WO2015015877A1 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
WO2015015877A1
WO2015015877A1 PCT/JP2014/063623 JP2014063623W WO2015015877A1 WO 2015015877 A1 WO2015015877 A1 WO 2015015877A1 JP 2014063623 W JP2014063623 W JP 2014063623W WO 2015015877 A1 WO2015015877 A1 WO 2015015877A1
Authority
WO
WIPO (PCT)
Prior art keywords
zoom lens
output
output value
unit
position detection
Prior art date
Application number
PCT/JP2014/063623
Other languages
English (en)
French (fr)
Inventor
後町昌紀
近藤 真樹
謙 福元
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to JP2014555020A priority Critical patent/JP5750671B1/ja
Publication of WO2015015877A1 publication Critical patent/WO2015015877A1/ja
Priority to US14/882,187 priority patent/US9426374B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00188Optical arrangements with focusing or zooming features
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • G02B23/2438Zoom objectives
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion

Definitions

  • the present invention relates to an imaging apparatus provided with a zoom mechanism.
  • an imaging device is provided in an endoscope system.
  • the zoom mechanism and the like of the imaging device are provided in a small space in the distal end portion of the endoscope scope in the endoscope system.
  • some imaging apparatuses provided in an endoscope system include a zoom mechanism using a VCM (voice coil motor) that is advantageous for downsizing as a zoom mechanism.
  • VCM voice coil motor
  • the optical image formed on the imaging surface is enlarged or reduced by moving the zoom lens by the VCM.
  • imaging device provided with the zoom mechanism provided in the endoscope system other imaging devices provided in the electronic endoscope system disclosed in Patent Documents 1 to 3, for example, are known.
  • the zoom lens position is not fixedly held by the VCM, the zoom lens position is always detected, and the target position is based on the detection result.
  • Feedback control serving control
  • the detection of the zoom lens position is performed by a position detection mechanism. Since this position detection mechanism is also provided in a small space in the distal end portion of the endoscope scope like the zoom mechanism, a small one is used.
  • the position detection mechanism becomes small, there is a possibility that the zoom lens position cannot be accurately controlled due to the influence of manufacturing variations (processing variations, assembly variations, etc.).
  • manufacturing variations processing variations, assembly variations, etc.
  • the zoom lens position cannot be accurately controlled due to the influence of variations in the positional relationship between the magnet and the hall element.
  • an object of the present invention is to provide an imaging device that enables accurate zoom lens position control.
  • an imaging optical system that forms an optical image of a subject on an imaging surface, a part of the imaging optical system, and movable in the optical axis direction of the imaging optical system
  • a zoom lens for enlarging or reducing an optical image formed on the imaging surface with the movement, a position detector for detecting a position of the zoom lens in the optical axis direction, and the zoom lens
  • a storage unit that stores output characteristic information related to an output characteristic of the position detection unit in accordance with a position of the lens in the optical axis direction, and a drive control that controls the movement of the variable power lens based on the output characteristic information
  • an imaging device that forms an optical image of a subject on an imaging surface, a part of the imaging optical system, and movable in the optical axis direction of the imaging optical system
  • a zoom lens for enlarging or reducing an optical image formed on the imaging surface with the movement
  • a position detector for detecting a position of the zoom lens in the optical axis direction
  • the zoom lens A storage unit
  • the output characteristic information includes a wide end output value that is an output value of the position detection unit when the variable power lens is applied to the wide end, and the variable.
  • an imaging device including a tele end output value that is an output value of the position detection unit when a double lens is applied to the tele end.
  • the output characteristic information is obtained by dividing each movement section from the wide end to the tele end of the zoom lens into a plurality of small sections. Further including a slope of a straight line obtained by linearly approximating the output characteristic of the position detector according to the position of the zoom lens in the optical axis direction, and the drive controller based on the output characteristic information
  • the magnification lens is adjusted so that the multiplication result of the reciprocal of the slope of the straight line corresponding to the small section to which the current position of the magnification lens belongs and the output change amount of the position detection unit per unit time is constant.
  • an imaging apparatus that performs control of movement.
  • the image processing apparatus further includes an acquisition unit that acquires an output value of the position detection unit, and the imaging apparatus is turned on.
  • the drive control unit performs control to move the zoom lens from the wide end to the tele end, and the acquisition unit is an output value of the position detection unit when the zoom lens is at the wide end.
  • an imaging apparatus that acquires a wide end output value and a tele end output value that is an output value of the position detection unit when the zoom lens is at the tele end.
  • the wide end output value and the tele end output value acquired by the acquisition unit when the power of the imaging apparatus is turned on, and the storage unit are stored.
  • a determination unit for determining whether the position detection unit and / or the drive control unit is normal or abnormal based on the wide end output value and the tele end output value included in the output characteristic information An imaging apparatus is provided.
  • FIG. 1 It is a figure which shows the structural example of the endoscope system containing an imaging device. It is a figure which shows the example in which the relationship between the position of a zoom lens and the output of a position detection part (AMP) is not linear. It is a figure explaining the example which divided
  • AMP position detection part
  • FIG. 1 is a diagram illustrating a configuration example of an endoscope system including an imaging apparatus according to Embodiment 1 of the present invention.
  • the endoscope system 100 includes an endoscope scope 200 and an endoscope control unit 300, and signals are transmitted and received between the endoscope scope 200 and the endoscope control unit 300. It is configured as possible.
  • the endoscope scope 200 includes an imaging optical system 210, a position detection unit 220, a nonvolatile memory 230, and a lens driving unit 240.
  • the image pickup optical system 210 forms an optical image of a subject on the image pickup surface of the image pickup element 212, and includes a zoom lens 211 and an image pickup element 212.
  • the zoom lens 211 is a variable power lens that is provided so as to be movable in the optical axis direction of the imaging optical system 210 and that enlarges or reduces the optical image formed on the imaging surface of the imaging device 212 as the movement occurs.
  • the image sensor 212 is an image sensor having, for example, a Bayer array color filter, and captures an optical image formed on the imaging surface.
  • the output signal of the image sensor 212 is output to the endoscope control unit 300 and subjected to predetermined image processing or the like, and can be displayed as an image on the display unit, for example.
  • the position detection unit 220 detects the position of the zoom lens 211 in the optical axis direction of the imaging optical system 210, and includes a magnet 221, a Hall element 222, and an AMP (Amplifier) 223.
  • the magnet 221 is fixed to a part of the zoom lens 211 so as to be movable together with the zoom lens 211.
  • Hall element 222 detects the magnetic field using the Hall effect and outputs an analog signal proportional to the magnitude.
  • a magnetic field corresponding to the positional relationship with the magnet 221 is detected, and an analog signal proportional to the magnitude is output.
  • AMP 223 is a circuit that amplifies and outputs the output signal of the Hall element 222.
  • the output signal of the AMP 223 is output to the position control unit 320 of the endoscope control unit 300.
  • the nonvolatile memory 230 is, for example, an EEPROM (ElectricallyrErasable Programmable Read-Only Memory), and output characteristic information related to the output characteristic of the position detection unit 220 according to the position of the zoom lens 211 in the optical axis direction of the imaging optical system 210.
