WO2015015767A1 - アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器 - Google Patents
アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器 Download PDFInfo
- Publication number
- WO2015015767A1 WO2015015767A1 PCT/JP2014/003878 JP2014003878W WO2015015767A1 WO 2015015767 A1 WO2015015767 A1 WO 2015015767A1 JP 2014003878 W JP2014003878 W JP 2014003878W WO 2015015767 A1 WO2015015767 A1 WO 2015015767A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- clad
- aluminum alloy
- sacrificial anode
- rolling
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F19/00—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
- F28F19/02—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
- F28F19/06—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/04—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/22—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
- B23K20/233—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer
- B23K20/2336—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded without ferrous layer both layers being aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/28—Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/28—Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
- B23K35/286—Al as the principal constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/28—Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
- B23K35/286—Al as the principal constituent
- B23K35/288—Al as the principal constituent with Sn or Zn
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P15/00—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
- B23P15/26—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/016—Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of aluminium or aluminium alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
- C22C21/08—Alloys based on aluminium with magnesium as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/10—Alloys based on aluminium with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/14—Alloys based on aluminium with copper as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F13/00—Inhibiting corrosion of metals by anodic or cathodic protection
- C23F13/02—Inhibiting corrosion of metals by anodic or cathodic protection cathodic; Selection of conditions, parameters or procedures for cathodic protection, e.g. of electrical conditions
- C23F13/06—Constructional parts, or assemblies of cathodic-protection apparatus
- C23F13/08—Electrodes specially adapted for inhibiting corrosion by cathodic protection; Manufacture thereof; Conducting electric current thereto
- C23F13/12—Electrodes characterised by the material
- C23F13/14—Material for sacrificial anodes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
- F28F21/089—Coatings, claddings or bonding layers made from metals or metal alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/04—Tubular or hollow articles
- B23K2101/14—Heat exchangers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/34—Coated articles, e.g. plated or painted; Surface treated articles
- B23K2101/35—Surface treated articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/08—Non-ferrous metals or alloys
- B23K2103/10—Aluminium or alloys thereof
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F2201/00—Type of materials to be protected by cathodic protection
Definitions
- the present invention relates to a highly corrosion-resistant and highly formable aluminum alloy clad material and a method for producing the same, and more particularly, to a highly corrosion-resistant material suitably used as a refrigerant or high-temperature compressed air passage component in a heat exchanger such as a radiator.
- the present invention relates to a highly formable aluminum alloy clad material and a method for producing the same.
- the present invention relates to a heat exchanger using the highly corrosion-resistant and highly formable aluminum alloy clad material, and more particularly to a flow path forming component such as an automotive heat exchanger.
- Aluminum alloys are lightweight and have high thermal conductivity, and can be realized with high corrosion resistance by appropriate processing. Therefore, they are used in automotive heat exchangers such as radiators, condensers, evaporators, heaters, and intercoolers.
- As a tube material for automotive heat exchangers Al-Mn-based aluminum alloys such as 3003 alloy are used as the core material, and one side is sacrificed by brazing material of Al-Si-based aluminum alloy or Al-Zn-based aluminum alloy.
- a two-layer clad material clad with an anode material, or a three-layer clad material obtained by further clad an Al—Si based aluminum alloy brazing material on the other surface of the core material is used.
- the heat exchanger is usually manufactured by combining such a clad tube material and a corrugated fin material and brazing at a high temperature of about 600 ° C.
- the tube shape is becoming more complex in order to achieve higher performance. Therefore, the material is required to have higher formability.
- the formability of the tube material has been adjusted by performing H14 tempering in which intermediate annealing is performed in the middle of cold rolling, or H24 tempering in which finishing annealing is performed after cold rolling.
- H14 tempering in which intermediate annealing is performed in the middle of cold rolling
- H24 tempering in which finishing annealing is performed after cold rolling.
- Patent Documents 1 and 2 disclose techniques for improving the formability of a clad material or electroweld weldability. However, these patent documents do not describe means for improving the corrosion resistance of the sacrificial anode material.
- Patent Document 3 discloses a technique for improving the corrosion resistance of the clad material. However, this patent document does not describe means for improving the moldability of the clad material.
- the clad material described in Patent Document 1 improves the electroweldability of the material by setting the average crystal grain size in a cross section perpendicular to the longitudinal direction of the core material to 30 ⁇ m or less.
- the area ratio of Mg 2 Si having a particle size of 0.2 ⁇ m or more is specified to be 0.5% or less, which is also a means for improving the electro-weldability.
- the corrosion resistance of the sacrificial anode material only the addition amount of Zn or Mg is defined, and there is no description or suggestion about a technique for improving the corrosion resistance more than the conventional technique.
- the clad material described in Patent Document 2 improves the electroweldability of the material by making the core material into a fibrous structure.
- the hardness of the core material and the sacrificial anode material is specified to be 50 Hv or more, and the hardness ratio (sacrificial anode material / core material) is less than 1.0. It is a means for ensuring the fatigue strength.
- the corrosion resistance of the sacrificial anode material only the addition amount of Zn or Mn is defined here, and there is no description or suggestion about a technique for improving the corrosion resistance more than the conventional technique.
- an aluminum alloy clad material is used as, for example, a tube material of a heat exchanger
- an aluminum alloy clad material having excellent formability and having a sacrificial anode material with excellent corrosion resistance after additional heat of brazing is provided. This has been difficult with the prior art.
- the present invention has been completed to solve the above-mentioned problems, and has excellent formability and brazing in an aluminum alloy clad material, and the sacrificial anode material has excellent corrosion resistance after brazing heat.
- An object is to provide an aluminum alloy clad material having high formability and high corrosion resistance, a method for producing the same, and a heat exchanger using the aluminum alloy clad material.
- the aluminum alloy clad material according to the present invention can be suitably used as a flow path forming component of an automotive heat exchanger.
- the core material is Si:
- the sacrificial anode comprising 0.05 to 1.50 mass%, Fe: 0.05 to 2.00 mass%, Mn: 0.50 to 2.00 mass%, the balance being Al and an unavoidable impurity.
- the material contains Zn: 0.50 to 8.00 mass%, Si: 0.05 to 1.50 mass%, Fe: 0.05 to 2.00 mass%, and an aluminum alloy composed of the balance Al and inevitable impurities.
- the crystal grain size of the sacrificial anode material is 60 ⁇ m or more, and the crystal grain size in the plate thickness direction is R in the cross section along the rolling direction of the core material. And ([mu] m), when the crystal grain size in the rolling direction is R2 ([mu] m), and an aluminum alloy clad material, characterized in that R1 / R2 is 0.30 or less.
- the core material includes Cu: 0.05 to 1.50 mass%, Mg: 0.05 to 0.50 mass%, Ti: 0.05 to 0.30 mass%, Zr. : Aluminum alloy further containing one or more selected from 0.05 to 0.30 mass%, Cr: 0.05 to 0.30 mass%, and V: 0.05 to 0.30 mass% It was.
- the sacrificial anode material comprises Ni: 0.05 to 2.00 mass%, Mn: 0.05 to 2.00 mass%, Mg: 0.05 to 3. 00 mass%, Ti: 0.05 to 0.30 mass%, Zr: 0.05 to 0.30 mass%, Cr: 0.05 to 0.30 mass%, and V: 0.05 to 0.30 mass% It shall consist of aluminum alloy which further contains 1 type, or 2 or more types.
- an aluminum alloy comprising: an aluminum alloy core material; a sacrificial anode material clad on one surface of the core material; and a brazing material clad on the other surface of the core material
- the core material contains Si: 0.05 to 1.50 mass%, Fe: 0.05 to 2.00 mass%, Mn: 0.50 to 2.00 mass%, the balance Al and inevitable impurities
- the sacrificial anode material contains Zn: 0.50 to 8.00 mass%, Si: 0.05 to 1.50 mass%, Fe: 0.05 to 2.00 mass%, and the balance It is made of an aluminum alloy composed of Al and unavoidable impurities, and the brazing material is Si: 2.50 to 13.00 mass%, Fe: 0.05 to 1.20 mass.
- the sacrificial anode material has a crystal grain size of 60 ⁇ m or more, and in the cross section along the rolling direction of the core material, the crystal grain size in the plate thickness direction is made of an aluminum alloy composed of the balance Al and inevitable impurities.
- An aluminum alloy clad material characterized in that R1 / R2 is 0.30 or less, where R1 ( ⁇ m) and the grain size in the rolling direction is R2 ( ⁇ m).
- the brazing material is Zn: 0.50 to 8.00 mass%, Cu: 0.05 to 1.50 mass%, Mn: 0.05 to 2.00 mass%, Ti: 0.05 to 0.30 mass%, Zr: 0.05 to 0.30 mass%, Cr: 0.05 to 0.30 mass%, V: 0.05 to 0.30 mass%, Na: 0.001 to It was made of an aluminum alloy further containing one or more selected from 0.050 mass% and Sr: 0.001 to 0.050 mass%.
- the core material comprises: Cu: 0.05 to 1.50 mass%, Mg: 0.05 to 0.50 mass%, Ti: 0.05 to 0.30 mass%. Zr: 0.05 to 0.30 mass%, Cr: 0.05 to 0.30 mass%, and V: 0.05 to 0.30 mass%, or an aluminum alloy further containing one or more selected from 0.05 to 0.30 mass% It was supposed to be.
- the sacrificial anode material according to any one of the fourth to sixth aspects includes: Ni: 0.05 to 2.00 mass%, Mn: 0.05 to 2.00 mass%, Mg: 0 .05 to 3.00 mass%, Ti: 0.05 to 0.30 mass%, Zr: 0.05 to 0.30 mass%, Cr: 0.05 to 0.30 mass%, and V: 0.05 to 0.30 mass
- the aluminum alloy further contains one or more selected from%.
- the core material has Si: 0.05 to 1.50 mass%, Fe: 0.05 to 2.
- the intermediate layer material is Si: 0 0.05 to 1.50 mass%, Fe: 0.05 to 2.00 mass%, the balance being made of an aluminum alloy consisting of Al and unavoidable impurities, n: 0.50 to 8.00 mass%, Si: 0.05 to 1.50 mass%, Fe: 0.05 to 2.00 mass%, consisting of an aluminum alloy composed of the balance Al and inevitable impurities,
- the brazing material contains Si: 2.50 to 13.00 mass%, Fe: 0.05 to 1.20 mass%, and is made of an aluminum alloy composed of the balance Al and inevitable impurities, and the crystal grain size of the sacrificial anode material When the crystal grain size in the plate thickness direction is R1 ( ⁇ m) and the crystal grain size in the rolling direction is R2 ( ⁇ m) in the cross section along the rolling direction of the core material, R1 / R2 is The
- the brazing material according to the ninth aspect of the present invention includes: Zn: 0.50 to 8.00 mass%, Cu: 0.05 to 1.50 mass%, Mn: 0.05 to 2.00 mass%, Ti: 0.05 to 0.30 mass%, Zr: 0.05 to 0.30 mass%, Cr: 0.05 to 0.30 mass%, V: 0.05 to 0.30 mass%, Na: 0.001 to It was made of an aluminum alloy further containing one or more selected from 0.050 mass% and Sr: 0.001 to 0.050 mass%.
- the core material comprises Cu: 0.05 to 1.50 mass%, Ti: 0.05 to 0.30 mass%, Zr: 0.05 to 0.30 mass%. , Cr: 0.05 to 0.30 mass% and V: 0.05 to 0.30 mass%, and an aluminum alloy further containing one or more selected from Cr.
- the sacrificial anode material comprises Ni: 0.05 to 2.00 mass%, Mn: 0.05 to 2.00 mass%, Mg: 0. .05 to 3.00 mass%, Ti: 0.05 to 0.30 mass%, Zr: 0.05 to 0.30 mass%, Cr: 0.05 to 0.30 mass%, and V: 0.05 to 0.30 mass
- the aluminum alloy further contains one or more selected from%.
- the intermediate layer material includes: Zn: 0.5 to 8.0 mass%, Mn: 0.05 to 2.00 mass%, Cu: 0 .05 to 1.50 mass%, Ti: 0.05 to 0.30 mass%, Zr: 0.05 to 0.30 mass%, Cr: 0.05 to 0.30 mass%, and V: 0.05 to 0.30 mass
- the aluminum alloy further contains one or more selected from%.
- the core material has Si: 0.05 to 1.50 mass%, Fe: 0.05 to 2.
- the intermediate layer material is Si: 0.05 to 1.50 mass%, Fe: 0 0.05 to 2.00 mass%, Zn: 0.50 to 8.00%, the balance being made of an aluminum alloy composed of Al and inevitable impurities
- the sacrificial anode material is made of Zn: .50 to 8.00 mass%, Si: 0.05 to 1.50 mass%, Fe: 0.05 to 2.00 mass%, the balance being made of an aluminum alloy composed of Al and inevitable impurities, Si: 2.50 to 13.00 mass%, Fe: 0.05 to 1.20 mass%, the balance being made of an aluminum alloy composed of Al and unavoidable impurities
- the crystal grain size of the sacrificial anode material is 60 ⁇ m or more In the cross section along the rolling direction of the core material, when the crystal grain size in the plate thickness direction is R1 ( ⁇ m) and the crystal grain size in the rolling direction is R2
- the brazing material according to the fourteenth aspect of the present invention includes: Zn: 0.50 to 8.00 mass%, Cu: 0.05 to 1.50 mass%, Mn: 0.05 to 2.00 mass%, Ti: 0.05 to 0.30 mass%, Zr: 0.05 to 0.30 mass%, Cr: 0.05 to 0.30 mass%, V: 0.05 to 0.30 mass%, Na: 0.001 to It was made of an aluminum alloy further containing one or more selected from 0.050 mass% and Sr: 0.001 to 0.050 mass%.
- the core material includes Cu: 0.05 to 1.50 mass%, Mg: 0.05 to 0.50 mass%, Ti: 0.05 to 0.30 mass%. Zr: 0.05 to 0.30 mass%, Cr: 0.05 to 0.30 mass%, and V: 0.05 to 0.30 mass%, or an aluminum alloy further containing one or more selected from 0.05 to 0.30 mass% It was supposed to be.
- the sacrificial anode material includes Ni: 0.05 to 2.00 mass%, Mn: 0.05 to 2.00 mass%, and Mg: 0. .05 to 3.00 mass%, Ti: 0.05 to 0.30 mass%, Zr: 0.05 to 0.30 mass%, Cr: 0.05 to 0.30 mass%, and V: 0.05 to 0.30 mass
- the aluminum alloy further contains one or more selected from%.
