer zweiten Dampfzuführung sowie einem in der ersten Dampfzuführung angeordneten ersten Ventil und einem in der zweiten Dampfzuführung angeordneten zweiten Ventil, wobei beim Auftreten von unzulässigen Ventilschwingungen das erste Ventil zufährt und das zweite Ventil auffährt.
  • Somit wird erfindungsgemäß vorgeschlagen, bei einer Dampfkraftanlage, die mehr als ein Ventil besitzt, die Ventile derart zu betreiben, dass sie asymmetrisch betätigt werden. Dies geschieht erfindungsgemäß darin, dass ein kritischer Betriebszustand eines einzelnen Ventils erkannt wird. Damit der Massenstrom in die Dampfturbine gleichmäßig erfolgt, wird das zweite sich nicht im kritischen Betriebszustand befindliche Ventil an den kritischen Betriebszustand des ersten Ventils angepasst. Das bedeutet, dass die Ventilöffnungen gegenläufig zueinander ausgebildet werden. Wenn beispielsweise das erste sich im kritischen Betriebszustand befindliche Ventil zufährt, wird das zweite sich nicht im kritischen Betriebszustand befindliche Ventil auffahren, um somit den Gesamtmassenstrom, der in die Dampfturbine führt, nicht zu ändern.
  • Dadurch kann der kritische Betriebszustand des ersten Ventils schnell überbrückt und dennoch eine gleichmäßige Massenstromänderung bereitgestellt werden.
  • In den Unteransprüchen sind vorteilhafte Weiterbildungen angegeben.
  • So werden in einer ersten vorteilhaften Weiterbildung der erste Beschleunigungsaufnehmer im ersten Ventil und ein zweiter Beschleunigungsaufnehmer im zweiten Ventil zur Detektierung der unzulässigen Ventilschwingungen angeordnet.
  • Zur Detektion des kritischen Betriebszustandes wird somit eine physikalische Größe ermittelt, was durch einen Beschleunigungsaufnehmer erfolgt. Das bedeutet, dass die Stellung des Ventilkörpers ermittelt werden kann und aus den Daten ein möglicherweise kritischer Betriebszustand diagnostiziert wird. Sofern ein solcher kritischer Betriebszustand vorliegt, wird über einen im zweiten Ventil befindlicher Beschleunigungsaufnehmer der Betriebszustand des zweiten Ventils überprüft und die erfindungsgemäße Gegenmaßnahme ergriffen, die darin besteht, dass die Ventilkörper asymmetrisch zueinander betrieben werden. Mit anderen Worten: die beiden Ventile werden asymmetrisch geregelt, so dass beim Auftreten von Schwingungen ein Ventil zufährt und das andere auffährt mit dem Ziel, den gewünschten Gesamtmassenstrom einzustellen und gleichzeitig möglichst kurz in dem gefährdeten Betriebsbereich des einzelnen Ventils zu verbleiben.
  • Solch ein erfindungsgemäßes Verfahren kann vorteilhafterweise in bestehenden Dampfkraftanlagen nachträglich angeordnet werden. Eine Programmierung der Ventilsteuerung ist möglich, was zu einem geringen Aufwand führt. Vorteilhafterweise werden dadurch Stillstandszeiten weitestgehend vermieden.
  • Ebenso ist die Erfindung vorteilhafterweise nach Dampfturbinenumbauten in einer Dampfkraftanlage bzw. bei Upgradings einer Dampfkraftanlage einsetzbar. Denn durch die aktive Überwachung und adaptive Vermeidungsstrategie von Ventilschwingungen können Schäden in den Ventilen weitestgehend vermieden werden.