  • EEPROM ElectricallyrErasable Programmable Read-Only Memory
  • the lens driving unit 240 is a VCM, and moves the zoom lens 211 in the optical axis direction of the imaging optical system 210 according to a driving signal from the position control unit 320 of the endoscope control unit 300.
  • the imaging optical system 210 In the endoscope scope 200, the imaging optical system 210, the position detection unit 220, and the lens driving unit 240 are provided in the distal end portion of the endoscope scope 200.
  • the endoscope control unit 300 controls the entire operation of the endoscope system 100, and includes a memory reading unit 310 and a position control unit (an example of a drive control unit) 320.
  • the memory reading unit 310 reads the output characteristic information from the nonvolatile memory 230 of the endoscope scope 200 and outputs it to the position control unit 320.
  • the position control unit 320 performs control to move the zoom lens 211 in the optical axis direction of the imaging optical system 210 based on the output characteristic information from the memory reading unit 310. More specifically, the position control unit 320 moves the zoom lens 211 in the optical axis direction of the imaging optical system 210 based on the output characteristic information from the memory reading unit 310 and the output signal of the position detection unit 220.
  • the drive signal is output to the lens drive unit 240. Since the position control unit 320 controls the movement (position) of the zoom lens 211 by feedback control (servo control), in practice, the output characteristic information and the time at each unit time (every predetermined time). And a drive signal for moving the zoom lens 211 to the target position based on the output signal of the position detection unit 220.
  • the endoscope system 100 includes an operation unit that receives various instructions from the user, although not shown.
  • the output characteristic information stored in the nonvolatile memory 230 of the endoscope scope 200 is stored before factory shipment. More specifically, for example, when the assembly of the endoscope scope 200 is completed, a wide value that is an output value of the position detection unit 220 when the zoom lens 211 is applied to the wide end in the endoscope scope 200. An end output value and a tele end output value that is an output value of the position detection unit 220 when the zoom lens 211 is applied to the tele end are acquired, and output characteristic information including both output values is stored in a nonvolatile memory. 230.
  • the wide end is the position on the widest (wide angle) side in the movable range of the zoom lens 211
  • the tele end is the position on the most telephoto (telephoto) side in the movable range of the zoom lens 211. is there.
  • the endoscope system 100 moves the zoom lens 211 according to the zoom instruction.
  • the reception of the zoom instruction is performed by pressing a wide zoom button or a tele zoom button included in an operation unit (not shown) of the endoscope system 100. That is, when the wide zoom button is pressed, a wide zoom instruction is issued, and when the tele zoom button is pressed, a tele zoom instruction is issued.
  • the endoscope system 100 moves the zoom lens 211 to the wide end side while the wide zoom button is pressed (while the wide zoom instruction is continuously issued), and the tele zoom button is pressed.
  • the zoom lens 211 is moved to the tele end side while the camera is on (while the telezoom instruction is continuously given).
  • the endoscope system 100 is configured to hold the zoom lens 211 at the position of the zoom lens 211 at the time of release.
  • This zoom operation is performed as follows in detail.
  • the zoom lens is based on the characteristic straight line defined by the output characteristic information read by the memory reading unit 310 from the nonvolatile memory 230 and the output signal of the position detection unit 220 (AMP 223). This is done by outputting a drive signal for moving 211 to the lens drive unit 240.
  • the characteristic straight line defined by the output characteristic information is a coordinate system (for example, the coordinates shown in FIG. 2 described later) when the horizontal axis indicates the position of the zoom lens 211 and the vertical axis indicates the output of the position detector 220. It is a straight line connecting the wide-end output value point and the tele-end output value point plotted in the system). As described above, the wide end output value and the tele end output value are included in the output characteristic information.
  • Such a characteristic line defines the relationship between the position of the zoom lens 211 and the output of the position detection unit 220 in the endoscope scope 200.
  • the position control unit 320 is a drive for moving the zoom lens 211 at a constant speed based on the characteristic straight line and the output signal of the position detection unit 220 while the wide zoom button or the tele zoom button is pressed.
  • the signal is output to the lens driving unit 240.
  • the position control unit 320 based on the characteristic line and the output signal of the position detection unit 220, the zoom lens 211 at the time of releasing the button.
  • a driving signal for holding the zoom lens 211 at the position is output to the lens driving unit 240.
  • the characteristic straight line used when the zoom operation is performed is performed when the assembly of the endoscope scope 200 is completed. Since it is defined by the wide end output value and the tele end output value acquired in the endoscope scope 200, the position detector 220 (magnet 221 and Hall element 222) of the endoscope scope 200, etc. This takes into account the manufacturing variation of Accordingly, the zoom lens position can be accurately controlled in the zoom operation.
  • the endoscope system including the imaging apparatus according to the second embodiment of the present invention is obtained by further improving the endoscope system including the imaging apparatus according to the first embodiment.
  • the same components as those described in the first embodiment will be described with the same reference numerals.
  • the distal end portion of the endoscope scope 200 becomes smaller, the space in the distal end portion becomes smaller, and the magnet 221 and the hall element 222 provided in the distal end portion become closer to each other.
  • the relationship between the position of the zoom lens 211 and the output of the position detection unit 220 is not linear, for example, as shown in FIG. There was a possibility that the position could not be controlled.
  • the zoom operation is different from that of the endoscope system 100 including the imaging apparatus according to the first embodiment as described below.
  • the output characteristic information stored in the nonvolatile memory 230 is not only from the wide end output value and the tele end output value, but also from the wide end of the zoom lens 211.
  • the slope of the characteristic line in each small section is the slope of the straight line when the relationship between the position of the zoom lens 211 and the output of the position detection unit 220 (AMP 223) in each small section is linearly approximated. .
  • the moving section from the wide end (WIDE) to the tele end (TELE) of the zoom lens 211 is divided into three subsections, and the output characteristic information is In addition to the wide end output value and the tele end output value, the output values A (A data) and B (B data) of the position detection unit 220 at the divided positions P1 and P2, and the slope ⁇ of the characteristic line in each small section , ⁇ , and ⁇ .
  • represents the slope of a straight line obtained by linearly approximating the relationship between the position of the zoom lens 211 and the output of the position detection unit 220 in a small section from the telephoto end to P1.
  • represents the slope of a straight line obtained by linearly approximating the relationship between the position of the zoom lens 211 and the output of the position detecting unit 220 in a small section from P1 to P2.
  • represents the slope of a straight line when the relationship between the position of the zoom lens 211 and the output of the position detection unit 220 is linearly approximated in a small section from P2 to the wide end.
  • the output characteristic information including these data is stored in the non-volatile memory 230 before shipment from the factory, as in the first embodiment. More specifically, for example, when the assembly of the endoscope scope 200 is completed, in the endoscope scope 200, first, the relationship between the position of the zoom lens 211 and the output of the position detection unit 220 (AMP 223) (for example, FIG. 2), and the wide end output value, the tele end output value, the A data, the B data, ⁇ , ⁇ , and ⁇ are acquired, and the output characteristic information including them is stored in the nonvolatile memory. 230.