- the intermediate layer material according to any one of the thirteenth to sixteenth aspects of the present invention includes: Mn: 0.05 to 2.00 mass%, Cu: 0.05 to 1.50 mass%, Ti: 0 .05 to 0.30 mass%, Zr: 0.05 to 0.30 mass%, Cr: 0.05 to 0.30 mass% and V: 0.05 to 0.30 mass% It was made of an aluminum alloy further containing
- the present invention is the method for producing an aluminum alloy clad material according to any one of claims 1 to 3, wherein the aluminum alloy for the core material and the sacrificial anode material are respectively casted.
- a hot rolling process in which the cast sacrificial anode material ingot is hot-rolled to a predetermined thickness, and a cladding process in which at least one surface of the core material ingot is clad with a sacrificial anode material having a predetermined thickness to form a cladding material;
- the hot-clad rolling process for hot-rolling the clad material In one or both of the hot-clad rolling process for hot-rolling the clad material, the cold-rolling process for cold-rolling the hot-rolled clad material, and during the cold-rolling process and after the cold-rolling process
- One or more annealing steps for annealing the clad material In one or both of the hot-clad rolling process for hot-rolling the clad material, the cold
- the rolling start temperature is 400 to 520 ° C.
- the clad material temperature is 200 to 400 ° C.
- the aluminum is characterized in that the rolling pass in which the reduction rate in one pass is 30% or more is limited to 5 times or less, and the clad material is held at 200 to 560 ° C. for 1 to 10 hours in the annealing step.
- An alloy clad material manufacturing method was adopted.
- the present invention is the method for producing an aluminum alloy clad material according to any one of claims 4 to 7, wherein the aluminum alloys for the core material, the sacrificial anode material, and the brazing material are respectively cast.
- a hot rolling process in which the cast sacrificial anode material ingot and the brazing material ingot are each hot-rolled to a predetermined thickness, and a sacrificial anode material having a predetermined thickness is clad on one surface of the core material ingot.
- the other surface is clad with a brazing material having a predetermined thickness to make a clad material, a hot clad rolling step for hot rolling the clad material, and a cold roll for cold rolling the hot rolled clad material.
- Rolling in the hot clad rolling process including a hot rolling process and one or more annealing processes for annealing the clad material in the middle of the cold rolling process and in one or both of the cold rolling process.
- the rolling pass in which the rolling reduction in one pass is 30% or more while the temperature is 400 to 520 ° C. and the temperature of the clad material is 200 to 400 ° C. is limited to 5 times or less. The material was held at 200 to 560 ° C. for 1 to 10 hours.
- the present invention provides the method for producing an aluminum alloy clad material according to any one of claims 8 to 17, wherein the method is for the core material, the intermediate layer material, the brazing material, and the sacrificial anode material.
- a step of casting each of the aluminum alloys a hot rolling step of hot rolling the cast intermediate layer material ingot, the brazing material ingot and the sacrificial anode material ingot to a predetermined thickness, respectively, and one side of the core material ingot
- the sacrificial anode is clad with an intermediate layer material having a predetermined thickness, clad with a brazing material with a predetermined thickness on a surface that is not the core material side of the intermediate layer material, and with a predetermined thickness on the other surface of the core material ingot
- the aluminum alloy is characterized in that the rolling pass in which the rolling reduction in one pass is 30% or more is limited to 5 times or less, and the clad material is maintained at 200 to 560 ° C. for 1 to 10 hours in the annealing step.
- a method for producing a clad material was adopted.
- the present invention is the heat exchanger using the aluminum alloy clad material according to any one of claims 1 to 17, wherein the sacrificial anode material has a crystal grain size of 100 ⁇ m after the brazing heat. It was set as the heat exchanger characterized by the above.
- the aluminum alloy clad material according to the present invention When used as, for example, a tube material of a heat exchanger, it can be molded well even if the shape of the tube is complicated, and the sacrificial anode material is excellent after the additional heat of brazing. Corrosion resistance.
- the aluminum alloy clad material according to the present invention is excellent in brazing properties such as erosion resistance, and is suitable as a flow path forming part for heat exchangers for automobiles and the like from the viewpoint of light weight and good thermal conductivity. Can be used for
- the aluminum alloy clad material according to the present invention a method for producing the same, and a preferred embodiment of a heat exchanger using the aluminum alloy clad material will be described in detail.
- Aluminum alloy clad material The aluminum alloy clad material according to the present invention has a core material and a sacrificial anode material as essential members, and a brazing material and an intermediate layer material as additional members.
- excellent formability is exhibited by appropriately controlling the components and metal structure of the core material
- excellent corrosion resistance is exhibited by appropriately controlling the components and metal structure of the sacrificial anode material.
- a first structural aspect of the aluminum alloy clad material according to the present invention is a mode comprising a core material and a sacrificial anode material clad on at least one surface thereof.
- the sacrificial anode is provided on both surfaces of the core material. This includes the case where the material is clad and the case where the sacrificial anode material is clad on one surface and nothing is clad on the other surface.
- the surface of the core material that is not on the sacrificial anode material side is clad. It is not necessary.
- a 2nd form is a form provided with a core material, the sacrificial anode material clad on the one surface, and the brazing material clad on the other surface.
- the brazing material is clad on the surface that is not on the sacrificial anode material side of the core material.
- the third form is the core material, the intermediate layer material clad on one surface thereof, the brazing material clad on the surface of the intermediate material material that is not the core material side, and the other surface of the core material (the intermediate material material side).
- the third mode is divided into two modes, a first mode and a second mode, depending on the difference in the alloy composition of the core material and the intermediate layer material.
- an intermediate layer material is clad between the core material and the brazing material, thereby further reducing the sacrificial anticorrosive effect and reducing the brazing property.
- the components of the core material, the sacrificial anode material, the brazing material, and the intermediate layer material will be described.
- Core material The core material in the second mode of the first, second, and third modes includes Si: 0.05 to 1.50 mass% (hereinafter, simply referred to as “%”), Fe: 0.05 to 2.
- Cu 0.05 to 1.50%
- Mg 0.05 to 0.50%
- An aluminum alloy further containing the above as a selective additive element may be used.
- unavoidable impurities may be contained in amounts of 0.05% or less, respectively, and 0.15% in total.
- the aluminum alloy used for the core of the present invention is a JIS 3000 series alloy such as JIS An Al—Mn alloy such as 3003 alloy is preferably used. Below, each component is demonstrated.
- Si forms an Al-Fe-Mn-Si intermetallic compound together with Fe and Mn, and improves the strength of the core material by dispersion strengthening, or dissolves in the aluminum matrix and dissolves the core material by solid solution strengthening. Improve strength.
- the Si content is 0.05 to 1.50%. If it is less than 0.05%, high-purity aluminum ingots must be used, resulting in high costs. On the other hand, if it exceeds 1.50%, the melting point of the core material is lowered, and the risk of melting the core material during brazing increases.
- a preferable content of Si is 0.10 to 1.20%.
- Fe forms an Al—Fe—Mn—Si intermetallic compound together with Si and Mn, and improves the strength of the core material by dispersion strengthening.
- the Fe content is 0.05 to 2.00%. If it is less than 0.05%, high-purity aluminum ingots must be used, resulting in high costs. On the other hand, if it exceeds 2.00%, a giant intermetallic compound is easily formed during casting, and the plastic workability is lowered.
- a preferable content of Fe is 0.10 to 1.50%.
- Mn forms an Al—Fe—Mn—Si based intermetallic compound together with Si and Fe, and improves the strength of the core material by dispersion strengthening, or dissolves in the aluminum matrix and dissolves the core material by solid solution strengthening. Improve strength.
- the Mn content is 0.50 to 2.00%. If the content is less than 0.50%, the above effect is insufficient. If the content exceeds 2.00%, a giant intermetallic compound is easily formed during casting, and the plastic workability is lowered.
- a preferable content of Mn is 0.80 to 1.80%.
- Cu may be contained because it improves the strength of the core material by solid solution strengthening.
- the Cu content is 0.05 to 1.50%. If it is less than 0.05%, the above effect is insufficient, and if it exceeds 1.50%, there is a high risk of cracking of the aluminum alloy during casting.
- a preferable content of Cu is 0.30 to 1.00%.
- Mg may be contained because it improves the strength of the core material by precipitation of Mg 2 Si.
- the Mg content is 0.05 to 0.50%. If it is less than 0.05%, the above effect is insufficient, and if it exceeds 0.50%, brazing becomes difficult due to deterioration of the flux or the like.
- a preferable content of Mg is 0.10 to 0.40%.
- Ti may be contained because it improves the strength of the core material by solid solution strengthening.
- the Ti content is 0.05 to 0.30%. If it is less than 0.05%, the above effect is insufficient. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
- a preferable content of Ti is 0.10 to 0.20%.
- Zr may be contained because it improves the strength of the core material by solid solution strengthening and precipitates an Al—Zr-based intermetallic compound to coarsen the crystal grains after the brazing heat.
- the Zr content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. On the other hand, when it exceeds 0.30%, it becomes easy to form a huge intermetallic compound, and plastic workability is lowered.
- a preferable content of Zr is 0.10 to 0.20%.
- Cr Cr may be contained because it has the effect of improving the strength of the core material by solid solution strengthening and precipitating Al—Cr-based intermetallic compounds to coarsen the crystal grains after brazing addition heat.
- the Cr content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. On the other hand, when it exceeds 0.30%, it becomes easy to form a huge intermetallic compound, and plastic workability is lowered.
- a preferable content of Cr is 0.10 to 0.20%.
- V improves the strength of the core material by solid solution strengthening and also improves the corrosion resistance.
- the V content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. On the other hand, when it exceeds 0.30%, it becomes easy to form a huge intermetallic compound, and plastic workability is lowered.
- a preferable content of V is 0.10 to 0.20%.
- Cu, Mg, Ti, Zr, Cr, and V may be added in the core material as required, if necessary.
- the core material of the first aspect of the third aspect includes Mg, which is a selective additive element in these.
- Mg is a selective additive element in these.
- An aluminum alloy containing 0.05 to 0.50% as an essential element, the balance being Al and inevitable impurities is used. Therefore, in the core material of the first aspect of the third mode, Mg is not included in the selective additive element.
- the selective additive elements other than Mg are the same elements as in the second embodiment of the first, second, and third embodiments, and the content is the same.
- the sacrificial anode material includes Zn: 0.50 to 8.00%, Si: 0.05 to 1.50% Fe: 0.05 to 2.00% is contained as an essential element, and an aluminum alloy composed of the balance Al and inevitable impurities is used.
- the sacrificial anode material includes Ni: 0.05 to 2.00%, Mn: 0.05 to 2.00%, Mg: 0.05 to 3.00%, Ti: 0 .05 to 0.30%, Zr: 0.05 to 0.30%, Cr: 0.05 to 0.30 mass% and V: 0.05 to 0.30 mass%
- the aluminum alloy which contains further as a selective addition element.
- unavoidable impurities may be contained in amounts of 0.05% or less, respectively, and 0.15% in total. Below, each component is demonstrated.
- Zn can lower the pitting corrosion potential, and can improve the corrosion resistance due to the sacrificial anticorrosion effect by forming a potential difference with the core material.
- the Zn content is 0.50 to 8.00%. If it is less than 0.50%, the effect of improving the corrosion resistance due to the sacrificial anticorrosive effect cannot be sufficiently obtained. On the other hand, if it exceeds 8.00%, the corrosion rate increases, the sacrificial anode material disappears early, and the corrosion resistance decreases.
- a preferable content of Zn is 1.00 to 6.00%.
- Si forms an Al—Fe—Si based intermetallic compound with Fe, and when it contains Mn at the same time, forms an Al—Fe—Mn—Si based intermetallic compound with Fe and Mn,
- the strength of the sacrificial anode material is improved by dispersion strengthening, or the strength of the sacrificial anode material is improved by solid solution strengthening by solid solution in the aluminum matrix.
- Si makes the potential of the sacrificial anode material noble, the sacrificial anticorrosive effect is inhibited and the corrosion resistance is lowered.
- the Si content is 0.05 to 1.50%. If it is less than 0.05%, high-purity aluminum ingots must be used, resulting in high costs.
- a preferable content of Si is 0.10 to 1.20%.
- Fe forms an Al—Fe—Si intermetallic compound together with Si, and if it contains Mn simultaneously, forms an Al—Fe—Mn—Si intermetallic compound together with Si and Mn, Strength of the sacrificial anode material is improved by dispersion strengthening.
- the amount of Fe added is 0.05 to 2.00%. If the content is less than 0.05%, high-purity aluminum ingots must be used, resulting in high costs. On the other hand, if it exceeds 2.00%, a giant intermetallic compound is easily formed during casting, and the plastic workability is lowered.
- a preferable content of Fe is 0.10 to 1.50%.
- Ni forms an intermetallic compound of Al—Fe—Ni system together with Al—Ni system or Fe. Since these intermetallic compounds have a higher corrosion potential than aluminum matrix and are noble, they act as corrosion cathode sites. Therefore, when these intermetallic compounds are dispersed in the sacrificial anode material, the starting point of corrosion is dispersed, and corrosion in the depth direction is difficult to proceed, and the corrosion resistance is improved.
- the Ni content is 0.05 to 2.00%. If the content is less than 0.05%, the above effect cannot be obtained sufficiently. On the other hand, if it exceeds 2.00%, a giant intermetallic compound is easily formed during casting, and the plastic workability is lowered.
- a preferable content of Ni is 0.10 to 1.50%.
- Mn may be contained because it improves the strength and corrosion resistance of the sacrificial anode material.
- the Mn content is 0.05 to 2.00%. If it exceeds 2.00%, a huge intermetallic compound is likely to be formed during casting, and the plastic workability is lowered. On the other hand, if it is less than 0.05%, the above effect cannot be obtained sufficiently.
- a preferable content of Mn is 0.05 to 1.80%.
- Mg Since Mg improves the strength of the sacrificial anode material by precipitation of Mg 2 Si, it may be contained. In addition to improving the strength of the sacrificial anode material itself, brazing causes Mg to diffuse from the sacrificial anode material to the core material, thereby improving the strength of the core material. For these reasons, Mg may be included.
- the Mg content is 0.05 to 3.00%. If it is less than 0.05%, the above effect cannot be obtained sufficiently. On the other hand, if it exceeds 3.00%, it becomes difficult to press the sacrificial anode material and the core material in the hot clad rolling process.
- a preferable content of Mg is 0.10 to 2.00%.
- Ti Ti may be contained because it improves the strength of the sacrificial anode material by solid solution strengthening and also improves the corrosion resistance.
