WO2015019772A1 - レンズユニット及び撮像装置 - Google Patents

レンズユニット及び撮像装置 Download PDF

Info

Publication number
WO2015019772A1
WO2015019772A1 PCT/JP2014/068003 JP2014068003W WO2015019772A1 WO 2015019772 A1 WO2015019772 A1 WO 2015019772A1 JP 2014068003 W JP2014068003 W JP 2014068003W WO 2015019772 A1 WO2015019772 A1 WO 2015019772A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
coupling portion
array
outer periphery
actuator
Prior art date
Application number
PCT/JP2014/068003
Other languages
English (en)
French (fr)
Inventor
篤広 野田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2015019772A1 publication Critical patent/WO2015019772A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/08Stereoscopic photography by simultaneous recording
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0015Movement of one or more optical elements for control of motion blur by displacing one or more optical elements normal to the optical axis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element

Definitions

  • the present invention relates to a lens unit and an imaging apparatus.
  • the lens is moved by an actuator such as a shape memory alloy (SMA) actuator or a voice coil motor to adjust the focal point, the focal length, etc., so as to suppress disturbance of the image formation.
  • an actuator such as a shape memory alloy (SMA) actuator or a voice coil motor to adjust the focal point, the focal length, etc., so as to suppress disturbance of the image formation.
  • the posture of the lens is maintained by a parallel guide mechanism such as a leaf spring, and the lens is guided in the driving direction.
  • the lens is moved by the SMA actuator, the posture of the lens is maintained by the leaf spring, and the lens is guided in the driving direction.
  • the lens In order for the lens posture to be properly maintained and the lens to be appropriately moved, the lens needs to be accurately positioned with respect to a moving mechanism including an actuator, a parallel guide mechanism, and the like.
  • a moving mechanism including an actuator, a parallel guide mechanism, and the like.
  • the size of the micro camera unit has been increased due to the positioning structure. This problem also occurs when the lens is a multi-array lens.
  • An object of the present invention is to provide a lens unit and an imaging apparatus that are small in size, in which the posture of the multi-array lens is appropriately maintained, the multi-array lens is appropriately moved, and the like.
  • the lens unit includes a support, a multi-array lens, and a drive mechanism.
  • Two or more unit structures are arranged on the arrangement surface of the multi-array lens.
  • Each of the two or more unit structures includes a lens.
  • the two or more unit structures include a positioning unit structure.
  • the drive mechanism moves the multi-array lens relative to the support while maintaining the posture of the multi-array lens.
  • the first coupling portion of the drive mechanism is coupled to the support.
  • the second coupling part of the driving mechanism is coupled to the multi-array lens.
  • the second coupling portion is positioned with respect to the multi-array lens by the positioning unit structure.
  • the drive mechanism may include an actuator and a parallel guide mechanism.
  • the actuator generates a driving force that moves the multi-array lens in the driving direction.
  • the parallel guide mechanism guides the multi-array lens in the driving direction while maintaining the posture of the multi-array lens.
  • the drive mechanism includes an actuator and a drive mechanism
  • the first coupling portion and the second coupling portion may belong to the actuator, and the first coupling portion and the second coupling portion belong to the parallel guide mechanism.
  • the drive mechanism may further include a bias spring.
  • the drive mechanism includes a bias spring, the first coupling portion and the second coupling portion may belong to the bias spring.
  • the multi-array lens is accurately positioned with respect to the drive mechanism, the posture of the multi-array lens is appropriately maintained, and the multi-array lens is appropriately moved.
  • a structure only for positioning is not required, and the lens unit and the imaging device are reduced in size.
  • 1st Embodiment 1st Embodiment is related with an imaging device.
  • FIG. 1 is a cross-sectional view of the imaging apparatus 100 of the first embodiment.
  • the schematic diagram of FIG. 2 is a top view of the lens unit 102 of the first embodiment.
  • the schematic diagram of FIG. 3 is a bottom view of the lens unit 102 of the first embodiment.
  • the imaging apparatus 100 includes a lens unit 102, an imaging element 104, and a substrate 106.
  • the lens unit 102 includes a support 108, a multi-array lens 110, and a drive mechanism 112.
  • the multi-array lens 110 includes 16 upper lenses 114a to 114p and 16 lower lenses 116a to 116p.
  • the drive mechanism 112 includes a plate-like shape memory alloy actuator (plate-like SMA actuator) 118 and a parallel guide mechanism 120.
  • the parallel guide mechanism 120 includes an upper leaf spring 122 and a lower leaf spring 124.
  • the imaging apparatus 100 may include components other than these components.
  • the number of upper lenses and the number of lower lenses may be two or more, and may be increased or decreased from 16.
  • the 16 upper lenses 114a to 114p or the 16 lower lenses 116a to 116p may be omitted.
  • the 16 upper lenses 114a to 114p are arranged in a matrix on the upper array surface 126 of the multi-array lens 110.
  • 16 lower lenses 116a to 116p are arranged in a matrix.
  • the number of rows is 4 and the number of columns is 4.
  • the number of lines may be increased or decreased from 4 lines.
  • the number of columns may be increased or decreased from four columns.
  • the 16 upper lenses 114a to 114p may be arranged other than the matrix arrangement.
  • the 16 upper lenses 114a to 114p may be arranged in a honeycomb, and the 16 upper lenses 114a to 114p may be arranged irregularly.
  • the 16 lower lenses 116a to 116p may be arranged other than the matrix arrangement.
  • the 16 lower lenses 116a to 116p may be arranged in a honeycomb arrangement, and the 16 lower lenses 116a to 116p may be arranged irregularly.
  • the first lens 4d upper lens 114d, the fourth row first column upper lens 114m, the first row first column lower lens 116a and the fourth row fourth column lower lens 116p are positioning lenses.
  • the number of positioning lenses may be one or more, and may be increased or decreased from four.
  • the description of the m-th row and the n-th column means that it is the m-th row from the front (lower side in FIG. 2 and the upper side in FIG. 3) and the n-th column from the left side (left side in FIGS. 2 and 3). .
  • the 16 upper lenses 114a to 114p protrude from the upper array surface 126.
  • the 16 lower lenses 116a to 116p protrude from the lower arrangement surface 128.
  • the plate-like SMA actuator 118 generates a driving force that moves the multi-array lens 110 in the driving direction, causes the driving force to act directly on the multi-array lens 110, and moves the multi-array lens 110 relative to the support 108.
  • the plate-like SMA actuator 118 may be replaced with another type of actuator.
  • the plate-like SMA actuator 118 may be replaced with a linear SMA actuator, a voice coil motor (VCM) actuator, a bimetal actuator, a piezoelectric actuator, or the like.
  • VCM voice coil motor
  • a mechanism for transmitting a driving force from the plate-like SMA actuator 118 to the multi-array lens 110 may be provided, and the plate-like SMA actuator 118 may indirectly apply the driving force to the multi-array lens 110.
  • One coupling portion 132 of the plate-like SMA actuator 118 is coupled to the support 108.
  • the other coupling portion 134 of the plate-like SMA actuator 118 is coupled to the lower arrangement surface 128 of the multi-array lens 110.
  • the coupling portion 134 of the plate-like SMA actuator 118 is coupled to the center of the lower arrangement surface 128 of the multi-array lens 110.
  • the other coupling portion 134 of the plate-shaped SMA actuator 118 may be coupled to other than the center of the lower array surface 128 of the multi-array lens 110, and the other coupling portion 134 of the plate-shaped SMA actuator 118 may be coupled to the multi-array lens 110. It may be coupled to other than the lower arrangement surface 128.
  • the parallel guide mechanism 120 guides the multi-array lens 110 in the driving direction while maintaining the posture of the multi-array lens 110.
  • One coupling part 136 and 138 of the upper leaf spring 122 is coupled to the support 108.
  • the other coupling portions 140 and 142 of the upper leaf spring 122 are coupled to the upper arrangement surface 126 of the multi-array lens 110.
  • the coupling portions 140 and 142 of the upper leaf spring 122 are coupled to the outer edges of the upper lenses 114d and 114m, respectively.
  • One coupling portion 144 and 146 of the lower leaf spring 124 is coupled to the support 108.
  • the other coupling portions 148 and 150 of the lower leaf spring 124 are coupled to the lower arrangement surface 128 of the multi-array lens 110.
  • the coupling portions 148 and 150 of the lower leaf spring 124 are coupled to the outer edges of the lower lenses 116a and 116p, respectively.
  • the upper leaf spring 122 and the lower leaf spring 124 are parallel to the imaging surface 105 of the imaging element 104.
  • the upper plate spring 122 and the lower plate spring 124 maintain the posture of the multi-array lens 110 so that the upper arrangement surface 126 and the lower arrangement surface 128 are parallel to the imaging surface 105 of the imaging element 104.
  • the parallel guide mechanism 120 may be replaced with another type of parallel guide mechanism.
  • the parallel guide mechanism 120 may be replaced with a parallel guide mechanism having a guide shaft, a parallel guide mechanism having a link, or the like.
  • the driving direction of the multi-array lens 110 is maintained in a direction parallel to the optical axis 190 of the multi-array lens 110, and is maintained in a direction perpendicular to the imaging surface 105 of the imaging element 104.
  • the multi-array lens 110 is moved to adjust the focus.
  • the multi-array lens 110 may be moved to adjust the focal length.
  • the image sensor 104 captures images formed by the 16 upper lenses 114a to 114p and the 16 lower lenses 116a to 116p.
  • the imaging data output from the imaging element 104 is used for generating a stereo image, a three-dimensional image, and the like.
  • 16 images formed by 16 sets such as a set of the upper lens 114 a and the lower lens 116 a and a set of the upper lens 114 b and the lower lens 116 b are picked up by one image sensor 104.
  • Sixteen images may be captured by two or more image sensors.
  • Each of the two or more imaging elements may capture one image, or may capture two or more images.
  • the upper lens 114 d is inserted into a hole 152 formed in the coupling portion 140 of the upper leaf spring 122.
  • the upper lens 114 m is inserted into a hole 154 formed in the coupling portion 142 of the upper leaf spring 122.
  • the planar shape of the holes 152 and 154 matches the planar shape of the upper lenses 114d and 114m, respectively.
  • the inner circumferences of the holes 152 and 154 are along the outer circumferences of the upper lenses 114d and 114m, respectively.
  • the coupling portion 140 of the upper leaf spring 122 is positioned with respect to the multi-array lens 110 by the outer periphery of the upper lens 114d.
  • the coupling portion 142 of the upper leaf spring 122 is positioned with respect to the multi-array lens 110 by the outer periphery of the upper lens 114m. Positioning is performed by the whole outer periphery.
  • the lower lens 116 a is inserted into a hole 156 formed in the coupling portion 148 of the lower leaf spring 124.
  • the lower lens 116p is inserted into a hole 158 formed in the coupling portion 150 of the lower leaf spring 124.
  • the planar shape of the holes 156 and 158 matches the planar shape of the lower lenses 116a and 116p, respectively.
  • the inner circumferences of the holes 156 and 158 are along the outer circumferences of the lower lenses 116a and 116p, respectively.
  • the coupling portion 148 of the lower leaf spring 124 is positioned with respect to the multi-array lens 110 by the outer periphery of the lower lens 116a.
  • the coupling portion 150 of the lower leaf spring 124 is positioned with respect to the multi-array lens 110 by the outer periphery of the lower lens 116p. Positioning is performed by the whole outer periphery.
  • the position accuracy of the 16 upper lenses 114a to 114p and the 16 lower lenses 116a to 116p is originally high, positioning is performed by the outer circumferences of the 16 upper lenses 114a to 114p and the 16 lower lenses 116a to 116p. In this case, the positioning accuracy is good, and the multi-array lens 110 is accurately positioned with respect to the parallel guide mechanism 120. Thereby, the posture of the multi-array lens 110 is appropriately maintained, and the multi-array lens 110 is appropriately moved with respect to the support 108. A structure only for positioning is not necessary, and the lens unit 102 becomes small.
  • the positioning of the other component by one component means that the movement of the other component relative to the one component is restricted by the one component, and the relative position of the other component with respect to the one component Is maintained.
  • the upper lenses 114d and 114m are arranged on the outermost side of the sixteen upper lenses 114a to 114p.
  • the lower lenses 116a and 116p are disposed on the outermost side of the 16 lower lenses 116a to 116p.
  • the lenses in the first row, the mth row, the first column, and the nth column are arranged on the outermost side in the m ⁇ n lenses. Is done.
  • the driving mechanism 112 is disposed outside the effective optical region when viewed from a direction parallel to the optical axis 190 of the multi-array lens 110.
  • the effective optical area refers to an area through which a light beam connecting images passes.
  • FIG. 4 is a perspective view of the plate-like SMA actuator 118.
  • the plate-like SMA actuator 118 includes a plate-like SMA 160 and a film heater 162.
  • the film heater 162 is formed on the surface of the plate SMA 160.
  • the film heater 162 generates heat.
  • the heat generated by the film heater 162 is transmitted to the plate SMA 160, and the temperature of the plate SMA actuator 118 rises.
  • the shape of the plate-like SMA actuator 118 changes from a flat shape to a curved shape shown in FIG. 1, and a driving force that moves the multi-array lens 110 upward acts on the multi-array lens 110.
  • Second Embodiment A second embodiment relates to an imaging apparatus.
  • FIG. 5 is a cross-sectional view of the imaging apparatus 200 of the second embodiment.
  • the schematic diagram of FIG. 6 is a top view of the lens unit 202 of the second embodiment.
  • the schematic diagram of FIG. 7 is a bottom view of the lens unit 202 of the second embodiment.
  • the imaging apparatus 200 of the second embodiment is different from the first embodiment in that the plate-like SMA actuator 118 of the first embodiment is replaced with plate-like SMA actuators 204 and 206.
  • the imaging apparatus 100 of FIG. Different from the imaging apparatus 100 of FIG.
  • differences from the imaging device 100 of the first embodiment will be mainly described. About the matter which is not demonstrated, description of 1st Embodiment may be used as it is, and after description of 1st Embodiment is changed, it may be used. The description of embodiments other than the first embodiment may be incorporated.
  • the plate-like SMA actuators 204 and 206 generate a driving force that moves the multi-array lens 110 in the driving direction, causes the driving force to act directly on the multi-array lens 110, and moves the multi-array lens 110 relative to the support 108. .
  • One coupling portion 208 of the plate-like SMA actuator 204 is coupled to the support 108.
  • the other coupling portion 210 of the plate-like SMA actuator 204 is coupled to the lower arrangement surface 128 of the multi-array lens 110.
  • the coupling portion 210 of the plate-like SMA actuator 204 is coupled to a position shifted right and forward from the center of the lower array surface 128 of the multi-array lens 110.
  • One coupling portion 212 of the plate-like SMA actuator 206 is coupled to the support 108.
  • the other coupling portion 214 of the plate-like SMA actuator 206 is coupled to the lower arrangement surface 128 of the multi-array lens 110.
  • the coupling portion 214 of the plate-like SMA actuator 206 is coupled to a position shifted to the left rear from the center of the lower arrangement surface 128 of the multi-array lens 110.
  • the plate-like SMA actuators 204 and 206 apply driving force symmetrically to the center of the lower arrangement surface 128 of the multi-array lens 110. This facilitates maintaining the posture of the multi-array lens 110.
  • Third Embodiment A third embodiment relates to an imaging apparatus.
  • FIG. 8 is a cross-sectional view of the imaging apparatus 300 according to the third embodiment.
  • the schematic diagram of FIG. 9 is a top view of the lens unit 302 of the third embodiment.
  • the schematic diagram of FIG. 10 is a bottom view of the lens unit 302 of the third embodiment.
  • the imaging apparatus 300 of the third embodiment is different in that the plate-like SMA actuator 118 of the first embodiment is replaced with a VCM actuator 304 and a lens holder 306 is provided. It differs from the imaging device 100 of 1 embodiment. In the following, differences from the imaging device 100 of the first embodiment will be mainly described. About the matter which is not demonstrated, description of 1st Embodiment may be used as it is, and after description of 1st Embodiment is changed, it may be used. The description of embodiments other than the first embodiment may be incorporated.
  • the VCM actuator 304 generates a driving force that moves the multi-array lens 110 in the driving direction, causes the driving force to act directly on the multi-array lens 110, and moves the multi-array lens 110 relative to the support 108.
  • the lens holder 306 holds the multi-array lens 110.
  • the VCM actuator 304 includes coils 308 and 310 and magnets 312 and 314.
  • the VCM actuator 304 may include a yoke.
  • One coupling part 316 and 318 of the VCM actuator 304 belongs to the coils 308 and 310, respectively, and is coupled to the support 108.
  • the other coupling portions 320 and 322 of the VCM actuator 304 belong to the magnets 312 and 314, respectively, and are coupled to positions shifted to the left and to the right from the center of the lower array surface 128 of the multi-array lens 110, respectively.
  • the VCM actuator 304 applies a driving force symmetrically to the center of the lower arrangement surface 128 of the multi-array lens 110. This facilitates maintaining the posture of the multi-array lens 110.
  • the fourth embodiment relates to an imaging device.
  • FIG. 11 is a cross-sectional view of the imaging apparatus 400 of the fourth embodiment.
  • the schematic diagram of FIG. 12 is a top view of the lens unit 402 of the fourth embodiment.
  • the schematic diagram of FIG. 13 is a bottom view of the lens unit 402 of the fourth embodiment.
  • the imaging apparatus 400 of the fourth embodiment is such that the plate-like SMA actuator 118 of the first embodiment is replaced with a linear SMA actuator 404 and a lever 406 is provided.
  • the imaging device 100 of the first embodiment differs from the imaging device 100 of the first embodiment.
  • description of 1st Embodiment may be used as it is, and after description of 1st Embodiment is changed, it may be used.
  • the description of embodiments other than the first embodiment may be incorporated.
  • the linear SMA actuator 404 generates a driving force that moves the multi-array lens 110 in the driving direction, indirectly causes the driving force to act on the multi-array lens 110, and moves the multi-array lens 110 relative to the support 108.
  • the lever 406 transmits a driving force from the linear SMA actuator 404 to the multi-array lens 110, causes the driving force to act directly on the multi-array lens 110, and moves the multi-array lens 110 relative to the support 108.
  • the lever 406 includes a lever arm 408 and a lever hinge 410.
  • One coupling portion 412 and 414 of the linear SMA actuator 404 is at the end of the linear SMA actuator 404 and is coupled to the support 108.
  • the other coupling portion 416 of the linear SMA actuator 404 is at the center of the linear SMA actuator 404 and is coupled to the force point of the lever arm 408.
  • the lever hinge 410 is coupled to the support body 108 and serves as a fulcrum and a rotation axis of the lever arm 408.
  • the action point of the lever arm 408 is coupled to the center of the lower arrangement surface 128 of the multi-array lens 110.
  • the linear SMA actuator 404 When a current flows through the linear SMA actuator 404, the linear SMA actuator 404 generates heat, and the temperature of the linear SMA actuator 404 increases.
  • the linear SMA actuator 404 contracts in the length direction, and the force point of the lever arm 408 moves.
  • the force point of the lever arm 408 moves, the action point of the lever arm 408 moves, and the driving force that moves the multi-array lens 110 upward acts on the multi-array lens 110.
  • a fifth embodiment relates to an imaging apparatus.
  • FIG. 14 is a cross-sectional view of the imaging apparatus 500 of the fifth embodiment.
  • the schematic diagram of FIG. 15 is a top view of the lens unit 502 of the fifth embodiment.
  • the schematic diagram of FIG. 16 is a bottom view of the lens unit 502 of the fifth embodiment.