  • In einer vorteilhaften Weiterbildung wird das erste Ventil und das zweite Ventil derart zu- und aufgefahren, dass ein vorgegebener Gesamtdampfmassenstrom in die Dampfturbine erreicht wird.
  • Somit kann die Dampfturbine trotz einer unerwünschten Ventilschwingung in einem gewünschten Leistungsbereich betrieben werden.
  • In vorteilhaften Weiterbildungen ist die Erfindung anwendbar bei Dampfkraftanlagen mit mehr als zwei Ventilen. So ist die Erfindung anwendbar bei Dampfkraftanlagen mit beispielsweise drei, vier oder mehr Ventilen. Erfindungsgemäß werden die Ventile asymmetrisch zueinander betrieben.
  • Ferner wird die Aufgabe gelöst durch eine Dampfturbinenanordnung mit einer Dampfturbine und einer ersten Dampfzuführung und einer zweiten Dampfzuführung, wobei ein erstes Ventil in der ersten Dampfzuführung und ein zweites Ventil in der zweiten Dampfzuführung angeordnet ist, wobei ein erster Beschleunigungsaufnehmer im ersten Ventil und ein zweiter Beschleunigungsaufnehmer im zweiten Ventil angeordnet ist.
  • Die Dampfturbinenanordnung wird mit einer Regelung gemäß dem erfindungsgemäßen Verfahren ausgebildet.
  • Die Erfindung wird nun anhand eines Ausführungsbeispiels näher erläutert.
  • Das in den Figuren dargestellte Ausführungsbeispiel zeigt in schematischer Weise die Erfindung.
  • Es zeigen:
  • Figur 1
    eine schematische Übersicht einer erfindungsgemäßen Dampfkraftanlage,
    Figur 2
    Darstellung von Massenströmen.
  • Die Figur 1 zeigt einen Teil einer Dampfkraftanlage 1 umfassend eine Dampfturbine 2 und ein erstes Ventil 3 sowie ein zweites Ventil 4. Die Dampfturbine 2 ist mit nicht näher dargestellten Leit- und Laufschaufeln ausgebildet und wird über eine erste Dampfzuführung 5 und einer zweiten Dampfzuführung 6 mit Dampf aus einem nicht näher dargestellten Dampferzeuger mit Dampf versorgt.
  • In der ersten Dampfzuführung 5 ist das erste Ventil 3 angeordnet. In der zweiten Dampfzuführung 6 ist das zweite Ventil 4 angeordnet. Sowohl das erste Ventil 3 als auch das zweite Ventil 4 umfassen einen nicht näher dargestellten Ventilkörper, der gegenüber einem Ventilteller bewegbar ausgeführt ist. Eine Bewegung des Ventilkörpers zum Ventilteller hin führt zu einem Zufahren des Ventils. Eine Bewegung des Ventilkörpers vom Ventilteller weg führt zu einem Auffahren des Ventils. Ein auffahrendes Ventil führt zu einer Erhöhung des Dampfmassenstroms durch das Ventil. Eine Bewegung des Ventilkörpers zu dem Ventilteller hin führt zu einer Verringerung des Dampfmassenstroms.
  • Das erste Ventil 3 und das zweite Ventil 4 können baugleich ausgeführt werden. In alternativen Ausführungsformen kann das erste Ventil 3 und das zweite Ventil 4 unterschiedlich zueinander ausgebildet werden. Die Dampfturbine 2 ist in der in Figur 1 dargestellten Ausführung zweiflutig ausgebildet. In alternativen Ausführungsformen kann die Dampfturbine 2 einflutig ausgebildet sein.