  • the position control unit 320 moves the zoom lens 211 based on the output characteristic information read by the memory reading unit 310 from the nonvolatile memory 230 and the output signal of the position detection unit 220 (AMP 223). This is done by outputting a drive signal to the lens drive unit 240.
  • the position control unit 320 is configured to move the zoom lens 211 at a constant speed based on the output characteristic information and the output signal of the position detection unit 220 while the wide zoom button or the tele zoom button is pressed.
  • the drive signal is output to the lens drive unit 240.
  • the position controller 320 determines the reciprocal of the slope of the straight line corresponding to the small section to which the current position of the zoom lens 211 belongs and the unit per unit time based on the output characteristic information and the output signal of the position detector 220.
  • a driving signal for moving the zoom lens 211 is output to the lens driving unit 240 so that the multiplication result with the output change amount of the position detection unit 220 becomes constant.
  • the output change amount of the position detection unit 220 per unit time C (constant)
  • a driving signal for moving the zoom lens 211 so as to be equal to (value) is output to the lens driving unit 240.
  • the small section to which the current position of the zoom lens 211 belongs is a small section from P1 to P2
  • the position control unit 320 is based on the output characteristic information and the output signal of the position detection unit 220, and the zoom lens at the time when the button is released.
  • a driving signal for holding the zoom lens 211 at the position 211 is output to the lens driving unit 240. More specifically, the position control unit 320 determines the zoom lens 211 at the time when the button is released based on the slope of the straight line corresponding to the small section to which the current position of the zoom lens 211 belongs and the output signal of the position detection unit 220.
  • a driving signal for holding the zoom lens 211 at the position is output to the lens driving unit 240.
  • the button is based on the slope ⁇ of the corresponding straight line and the output signal of the position detector 220.
  • a drive signal for holding the zoom lens 211 at the position of the zoom lens 211 at the time of release is output to the lens driving unit 240.
  • the small section to which the current position of the zoom lens 211 belongs is a small section from P1 to P2
  • the point of time when the button is released based on the slope ⁇ of the corresponding straight line and the output signal of the position detector 220.
  • a driving signal for holding the zoom lens 211 at the position of the zoom lens 211 is output to the lens driving unit 240.
  • the button release is performed based on the slope ⁇ of the corresponding straight line and the output signal of the position detector 220.
  • a driving signal for holding the zoom lens 211 at the position of the zoom lens 211 at the time is output to the lens driving unit 240.
  • the relationship between the position of the zoom lens 211 and the output of the position detection unit 220 is not linear (see, for example, FIG. 2). However, it is approximated by a plurality of straight lines (see, for example, FIG. 3), and a zoom operation is performed using data on the corresponding approximate straight line each time. Also in the endoscope system 100 including the imaging apparatus according to the present embodiment, the data included in the output characteristic information used when the zoom operation is performed is obtained when the assembly of the endoscope scope 200 is completed. Since it is acquired by the endoscope scope 200, manufacturing variations of the position detection unit 220 (magnet 221 and Hall element 222) of the endoscope scope 200 are taken into consideration. Therefore, the zoom lens position can be accurately controlled in the zoom operation. Further, since the moving speed of the zoom lens 211 is constant while the wide zoom button or the tele zoom button is pressed, the operability is not impaired.
  • an example in which the movement section from the wide end to the tele end of the zoom lens 211 is divided into three subsections is not limited to this. It may be divided into a plurality of small sections.
  • the endoscope system 100 including the imaging device according to each embodiment can be variously modified.
  • the position control unit 320 moves the zoom lens 211 from the wide end to the tele end every time the system is activated (every time the imaging apparatus is turned on).
  • the endoscope control unit (which is also an example of the acquisition unit and the determination unit) 300 acquires the wide end output value and the tele end output value from the position detection unit 220 at that time.
  • the position detector 220 and / or the position control It is determined whether the unit 320 is normal or abnormal, and if it is determined that the unit 320 is abnormal as a result of the determination, the zoom operation is prohibited and the fact is displayed on a display unit (not shown). It may be notified to over The. For example, when the wide end output value acquired from the position detection unit 220 is less than 50% of the wide end output value included in the output characteristic information, and / or the tele end output value acquired from the position detection unit 220 is the output characteristic.
  • the position detection unit 220 for example, the hall element 222
  • the position control unit 320 due to a temperature change, aging deterioration, or the like.
  • the wide end output acquired at the time of system startup is used as a characteristic line used for the zoom operation.
  • a characteristic straight line defined by the value and the tele end output value may be used.
  • the position control unit 320 includes a constant current type bridge circuit as a VCM drive circuit that outputs a drive signal to the lens drive unit 240. Also good.
  • the constant current type bridge circuit is used as the VCM drive circuit, there are the following advantages compared to the case where the constant voltage type bridge circuit is used as the VCM drive circuit. For example, by using a constant current type bridge circuit, the following situation that may occur when using a constant voltage type bridge circuit can be prevented.
  • the electric resistance between the lens driving unit 240 and the position control unit 320 varies depending on the scope length of the endoscope scope 200, and the electric resistance of the VCM itself that is the lens driving unit 240 also varies from one solid to another. Due to this, the intended VCM control cannot be performed accurately, and there is a possibility that an accurate zoom operation may not be performed. For example, if a constant voltage bridge circuit is used, VCM control must be performed in consideration of the above-described fluctuation and variation in electrical resistance, which complicates the control. On the other hand, when a constant current type bridge circuit is used, the above-described fluctuation and variation in electrical resistance do not affect the drive current value of the VCM, so that the VCM can be controlled as intended.
  • the lens driving unit 240 and the position control unit 320 are realized by the configuration shown in FIG. 4, for example.
  • a VCM 410 corresponds to the lens driving unit 240
  • a VCM driving circuit 420 and an FPGA (Field Programmable Gate Array) 430 correspond to a part of the endoscope control unit 300 including the position control unit 320.
  • the VCM drive circuit 420 is realized by, for example, the circuit configuration illustrated in FIG. 5, and a part of the FPGA 430 is realized by, for example, the configuration illustrated in FIG. 6.
  • the VCM drive circuit 420 is realized by a constant current type bridge circuit in which a bridge circuit of an FET (Field Effect ⁇ ⁇ Transistor) is configured by a constant current circuit, and PWM (Pulse Width Modulation) control by the FPGA 430.
  • a drive signal is output to the VCM 410.
  • the FPGA 430 includes a PWM control unit 431 that performs PWM control of the VCM drive circuit 420.
  • the PWM control unit 431 outputs an on / off signal to each FET of the VCM drive circuit 420 based on the command value, and includes a duty ratio calculation unit 432 and a pulse generation unit 433.
  • the pulse generator 433 outputs an on / off signal to each FET of the VCM drive circuit 420 according to the input pulse duty ratio D.
  • the PWM control unit 431 can simplify the calculation of the pulse duty ratio, so that the usage rate of the PWM control unit 431 in the FPGA 430 can be reduced. Further, the PWM control unit 431 performs PWM control based on the current value of the constant current circuit of the VCM drive circuit 420, so that control that is not affected by the type of the endoscope scope 200 is possible.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Lens Barrels (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)
  • Studio Devices (AREA)