  • the upper leaf spring 122 of the first embodiment is replaced with the upper leaf spring 504, and the lower leaf spring 124 of the first embodiment is replaced with the upper leaf spring 124. It is replaced with the lower leaf spring 506, and the positioning unit structure is the upper lens 114d in the first row and the fourth column, the upper lens 114h in the second row and the fourth column, the upper lens 114i in the third row and the first column, and the fourth row.
  • differences from the imaging device 100 of the first embodiment will be mainly described.
  • description of 1st Embodiment may be used as it is, and after description of 1st Embodiment is changed, it may be used.
  • the description of embodiments other than the first embodiment may be incorporated.
  • One coupling portion 508 and 510 of the upper leaf spring 504 is coupled to the support 108.
  • the other coupling portions 512 and 514 of the upper leaf spring 504 are coupled to the upper arrangement surface 126 of the multi-array lens 110.
  • the coupling portion 512 of the upper leaf spring 504 is coupled to a region straddling the outer edge of the upper lens 114d and the outer edge of the upper lens 114h.
  • the coupling portion 514 of the upper leaf spring 504 is coupled to a region straddling the outer edge of the upper lens 114i and the outer edge of the upper lens 114m.
  • the outer periphery of the coupling portion 512 of the upper leaf spring 504 is along the outer periphery of the upper lens 114d and the outer periphery of the upper lens 114h.
  • the outer periphery of the coupling portion 514 of the upper leaf spring 504 is along the outer periphery of the upper lens 114i and the outer periphery of the upper lens 114m.
  • the coupling portion 512 of the upper leaf spring 504 is positioned with respect to the multi-array lens 110 by the outer periphery of the upper lens 114d and the outer periphery of the upper lens 114h.
  • the coupling portion 514 of the upper leaf spring 504 is positioned with respect to the multi-array lens 110 by the outer periphery of the upper lens 114i and the outer periphery of the upper lens 114m. Positioning is performed by a part of the outer periphery.
  • One coupling portion 518 and 520 of the lower leaf spring 506 is coupled to the support 108.
  • the other coupling portions 522 and 524 of the lower leaf spring 506 are coupled to the lower arrangement surface 128 of the multi-array lens 110.
  • the coupling portion 522 of the lower leaf spring 506 is coupled to a region straddling the outer edge of the lower lens 116a and the outer edge of the lower lens 116e.
  • the coupling portion 524 of the lower leaf spring 506 is coupled to a region straddling the outer edge of the lower lens 116l and the outer edge of the lower lens 116p.
  • the outer periphery of the coupling portion 522 of the lower leaf spring 506 is along the outer periphery of the lower lens 116a and the outer periphery of the lower lens 116e.
  • the outer periphery of the coupling portion 524 of the lower leaf spring 506 is along the outer periphery of the lower lens 116l and the outer periphery of the lower lens 116p.
  • the coupling portion 522 of the lower leaf spring 506 is positioned with respect to the multi-array lens 110 by the outer periphery of the lower lens 116a and the outer periphery of the lower lens 116e.
  • the coupling portion 524 of the lower leaf spring 506 is positioned with respect to the multi-array lens 110 by the outer periphery of the lower lens 116l and the outer periphery of the lower lens 116p. Positioning is performed by a part of the outer periphery.
  • the upper lenses 114d, 114h, 114i, and 114m are disposed on the outermost side of the 16 upper lenses 114a to 114p.
  • the lower lenses 116a, 116e, 116l, and 116p are disposed on the outermost side of the 16 lower lenses 116a to 116p.
  • the sixth embodiment relates to an imaging device.
  • FIG. 17 is a cross-sectional view of an imaging apparatus 600 according to the sixth embodiment.
  • the schematic diagram of FIG. 18 is a top view of the lens unit 602 of the sixth embodiment.
  • the schematic diagram of FIG. 19 is a bottom view of the lens unit 602 of the sixth embodiment.
  • the upper leaf spring 122 of the first embodiment is replaced with the upper leaf spring 604, and the lower leaf spring 124 of the first embodiment is replaced by the upper leaf spring 124.
  • the positioning unit structure is replaced with the lower leaf spring 606, and the upper lens 114c in the first row and the third column, the upper lens 114d in the first row and the fourth column, the upper lens 114g in the second row and the third column, the second row Fourth lens upper lens 114h, third row first column upper lens 114i, third row second column upper lens 114j, fourth row first column upper lens 114m, fourth row second column upper lens 114n, first row, first column, lower lens 116a, first row, second column, lower lens 116b, second row, first column, lower lens 116e, second row, second column, lower lens 116f, third row, third column, lower lens 116k, third row Lower lens 116l in the fourth row, 4 rows In that it is changed in three rows under the eye lens
  • One coupling portion 608 and 610 of the upper leaf spring 604 is coupled to the support 108.
  • the other coupling portions 612 and 614 of the upper leaf spring 604 are coupled to the upper arrangement surface 126 of the multi-array lens 110.
  • the coupling portion 612 of the upper leaf spring 604 is coupled to a region straddling the outer edge of the upper lens 114c, the outer edge of the upper lens 114d, the outer edge of the upper lens 114g, and the outer edge of the upper lens 114h.
  • the coupling portion 614 of the upper leaf spring 604 is coupled to a region straddling the outer edge of the upper lens 114i, the outer edge of the upper lens 114j, the outer edge of the upper lens 114m, and the outer edge of the upper lens 114n.
  • the outer periphery of the coupling portion 612 of the upper leaf spring 604 is along the outer periphery of the upper lens 114c, the outer periphery of the upper lens 114d, the outer periphery of the upper lens 114g, and the outer periphery of the upper lens 114h.
  • the outer periphery of the coupling portion 614 of the upper leaf spring 604 is along the outer periphery of the upper lens 114i, the outer periphery of the upper lens 114j, the outer periphery of the upper lens 114m, and the outer periphery of the upper lens 114n.
  • the coupling portion 612 of the upper leaf spring 604 is positioned with respect to the multi-array lens 110 by the outer periphery of the upper lens 114c, the outer periphery of the upper lens 114d, the outer periphery of the upper lens 114g, and the outer periphery of the upper lens 114h.
  • the coupling portion 614 of the upper leaf spring 604 is positioned with respect to the multi-array lens 110 by the outer periphery of the upper lens 114i, the outer periphery of the upper lens 114j, the outer periphery of the upper lens 114m, and the outer periphery of the upper lens 114n. Positioning is performed by a part of the outer periphery.
  • One coupling portion 616 and 618 of the lower leaf spring 606 is coupled to the support 108.
  • the other coupling portions 620 and 622 of the lower leaf spring 606 are coupled to the lower arrangement surface 128 of the multi-array lens 110.
  • the coupling portion 620 of the lower leaf spring 606 is coupled to a region straddling the outer edge of the lower lens 116a, the outer edge of the lower lens 116b, the outer edge of the lower lens 116e, and the outer edge of the lower lens 116f.
  • the coupling portion 622 of the lower leaf spring 606 is coupled to a region straddling the outer edge of the lower lens 116k, the outer edge of the lower lens 116l, the outer edge of the lower lens 116o, and the outer edge of the lower lens 116p.
  • the outer periphery of the coupling portion 620 of the lower leaf spring 606 is along the outer periphery of the lower lens 116a, the outer periphery of the lower lens 116b, the outer periphery of the lower lens 116e, and the outer periphery of the lower lens 116f.
  • the outer periphery of the coupling portion 622 of the lower leaf spring 606 is along the outer periphery of the lower lens 116k, the outer periphery of the lower lens 116l, the outer periphery of the lower lens 116o, and the outer periphery of the lower lens 116p.
  • the coupling portion 620 of the lower leaf spring 606 is positioned with respect to the multi-array lens 110 by the outer periphery of the lower lens 116a, the outer periphery of the lower lens 116b, the outer periphery of the lower lens 116e, and the outer periphery of the lower lens 116f.
  • the coupling portion 622 of the lower leaf spring 606 is positioned with respect to the multi-array lens 110 by the outer periphery of the lower lens 116k, the outer periphery of the lower lens 116l, the outer periphery of the lower lens 116o, and the outer periphery of the lower lens 116p. Positioning is performed by a part of the outer periphery.
  • the seventh embodiment relates to an imaging apparatus.
  • FIG. 20 is a cross-sectional view of an imaging apparatus 700 according to the seventh embodiment.
  • the schematic diagram of FIG. 21 is a top view of the lens unit 702 of the seventh embodiment.
  • the schematic diagram of FIG. 22 is a bottom view of the lens unit 702 of the seventh embodiment.
  • the plate-like SMA actuator 118 of the first embodiment is replaced with a plate-like SMA actuator 704, and the upper leaf spring of the first embodiment is used.
  • 122 is replaced with the upper leaf spring 706, the lower leaf spring 124 of the first embodiment is replaced with the lower leaf spring 708, and the positioning unit structure is the lower lens 116f in the second row and the second column, and the lower lens in the second row and the third column.
  • 116g is different from the imaging device 100 of the first embodiment in that it is changed to a lower lens 116j in the third row and second column and a lower lens 116k in the third row and third column.
  • differences from the imaging device 100 of the first embodiment will be mainly described. About the matter which is not demonstrated, description of 1st Embodiment may be used as it is, and after description of 1st Embodiment is changed, it may be used. The description of embodiments other than the first embodiment may be incorporated.
  • the plate-like SMA actuator 704 generates a driving force that moves the multi-array lens 110 in the driving direction, causes the driving force to act directly on the multi-array lens 110, and moves the multi-array lens 110 relative to the support 108.
  • One coupling portion 710 of the plate-like SMA actuator 704 is coupled to the support 108.
  • the other coupling portion 712 of the plate-like SMA actuator 704 is coupled to the lower arrangement surface 128 of the multi-array lens 110.
  • the coupling portion 712 of the plate-like SMA actuator 704 is coupled to a region straddling the outer edge of the lower lens 116f, the outer edge of the lower lens 116g, the outer edge of the lower lens 116j, and the outer edge of the lower lens 116k.
  • the outer periphery of the coupling portion 712 of the plate-like SMA actuator 704 is along the outer periphery of the lower lens 116f, the outer periphery of the lower lens 116g, the outer periphery of the lower lens 116j, and the outer periphery of the lower lens 116k.
  • the coupling portion 712 of the plate-like SMA actuator 704 is positioned with respect to the multi-array lens 110 by the outer periphery of the lower lens 116f, the outer periphery of the lower lens 116g, the outer periphery of the lower lens 116j, and the outer periphery of the lower lens 116k. Positioning is performed by a part of the outer periphery.
  • One coupling portion 714 and 716 of the upper leaf spring 706 is coupled to the support 108.
  • the other coupling portions 718 and 720 of the upper leaf spring 706 are coupled to the upper arrangement surface 126 of the multi-array lens 110.
  • the coupling portion 718 of the upper leaf spring 706 is coupled to the right front corner of the upper array surface 126 of the multi-array lens 110.
  • the coupling portion 720 of the upper leaf spring 706 is coupled to the left rear corner of the upper array surface 126 of the multi-array lens 110.
  • One coupling part 722 and 724 of the lower leaf spring 708 is coupled to the support 108.
  • the other coupling portions 726 and 728 of the lower leaf spring 708 are coupled to the lower arrangement surface 128 of the multi-array lens 110.
  • the coupling portion 726 of the lower leaf spring 708 is coupled to the left front corner of the lower arrangement surface 128 of the multi-array lens 110.
  • the coupling portion 728 of the lower leaf spring 708 is coupled to the right rear corner of the lower arrangement surface 128 of the multi-array lens 110.
  • the multi-array lens 110 is accurately positioned with respect to the plate-like SMA actuator 704. Thereby, the posture of the multi-array lens 110 is appropriately maintained, and the multi-array lens 110 is appropriately moved with respect to the support 108. A structure only for positioning is not necessary, and the lens unit 702 becomes small.
  • the eighth embodiment relates to an imaging device.
  • FIG. 23 is a cross-sectional view of an imaging apparatus 800 according to the eighth embodiment.
  • the schematic diagram of FIG. 24 is a top view of the lens unit 802 of the eighth embodiment.
  • the schematic diagram of FIG. 25 is a bottom view of the lens unit 802 of the eighth embodiment.
  • the plate-like SMA actuator 118 of the first embodiment is replaced with plate-like SMA actuators 804 and 806, and the upper part of the first embodiment.
  • the plate spring 122 is replaced with the upper plate spring 706 of the seventh embodiment
  • the lower plate spring 124 of the first embodiment is replaced with the lower plate spring 708 of the seventh embodiment
  • the unit structure for positioning is the second row 4.
  • This is different from the imaging device 100 of the first embodiment in that the lower lens 116h in the column and the lower lens 116i in the third row and first column are changed.
  • differences from the imaging device 100 of the first embodiment will be mainly described. About the matter which is not demonstrated, description of 1st Embodiment may be used as it is, and after description of 1st Embodiment is changed, it may be used. The description of embodiments other than the first embodiment may be incorporated.
  • the plate-like SMA actuators 804 and 806 generate a driving force for moving the multi-array lens 110 in the driving direction, cause the driving force to act directly on the multi-array lens 110, and move the multi-array lens 110 relative to the support 108. .
  • One coupling portion 810 of the plate-like SMA actuator 804 is coupled to the support 108.
  • the other coupling portion 812 of the plate-like SMA actuator 804 is coupled to the lower arrangement surface 128 of the multi-array lens 110.
  • the coupling portion 812 of the plate-like SMA actuator 804 is coupled to the outer edge of the lower lens 116h.
  • One coupling portion 814 of the plate-like SMA actuator 806 is coupled to the support 108.
  • the other coupling portion 816 of the plate-like SMA actuator 806 is coupled to the lower arrangement surface 128 of the multi-array lens 110.
  • the coupling portion 816 of the plate-like SMA actuator 806 is coupled to the outer edge of the lower lens 116i.
  • the lower lens 116h is inserted into a hole 818 formed in the coupling portion 812 of the plate-like SMA actuator 804.
  • the lower lens 116 i is inserted into a hole 820 formed in the coupling portion 816 of the plate-like SMA actuator 806.
  • the planar shape of the holes 818 and 820 matches the planar shape of the lower lenses 116h and 116i, respectively.
  • the inner circumferences of the holes 818 and 820 are along the outer circumferences of the lower lenses 116h and 116i, respectively.
  • the coupling portion 812 of the plate-like SMA actuator 804 is positioned with respect to the multi-array lens 110 by the outer periphery of the lower lens 116h.
  • the coupling portion 816 of the plate-like SMA actuator 806 is positioned with respect to the multi-array lens 110 by the outer periphery of the lower lens 116i. Positioning is performed by the whole outer periphery.
  • the lower lenses 116h and 116i are arranged on the outermost sides of the 16 lower lenses 116a to 116p.
  • the ninth embodiment relates to an imaging apparatus.
  • FIG. 26 is a cross-sectional view of an imaging apparatus 900 according to the ninth embodiment.
  • the schematic diagram of FIG. 27 is a top view of the lens unit 902 of the ninth embodiment.
  • the schematic diagram of FIG. 28 is a bottom view of the lens unit 902 of the ninth embodiment.
  • the plate-like SMA actuator 118 according to the first embodiment is replaced with the VCM actuator 904, and the upper leaf spring 122 according to the first embodiment is used.
  • the upper plate spring 706 of the seventh embodiment is replaced
  • the lower plate spring 124 of the first embodiment is replaced with the lower plate spring 708 of the seventh embodiment
  • a lens holder 906 is provided
  • the positioning unit structure is 1 Lower lens 116a in the first row, first lower lens 116b in the first row, second column, lower lens 116c in the first row, third column, lower lens 116d in the first row, fourth column, lower lens 116e in the second row, first column, second lower row in the second row, second column
  • the VCM actuator 904 generates a driving force that moves the multi-array lens 110 in the driving direction, causes the driving force to act directly on the multi-array lens 110, and moves the multi-array lens 110 relative to the support 108.
  • the lens holder 906 holds the multi-array lens 110.
  • the VCM actuator 904 includes coils 908 and 910 and magnets 912, 914, 916 and 918.
  • the one coupling portion 920 and 922 of the VCM actuator 904 belongs to the coils 908 and 910 and is coupled to the support 108.
  • the other coupling portions 924, 926, 928 and 930 of the VCM actuator 904 belong to the magnets 912, 914, 916 and 918, respectively, and are coupled to the lower arrangement surface 128 of the multi-array lens 110.
  • the coupling portions 924, 926, 928, and 930 of the VCM actuator 904 are coupled to positions shifted from the center of the lower arrangement surface 128 of the multi-array lens 110 to the left front, right front, left rear, and right rear, respectively.
  • the VCM actuator 904 applies a driving force symmetrically to the center of the lower arrangement surface 128 of the multi-array lens 110. This facilitates maintaining the posture of the multi-array lens 110.
  • the coupling portion 924 of the VCM actuator 904 is coupled to a region straddling the outer edge of the lower lens 116a, the outer edge of the lower lens 116b, the outer edge of the lower lens 116e, and the outer edge of the lower lens 116f.
  • the coupling portion 926 of the VCM actuator 904 is coupled to a region straddling the outer edge of the lower lens 116c, the outer edge of the lower lens 116d, the outer edge of the lower lens 116g, and the outer edge of the lower lens 116h.
  • the coupling portion 928 of the VCM actuator 904 is coupled to a region straddling the outer edge of the lower lens 116i, the outer edge of the lower lens 116j, the outer edge of the lower lens 116m, and the outer edge of the lower lens 116n.
  • the coupling portion 930 of the VCM actuator 904 is coupled to a region straddling the outer edge of the lower lens 116k, the outer edge of the lower lens 116l, the outer edge of the lower lens 116o, and the outer edge of the lower lens 116p.
  • the outer periphery of the coupling portion 924 of the VCM actuator 904 is along the outer periphery of the lower lens 116a, the outer periphery of the lower lens 116b, the outer periphery of the lower lens 116e, and the outer periphery of the lower lens 116f.
  • the outer periphery of the coupling portion 926 of the VCM actuator 904 is along the outer periphery of the lower lens 116c, the outer periphery of the lower lens 116d, the outer periphery of the lower lens 116g, and the outer periphery of the lower lens 116h.
  • the outer periphery of the coupling portion 928 of the VCM actuator 904 is along the outer periphery of the lower lens 116i, the outer periphery of the lower lens 116j, the outer periphery of the lower lens 116m, and the outer periphery of the lower lens 116n.
  • the outer periphery of the coupling portion 930 of the VCM actuator 904 is along the outer periphery of the lower lens 116k, the outer periphery of the lower lens 116l, the outer periphery of the lower lens 116o, and the outer periphery of the lower lens 116p.
  • the other coupling portion 924 of the VCM actuator 904 is positioned with respect to the multi-array lens 110 by the outer periphery of the lower lens 116a, the outer periphery of the lower lens 116b, the outer periphery of the lower lens 116e, and the outer periphery of the lower lens 116f.
  • the other coupling portion 926 of the VCM actuator 904 is positioned with respect to the multi-array lens 110 by the outer periphery of the lower lens 116c, the outer periphery of the lower lens 116d, the outer periphery of the lower lens 116g, and the outer periphery of the lower lens 116h.
  • the other coupling portion 928 of the VCM actuator 904 is positioned with respect to the multi-array lens 110 by the outer periphery of the lower lens 116i, the outer periphery of the lower lens 116j, the outer periphery of the lower lens 116m, and the outer periphery of the lower lens 116n.
  • the other coupling portion 930 of the VCM actuator 904 is positioned with respect to the multi-array lens 110 by the outer periphery of the lower lens 116k, the outer periphery of the lower lens 116l, the outer periphery of the lower lens 116o, and the outer periphery of the lower lens 116p. Positioning is performed by a part of the outer periphery.
  • the coils 908 and 910 When current flows through the coils 908 and 910, the coils 908 and 910 generate magnetic flux.
