WO2015022979A1 - 石油プロセスにおける熱交換器の汚れ防止方法 - Google Patents

石油プロセスにおける熱交換器の汚れ防止方法 Download PDF

Info

Publication number
WO2015022979A1
WO2015022979A1 PCT/JP2014/071402 JP2014071402W WO2015022979A1 WO 2015022979 A1 WO2015022979 A1 WO 2015022979A1 JP 2014071402 W JP2014071402 W JP 2014071402W WO 2015022979 A1 WO2015022979 A1 WO 2015022979A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
anticorrosive
dispersant
agent
fouling
Prior art date
Application number
PCT/JP2014/071402
Other languages
English (en)
French (fr)
Inventor
錦織弘宜
Original Assignee
ナルコジャパン合同会社
株式会社片山化学工業研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナルコジャパン合同会社, 株式会社片山化学工業研究所 filed Critical ナルコジャパン合同会社
Priority to SG11201601093RA priority Critical patent/SG11201601093RA/en
Priority to JP2015531831A priority patent/JP5914915B2/ja
Priority to KR1020167004903A priority patent/KR20160036593A/ko
Publication of WO2015022979A1 publication Critical patent/WO2015022979A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • C10G7/10Inhibiting corrosion during distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G75/00Inhibiting corrosion or fouling in apparatus for treatment or conversion of hydrocarbon oils, in general
    • C10G75/02Inhibiting corrosion or fouling in apparatus for treatment or conversion of hydrocarbon oils, in general by addition of corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G75/00Inhibiting corrosion or fouling in apparatus for treatment or conversion of hydrocarbon oils, in general
    • C10G75/04Inhibiting corrosion or fouling in apparatus for treatment or conversion of hydrocarbon oils, in general by addition of antifouling agents