Abstract

 撮像装置は、被写体の光学像を撮像面上に結像する撮像光学系と、撮像光学系の一部であって、撮像光学系の光軸方向に移動可能に設けられ、その移動に伴って撮像面上に結像される光学像を拡大又は縮小する変倍レンズと、変倍レンズの光軸方向における位置を検出する位置検出部と、変倍レンズの光軸方向における位置に応じた位置検出部の出力の特性に関する出力特性情報を記憶する記憶部と、出力特性情報に基づいて変倍レンズを移動させる制御を行う駆動制御部とを含む。

Description

撮像装置
 本発明は、ズーム機構を備えた撮像装置に関する。
 従来、ズーム機構を備えた撮像装置がある。
 例えば、内視鏡分野においては、そのような撮像装置が、内視鏡システムに備えられている。この場合、撮像装置のズーム機構等は、内視鏡システムにおける内視鏡スコープの先端部分内という小空間に設けられる。そのため、内視鏡システムに備えられる撮像装置においては、そのズーム機構として、小型化に有利なVCM(ボイスコイルモータ)を用いたズーム機構を備えたものもある。このようなズーム機構では、VCMによりズームレンズが移動することによって撮像面上に結像される光学像の拡大又は縮小が行われる。
 なお、内視鏡システムに備えられる、ズーム機構を備えた撮像装置に関しては、その他、例えば特許文献1乃至3に開示される電子内視鏡システムに備えられる撮像装置等が知られている。
特開2011-98051号公報 特開2010-282073号公報 特開2011-15883号公報
 上述の、VCMを用いたズーム機構を備えた撮像装置では、VCMによりズームレンズ位置の固定的な保持が行われないために、常に、ズームレンズ位置を検出してその検出結果を基に目標位置へズームレンズを移動させる、というフィードバック制御(サーボ制御)が行われている。ここで、ズームレンズ位置の検出は、位置検出機構によって行われる。この位置検出機構も、ズーム機構と同様に内視鏡スコープの先端部分内という小空間に設けられることから、小型のものが用いられている。
 しかしながら、位置検出機構が小型になると、その製造ばらつき(加工ばらつきや組立ばらつき等)の影響から、正確なズームレンズ位置の制御を行えない虞があった。例えば、小型の位置検出機構として磁石とホール素子を用いた場合には、磁石とホール素子の位置関係のばらつきの影響から、正確なズームレンズ位置の制御を行えない虞があった。
 以上のような実情を踏まえ、本発明は、正確なズームレンズ位置の制御を可能にする撮像装置を提供することを目的とする。
 本発明の第1の態様は、被写体の光学像を撮像面上に結像する撮像光学系と、前記撮像光学系の一部であって、前記撮像光学系の光軸方向に移動可能に設けられ、前記移動に伴って前記撮像面上に結像される光学像を拡大又は縮小する変倍レンズと、前記変倍レンズの前記光軸方向における位置を検出する位置検出部と、前記変倍レンズの前記光軸方向における位置に応じた前記位置検出部の出力の特性に関する出力特性情報を記憶する記憶部と、前記出力特性情報に基づいて、前記変倍レンズを移動させる制御を行う駆動制御部と、を備える撮像装置を提供する。
 本発明の第2の態様は、第1の態様において、前記出力特性情報は、前記変倍レンズがワイド端に当てつけられたときの前記位置検出部の出力値であるワイド端出力値および前記変倍レンズがテレ端に当てつけられたときの前記位置検出部の出力値であるテレ端出力値を含む、撮像装置を提供する。
 本発明の第3の態様は、第2の態様において、前記出力特性情報は、前記変倍レンズの前記ワイド端から前記テレ端までの移動区間を複数の小区間に分割したときの各小区間における、前記変倍レンズの前記光軸方向における位置に応じた前記位置検出部の出力の特性を直線近似したときの直線の傾きを更に含み、前記駆動制御部は、前記出力特性情報に基づいて、現在の前記変倍レンズの位置が属する小区間に対応する直線の傾きの逆数と単位時間当たりの前記位置検出部の出力変化量との乗算結果が一定となるように、前記変倍レンズを移動させる制御を行う、撮像装置を提供する。
 本発明の第4の態様は、第1乃至第3の何れか一つの態様において、前記位置検出部の出力値を取得する取得部、を更に備え、当該撮像装置の電源がオンされたときに、前記駆動制御部は、前記変倍レンズをワイド端からテレ端まで移動させる制御を行い、前記取得部は、前記変倍レンズが前記ワイド端にあるときの前記位置検出部の出力値であるワイド端出力値および前記変倍レンズが前記テレ端にあるときの前記位置検出部の出力値であるテレ端出力値を取得する、撮像装置を提供する。
 本発明の第5の態様は、第4の態様において、当該撮像装置の電源がオンされたときに前記取得部により取得されたワイド端出力値およびテレ端出力値と、前記記憶部に記憶されている前記出力特性情報に含まれるワイド端出力値およびテレ端出力値とに基づいて、前記位置検出部及び又は前記駆動制御部が正常であるか異常であるかを判定する判定部、を更に備える撮像装置を提供する。
 本発明によれば、ズームレンズの正確な位置制御を可能にする撮像装置を提供することができる。
撮像装置を含む内視鏡システムの構成例を示す図である。 ズームレンズの位置と位置検出部(AMP)の出力との関係がリニアでない例を示す図である。 ズームレンズのワイド端からテレ端までの移動区間を3つの小区間に分割した例を説明する図である。 レンズ駆動部と位置制御部の構成例を示す図である。 VCM駆動回路の回路構成例を示す図である。 FPGAの一部の構成例を示す図である。
 以下、図面を参照しながら、本発明の実施例について説明する。
<実施例1>
 図1は、本発明の実施例1に係る撮像装置を含む内視鏡システムの構成例を示す図である。
 図1に示したように、内視鏡システム100は、内視鏡スコープ200と内視鏡制御部300を含み、内視鏡スコープ200と内視鏡制御部300との間で信号の送受が可能なように構成されている。
 内視鏡スコープ200は、撮像光学系210と、位置検出部220と、不揮発性メモリ230と、レンズ駆動部240を含む。
 撮像光学系210は、被写体の光学像を撮像素子212の撮像面上に結像するものであって、ズームレンズ211、撮像素子212を含む。
 ズームレンズ211は、撮像光学系210の光軸方向に移動可能に設けられ、その移動に伴って撮像素子212の撮像面上に結像される光学像を拡大又は縮小する変倍レンズである。
 撮像素子212は、例えばベイヤ配列の色フィルタを有する撮像素子であって、撮像面上に結像された光学像を撮像する。なお、図示はしないが、撮像素子212の出力信号は、内視鏡制御部300へ出力されて所定の画像処理等が行われた後、例えば、表示部に画像として表示され得る。
 位置検出部220は、ズームレンズ211の、撮像光学系210の光軸方向における位置を検出するものであって、磁石221、ホール素子222、AMP(Amplifier)223を含む。
 磁石221は、ズームレンズ211と共に移動可能なように、ズームレンズ211の一部に固定されている。
 ホール素子222は、ホール効果を利用して磁界を検出し、その大きさに比例したアナログ信号を出力する。ここでは、磁石221との位置関係に応じた磁界を検出し、その大きさに比例したアナログ信号を出力する。
 AMP223は、ホール素子222の出力信号を増幅して出力する回路である。AMP223の出力信号は、内視鏡制御部300の位置制御部320へ出力される。
 不揮発性メモリ230は、例えばEEPROM(Electrically Erasable Programmable Read-Only Memory)であり、ズームレンズ211の、撮像光学系210の光軸方向における位置に応じた位置検出部220の出力の特性に関する出力特性情報を記憶する。
 レンズ駆動部240は、VCMであり、内視鏡制御部300の位置制御部320からの駆動信号に応じてズームレンズ211を撮像光学系210の光軸方向に移動させる。
 なお、内視鏡スコープ200において、撮像光学系210と、位置検出部220と、レンズ駆動部240は、内視鏡スコープ200の先端部分内に設けられる。
 内視鏡制御部300は、内視鏡システム100の全体動作を制御するものであり、メモリ読出部310と、位置制御部(駆動制御部の一例)320を含む。
 メモリ読出部310は、内視鏡スコープ200の不揮発性メモリ230から出力特性情報を読み出し、位置制御部320へ出力する。
 位置制御部320は、メモリ読出部310からの出力特性情報に基づいて、ズームレンズ211を撮像光学系210の光軸方向に移動させる制御を行う。より詳しくは、位置制御部320は、メモリ読出部310からの出力特性情報と、位置検出部220の出力信号とに基づいて、ズームレンズ211を撮像光学系210の光軸方向に移動させるための駆動信号をレンズ駆動部240へ出力する。なお、位置制御部320は、フィードバック制御(サーボ制御)によりズームレンズ211の移動(位置)を制御するものであるので、実際には、単位時間毎(所定時間毎)に、出力特性情報とその時の位置検出部220の出力信号とに基づいてズームレンズ211を目標位置へ移動させるための駆動信号をレンズ駆動部240へ出力する。