- the Ti content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
- a preferable content of Ti is 0.05 to 0.20%.
- Zr Zr may be contained because it has the effect of improving the strength of the sacrificial anode material by solid solution strengthening and precipitating Al—Zr-based intermetallic compounds to coarsen the crystal grains after brazing addition heat.
- the Zr content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. On the other hand, when it exceeds 0.30%, it becomes easy to form a huge intermetallic compound, and plastic workability is lowered.
- a preferable content of Zr is 0.10 to 0.20%.
- Cr may be contained because it has the effect of improving the strength of the sacrificial anode material by solid solution strengthening and precipitating Al—Cr-based intermetallic compounds to coarsen the crystal grains after brazing addition heat.
- the Cr content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
- a preferable content of Cr is 0.10 to 0.20%.
- V may be contained because it improves the strength of the sacrificial anode material by solid solution strengthening and also improves the corrosion resistance.
- the V content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
- a preferable content of V is 0.05 to 0.20%.
- Ni, Mn, Mg, Ti, Zr, Cr, and V may be added to the sacrificial anode material as required, if necessary.
- the brazing material contains Si: 2.50 to 13.00% and Fe: 0.05 to 1.20% as essential elements.
- An aluminum alloy containing the balance Al and inevitable impurities is used.
- the brazing material contains Zn: 0.50 to 8.00%, Cu: 0.05 to 1.50%, Mn: 0.05 to 2.00%, Ti: 0.00. 05 to 0.30%, Zr: 0.05 to 0.30%, Cr: 0.05 to 0.30%, V: 0.05 to 0.30%, Na: 0.001 to 0.050% Sr: An aluminum alloy further containing one or more selected from 0.001 to 0.050% as a selective additive element may be used. Furthermore, in addition to the essential elements and the selective additive elements, unavoidable impurities may be contained in amounts of 0.05% or less, respectively, and 0.15% in total. Below, each component is demonstrated.
- Si By adding Si, the melting point of the brazing material is lowered to form a liquid phase, thereby enabling brazing.
- the Si content is 2.50 to 13.00%. If it is less than 50%, the resulting liquid phase becomes small and brazing becomes difficult to function. On the other hand, if it exceeds 13.00%, for example, when this brazing material is used as a tube material, the amount of Si diffusing into the mating material such as fins becomes excessive, and the mating material will melt.
- a preferable content of Si is 3.50 to 12.00%.
- Fe easily forms an Al—Fe-based or Al—Fe—Si-based intermetallic compound. Therefore, the amount of Si that is effective for brazing is reduced and brazing properties are lowered.
- the Fe content is 0.05 to 1.20%. If it is less than 0.05%, high-purity aluminum ingots must be used, resulting in high costs. On the other hand, if it exceeds 1.20%, the amount of Si effective for brazing is reduced and brazing becomes insufficient.
- a preferable content of Fe is 0.10 to 0.50%.
- Zn can make the pitting corrosion potential base, and since it can improve the corrosion resistance due to the sacrificial anticorrosion effect by forming a potential difference with the core material, Zn may be contained.
- the Zn content is 0.50 to 8.00%. If it is less than 0.5%, the effect of improving the corrosion resistance due to the sacrificial anticorrosive effect cannot be sufficiently obtained. On the other hand, if it exceeds 8.00%, the corrosion rate increases, the sacrificial anode material disappears early, and the corrosion resistance decreases.
- a preferable content of Zn is 1.00 to 6.00%.
- Cu Since Cu improves the strength of the brazing material by solid solution strengthening, Cu may be contained.
- the Cu content is 0.05 to 1.50%. If it is less than 0.05%, the above effect is insufficient, and if it exceeds 1.50%, there is a high risk of cracking of the aluminum alloy during casting.
- a preferable content of Cu is 0.30 to 1.00%.
- Mn may be contained because it improves the strength and corrosion resistance of the brazing material.
- the Mn content is 0.05 to 2.00%. If it exceeds 2.00%, a huge intermetallic compound is likely to be formed during casting, and the plastic workability is lowered. On the other hand, if it is less than 0.05%, the above effect cannot be obtained sufficiently.
- a preferable content of Mn is 0.05 to 1.80%.
- Ti may be contained because it improves the strength of the brazing filler metal by solid solution strengthening and also improves the corrosion resistance.
- the Ti content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
- a preferable content of Ti is 0.10 to 0.20%.
- Zr may be contained because it has the effect of improving the strength of the brazing filler metal by solid solution strengthening and precipitating Al—Zr-based intermetallic compounds to coarsen the crystal grains after brazing addition heat.
- the Zr content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
- a preferable content of Zr is 0.10 to 0.20%.
- Cr may be contained because it has the effect of improving the strength of the brazing material by solid solution strengthening and precipitating Al—Cr-based intermetallic compounds to coarsen the crystal grains after the brazing heat.
- the Cr content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
- a preferable content of Cr is 0.10 to 0.20%.
- V may be contained because it improves the strength of the brazing filler metal by solid solution strengthening and also improves the corrosion resistance.
- the V content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
- a preferable content of V is 0.10 to 0.20%.
- Na, Sr Na and Sr exhibit the effect of refining the Si particles in the brazing material.
- the contents of Na and Sr are 0.001 to 0.050%, respectively. If the respective contents are less than 0.001%, the above effects cannot be obtained sufficiently. On the other hand, when each content exceeds 0.050%, an oxide film becomes thick and brazeability is reduced. Each preferable content is 0.003 to 0.020%.
- These Zn, Cu, Mn, Ti, Zr, Cr, V, Na, and Sr may be added to the brazing material if necessary.
- the intermediate layer material according to the first aspect of the third embodiment contains Si: 0.05 to 1.50%, Fe: 0.05 to 2.00% as essential elements, and the balance Al and unavoidable An aluminum alloy made of impurities is used.
- the intermediate layer material according to the first aspect of the third embodiment includes Zn: 0.50 to 8.00%, Mn: 0.05 to 2.00%, Cu: 0.05 to 1.50%, One selected from Ti: 0.05 to 0.30%, Zr: 0.05 to 0.30%, Cr: 0.05 to 0.30% and V: 0.05 to 0.30% or You may use the aluminum alloy which further contains 2 or more types as a selective addition element. Furthermore, in addition to the essential elements and the selective additive elements, unavoidable impurities may be contained in amounts of 0.05% or less, respectively, and 0.15% in total. Below, each component is demonstrated.
- Si forms an Al—Fe—Si based intermetallic compound with Fe, and when it contains Mn at the same time, forms an Al—Fe—Mn—Si based intermetallic compound with Fe and Mn,
- the strength of the intermediate layer material is improved by dispersion strengthening, or the strength of the intermediate layer material is improved by solid solution strengthening in the aluminum matrix.
- the Si content is 0.05 to 1.50%. If the content is less than 0.05%, high-purity aluminum ingots must be used, resulting in high costs. On the other hand, if it exceeds 1.50%, the melting point of the intermediate layer material is lowered and the possibility of melting during brazing increases.
- a preferable content of Si is 0.10 to 1.20%.
- Fe forms an Al—Fe—Si intermetallic compound together with Si, and if it contains Mn simultaneously, forms an Al—Fe—Mn—Si intermetallic compound together with Si and Mn,
- the strength of the intermediate layer material is improved by dispersion strengthening.
- the amount of Fe added is 0.05 to 2.00%. If the content is less than 0.05%, high-purity aluminum ingots must be used, resulting in high costs. On the other hand, if it exceeds 2.00%, a giant intermetallic compound is easily formed during casting, and the plastic workability is lowered.
- a preferable content of Fe is 0.10 to 1.50% or less.
- Zn diffuses to the surface of the brazing material during the brazing heat, and can reduce the pitting corrosion potential of the brazing material surface after the brazing heat. By forming a potential difference between the brazing material surface and the core material, the sacrificial anticorrosive effect Therefore, the corrosion resistance can be improved.
- the Zn content is 0.50 to 8.00%. If it is less than 0.50%, the effect of improving the corrosion resistance due to the sacrificial anticorrosive effect cannot be sufficiently obtained. On the other hand, if it exceeds 8.00%, the corrosion rate increases, the sacrificial anode material disappears early, and the corrosion resistance decreases.
- a preferable content of Zn is 1.00 to 6.00%.
- Mn forms an Al—Mn—Si-based intermetallic compound together with Si to improve the strength of the intermediate layer material by dispersion strengthening, or to form a solid solution in the aluminum matrix and dissolve the intermediate layer material by solid solution strengthening. It may be contained because it improves the strength.
- the Mn content is 0.05 to 2.00%. If the content is less than 0.05%, the above effect is insufficient. If the content exceeds 2.00%, a giant intermetallic compound is easily formed during casting, and the plastic workability is lowered.
- a preferable content of Mn is 0.10 to 1.80%.
- Cu may be contained because it improves the strength of the intermediate layer material by solid solution strengthening.
- the Cu content is 0.05 to 1.50%. If it is less than 0.05%, the above effect is insufficient, and if it exceeds 1.50%, there is a high risk of cracking of the aluminum alloy during casting.
- a preferable content of Cu is 0.30 to 1.00%.
- Ti may be contained because it enhances the strength of the intermediate layer material by solid solution strengthening and also improves the corrosion resistance.
- the Ti content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
- a preferable content of Ti is 0.05 to 0.20%.
- Zr may be contained because it has the effect of improving the strength of the intermediate layer material by solid solution strengthening and precipitating Al—Zr-based intermetallic compounds to coarsen the crystal grains after brazing addition heat.
- the Zr content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
- a preferable content of Zr is 0.10 to 0.20%.
- Cr Cr may be contained because it has the effect of improving the strength of the intermediate layer material by solid solution strengthening and precipitating Al—Cr-based intermetallic compounds to coarsen the crystal grains after brazing addition heat.
- the Cr content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
- a preferable content of Cr is 0.10 to 0.20%.
- V may be contained because it improves the strength of the intermediate layer material by solid solution strengthening and also improves the corrosion resistance.
- the V content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
- a preferable content of V is 0.05 to 0.2%.
- Zn, Mn, Cu, Ti, Zr, Cr, and V may be added in the intermediate layer material if necessary.
- Zn which was a selective additive element of the first mode: 0.50 to 8.00
- An aluminum alloy containing% as an essential element and the balance Al and unavoidable impurities is used. Therefore, in the intermediate layer material of the second aspect, Zn is not included in the selective additive element. Note that the selective additive elements other than Zn are the same elements as in the first embodiment and have the same contents.
- the intermediate layer material contains Zn as an essential element.
- Zn a sacrificial anticorrosive effect can be imparted to the surface on the brazing material side by Zn diffused on the brazing material surface during brazing or Zn of the intermediate layer material itself.
- the core material contains Mg as an essential element. In this case, this Mg component hinders brazing properties, but cladding the intermediate layer material prevents diffusion of Mg in the core material to the brazing material surface during brazing, and thereby brazing properties. Can be reduced.
- Crystal grain size of sacrificial anode material In the aluminum alloy clad material of the present invention, the crystal grain size of the sacrificial anode material before brazing heat is defined as 60 ⁇ m or more. This is to improve the corrosion resistance of the sacrificial anode material after the brazing heat. As shown in FIG. 1, the crystal grain size here refers to the equivalent circle diameter of a crystal grain as a region surrounded by grain boundaries when the rolling surface of the sacrificial anode material is observed. Further, the grain boundary refers to a boundary where the adjacent crystal orientation difference is 20 degrees or more.
- the method for measuring the crystal grain size is not particularly limited, but is generally based on electron beam backscatter diffraction (EBSD). The reason for this limitation will be described below.
- EBSD electron beam backscatter diffraction
- the sacrificial anode material is clad in the clad material for the purpose of sacrificial protection.
- the clad material is corroded to the surface of the sacrificial anode material. This prevents perforation corrosion of a tube made of, for example, a clad material.
- the corrosion rate of the sacrificial anode material is high, the sacrificial anode material disappears early and the sacrificial anticorrosive effect is lost, and perforation corrosion occurs in the above tube.
- the inventors have found that the corrosion rate of the crystal grain boundary in the sacrificial anode material is faster than that in the crystal grain, and that the corrosion rate can be suppressed by reducing the area of the crystal grain boundary. Reducing the area of the crystal grain boundary is synonymous with increasing the crystal grain size. Further detailed examination revealed that the corrosion rate of the sacrificial anode material is suppressed and the aluminum alloy clad material has excellent corrosion resistance if the crystal grain size of the sacrificial anode material is 100 ⁇ m or more after brazing heat. .
- the crystal grain size of the sacrificial anode material is less than 100 ⁇ m, the sacrificial anode material has a high corrosion rate and loses the sacrificial anticorrosive effect at an early stage, so that effective corrosion resistance cannot be obtained.
- the crystal grain size of the sacrificial anode material after the brazing heat is preferably 120 ⁇ m or more. Further, the upper limit value of the crystal grain size of the sacrificial anode material after the brazing heat is not particularly limited, but it is difficult to set it to 1000 ⁇ m or more.
- the inventors have found that there is a positive correlation between the crystal grain size of the sacrificial anode material before brazing heat and the crystal grain size of the sacrificial anode material after brazing heat. It was. That is, in order to obtain a large crystal grain size of the sacrificial anode material after the brazing heat, the sacrificial anode material before the brazing heat needs to have a large crystal grain size. As a result of detailed examination on this point, it has been found that when the crystal grain size of the sacrificial anode material before brazing heat is 60 ⁇ m or more, the crystal grain size of the sacrificial anode material after brazing heat is 100 ⁇ m or more. .
- the crystal grain size of the sacrificial anode material before brazing heat is less than 60 ⁇ m
- the crystal grain size of the sacrificial anode material after brazing heat is less than 100 ⁇ m.
- the crystal grain size before brazing addition heat is preferably 80 ⁇ m or more.
- the upper limit value of the crystal grain size of the sacrificial anode material before the brazing heat is not particularly limited, but it is difficult to set it to 1000 ⁇ m or more.
- Crystal grain size of core material in the aluminum alloy clad material of the present invention is R1 ( ⁇ m) in the cross section along the rolling direction of the core material before brazing addition heat, and the crystal grain size in the rolling direction is When R2 ( ⁇ m) is set, R1 / R2 is defined to be 0.30 or less. This is an index for improving the moldability of the clad material before brazing heat.
- the crystal grain sizes R1 and R2 ( ⁇ m) here are obtained by observing a cross section along the rolling direction of the cladding material and using the region surrounded by the grain boundaries as crystal grains.
- the maximum diameter in the plate thickness direction was defined as R1, and the maximum diameter in the rolling direction was defined as R2.