Definitions

  • This disclosure relates to a method for preventing contamination of a heat exchanger in an oil process.
  • Patent Document 1 discloses a heat exchanger to be added to a process fluid before a desalter, a stain preventing agent for a heating furnace, and a stain preventing method.
  • the present disclosure provides a method for preventing contamination of a heat exchanger in an oil process.
  • the present disclosure in one aspect, relates to a method comprising adding an anticorrosive and a dispersant to a process fluid that passes through the heat exchanger.
  • fouling of a heat exchanger in an oil process can be suppressed, and in one or more embodiments, it is possible to improve / maintain the heat exchange rate of the heat exchanger, thereby reducing fuel costs and cleaning costs. Can be suppressed.
  • FIG. 1 is a block diagram illustrating an example of an oil refining treatment apparatus including an atmospheric distillation column.
  • FIG. 2 is a cross-sectional view of the heating tube used in the dirt prevention test.
  • FIG. 3 is a cross-sectional view of the heating tube inserted into the heating tube holder.
  • This disclosure is based on the knowledge that the adhesion of asphaltene, which is a fouling component in heat exchangers such as preheating exchange, is via sulfur atoms present in the asphaltene molecule.
  • the present disclosure is based on the finding that when a dispersant added to the process fluid of a petroleum process for the purpose of preventing fouling is combined with an anticorrosive, fouling on the heat exchanger can be significantly reduced.
  • heat exchangers such as preheating exchange
  • a dispersant is used as an antifouling agent.
  • heat exchangers such as preheating exchangers require regular cleaning and replacement due to a decrease in the heat exchange rate and clogging.
  • the present disclosure is a method for preventing contamination of a heat exchanger in a petroleum process, the method comprising adding an anticorrosive and a dispersing agent to a process fluid passing through the heat exchanger (hereinafter, Also referred to as “stain prevention method according to the present disclosure”).
  • the “petroleum process” refers to all or part of the process from the raw material (crude oil) to the production of various petroleum products.
  • the petroleum process is at least one selected from the group consisting of a distillation unit, a hydrorefining unit, a catalytic reforming unit, a catalytic cracking unit, a hydrocracking unit, and a thermal cracking unit. It is a process using an apparatus.
  • the “heat exchanger” is a heat exchanger used in the petroleum process, and in one or a plurality of non-limiting embodiments, a preheating exchange (preheating exchanger), a preheater, And reboilers. In these heat exchangers, it is particularly high temperature portions of about 200 ° C. or more that are easily contaminated and accumulated.
  • the dirt prevention method according to the present disclosure includes a high temperature portion that is about 200 ° C., for example, 180 ° C. or higher, 190 ° C. or higher, 200 ° C. or higher, 210 ° C. or higher, or 220 ° C. or higher during processing. This is a method for preventing contamination of a heat exchanger.
  • the antifouling method according to the present disclosure exhibits the antifouling effect more effectively at about 200 ° C. or more.
  • the “process fluid” includes, in one or a plurality of non-limiting embodiments, a petroleum raw material to be processed in the petroleum process and / or an oil flowing through a processing apparatus.
  • stain in one or more non-limiting embodiments includes asphaltenes or includes asphaltenes that adhere and / or accumulate in a heat exchanger. It means dirt. Therefore, the fouling prevention in the heat exchanger in the present disclosure is, in one or more embodiments, the suppression of asphaltene adhesion and / or accumulation in the heat exchanger.
  • the anticorrosive agent that can be used in the dirt prevention method according to the present disclosure includes a high temperature anticorrosive agent that is used in a petroleum process.
  • the anticorrosive agent for high temperature is an anticorrosive agent that can exhibit an anticorrosive effect at 200 ° C. or higher in one or more embodiments.
  • the anticorrosive agent include at least one of a phosphate ester anticorrosive agent and a polysulfide anticorrosive agent. More specifically, the phosphate ester disclosed in Japanese Patent No. 3847837 A combination with polysulfide is mentioned.
  • the phosphate ester anticorrosive include, but are not limited to, methyl phosphate, ethyl phosphate, n-propyl phosphate, iso-propyl phosphate, butyl phosphate, pentyl phosphate, hexyl phosphate.
  • Examples of the polysulfide-based anticorrosive include olefin polysulfide or terpene polysulfide in one or more embodiments that are not limited. The molecular weight of the polysulfide may be 200 to 800, or 300 to 600 in one or more embodiments.
  • the concentration of the anticorrosive agent in the process fluid supplied to the heat exchanger is, in one or more embodiments, 1.0 to 100.0 ppm, 2.0 to 80.0 ppm, or 5.0 to 50.0 ppm. Can be mentioned.
  • Dispersants that can be used in the soil prevention method according to the present disclosure include those that are conventionally used or can be used in the future as soil prevention for petroleum processes or petroleum process heat exchangers.
  • examples of the dispersant that can be used in the soil prevention method according to the present disclosure include, but are not limited to, a polyolefin ester, a polyalkenyl-substituted succinic acid ester, and the like.
  • the concentration of the dispersant in the process fluid supplied to the heat exchanger is, in one or more embodiments, 1.0 to 100.0 ppm, 2.0 to 80.0 ppm, or 5.0 to 50.0 ppm. Can be mentioned.
  • the ratio of anticorrosive and dispersant content (ppm) in the process fluid supplied to the heat exchanger may be 5: 1 to 1: 5, 3: 1 to 1: 3, Or 2: 1 to 1: 2.