  • the magnetic flux generated by the coil 908 acts on the magnets 912 and 916
  • the magnetic flux generated by the coil 910 acts on the magnets 914 and 918
  • the driving force that moves the multi-array lens 110 upward acts on the multi-array lens 110.
  • Tenth Embodiment A tenth embodiment relates to an imaging apparatus.
  • FIG. 29 is a cross-sectional view of the imaging apparatus 1000 according to the tenth embodiment.
  • the schematic diagram of FIG. 30 is a top view of the lens unit 1002 of the tenth embodiment.
  • the schematic diagram of FIG. 31 is a bottom view of the lens unit 1002 of the tenth embodiment.
  • the plate-like SMA actuator 118 of the first embodiment is replaced with a VCM actuator 1004, and the upper leaf spring 122 of the first embodiment is replaced.
  • the upper leaf spring 706 of the seventh embodiment is replaced, the lower leaf spring 124 of the first embodiment is replaced with the lower leaf spring 708 of the seventh embodiment, the lens holder 1006 is provided, and the unit structure for positioning is 2
  • the imaging device 100 according to the first embodiment is different from the imaging device 100 of the first embodiment in that the lower lens 116e in the first row, the second lower lens 116h in the second row, the fourth column, the lower lens 116i in the third row, the first column, and the lower lens 116l in the third row, the fourth column Different.
  • the VCM actuator 1004 generates a driving force that moves the multi-array lens 110 in the driving direction, causes the driving force to act directly on the multi-array lens 110, and moves the multi-array lens 110 relative to the support 108.
  • the lens holder 1006 holds the multi-array lens 110.
  • the VCM actuator 1004 includes coils 1008 and 1010 and magnets 1012, 1014, 1016 and 1018.
  • the one coupling portion 1020 and 1022 of the VCM actuator 1004 belongs to the coils 1008 and 1010, respectively, and is coupled to the support 108.
  • the other coupling portions 1024, 1026, 1028 and 1030 of the VCM actuator 1004 belong to the magnets 1012, 1014, 1016 and 1018, respectively, and are coupled to the lower arrangement surface 128 of the multi-array lens 110.
  • the coupling portions 1024, 1026, 1028 and 1030 of the VCM actuator 1004 are coupled to the outer edges of the lower lenses 116e, 116h, 116i and 116l, respectively.
  • the lower lens 116e is inserted into the hole 1032 formed in the coupling portion 1024 of the VCM actuator 1004.
  • the lower lens 116 h is inserted into a hole 1034 formed in the coupling portion 1026 of the VCM actuator 1004.
  • the lower lens 116 i is inserted into a hole 1036 formed in the coupling portion 1028 of the VCM actuator 1004.
  • the lower lens 116l is inserted into a hole 1038 formed in the coupling portion 1030 of the VCM actuator 1004.
  • the planar shapes of the holes 1032, 1034, 1036 and 1038 are the same as those of the lower lenses 116e, 116h, 116i and 116l, respectively.
  • the inner peripheries of the holes 1032, 1034, 1036 and 1038 are along the outer peripheries of the lower lenses 116e, 116h, 116i and 116l, respectively.
  • the coupling portions 1024, 1026, 1028, and 1030 of the VCM actuator 1004 are positioned with respect to the multi-array lens 110 by the outer peripheries of the lower lenses 116 e, 116 h, 116 i, and 116 l, respectively. Positioning is performed by the whole outer periphery.
  • the lower lenses 116e, 116h, 116i, and 116l are arranged on the outermost sides of the 16 lower lenses 116a to 116p.
  • the eleventh embodiment relates to an imaging device.
  • FIG. 32 is a cross-sectional view of the imaging apparatus 1100 of the eleventh embodiment.
  • the schematic diagram of FIG. 33 is a top view of the lens unit 1102 of the eleventh embodiment.
  • the schematic diagram of FIG. 34 is a bottom view of the lens unit 1102 of the eleventh embodiment.
  • the plate-like SMA actuator 118 of the first embodiment is replaced with linear SMA actuators 1104 and 1106, and the upper part of the first embodiment.
  • the plate spring 122 is replaced with the upper plate spring 706 of the seventh embodiment
  • the lower plate spring 124 of the first embodiment is replaced with the lower plate spring 708 of the seventh embodiment
  • the unit structure for positioning is the second row 1. It is different from the imaging device 100 of the first embodiment in that the lower lens 116e in the second column, the lower lens 116h in the second row and the fourth column, the lower lens 116i in the third row and the first column, and the lower lens 116l in the third row and the fourth column are changed.
  • the linear SMA actuators 1104 and 1106 generate a driving force that moves the multi-array lens 110 in the driving direction, cause the driving force to act directly on the multi-array lens 110, and move the multi-array lens 110 relative to the support 108. .
  • One coupling portion 1108 and 1110 of the linear SMA actuator 1104 is at the end of the linear SMA actuator 1104 and is coupled to the support 108.
  • the other coupling portion 1112 of the linear SMA actuator 1104 is at the center of the linear SMA actuator 1104 and is coupled to the lower arrangement surface 128 of the multi-array lens 110.
  • the coupling portion 1112 of the linear SMA actuator 1104 is coupled to a region straddling the outer edge of the lower lens 116e and the outer edge of the lower lens 116i.
  • One coupling portion 1114 and 1116 of the linear SMA actuator 1106 is at the end of the linear SMA actuator 1106 and is coupled to the support 108.
  • the other coupling portion 1118 of the linear SMA actuator 1106 is at the center of the linear SMA actuator 1106 and is coupled to the lower arrangement surface 128 of the multi-array lens 110.
  • the coupling portion 1112 of the linear SMA actuator 1104 is coupled to a region straddling the outer edge of the lower lens 116h and the outer edge of the lower lens 116l.
  • the connecting portion 1112 of the linear SMA actuator 1104 is along the outer periphery of the lower lens 116e and the outer periphery of the lower lens 116i.
  • the coupling portion 1112 of the linear SMA actuator 1104 is positioned by the outer periphery of the lower lens 116e and the outer periphery of the lower lens 116i.
  • the coupling portion 1118 of the linear SMA actuator 1106 is along the outer periphery of the lens 116h and the outer periphery of the lower lens 116l.
  • the coupling portion 1118 of the linear SMA actuator 1106 is positioned by the outer periphery of the lens 116h and the outer periphery of the lower lens 116l.
  • the linear SMA actuator 1104 When a current flows through the linear SMA actuator 1104, the linear SMA actuator 1104 generates heat, and the temperature of the linear SMA actuator 1104 rises. When the temperature of the linear SMA actuator 1104 rises, the linear SMA actuator 1104 contracts in the length direction.
  • the linear SMA actuator 1106 contracts in the length direction.
  • the driving direction of the multi-array lens 110 may be a direction parallel to the optical axis 190 of the multi-array lens 110, or may be a direction perpendicular to the optical axis 190 of the multi-array lens 110.
  • the contraction amount of the linear SMA actuator 1104 is made the same as the contraction amount of the linear SMA actuator 1106.
  • the contraction amount of the linear SMA actuator 1104 is different from the contraction amount of the linear SMA actuator 1106.
  • the multi-array lens 110 is moved in a direction parallel to the optical axis 190 of the multi-array lens 110 in order to adjust the focal point of the lens unit 1102, and is perpendicular to the optical axis 190 of the multi-array lens 110 for camera shake correction. Moved in the direction.
  • the multi-array lens 110 may be moved in a direction parallel to the optical axis 190 of the multi-array lens 110 in order to adjust the focal length.
  • the lower lenses 116e, 116h, 116i, and 116l are arranged on the outermost sides of the 16 lower lenses 116a to 116p.
  • Twelfth Embodiment relates to an imaging apparatus.
  • FIG. 35 is a cross-sectional view of an imaging apparatus 1200 according to the twelfth embodiment.
  • the schematic diagram of FIG. 36 is a top view of the lens unit 1202 of the twelfth embodiment.
  • the schematic diagram of FIG. 37 is a bottom view of the lens unit 1202 of the twelfth embodiment.
  • the plate-like SMA actuator 118 according to the first embodiment is replaced with the VCM actuator 304 according to the third embodiment.
  • the upper plate spring 122 is replaced with an upper plate spring 1204, the lower plate spring 124 of the first embodiment is replaced with a lower plate spring 1206, and a lens holder 1208 for holding the multi-array lens 110 is provided, and a unit structure for positioning is provided. Is changed to the upper lens 114a in the first row and the first column, the upper lens 114p in the fourth row and the fourth column, the lower lens 116d in the first row and the fourth column, and the lower lens 116m in the fourth row and the first column.
  • the lens holder 1208 holds the multi-array lens 110.
  • One coupling portion 1210 and 1212 of the upper leaf spring 1204 is coupled to the support 108.
  • the other coupling portions 1214 and 1216 of the upper leaf spring 1204 are coupled to the upper end of the lens holder 1208.
  • the coupling portions 1214 and 1216 of the upper leaf spring 1204 are coupled to the right front and left rear corners of the upper end of the lens holder 1208, respectively.
  • One coupling portion 1218 and 1220 of the lower leaf spring 1206 is coupled to the support 108.
  • the other coupling portions 1222 and 1224 of the lower leaf spring 1206 are coupled to the lower end of the lens holder 1208.
  • the coupling portions 1222 and 1224 of the lower leaf spring 1206 are coupled to the left front corner and the right rear corner of the lower end of the lens holder 1208, respectively.
  • the coupling portions 1226 and 1228 of the lens holder 1208 are coupled to the upper array surface 126 of the multi-array lens 110.
  • the coupling portions 1226 and 1228 of the lens holder 1208 are coupled to the outer edges of the upper lens 114a and the upper lens 114p, respectively.
  • the coupling portions 1230 and 1232 of the lens holder 1208 are coupled to the lower arrangement surface 128 of the multi-array lens 110.
  • the coupling portions 1230 and 1232 of the lens holder 1208 are coupled to the outer edges of the lower lens 116d and the lower lens 116m, respectively.
  • the upper lens 114 a is inserted into a hole 1240 formed in the coupling portion 1226 of the lens holder 1208.
  • the upper lens 114p is inserted into a hole 1242 formed in the coupling portion 1228 of the lens holder 1208.
  • the lower lens 116 d is inserted into a hole 1334 formed in the coupling portion 1230 of the lens holder 1208.
  • the lower lens 116 m is inserted into a hole 1336 formed in the coupling portion 1232 of the lens holder 1208.
  • the planar shapes of the holes 1240, 1242, 1334, and 1336 match the planar shapes of the upper lens 114a, the upper lens 114p, the lower lens 116d, and the lower lens 116m, respectively.
  • the inner peripheries of the holes 1240, 1242, 1334, and 1336 are along the outer peripheries of the upper lens 114a, the upper lens 114p, the lower lens 116d, and the lower lens 116m, respectively.
  • the coupling portions 1226, 1228, 1230, and 1232 of the lens holder 1208 are positioned with respect to the multi-array lens 110 by the outer peripheries of the upper lens 114a, the upper lens 114p, the lower lens 116d, and the lower lens 116m, respectively. Positioning is performed by the whole outer periphery.
  • the upper lenses 114a and 114p are arranged on the outermost side of the 16 upper lenses 114a to 114p.
  • the lower lenses 116d and 116m are arranged on the outermost sides of the 16 lower lenses 116a to 116p.
  • the multi-array lens 110 is accurately positioned with respect to the lens holder 1208. Thereby, the posture of the multi-array lens 110 is appropriately maintained, and the multi-array lens 110 is appropriately moved with respect to the support 108. A structure only for positioning is not necessary, and the lens unit 1202 becomes small.
  • a thirteenth embodiment relates to an imaging device.
  • FIG. 38 is a cross-sectional view of an imaging apparatus 1300 according to the thirteenth embodiment.
  • the schematic diagram of FIG. 39 is a top view of the lens unit 1302 of the thirteenth embodiment.
  • the schematic diagram of FIG. 40 is a bottom view of the lens unit 1302 of the thirteenth embodiment.
  • the plate-like SMA actuator 118 according to the first embodiment is replaced with the VCM actuator 304 according to the third embodiment.
  • the upper leaf spring 122 is replaced with the upper leaf spring 1204 of the twelfth embodiment
  • the lower leaf spring 124 of the first embodiment is replaced with the lower leaf spring 1206 of the twelfth embodiment
  • a lens holder 1304 is provided for positioning.
  • the lens holder 1304 holds the multi-array lens 110.
  • the coupling portions 1306 and 1308 of the lens holder 1304 are coupled to the upper array surface 126 of the multi-array lens 110.
  • the coupling portions 1306 and 1308 of the lens holder 1304 are coupled to the outer edges of the upper lens 114a and the upper lens 114p, respectively.
  • the coupling portions 1310 and 1312 of the lens holder 1304 are coupled to the lower arrangement surface 128 of the multi-array lens 110.
  • the coupling portions 1310 and 1312 of the lens holder 1304 are coupled to the outer edges of the lower lens 116d and the lower lens 116m, respectively.
  • the outer circumferences of the coupling portions 1306, 1308, 1310, and 1312 of the lens holder 1304 are along the outer circumferences of the upper lens 114a, the upper lens 114p, the lower lens 116d, and the lower lens 116m, respectively.
  • the coupling portions 1306, 1308, 1310, and 1312 of the lens holder 1304 are positioned with respect to the multi-array lens 110 by the outer peripheries of the upper lens 114a, the upper lens 114p, the lower lens 116d, and the lower lens 116m, respectively. Positioning is performed by a part of the outer periphery.
  • the upper lenses 114a and 114p are arranged on the outermost side of the 16 upper lenses 114a to 114p.
  • the lower lenses 116d and 116m are arranged on the outermost sides of the 16 lower lenses 116a to 116p.
  • the multi-array lens 110 is accurately positioned with respect to the lens holder 1304. Thereby, the posture of the multi-array lens 110 is appropriately maintained, and the multi-array lens 110 is appropriately moved with respect to the support 108. A structure only for positioning is not necessary, and the lens unit 1302 becomes small.
  • a fourteenth embodiment relates to an imaging device.
  • FIG. 41 is a cross-sectional view of the imaging apparatus 1400 of the fourteenth embodiment.
  • the schematic diagram of FIG. 42 is a top view of the lens unit 1402 of the fourteenth embodiment.
  • the schematic diagram of FIG. 43 is a bottom view of the lens unit 1402 of the fourteenth embodiment.
  • the plate-like SMA actuator 118 according to the first embodiment is replaced with the VCM actuator 304 according to the third embodiment.
  • the upper leaf spring 122 is replaced with the upper leaf spring 1204 of the twelfth embodiment
  • the lower leaf spring 124 of the first embodiment is replaced with the lower leaf spring 1206 of the twelfth embodiment
  • a lens holder 1404 is provided for positioning.
  • the lens holder 1404 holds the multi-array lens 110.
  • the coupling portions 1406 and 1408 of the lens holder 1404 are coupled to the upper array surface 126 of the multi-array lens 110.
  • the coupling portions 1406 and 1408 of the lens holder 1404 are coupled to the outer edges of the upper lens 114a and the upper lens 114p, respectively.
  • the coupling portions 1410 and 1412 of the lens holder 1404 are coupled to the lower arrangement surface 128 of the multi-array lens 110.
  • the coupling portions 1410 and 1412 of the lens holder 1404 are coupled to the outer edges of the lower lens 116d and the lower lens 116m, respectively.
  • the outer peripheries of the coupling portions 1406, 1408, 1410 and 1412 of the lens holder 1404 are along the outer peripheries of the upper lens 114a, the upper lens 114p, the lower lens 116d and the lower lens 116m, respectively.
  • the coupling portions 1406, 1408, 1410, and 1412 of the lens holder 1404 are positioned with respect to the multi-array lens 110 by the outer peripheries of the upper lens 114a, the upper lens 114p, the lower lens 116d, and the lower lens 116m, respectively. Positioning is performed by a part of the outer periphery.
  • the upper lenses 114a and 114p are arranged on the outermost side of the 16 upper lenses 114a to 114p.
  • the lower lenses 116d and 116m are arranged on the outermost sides of the 16 lower lenses 116a to 116p.
  • the multi-array lens 110 is accurately positioned with respect to the lens holder 1404. Thereby, the posture of the multi-array lens 110 is appropriately maintained, and the multi-array lens 110 is appropriately moved with respect to the support 108. A structure only for positioning is not necessary, and the lens unit 1402 becomes small.
  • a fifteenth embodiment relates to an imaging apparatus.
  • FIG. 44 is a cross-sectional view of an imaging apparatus 1500 according to the fifteenth embodiment.
  • the schematic diagram of FIG. 45 is a top view of the lens unit 1502 of the fifteenth embodiment.
  • the schematic diagram of FIG. 46 is a bottom view of the lens unit 1502 of the fifteenth embodiment.
  • the upper leaf spring 122 of the first embodiment is replaced with the upper leaf spring 706 of the seventh embodiment
  • the lower leaf spring 124 is replaced with the lower leaf spring 708 of the seventh embodiment
  • bias springs 1504 and 1506 are provided
  • the positioning unit structure is the upper lens 114a in the first row and the first column and the fourth lens in the fourth row and the fourth column. It differs from the imaging device 100 of 1st Embodiment by the point changed to the upper lens 114p. In the following, differences from the imaging device 100 of the first embodiment will be mainly described. About the matter which is not demonstrated, description of 1st Embodiment may be used as it is, and after description of 1st Embodiment is changed, it may be used. The description of embodiments other than the first embodiment may be incorporated.
  • the bias springs 1504 and 1506 generate a force that pushes the multi-array lens 110 in the direction opposite to the driving direction.
  • One coupling portion 1508 of the bias spring 1504 is coupled to the support 108.
  • the other coupling portion 1510 of the bias spring 1504 is coupled to the upper array surface 126 of the multi-array lens 110.
  • a coupling portion 1510 of the bias spring 1504 is coupled to the outer edge of the upper lens 114a.
  • One coupling portion 1512 of the bias spring 1506 is coupled to the support body 108.
  • the other coupling portion 1514 of the bias spring 1506 is coupled to the upper array surface 126 of the multi-array lens 110.
  • a coupling portion 1514 of the bias spring 1504 is coupled to the outer edge of the upper lens 114p.
  • the upper lens 114 a is inserted into a hole 1516 formed in the other coupling portion 1510 of the bias spring 1504.
  • the upper lens 114p is inserted into a hole 1518 formed in the coupling portion 1514 of the bias spring 1506.
  • the planar shape of the holes 1516 and 1518 matches the planar shape of the upper lenses 114a and 114p, respectively.
  • the inner circumferences of the holes 1516 and 1518 are along the outer circumferences of the upper lenses 114a and 114p, respectively.
  • the coupling portion 1510 of the bias spring 1504 is positioned with respect to the multi-array lens 110 by the outer periphery of the upper lens 114a.
  • the coupling portion 1514 of the bias spring 1506 is positioned with respect to the multi-array lens 110 by the outer periphery of the upper lens 114p.
  • the upper lenses 114a and 114p are arranged on the outermost side of the 16 upper lenses 114a to 114p.
  • the multi-array lens 110 is accurately positioned with respect to the bias springs 1504 and 1506. Thereby, the posture of the multi-array lens 110 is appropriately maintained, and the multi-array lens 110 is appropriately moved with respect to the support 108. A structure only for positioning is not necessary, and the lens unit 1502 becomes small.
  • positioning is performed by the outer periphery 1602 of the lens 1600 (the upper lens 114d, the lower lens 116p, etc. of the first embodiment). .
  • a flange 1604 may be provided on the radially outer side of the lens 1600, and positioning may be performed by the outer periphery 1606 of the flange 1604.
  • a protrusion 1608 may be provided on the radially outer side of the lens 1600, and positioning may be performed by the outer periphery 1610 of the protrusion 1608.
  • a concave portion 1614 may be formed on the radially outer side of the lens 1600, and positioning may be performed by the inner periphery 1616 of the concave portion 1614.
  • each of the two or more unit structures includes a lens, and the unit structure protrudes from the arrangement surface
  • Positioning may be performed by the outer periphery of the lens belonging to the unit structure, or a flange or protrusion may be provided on the radially outer side of the lens belonging to the unit structure for positioning, and positioning may be performed by the outer periphery of the flange or protrusion.
  • a recess may be provided outside the lens in the radial direction, and positioning may be performed by the inner periphery of the recess.
  • Lens unit 104 Image sensor, DESCRIPTION OF SYMBOLS 108 Support body 110 Multi-array lens 112 Drive mechanism 118,704 Plate-shaped SMA actuator 120 Parallel guide mechanism 304,904,1004 VCM actuator 306,906,1006,1304 Lens holder 404 Linear SMA actuator 1504,1506 Bias spring