- the grain boundary refers to a boundary where the adjacent crystal orientation difference is 20 degrees or more.
- the method for measuring the crystal grain size is not particularly limited, but is generally based on electron beam backscatter diffraction (EBSD).
- EBSD electron beam backscatter diffraction
- the formability of the aluminum alloy has been improved by adjusting the mechanical properties according to the tempering determined by the conditions of the intermediate annealing and the subsequent rolling rate.
- the material is cracked.
- the present inventors have found that the more excellent the formability is obtained when the crystal grains of the core material before brazing heat are flat in the rolling direction in the cross section along the rolling direction.
- it was set as the parameter
- index which shows the flatness of a crystal grain by said R1 / R2.
- index which shows the flatness of a crystal grain by said R1 / R2.
- Detailed investigations by the present inventors have revealed that when R1 / R2 is 0.30 or less, the crystal grains of the core material are sufficiently flat and have excellent formability.
- R1 / R2 exceeds 0.30, the flatness of crystal grains of the core material is insufficient, and excellent workability cannot be obtained.
- R1 / R2 is preferably 0.20 or less.
- the manufacturing method of the aluminum alloy clad material according to the first aspect of the present invention includes a step of casting aluminum alloys for a core material and a sacrificial anode material, respectively, and a cast sacrificial anode material ingot having a predetermined thickness.
- the manufacturing method of the aluminum alloy clad material according to the second aspect of the present invention includes a step of casting aluminum alloys for a core material, a sacrificial anode material, and a brazing material, and a cast sacrificial anode material ingot and brazing material casting.
- a hot rolling process in which each ingot is hot-rolled to a predetermined thickness, a sacrificial anode material having a predetermined thickness is clad on one surface of the core material ingot, and a brazing material having a predetermined thickness is clad on the other surface.
- a clad process for forming a clad material for forming a clad material, a hot clad rolling process for hot rolling the clad material, a cold rolling process for cold rolling the hot rolled clad material, and during the cold rolling process and cold rolling Including one or more annealing steps for annealing the clad material in one or both of the steps.
- the method for producing an aluminum alloy clad material according to the third aspect of the present invention includes a step of casting aluminum alloys for a core material, an intermediate layer material, a sacrificial anode material, and a brazing material, and a cast intermediate layer material casting
- a hot rolling process in which the ingot, the brazing material ingot and the sacrificial anode material ingot are each hot-rolled to a predetermined thickness, and an intermediate layer material having a predetermined thickness is clad on one surface of the core material ingot, and the intermediate A cladding step in which a brazing material having a predetermined thickness is clad on a surface that is not the core material side of the layer material, and a sacrificial anode material having a predetermined thickness is clad on the other surface of the core material ingot to form a cladding material;
- the heating conditions are preferably performed at a temperature of 400 to 560 ° C. for 1 to 10 hours. If it is less than 400 ° C., cracking or the like may occur during rolling because of poor plastic workability. When the temperature is higher than 560 ° C., the ingot may be melted during heating. If the heating time is less than 1 hour, the temperature of the ingot is non-uniform and the plastic workability is poor, and cracking or the like may occur during rolling. If it exceeds 10 hours, the productivity is significantly impaired.
- the rolling start temperature is 400 to 520 ° C.
- the temperature of the clad material is 200 to 400 ° C.
- the rolling pass in which the rolling reduction in one pass is 30% or more is limited to 5 times or less.
- the hot clad rolling process may be divided into a rough rolling process and a finish rolling process.
- a reverse type or tandem type rolling mill is used. In a reverse rolling mill, one-way rolling is defined as one pass, and in a tandem rolling mill, rolling with one set of rolling rolls is defined as one pass.
- the aluminum alloy clad material of the present invention needs to have a larger crystal grain size of the sacrificial anode material before the brazing heat is applied.
- the crystal grains of the sacrificial anode material are formed in the annealing process during manufacturing.
- the greater the strain accumulated in the sacrificial anode material before annealing the greater the driving force for grain growth that occurs during annealing, resulting in larger crystals. Grains can be obtained.
- the aluminum alloy clad material of the present invention needs to make the crystal grains of the core material flat before the brazing heat is applied.
- the core crystal grains are also formed in the annealing process during manufacturing. The smaller the strain accumulated in the core before annealing, the smaller the driving force for grain growth in the thickness direction that occurs during annealing. As a result, flat crystal grains can be obtained.
- the core material in the hot clad rolling process dynamic recovery occurs during hot clad rolling, so even if a rolling pass with a rolling reduction of 30% or more is applied, the core material Since the shear strain that enters does not increase, the flatness of the core crystal grains is not affected.
- the temperature of the clad material in the hot clad rolling process is less than 200 ° C., cracks occur during hot rolling, and the clad material cannot be manufactured.
- the rolling reduction rate in one pass is less than 30%, the shear strain entering the core material does not increase, so the flatness of the core material crystal grains is not affected.
- the rolling pass where the rolling reduction is 30% or more when the temperature of the clad material is 200 to 400 ° C. is preferably 4 passes or less. Note that the rolling reduction is preferably 35% or more. Further, if a rolling pass exceeding 50% is applied, the material may be cracked.
- the sacrificial anode in the vicinity of the surface layer of the clad material even when the rolling pass in which the reduction rate is 30% or more is limited to 5 times or less while the temperature of the clad material is 200 to 400 ° C. in the hot clad rolling process
- a large shear strain enters the material. Therefore, sufficient grain growth occurs in the sacrificial anode material during the intermediate annealing, and large crystal grains can be obtained in the sacrificial anode material. That is, the above-described control in the hot clad rolling makes it possible to make the crystal grain size of the sacrificial anode material coarse and make the crystal grains of the core material flat.
- the crystal grain size of the sacrificial anode material before brazing heat is controlled by adjusting the rolling start temperature in the hot clad rolling process. If the starting temperature of hot clad rolling is 520 ° C. or less, a large shear strain is applied to the sacrificial anode material during hot clad rolling, and the crystal grain size of the sacrificial anode material before brazing heat can be increased. When the starting temperature of hot clad rolling exceeds 520 ° C., dynamic recovery occurs in the sacrificial anode material during hot clad rolling to reduce shear strain, and the crystal grain size of the sacrificial anode material before the brazing heat is increased. Can not do it.
- the starting temperature of hot clad rolling is 400 to 520 ° C.
- the starting temperature of hot clad rolling is preferably 420 to 500 ° C. or less.
- the hot clad rolling process there is no particular lower limit for the number of passes with a rolling reduction of 30% or more while the temperature of the clad material is 200 to 400 ° C.
- productivity is impaired because many passes with a rolling reduction of less than 30% are required to obtain a desired effect. Therefore, it is preferable to include one or more passes with a rolling reduction of 30% or more.
- the plate thickness after hot clad rolling is not particularly limited, but is usually preferably about 2.0 to 5.0 mm.
- each method for producing an aluminum alloy clad material according to the first to third embodiments there is one or more annealing steps for annealing the clad material during one or both of the cold rolling step and the cold rolling step.
- annealing steps for annealing the clad material during one or both of the cold rolling step and the cold rolling step.
- (1) one or more intermediate annealing steps are performed during the cold rolling step, (2) the final annealing step is performed once after the cold rolling step, or (3) ( 1) and (2) are implemented.
- the clad material is held at 200 to 560 ° C. for 1 to 10 hours.
- the annealing step is performed for the purpose of adjusting the strain in the material.
- the sacrificial anode material can be recrystallized to obtain large crystal grains as described above.
- the cladding material temperature in the annealing process is less than 200 ° C. or when the holding time is less than 1 hour, the recrystallization of the sacrificial anode material is not completed.
- the annealing temperature exceeds 560 ° C, the brazing material may be melted. Even if the holding time exceeds 10 hours, there is no problem in the performance of the clad material, but the productivity is significantly impaired.
- the upper limit of the number of annealing steps is not particularly limited, but is preferably 3 times or less in order to avoid an increase in cost due to an increase in the number of steps.
- the ingot obtained by casting the aluminum alloy core material may be subjected to a homogenization treatment step before the cladding step.
- a homogenization treatment step it is usually preferable to hold the ingot at 450 to 620 ° C. for 1 to 20 hours. If the temperature is less than 450 ° C. or if the holding time is less than 1 hour, the homogenizing effect may not be sufficient, and if it exceeds 620 ° C., the core material ingot may be melted. Moreover, even if holding time exceeds 20 hours, the homogenization effect is saturated and it is not economical.
- the clad rate (one side) of the sacrificial anode material is preferably 3 to 25%. As described above, a large shear strain needs to be applied only to the sacrificial anode material in the hot clad rolling process during the manufacturing process. However, if the clad rate of the sacrificial anode material exceeds 25%, sufficient shear strain is not applied to the entire sacrificial anode material, and the entire sacrificial anode material may not be able to have a recrystallized structure.
- the clad rate of the sacrificial anode material is less than 3%, the sacrificial anode material is too thin, and thus the sacrificial anode material may not be covered over the entire core material during hot clad rolling.
- the clad rate of the sacrificial anode material is more preferably 5 to 20%.
- the clad rate of the brazing material and the intermediate layer material is not particularly limited, but is usually clad at about 3 to 30%.
- the aluminum alloy clad material is suitably used as a heat exchanger member such as a tube material or a header plate, particularly as a tube material.
- a heat exchanger member such as a tube material or a header plate, particularly as a tube material.
- the aluminum alloy clad material is bent, and the overlapping portions at both ends thereof are brazed and joined to produce a tube material for flowing a medium such as cooling water.
- the header plate provided with the hole joined to the both ends of a tube material is produced by processing the said aluminum alloy clad material.
- the heat exchanger according to the present invention has a structure in which, for example, the above-described tube material, fin material, and header plate are combined, and these are brazed at once.
- the crystal grain size of the sacrificial anode material of the aluminum alloy clad material after the brazing addition heat is 100 ⁇ m or more as described above. It is characterized by being. With this feature, as described above, the corrosion resistance of the sacrificial anode material after the brazing heat can be improved.
- the heat exchanger is assembled by arranging fin materials on the outer surface of the tube material with both end portions attached to the header plate. Subsequently, the both ends overlapping part of the tube material, the fin material and the tube material outer surface, the both ends of the tube material and the header plate are simultaneously joined by one brazing heating.
- a nocolok brazing method, a vacuum brazing method, or a fluxless brazing method is used as the brazing method.
- the brazing is usually performed by heating at a temperature of 590 to 610 ° C. for 2 to 10 minutes, preferably at a temperature of 590 to 610 ° C. for 2 to 6 minutes.
- the brazed one is usually cooled at a cooling rate of 20 to 500 ° C./min.
- Casting was performed by DC casting, and each side was chamfered and finished.
- the thickness of the ingot after chamfering was 400 mm in all cases.
- the clad rate which is the target thickness, is calculated by the final thickness, and subjected to a heating process at 520 ° C. for 3 hours so as to obtain the required thickness at the time of matching. Thereafter, it was hot-rolled to a predetermined thickness. Further, some core material ingots were subjected to a homogenization treatment (Table 5 described later).
- the sacrificial anode material shown in Table 2 was combined with one surface of the core alloy.
- the brazing material of Table 3 was combined with the side of the core material that was not the sacrificial anode material.
- the intermediate layer material of Table 4 was combined with the surface of the core material that was not the sacrificial anode material, and the brazing material of Table 3 was combined with the surface of the intermediate layer material that was not the core material. Note that the clad rates of the sacrificial anode material, the brazing material, and the intermediate layer material were all 10%.
- a fin material having a thickness of 0.07 mm, a tempered H14, and an alloy component of 3003 alloy with 1.0% Zn added thereto was corrugated to obtain a heat exchanger fin material.
- the fin material was placed on the brazing material surface of the clad material sample, immersed in a 5% fluoride flux aqueous solution, and subjected to brazing addition heat at 600 ° C. for 3 minutes to produce a minicore sample.
- This mini-core sample has a fin joint rate of 100%, and when the clad material sample and the fin are not melted, the brazeability is excellent ( ⁇ ), and the fin joint rate is 95% or more and less than 100%.
- a sacrificial material surface of a clad material sample that has not been subjected to heat treatment and a clad material sample that has been heat-treated at 600 ° C. for 3 minutes (corresponding to brazing additional heat) is mirror-polished, and a sacrificial anode material crystal grain measurement sample and did.
- a 2 mm x 2 mm region of this sample is subjected to EBSD with an SEM (scanning electron microscope), and from this result, a boundary having a crystal orientation difference of 20 degrees or more is detected as a grain boundary, and a crystal grain size (equivalent circle diameter) is calculated. did.
- the measurement location was arbitrarily selected at three locations, and the arithmetic average value was used as the crystal grain size.
- the fibrous structure and the crystal grain size that could not be measured were entered as “fibrous”.
- the crystal grain was arbitrarily measured at three locations in the same visual field, and the arithmetic average value thereof was defined as R1 / R2.
- the mirror-polished sample was anodized and observed with a polarizing microscope.
- R1 0 was set. .
- Comparative Example 27 since there were too many Ti, Zr, Cr, and V components in the core material, cracking occurred during rolling, and a clad material could not be produced, resulting in a failure in manufacturability.
- Comparative Example 50 since there were too many Fe components in the intermediate layer material, cracking occurred during rolling, and the clad material could not be produced, resulting in an unacceptable productivity.
- the intermediate annealing temperature was less than 200 ° C. Therefore, the sacrificial anode material before brazing has a fibrous structure, the crystal grain size of the sacrificial anode material after brazing was less than 100 ⁇ m, and the corrosion resistance on the sacrificial anode material side was rejected.
- the time for intermediate annealing was less than 1 hour. Therefore, the sacrificial anode material before brazing has a fibrous structure, the crystal grain size of the sacrificial anode material after brazing was less than 100 ⁇ m, and the corrosion resistance on the sacrificial anode material side was rejected.
- the aluminum alloy clad material according to the present invention has high strength after brazing and is excellent in brazing and corrosion resistance such as fin joint ratio and erosion resistance, and is therefore particularly suitable as a flow path forming part of an automotive heat exchanger. Used for.