  • the place where the anticorrosive and the dispersing agent are added to the process fluid is not particularly limited, and in one or a plurality of embodiments, the place where the above-described concentration of the anticorrosive and the dispersing agent can be introduced into the heat exchanger to be prevented from being contaminated. Or just before the target heat exchanger.
  • the order of addition of the anticorrosive and the dispersant is not particularly limited, and in one or a plurality of embodiments, they may be added at the same time, may be added separately, or may be added at different places.
  • FIG. 1 is a block diagram showing an example of an oil refining treatment apparatus equipped with an atmospheric distillation tower.
  • the crude oil supplied through the pump 6 is desalted by the desalination apparatus 1 and then heated to 150 to 180 ° C. in the preheating exchanger 2 (heat exchanger 2), and further preheated. 3 (heat exchanger 3), heated to 240 to 280 ° C., heated to 350 to 380 ° C. in heating furnace 4, and introduced into atmospheric distillation column 5.
  • the bottoms from the bottom of the atmospheric distillation column 5 is sent as a heat source to the heat exchangers 3 and 2 via the pump 7.
  • the places where the anticorrosive agent and the dispersant are added are not limited, and in one or more embodiments, before the heat exchanger 3.
  • the place shown with the arrow A of a certain FIG. 1 is mentioned, the place shown with the arrow C in the near side may be sufficient.
  • the addition location of the anticorrosive and the dispersant is not limited, and in one or a plurality of embodiments, before the heat exchanger 3. A place indicated by an arrow B in FIG.
  • the present disclosure relates to an antifouling agent for use in the antifouling method according to the present disclosure, the antifouling agent containing an anticorrosive and a dispersant.
  • the form of the antifouling agent of this aspect may be a solid such as a powder or a tablet, or may be dissolved in a solvent, that is, in the form of a concentrated liquid.
  • this indication is related with the anticorrosive agent or dispersing agent for using for the stain
  • the anticorrosive and the dispersant are as described above.
  • the present disclosure relates to the use of an anticorrosive agent in a soil prevention method according to the present disclosure.
  • the anticorrosive agent of this embodiment include the above-described anticorrosive agents.
  • the use includes, in one or a plurality of embodiments, use of an anticorrosive agent in a system to which a dispersant is added.
  • the present disclosure may relate to one or more of the following embodiments; [1] A method for preventing fouling of a heat exchanger in an oil process, comprising adding an anticorrosive and a dispersing agent to a process fluid passing through the heat exchanger. [2] The antifouling method according to [1], wherein the anticorrosive is a high temperature anticorrosive used at 200 ° C. or higher. [3] The antifouling method according to [1] or [2], wherein the anticorrosive is at least one of a phosphate ester anticorrosive or a polysulfide anticorrosive.
  • a dispersant for use in the method for preventing contamination of a heat exchanger according to any one of [1] to [7].
  • the dirt (fouling) prevention test is a test for examining the dirt prevention effect of the oil refining dirt prevention agent.
  • a heating tube (heat rod) 21 shown in FIG. The heating tube is brought into contact with oil, and the adhesion state of the dirt is measured.
  • This heating tube 21 is used for a thermal stability tester specified in JIS K2276, and is made of mild steel, with the end portions 21a and 21b having a large diameter and the intermediate portion 21c having a small diameter, which is constricted. It has a tube shape.
  • the heating tube 21 is inserted into a tube-shaped heating tube holder 22 shown in FIG.
  • An inflow pipe 23a and an outflow pipe 23b are connected to the upper part and the lower part of the heating pipe holder 22, and a thermocouple 24 is inserted in the center part of the heating pipe 21, and a thermoelectric generator is connected by a temperature controller (not shown). It is possible to allow current to flow from both portions 21a and 21b of the heating tube 21 so that the temperature sensed by the pair 24 becomes a predetermined temperature.
  • a Hot Liquid Process Simulator tester manufactured by Alcor Corporation equipped with the heating tube 21 described above was used.
  • the heating tube 21 was heated under the following conditions, and the sample was introduced from the inflow tube 23a for testing.
  • Temperature of heating tube 21 360 ° C. (heated to 360 ° C. over 20 minutes)
  • Sample volume 500 ml (returned sample is not mixed because it is partitioned in the tank)
  • System pressure 500 psi (pressure adjustment with nitrogen) Test time: 5 hours
  • anticorrosive component phosphate ester and polysulfide, which are anticorrosive agents for high temperature, and imidazoline, which is an anticorrosive agent for low temperatures, were used.
  • dispersant component polyolefin ester and polyalkenyl-substituted succinic acid ester were used.
  • Example outlet temperature change [Sample outlet temperature change: ⁇ t] The sample temperature at the maximum temperature after the start of the test at the outflow pipe 23b (heater outlet) and the temperature change ( ⁇ t) of the sample temperature after 5 hours were measured. ⁇ t increases as dirt adheres to the heating tube 21. [Amount of deposits: mg] The apparatus was cooled, the heating tube 21 was taken out, the heating tube 21 was washed with heptane, further washed with acetone and then dried, the weight of the heating tube 21 was measured, and the weight of the deposit (fouling) was calculated. The results of the outlet temperature change and the amount of deposits are shown in Table 1 below.
  • Examples 1 to 4 had a smaller temperature change ( ⁇ t) than Comparative Examples 1 to 4, and the amount of deposits adhering to the heating tube was also smaller than Comparative Examples 1 to 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