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)

Abstract

 マルチアレイレンズの姿勢が適切に維持され、マルチアレイレンズが適切に動かされ、小型であるレンズユニット及び撮像装置を提供する。レンズユニットは、支持体、マルチアレイレンズ及び駆動機構を備える。マルチアレイレンズの配列面には、2個以上の単位構造が配列される。2個以上の単位構造の各々は、レンズを備える。2個以上の単位構造は、位置決め用の単位構造を含む。駆動機構は、マルチアレイレンズの姿勢を維持したままマルチアレイレンズを支持体に対して動かす。駆動機構の第1の結合部は、支持体に結合される。駆動機構の第2の結合部は、マルチアレイレンズに結合される。位置決め用の単位構造によりマルチアレイレンズに対して第2の結合部が位置決めされる。

Description

レンズユニット及び撮像装置
 本発明は、レンズユニット及び撮像装置に関する。
 典型的なマイクロカメラユニットにおいては、焦点の調整、焦点距離の調整等のために、形状記憶合金(SMA)アクチュエーター、ボイスコイルモーター等のアクチュエーターによりレンズが動かされ、結像の乱れを抑制するために、板バネ等の平行案内機構によりレンズの姿勢が維持されレンズが駆動方向に案内される。例えば、特許文献1に記載された駆動モジュールにおいては、SMAアクチュエーターによりレンズが動かされ、板バネによりレンズの姿勢が維持されレンズが駆動方向に案内される。
特開2009-239993号公報
 レンズの姿勢が適切に維持されレンズが適切に動かされるためには、アクチュエーター、平行案内機構等を備える移動機構に対してレンズが精度よく位置決めされる必要がある。しかし、従来の技術においては、位置決めのための構造によりマイクロカメラユニットが大型化していた。この問題は、レンズがマルチアレイレンズである場合にも生じる。
 本発明の目的は、マルチアレイレンズの姿勢が適切に維持され、マルチアレイレンズが適切に動かされ、小型であるレンズユニット及び撮像装置を提供することである。
 レンズユニットは、支持体、マルチアレイレンズ及び駆動機構を備える。マルチアレイレンズの配列面には、2個以上の単位構造が配列される。2個以上の単位構造の各々は、レンズを備える。2個以上の単位構造は、位置決め用の単位構造を含む。駆動機構は、マルチアレイレンズの姿勢を維持したままマルチアレイレンズを支持体に対して動かす。駆動機構の第1の結合部は、支持体に結合される。駆動機構の第2の結合部は、マルチアレイレンズに結合される。位置決め用の単位構造によりマルチアレイレンズに対して第2の結合部が位置決めされる。
 駆動機構は、アクチュエーター及び平行案内機構を備えてもよい。アクチュエーターは、マルチアレイレンズを駆動方向に動かす駆動力を発生する。平行案内機構は、マルチアレイレンズの姿勢を維持したままマルチアレイレンズを駆動方向に案内する。駆動機構がアクチュエーター及び駆動機構を備える場合は、第1の結合部及び第2の結合部がアクチュエーターに属してもよいし、第1の結合部及び第2の結合部が平行案内機構に属してもよい。駆動機構がバイアスバネをさらに備えてもよい。駆動機構がバイアスバネを備える場合は、第1の結合部及び第2の結合部がバイアスバネに属してもよい。
 本発明によれば、駆動機構に対してマルチアレイレンズが精度良く位置決めされ、マルチアレイレンズの姿勢が適切に維持され、マルチアレイレンズが適切に動かされる。位置決めのためだけの構造が不要になり、レンズユニット及び撮像装置が小型になる。
 これらの及びこれら以外の本発明の目的、特徴、局面及び利点は、添付図面とともに考慮されたときに下記の本発明の詳細な説明によってより明白となる。
第1実施形態の撮像装置の断面図である。 第1実施形態のレンズユニットの上面図である。 第1実施形態のレンズユニットの下面図である。 第1実施形態の板状SMAアクチュエーターの斜視図である。 第2実施形態の撮像装置の断面図である。 第2実施形態のレンズユニットの上面図である。 第2実施形態のレンズユニットの下面図である。 第3実施形態の撮像装置の断面図である。 第3実施形態のレンズユニットの上面図である。 第3実施形態のレンズユニットの下面図である。 第4実施形態の撮像装置の断面図である。 第4実施形態のレンズユニットの上面図である。 第4実施形態のレンズユニットの下面図である。 第5実施形態の撮像装置の断面図である。 第5実施形態のレンズユニットの上面図である。 第5実施形態のレンズユニットの下面図である。 第6実施形態の撮像装置の断面図である。 第6実施形態のレンズユニットの上面図である。 第6実施形態のレンズユニットの下面図である。 第7実施形態の撮像装置の断面図である。 第7実施形態のレンズユニットの上面図である。 第7実施形態のレンズユニットの下面図である。 第8実施形態の撮像装置の断面図である。 第8実施形態のレンズユニットの上面図である。 第8実施形態のレンズユニットの下面図である。 第9実施形態の撮像装置の断面図である。 第9実施形態のレンズユニットの上面図である。 第9実施形態のレンズユニットの下面図である。 第10実施形態の撮像装置の断面図である。 第10実施形態のレンズユニットの上面図である。 第10実施形態のレンズユニットの下面図である。 第11実施形態の撮像装置の断面図である。 第11実施形態のレンズユニットの上面図である。 第11実施形態のレンズユニットの下面図である。 第12実施形態の撮像装置の断面図である。 第12実施形態のレンズユニットの上面図である。 第12実施形態のレンズユニットの下面図である。 第13実施形態の撮像装置の断面図である。 第13実施形態のレンズユニットの上面図である。 第13実施形態のレンズユニットの下面図である。 第14実施形態の撮像装置の断面図である。 第14実施形態のレンズユニットの上面図である。 第14実施形態のレンズユニットの下面図である。 第15実施形態の撮像装置の断面図である。 第15実施形態のレンズユニットの上面図である。 第15実施形態のレンズユニットの下面図である。 位置決めされた状態の上面図である。 位置決めされた状態の断面図である。 位置決めされた状態の上面図である。 位置決めされた状態の断面図である。 位置決めされた状態の上面図である。 位置決めされた状態の断面図である。 位置決めされた状態の上面図である。 位置決めされた状態の断面図である。
 第1実施形態
 第1実施形態は、撮像装置に関する。
 図1の模式図は、第1実施形態の撮像装置100の断面図である。図2の模式図は、第1実施形態のレンズユニット102の上面図である。図3の模式図は、第1実施形態のレンズユニット102の下面図である。
 図1から図3までに示されるように、撮像装置100は、レンズユニット102、撮像素子104及び基板106を備える。レンズユニット102は、支持体108、マルチアレイレンズ110及び駆動機構112を備える。マルチアレイレンズ110は、16個の上レンズ114a~114p及び16個の下レンズ116a~116pを備える。駆動機構112は、板状形状記憶合金アクチュエーター(板状SMAアクチュエーター)118及び平行案内機構120を備える。平行案内機構120は、上板バネ122及び下板バネ124を備える。
 これらの構成物以外の構成物を撮像装置100が備えてもよい。上レンズの数及び下レンズの数は、2個以上であればよく、16個から増減されてもよい。16個の上レンズ114a~114p又は16個の下レンズ116a~116pが省略されてもよい。
 マルチアレイレンズ110の上配列面126には、16個の上レンズ114a~114pが行列配列される。マルチアレイレンズ110の下配列面128には、16個の下レンズ116a~116pが行列配列される。行数は4行であり、列数は4列である。行数が4行から増減されてもよい。列数が4列から増減されてもよい。16個の上レンズ114a~114pが行列配列以外により配列されてもよい。例えば、16個の上レンズ114a~114pがハニカム配列されてもよく、16個の上レンズ114a~114pが不規則配列されてもよい。16個の下レンズ116a~116pが行列配列以外により配列されてもよい。例えば、16個の下レンズ116a~116pがハニカム配列されてもよく、16個の下レンズ116a~116pが不規則配列されてもよい。
 1行目4列目の上レンズ114d、4行目1列目の上レンズ114m、1行目1列目の下レンズ116a及び4行目4列目の下レンズ116pは、位置決め用のレンズである。位置決め用のレンズの数は、1個以上であればよく、4個から増減されてもよい。m行目n列目という記載は、前方(図2における下方及び図3における上方)からm行目であり左方(図2及び図3における左方)からn列目であることを意味する。
 16個の上レンズ114a~114pは、上配列面126から突出する。16個の下レンズ116a~116pは、下配列面128から突出する。
 板状SMAアクチュエーター118は、マルチアレイレンズ110を駆動方向に動かす駆動力を発生し、駆動力をマルチアレイレンズ110に直接的に作用させ、マルチアレイレンズ110を支持体108に対して動かす。板状SMAアクチュエーター118が他の種類のアクチュエーターに置き換えられてもよい。例えば、板状SMAアクチュエーター118が線状SMAアクチュエーター、ボイスコイルモーター(VCM)アクチュエーター、バイメタルアクチュエーター、圧電アクチュエーター等に置き換えられてもよい。板状SMAアクチュエーター118からマルチアレイレンズ110へ駆動力を伝達する機構が設けられ、板状SMAアクチュエーター118が駆動力をマルチアレイレンズ110に間接的に作用させてもよい。
 板状SMAアクチュエーター118の一方の結合部132は、支持体108に結合される。板状SMAアクチュエーター118の他方の結合部134は、マルチアレイレンズ110の下配列面128に結合される。板状SMAアクチュエーター118の結合部134は、マルチアレイレンズ110の下配列面128の中心に結合される。これにより、マルチアレイレンズ110の下配列面128の中心に駆動力が作用し、マルチアレイレンズ110の姿勢を維持することが容易になる。ただし、板状SMAアクチュエーター118の他方の結合部134がマルチアレイレンズ110の下配列面128の中心以外に結合されてもよく、板状SMAアクチュエーター118の他方の結合部134がマルチアレイレンズ110の下配列面128以外に結合されてもよい。
 平行案内機構120は、マルチアレイレンズ110の姿勢を維持したまま、マルチアレイレンズ110を駆動方向に案内する。
 上板バネ122の一方の結合部136及び138は、支持体108に結合される。上板バネ122の他方の結合部140及び142は、マルチアレイレンズ110の上配列面126に結合される。上板バネ122の結合部140及び142は、それぞれ、上レンズ114d及び114mの外縁に結合される。
 下板バネ124の一方の結合部144及び146は、支持体108に結合される。下板バネ124の他方の結合部148及び150は、マルチアレイレンズ110の下配列面128に結合される。下板バネ124の結合部148及び150は、それぞれ、下レンズ116a及び116pの外縁に結合される。
 上板バネ122及び下板バネ124は、撮像素子104の撮像面105と平行をなす。上板バネ122及び下板バネ124により、上配列面126及び下配列面128が撮像素子104の撮像面105と平行をなす姿勢にマルチアレイレンズ110の姿勢が維持される。
 平行案内機構120が他の種類の平行案内機構に置き換えられてもよい。例えば、平行案内機構120が、案内軸を有する平行案内機構、リンクを有する平行案内機構等に置き換えられてもよい。
 マルチアレイレンズ110の駆動方向は、マルチアレイレンズ110の光軸190と平行をなす方向に維持され、撮像素子104の撮像面105と垂直をなす方向に維持される。
 マルチアレイレンズ110は、焦点を調整するために動かされる。マルチアレイレンズ110が、焦点距離を調整するために動かされてもよい。
 撮像素子104は、16個の上レンズ114a~114p及び16個の下レンズ116a~116pにより結像された像を撮像する。撮像素子104が出力する撮像データは、ステレオ画像、三次元画像等の生成のために使用される。
 上レンズ114a及び下レンズ116aの組、上レンズ114b及び下レンズ116bの組等の16個の組により結像された16個の像は、1個の撮像素子104により撮像される。16個の像が2個以上の撮像素子により撮像されてもよい。2個以上の撮像素子の各々は、1個の像を撮像してもよいし、2個以上の像を撮像してもよい。
 上レンズ114dは、上板バネ122の結合部140に形成された孔152に挿入される。上レンズ114mは、上板バネ122の結合部142に形成された孔154に挿入される。
 孔152及び154の平面形状は、それぞれ、上レンズ114d及び114mの平面形状に適合する。孔152及び154の内周は、それぞれ、上レンズ114d及び114mの外周に沿う。上レンズ114dの外周により、上板バネ122の結合部140がマルチアレイレンズ110に対して位置決めされる。上レンズ114mの外周により、上板バネ122の結合部142がマルチアレイレンズ110に対して位置決めされる。位置決めは、外周の全体により行われる。
 下レンズ116aは、下板バネ124の結合部148に形成された孔156に挿入される。下レンズ116pは、下板バネ124の結合部150に形成された孔158に挿入される。
 孔156及び158の平面形状は、それぞれ、下レンズ116a及び116pの平面形状に適合する。孔156及び158の内周は、それぞれ、下レンズ116a及び116pの外周に沿う。下レンズ116aの外周により、下板バネ124の結合部148がマルチアレイレンズ110に対して位置決めされる。下レンズ116pの外周により、下板バネ124の結合部150がマルチアレイレンズ110に対して位置決めされる。位置決めは、外周の全体により行われる。
 16個の上レンズ114a~114p及び16個の下レンズ116a~116pの位置の精度は元々高いので、16個の上レンズ114a~114p及び16個の下レンズ116a~116pの外周により位置決めが行われた場合は、位置決めの精度は良好であり、平行案内機構120に対してマルチアレイレンズ110が精度良く位置決めされる。これにより、マルチアレイレンズ110の姿勢が適切に維持され、マルチアレイレンズ110が支持体108に対して適切に動かされる。位置決めのためだけの構造は不要であり、レンズユニット102が小型になる。
 一方の構成物により他方の構成物が位置決めされるとは、一方の構成物により一方の構成物に対する他方の構成物の移動が規制され、一方の構成物に対する他方の構成物の相対的な位置が維持されることをいう。
 上レンズ114d及び114mは、16個の上レンズ114a~114pにおいて最も外側に配置される。下レンズ116a及び116pは、16個の下レンズ116a~116pにおいて最も外側に配置される。これにより、像を結ぶ光線束が上板バネ122及び下板バネ124により遮蔽されることを容易に回避できる。
 行列配列の行数がm行であり列数がn列である場合においては、1行目、m行目、1列目及びn列目のレンズがm×n個のレンズにおいて最も外側に配置される。
 駆動機構112は、マルチアレイレンズ110の光軸190と平行をなす方向から見て有効光学領域の外側に配置される。有効光学領域とは、像を結ぶ光線束が通過する領域をいう。
 図4の模式図は、板状SMAアクチュエーター118の斜視図である。
 図4に示されるように、板状SMAアクチュエーター118は、板状SMA160及び膜状ヒーター162を備える。膜状ヒーター162は、板状SMA160の表面に形成される。膜状ヒーター162に電流が流れた場合は、膜状ヒーター162が発熱する。膜状ヒーター162が発する熱が板状SMA160に伝わり、板状SMAアクチュエーター118の温度が上昇する。板状SMAアクチュエーター118の形状が平坦な形状から図1に示される湾曲した形状へ変化し、マルチアレイレンズ110を上方向に動かす駆動力がマルチアレイレンズ110に作用する。
 第2実施形態
 第2実施形態は、撮像装置に関する。