- R1 Crystal grain size in the plate thickness direction in the core cross section along the rolling direction
- R2 Crystal grain size in the rolling direction in the core cross section along the rolling direction
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Laminated Bodies (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
Description
本発明に係るアルミニウム合金クラッド材は、心材及び犠牲陽極材を必須部材とし、ろう材と中間層材を付加的部材とする。ここで、心材の成分及び金属組織を適切に制御することにより優れた成形性が発揮され、犠牲陽極材の成分及び金属組織を適切に制御することにより優れた耐食性が発揮される。
第1形態、第2形態及び第3形態の第2態様における心材には、Si:0.05~1.50mass%(以下、単に「%」と記す)、Fe:0.05~2.00%、Mn:0.50~2.00%を必須元素として含有し、残部Al及び不可避的不純物からなるアルミニウム合金が用いられる。
3003合金等のAl-Mn系合金が好適に用いられる。以下に、各成分について説明する。
Siは、Fe、Mnと共にAl-Fe―Mn-Si系の金属間化合物を形成し、分散強化により心材の強度を向上させ、或いは、アルミニウム母相中に固溶して固溶強化により心材の強度を向上させる。Si含有量は、0.05~1.50%である。0.05%未満では、高純度アルミニウム地金を使用しなければならずコスト高となる。一方、1.50%を超えると心材の融点が低下し、ろう付け時に心材が溶融する虞が高くなる。Siの好ましい含有量は、0.10~1.20%である。
Feは、Si、Mnと共にAl-Fe-Mn-Si系の金属間化合物を形成し、分散強化により心材の強度を向上させる。Feの含有量は、0.05~2.00%である。0.05%未満では、高純度アルミニウム地金を使用しなければならずコスト高となる。一方、2.00%を超えると鋳造時に巨大金属間化合物が形成され易くなり、塑性加工性を低下させる。Feの好ましい含有量は、0.10~1.50%である。
Mnは、Si、Feと共にAl-Fe-Mn-Si系の金属間化合物を形成し、分散強化により心材の強度を向上させ、或いは、アルミニウム母相中に固溶して固溶強化により心材の強度を向上させる。Mn含有量は、0.50~2.00%である。0.50%未満では上記効果が不十分となり、2.00%を超えると鋳造時に巨大金属間化合物が形成され易くなり、塑性加工性を低下させる。Mnの好ましい含有量は、0.80~1.80%である。
Cuは、固溶強化により心材の強度を向上させるので含有させてもよい。Cu含有量は、0.05~1.50%である。0.05%未満では上記効果が不十分となり、1.50%を超えると鋳造時におけるアルミニウム合金の割れ発生の虞が高くなる。Cuの好ましい含有量は、0.30~1.00%である。
Mgは、Mg2Siの析出により心材の強度を向上させるので含有させてもよい。Mg含有量は、0.05~0.50%である。0.05%未満では上記効果が不十分となり、0.50%を超えるとフラックスの劣化などによりろう付が困難となる。Mgの好ましい含有量は、0.10~0.40%である。
Tiは、固溶強化により心材の強度を向上させるので含有させてもよい。Ti含有量は、0.05~0.30%である。0.05%未満では上記効果が不十分となる。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Tiの好ましい含有量は、0.10~0.20%である。
Zrは、固溶強化により心材の強度を向上させると共に、Al-Zr系の金属間化合物を析出させてろう付加熱後の結晶粒を粗大化する作用を有するので含有させてもよい。Zr含有量は、0.05~0.30%である。0.05%未満では上記効果が得られない。一方、0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Zrの好ましい含有量は、0.10~0.20%である。
Crは、固溶強化により心材の強度を向上させると共に、Al-Cr系の金属間化合物を析出させてろう付加熱後の結晶粒を粗大化する作用を有するので含有させてもよい。Cr含有量は、0.05~0.30%である。0.05%未満では上記効果が得られない。一方、0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Crの好ましい含有量は、0.10~0.20%である。
Vは、固溶強化により心材の強度を向上させると共に、耐食性も向上させるので含有させてもよい。V含有量は、0.05~0.30%である。0.05%未満では上記効果が得られない。一方、0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Vの好ましい含有量は、0.10~0.20%である。
第1、2形態及び第3形態(第1態様及び第2態様)において、犠牲陽極材には、Zn:0.50~8.00%、Si:0.05~1.50%、Fe:0.05~2.00%を必須元素として含有し、残部Al及び不可避的不純物からなるアルミニウム合金が用いられる。
Znは孔食電位を卑にすることができ、心材との電位差を形成することで犠牲防食効果により耐食性を向上することができる。Znの含有量は0.50~8.00%である。0.50%未満では、犠牲防食効果による耐食性向上の効果が十分に得られない。一方、8.00%を超えると、腐食速度が速くなり早期に犠牲陽極材が消失して耐食性が低下する。Znの好ましい含有量は、1.00~6.00%である。
Siは、Feと共にAl-Fe-Si系の金属間化合物を形成し、またMnを同時に含有している場合にはFe、Mnと共にAl-Fe-Mn-Si系の金属間化合物を形成し、分散強化により犠牲陽極材の強度を向上させ、或いは、アルミニウム母相中に固溶して固溶強化により犠牲陽極材の強度を向上させる。Siは一方で、犠牲陽極材の電位を貴にするため、犠牲防食効果を阻害して耐食性を低下させる。Siの含有量は、0.05~1.50%である。0.05%未満では、高純度アルミニウム地金を使用しなければならずコスト高となる。一方、1.50%を超えると犠牲陽極材の孔食電位が貴になって犠牲防食効果を失わせ、耐食性が低下する。Siの好ましい含有量は、0.10~1.20%である。
Feは、Siと共にAl-Fe-Si系の金属間化合物を形成し、またMnを同時に含有している場合にはSi、Mnと共にAl-Fe-Mn-Si系の金属間化合物を形成し、分散強化により犠牲陽極材の強度を向上させる。Feの添加量は、0.05~2.00%である。含有量が0.05%未満では、高純度アルミニウム地金を使用しなければならずコスト高となる。一方、2.00%を超えると鋳造時に巨大金属間化合物が形成され易くなり、塑性加工性を低下させる。Feの好ましい含有量は、0.10~1.50%である。
Niは、Al-Ni系、又はFeと共にAl-Fe-Ni系の金属間化合物を形成する。これらの金属間化合物はアルミニウムのマトリックスより腐食電位が大きく貴であるため、腐食のカソードサイトとして作用する。そのため、これらの金属間化合物が犠牲陽極材に分散していると、腐食の起点が分散することとなり、深さ方向への腐食が進行し難くなり耐食性が向上するので含有させてもよい。Niの含有量は、0.05~2.00%である。含有量が0.05%未満では上記効果が十分に得られない。一方、2.00%を超えると鋳造時に巨大金属間化合物が形成され易くなり、塑性加工性を低下させる。Niの好ましい含有量は、0.10~1.50%である。
Mnは、犠牲陽極材の強度と耐食性を向上させるので含有させてもよい。Mnの含有量は、0.05~2.00%である。2.00%を超えると鋳造時に巨大金属間化合物が形成され易くなり、塑性加工性を低下させる。一方、0.05%未満では、上記効果が十分得られない。Mnの好ましい含有量は、0.05~1.80%である。
Mgは、Mg2Siの析出により犠牲陽極材の強度を向上させるので、含有させてもよい。また、犠牲陽極材自身の強度を向上させるだけでなく、ろう付することにより犠牲陽極材から心材にMgが拡散して心材の強度も向上させる。これらの理由から、Mgを含有させても良い。Mgの含有量は、0.05~3.00%である。0.05%未満では上記効果が十分得られない。一方、3.00%を超えると熱間クラッド圧延工程において犠牲陽極材と心材との圧着が困難となる。Mgの好ましい含有量は、0.10~2.00%である。なお、Mgはノコロックろう付におけるフラックスを劣化させてろう付性を阻害するため、犠牲陽極材が0.5%以上のMgを含有する場合はチューブ材同士の接合にはノコロックろう付を採用できない。この場合には、例えばチューブ材同士の接合には溶接などの手段を用いる必要がある。
Tiは、固溶強化により犠牲陽極材の強度を向上させると共に、耐食性も向上させるので含有させてもよい。Ti含有量は、0.05~0.30%である。0.05%未満では、上記効果が得られない。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Tiの好ましい含有量は、0.05~0.20%である。
Zrは、固溶強化により犠牲陽極材の強度を向上させると共に、Al-Zr系の金属間化合物を析出させてろう付加熱後の結晶粒を粗大化する作用を有するので含有させてもよい。Zr含有量は、0.05~0.30%である。0.05%未満では上記効果が得られない。一方、0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Zrの好ましい含有量は、0.10~0.20%である。
Crは、固溶強化により犠牲陽極材の強度を向上させると共に、Al-Cr系の金属間化合物を析出させてろう付加熱後の結晶粒を粗大化する作用を有するので含有させてもよい。Cr含有量は、0.05~0.30%である。0.05%未満では上記効果が得られない。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Crの好ましい含有量は、0.10~0.20%である。
Vは、固溶強化により犠牲陽極材の強度を向上させると共に耐食性も向上させるので含有させてもよい。V含有量は、0.05~0.30%である。0.05%未満では上記効果が得られない。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Vの好ましい含有量は、0.05~0.20%である。
第2形態及び第3の形態(第1態様及び第2態様)において、ろう材には、Si:2.50~13.00%、Fe:0.05~1.20%を必須元素として含有し、残部Al及び不可避的不純物からなるアルミニウム合金が用いられる。
Siを添加することによりろう材の融点が低下して液相を生じさせ、これによってろう付を可能にする。Si含有量は2.50~13.00%である。2.50%未満では、生じる液相が僅かとなりろう付けが機能し難くなる。一方、13.00%を超えると、例えばこのろう材をチューブ材に用いた場合に、フィンなどの相手材へ拡散するSi量が過剰となり、相手材の溶融が発生してしまう。Siの好ましい含有量は、3.50~12.00%である。
Feは、Al-Fe系やAl-Fe-Si系の金属間化合物を形成し易いために、ろう付に有効となるSi量を低下させてろう付性の低下を招く。Fe含有量は、0.05~1.20%である。0.05%未満では、高純度アルミニウム地金を使用しなければならずコスト高を招く。一方、1.20%を超えると、ろう付に有効となるSi量を低下させてろう付が不十分となる。Feの好ましい含有量は、0.10~0.50%である。
Znは孔食電位を卑にすることができ、心材との電位差を形成することで犠牲防食効果により耐食性を向上することができるので含有させてもよい。Znの含有量は、0.50~8.00%である。0.5%未満では、犠牲防食効果による耐食性向上の効果が十分に得られない。一方、8.00%を超えると、腐食速度が速くなり早期に犠牲陽極材が消失して耐食性が低下する。Znの好ましい含有量は、1.00~6.00%である。
Cuは、固溶強化によりろう材の強度を向上させるので含有させてもよい。Cu含有量は、0.05~1.50%である。0.05%未満では上記効果が不十分となり、1.50%を超えると鋳造時におけるアルミニウム合金の割れ発生の虞が高くなる。Cuの好ましい含有量は、0.30~1.00%である。
Mnは、ろう材の強度と耐食性を向上させるので含有させてもよい。Mnの含有量は、0.05~2.00%である。2.00%を超えると鋳造時に巨大金属間化合物が形成され易くなり、塑性加工性を低下させる。一方、0.05%未満では、上記効果が十分得られない。Mnの好ましい含有量は、0.05~1.80%である。
Tiは、固溶強化によりろう材の強度を向上させると共に耐食性も向上させるので含有させてもよい。Ti含有量は、0.05~0.30%である。0.05%未満では、上記効果が得られない。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Tiの好ましい含有量は、0.10~0.20%である。
Zrは、固溶強化によりろう材の強度を向上させると共に、Al-Zr系の金属間化合物を析出させてろう付加熱後の結晶粒を粗大化する作用を有するので含有させてもよい。Zr含有量は、0.05~0.30%である。0.05%未満では上記効果が得られない。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Zrの好ましい含有量は、0.10~0.20%である。
Crは、固溶強化によりろう材の強度を向上させると共に、Al-Cr系の金属間化合物を析出させてろう付加熱後の結晶粒を粗大化する作用を有するので含有させてもよい。Cr含有量は、0.05~0.30%である。0.05%未満では上記効果が得られない。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Crの好ましい含有量は、0.10~0.20%である。
Vは、固溶強化によりろう材の強度を向上させると共に耐食性も向上させるので含有させてもよい。V含有量は、0.05~0.30%である。0.05%未満では上記効果が得られない。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Vの好ましい含有量は、0.10~0.20%である。
Na、Srは、ろう材中のSi粒子を微細化する効果を発揮する。Na、Srの含有量はそれぞれ、0.001~0.050%である。それぞれの含有量が0.001%未満では、上記効果が十分に得られない。一方、それぞれの含有量が0.050%を超える場合は、酸化被膜が厚くなり、ろう付性を低下させる。それぞれの好ましい含有量は、いずれも0.003~0.020%である。
第3形態の第1態様における中間層材には、Si:0.05~1.50%、Fe:0.05~2.00%を必須元素として含有し、残部Al及び不可避的不純物からなるアルミニウム合金が用いられる。
Siは、Feと共にAl-Fe-Si系の金属間化合物を形成し、またMnを同時に含有している場合にはFe、Mnと共にAl-Fe-Mn-Si系の金属間化合物を形成し、分散強化により中間層材の強度を向上させ、或いは、アルミニウム母相中に固溶して固溶強化により中間層材の強度を向上させる。Siの含有量は、0.05~1.50%である。含有量が0.05%未満では、高純度アルミニウム地金を使用しなければならずコスト高となる。一方、1.50%を超えると中間層材の融点が低下してろう付時に溶融が生じる虞が高くなる。Siの好ましい含有量は、0.10~1.20%である。
Feは、Siと共にAl-Fe-Si系の金属間化合物を形成し、またMnを同時に含有している場合にはSi、Mnと共にAl-Fe-Mn-Si系の金属間化合物を形成し、分散強化により中間層材の強度を向上させる。Feの添加量は、0.05~2.00%である。含有量が0.05%未満では、高純度アルミニウム地金を使用しなければならずコスト高となる。一方、2.00%を超えると鋳造時に巨大金属間化合物が形成され易くなり、塑性加工性を低下させる。Feの好ましい含有量は、0.10~1.50%以下である。
Znは、ろう付加熱時にろう材表面へ拡散し、ろう付加熱後のろう材表面の孔食電位を卑にすることができ、ろう材表面と心材との電位差を形成することで犠牲防食効果により耐食性を向上することができるので含有させてもよい。Znの含有量は、0.50~8.00%である。0.50%未満では、犠牲防食効果による耐食性向上の効果が十分に得られない。一方、8.00%を超えると、腐食速度が速くなり早期に犠牲陽極材が消失して耐食性が低下する。Znの好ましい含有量は、1.00~6.00%である。
Mnは、Siと共にAl-Mn-Si系の金属間化合物を形成し、分散強化により中間層材の強度を向上させ、或いは、アルミニウム母相中に固溶して固溶強化により中間層材の強度を向上させるので含有させてもよい。Mn含有量は、0.05~2.00%である。0.05%未満では上記効果が不十分となり、2.00%を超えると鋳造時に巨大金属間化合物が形成され易くなり、塑性加工性を低下させる。Mnの好ましい含有量は、0.10~1.80%である。
Cuは、固溶強化により中間層材の強度を向上させるので含有させてもよい。Cu含有量は、0.05~1.50%である。0.05%未満では上記効果が不十分となり、1.50%を超えると鋳造時におけるアルミニウム合金の割れ発生の虞が高くなる。Cuの好ましい含有量は、0.30~1.00%である。