石油プロセスにおける熱交換器の汚れ防止方法の提供。 熱交換器を通過するプロセス流体に、防食剤及び分散剤を添加することを含む、石油プロセスにおける熱交換器の汚れ防止方法。

Description

石油プロセスにおける熱交換器の汚れ防止方法
 本開示は、石油プロセスにおける熱交換器の汚れ防止方法に関する。
 原油を精製するための石油精製プラントの蒸留工程では、熱交換器及び加熱炉において原油が加熱された後、蒸留塔に送られ蒸留操作が行われる。熱交換器内や加熱炉内で原油が熱履歴を受け、多量の汚れが付着する。汚れ成分の一形態として、アスファルテンと呼ばれる有機系高分子成分が混合された形態がある。汚れ付着は、熱交換器や加熱炉の熱交換率の低下を引き起こし、出口温度を維持するための燃料使用量を増大させる結果となっていた。特許文献1は、デソルター前のプロセス流体に添加する熱交換器及び加熱炉の汚れ防止剤及び汚れ防止方法を開示する。
特開2010-163539号公報
 本開示は、一又は複数の実施形態において、石油プロセスにおける熱交換器の汚れ防止方法を提供する。
 本開示は、一態様において、前記熱交換器を通過するプロセス流体に、防食剤及び分散剤を添加することを含む方法に関する。
 本開示によれば、石油プロセスにおける熱交換器の汚れを抑制でき、一又は複数の実施形態において、それにより、熱交換器の熱交換率の向上/維持が可能となり、燃料コストや清掃コストを抑制できる。
図1は、常圧蒸留塔を備える石油精製処理装置の一例を示すブロック図である。 図2は、汚れ防止試験に用いた加熱管の断面図である。 図3は、加熱管を加熱管保持器に挿入した状態の断面図である。
 本開示は、予熱交等の熱交換器における汚れ成分であるアスファルテンの付着が、アスファルテン分子内に存在する硫黄原子を介しているという知見に基づく。また、本開示は、石油プロセスのプロセス流体に汚れ防止の目的で添加されていた分散剤と、防食剤とを組み合わせると、熱交換器への汚れを著しく低減できるという知見に基づく。
 これまで予熱交等の熱交換器における汚れの原因は、高温下でアスファルテンが凝集し、それが熱交換器に付着するためであると考えられていた。そのため、汚れ防止剤として分散剤が使用されている。しかし、それでも実際には、予熱交等の熱交換器は熱交換率の低下や、詰まりのため、定期的な清掃や交換が必要となる。
 すなわち、本開示は、一態様において、石油プロセスにおける熱交換器の汚れ防止方法であって、前記熱交換器を通過するプロセス流体に、防食剤及び分散剤を添加することを含む方法(以下、「本開示に係る汚れ防止方法」ともいう)。
 本開示に係る汚れ防止方法において、熱交換器、とりわけ、予熱交における汚れを抑制できる詳細は明らかではないが、メカニズムは以下のように推定される。すなわち、アスファルテンの硫黄原子が熱交換器の表面で硫化物を形成して沈着し、汚れの付着となる。よって、防食剤が添加されるとアスファルテンと熱交換器との反応が抑制され、汚れの付着が抑制されると考えられる。但し、本開示はこれらの考え方に限定されなくてもよい。
 本開示に係る汚れ防止方法において、「石油プロセス」とは、原料(原油)から各種石油製品が製造されるまでの工程の全部又は一部をいう。限定されない一又は複数の実施形態において、石油プロセスは、蒸留装置、水素化精製装置、接触改質装置、接触分解装置、水素化分解装置、及び熱分解装置からなる群から選択される少なくとも1つの装置を使用する工程である。
 本開示に係る汚れ防止方法において、「熱交換器」は、前記石油プロセスに使用される熱交換器であって、限定されない一又は複数の実施形態において、予熱交(予熱交換器)、プレヒータ-、リボイラー等が挙げられる。これらの熱交換器において、特に汚れが発生し蓄積しやすいのは、約200℃以上の高温部分である。本開示に係る汚れ防止方法は、一又は複数の実施形態において、処理時に約200℃、例えば、180℃以上、190℃以上、200℃以上、210℃以上、又は220℃以上となる高温部分がある熱交換器の汚れ防止方法である。本開示に係る汚れ防止方法は、一又は複数の実施形態において、汚れ防止効果を約200℃以上でより効果的に発揮する。
 本開示に係る汚れ防止方法において、「プロセス流体」は、限定されない一又は複数の実施形態において、前記石油プロセスにおいて処理される石油原料、及び/又は処理装置を流れる油が挙げられる。
 本開示に係る汚れ防止方法において、「汚れ」は、限定されない一又は複数の実施形態において、アスファルテン(asphaltene)を含むものをいい、又は、熱交換器内で付着及び/又は蓄積するアスファルテンを含む汚れをいう。したがって、本開示における熱交換器における汚れ防止は、一又は複数の実施形態において、熱交換器内におけるアスファルテンの付着及び/又は蓄積の抑制である。