  • Die Dampfturbine 2 wird nun folgendermaßen betrieben:
  • Ein erster Beschleunigungsaufnehmer(nicht dargestellt), der im ersten Ventil 3 angeordnet ist, erfasst eine Bewegung des Ventilkörpers. Ebenso ist ein zweiter Beschleunigungsaufnehmer (nicht dargestellt) im zweiten Ventil 4 angeordnet und zur Erfassung von Bewegungen des Ventilkörpers ausgebildet. Sofern der erste Beschleunigungsaufnehmer oder der zweite Beschleunigungsaufnehmer eine unzulässige Ventilschwingung detektiert, werden das erste Ventil 3 und das zweite Ventil 4 asymmetrisch zueinander betrieben. Das bedeutet, dass eine Regelung in diesem Fall eingreift, die dazu führt, dass das erste Ventil 3 zufährt und das zweite Ventil 4 auffährt. Die Regelung ist hierbei derart ausgebildet, dass das erste Ventil 3 bzw. das zweite Ventil 4 gegensinnig zueinander den Massenstrom regelt. Das bedeutet, dass ein Zufahren des einen, beispielsweise ersten Ventils 3, zu einem Auffahren des zweiten Ventils 4 oder andersrum führt.
  • Diese asymmetrische Regelung der Ventilöffnung ist derart, dass beim Auftreten von Schwingungen der gewünschte Gesamtmassenstrom, der sich durch den Massenstrom durch das erste Ventil 3 und dem Massenstrom durch das zweite Ventil 4 zusammensetzt, möglichst nicht verändert wird.
  • Die Figur 2 zeigt auf der Y-Achse den Massenstrom und auf der X-Achse die Zeit. Bei der Zeit t0, die durch die gestrichelte Linie symbolisiert wird, wird eine Ventilschwingung bei dem zweiten Ventil 4 detektiert. Die mittlere Linie 9 zeigt den Massenstrom durch das zweite Ventil 4. Bis zum Zeitpunkt t0 ist der Verlauf des Dampfmassenstroms durch das zweite Ventil 4 gleichmäßig. Zum Zeitpunkt t0 werden Ventilschwingungen detektiert, die zu einem Zuführen des zweiten Ventils 4 führen. Erfindungsgemäß wird nunmehr, wie es die untere Linie 10 symbolisiert, der Dampfmassenstrom durch das erste Ventil 3 geregelt. Das bedeutet, dass zum Zeitpunkt t0 das erste Ventil 3 auffährt, so dass der Dampfmassenstrom vergrößert wird. Dies erfolgt bis zum Zeitpunkt t1, bei dem sich die Verhältnisse bis zum Zeitpunkt t2 umkehren. D.h., das erste Ventil 3 fährt zu, so dass sich der Dampfmassenstrom, der durch die untere Linie 10 dargestellt wird, verringert und das zweite Ventil 4 auffährt, so dass sich der Dampfmassenstrom, der durch die mittlere Linie 9 dargestellt wird, vergrößert. Zum Zeitpunkt t2 seien die Ventilschwingungen verschwunden, so dass ab dem Zeitpunkt t2 der Verlauf der Dampfmassenströme, die durch die mittlere Linie 9 und die untere Linie 10 dargestellt sind, wieder gleichmäßig verlaufen.
  • Die obere Linie 11 zeigt den Dampfmassenstrom, der durch das erste Ventil 3 und durch das zweite Ventil 4 strömt, in Summe. Es ist zu sehen, dass der Dampfmassenstrom, der durch die obere Linie 11 dargestellt wird, keinen Knick zeigt, weder bei dem Zeitpunkt t0 noch bei den Zeitpunkten t1 oder t2. Somit kann der Gesamtmassenstrom gleichmäßig in die Dampfturbine 2 strömen.