Tiは、固溶強化により中間層材の強度を向上させると共に耐食性も向上させるので含有させてもよい。Ti含有量は、0.05~0.30%である。0.05%未満では、上記効果が得られない。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Tiの好ましい含有量は、0.05~0.20%である。
Zrは、固溶強化により中間層材の強度を向上させると共に、Al-Zr系の金属間化合物を析出させてろう付加熱後の結晶粒を粗大化する作用を有するので含有させてもよい。Zr含有量は、0.05~0.30%である。0.05%未満では上記効果が得られない。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Zrの好ましい含有量は、0.10~0.20%である。
Crは、固溶強化により中間層材の強度を向上させると共に、Al-Cr系の金属間化合物を析出させてろう付加熱後の結晶粒を粗大化する作用を有するので含有させてもよい。Cr含有量は、0.05~0.30%である。0.05%未満では上記効果が得られない。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Crの好ましい含有量は、0.10~0.20%である。
Vは、固溶強化により中間層材の強度を向上させると共に耐食性も向上させるので含有させてもよい。V含有量は、0.05~0.30%である。0.05%未満では上記効果が得られない。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Vの好ましい含有量は、0.05~0.2%である。
第3形態の第2態様において、中間層材が必須元素としてZnを含有する。この場合には、ろう付時にろう材表面に拡散したZnや中間層材自身のZnによって、ろう材側の表面に犠牲防食効果を付与することができる。一方、第3形態の第1態様においては、心材が必須元素としてMgを含有する。この場合には、このMg成分がろう付性を阻害するが、中間層材をクラッドすることによって、ろう付中において心材中のMgのろう材表面への拡散が妨げられ、これによりろう付性の低下を緩和することができる。
本発明のアルミニウム合金クラッド材では、ろう付加熱前における犠牲陽極材の結晶粒径を60μm以上と規定する。これは、ろう付加熱後における犠牲陽極材の耐食性の向上を図るためである。図1に示すように、ここでの結晶粒径とは、犠牲陽極材の圧延面を観察した際において、粒界で囲まれた領域を結晶粒としてその円相当直径をいうものとする。また粒界とは、隣接する結晶方位差が20度以上である境界を指すものとする。結晶粒径の測定方法は特に限定されるものではないが、電子線後方散乱回折法(EBSD)によるのが一般的である。以下にこの限定理由を説明する。
本発明のアルミニウム合金クラッド材は、ろう付加熱前における心材の圧延方向に沿った断面において、板厚方向の結晶粒径をR1(μm)とし、圧延方向の結晶粒径をR2(μm)としたとき、R1/R2を0.30以下に規定する。これは、ろう付加熱前における、クラッド材の成形性向上を図るための指標である。図2に示すように、ここでの結晶粒径R1及びR2(μm)とは、クラッド材の圧延方向に沿った断面を観察して粒界で囲まれた領域を結晶粒として、各結晶粒の板厚方向の最大径をR1とし圧延方向の最大径をR2として定義した。また、粒界とは、隣接する結晶方位差が20度以上である境界を指すものとする。結晶粒径の測定方法には特に限定されるものではないが、電子線後方散乱回折法(EBSD)によるのが一般的である。なお、心材の加工度が非常に大きい場合、鏡面研磨後に陽極酸化を行って陽極酸化面を偏光顕微鏡で観察すると、図3に示すような繊維状組織が観察される。このような場合は、板厚方向の結晶粒径が完全につぶされており、R1=0であると定義する。
9-1.製造方法の形態
本発明に係る上記第1形態のアルミニウム合金クラッド材の製造方法は、心材用及び犠牲陽極材用のアルミニウム合金をそれぞれ鋳造する工程と、鋳造した犠牲陽極材鋳塊を所定の厚さまで熱間圧延する熱間圧延工程と、心材鋳塊の少なくとも一方の面に所定の厚さとした犠牲陽極材をクラッドしてクラッド材とするクラッド工程と、クラッド材を熱間圧延する熱間クラッド圧延工程と、熱間圧延したクラッド材を冷間圧延する冷間圧延工程と、冷間圧延工程の途中及び冷間圧延工程の後の一方又は両方においてクラッド材を焼鈍する1回以上の焼鈍工程とを含む。
心材、犠牲陽極材、ろう材及び中間層材の鋳造工程における条件に特に制限は無いが、通常は水冷式の半連続鋳造によって行われる。また、犠牲陽極材、ろう材、中間層材をそれぞれ所定の厚さまで熱間圧延する工程において、その加熱条件は、400~560℃の温度で、1~10時間行うのが好ましい。400℃未満では塑性加工性が乏しいため圧延時にコバ割れなどを生じる場合がある。560℃を超える高温の場合には、加熱中に鋳塊が溶融してしまう虞がある。加熱時間が1時間未満では鋳塊の温度が不均一となって塑性加工性が乏しく、圧延時にコバ割れなどを生じる場合があり、10時間を超える場合は生産性を著しく損なってしまう。
上記第1~3の形態のアルミニウム合金クラッド材の各製造方法では、熱間クラッド圧延工程において、圧延開始温度が400~520℃であり、クラッド材の温度が200~400℃である間に1パスでの圧下率が30%以上となる圧延パスを5回以下に制限する。なお、熱間クラッド圧延工程は、粗圧延工程と仕上圧延工程に分けてもよい。仕上圧延工程では、リバース式又はタンデム式の圧延機が用いられる。リバース式圧延機では、片道1回の圧延を1パスと定義し、タンデム式圧延機では、圧延ロール1組による圧延を1パスと定義する。
上記第1~3の形態のアルミニウム合金クラッド材の各製造方法では、冷間圧延工程の途中及び冷間圧延工程の後の一方又は両方においてクラッド材を焼鈍する1回以上の焼鈍工程が設けられる。具体的には、(1)冷間圧延工程の途中に1回以上の中間焼鈍工程が実施され、(2)冷間圧延工程の後に最終焼鈍工程が1回実施され、或いは、(3)(1)及び(2)が実施されるものである。この焼鈍工程では、クラッド材を200~560℃で1~10時間保持する。
アルミニウム合金心材を鋳造して得られる鋳塊を、クラッド工程の前に均質化処理工程に供しても良い。均質化処理工程は、通常、450~620℃で1~20時間鋳塊を保持するのが好ましい。温度が450℃未満の場合や保持時間が1時間未満では均質化効果が十分でない場合があり、620℃を超えると心材鋳塊の溶融を生じてしまう虞がある。また、保持時間が20時間を超えても、均質化効果が飽和し経済性に欠ける。
本発明のアルミニウム合金クラッド材では、犠牲陽極材のクラッド率(片面)を3~25%とするのが好ましい。上述のように、製造工程中の熱間クラッド圧延工程において、犠牲陽極材にのみ大きなせん断ひずみが加えられる必要がある。しかしながら、犠牲陽極材のクラッド率が25%を超えると、犠牲陽極材全体に十分なせん断ひずみが加わらず、犠牲陽極材全体を再結晶組織とすることができない場合がある。一方、犠牲陽極材のクラッド率が3%未満では、犠牲陽極材が薄過ぎるため、熱間クラッド圧延中において心材全体にわたって犠牲陽極材を被覆することができない場合がある。犠牲陽極材のクラッド率は、より好ましくは5~20%である。
なお、ろう材及び中間層材のクラッド率に特に制限は無いが、通常はいずれも3~30%程度でクラッドされる。
上記アルミニウム合金クラッド材は、チューブ材、ヘッダープレートなどの熱交換器用部材として、特にチューブ材として好適に用いられる。例えば、上記アルミニウム合金クラッド材に曲げ成形を施し、その両端部の重ね合せ部分をろう付け接合して、冷却水などの媒体を流すためのチューブ材が作製される。また、上記アルミニウム合金クラッド材を加工して、チューブ材の両端部と接合される孔を備えたヘッダープレートが作製される。本発明に係る熱交換器は、例えば、上記のチューブ材、フィン材及びヘッダープレートを組み合わせ、これらを一度にろう付加工した構造を有する。
各クラッド材試料からJIS5号試験片を切り出し、圧延方向と平行な方向に5%ストレッチしてから、犠牲陽極材面を曲げの内側とし、曲げ半径R0.05mmの180°曲げを行なった。これの曲げR断面を観察できるよう樹脂埋めして、鏡面研磨を行い、光学顕微鏡により割れ発生の有無を評価した。その結果、心材に割れが発生していない場合を成形性合格(○)とし、心材に割れが発生した場合を成形性不合格(×)とした。なお、犠牲陽極材、ろう材、中間層材での割れ発生の有無は評価対象外とした。
厚さ0.07mm、調質H14、合金成分は3003合金に1.0%のZnを添加したフィン材を用意し、これをコルゲート成形して熱交換器フィン材とした。このフィン材を上記クラッド材試料のろう材面に配置し、5%のフッ化物フラックス水溶液中に浸漬し、600℃で3分のろう付加熱に供して、ミニコア試料を作製した。このミニコア試料のフィン接合率が100%であり、かつ、クラッド材試料及びフィンに溶融が生じていない場合をろう付性が優秀(◎)とし、フィン接合率が95%以上100%未満であり、かつ、クラッド材試料及びフィンに溶融が生じていない場合をろう付性が合格(○)とし、フィン接合率が95%未満であり、かつ、クラッド材試料とフィンに溶融の両方又はいずれか一方に溶融が生じた場合をろう付性が不合格(×)とした。なお、ろう材をクラッドしていない試料については、この評価項目は省略した。◎と○を合格とし、×を不合格とした。
600℃で3分の熱処理(ろう付加熱に相当)を施したクラッド材試料を、引張速度10mm/分、ゲージ長50mmの条件で、JIS Z2241に従って引張試験に供した。得られた応力-ひずみ曲線から引張強さを読み取った。その結果、引張強さが120MPa以上の場合を合格(○)とし、それ未満を不合格(×)とした。
加熱処理を施していないクラッド材試料、ならびに、600℃で3分の熱処理(ろう付加熱に相当)を施したクラッド材試料の犠牲材表面を鏡面研磨し、犠牲陽極材結晶粒測定用試料とした。この試料における2mm×2mmの領域をSEM(走査型電子顕微鏡)においてEBSDにかけ、その結果から結晶方位差が20度以上である境界を粒界として検出し、結晶粒径(円相当径)を算出した。なお、測定箇所は、任意に3箇所選定して、その算術平均値をもって結晶粒径とした。また、犠牲陽極材の再結晶化が完了していないため繊維状組織であり、結晶粒径を測定できなかったものについては、「繊維状」と記入した。
加熱処理を施していないクラッド材試料を用い、圧延方向に沿った断面が測定面となるよう樹脂埋めして鏡面研磨し、心材結晶粒測定用試料とした。この試料における長さ2mm×厚さ0.2mmの領域をSEMにおいてEBSDにかけ、その結果から結晶方位差が20度以上である境界を粒界として結晶粒を検出した。結晶粒の板厚方向の最大径R1及び圧延方向の最大径R2を測定し、R1/R2の値を算出した。なお、結晶粒は、同一視野で任意に3箇所測定し、その算術平均値をもってR1/R2とした。また、EBSDにおいて結晶粒界が検出されなかった場合は、鏡面研磨した試料を陽極酸化させて偏光顕微鏡で観察し、図3に示すような繊維状組織が見られた場合はR1=0とした。
ろう付性の評価にて用いたものと同じミニコア試料を用い、クラッド材試料の犠牲陽極材表面を絶縁樹脂でマスキングしてろう材面を試験面とし、JIS-H8502に基づいて500時間のCASS試験に供した。その結果、500時間でクラッド材に腐食貫通の生じなかったものをCASSの耐食性合格(○)とし、500時間で腐食貫通が生じたものをCASSの耐食性不合格(×)とした。なお、本評価はZnを含有するろう材を備える試料、ならびに、Znを含有する中間層材がクラッドされている試料について実施した。
一枚のクラッド材試料を犠牲陽極材側が内側となるように折り曲げて、犠牲陽極材同士を重ね合わせ、600℃で3分間の熱処理(ろう付加熱に相当)を施した。次いで、折り曲げた上体を元に戻し、ろう材側を絶縁樹脂によってマスキングし、犠牲陽極材面を試験面とした。このような合せ試料を、Cl-500ppm、SO4 2-100ppm、Cu2+10ppmを含有する88℃の高温水中に8時間浸漬し、次いで室温で16時間放置する工程を1サイクルとするサイクル浸漬試験に3ヶ月間供した。その結果、3ヶ月間でクラッド材に腐食貫通の生じなかったものを耐食性合格(○)とし、3ヶ月間で腐食貫通が生じたものを耐食性不合格(×)とした。
R2・・・圧延方向に沿った心材断面における圧延方向の結晶粒径
Claims (21)
- アルミニウム合金の心材と、当該心材の少なくとも一方の面にクラッドされた犠牲陽極材とを備えるアルミニウム合金クラッド材において、前記心材が、Si:0.05~1.50mass%、Fe:0.05~2.00mass%、Mn:0.50~2.00mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記犠牲陽極材が、Zn:0.50~8.00mass%、Si:0.05~1.50mass%、Fe:0.05~2.00mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記犠牲陽極材の結晶粒径が60μm以上であり、前記心材の圧延方向に沿った断面において、板厚方向の結晶粒径をR1(μm)とし、圧延方向の結晶粒径をR2(μm)としたとき、R1/R2が0.30以下であることを特徴とするアルミニウム合金クラッド材。
- 前記心材が、Cu:0.05~1.50mass%、Mg:0.05~0.50mass%、Ti:0.05~0.30mass%、Zr:0.05~0.30mass%、Cr:0.05~0.30mass%及びV:0.05~0.30mass%から選択される1種又は2種以上を更に含有するアルミニウム合金からなる、請求項1に記載のアルミニウム合金クラッド材。
- 前記犠牲陽極材が、Ni:0.05~2.00mass%、Mn:0.05~2.00mass%、Mg:0.05~3.00mass%、Ti:0.05~0.30mass%、Zr:0.05~0.30mass%、Cr:0.05~0.30mass%及びV:0.05~0.30mass%から選択される1種又は2種以上を更に含有するアルミニウム合金からなる、請求項1又は2に記載のアルミニウム合金クラッド材。
- アルミニウム合金の心材と、当該心材の一方の面にクラッドされた犠牲陽極材と、当該心材の他方の面にクラッドされたろう材とを備えるアルミニウム合金クラッド材において、前記心材が、Si:0.05~1.50mass%、Fe:0.05~2.00mass%、Mn:0.50~2.00mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記犠牲陽極材が、Zn:0.50~8.00mass%、Si:0.05~1.50mass%、Fe:0.05~2.00mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記ろう材が、Si:2.50~13.00mass%、Fe:0.05~1.20mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記犠牲陽極材の結晶粒径が60μm以上であり、前記心材の圧延方向に沿った断面において、板厚方向の結晶粒径をR1(μm)とし、圧延方向の結晶粒径をR2(μm)としたとき、R1/R2が0.30以下であることを特徴とするアルミニウム合金クラッド材。
- 前記ろう材が、Zn:0.50~8.00mass%、Cu:0.05~1.50mass%、Mn:0.05~2.00mass%、Ti:0.05~0.30mass%、Zr:0.05~0.30mass%、Cr:0.05~0.30mass%、V:0.05~0.30mass%、Na:0.001~0.050mass%及びSr:0.001~0.050mass%から選択される1種又は2種以上を更に含有するアルミニウム合金からなる、請求項4に記載のアルミニウム合金クラッド材。
- 前記心材が、Cu:0.05~1.50mass%、Mg:0.05~0.50mass%、Ti:0.05~0.30mass%、Zr:0.05~0.30mass%、Cr:0.05~0.30mass%及びV:0.05~0.30mass%から選択される1種又は2種以上を更に含有するアルミニウム合金からなる、請求項4又は5に記載のアルミニウム合金クラッド材。
- 前記犠牲陽極材が、Ni:0.05~2.00mass%、Mn:0.05~2.00mass%、Mg:0.05~3.00mass%、Ti:0.05~0.30mass%、Zr:0.05~0.30mass%、Cr:0.05~0.30mass%及びV:0.05~0.30mass%から選択される1種又は2種以上を更に含有するアルミニウム合金からなる、請求項4~6のいずれか一項に記載のアルミニウム合金クラッド材。
- アルミニウム合金の心材と、当該心材の一方の面にクラッドされた中間層材と、当該中間層材の心材側ではない面にクラッドされたろう材と、当該心材の他方の面にクラッドされた犠牲陽極材とを備えるアルミニウム合金クラッド材において、前記心材が、Si:0.05~1.50mass%、Fe:0.05~2.00mass%、Mn:0.50~2.00mass%、Mg:0.05~0.50mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記中間層材が、Si:0.05~1.50mass%、Fe:0.05~2.00mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記犠牲陽極材が、Zn:0.50~8.00mass%、Si:0.05~1.50mass%、Fe:0.05~2.00mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記ろう材が、Si:2.50~13.00mass%、Fe:0.05~1.20mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記犠牲陽極材の結晶粒径が60μm以上であり、前記心材の圧延方向に沿った断面において、板厚方向の結晶粒径をR1(μm)とし、圧延方向の結晶粒径をR2(μm)としたとき、R1/R2が0.30以下であることを特徴とするアルミニウム合金クラッド材。