 [防食剤]
 本開示に係る汚れ防止方法において使用されうる防食剤としては、一又は複数の実施形態において、高温用防食剤であって、石油プロセスで利用される高温防食剤が挙げられる。高温用防食剤は、一又は複数の実施形態において、200℃以上で防食効果が発揮されうる防食剤である。
 防食剤の一又は複数の実施形態として、リン酸エステル系防食剤、又は多硫化物系防食剤の少なくとも一方が挙げられ、より具体的には、特許第3847837号に開示されるリン酸エステルと多硫化物との組合せが挙げられる。リン酸エステル系防食剤としては、限定されない一又は複数の実施形態において、リン酸メチル、リン酸エチル、リン酸n-プロピル、リン酸イソ-プロピル、リン酸ブチル、リン酸ペンチル、リン酸ヘキシル、リン酸シクロヘキシル、リン酸ヘプチル、リン酸ノニル、リン酸デシル、リン酸ラウリル、リン酸セチル、リン酸オクタデシル、リン酸ヘプタデシル、リン酸フェニル、リン酸ベンジル、リン酸トリル、リン酸メチルフェニル、リン酸アミルフェニル、又はこれらの組み合わせを含むものが挙げられる。多硫化物系防食剤としては、限定されない一又は複数の実施形態において、オレフィン多硫化物又はテルペン多硫化物が挙げられる。多硫化物の分子量は、一又は複数の実施形態において、200~800、又は300~600が挙げられる。
 熱交換器に供給されるプロセス流体における防食剤の濃度としては、一又は複数の実施形態において、1.0~100.0ppm、2.0~80.0ppm、又は5.0~50.0ppmが挙げられる。
 [分散剤]
 本開示に係る汚れ防止方法において使用されうる分散剤としては、石油プロセス又は石油プロセスの熱交換器の汚れ防止として従来使用され、或いは今後使用されうるものが挙げられる。本開示に係る汚れ防止方法において使用されうる分散剤は、限定されない一又は複数の実施形態において、ポリオレフィンエステル、ポリアルケニル置換コハク酸エステル等が挙げられる。
 熱交換器に供給されるプロセス流体における分散剤の濃度としては、一又は複数の実施形態において、1.0~100.0ppm、2.0~80.0ppm、又は5.0~50.0ppmが挙げられる。
 熱交換器に供給されるプロセス流体における防食剤と分散剤の含有量(ppm)の比としては、一又は複数の実施形態において、5:1~1:5、3:1~1:3、又は、2:1~1:2が挙げられる。
 防食剤と分散剤をプロセス流体に添加する場所は特に限定されず、一又は複数の実施形態において、上記の濃度の防食剤と分散剤が汚れ防止の対象の熱交換器に導入されうる場所が挙げられ、又は、対象の熱交換器の手前が挙げられる。防食剤と分散剤の添加順序は特に制限されず、一又は複数の実施形態において、同時に添加されてもよく、別々に添加されてもよく、互いに異なる場所で添加されてもよい。
 図1は、常圧蒸留塔を備える石油精製処理装置の一例を示すブロック図である。この石油精製処理装置では、ポンプ6を介してから供給された原油は、脱塩装置1で脱塩された後予熱交2(熱交換器2)で150~180℃に加熱され、さらに予熱交3(熱交換器3)に導入され240~280℃に加熱され、加熱炉4で350~380℃に加熱されて、常圧蒸留塔5に導入される。常圧蒸留塔5の塔底から缶出液はポンプ7を介して熱交換器3及び2に熱源として送られる。
 図1の石油プロセスの熱交換器3において本開示に係る汚れ防止方法を行う場合、防食剤と分散剤の添加場所としては、限定されない一又は複数の実施形態において、熱交換器3の手前である図1の矢印Aで示す場所が挙げられるが、さらに手前の矢印Cで示す場所であってもよい。図1の熱交換器3において、加熱側で本開示に係る汚れ防止方法を行う場合、防食剤と分散剤の添加場所としては、限定されない一又は複数の実施形態において、熱交換器3の手前である図1の矢印Bで示す場所が挙げられる。
 [汚れ防止剤]
 本開示は、一態様において、本開示に係る汚れ防止方法に使用するための汚れ防止剤であって、防食剤及び分散剤を含有する汚れ防止剤に関する。本態様の汚れ防止剤の形態は、一又は複数の実施形態において、粉末、錠剤等の固体であってもよく、溶媒に溶解された状態、すなわち、濃縮液の形態であってもよい。
 また、本開示は、一態様において、本開示に係る汚れ防止方法に使用するための防食剤又は分散剤に関する。防食剤及び分散剤については、上述のとおりである。
 [使用]
 本開示は、一態様において、本開示に係る汚れ防止方法における防食剤の使用に関する。本態様の防食剤としては、上述の防食剤が挙げられる。該使用は、一又は複数の実施形態において、分散剤が添加される系における防食剤の使用があげられる。
 本開示は、以下の一又は複数の実施形態に関しうる;