Claims (6)

  1. Verfahren zum Betreiben einer Dampfturbine (2) umfassend eine an die Dampfturbine (2) angeschlossene erste Dampfzuführung (5) und einer zweiten Dampfzuführung (6) sowie einem in der ersten Dampfzuführung (5) angeordneten ersten Ventil (3) und einem in der zweiten Dampfzuführung (6) angeordneten zweiten Ventil (4),
    dadurch gekennzeichnet, dass
    beim Auftreten von unzulässigen Ventilschwingungen das erste Ventil (3) zufährt und das zweite Ventil (4) auffährt.
  2. Verfahren nach Anspruch 1,
    wobei ein erster Beschleunigungsaufnehmer im ersten Ventil (3) und ein zweiter Beschleunigungsaufnehmer im zweiten Ventil (4) zur Detektierung der unzulässigen Ventilschwingungen angeordnet werden.
  3. Verfahren nach Anspruch 1 oder 2,
    wobei das erste Ventil (3) und das zweite Ventil (4) derart zufährt und auffährt, dass ein vorgegebener Gesamtdampfmassenstrom in die Dampfturbine (2) erreicht wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche,
    mit einem dritten, vierten und weiteren Ventil, die asymmetrisch betrieben werden.
  5. Dampfturbinenanordnung mit einer Dampfturbine (2) und einer ersten Dampfzuführung (5) und einer zweiten Dampfzuführung (6),
    wobei ein erstes Ventil (3) in der ersten Dampfzuführung (5) und ein zweites Ventil (4) in der zweiten Dampfzuführung (6) angeordnet ist,
    dadurch gekennzeichnet, dass
    ein erster Beschleunigungsaufnehmer im ersten Ventil (3) und ein zweiter Beschleunigungsaufnehmer im zweiten Ventil (4) angeordnet sind.
  6. Dampfturbinenanordnung mit einer Regelung, die gemäß dem Verfahren nach einem der Ansprüche 1 bis 4 ausgebildet ist.
EP13181441.0A 2013-08-23 2013-08-23 Verfahren zum Betreiben einer Dampfturbine mit zwei Dampfzuführungen Withdrawn EP2840234A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP13181441.0A EP2840234A1 (de) 2013-08-23 2013-08-23 Verfahren zum Betreiben einer Dampfturbine mit zwei Dampfzuführungen
PCT/EP2014/066775 WO2015024769A1 (de) 2013-08-23 2014-08-05 Verfahren zum betreiben einer dampfturbine mit zwei dampfzuführungen
JP2016535395A JP2016528437A (ja) 2013-08-23 2014-08-05 2つの蒸気供給ラインを有する蒸気タービンを運転する方法
RU2016110662A RU2638689C2 (ru) 2013-08-23 2014-08-05 Способ эксплуатации паровой турбины с двумя подводящими паропроводами
US14/911,838 US20160201500A1 (en) 2013-08-23 2014-08-05 Method for operating a steam turbine with two steam supply lines
EP14752802.0A EP3004566A1 (de) 2013-08-23 2014-08-05 Verfahren zum betreiben einer dampfturbine mit zwei dampfzuführungen
CN201480046503.0A CN105492729B (zh) 2013-08-23 2014-08-05 用于运行具有两个蒸汽供给管路的蒸汽轮机的方法
KR1020167004191A KR101834095B1 (ko) 2013-08-23 2014-08-05 두 개의 증기 공급부를 구비한 증기 터빈의 작동 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP13181441.0A EP2840234A1 (de) 2013-08-23 2013-08-23 Verfahren zum Betreiben einer Dampfturbine mit zwei Dampfzuführungen