 内視鏡システム100は、その他、図示はしないが、ユーザからの各種指示を受け付ける操作部等も含む。
 このような構成の内視鏡システム100において、内視鏡スコープ200の不揮発性メモリ230に記憶される出力特性情報は、工場出荷前に記憶される。より詳しくは、例えば、内視鏡スコープ200の組み立てが完了した時点で、その内視鏡スコープ200において、ズームレンズ211をワイド端に当てつかせたときの位置検出部220の出力値であるワイド端出力値と、ズームレンズ211をテレ端に当てつかせたときの位置検出部220の出力値であるテレ端出力値とが取得され、その両出力値を含む出力特性情報が、不揮発性メモリ230に記憶される。なお、ワイド端とは、ズームレンズ211の移動可能範囲における最もワイド(広角)側の位置であり、テレ端とは、ズームレンズ211の移動可能範囲における最もテレ(望遠)側の位置のことである。
 次に、本実施例に係る撮像装置を含む内視鏡システム100で行われるズーム動作について説明する。
 内視鏡システム100は、ユーザからのズーム指示を受け付けると、そのズーム指示に応じてズームレンズ211を移動させる。なお、ズーム指示の受け付けは、内視鏡システム100の図示しない操作部に含まれるワイドズームボタン又はテレズームボタンの押下によって行われる。すなわち、ワイドズームボタンが押下されるとワイドズーム指示が行われ、テレズームボタンが押下されるとテレズーム指示が行われる。
 内視鏡システム100は、ワイドズームボタンが押下されている間(継続的にワイドズーム指示が行われている間)は、ズームレンズ211をワイド端側へ移動させ、テレズームボタンが押下されている間(継続的にテレズーム指示が行われている間)は、ズームレンズ211をテレ端側へ移動させる。また、内視鏡システム100は、ワイドズームボタン又はテレズームボタンの押下が解除されると、その解除の時点におけるズームレンズ211の位置にズームレンズ211が保持されるようにする。
 このようなズーム動作は、詳しくは、次のようにして行われる。
 それは、位置制御部320が、不揮発性メモリ230からメモリ読出部310により読み出された出力特性情報によって規定される特性直線と、位置検出部220(AMP223)の出力信号とに基づいて、ズームレンズ211を移動させるための駆動信号をレンズ駆動部240へ出力することによって、行われる。なお、出力特性情報によって規定される特性直線とは、横軸にズームレンズ211の位置をとると共に縦軸に位置検出部220の出力をとったときの座標系(例えば後述の図2に示す座標系を参照)にプロットしたワイド端出力値の点とテレ端出力値の点とを結ぶ直線のことである。ワイド端出力値とテレ端出力値は、上述のとおり、出力特性情報に含まれるものである。このような特性直線により、当該内視鏡スコープ200における、ズームレンズ211の位置と位置検出部220の出力との関係が規定される。
 位置制御部320は、例えば、ワイドズームボタン又はテレズームボタンが押下されている間は、特性直線と位置検出部220の出力信号とに基づいて、ズームレンズ211を一定速度で移動させるための駆動信号をレンズ駆動部240へ出力する。また、位置制御部320は、例えば、ワイドズームボタン又はテレズームボタンの押下が解除されたときは、特性直線と位置検出部220の出力信号とに基づいて、そのボタン解除の時点におけるズームレンズ211の位置にズームレンズ211を保持させるための駆動信号をレンズ駆動部240へ出力する。
 以上のように、本実施例に係る撮像装置を含む内視鏡システム100によれば、ズーム動作が行われる際に使用される特性直線は、内視鏡スコープ200の組み立てが完了した時点で、その内視鏡スコープ200において取得されたワイド端出力値とテレ端出力値とによって規定されたものとなることから、その内視鏡スコープ200の位置検出部220(磁石221とホール素子222)等の製造ばらつきが加味されたものとなる。従って、ズーム動作において、正確なズームレンズ位置の制御が可能になる。
<実施例2>
 本発明の実施例2に係る撮像装置を含む内視鏡システムは、実施例1に係る撮像装置を含む内視鏡システムに対して更なる改良を加えたものである。なお、本実施例では、実施例1で説明した構成要素と同一の構成要素については同一の符号を付して説明する。
 内視鏡スコープ200の先端部分が、より小型になると、その先端部分内のスペースが、より少なくなり、その先端部分内に設けられる磁石221とホール素子222とが、より近接することになる。このような場合、磁石と磁場の関係から、ズームレンズ211の位置と位置検出部220(AMP223)の出力との関係が、例えば図2に示すようにリニアでなくなり、ズーム動作において正確なズームレンズ位置の制御ができない虞があった。
 そこで、本実施例に係る撮像装置を含む内視鏡システム100では、そのような場合にも、より正確なズームレンズ位置の制御ができるように、不揮発性メモリ230に記憶される出力特性情報およびズーム動作が、以下に示すように、実施例1に係る撮像装置を含む内視鏡システム100に対して異なっている。
 本実施例に係る撮像装置を含む内視鏡システム100では、不揮発性メモリ230に記憶される出力特性情報が、ワイド端出力値およびテレ端出力値の他、更に、ズームレンズ211のワイド端からテレ端までの移動区間を複数の小区間に分割したときの、各分割位置(隣り合う小区間に挟まれる位置)における位置検出部220(AMP223)の出力値と、各小区間における特性直線の傾きとを含む。なお、各小区間における特性直線の傾きとは、その各小区間における、ズームレンズ211の位置と位置検出部220(AMP223)の出力との関係を直線近似したときの直線の傾きのことである。
 本実施例では、一例として、図3に示すように、ズームレンズ211のワイド端(WIDE)からテレ端(TELE)までの移動区間を3つの小区間に分割するものとし、出力特性情報は、ワイド端出力値およびテレ端出力値の他、更に、各分割位置P1、P2における位置検出部220の出力値A(Aデータ)、B(Bデータ)と、各小区間における特性直線の傾きα、β、γを含むものとする。なお、αは、テレ端からP1までの小区間において、ズームレンズ211の位置と位置検出部220の出力との関係を直線近似したときの直線の傾きを示す。βは、P1からP2までの小区間において、ズームレンズ211の位置と位置検出部220の出力との関係を直線近似したときの直線の傾きを示す。γは、P2からワイド端までの小区間において、ズームレンズ211の位置と位置検出部220の出力との関係を直線近似したときの直線の傾きを示す。
 なお、これらのデータを含む出力特性情報は、実施例1と同様に、工場出荷前に、不揮発性メモリ230に記憶される。より詳しくは、例えば、内視鏡スコープ200の組み立てが完了した時点で、その内視鏡スコープ200において、まず、ズームレンズ211の位置と位置検出部220(AMP223)の出力との関係(例えば図2参照)が取得され、更に、それに基づいて、ワイド端出力値、テレ端出力値、Aデータ、Bデータ、α、β、γが取得され、そして、それらを含む出力特性情報が不揮発性メモリ230に記憶される。
 本実施例に係る撮像装置を含む内視鏡システム100では、このような出力特性情報が用いられて、次のようにしてズーム動作が行われる。
 それは、位置制御部320が、不揮発性メモリ230からメモリ読出部310により読み出された出力特性情報と、位置検出部220(AMP223)の出力信号とに基づいて、ズームレンズ211を移動させるための駆動信号をレンズ駆動部240へ出力することによって、行われる。
 位置制御部320は、例えば、ワイドズームボタン又はテレズームボタンが押下されている間は、出力特性情報と位置検出部220の出力信号とに基づいて、ズームレンズ211を一定速度で移動させるための駆動信号をレンズ駆動部240へ出力する。より詳しくは、位置制御部320は、出力特性情報と位置検出部220の出力信号とに基づいて、現在のズームレンズ211の位置が属する小区間に対応する直線の傾きの逆数と単位時間当たりの位置検出部220の出力変化量との乗算結果が一定となるようにズームレンズ211を移動させるための駆動信号をレンズ駆動部240へ出力する。例えば、現在のズームレンズ211の位置が属する小区間がテレ端からP1までの小区間である場合には、(1/α)×単位時間当たりの位置検出部220の出力変化量=C(一定値)となるようにズームレンズ211を移動させるための駆動信号をレンズ駆動部240へ出力する。現在のズームレンズ211の位置が属する小区間がP1からP2までの小区間である場合には、(1/β)×単位時間当たりの位置検出部220の出力変化量=C(上記のCと同値)となるようにズームレンズ211を移動させるための駆動信号をレンズ駆動部240へ出力する。現在のズームレンズ211の位置が属する小区間がP2からワイド端までの小区間である場合には、(1/γ)×単位時間当たりの位置検出部220の出力変化量=C(上記のCと同値)となるようにズームレンズ211を移動させるための駆動信号をレンズ駆動部240へ出力する。このような動作により、ワイドズームボタン又はテレズームボタンの継続的な押下により、例えば、ある小区間から別の小区間へズームレンズ211が移動する場合であっても、ズームレンズ211の移動速度が一定となり、操作性が損なわれることはない。