 図5の模式図は、第2実施形態の撮像装置200の断面図である。図6の模式図は、第2実施形態のレンズユニット202の上面図である。図7の模式図は、第2実施形態のレンズユニット202の下面図である。
 図5から図7までに示されるように、第2実施形態の撮像装置200は、第1実施形態の板状SMAアクチュエーター118が板状SMAアクチュエーター204及び206に置き換えられる点で、第1実施形態の撮像装置100と異なる。以下では、第1実施形態の撮像装置100と異なる点が主に説明される。説明されない事項については、第1実施形態の説明がそのまま援用されてもよいし、第1実施形態の説明が変形されてから援用されてもよい。第1実施形態以外の実施形態の説明が援用されてもよい。
 板状SMAアクチュエーター204及び206は、マルチアレイレンズ110を駆動方向に動かす駆動力を発生し、駆動力をマルチアレイレンズ110に直接的に作用させ、マルチアレイレンズ110を支持体108に対して動かす。
 板状SMAアクチュエーター204の一方の結合部208は、支持体108に結合される。板状SMAアクチュエーター204の他方の結合部210は、マルチアレイレンズ110の下配列面128に結合される。板状SMAアクチュエーター204の結合部210は、マルチアレイレンズ110の下配列面128の中心から右前方にずれた位置に結合される。
 板状SMAアクチュエーター206の一方の結合部212は、支持体108に結合される。板状SMAアクチュエーター206の他方の結合部214は、マルチアレイレンズ110の下配列面128に結合される。板状SMAアクチュエーター206の結合部214は、マルチアレイレンズ110の下配列面128の中心から左後方にずれた位置に結合される。
 板状SMAアクチュエーター204及び206は、マルチアレイレンズ110の下配列面128の中心に対称に駆動力を作用させる。これにより、マルチアレイレンズ110の姿勢を維持することが容易になる。
 第3実施形態
 第3実施形態は、撮像装置に関する。
 図8の模式図は、第3実施形態の撮像装置300の断面図である。図9の模式図は、第3実施形態のレンズユニット302の上面図である。図10の模式図は、第3実施形態のレンズユニット302の下面図である。
 図8から図10までに示されるように、第3実施形態の撮像装置300は、第1実施形態の板状SMAアクチュエーター118がVCMアクチュエーター304に置き換えられ、レンズホルダー306が設けられる点で、第1実施形態の撮像装置100と異なる。以下では、第1実施形態の撮像装置100と異なる点が主に説明される。説明されない事項については、第1実施形態の説明がそのまま援用されてもよいし、第1実施形態の説明が変形されてから援用されてもよい。第1実施形態以外の実施形態の説明が援用されてもよい。
 VCMアクチュエーター304は、マルチアレイレンズ110を駆動方向に動かす駆動力を発生し、駆動力をマルチアレイレンズ110に直接的に作用させ、マルチアレイレンズ110を支持体108に対して動かす。レンズホルダー306は、マルチアレイレンズ110を保持する。
 VCMアクチュエーター304は、コイル308及び310並びに磁石312及び314を備える。VCMアクチュエーター304がヨークを備えてもよい。
 VCMアクチュエーター304の一方の結合部316及び318は、それぞれコイル308及び310に属し、支持体108に結合される。VCMアクチュエーター304の他方の結合部320及び322は、それぞれ磁石312及び314に属し、それぞれマルチアレイレンズ110の下配列面128の中心から左方にずれた位置及び右方にずれた位置に結合される。
 VCMアクチュエーター304は、マルチアレイレンズ110の下配列面128の中心に対称に駆動力を作用させる。これにより、マルチアレイレンズ110の姿勢を維持することが容易になる。
 第4実施形態
 第4実施形態は、撮像装置に関する。
 図11の模式図は、第4実施形態の撮像装置400の断面図である。図12の模式図は、第4実施形態のレンズユニット402の上面図である。図13の模式図は、第4実施形態のレンズユニット402の下面図である。
 図11から図13までに示されるように、第4実施形態の撮像装置400は、第1実施形態の板状SMAアクチュエーター118が線状SMAアクチュエーター404に置き換えられ、レバー406が設けられる点で、第1実施形態の撮像装置100と異なる。以下では、第1実施形態の撮像装置100と異なる点が主に説明される。説明されない事項については、第1実施形態の説明がそのまま援用されてもよいし、第1実施形態の説明が変形されてから援用されてもよい。第1実施形態以外の実施形態の説明が援用されてもよい。
 線状SMAアクチュエーター404は、マルチアレイレンズ110を駆動方向に動かす駆動力を発生し、駆動力をマルチアレイレンズ110に間接的に作用させ、マルチアレイレンズ110を支持体108に対して動かす。レバー406は、線状SMAアクチュエーター404からマルチアレイレンズ110へ駆動力を伝達し、駆動力をマルチアレイレンズ110に直接的に作用させ、マルチアレイレンズ110を支持体108に対して動かす。
 レバー406は、レバー腕408及びレバーヒンジ410を備える。線状SMAアクチュエーター404の一方の結合部412及び414は、線状SMAアクチュエーター404の端にあり、支持体108に結合される。線状SMAアクチュエーター404の他方の結合部416は、線状SMAアクチュエーター404の中央にあり、レバー腕408の力点に結合される。レバーヒンジ410は、支持体108に結合され、レバー腕408の支点及び回転軸となる。レバー腕408の作用点は、マルチアレイレンズ110の下配列面128の中心に結合される。レバー406が駆動力を伝達する場合は、変位が拡大される。レバー406が他の種類の変位を拡大する機構に置き換えられてもよい。
 線状SMAアクチュエーター404に電流が流れた場合は、線状SMAアクチュエーター404が発熱し、線状SMAアクチュエーター404の温度が上昇する。線状SMAアクチュエーター404が長さ方向に収縮し、レバー腕408の力点が動く。レバー腕408の力点が動いた場合は、レバー腕408の作用点が動き、マルチアレイレンズ110を上方向に動かす駆動力がマルチアレイレンズ110に作用する。
 第5実施形態
 第5実施形態は、撮像装置に関する。
 図14の模式図は、第5実施形態の撮像装置500の断面図である。図15の模式図は、第5実施形態のレンズユニット502の上面図である。図16の模式図は、第5実施形態のレンズユニット502の下面図である。
 図14から図16までに示されるように、第5実施形態の撮像装置500は、第1実施形態の上板バネ122が上板バネ504に置き換えられ、第1実施形態の下板バネ124が下板バネ506に置き換えられ、位置決め用の単位構造が1行目4列目の上レンズ114d、2行目4列目の上レンズ114h、3行目1列目の上レンズ114i、4行目1列目の上レンズ114m、1行目1列目の下レンズ116a、2行目1列目の下レンズ116e、3行目4列目の下レンズ116l及び4行目4列目の下レンズ116pに変更される点で、第1実施形態の撮像装置100と異なる。以下では、第1実施形態の撮像装置100と異なる点が主に説明される。説明されない事項については、第1実施形態の説明がそのまま援用されてもよいし、第1実施形態の説明が変形されてから援用されてもよい。第1実施形態以外の実施形態の説明が援用されてもよい。
 上板バネ504の一方の結合部508及び510は、支持体108に結合される。上板バネ504の他方の結合部512及び514は、マルチアレイレンズ110の上配列面126に結合される。上板バネ504の結合部512は、上レンズ114dの外縁及び上レンズ114hの外縁に跨る領域に結合される。上板バネ504の結合部514は、上レンズ114iの外縁及び上レンズ114mの外縁に跨る領域に結合される。
 上板バネ504の結合部512の外周は、上レンズ114dの外周及び上レンズ114hの外周に沿う。上板バネ504の結合部514の外周は、上レンズ114iの外周及び上レンズ114mの外周に沿う。上レンズ114dの外周及び上レンズ114hの外周により上板バネ504の結合部512がマルチアレイレンズ110に対して位置決めされる。上レンズ114iの外周及び上レンズ114mの外周により上板バネ504の結合部514がマルチアレイレンズ110に対して位置決めされる。位置決めは、外周の一部によりにより行われる。
 下板バネ506の一方の結合部518及び520は、支持体108に結合される。下板バネ506の他方の結合部522及び524は、マルチアレイレンズ110の下配列面128に結合される。下板バネ506の結合部522は、下レンズ116aの外縁及び下レンズ116eの外縁に跨る領域に結合される。下板バネ506の結合部524は、下レンズ116lの外縁及び下レンズ116pの外縁に跨る領域に結合される。
 下板バネ506の結合部522の外周は、下レンズ116aの外周及び下レンズ116eの外周に沿う。下板バネ506の結合部524の外周は、下レンズ116lの外周及び下レンズ116pの外周に沿う。下レンズ116aの外周及び下レンズ116eの外周により、下板バネ506の結合部522がマルチアレイレンズ110に対して位置決めされる。下レンズ116lの外周及び下レンズ116pの外周により、下板バネ506の結合部524がマルチアレイレンズ110に対して位置決めされる。位置決めは、外周の一部により行われる。
 上レンズ114d,114h,114i及び114mは、16個の上レンズ114a~114pにおいて最も外側に配置される。下レンズ116a,116e,116l及び116pは、16個の下レンズ116a~116pにおいて最も外側に配置される。
 第6実施形態
 第6実施形態は、撮像装置に関する。
 図17の模式図は、第6実施形態の撮像装置600の断面図である。図18の模式図は、第6実施形態のレンズユニット602の上面図である。図19の模式図は、第6実施形態のレンズユニット602の下面図である。
 図17から図19までに示されるように、第6実施形態の撮像装置600は、第1実施形態の上板バネ122が上板バネ604に置き換えられ、第1実施形態の下板バネ124が下板バネ606に置き換えられ、位置決め用の単位構造が1行目3列目の上レンズ114c、1行目4列目の上レンズ114d、2行目3列目の上レンズ114g、2行目4列目の上レンズ114h、3行目1列目の上レンズ114i、3行目2列目の上レンズ114j、4行目1列目の上レンズ114m、4行目2列目の上レンズ114n、1行目1列目の下レンズ116a、1行目2列目の下レンズ116b、2行目1列目の下レンズ116e、2行目2列目の下レンズ116f、3行目3列目の下レンズ116k、3行目4列目の下レンズ116l、4行目3列目の下レンズ116o及び4行目4列目の下レンズ116pに変更される点で、第1実施形態の撮像装置100と異なる。以下では、第1実施形態の撮像装置100と異なる点が主に説明される。説明されない事項については、第1実施形態の説明がそのまま援用されてもよいし、第1実施形態の説明が変形されてから援用されてもよい。第1実施形態以外の実施形態の説明が援用されてもよい。
 上板バネ604の一方の結合部608及び610は、支持体108に結合される。上板バネ604の他方の結合部612及び614は、マルチアレイレンズ110の上配列面126に結合される。上板バネ604の結合部612は、上レンズ114cの外縁、上レンズ114dの外縁、上レンズ114gの外縁及び上レンズ114hの外縁に跨る領域に結合される。上板バネ604の結合部614は、上レンズ114iの外縁、上レンズ114jの外縁、上レンズ114mの外縁及び上レンズ114nの外縁に跨る領域に結合される。
 上板バネ604の結合部612の外周は、上レンズ114cの外周、上レンズ114dの外周、上レンズ114gの外周及び上レンズ114hの外周に沿う。上板バネ604の結合部614の外周は、上レンズ114iの外周、上レンズ114jの外周、上レンズ114mの外周及び上レンズ114nの外周に沿う。上レンズ114cの外周、上レンズ114dの外周、上レンズ114gの外周及び上レンズ114hの外周により、上板バネ604の結合部612がマルチアレイレンズ110に対して位置決めされる。上レンズ114iの外周、上レンズ114jの外周、上レンズ114mの外周及び上レンズ114nの外周により、上板バネ604の結合部614がマルチアレイレンズ110に対して位置決めされる。位置決めは、外周の一部により行われる。
 下板バネ606の一方の結合部616及び618は、支持体108に結合される。下板バネ606の他方の結合部620及び622は、マルチアレイレンズ110の下配列面128に結合される。下板バネ606の結合部620は、下レンズ116aの外縁、下レンズ116bの外縁、下レンズ116eの外縁及び下レンズ116fの外縁に跨る領域に結合される。下板バネ606の結合部622は、下レンズ116kの外縁、下レンズ116lの外縁、下レンズ116oの外縁及び下レンズ116pの外縁に跨る領域に結合される。
 下板バネ606の結合部620の外周は、下レンズ116aの外周、下レンズ116bの外周、下レンズ116eの外周及び下レンズ116fの外周に沿う。下板バネ606の結合部622の外周は、下レンズ116kの外周、下レンズ116lの外周、下レンズ116oの外周及び下レンズ116pの外周に沿う。下レンズ116aの外周、下レンズ116bの外周、下レンズ116eの外周及び下レンズ116fの外周により、下板バネ606の結合部620がマルチアレイレンズ110に対して位置決めされる。下レンズ116kの外周、下レンズ116lの外周、下レンズ116oの外周及び下レンズ116pの外周により、下板バネ606の結合部622がマルチアレイレンズ110に対して位置決めされる。位置決めは、外周の一部により行われる。
 第7実施形態
 第7実施形態は、撮像装置に関する。
 図20の模式図は、第7実施形態の撮像装置700の断面図である。図21の模式図は、第7実施形態のレンズユニット702の上面図である。図22の模式図は、第7実施形態のレンズユニット702の下面図である。
 図20から図22までに示されるように、第7実施形態の撮像装置700は、第1実施形態の板状SMAアクチュエーター118が板状SMAアクチュエーター704に置き換えられ、第1実施形態の上板バネ122が上板バネ706に置き換えられ、第1実施形態の下板バネ124が下板バネ708に置き換えられ、位置決め用の単位構造が2行目2列目の下レンズ116f、2行目3列目の下レンズ116g、3行目2列目の下レンズ116j及び3行目3列目の下レンズ116kに変更される点で、第1実施形態の撮像装置100と異なる。以下では、第1実施形態の撮像装置100と異なる点が主に説明される。説明されない事項については、第1実施形態の説明がそのまま援用されてもよいし、第1実施形態の説明が変形されてから援用されてもよい。第1実施形態以外の実施形態の説明が援用されてもよい。
 板状SMAアクチュエーター704は、マルチアレイレンズ110を駆動方向に動かす駆動力を発生し、駆動力をマルチアレイレンズ110に直接的に作用させ、マルチアレイレンズ110を支持体108に対して動かす。
 板状SMAアクチュエーター704の一方の結合部710は、支持体108に結合される。板状SMAアクチュエーター704の他方の結合部712は、マルチアレイレンズ110の下配列面128に結合される。板状SMAアクチュエーター704の結合部712は、下レンズ116fの外縁、下レンズ116gの外縁、下レンズ116jの外縁及び下レンズ116kの外縁に跨る領域に結合される。
 板状SMAアクチュエーター704の結合部712の外周は、下レンズ116fの外周、下レンズ116gの外周、下レンズ116jの外周及び下レンズ116kの外周に沿う。下レンズ116fの外周、下レンズ116gの外周、下レンズ116jの外周及び下レンズ116kの外周により、板状SMAアクチュエーター704の結合部712がマルチアレイレンズ110に対して位置決めされる。位置決めは、外周の一部により行われる。
 上板バネ706の一方の結合部714及び716は、支持体108に結合される。上板バネ706の他方の結合部718及び720は、マルチアレイレンズ110の上配列面126に結合される。上板バネ706の結合部718は、マルチアレイレンズ110の上配列面126の右前方の隅に結合される。上板バネ706の結合部720は、マルチアレイレンズ110の上配列面126の左後方の隅に結合される。