Publications (1)

Publication Number Publication Date
EP2840234A1 true EP2840234A1 (de) 2015-02-25

Family

ID=49084747

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13181441.0A Withdrawn EP2840234A1 (de) 2013-08-23 2013-08-23 Verfahren zum Betreiben einer Dampfturbine mit zwei Dampfzuführungen
EP14752802.0A Withdrawn EP3004566A1 (de) 2013-08-23 2014-08-05 Verfahren zum betreiben einer dampfturbine mit zwei dampfzuführungen

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP14752802.0A Withdrawn EP3004566A1 (de) 2013-08-23 2014-08-05 Verfahren zum betreiben einer dampfturbine mit zwei dampfzuführungen

Country Status (7)

Country Link
US (1) US20160201500A1 (de)
EP (2) EP2840234A1 (de)
JP (1) JP2016528437A (de)
KR (1) KR101834095B1 (de)
CN (1) CN105492729B (de)
RU (1) RU2638689C2 (de)
WO (1) WO2015024769A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113914941A (zh) * 2021-09-30 2022-01-11 杭州意能电力技术有限公司 抑制大型汽轮发电机组汽流激振的阀序优化方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10626749B2 (en) * 2016-08-31 2020-04-21 General Electric Technology Gmbh Spindle vibration evaluation module for a valve and actuator monitoring system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187685A (en) * 1977-02-18 1980-02-12 Hitachi, Ltd. Method and system for effecting control governing of a steam turbine
JPS60215182A (ja) * 1984-04-06 1985-10-28 Hitachi Ltd 蒸気弁の診断方法
JPH0942211A (ja) * 1995-07-25 1997-02-10 Hitachi Ltd Pwm制御弁の制御方法および流体圧エレベーターの制御方法
DE102008015588A1 (de) * 2007-03-29 2008-10-02 General Electric Co. Verfahren und Vorrichtungen zur Überwachung von Dampfturbinenventilanordnungen
US20110056201A1 (en) * 2009-09-08 2011-03-10 General Electric Company Method and apparatus for controlling moisture separator reheaters
EP2503105A2 (de) * 2011-03-25 2012-09-26 Kabushiki Kaisha Toshiba Dampfventilvorrichtung und Dampfturbinenanlage

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3706201A (en) * 1970-01-12 1972-12-19 United Aircraft Corp Dual fluid crossover control
US3998058A (en) * 1974-09-16 1976-12-21 Fast Load Control Inc. Method of effecting fast turbine valving for improvement of power system stability
JPS58187505A (ja) * 1982-04-27 1983-11-01 Toshiba Corp 蒸気タ−ビンの暖管装置
JPS6153405A (ja) * 1984-08-22 1986-03-17 Toshiba Corp 蒸気タ−ビンの制御装置
US4604028A (en) * 1985-05-08 1986-08-05 General Electric Company Independently actuated control valves for steam turbine
JPH083757B2 (ja) * 1986-11-04 1996-01-17 株式会社東芝 蒸気加減弁の開度制御装置
JPH02125903A (ja) * 1988-11-07 1990-05-14 Toshiba Corp 蒸気加減弁振動診断装置
JP2815894B2 (ja) * 1989-04-19 1998-10-27 株式会社東芝 蒸気タービンノズル浸食防止システム
JPH041401A (ja) * 1990-04-16 1992-01-06 Toshiba Corp 蒸気加減弁振動診断装置
JPH05296001A (ja) * 1992-04-22 1993-11-09 Mitsubishi Heavy Ind Ltd 蒸気管路
JP3638307B2 (ja) * 1994-06-08 2005-04-13 株式会社東芝 原子力発電プラントの再熱蒸気管装置
JPH10184313A (ja) * 1996-12-24 1998-07-14 Hitachi Ltd 蒸気タービン
RU2116464C1 (ru) * 1997-01-24 1998-07-27 Акционерное общество закрытого типа "Энерготех" Разгруженный регулирующий клапан паровой турбины
US20040101396A1 (en) * 2001-09-07 2004-05-27 Heinrich Oeynhausen Method for regulating a steam turbine, and corresponding steam turbine
RU2211338C2 (ru) * 2001-11-12 2003-08-27 Открытое акционерное общество "Ленинградский Металлический завод" Устройство соплового парораспределения цилиндра высокого давления паровой турбины

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187685A (en) * 1977-02-18 1980-02-12 Hitachi, Ltd. Method and system for effecting control governing of a steam turbine
JPS60215182A (ja) * 1984-04-06 1985-10-28 Hitachi Ltd 蒸気弁の診断方法
JPH0942211A (ja) * 1995-07-25 1997-02-10 Hitachi Ltd Pwm制御弁の制御方法および流体圧エレベーターの制御方法
DE102008015588A1 (de) * 2007-03-29 2008-10-02 General Electric Co. Verfahren und Vorrichtungen zur Überwachung von Dampfturbinenventilanordnungen
US20110056201A1 (en) * 2009-09-08 2011-03-10 General Electric Company Method and apparatus for controlling moisture separator reheaters
EP2503105A2 (de) * 2011-03-25 2012-09-26 Kabushiki Kaisha Toshiba Dampfventilvorrichtung und Dampfturbinenanlage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113914941A (zh) * 2021-09-30 2022-01-11 杭州意能电力技术有限公司 抑制大型汽轮发电机组汽流激振的阀序优化方法及系统