 また、位置制御部320は、例えば、ワイドズームボタン又はテレズームボタンの押下が解除されたときは、出力特性情報と位置検出部220の出力信号とに基づいて、そのボタン解除の時点におけるズームレンズ211の位置にズームレンズ211を保持させるための駆動信号をレンズ駆動部240へ出力する。より詳しくは、位置制御部320は、現在のズームレンズ211の位置が属する小区間に対応する直線の傾きと位置検出部220の出力信号とに基づいて、そのボタン解除の時点におけるズームレンズ211の位置にズームレンズ211を保持させるための駆動信号をレンズ駆動部240へ出力する。例えば、現在のズームレンズ211の位置が属する小区間がテレ端からP1までの小区間である場合には、それに対応する直線の傾きαと位置検出部220の出力信号とに基づいて、そのボタン解除の時点におけるズームレンズ211の位置にズームレンズ211を保持させるための駆動信号をレンズ駆動部240へ出力する。現在のズームレンズ211の位置が属する小区間がP1からP2までの小区間である場合には、それに対応する直線の傾きβと位置検出部220の出力信号とに基づいて、そのボタン解除の時点におけるズームレンズ211の位置にズームレンズ211を保持させるための駆動信号をレンズ駆動部240へ出力する。現在のズームレンズ211の位置が属する小区間がP2からワイド端までの小区間である場合には、それに対応する直線の傾きγと位置検出部220の出力信号とに基づいて、そのボタン解除の時点におけるズームレンズ211の位置にズームレンズ211を保持させるための駆動信号をレンズ駆動部240へ出力する。
 以上のように、本実施例に係る撮像装置を含む内視鏡システム100によれば、ズームレンズ211の位置と位置検出部220の出力との関係がリニアでない場合(例えば図2参照)であっても、それを複数の直線で近似して(例えば図3参照)、その都度、対応する近似直線に関するデータを用いてズーム動作が行われる。また、本実施例に係る撮像装置を含む内視鏡システム100においても、ズーム動作が行われる際に使用される出力特性情報に含まれるデータは、内視鏡スコープ200の組み立てが完了した時点で、その内視鏡スコープ200において取得されたものであることから、その内視鏡スコープ200の位置検出部220(磁石221とホール素子222)等の製造ばらつきが加味されたものとなる。従って、ズーム動作において、正確なズームレンズ位置の制御を行うことができる。また、ワイドズームボタン又はテレズームボタンが押下されている間はズームレンズ211の移動速度が一定となるので、操作性が損なわれることもない。
 なお、本実施例では、図3に示したように、ズームレンズ211のワイド端からテレ端までの移動区間を3つの小区間に分割した例を示したが、これに限らず、3つ以外の複数の小区間に分割してもよい。
 以上、実施例1、2について説明したが、各実施例に係る撮像装置を含む内視鏡システム100では、種々の変形が可能である。
 例えば、各実施例に係る撮像装置を含む内視鏡システム100において、システムを起動する毎に(撮像装置の電源をオンする毎に)、位置制御部320がズームレンズ211をワイド端からテレ端まで移動させる制御を行い、その際に、内視鏡制御部(ここでは取得部と判定部の一例でもある)300が、位置検出部220からワイド端出力値とテレ端出力値とを取得し、そのワイド端出力値及びテレ端出力値と、不揮発性メモリ230に記憶されている出力特性情報に含まれるワイド端出力値及びテレ端出力値とに基づいて、位置検出部220及び又は位置制御部320が正常であるか異常であるかを判定し、その判定の結果、異常であると判定したときは、ズーム動作を禁止すると共に、その旨を図示しない表示部に表示する等してユーザに通知するようにしてもよい。例えば、位置検出部220から取得されたワイド端出力値が出力特性情報に含まれるワイド端出力値の50%を下回る場合、及び又は、位置検出部220から取得されたテレ端出力値が出力特性情報に含まれるテレ端出力値の50%を下回る場合には、異常であると判定される。このような動作を、システムを起動する毎に行うことにより、温度変化や経年劣化等に起因する位置検出部220(例えばホール素子222)及び又は位置制御部320の異常を検出することができる。なお、実施例1に係る撮像装置を含む内視鏡システム100においては、上記判定にて正常であると判定されたときに、ズーム動作に用いる特性直線として、システム起動時に取得されたワイド端出力値及びテレ端出力値によって規定される特性直線を用いるようにしてもよい。
 また、例えば、各実施例に係る撮像装置を含む内視鏡システム100において、位置制御部320は、レンズ駆動部240へ駆動信号を出力するVCM駆動回路として、定電流方式のブリッジ回路を含むようにしてもよい。このように、VCM駆動回路として定電流方式のブリッジ回路を用いる場合は、VCM駆動回路として定電圧方式のブリッジ回路を用いる場合に比べて、次のような利点がある。例えば、定電流方式のブリッジ回路を用いることによって、定電圧方式のブリッジ回路を用いる場合に生じ得る次のような事態を防止することができる。それは、内視鏡スコープ200のスコープ長によりレンズ駆動部240と位置制御部320との間の電気抵抗が変動することや、レンズ駆動部240であるVCM自体の電気抵抗も固体毎にばらつきがあること等の影響によって、意図したVCMの制御を正確に行うことができず、正確なズーム動作を行うことができない虞があるという事態である。また、例えば、仮に定電圧方式のブリッジ回路を用いるとすると、上述の電気抵抗の変動やばらつきを加味してVCMの制御を行わなければならず、その制御が複雑になってしまう。これに対して、定電流方式のブリッジ回路を用いる場合には、上述の電気抵抗の変動やばらつきがVCMの駆動電流値に影響を及ぼさないので、VCMの制御を意図したとおりに行うことができ、正確なズーム動作を行うことができる。また、VCMへの安定した電流供給が可能になるため、複雑な制御は不要となる。このようにVCM駆動回路として定電流方式のブリッジ回路を用いる場合、レンズ駆動部240と位置制御部320は、例えば、図4に示す構成によって実現される。図4において、VCM410はレンズ駆動部240に対応し、VCM駆動回路420とFPGA(Field Programmable Gate Array)430は位置制御部320を含む内視鏡制御部300の一部に対応する。ここで、VCM駆動回路420は、例えば、図5に示す回路構成によって実現され、FPGA430の一部は、例えば、図6に示す構成によって実現される。VCM駆動回路420は、図5に示したように、FET(Field Effect Transistor)のブリッジ回路を定電流回路にて構成した定電流方式のブリッジ回路によって実現され、FPGA430によりPWM(Pulse Width Modulation)制御されることによって、VCM410へ駆動信号を出力する。FPGA430は、図6に示したように、VCM駆動回路420をPWM制御するPWM制御部431を含む。PWM制御部431は、指令値に基づいて、VCM駆動回路420の各FETにオン/オフ信号を出力するものであり、デューティ比演算部432とパルス生成部433を含む。デューティ比演算部432は、入力された指令値(駆動電流値)Eと、VCM駆動回路420の定電流回路の電流値Aとから、D=(E/A)×100により、パルスデューティ比Dを求め、それをパルス生成部433へ出力する。パルス生成部433は、入力されたパルスデューティ比Dに応じて、VCM駆動回路420の各FETにオン/オフ信号を出力する。このように、PWM制御部431では、パルスデューティ比演算を簡略化することができるので、FPGA430でのPWM制御部431の使用率を少なくすることができる。また、PWM制御部431では、VCM駆動回路420の定電流回路の電流値を基準としてPWM制御が行われるため、内視鏡スコープ200の種別に影響されない制御が可能になる。
 上述した実施例は、発明の理解を容易にするために本発明の具体例を示したものであり、本発明は上述の実施例に限定されるものではない。本発明は、特許請求の範囲に規定された本発明の思想を逸脱しない範囲において、さまざまな変形、変更が可能である。
100   内視鏡システム
200   内視鏡スコープ
210   撮像光学系
211   ズームレンズ
212   撮像素子
220   位置検出部
221   磁石
222   ホール素子
223   AMP
230   不揮発性メモリ
240   レンズ駆動部
300   内視鏡制御部
310   メモリ読出部
320   位置制御部
410   VCM
420   VCM駆動回路
430   FPGA
431   PWM制御部
432   デューティ比演算部
433   パルス生成部
 