 下板バネ708の一方の結合部722及び724は、支持体108に結合される。下板バネ708の他方の結合部726及び728は、マルチアレイレンズ110の下配列面128に結合される。下板バネ708の結合部726は、マルチアレイレンズ110の下配列面128の左前方の隅に結合される。下板バネ708の結合部728は、マルチアレイレンズ110の下配列面128の右後方の隅に結合される。
 第7実施形態によれば、板状SMAアクチュエーター704に対してマルチアレイレンズ110が精度良く位置決めされる。これにより、マルチアレイレンズ110の姿勢が適切に維持され、マルチアレイレンズ110が支持体108に対して適切に動かされる。位置決めのためだけの構造は不要であり、レンズユニット702が小型になる。
 第8実施形態
 第8実施形態は、撮像装置に関する。
 図23の模式図は、第8実施形態の撮像装置800の断面図である。図24の模式図は、第8実施形態のレンズユニット802の上面図である。図25の模式図は、第8実施形態のレンズユニット802の下面図である。
 図23から図25までに示されるように、第8実施形態の撮像装置800は、第1実施形態の板状SMAアクチュエーター118が板状SMAアクチュエーター804及び806に置き換えられ、第1実施形態の上板バネ122が第7実施形態の上板バネ706に置き換えられ、第1実施形態の下板バネ124が第7実施形態の下板バネ708に置き換えられ、位置決め用の単位構造が2行目4列目の下レンズ116h及び3行目1列目の下レンズ116iに変更される点で、第1実施形態の撮像装置100と異なる。以下では、第1実施形態の撮像装置100と異なる点が主に説明される。説明されない事項については、第1実施形態の説明がそのまま援用されてもよいし、第1実施形態の説明が変形されてから援用されてもよい。第1実施形態以外の実施形態の説明が援用されてもよい。
 板状SMAアクチュエーター804及び806は、マルチアレイレンズ110を駆動方向に動かす駆動力を発生し、駆動力をマルチアレイレンズ110に直接的に作用させ、マルチアレイレンズ110を支持体108に対して動かす。
 板状SMAアクチュエーター804の一方の結合部810は、支持体108に結合される。板状SMAアクチュエーター804の他方の結合部812は、マルチアレイレンズ110の下配列面128に結合される。板状SMAアクチュエーター804の結合部812は、下レンズ116hの外縁に結合される。
 板状SMAアクチュエーター806の一方の結合部814は、支持体108に結合される。板状SMAアクチュエーター806の他方の結合部816は、マルチアレイレンズ110の下配列面128に結合される。板状SMAアクチュエーター806の結合部816は、下レンズ116iの外縁に結合される。
 下レンズ116hは、板状SMAアクチュエーター804の結合部812に形成された孔818に挿入される。下レンズ116iは、板状SMAアクチュエーター806の結合部816に形成された孔820に挿入される。
 孔818及び820の平面形状は、それぞれ、下レンズ116h及び116iの平面形状に適合する。孔818及び820の内周は、それぞれ、下レンズ116h及び116iの外周に沿う。下レンズ116hの外周により、板状SMAアクチュエーター804の結合部812がマルチアレイレンズ110に対して位置決めされる。下レンズ116iの外周により、板状SMAアクチュエーター806の結合部816がマルチアレイレンズ110に対して位置決めされる。位置決めは、外周の全体により行われる。
 下レンズ116h及び116iは、16個の下レンズ116a~116pにおいて最も外側に配置される。
 第9実施形態
 第9実施形態は、撮像装置に関する。
 図26の模式図は、第9実施形態の撮像装置900の断面図である。図27の模式図は、第9実施形態のレンズユニット902の上面図である。図28の模式図は、第9実施形態のレンズユニット902の下面図である。
 図26から図28までに示されるように、第9実施形態の撮像装置900は、第1実施形態の板状SMAアクチュエーター118がVCMアクチュエーター904に置き換えられ、第1実施形態の上板バネ122が第7実施形態の上板バネ706に置き換えられ、第1実施形態の下板バネ124が第7実施形態の下板バネ708に置き換えられ、レンズホルダー906が設けられ、位置決め用の単位構造が1行目1列目の下レンズ116a、1行目2列目の下レンズ116b、1行目3列目の下レンズ116c、1行目4列目の下レンズ116d、2行目1列目の下レンズ116e、2行目2列目の下レンズ116f、2行目3列目の下レンズ116g、2行目4列目の下レンズ116h、3行目1列目の下レンズ116i、3行目2列目の下レンズ116j、3行目3列目の下レンズ116k、3行目4列目の下レンズ116l、4行目1列目の下レンズ116m、4行目2列目の下レンズ116n、4行目3列目の下レンズ116o及び4行目4列目の下レンズ116pに変更される点で、第1実施形態の撮像装置100と異なる。以下では、第1実施形態の撮像装置100と異なる点が主に説明される。説明されない事項については、第1実施形態の説明がそのまま援用されてもよいし、第1実施形態の説明が変形されてから援用されてもよい。第1実施形態以外の実施形態の説明が援用されてもよい。
 VCMアクチュエーター904は、マルチアレイレンズ110を駆動方向に動かす駆動力を発生し、駆動力をマルチアレイレンズ110に直接的に作用させ、マルチアレイレンズ110を支持体108に対して動かす。レンズホルダー906は、マルチアレイレンズ110を保持する。
 VCMアクチュエーター904は、コイル908及び910並びに磁石912,914,916及び918を備える。
 VCMアクチュエーター904の一方の結合部920及び922は、それぞれコイル908及び910に属し、支持体108に結合される。VCMアクチュエーター904の他方の結合部924,926,928及び930は、それぞれ磁石912,914,916及び918に属し、マルチアレイレンズ110の下配列面128に結合される。VCMアクチュエーター904の結合部924,926,928及び930は、それぞれ、マルチアレイレンズ110の下配列面128の中心から左前方、右前方、左後方及び右後方にずれた位置に結合される。
 VCMアクチュエーター904は、マルチアレイレンズ110の下配列面128の中心に対称に駆動力を作用させる。これにより、マルチアレイレンズ110の姿勢を維持することが容易になる。
 VCMアクチュエーター904の結合部924は、下レンズ116aの外縁、下レンズ116bの外縁、下レンズ116eの外縁及び下レンズ116fの外縁に跨る領域に結合される。VCMアクチュエーター904の結合部926は、下レンズ116cの外縁、下レンズ116dの外縁、下レンズ116gの外縁及び下レンズ116hの外縁に跨る領域に結合される。VCMアクチュエーター904の結合部928は、下レンズ116iの外縁、下レンズ116jの外縁、下レンズ116mの外縁及び下レンズ116nの外縁に跨る領域に結合される。VCMアクチュエーター904の結合部930は、下レンズ116kの外縁、下レンズ116lの外縁、下レンズ116oの外縁及び下レンズ116pの外縁に跨る領域に結合される。
 VCMアクチュエーター904の結合部924の外周は、下レンズ116aの外周、下レンズ116bの外周、下レンズ116eの外周及び下レンズ116fの外周に沿う。VCMアクチュエーター904の結合部926の外周は、下レンズ116cの外周、下レンズ116dの外周、下レンズ116gの外周及び下レンズ116hの外周に沿う。VCMアクチュエーター904の結合部928の外周は、下レンズ116iの外周、下レンズ116jの外周、下レンズ116mの外周及び下レンズ116nの外周に沿う。VCMアクチュエーター904の結合部930の外周は、下レンズ116kの外周、下レンズ116lの外周、下レンズ116oの外周及び下レンズ116pの外周に沿う。下レンズ116aの外周、下レンズ116bの外周、下レンズ116eの外周及び下レンズ116fの外周により、VCMアクチュエーター904の他方の結合部924がマルチアレイレンズ110に対して位置決めされる。下レンズ116cの外周、下レンズ116dの外周、下レンズ116gの外周及び下レンズ116hの外周により、VCMアクチュエーター904の他方の結合部926がマルチアレイレンズ110に対して位置決めされる。下レンズ116iの外周、下レンズ116jの外周、下レンズ116mの外周及び下レンズ116nの外周により、VCMアクチュエーター904の他方の結合部928がマルチアレイレンズ110に対して位置決めされる。下レンズ116kの外周、下レンズ116lの外周、下レンズ116oの外周及び下レンズ116pの外周により、VCMアクチュエーター904の他方の結合部930がマルチアレイレンズ110に対して位置決めされる。位置決めは、外周の一部により行われる。
 コイル908及び910に電流が流れた場合は、コイル908及び910が磁束を発生する。コイル908が発生した磁束が磁石912及び916に作用し、コイル910が発生した磁束が磁石914及び918に作用し、マルチアレイレンズ110を上方向に動かす駆動力がマルチアレイレンズ110に作用する。
 第10実施形態
 第10実施形態は、撮像装置に関する。
 図29の模式図は、第10実施形態の撮像装置1000の断面図である。図30の模式図は、第10実施形態のレンズユニット1002の上面図である。図31の模式図は、第10実施形態のレンズユニット1002の下面図である。
 図29から図31までに示されるように、第10実施形態の撮像装置1000は、第1実施形態の板状SMAアクチュエーター118がVCMアクチュエーター1004に置き換えられ、第1実施形態の上板バネ122が第7実施形態の上板バネ706に置き換えられ、第1実施形態の下板バネ124が第7実施形態の下板バネ708に置き換えられ、レンズホルダー1006が設けられ、位置決め用の単位構造が2行目1列目の下レンズ116e、2行目4列目の下レンズ116h、3行目1列目の下レンズ116i及び3行目4列目の下レンズ116lに変更される点で、第1実施形態の撮像装置100と異なる。以下では、第1実施形態の撮像装置100と異なる点が主に説明される。説明されない事項については、第1実施形態の説明がそのまま援用されてもよいし、第1実施形態の説明が変形されてから援用されてもよい。第1実施形態以外の実施形態の説明が援用されてもよい。
 VCMアクチュエーター1004は、マルチアレイレンズ110を駆動方向に動かす駆動力を発生し、駆動力をマルチアレイレンズ110に直接的に作用させ、マルチアレイレンズ110を支持体108に対して動かす。レンズホルダー1006は、マルチアレイレンズ110を保持する。
 VCMアクチュエーター1004は、コイル1008及び1010並びに磁石1012,1014,1016及び1018を備える。
 VCMアクチュエーター1004の一方の結合部1020及び1022は、それぞれコイル1008及び1010に属し、支持体108に結合される。VCMアクチュエーター1004の他方の結合部1024,1026,1028及び1030は、それぞれ磁石1012,1014,1016及び1018に属し、マルチアレイレンズ110の下配列面128に結合される。VCMアクチュエーター1004の結合部1024,1026,1028及び1030は、それぞれ、下レンズ116e,116h,116i及び116lの外縁に結合される。
 下レンズ116eは、VCMアクチュエーター1004の結合部1024に形成された孔1032に挿入される。下レンズ116hは、VCMアクチュエーター1004の結合部1026に形成された孔1034に挿入される。下レンズ116iは、VCMアクチュエーター1004の結合部1028に形成された孔1036に挿入される。下レンズ116lは、VCMアクチュエーター1004の結合部1030に形成された孔1038に挿入される。
 孔1032,1034,1036及び1038の平面形状は、それぞれ、下レンズ116e,116h,116i及び116lと同じである。孔1032,1034,1036及び1038の内周は、それぞれ、下レンズ116e,116h,116i及び116lの外周に沿う。下レンズ116e,116h,116i及び116lの外周により、それぞれ、VCMアクチュエーター1004の結合部1024,1026,1028及び1030がマルチアレイレンズ110に対して位置決めされる。位置決めは、外周の全体により行われる。
 下レンズ116e,116h,116i及び116lは、16個の下レンズ116a~116pにおいて最も外側に配置される。
 第11実施形態
 第11実施形態は、撮像装置に関する。
 図32の模式図は、第11実施形態の撮像装置1100の断面図である。図33の模式図は、第11実施形態のレンズユニット1102の上面図である。図34の模式図は、第11実施形態のレンズユニット1102の下面図である。
 図32から図34までに示されるように、第11実施形態の撮像装置1100は、第1実施形態の板状SMAアクチュエーター118が線状SMAアクチュエーター1104及び1106に置き換えられ、第1実施形態の上板バネ122が第7実施形態の上板バネ706に置き換えられ、第1実施形態の下板バネ124が第7実施形態の下板バネ708に置き換えられ、位置決め用の単位構造が2行目1列目の下レンズ116e、2行目4列目の下レンズ116h、3行目1列目の下レンズ116i及び3行目4列目の下レンズ116lに変更される点で、第1実施形態の撮像装置100と異なる。以下では、第1実施形態の撮像装置100と異なる点が主に説明される。説明されない事項については、第1実施形態の説明がそのまま援用されてもよいし、第1実施形態の説明が変形されてから援用されてもよい。第1実施形態以外の実施形態の説明が援用されてもよい。
 線状SMAアクチュエーター1104及び1106は、マルチアレイレンズ110を駆動方向に動かす駆動力を発生し、駆動力をマルチアレイレンズ110に直接的に作用させ、マルチアレイレンズ110を支持体108に対して動かす。
 線状SMAアクチュエーター1104の一方の結合部1108及び1110は、線状SMAアクチュエーター1104の端にあり、支持体108に結合される。線状SMAアクチュエーター1104の他方の結合部1112は、線状SMAアクチュエーター1104の中央にあり、マルチアレイレンズ110の下配列面128に結合される。線状SMAアクチュエーター1104の結合部1112は、下レンズ116eの外縁及び下レンズ116iの外縁に跨る領域に結合される。
 線状SMAアクチュエーター1106の一方の結合部1114及び1116は、線状SMAアクチュエーター1106の端にあり、支持体108に結合される。線状SMAアクチュエーター1106の他方の結合部1118は、線状SMAアクチュエーター1106の中央にあり、マルチアレイレンズ110の下配列面128に結合される。線状SMAアクチュエーター1104の結合部1112は、下レンズ116hの外縁及び下レンズ116lの外縁に跨る領域に結合される。
 線状SMAアクチュエーター1104の結合部1112は、下レンズ116eの外周及び下レンズ116iの外周に沿う。下レンズ116eの外周及び下レンズ116iの外周により線状SMAアクチュエーター1104の結合部1112が位置決めされる。線状SMAアクチュエーター1106の結合部1118は、レンズ116hの外周及び下レンズ116lの外周に沿う。レンズ116hの外周及び下レンズ116lの外周により線状SMAアクチュエーター1106の結合部1118が位置決めされる。
 線状SMAアクチュエーター1104に電流が流れた場合は、線状SMAアクチュエーター1104が発熱し、線状SMAアクチュエーター1104の温度が上昇する。線状SMAアクチュエーター1104の温度が上昇した場合は、線状SMAアクチュエーター1104が長さ方向に収縮する。
 同じように、線状SMAアクチュエーター1106に電流が流れた場合は、線状SMAアクチュエーター1106が長さ方向に収縮する。