[1] 石油プロセスにおける熱交換器の汚れ防止方法であって、前記熱交換器を通過するプロセス流体に、防食剤及び分散剤を添加することを含む、方法。
[2] 前記防食剤が、200℃以上で使用される高温用防食剤である、[1]記載の汚れ防止方法。
[3] 前記防食剤が、リン酸エステル系防食剤、又は多硫化物系防食剤の少なくとも一方である、[1]又は[2]記載の汚れ防止方法。
[4] 熱交換器に供給されるプロセス流体における防食剤が、1.0~100.0ppmである、[1]から[3]のいずれかに記載の汚れ防止方法。
[5] 熱交換器に供給されるプロセス流体における分散剤が、1.0~100.0ppmである、[1]から[4]のいずれかに記載の汚れ防止方法。
[6] 熱交換器に供給されるプロセス流体における防食剤と分散剤の含有量(ppm)の比が、5:1~1:5である、[1]から[5]のいずれかに記載の汚れ防止方法。
[7] 熱交換器における汚れ防止が、熱交換器内におけるアスファルテン(asphaltene)の付着及び/又は蓄積の抑制である、[1]から[6]のいずれかに記載の汚れ防止方法。
[8] [1]から[7]のいずれかに記載の熱交換器の汚れ防止方法に使用するための汚れ防止剤であって、防食剤及び分散剤を含有する汚れ防止剤。
[9] [1]から[7]のいずれかに記載の熱交換器の汚れ防止方法に使用するための防食剤。
[10] [1]から[7]のいずれかに記載の熱交換器の汚れ防止方法に使用するための分散剤。
[11] [1]から[7]のいずれかに記載の熱交換器の汚れ防止方法において、分散剤が添加される系における[9]記載の防食剤の使用。
 以下の実施例、比較例及び参考例に基いて本開示を説明するが、本開示はこれに限定されるものではない。
 <汚れ(ファウリング)防止試験>
 汚れ(ファウリング)防止試験は、石油精製用汚れ防止剤の汚れ防止効果を調べたりするための試験であり、汚れを付着させるための試験部材として、図2に示す加熱管(ヒートロッド)21を用い、加熱管を油に接触させて、その汚れの付着状況を測定することにより行うものである。この加熱管21は、JIS K2276に規定された熱安定度試験器に使用されるものであり、軟鋼製で端部21a、21bが大径とされ、中間部21cが小径とされた、くびれた管形状をなしている。この加熱管21を図3に示す管形状の加熱管保持器22の中へ挿入する。加熱管保持器22の上部及び下部には流入管23aと流出管23bとが接続されており、加熱管21の中央部には熱電対24が挿入されており、図示しない温度調節器により、熱電対24によって感知される温度が所定の温度となるように、加熱管21の両部21a、21bから電流を流すことが可能とされている。試験装置は、上述の加熱管21を備えたアルコア(Alcor)社製のHotLiquidProcessSimurator試験器を用いた。
 前記試験装置により、下記条件のように加熱管21を加熱し、サンプルを流入管23aから導入して、試験を行った。
サンプル:下記表1に記載の防食剤成分及び分散剤成分を重芳香族ナフサ(溶剤)に溶解させ均一な溶液として用い、原油サンプルに対し下記表1に記載の所定量となるように添加して調製した。
加熱管21の温度:360℃(20分かけて360℃まで昇温)
タンク、ライン、ポンプの温度:100℃
サンプル量:500ml(タンク内で仕切られているため戻ったサンプルは混合しない)サンプル導入流速:1ml/分
系内圧力:500psi(窒素で圧力調整)
試験時間:5時間
 防食剤成分として、高温用防食剤であるリン酸エステル及び多硫化物、並びに、低温用防食剤であるイミダゾリンを用いた。分散剤成分として、ポリオレフィンエステル、ポリアルケニル置換コハク酸エステルを用いた。
 <評価項目>
 〔サンプルの出口温度変化:Δt〕
 流出管23b(加熱部出口)における試験開始後最高温度のサンプル温度と、5時間経過後のサンプル温度の温度変化(Δt)を測定した。加熱管21に汚れが付着するほど、Δtが大きくなる。
 〔付着物量:mg〕
 装置を冷却して、加熱管21を取り出し、加熱管21をヘプタン洗浄し、さらにアセトン洗浄した後に乾燥させ、加熱管21の重量を測定して、付着物(ファウリング)重量を算出した。
 出口温度変化及び付着物量の結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すとおり、実施例1から4は、比較例1から4よりも小さい温度変化(Δt)であり、また、加熱管に付着した付着物量も比較例1から4より少なかった。
 また、外観を観察したところ、付着物量が少ないほど加熱管21の金属光沢が維持されていた(データ示さず)。
 1:脱塩装置
 2:熱交換器(予熱交)
 3:熱交換器(予熱交)
 4:加熱炉
 5:常圧蒸留塔
 6、7:ポンプ