- 前記ろう材が、Zn:0.50~8.00mass%、Cu:0.05~1.50mass%、Mn:0.05~2.00mass%、Ti:0.05~0.30mass%、Zr:0.05~0.30mass%、Cr:0.05~0.30mass%、V:0.05~0.30mass%、Na:0.001~0.050mass%及びSr:0.001~0.050mass%から選択される1種又は2種以上を更に含有するアルミニウム合金からなる、請求項8に記載のアルミニウム合金クラッド材。
- 前記心材が、Cu:0.05~1.50mass%、Ti:0.05~0.30mass%、Zr:0.05~0.30mass%、Cr:0.05~0.30mass%及びV:0.05~0.30mass%から選択される1種又は2種以上を更に含有するアルミニウム合金からなる、請求項8又は9に記載のアルミニウム合金クラッド材。
- 前記犠牲陽極材が、Ni:0.05~2.00mass%、Mn:0.05~2.00mass%、Mg:0.05~3.00mass%、Ti:0.05~0.30mass%、Zr:0.05~0.30mass%、Cr:0.05~0.30mass%及びV:0.05~0.30mass%から選択される1種又は2種以上を更に含有するアルミニウム合金からなる、請求項8~10のいずれか一項に記載のアルミニウム合金クラッド材。
- 前記中間層材が、Zn:0.50~8.00mass%、Mn:0.05~2.00mass%、Cu:0.05~1.50mass%、Ti:0.05~0.30mass%、Zr:0.05~0.30mass%、Cr:0.05~0.30mass%及びV:0.05~0.30mass%から選択される1種又は2種以上を更に含有するアルミニウム合金からなる、請求項8~11のいずれか一項に記載のアルミニウム合金クラッド材。
- アルミニウム合金の心材と、当該心材の一方の面にクラッドされた中間層材と、当該中間層材の心材側ではない面にクラッドされたろう材と、当該心材の他方の面にクラッドされた犠牲陽極材とを備えるアルミニウム合金クラッド材において、前記心材が、Si:0.05~1.50mass%、Fe:0.05~2.00mass%、Mn:0.50~2.00mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記中間層材が、Si:0.05~1.50mass%、Fe:0.05~2.00mass%、Zn:0.50~8.00%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記犠牲陽極材が、Zn:0.50~8.00mass%、Si:0.05~1.50mass%、Fe:0.05~2.00mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記ろう材が、Si:2.50~13.00mass%、Fe:0.05~1.20mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記犠牲陽極材の結晶粒径が60μm以上であり、前記心材の圧延方向に沿った断面において、板厚方向の結晶粒径をR1(μm)とし、圧延方向の結晶粒径をR2(μm)としたとき、R1/R2が0.30以下であることを特徴とするアルミニウム合金クラッド材。
- 前記ろう材が、Zn:0.50~8.00mass%、Cu:0.05~1.50mass%、Mn:0.05~2.00mass%、Ti:0.05~0.30mass%、Zr:0.05~0.30mass%、Cr:0.05~0.30mass%、V:0.05~0.30mass%、Na:0.001~0.050mass%及びSr:0.001~0.050mass%から選択される1種又は2種以上を更に含有するアルミニウム合金からなる、請求項13に記載のアルミニウム合金クラッド材。
- 前記心材が、Cu:0.05~1.50mass%、Mg:0.05~0.50mass%、Ti:0.05~0.30mass%、Zr:0.05~0.30mass%、Cr:0.05~0.30mass%及びV:0.05~0.30mass%から選択される1種又は2種以上を更に含有するアルミニウム合金からなる、請求項13又は14に記載のアルミニウム合金クラッド材。
- 前記犠牲陽極材が、Ni:0.05~2.00mass%、Mn:0.05~2.00mass%、Mg:0.05~3.00mass%、Ti:0.05~0.30mass%、Zr:0.05~0.30mass%、Cr:0.05~0.30mass%及びV:0.05~0.30mass%から選択される1種又は2種以上を更に含有するアルミニウム合金からなる、請求項13~15のいずれか一項に記載のアルミニウム合金クラッド材。
- 前記中間層材が、Mn:0.05~2.00mass%、Cu:0.05~1.50mass%、Ti:0.05~0.30mass%、Zr:0.05~0.30mass%、Cr:0.05~0.30mass%及びV:0.05~0.30mass%から選択される1種又は2種以上を更に含有するアルミニウム合金からなる、請求項13~16のいずれか一項に記載のアルミニウム合金クラッド材。
- 請求項1~3のいずれか一項に記載のアルミニウム合金クラッド材の製造方法であって、前記心材用及び犠牲陽極材用のアルミニウム合金をそれぞれ鋳造する工程と、鋳造した犠牲陽極材鋳塊を所定の厚さまで熱間圧延する熱間圧延工程と、心材鋳塊の少なくとも一方の面に所定の厚さとした犠牲陽極材をクラッドしてクラッド材とするクラッド工程と、クラッド材を熱間圧延する熱間クラッド圧延工程と、熱間圧延したクラッド材を冷間圧延する冷間圧延工程と、冷間圧延工程の途中及び冷間圧延工程の後の一方又は両方においてクラッド材を焼鈍する1回以上の焼鈍工程とを含み、前記熱間クラッド圧延工程において、圧延開始温度が400~520℃であり、クラッド材の温度が200~400℃である間に1パスでの圧下率が30%以上となる圧延パスを5回以下に制限し、前記焼鈍工程において、クラッド材が200~560℃で1~10時間保持されることを特徴とするアルミニウム合金クラッド材の製造方法。
- 請求項4~7のいずれか一項に記載のアルミニウム合金クラッド材の製造方法であって、前記心材用、犠牲陽極材用及びろう材用のアルミニウム合金をそれぞれ鋳造する工程と、鋳造した犠牲陽極材鋳塊及びろう材鋳塊を所定の厚さまでそれぞれ熱間圧延する熱間圧延工程と、心材鋳塊の一方の面に所定の厚さとした犠牲陽極材をクラッドし、他方の面に所定の厚さとしたろう材をクラッドしてクラッド材とするクラッド工程と、クラッド材を熱間圧延する熱間クラッド圧延工程と、熱間圧延したクラッド材を冷間圧延する冷間圧延工程と、冷間圧延工程の途中及び冷間圧延工程の後の一方又は両方においてクラッド材を焼鈍する1回以上の焼鈍工程とを含み、前記熱間クラッド圧延工程において、圧延開始温度が400~520℃であり、クラッド材の温度が200~400℃である間に1パスでの圧下率が30%以上となる圧延パスを5回以下に制限し、前記焼鈍工程において、クラッド材が200~560℃で1~10時間保持されることを特徴とするアルミニウム合金クラッド材の製造方法。
- 請求項8~17のいずれか一項に記載のアルミニウム合金クラッド材の製造方法であって、前記心材用、中間層材用、ろう材用及び犠牲陽極材用のアルミニウム合金をそれぞれ鋳造する工程と、鋳造した中間層材鋳塊、ろう材鋳塊及び犠牲陽極材鋳塊を所定の厚さまでそれぞれ熱間圧延する熱間圧延工程と、心材鋳塊の一方の面に所定の厚さとした中間層材をクラッドし、当該中間層材の心材側ではない面に所定の厚さとしたろう材をクラッドし、当該心材鋳塊の他方の面に所定の厚さとした犠牲陽極材をクラッドしてクラッド材とするクラッド工程と、クラッド材を熱間圧延する熱間クラッド圧延工程と、熱間圧延したクラッド材を冷間圧延する冷間圧延工程と、冷間圧延工程の途中及び冷間圧延工程の後の一方又は両方においてクラッド材を焼鈍する1回以上の焼鈍工程とを含み、前記熱間クラッド圧延工程において、圧延開始温度が400~520℃であり、クラッド材の温度が200~400℃である間に1パスでの圧下率が30%以上となる圧延パスを5回以下に制限し、前記焼鈍工程において、クラッド材が200~560℃で1~10時間保持されることを特徴とするアルミニウム合金クラッド材の製造方法。
- 請求項1~17のいずれか一項に記載のアルミニウム合金クラッド材を用いた熱交換器であって、ろう付加熱後における前記犠牲陽極材の結晶粒径が100μm以上であることを特徴とする熱交換器。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14831632.6A EP3029169B1 (en) | 2013-07-29 | 2014-07-23 | Aluminum-alloy clad member and method for producing the same |
CN201480040082.0A CN105378126B (zh) | 2013-07-29 | 2014-07-23 | 铝合金包层材料及其制造方法、以及使用该铝合金包层材料的热交换器 |
US14/906,269 US20160161199A1 (en) | 2013-07-29 | 2014-07-23 | Aluminum-alloy clad member, method for producing same, and heat exchanger using aluminum-alloy clad member |
JP2015529375A JP6006421B2 (ja) | 2013-07-29 | 2014-07-23 | アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器 |
US16/459,585 US11408690B2 (en) | 2013-07-29 | 2019-07-01 | Method for producing aluminum alloy clad material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013157060 | 2013-07-29 | ||
JP2013-157060 | 2013-07-29 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/906,269 A-371-Of-International US20160161199A1 (en) | 2013-07-29 | 2014-07-23 | Aluminum-alloy clad member, method for producing same, and heat exchanger using aluminum-alloy clad member |
US16/459,585 Division US11408690B2 (en) | 2013-07-29 | 2019-07-01 | Method for producing aluminum alloy clad material |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015015767A1 true WO2015015767A1 (ja) | 2015-02-05 |
Family
ID=52431326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/003878 WO2015015767A1 (ja) | 2013-07-29 | 2014-07-23 | アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器 |
Country Status (5)
Country | Link |
---|---|
US (2) | US20160161199A1 (ja) |
EP (1) | EP3029169B1 (ja) |
JP (1) | JP6006421B2 (ja) |
CN (1) | CN105378126B (ja) |
WO (1) | WO2015015767A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018071946A (ja) * | 2016-11-04 | 2018-05-10 | 株式会社Uacj押出加工 | オープンラック式気化器用アルミニウム合金伝熱管およびその製造方法並びにオープンラック式気化器 |
EP3321385B1 (en) | 2015-07-08 | 2020-08-26 | Denso Corporation | Aluminum alloy cladding material and manufacturing method therefor |
CN115637434A (zh) * | 2022-10-20 | 2023-01-24 | 常州大学 | 一种铝牺牲阳极合金及其制备方法 |
JP7568814B1 (ja) | 2023-10-31 | 2024-10-16 | Maアルミニウム株式会社 | アルミニウム合金材およびアルミニウム合金クラッド材 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9976201B2 (en) * | 2014-01-07 | 2018-05-22 | Uacj Corporation | Aluminum-alloy clad material and production method therefor, and heat exchanger using said aluminum-alloy clad material and production method therefor |
CN105814219B (zh) * | 2014-01-10 | 2018-09-11 | 株式会社Uacj | 铝合金包层材料及其制造方法、以及使用该铝合金包层材料的热交换器及其制造方法 |
CN106068332B (zh) * | 2014-03-19 | 2017-10-31 | 株式会社Uacj | 耐腐蚀性和钎焊性优异的铝合金包层材料及其制造方法 |
JP6418714B2 (ja) * | 2014-03-19 | 2018-11-07 | 株式会社Uacj | アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器及びその製造方法 |
JP2017029989A (ja) * | 2015-07-29 | 2017-02-09 | 株式会社Uacj | アルミニウム構造体の製造方法 |
JP6263574B2 (ja) * | 2016-05-30 | 2018-01-17 | 株式会社Uacj | ブレージングシート及びその製造方法並びにアルミニウム構造体のろう付方法 |
JP6055573B1 (ja) * | 2016-06-23 | 2016-12-27 | 三菱アルミニウム株式会社 | フラックスフリーろう付用のブレージングシート、フラックスフリーろう付方法および熱交換器のフラックスフリーろう付方法 |
CN107994292A (zh) * | 2017-11-27 | 2018-05-04 | 常州常发制冷科技有限公司 | 用于汽车电池散热的底冷板 |
CN110340330B (zh) * | 2018-04-08 | 2022-01-14 | 南京理工大学 | 一种多尺度析出异质层状结构铝合金的制备方法 |
CN109207759B (zh) * | 2018-10-31 | 2021-03-19 | 远东电缆有限公司 | 非时效型高强度高导电率铝合金架空导线及其制备方法 |
CN110257671B (zh) * | 2019-07-03 | 2021-05-28 | 张家港市宏基精密铝材科技有限公司 | 一种铝合金、铝扁管和铝扁管生产工艺 |
US11969830B2 (en) * | 2020-02-04 | 2024-04-30 | Kobe Steel, Ltd. | Aluminum alloy brazing sheet |
CN114592193A (zh) * | 2020-12-04 | 2022-06-07 | 中国石油化工股份有限公司 | 一种用于油管的牺牲阳极阴极保护器及其制备方法 |
CN113897523B (zh) * | 2021-10-15 | 2022-04-01 | 华峰铝业有限公司 | 一种可钎焊的高强度铝合金复合板材及其制备方法和应用 |
CN114058889B (zh) * | 2021-10-29 | 2022-09-16 | 上海工程技术大学 | 一种高强高韧超细晶铝合金的制备方法 |
CN114214543A (zh) * | 2021-12-06 | 2022-03-22 | 大力神铝业股份有限公司 | 一种提高复合板料焊后晶粒尺寸的材料及其制备工艺 |