Also Published As

Publication number Publication date
KR101834095B1 (ko) 2018-03-02
CN105492729A (zh) 2016-04-13
JP2016528437A (ja) 2016-09-15
WO2015024769A1 (de) 2015-02-26
EP3004566A1 (de) 2016-04-13
RU2638689C2 (ru) 2017-12-15
CN105492729B (zh) 2017-12-01
KR20160030316A (ko) 2016-03-16
US20160201500A1 (en) 2016-07-14
RU2016110662A (ru) 2017-09-28

Similar Documents

Publication Publication Date Title
EP2033057B1 (de) Vorrichtung und verfahren zum durchführen eines stellorganfunktionstests an einer strömungsmaschine
EP2956250B1 (de) Kühlstrecke mit power cooling und laminarkühlung
DE19828368C2 (de) Verfahren und Vorrichtung zum Betreiben von zwei- oder mehrstufigen Verdichtern
EP2840234A1 (de) Verfahren zum Betreiben einer Dampfturbine mit zwei Dampfzuführungen
DE3232848A1 (de) Steuerungssystem mit von digitalrechnern erzeugten steuersignalen
DE2623899A1 (de) Verfahren zum betreiben von grossen turbo-verdichtern
EP3426897B1 (de) Verfahren zum kuppeln einer dampfturbine und einer gasturbine mit einem gewünschten differenzwinkel unter nutzung einer sollbeschleunigung
EP0443384A2 (de) Verfahren zur redundanten Drehzahlregelung und Vorrichtung zur Durchführung dieses Verfahrens
DE3524980A1 (de) Kraftstoffpumpvorrichtung zum liefern von kraftstoff zu einer brennkraftmaschine
DE102012000766A1 (de) Regelanordnung zum Regeln der Position eines Ankers eines Magnetaktors und Detektionsanordnung zum Detektieren der Position eines Ankers eines Magnetaktors
EP2382410B1 (de) Schnellschlussventil
WO2014124818A1 (de) Düse für eine freistrahlturbine
DE19621824C2 (de) Verfahren zum Regeln von Gasdrücken bei Einsatz von Gasentspannungsturbinen
DE19528253A1 (de) Verfahren und Vorrichtung zum Betreiben von Strömungsmaschinen mit Reglern mit hoher Proportionalverstärkung
CH663268A5 (de) Heizanlage an einem fernheizsystem.
DE4292022C2 (de) Steuersystem zum Abzapfen von Dampf aus und/oder Injizieren in eine Turbine
DE102021118978B3 (de) Hydraulische Maschine vom Typ Pelton und Betriebsverfahren
WO2013174717A1 (de) Steuern der zufuhr von arbeitsfluid zu einer turbine mittels einer ventilindividuellen ansteuerung von mehreren ventilen
DE1476889A1 (de) Gasturbinentriebwerksanlage
AT514948B1 (de) Fluidsystem für eine Maschine zur Herstellung einer Faserstoffbahn
EP3204621B1 (de) Vorrichtung und verfahren zur regelung eines dampfmassenstroms bei einer dampfturbine
DE102014207958A1 (de) Digitalhydraulische Druckregelvorrichtung und Herstellungsverfahren für eine digitalhydraulische Druckregelvorrichtung
EP2984527B1 (de) Hydraulikanordnung mit entkoppeltem betrieb zweier ventileinrichtungen
DE102007058517B4 (de) Digitaler Stellungsgeber
EP3497320B1 (de) Francis turbine und verfahren zum betrieb

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130823

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150826