 マルチアレイレンズ110の駆動方向は、マルチアレイレンズ110の光軸190と平行をなす方向であってもよいし、マルチアレイレンズ110の光軸190と垂直をなす方向であってもよい。マルチアレイレンズ110の駆動方向がマルチアレイレンズ110の光軸190と平行をなす方向である場合は、線状SMAアクチュエーター1104の収縮量が線状SMAアクチュエーター1106の収縮量と同じにされる。マルチアレイレンズ110の駆動方向がマルチアレイレンズ110の光軸190と垂直をなす方向である場合は、線状SMAアクチュエーター1104の収縮量が線状SMAアクチュエーター1106の収縮量と異ならせられる。
 マルチアレイレンズ110は、レンズユニット1102の焦点を調整するためにマルチアレイレンズ110の光軸190と平行をなす方向に動かされ、手振れ補正のためにマルチアレイレンズ110の光軸190と垂直をなす方向に動かされる。マルチアレイレンズ110が焦点距離を調整するためにマルチアレイレンズ110の光軸190と平行をなす方向に動かされてもよい。
 下レンズ116e,116h,116i及び116lは、16個の下レンズ116a~116pにおいて最も外側に配置される。
 第12実施形態
 第12実施形態は、撮像装置に関する。
 図35の模式図は、第12実施形態の撮像装置1200の断面図である。図36の模式図は、第12実施形態のレンズユニット1202の上面図である。図37の模式図は、第12実施形態のレンズユニット1202の下面図である。
 図35から図37までに示されるように、第12実施形態の撮像装置1200は、第1実施形態の板状SMAアクチュエーター118が第3実施形態のVCMアクチュエーター304に置き換えられ、第1実施形態の上板バネ122が上板バネ1204に置き換えられ、第1実施形態の下板バネ124が下板バネ1206に置き換えられ、マルチアレイレンズ110を保持するレンズホルダー1208が設けられ、位置決め用の単位構造が1行目1列目の上レンズ114a、4行目4列目の上レンズ114p、1行目4列目の下レンズ116d及び4行目1列目の下レンズ116mに変更される点で、第1実施形態の撮像装置100と異なる。以下では、第1実施形態の撮像装置100と異なる点が主に説明される。説明されない事項については、第1実施形態の説明がそのまま援用されてもよいし、第1実施形態の説明が変形されてから援用されてもよい。第1実施形態以外の実施形態の説明が援用されてもよい。
 レンズホルダー1208は、マルチアレイレンズ110を保持する。
 上板バネ1204の一方の結合部1210及び1212は、支持体108に結合される。上板バネ1204の他方の結合部1214及び1216は、レンズホルダー1208の上端に結合される。上板バネ1204の結合部1214及び1216は、それぞれ、レンズホルダー1208の上端の右前方及び左後方の隅に結合される。
 下板バネ1206の一方の結合部1218及び1220は、支持体108に結合される。下板バネ1206の他方の結合部1222及び1224は、レンズホルダー1208の下端に結合される。下板バネ1206の結合部1222及び1224は、それぞれ、レンズホルダー1208の下端の左前方及び右後方の隅に結合される。
 レンズホルダー1208の結合部1226及び1228は、マルチアレイレンズ110の上配列面126に結合される。レンズホルダー1208の結合部1226及び1228は、それぞれ、上レンズ114a及び上レンズ114pの外縁に結合される。レンズホルダー1208の結合部1230及び1232は、マルチアレイレンズ110の下配列面128に結合される。レンズホルダー1208の結合部1230及び1232は、それぞれ、下レンズ116d及び下レンズ116mの外縁に結合される。
 上レンズ114aは、レンズホルダー1208の結合部1226に形成された孔1240に挿入される。上レンズ114pは、レンズホルダー1208の結合部1228に形成された孔1242に挿入される。下レンズ116dは、レンズホルダー1208の結合部1230に形成された孔1334に挿入される。下レンズ116mは、レンズホルダー1208の結合部1232に形成された孔1336に挿入される。
 孔1240,1242,1334及び1336の平面形状は、それぞれ、上レンズ114a、上レンズ114p、下レンズ116d及び下レンズ116mの平面形状に適合する。孔1240,1242,1334及び1336の内周は、それぞれ、上レンズ114a、上レンズ114p、下レンズ116d及び下レンズ116mの外周に沿う。上レンズ114a、上レンズ114p、下レンズ116d及び下レンズ116mの外周により、それぞれ、レンズホルダー1208の結合部1226,1228,1230及び1232がマルチアレイレンズ110に対して位置決めされる。位置決めは、外周の全体により行われる。
 上レンズ114a及び114pは、16個の上レンズ114a~114pにおいて最も外側に配置される。下レンズ116d及び116mは、16個の下レンズ116a~116pにおいて最も外側に配置される。
 第12実施形態によれば、レンズホルダー1208に対してマルチアレイレンズ110が精度良く位置決めされる。これにより、マルチアレイレンズ110の姿勢が適切に維持され、マルチアレイレンズ110が支持体108に対して適切に動かされる。位置決めのためだけの構造は不要であり、レンズユニット1202が小型になる。
 第13実施形態
 第13実施形態は、撮像装置に関する。
 図38の模式図は、第13実施形態の撮像装置1300の断面図である。図39の模式図は、第13実施形態のレンズユニット1302の上面図である。図40の模式図は、第13実施形態のレンズユニット1302の下面図である。
 図38から図40までに示されるように、第13実施形態の撮像装置1300は、第1実施形態の板状SMAアクチュエーター118が第3実施形態のVCMアクチュエーター304に置き換えられ、第1実施形態の上板バネ122が第12実施形態の上板バネ1204に置き換えられ、第1実施形態の下板バネ124が第12実施形態の下板バネ1206に置き換えられ、レンズホルダー1304が設けられ、位置決め用の単位構造が1行目1列目の上レンズ114a、4行目4列目の上レンズ114p、1行目4列目の下レンズ116d及び4行目1列目の下レンズ116mに変更される点で、第1実施形態の撮像装置100と異なる。以下では、第1実施形態の撮像装置100と異なる点が主に説明される。説明されない事項については、第1実施形態の説明がそのまま援用されてもよいし、第1実施形態の説明が変形されてから援用されてもよい。第1実施形態以外の実施形態の説明が援用されてもよい。
 レンズホルダー1304は、マルチアレイレンズ110を保持する。
 レンズホルダー1304の結合部1306及び1308は、マルチアレイレンズ110の上配列面126に結合される。レンズホルダー1304の結合部1306及び1308は、それぞれ、上レンズ114a及び上レンズ114pの外縁に結合される。レンズホルダー1304の結合部1310及び1312は、マルチアレイレンズ110の下配列面128に結合される。レンズホルダー1304の結合部1310及び1312は、それぞれ、下レンズ116d及び下レンズ116mの外縁に結合される。
 レンズホルダー1304の結合部1306,1308,1310及び1312の外周は、それぞれ、上レンズ114a、上レンズ114p、下レンズ116d及び下レンズ116mの外周に沿う。
 上レンズ114a、上レンズ114p、下レンズ116d及び下レンズ116mの外周により、それぞれ、レンズホルダー1304の結合部1306,1308,1310及び1312がマルチアレイレンズ110に対して位置決めされる。位置決めは、外周の一部により行われる。
 上レンズ114a及び114pは、16個の上レンズ114a~114pにおいて最も外側に配置される。下レンズ116d及び116mは、16個の下レンズ116a~116pにおいて最も外側に配置される。
 第13実施形態によれば、レンズホルダー1304に対してマルチアレイレンズ110が精度良く位置決めされる。これにより、マルチアレイレンズ110の姿勢が適切に維持され、マルチアレイレンズ110が支持体108に対して適切に動かされる。位置決めのためだけの構造は不要であり、レンズユニット1302が小型になる。
 第14実施形態
 第14実施形態は、撮像装置に関する。
 図41の模式図は、第14実施形態の撮像装置1400の断面図である。図42の模式図は、第14実施形態のレンズユニット1402の上面図である。図43の模式図は、第14実施形態のレンズユニット1402の下面図である。
 図41から図43までに示されるように、第14実施形態の撮像装置1400は、第1実施形態の板状SMAアクチュエーター118が第3実施形態のVCMアクチュエーター304に置き換えられ、第1実施形態の上板バネ122が第12実施形態の上板バネ1204に置き換えられ、第1実施形態の下板バネ124が第12実施形態の下板バネ1206に置き換えられ、レンズホルダー1404が設けられ、位置決め用の単位構造が1行目1列目の上レンズ114a、4行目4列目の上レンズ114p、1行目4列目の下レンズ116d及び4行目1列目の下レンズ116mに変更される点で、第1実施形態の撮像装置100と異なる。以下では、第1実施形態の撮像装置100と異なる点が主に説明される。説明されない事項については、第1実施形態の説明がそのまま援用されてもよいし、第1実施形態の説明が変形されてから援用されてもよい。第1実施形態以外の実施形態の説明が援用されてもよい。
 レンズホルダー1404は、マルチアレイレンズ110を保持する。
 レンズホルダー1404の結合部1406及び1408は、マルチアレイレンズ110の上配列面126に結合される。レンズホルダー1404の結合部1406及び1408は、それぞれ、上レンズ114a及び上レンズ114pの外縁に結合される。レンズホルダー1404の結合部1410及び1412は、マルチアレイレンズ110の下配列面128に結合される。レンズホルダー1404の結合部1410及び1412は、それぞれ、下レンズ116d及び下レンズ116mの外縁に結合される。
 レンズホルダー1404の結合部1406,1408,1410及び1412の外周は、それぞれ、上レンズ114a、上レンズ114p、下レンズ116d及び下レンズ116mの外周に沿う。
 上レンズ114a、上レンズ114p、下レンズ116d及び下レンズ116mの外周により、それぞれ、レンズホルダー1404の結合部1406,1408,1410及び1412がマルチアレイレンズ110に対して位置決めされる。位置決めは、外周の一部により行われる。
 上レンズ114a及び114pは、16個の上レンズ114a~114pにおいて最も外側に配置される。下レンズ116d及び116mは、16個の下レンズ116a~116pにおいて最も外側に配置される。
 第14実施形態によれば、レンズホルダー1404に対してマルチアレイレンズ110が精度良く位置決めされる。これにより、マルチアレイレンズ110の姿勢が適切に維持され、マルチアレイレンズ110が支持体108に対して適切に動かされる。位置決めのためだけの構造は不要であり、レンズユニット1402が小型になる。
 第15実施形態
 第15実施形態は、撮像装置に関する。
 図44の模式図は、第15実施形態の撮像装置1500の断面図である。図45の模式図は、第15実施形態のレンズユニット1502の上面図である。図46の模式図は、第15実施形態のレンズユニット1502の下面図である。
 図44から図46までに示されるように、第15実施形態の撮像装置1500は、第1実施形態の上板バネ122が第7実施形態の上板バネ706に置き換えられ、第1実施形態の下板バネ124が第7実施形態の下板バネ708に置き換えられ、バイアスバネ1504及び1506が設けられ、位置決め用の単位構造が1行目1列目の上レンズ114a及び4行目4列目の上レンズ114pに変更される点で、第1実施形態の撮像装置100と異なる。以下では、第1実施形態の撮像装置100と異なる点が主に説明される。説明されない事項については、第1実施形態の説明がそのまま援用されてもよいし、第1実施形態の説明が変形されてから援用されてもよい。第1実施形態以外の実施形態の説明が援用されてもよい。
 バイアスバネ1504及び1506は、駆動方向と反対の方向にマルチアレイレンズ110を押す力を発生する。
 バイアスバネ1504の一方の結合部1508は、支持体108に結合される。バイアスバネ1504の他方の結合部1510は、マルチアレイレンズ110の上配列面126に結合される。バイアスバネ1504の結合部1510は、上レンズ114aの外縁に結合される。
 バイアスバネ1506の一方の結合部1512は、支持体108に結合される。バイアスバネ1506の他方の結合部1514は、マルチアレイレンズ110の上配列面126に結合される。バイアスバネ1504の結合部1514は、上レンズ114pの外縁に結合される。
 上レンズ114aは、バイアスバネ1504の他方の結合部1510に形成された孔1516に挿入される。上レンズ114pは、バイアスバネ1506の結合部1514に形成された孔1518に挿入される。
 孔1516及び1518の平面形状は、それぞれ、上レンズ114a及び114pの平面形状に適合する。孔1516及び1518の内周は、それぞれ、上レンズ114a及び114pの外周に沿う。上レンズ114aの外周により、バイアスバネ1504の結合部1510がマルチアレイレンズ110に対して位置決めされる。上レンズ114pの外周により、バイアスバネ1506の結合部1514がマルチアレイレンズ110に対して位置決めされる。
 上レンズ114a及び114pは、16個の上レンズ114a~114pにおいて最も外側に配置される。
 第15実施形態によれば、バイアスバネ1504及び1506に対してマルチアレイレンズ110が精度良く位置決めされる。これにより、マルチアレイレンズ110の姿勢が適切に維持され、マルチアレイレンズ110が支持体108に対して適切に動かされる。位置決めのためだけの構造は不要であり、レンズユニット1502が小型になる。
 その他
 第1実施形態から第15実施形態までにおいては、図47及び図48に示されるように、レンズ1600(第1実施形態の上レンズ114d、下レンズ116p等)の外周1602により位置決めが行われる。
 しかし、図49及び図50に示されるように、レンズ1600の径方向外側にフランジ1604が設けられ、フランジ1604の外周1606により位置決めが行われてもよい。図51及び図52に示されるように、レンズ1600の径方向外側に突起1608が設けられ、突起1608の外周1610により位置決めが行われてもよい。図53及び図54に示されるように、レンズ1600が配列面1612から陥没する場合は、レンズ1600の径方向外側に凹部1614が形成され、凹部1614の内周1616により位置決めが行われてもよい。
 より一般的には、マルチアレイレンズの配列面に2個以上の単位構造が配列され、2個以上の単位構造の各々がレンズを備え、単位構造が配列面から突出する場合は、位置決め用の単位構造に属するレンズの外周により位置決めが行われてもよいし、位置決め用の単位構造に属するレンズの径方向外側にフランジ又は突起が設けられ、フランジ又は突起の外周により位置決めが行われてもよい。また、マルチアレイレンズの配列面に2個以上の単位構造が配列され、2個以上の単位構造の各々がレンズを備え、単位構造が配列面から陥没する場合は、位置決め用の単位構造に属するレンズの径方向外側に凹部が設けられ、凹部の内周により位置決めが行われてもよい。
 本発明は詳細に示され記述されたが、上記の記述は全ての局面において例示であって限定的ではない。したがって、本発明の範囲からはずれることなく無数の修正及び変形が案出されうると解される。
 100,200,300,400,500,600,700,800,900,1000,1100,1200,1300,1400,1500 撮像装置
 102,202,302,402,502,602,702,802,902,1002,1102,1202,1302,1402,1502 レンズユニット
 104 撮像素子,
 108 支持体
 110 マルチアレイレンズ
 112 駆動機構
 118,704 板状SMAアクチュエーター
 120 平行案内機構
 304,904,1004 VCMアクチュエーター
 306,906,1006,1304 レンズホルダー
 404 線状SMAアクチュエーター
 1504,1506 バイアスバネ