FR3134584A1 (fr) * | 2022-04-19 | 2023-10-20 | Constellium Neuf-Brisach | Echangeur de chaleur à base d’un alliage d’aluminium obtenu par brasage |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08291354A (ja) | 1995-04-18 | 1996-11-05 | Furukawa Electric Co Ltd:The | 電縫加工用アルミニウム合金ブレージングシート条 |
JPH09184038A (ja) * | 1996-01-08 | 1997-07-15 | Furukawa Electric Co Ltd:The | アルミニウム合金ブレージングシート条の製造方法 |
JPH11209837A (ja) | 1998-01-23 | 1999-08-03 | Furukawa Electric Co Ltd:The | 熱交換器用犠牲防食アルミニウム合金及びこれを用いた熱交換器用アルミニウム合金複合材 |
JP2001340989A (ja) * | 2000-05-31 | 2001-12-11 | Kobe Steel Ltd | 成形性が優れたアルミニウム合金製ブレージングシート及びその製造方法 |
JP2010255014A (ja) | 2009-04-21 | 2010-11-11 | Sumitomo Light Metal Ind Ltd | アルミニウム合金製熱交換器の溶接チューブ用クラッド材およびその製造方法 |
JP2013036099A (ja) * | 2011-08-09 | 2013-02-21 | Mitsubishi Alum Co Ltd | 冷却器用クラッド材および発熱素子用冷却器 |
JP2014114475A (ja) * | 2012-12-07 | 2014-06-26 | Uacj Corp | アルミニウム合金ブレージングシート及びその製造方法、ならびに、当該アルミニウム合金ブレージングシートを用いた熱交換器 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6347349A (ja) * | 1986-08-18 | 1988-02-29 | Sky Alum Co Ltd | 平版印刷版用アルミニウム合金支持体 |
JPH058087A (ja) * | 1991-06-28 | 1993-01-19 | Furukawa Alum Co Ltd | 高強度アルミニウムブレージングシートの製造方法 |
JP3183545B2 (ja) * | 1991-10-09 | 2001-07-09 | 株式会社神戸製鋼所 | ブレージングシート用高強度アルミニウムろう材 |
JP3734302B2 (ja) | 1996-04-02 | 2006-01-11 | 神鋼アルコア輸送機材株式会社 | ろう付熱交換器用アルミニウム合金製ブレージングシート |
JP3533434B2 (ja) * | 1996-08-09 | 2004-05-31 | 古河スカイ株式会社 | アルミニウム合金製熱交換器用ブレージングシート |
JP2002001574A (ja) * | 2000-06-20 | 2002-01-08 | Kobe Steel Ltd | アルミニウム合金製ブレージングシート及びその製造方法 |
US6555251B2 (en) | 2000-12-21 | 2003-04-29 | Alcoa Inc. | Multi-layer, heat treatable brazing sheet with aluminum interlayer |
WO2005118899A1 (en) | 2004-05-26 | 2005-12-15 | Corus Aluminium Walzprodukte Gmbh | Process for producing an aluminium alloy brazing sheet, aluminium alloy brazing sheet |
EP1934013B2 (en) | 2005-10-13 | 2022-05-11 | Novelis Koblenz GmbH | Multi-layered brazing sheet |
US7749613B2 (en) * | 2006-04-21 | 2010-07-06 | Alcoa Inc. | Multilayer braze-able sheet |
JP4993440B2 (ja) * | 2006-06-07 | 2012-08-08 | 住友軽金属工業株式会社 | ろう付け性に優れた熱交換器用高強度アルミニウム合金クラッド材 |
JP2008013844A (ja) * | 2006-06-07 | 2008-01-24 | Nippon Light Metal Co Ltd | 熱交換器用アルミニウム合金クラッド材およびその製造方法 |
JP4996909B2 (ja) * | 2006-10-27 | 2012-08-08 | 古河スカイ株式会社 | アルミニウム合金ブレージングシートおよびその製造方法 |
JP4111456B1 (ja) | 2006-12-27 | 2008-07-02 | 株式会社神戸製鋼所 | 熱交換器用アルミニウム合金ブレージングシート |
JP2008216026A (ja) | 2007-03-05 | 2008-09-18 | Fujifilm Corp | ヘマトクリットの測定方法 |
JP5057439B2 (ja) * | 2007-04-13 | 2012-10-24 | 住友軽金属工業株式会社 | 耐久性に優れた高強度、高融点熱交換器用アルミニウム合金クラッド材とその製造方法、およびアルミニウム合金製熱交換器 |
JP4832354B2 (ja) * | 2007-04-13 | 2011-12-07 | 株式会社デンソー | 耐久性に優れた高強度、高融点熱交換器用アルミニウム合金クラッド材とその製造方法、およびアルミニウム合金製熱交換器 |
US8142907B2 (en) * | 2007-07-19 | 2012-03-27 | Furukawa-Sky Aluminum Corp | Aluminum alloy brazing sheet having high-strength and production method therefor |
JP4473908B2 (ja) | 2007-12-27 | 2010-06-02 | 株式会社神戸製鋼所 | 熱交換器用アルミニウム合金クラッド材、および、その製造方法 |
CN101918601A (zh) * | 2008-02-12 | 2010-12-15 | 株式会社神户制钢所 | 铝合金层合板 |
CN102471836B (zh) * | 2009-09-21 | 2014-06-18 | 古河Sky株式会社 | 高耐蚀性铝合金钎焊片材及其制造方法,以及使用其的高耐蚀性热交换器 |
JP5793336B2 (ja) * | 2010-09-21 | 2015-10-14 | 株式会社Uacj | 高強度アルミニウム合金ブレージングシート及びその製造方法 |
JP5893450B2 (ja) * | 2012-03-12 | 2016-03-23 | 株式会社Uacj | 熱交換器のヘッダ用アルミニウム合金製ブレージングシート、その製造方法及び熱交換器の製造方法 |
JP6047304B2 (ja) * | 2012-05-11 | 2016-12-21 | 株式会社Uacj | 高強度アルミニウム合金ブレージングシート及びその製造方法 |
US9976201B2 (en) * | 2014-01-07 | 2018-05-22 | Uacj Corporation | Aluminum-alloy clad material and production method therefor, and heat exchanger using said aluminum-alloy clad material and production method therefor |
CN105814219B (zh) * | 2014-01-10 | 2018-09-11 | 株式会社Uacj | 铝合金包层材料及其制造方法、以及使用该铝合金包层材料的热交换器及其制造方法 |
-
2014
- 2014-07-23 WO PCT/JP2014/003878 patent/WO2015015767A1/ja active Application Filing
- 2014-07-23 JP JP2015529375A patent/JP6006421B2/ja active Active
- 2014-07-23 US US14/906,269 patent/US20160161199A1/en not_active Abandoned
- 2014-07-23 EP EP14831632.6A patent/EP3029169B1/en active Active
- 2014-07-23 CN CN201480040082.0A patent/CN105378126B/zh active Active
-
2019
- 2019-07-01 US US16/459,585 patent/US11408690B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08291354A (ja) | 1995-04-18 | 1996-11-05 | Furukawa Electric Co Ltd:The | 電縫加工用アルミニウム合金ブレージングシート条 |
JPH09184038A (ja) * | 1996-01-08 | 1997-07-15 | Furukawa Electric Co Ltd:The | アルミニウム合金ブレージングシート条の製造方法 |
JPH11209837A (ja) | 1998-01-23 | 1999-08-03 | Furukawa Electric Co Ltd:The | 熱交換器用犠牲防食アルミニウム合金及びこれを用いた熱交換器用アルミニウム合金複合材 |
JP2001340989A (ja) * | 2000-05-31 | 2001-12-11 | Kobe Steel Ltd | 成形性が優れたアルミニウム合金製ブレージングシート及びその製造方法 |
JP2010255014A (ja) | 2009-04-21 | 2010-11-11 | Sumitomo Light Metal Ind Ltd | アルミニウム合金製熱交換器の溶接チューブ用クラッド材およびその製造方法 |
JP2013036099A (ja) * | 2011-08-09 | 2013-02-21 | Mitsubishi Alum Co Ltd | 冷却器用クラッド材および発熱素子用冷却器 |
JP2014114475A (ja) * | 2012-12-07 | 2014-06-26 | Uacj Corp | アルミニウム合金ブレージングシート及びその製造方法、ならびに、当該アルミニウム合金ブレージングシートを用いた熱交換器 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3321385B1 (en) | 2015-07-08 | 2020-08-26 | Denso Corporation | Aluminum alloy cladding material and manufacturing method therefor |
JP2018071946A (ja) * | 2016-11-04 | 2018-05-10 | 株式会社Uacj押出加工 | オープンラック式気化器用アルミニウム合金伝熱管およびその製造方法並びにオープンラック式気化器 |
CN115637434A (zh) * | 2022-10-20 | 2023-01-24 | 常州大学 | 一种铝牺牲阳极合金及其制备方法 |
JP7568814B1 (ja) | 2023-10-31 | 2024-10-16 | Maアルミニウム株式会社 | アルミニウム合金材およびアルミニウム合金クラッド材 |
Also Published As
Publication number | Publication date |
---|---|
US11408690B2 (en) | 2022-08-09 |
JPWO2015015767A1 (ja) | 2017-03-02 |
US20190323788A1 (en) | 2019-10-24 |
US20160161199A1 (en) | 2016-06-09 |
EP3029169B1 (en) | 2019-02-27 |
JP6006421B2 (ja) | 2016-10-12 |
EP3029169A1 (en) | 2016-06-08 |
CN105378126A (zh) | 2016-03-02 |
CN105378126B (zh) | 2018-02-06 |
EP3029169A4 (en) | 2017-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6006421B2 (ja) | アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器 | |
JP6452626B2 (ja) | アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器及びその製造方法 | |
JP6452627B2 (ja) | アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器及びその製造方法 | |
JP6418714B2 (ja) | アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器及びその製造方法 | |
JP5793336B2 (ja) | 高強度アルミニウム合金ブレージングシート及びその製造方法 | |
US20110240280A1 (en) | Aluminum alloy brazing sheet and heat exchanger | |
JP5913853B2 (ja) | アルミニウム合金ブレージングシートおよびその製造方法 | |
WO2017141921A1 (ja) | アルミニウム合金ブレージングシート及びその製造方法、ならびに、当該ブレージングシートを用いた自動車用熱交換器の製造方法 | |
JP5985973B2 (ja) | アルミニウム合金ブレージングシート及びその製造方法、ならびに、当該アルミニウム合金ブレージングシートを用いた熱交換器 | |
JP5188116B2 (ja) | 高強度アルミニウム合金ブレージングシートおよびその製造方法 | |
WO2017170204A1 (ja) | 熱交換器用アルミニウム合金製ブレージングシート及びその製造方法 | |
WO2018110320A1 (ja) | アルミニウム合金ブレージングシート及びその製造方法 | |
JP2009215643A (ja) | 疲労特性に優れたアルミニウム合金積層板 | |
WO2013024732A1 (ja) | ろう付け後の強度及び耐食性に優れた熱交換器用アルミニウム合金フィン材 | |
JP2017066494A (ja) | 熱交換器用アルミニウム合金材及びその製造方法 | |
JP6351205B2 (ja) | 高耐食性アルミニウム合金ブレージングシート | |
JP2017020108A (ja) | アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器 | |
JP2010018872A (ja) | ろう付性に優れたアルミニウム合金ブレージングシート | |
JP2017057497A (ja) | 熱交換器用アルミニウム合金フィン材及びその製造方法、ならびに、当該アルミニウム合金フィン材を用いた熱交換器 | |
JP2017172025A (ja) | 熱交換器用アルミニウム合金クラッド材 | |
JP2017110266A (ja) | ろう付け後の強度に優れたアルミニウム合金製ブレージングシート | |
WO2017047514A1 (ja) | 熱交換器用アルミニウム合金フィン材及びその製造方法、ならびに、当該アルミニウム合金フィン材を用いた熱交換器及びその製造方法 | |
WO2017007019A1 (ja) | アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器 | |
WO2017007020A1 (ja) | アルミニウム合金クラッド材及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14831632 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015529375 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014831632 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14906269 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016000148 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112016000148 Country of ref document: BR Kind code of ref document: A2 Effective date: 20160105 |