Claims (11)

  1.  石油プロセスにおける熱交換器の汚れ防止方法であって、
     前記熱交換器を通過するプロセス流体に、防食剤及び分散剤を添加することを含む、方法。
  2.  前記防食剤が、200℃以上で使用される高温用防食剤である、請求項1記載の汚れ防止方法。
  3.  前記防食剤が、リン酸エステル系防食剤及び/又は多硫化物系防食剤である、請求項1又は2に記載の汚れ防止方法。
  4.  熱交換器に供給されるプロセス流体における防食剤が、1.0~100.0ppmである、請求項1から3のいずれかに記載の汚れ防止方法。
  5.  熱交換器に供給されるプロセス流体における分散剤が、1.0~100.0ppmである、請求項1から4のいずれかに記載の汚れ防止方法。
  6.  熱交換器に供給されるプロセス流体における防食剤と分散剤の含有量(ppm)の比が、5:1~1:5である、請求項1から5のいずれかに記載の汚れ防止方法。
  7.  熱交換器における汚れ防止が、熱交換器内におけるアスファルテン(asphaltene)の付着及び/又は蓄積の抑制である、請求項1から6のいずれかに記載の汚れ防止方法。
  8.  請求項1から7のいずれかに記載の熱交換器の汚れ防止方法に使用するための汚れ防止剤であって、防食剤及び分散剤を含有する汚れ防止剤。
  9.  請求項1から7のいずれかに記載の熱交換器の汚れ防止方法に使用するための防食剤。
  10.  請求項1から7のいずれかに記載の熱交換器の汚れ防止方法に使用するための分散剤。
  11.  請求項1から7のいずれかに記載の熱交換器の汚れ防止方法において、分散剤が添加される系における請求項9記載の防食剤の使用。
PCT/JP2014/071402 2013-08-15 2014-08-13 石油プロセスにおける熱交換器の汚れ防止方法 WO2015022979A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG11201601093RA SG11201601093RA (en) 2013-08-15 2014-08-13 Method for preventing fouling of heat exchanger in petroleum process
JP2015531831A JP5914915B2 (ja) 2013-08-15 2014-08-13 石油プロセスにおける熱交換器の汚れ防止方法
KR1020167004903A KR20160036593A (ko) 2013-08-15 2014-08-13 석유 프로세스에 있어서의 열교환기의 오염 방지 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-168889 2013-08-15
JP2013168889 2013-08-15

Publications (1)

Publication Number Publication Date
WO2015022979A1 true WO2015022979A1 (ja) 2015-02-19

Family

ID=52468364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071402 WO2015022979A1 (ja) 2013-08-15 2014-08-13 石油プロセスにおける熱交換器の汚れ防止方法

Country Status (4)