Claims (5)

  1.  被写体の光学像を撮像面上に結像する撮像光学系と、
     前記撮像光学系の一部であって、前記撮像光学系の光軸方向に移動可能に設けられ、前記移動に伴って前記撮像面上に結像される光学像を拡大又は縮小する変倍レンズと、
     前記変倍レンズの前記光軸方向における位置を検出する位置検出部と、
     前記変倍レンズの前記光軸方向における位置に応じた前記位置検出部の出力の特性に関する出力特性情報を記憶する記憶部と、
     前記出力特性情報に基づいて、前記変倍レンズを移動させる制御を行う駆動制御部と、
     を備えることを特徴とする撮像装置。
  2.  前記出力特性情報は、前記変倍レンズがワイド端に当てつけられたときの前記位置検出部の出力値であるワイド端出力値および前記変倍レンズがテレ端に当てつけられたときの前記位置検出部の出力値であるテレ端出力値を含む、
     ことを特徴とする請求項1記載の撮像装置。
  3.  前記出力特性情報は、前記変倍レンズの前記ワイド端から前記テレ端までの移動区間を複数の小区間に分割したときの各小区間における、前記変倍レンズの前記光軸方向における位置に応じた前記位置検出部の出力の特性を直線近似したときの直線の傾きを更に含み、
     前記駆動制御部は、前記出力特性情報に基づいて、現在の前記変倍レンズの位置が属する小区間に対応する直線の傾きの逆数と単位時間当たりの前記位置検出部の出力変化量との乗算結果が一定となるように、前記変倍レンズを移動させる制御を行う、
     ことを特徴とする請求項2記載の撮像装置。
  4.  前記位置検出部の出力値を取得する取得部、
     を更に備え、
     当該撮像装置の電源がオンされたときに、前記駆動制御部は、前記変倍レンズをワイド端からテレ端まで移動させる制御を行い、前記取得部は、前記変倍レンズが前記ワイド端にあるときの前記位置検出部の出力値であるワイド端出力値および前記変倍レンズが前記テレ端にあるときの前記位置検出部の出力値であるテレ端出力値を取得する、
     ことを特徴とする請求項1乃至3の何れか一項に記載の撮像装置。
  5.  当該撮像装置の電源がオンされたときに前記取得部により取得されたワイド端出力値およびテレ端出力値と、前記記憶部に記憶されている前記出力特性情報に含まれるワイド端出力値およびテレ端出力値とに基づいて、前記位置検出部及び又は前記駆動制御部が正常であるか異常であるかを判定する判定部、
     を更に備えることを特徴とする請求項4記載の撮像装置。
     

     
PCT/JP2014/063623 2013-07-29 2014-05-22 撮像装置 WO2015015877A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014555020A JP5750671B1 (ja) 2013-07-29 2014-05-22 撮像装置
US14/882,187 US9426374B2 (en) 2013-07-29 2015-10-13 Image pickup apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-156872 2013-07-29
JP2013156872 2013-07-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/882,187 Continuation US9426374B2 (en) 2013-07-29 2015-10-13 Image pickup apparatus

Publications (1)

Publication Number Publication Date
WO2015015877A1 true WO2015015877A1 (ja) 2015-02-05

Family

ID=52431423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063623 WO2015015877A1 (ja) 2013-07-29 2014-05-22 撮像装置

Country Status (3)

Country Link
US (1) US9426374B2 (ja)
JP (1) JP5750671B1 (ja)
WO (1) WO2015015877A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017072927A1 (ja) * 2015-10-29 2017-05-04 オリンパス株式会社 光学システムおよび内視鏡システム
WO2017072922A1 (ja) * 2015-10-29 2017-05-04 オリンパス株式会社 撮像装置および内視鏡システム
WO2018011857A1 (ja) * 2016-07-11 2018-01-18 オリンパス株式会社 内視鏡装置
JP2018082804A (ja) * 2016-11-22 2018-05-31 オリンパス株式会社 内視鏡装置
WO2018134886A1 (ja) * 2017-01-17 2018-07-26 オリンパス株式会社 電源装置
WO2020026494A1 (ja) * 2018-07-30 2020-02-06 オリンパス株式会社 処理装置、内視鏡システム、駆動方法およびプログラム
JP2020089495A (ja) * 2018-12-04 2020-06-11 オリンパス株式会社 内視鏡システム、プロセッサ、内視鏡
JP2020137704A (ja) * 2019-02-27 2020-09-03 オリンパス株式会社 内視鏡システム、プロセッサ、キャリブレーション装置、内視鏡