Claims (24)

  1.  支持体と、
     2個以上の単位構造を備え、配列面を有し、前記2個以上の単位構造が前記配列面に配列され、前記2個以上の単位構造の各々がレンズを備え、前記2個以上の単位構造が位置決め用の単位構造を含むマルチアレイレンズと、
     第1の結合部及び第2の結合部を有し、前記第1の結合部が前記支持体に結合され、前記第2の結合部が前記マルチアレイレンズに結合され、前記位置決め用の単位構造により前記マルチアレイレンズに対して前記第2の結合部が位置決めされ、前記マルチアレイレンズの姿勢を維持したまま前記マルチアレイレンズを前記支持体に対して動かす駆動機構と、
    を備えるレンズユニット。
  2.  前記駆動機構は、
     前記マルチアレイレンズを駆動方向に動かす駆動力を発生するアクチュエーターと、
     前記第1の結合部及び前記第2の結合部を有し、前記マルチアレイレンズの姿勢を維持したまま前記マルチアレイレンズを前記駆動方向に案内する平行案内機構と、
    を備える請求項1のレンズユニット。
  3.  前記平行案内機構は、
     前記第1の結合部及び前記第2の結合部を有する板バネ
    を備える請求項2のレンズユニット。
  4.  前記平行案内機構は、
     前記第1の結合部を有する板バネと、
     前記第2の結合部を有し、前記板バネに結合され、前記マルチアレイレンズを保持するレンズホルダーと、
    を備える請求項2のレンズユニット。
  5.  前記アクチュエーターは、
     形状記憶合金アクチュエーター、バイメタルアクチュエーター又はボイスコイルモーターアクチュエーター
    を備える請求項2から請求項4までのいずれかのレンズユニット。
  6.  前記駆動機構は、
     前記第1の結合部及び前記第2の結合部を有し、前記マルチアレイレンズを駆動方向に動かす駆動力を発生するアクチュエーターと、
     前記マルチアレイレンズの姿勢を維持したまま前記マルチアレイレンズを前記駆動方向に案内する平行案内機構と、
    を備える請求項1のレンズユニット。
  7.  前記アクチュエーターは、
     前記第1の結合部及び前記第2の結合部を有する形状記憶合金アクチュエーター
    を備える請求項6のレンズユニット。
  8.  前記アクチュエーターは、
     コイル及び磁石を備え、前記コイルが前記第1の結合部を有し、前記磁石が前記第2の結合部を有するボイスコイルモーターアクチュエーター
    を備える請求項6のレンズユニット。
  9.  前記アクチュエーターは、
     前記第1の結合部及び前記第2の結合部を有するバイメタルアクチュエーター
    を備える請求項6のレンズユニット。
  10.  前記平行案内機構は、
     板バネ
    を備える
    請求項6から請求項9までのいずれかのレンズユニット。
  11.  前記駆動機構は、
     前記マルチアレイレンズを駆動方向に駆動する力を発生する形状記憶合金アクチュエーターと、
     前記マルチアレイレンズの姿勢を維持したまま前記マルチアレイレンズを前記駆動方向に案内する平行案内機構と、
     前記第1の結合部及び前記第2の結合部を有するバイアスバネと、
    を備える請求項1のレンズユニット。
  12.  前記位置決め用の単位構造が前記配列面から突出し、
     前記位置決め用の単位構造に属する前記レンズが外周を有し、
     前記外周により前記マルチアレイレンズに対して前記第2の結合部が位置決めされる
    請求項1から請求項11までのいずれかのレンズユニット。
  13.  前記位置決め用の単位構造が前記配列面から突出し、
     前記位置決め用の単位構造は、
     前記位置決め用の単位構造に属する前記レンズの径方向外側に配置され、外周を有するフランジ
    をさらに備え、
     前記外周により前記マルチアレイレンズに対して前記第2の結合部が位置決めされる
    請求項1から請求項11までのいずれかのレンズユニット。
  14.  前記位置決め用の単位構造が前記配列面から突出し、
     前記位置決め用の単位構造は、
     前記位置決め用の単位構造に属する前記レンズの径方向外側に配置され、外周を有する突起
    をさらに備え、
     前記外周により前記マルチアレイレンズに対して前記第2の結合部が位置決めされる
    請求項1から請求項11までのいずれかのレンズユニット。
  15.  前記位置決め用の単位構造が前記配列面から陥没し、
     凹構造が前記位置決め用の単位構造に形成され、
     前記位置決め用の単位構造に属する前記レンズの径方向外側に前記凹構造が配置され、
     前記凹構造が内周を有し、
     前記内周により前記マルチアレイレンズに対して前記第2の結合部が位置決めされる
    請求項1から請求項11までのいずれかのレンズユニット。
  16.  前記位置決め用の単位構造が前記配列面から突出し、
     前記位置決め用の単位構造が外周を有し、
     前記外周の全体により前記マルチアレイレンズに対して前記第2の結合部が位置決めされる
    請求項1から請求項11までのいずれかのレンズユニット。
  17.  前記位置決め用の単位構造が前記配列面から突出し、
     前記位置決め用の単位構造が外周を有し、
     前記外周の一部により前記マルチアレイレンズに対して前記第2の結合部が位置決めされる
    請求項1から請求項11までのいずれかのレンズユニット。
  18.  前記位置決め用の単位構造が前記配列面から突出し、
     前記駆動機構に孔が形成され、
     前記位置決め用の単位構造が前記孔に挿入される
    請求項1から請求項11までのいずれかのレンズユニット。
  19.  前記レンズが光軸を有し、
     前記駆動機構は、前記光軸と平行をなす方向から見て有効光学領域の外側に配置される
    請求項1から請求項18までのいずれかのレンズユニット。
  20.  前記2個以上の単位構造において前記位置決め用の単位構造が最も外側に配置される
    請求項1から請求項19までのいずれかのレンズユニット。
  21.  前記レンズが光軸を有し、
     前記駆動方向が前記光軸と平行をなす、
    請求項1から請求項20までのいずれかのレンズユニット。
  22.  前記レンズが光軸を有し、
     前記駆動方向が前記光軸と垂直をなす、
    請求項1から請求項20までのいずれかのレンズユニット。
  23.  請求項1から請求項22までのいずれかのレンズユニットと、
     前記レンズにより結像された像を撮像する撮像素子と、
    を備える撮像装置。
  24.  2個以上の前記レンズにより結像された2個以上の像が1個の撮像素子により撮像される
    請求項23の撮像装置。
PCT/JP2014/068003 2013-08-08 2014-07-07 レンズユニット及び撮像装置 WO2015019772A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013164977 2013-08-08
JP2013-164977 2013-08-08

Publications (1)

Publication Number Publication Date
WO2015019772A1 true WO2015019772A1 (ja) 2015-02-12

Family

ID=52461111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068003 WO2015019772A1 (ja) 2013-08-08 2014-07-07 レンズユニット及び撮像装置

Country Status (1)

Country Link
WO (1) WO2015019772A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029372A1 (de) * 2015-08-19 2017-02-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multiaperturabbildungsvorrichtung mit optiksubstrat
WO2017029376A1 (de) * 2015-08-19 2017-02-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multiaperturabbildungsvorrichtung, verfahren zum herstellen derselben und abbildungssystem

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004096358A (ja) * 2002-08-30 2004-03-25 Olympus Corp 撮像素子
JP2005038496A (ja) * 2003-07-14 2005-02-10 Nec Corp 光ヘッドの対物レンズ駆動装置
JP2011002811A (ja) * 2009-05-19 2011-01-06 Mitsumi Electric Co Ltd レンズ駆動装置、装入方法、およびsmaアセンブリ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004096358A (ja) * 2002-08-30 2004-03-25 Olympus Corp 撮像素子
JP2005038496A (ja) * 2003-07-14 2005-02-10 Nec Corp 光ヘッドの対物レンズ駆動装置
JP2011002811A (ja) * 2009-05-19 2011-01-06 Mitsumi Electric Co Ltd レンズ駆動装置、装入方法、およびsmaアセンブリ

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029372A1 (de) * 2015-08-19 2017-02-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multiaperturabbildungsvorrichtung mit optiksubstrat
WO2017029376A1 (de) * 2015-08-19 2017-02-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multiaperturabbildungsvorrichtung, verfahren zum herstellen derselben und abbildungssystem
KR20180042340A (ko) 2015-08-19 2018-04-25 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 멀티-애퍼처 이미징 디바이스, 이를 생성하기 위한 방법 및 이미징 시스템
KR20180042342A (ko) 2015-08-19 2018-04-25 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 광학 기판을 포함하는 다중 조리개 이미징 디바이스
US20180176471A1 (en) * 2015-08-19 2018-06-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multi-aperture imaging device comprising an optical substrate
CN108351492A (zh) * 2015-08-19 2018-07-31 弗劳恩霍夫应用研究促进协会 包括光学基板的多孔径成像设备
TWI642974B (zh) * 2015-08-19 2018-12-01 弗勞恩霍夫爾協會 多孔徑成像裝置、其製造方法及成像系統
US10334172B2 (en) 2015-08-19 2019-06-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multi-aperture imaging device, method for producing the same and imaging system
US10630902B2 (en) 2015-08-19 2020-04-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multi-aperture imaging device comprising an optical substrate
CN108351492B (zh) * 2015-08-19 2021-03-16 弗劳恩霍夫应用研究促进协会 包括光学基板的多孔径成像设备
US11290649B2 (en) 2015-08-19 2022-03-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multi-aperture imaging device comprising an optical substrate

Similar Documents

Publication Publication Date Title
JP7174005B2 (ja) マルチ開口撮像装置、マルチ開口撮像装置の製造方法および撮像システム
JP6289451B2 (ja) 形状記憶合金作動装置
US11808948B2 (en) Optical member driving mechanism
US8559803B2 (en) Photographing module
JP6960983B2 (ja) 手振れ補正機能付き撮像装置
US20150322929A1 (en) Drive device and lens unit
JP2018510368A5 (ja)
JP2016046407A (ja) 圧電アクチュエータ、リニア駆動装置及び電子機器
TWI446690B (zh) 致動器
US20240035454A1 (en) Shape memory alloy actuation apparatus
JP6709071B2 (ja) 振れ補正機能付き光学ユニット
WO2015019772A1 (ja) レンズユニット及び撮像装置
WO2015025734A1 (ja) レンズユニット、撮像装置及びマルチアレイレンズ
JP2007148023A (ja) 像ぶれ補正装置及びそれを用いた撮像装置
JP5447501B2 (ja) 駆動装置及びレンズ駆動装置
WO2015104902A1 (ja) 駆動ユニット及び撮像装置
TWI514723B (zh) 驅動裝置
JP2012185209A (ja) 撮像装置
WO2015137210A1 (ja) レンズユニットおよび撮像装置
JP6753756B2 (ja) 駆動装置、及びカメラモジュール
JP6074199B2 (ja) レンズ鏡筒およびそれを備えた撮像装置
JP6415805B2 (ja) 電磁アクチュエータ
EP4314938A1 (en) An actuator assembly and a method of operation thereof
JP2015207982A (ja) 撮像装置
WO2015005018A1 (ja) レンズ駆動装置、および撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834519

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14834519

Country of ref document: EP

Kind code of ref document: A1