Country Link
JP (1) JP5914915B2 (ja)
KR (1) KR20160036593A (ja)
SG (1) SG11201601093RA (ja)
WO (1) WO2015022979A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190141778A (ko) 2017-05-09 2019-12-24 카타야마 케미칼, 인코포레이티드 석유 프로세스에 있어서의 열 교환기의 오염 방지 방법
WO2021199439A1 (ja) * 2020-04-03 2021-10-07 株式会社片山化学工業研究所 石油プロセスにおける熱交換器の汚れ防止方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05179258A (ja) * 1991-12-27 1993-07-20 Kurita Water Ind Ltd 石油精製プロセス用汚れ防止剤
JPH0734071A (ja) * 1993-07-22 1995-02-03 Kurita Water Ind Ltd 石油精製または石油化学プロセス用汚れ防止剤
JPH08311671A (ja) * 1995-05-10 1996-11-26 Nalco Chem Co 高温腐食の制御において燐の効果を増強する硫化剤の使用
JP2005213369A (ja) * 2004-01-29 2005-08-11 Hakuto Co Ltd ファウリング防止剤およびファウリング防止方法
JP2012500299A (ja) * 2008-08-15 2012-01-05 エクソンモービル リサーチ アンド エンジニアリング カンパニー 石油精油所プロセスでの汚れ軽減のための金属スルホネート添加剤
JP2012500888A (ja) * 2008-08-26 2012-01-12 ドルフ ケタール ケミカルズ(I) プライベート リミテッド ナフテン酸腐食を防止する効果的な新規ポリマー性の添加物及びその使用方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8192613B2 (en) * 2008-02-25 2012-06-05 Baker Hughes Incorporated Method for reducing fouling in furnaces
US20110042268A1 (en) * 2009-08-21 2011-02-24 Baker Hughes Incorporated Additives for reducing coking of furnace tubes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05179258A (ja) * 1991-12-27 1993-07-20 Kurita Water Ind Ltd 石油精製プロセス用汚れ防止剤
JPH0734071A (ja) * 1993-07-22 1995-02-03 Kurita Water Ind Ltd 石油精製または石油化学プロセス用汚れ防止剤
JPH08311671A (ja) * 1995-05-10 1996-11-26 Nalco Chem Co 高温腐食の制御において燐の効果を増強する硫化剤の使用
JP2005213369A (ja) * 2004-01-29 2005-08-11 Hakuto Co Ltd ファウリング防止剤およびファウリング防止方法
JP2012500299A (ja) * 2008-08-15 2012-01-05 エクソンモービル リサーチ アンド エンジニアリング カンパニー 石油精油所プロセスでの汚れ軽減のための金属スルホネート添加剤
JP2012500888A (ja) * 2008-08-26 2012-01-12 ドルフ ケタール ケミカルズ(I) プライベート リミテッド ナフテン酸腐食を防止する効果的な新規ポリマー性の添加物及びその使用方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190141778A (ko) 2017-05-09 2019-12-24 카타야마 케미칼, 인코포레이티드 석유 프로세스에 있어서의 열 교환기의 오염 방지 방법
WO2021199439A1 (ja) * 2020-04-03 2021-10-07 株式会社片山化学工業研究所 石油プロセスにおける熱交換器の汚れ防止方法

Also Published As

Publication number Publication date
KR20160036593A (ko) 2016-04-04
SG11201601093RA (en) 2016-03-30
JPWO2015022979A1 (ja) 2017-03-02
JP5914915B2 (ja) 2016-05-11

Similar Documents

Publication Publication Date Title
JP5322938B2 (ja) 高tanかつ高sbn原油を混合する方法、並びに微粒子によって誘発される全原油ファウリングおよびアスファルテンによって誘発される全原油ファウリングを低減する方法
JP5555700B2 (ja) 高tanおよび高sbn原油の残油留分を用いるファウリングの低減方法および装置
JP5456672B2 (ja) 伝熱装置におけるオイルファウリングの低減方法
US20210032528A1 (en) Oil soluble molybdenum complexes as high temperature fouling inhibitors
JP5593328B2 (ja) 全原油ファウリングを低減するための原油への高分子量ナフテンテトラ酸の添加
JP5914915B2 (ja) 石油プロセスにおける熱交換器の汚れ防止方法
JP2012509954A (ja) 高溶解分散能(hsdp)原油から成分を分離して使用する方法
JP6485598B1 (ja) 石油プロセスにおける熱交換器の汚れ防止方法
JP2012500302A (ja) ファウリングの軽減およびオンライン清浄のための高溶解分散力(hsdp)原油のブレンド
US7625480B2 (en) Pyrolysis furnace feed
US8425761B2 (en) Non-high solvency dispersive power (non-HSDP) crude oil with increased fouling mitigation and on-line cleaning effects
US11015135B2 (en) Reduced fouling of hydrocarbon oil
JP2012500299A (ja) 石油精油所プロセスでの汚れ軽減のための金属スルホネート添加剤
US4444649A (en) Antifoulant for high temperature hydrocarbon processing
JP5275826B2 (ja) 予熱交換器及び加熱炉の汚れ防止方法
JP2007106926A (ja) 石油精製用汚れ防止剤及び石油精製プラントの汚れ防止方法
WO2017127988A1 (zh) 一种用于炼油工艺过程的阻垢剂及其制备方法
JP2022148818A (ja) 石油プロセスにおける熱交換器の汚れ防止方法
JP7064362B2 (ja) 流動接触分解装置用熱交換器の汚れ評価方法および流動接触分解装置用熱交換器の汚れ評価装置
WO2021199439A1 (ja) 石油プロセスにおける熱交換器の汚れ防止方法
JP2019172866A (ja) 流動接触分解装置用原料油組成物
JP2021156568A (ja) 重油脱硫装置用熱交換器の洗浄方法
CN113260694A (zh) 蒸馏塔的压差消除方法
TW202043331A (zh) 焦化加熱器之積垢減量
JPH03115589A (ja) 石油精製及び石油化学プロセス用汚れ防止剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836731

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015531831

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167004903

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14836731

Country of ref document: EP

Kind code of ref document: A1