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193519A1 (ja) * 2017-04-18 2018-10-25 オリンパス株式会社 内視鏡装置及びビデオプロセッサ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04331907A (ja) * 1991-05-07 1992-11-19 Canon Inc レンズ位置制御装置
JPH08248292A (ja) * 1995-03-10 1996-09-27 Canon Inc 駆動装置とカメラおよび光学機器
JPH09187040A (ja) * 1995-12-28 1997-07-15 Fuji Photo Optical Co Ltd ズームレンズの駆動装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4841370A (en) * 1986-11-17 1989-06-20 Sanyo Electric Co., Ltd. Automatic focusing circuit for automatically matching focus in response to video signal
US5757429A (en) * 1993-06-17 1998-05-26 Sanyo Electric Co., Ltd. Automatic focusing apparatus which adjusts the speed of focusing based on a change in the rate of the focus evaluating value
JP3635687B2 (ja) * 1994-09-07 2005-04-06 株式会社ニコン 自動合焦装置
US6577343B2 (en) * 1996-12-03 2003-06-10 Canon Kabushiki Kaisha Image pickup apparatus with lens control apparatus and focusing lens control
AU2003256383A1 (en) * 2002-07-03 2004-01-23 Concord Camera Corp. Compact zoom lens barrel and system
US7411625B2 (en) * 2004-09-29 2008-08-12 Lite-On Technology Corporation Auto focus lens system
WO2006061938A1 (ja) * 2004-12-08 2006-06-15 Fujinon Corporation オートフォーカスシステム
TWI274222B (en) * 2005-06-27 2007-02-21 Asia Optical Co Inc Automatic focusing method and electronic apparatus using the method
JP4859247B2 (ja) * 2007-12-19 2012-01-25 キヤノン株式会社 光学機器
JP2009258680A (ja) * 2008-03-27 2009-11-05 Panasonic Corp カメラシステム、カメラ本体、交換レンズユニット、フォーカス制御方法、およびプログラム。
JP5219931B2 (ja) 2009-06-05 2013-06-26 Hoya株式会社 電子内視鏡のレンズ位置制御装置
JP5424752B2 (ja) 2009-07-10 2014-02-26 Hoya株式会社 電子内視鏡のレンズ位置制御装置
JP2011098051A (ja) 2009-11-05 2011-05-19 Hoya Corp 拡大内視鏡
JP5751803B2 (ja) * 2010-11-15 2015-07-22 キヤノン株式会社 トラッキング曲線の調整方法および撮像装置
US9172864B2 (en) * 2011-09-13 2015-10-27 Hitachi, Ltd. Imaging device with autofocus operation
JP5871657B2 (ja) * 2012-02-29 2016-03-01 キヤノン株式会社 光学機器
KR20150061277A (ko) * 2013-11-27 2015-06-04 삼성전자주식회사 영상 촬영 장치 및 이의 영상 촬영 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04331907A (ja) * 1991-05-07 1992-11-19 Canon Inc レンズ位置制御装置
JPH08248292A (ja) * 1995-03-10 1996-09-27 Canon Inc 駆動装置とカメラおよび光学機器
JPH09187040A (ja) * 1995-12-28 1997-07-15 Fuji Photo Optical Co Ltd ズームレンズの駆動装置

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017072927A1 (ja) * 2015-10-29 2017-05-04 オリンパス株式会社 光学システムおよび内視鏡システム
WO2017072922A1 (ja) * 2015-10-29 2017-05-04 オリンパス株式会社 撮像装置および内視鏡システム
US10952592B2 (en) 2015-10-29 2021-03-23 Olympus Corporation Optical system having voice coil motor for moving a lens and sensor for detecting position of lens and endoscope system having the optical system
US10863892B2 (en) 2015-10-29 2020-12-15 Olympus Corporation Imaging device and endoscope system
CN108135452A (zh) * 2015-10-29 2018-06-08 奥林巴斯株式会社 摄像装置以及内窥镜系统
CN108135439A (zh) * 2015-10-29 2018-06-08 奥林巴斯株式会社 光学系统和内窥镜系统
CN108135452B (zh) * 2015-10-29 2020-06-16 奥林巴斯株式会社 摄像装置以及内窥镜系统
JPWO2017072927A1 (ja) * 2015-10-29 2018-08-30 オリンパス株式会社 光学システムおよび内視鏡システム
JPWO2017072922A1 (ja) * 2015-10-29 2018-09-13 オリンパス株式会社 撮像装置および内視鏡システム
CN108135439B (zh) * 2015-10-29 2020-05-22 奥林巴斯株式会社 光学系统和内窥镜系统
JPWO2018011857A1 (ja) * 2016-07-11 2019-04-04 オリンパス株式会社 内視鏡装置
CN109475266A (zh) * 2016-07-11 2019-03-15 奥林巴斯株式会社 内窥镜装置
WO2018011857A1 (ja) * 2016-07-11 2018-01-18 オリンパス株式会社 内視鏡装置
CN109475266B (zh) * 2016-07-11 2021-08-10 奥林巴斯株式会社 内窥镜装置
US11109743B2 (en) 2016-07-11 2021-09-07 Olympus Corporation Endoscope apparatus
JP2018082804A (ja) * 2016-11-22 2018-05-31 オリンパス株式会社 内視鏡装置
WO2018134886A1 (ja) * 2017-01-17 2018-07-26 オリンパス株式会社 電源装置
WO2020026494A1 (ja) * 2018-07-30 2020-02-06 オリンパス株式会社 処理装置、内視鏡システム、駆動方法およびプログラム
JP2020089495A (ja) * 2018-12-04 2020-06-11 オリンパス株式会社 内視鏡システム、プロセッサ、内視鏡
US11573414B2 (en) 2018-12-04 2023-02-07 Olympus Corporation Endoscope system, processor, and endoscope
JP7248415B2 (ja) 2018-12-04 2023-03-29 オリンパス株式会社 内視鏡システム、プロセッサ
JP2020137704A (ja) * 2019-02-27 2020-09-03 オリンパス株式会社 内視鏡システム、プロセッサ、キャリブレーション装置、内視鏡
JP7166957B2 (ja) 2019-02-27 2022-11-08 オリンパス株式会社 内視鏡システム、プロセッサ、キャリブレーション装置、内視鏡

Also Published As

Publication number Publication date
US20160037079A1 (en) 2016-02-04
JPWO2015015877A1 (ja) 2017-03-02
JP5750671B1 (ja) 2015-07-22
US9426374B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
JP5750671B1 (ja) 撮像装置
KR101920130B1 (ko) 카메라 모듈의 조정 방법과 렌즈 위치 제어 장치 및 선형 운동 디바이스의 제어 장치와 그 제어 방법
US8284275B2 (en) Lens barrel and imaging apparatus
JP4804166B2 (ja) 撮像装置およびその制御方法
KR20170059783A (ko) 액추에이터 구동 장치 및 이를 포함하는 카메라 모듈
US9749538B2 (en) Imaging apparatus
JP5371417B2 (ja) レンズ駆動装置、光学機器及びレンズ駆動装置の制御方法
JP2009145645A (ja) 光学機器
JP2009300614A (ja) 撮像装置
US10165188B2 (en) Optical apparatus, display controlling method, and non-transitory computer readable storage medium storing a program, that display object distance information
JP4743843B2 (ja) 光学機器
EP2372430B1 (en) Image pickup lens, image pickup apparatus, and lens controlling method
JP4777208B2 (ja) 操作装置及びレンズ装置及び基準位置設定方法
JP2009069618A (ja) 撮像装置、制御プログラムおよび記録媒体
JP2006227274A (ja) 撮像装置
JP2013257485A (ja) 像ブレ補正装置、光学装置、撮像装置、および像ブレ補正装置の制御方法
JP2009015023A (ja) 駆動装置及びこれを備えた撮像装置
KR20180054542A (ko) 액추에이터 구동 장치 및 이를 포함하는 카메라 모듈
JP4532929B2 (ja) 撮像装置、その制御方法、制御プログラム及び記憶媒体
JP4679171B2 (ja) 像ブレ補正装置
US20140285904A1 (en) Lens barrel and imaging device equipped with same
JP6184227B2 (ja) レンズ鏡筒及び光学装置
JP5223353B2 (ja) カメラ
JP2006087182A (ja) 高分子アクチュエータ装置およびその駆動方法
JP2010211002A (ja) 撮像装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014555020

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14831207

Country of ref document: EP

Kind code of ref document: A1