WO2015008859A2 - 反応体、発熱装置及び発熱方法 - Google Patents

反応体、発熱装置及び発熱方法 Download PDF

Info

Publication number
WO2015008859A2
WO2015008859A2 PCT/JP2014/069198 JP2014069198W WO2015008859A2 WO 2015008859 A2 WO2015008859 A2 WO 2015008859A2 JP 2014069198 W JP2014069198 W JP 2014069198W WO 2015008859 A2 WO2015008859 A2 WO 2015008859A2
Authority
WO
WIPO (PCT)
Prior art keywords
reactant
metal
reaction furnace
hydrogen storage
wound
Prior art date
Application number
PCT/JP2014/069198
Other languages
English (en)
French (fr)
Other versions
WO2015008859A3 (ja
Inventor
水野 忠彦
Original Assignee
水素技術応用開発株式会社
株式会社クリーンプラネット
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 水素技術応用開発株式会社, 株式会社クリーンプラネット filed Critical 水素技術応用開発株式会社
Priority to BR112016000822-7A priority Critical patent/BR112016000822B1/pt
Priority to CN201480040068.0A priority patent/CN105493196B/zh
Priority to TW103124876A priority patent/TWI643207B/zh
Priority to RU2016105246A priority patent/RU2671005C2/ru
Priority to ES14825637T priority patent/ES2735014T3/es
Priority to CA2918343A priority patent/CA2918343A1/en
Priority to EP14825637.3A priority patent/EP3023991B1/en
Priority to AU2014291181A priority patent/AU2014291181B2/en
Priority to JP2015527347A priority patent/JPWO2015008859A1/ja
Priority to KR1020167004083A priority patent/KR102222184B1/ko
Priority to US14/905,426 priority patent/US20160155518A1/en
Publication of WO2015008859A2 publication Critical patent/WO2015008859A2/ja
Publication of WO2015008859A3 publication Critical patent/WO2015008859A3/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/11Details
    • G21B1/19Targets for producing thermonuclear fusion reactions, e.g. pellets for irradiation by laser or charged particle beams
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/11Details
    • G21B1/17Vacuum chambers; Vacuum systems
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B3/00Low temperature nuclear fusion reactors, e.g. alleged cold fusion reactors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B3/00Low temperature nuclear fusion reactors, e.g. alleged cold fusion reactors
    • G21B3/002Fusion by absorption in a matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Definitions

  • the present invention relates to a reactant, a heating device and a heating method.
  • Non-Patent Document 1 the cold fusion reaction that causes a fusion reaction at room temperature is more than the heat generated by electrolysis when heavy water is electrolyzed using a Pd electrode or a Ti electrode as a cathode and a Pt electrode as an anode.
  • the ⁇ rays and neutrons can be observed at the same time.
  • abnormal excessive heat is generated during the reaction. Therefore, if the exothermic phenomenon can be controlled, the exothermic phenomenon can be used as a heat source of the heat generating device.
  • an object of the present invention is to provide a reactant, a heating device, and a heating method that can generate heat more stably than in the past.
  • the reactant shown in claim 1 of the present invention is a reactant installed in a reactor of a deuterium gas atmosphere, a heavy water gas atmosphere, a light hydrogen gas atmosphere, or a light water gas atmosphere, A plurality of metal nano-projections formed of a hydrogen storage metal and having a nano size of 1000 [nm] or less are formed on the surface.
  • the heating device is a reaction furnace in which any one of deuterium gas, heavy water gas, light hydrogen gas, or light water gas is supplied into a furnace maintained in a vacuum state; And a reactant made of a hydrogen storage metal having a surface on which a plurality of metal nano-projections having a nano size of 1000 [nm] or less are formed. Or hydrogen is occluded in the metal nano-projections by generating the reaction or heating the reactant.
  • a heat generation method in which plasma is generated in a reaction furnace in which a reactant made of a hydrogen storage metal is installed or the reactant is heated, and the gas supply means is used.
  • a plurality of metal nano-projections having the following nano size are provided with a heat generation step in which hydrogen atoms are occluded and the reactant generates heat while generating neutrons.
  • hydrogen atoms are occluded in the metal nano-projections of the reactant, and electrons in the metal nano-projections are strongly strengthened by surrounding metal atoms and other electrons. It acts as a heavy electron under the influence, and as a result, the internuclear distance between hydrogen atoms in the metal nanoconvex portion is reduced, and the probability of the tunnel fusion reaction occurring can be increased, and thus heat is more stable than before. Can be generated.
  • FIG. 6A is an SEM photograph showing the state of the surface of the reactant before the plasma treatment
  • FIG. 6B is the state of the surface of the wound reactant before the plasma treatment. It is a SEM photograph shown.
  • FIG. 9A and 9B are SEM photographs in which the surface of the wound reactant is enlarged. It is a graph which shows the voltage applied to the winding type reaction body in the verification test using the heat generating apparatus by 2nd Embodiment. It is a graph which shows the temperature measurement result of a winding type reactant in the verification test using the heat generating device by a 2nd embodiment. It is the schematic which shows the structure of the heat generating apparatus by 3rd Embodiment. It is the schematic which shows the structure of the reactant by other embodiment.
  • FIG. 14A is a graph showing the mass distribution of deuterium gas
  • FIG. 14B is a graph showing the gas components in the reactor 10 ks after the verification test. It is a graph which shows the increase / decrease amount of the gas component with progress of time. It is the graph which expanded a part of graph of FIG.
  • reference numeral 1 denotes a heating device according to the first embodiment.
  • the reaction body 26 is provided in the reaction furnace 2 as an electrode pair, and causes a nuclear fusion reaction in the reaction furnace 2 at room temperature, thereby generating heat.
  • a tubular heat transport pipe 32 is spirally wound around the reaction furnace 2 along the outer wall of the reaction furnace 2.
  • a fluid such as water flows from the supply port 32a toward the discharge port 32b, and the fluid flowing in the heat transport pipe 32 is heated and heated by the heat generated in the furnace.
  • the fluid can be discharged as it is from the discharge port 32b and sent to, for example, a power generator (not shown) to use the heat of the fluid for power generation or the like.
  • the reaction furnace 2 is provided with a gas supply means 3, and deuterium gas (purity 99.99%) is supplied as a reaction gas into the furnace through the gas supply pipe 8 from the gas supply means 3. Can be done.
  • the gas supply means 3 has a deuterium gas cylinder 5 and a gas reservoir 6. After storing the high-pressure deuterium gas discharged from the deuterium gas cylinder 5 in the gas reservoir 6, the deuterium gas is stored at about 1 atm. The pressure can be reduced to 2 and supplied into the reactor 2.
  • the gas supply pipe 8 is provided with an open / close valve 7 and a pressure measuring means 15 via a branch part 16.
  • the amount of deuterium gas supplied into the furnace can be adjusted by opening / closing the opening / closing valve 7 and adjusting the opening / closing amount.
  • the pressure measuring means 15 provided in the gas supply pipe 8 can measure the pressure in the gas supply pipe 8 and can send the pressure measurement data obtained thereby to the logger 17 as the pressure in the reaction furnace 2. .
  • the reactor 2 is provided with a vacuum exhaust means 10 through a vacuum exhaust pipe 13.
  • the gas in the furnace is exhausted to the outside by the vacuum exhaust means 10, the inside of the furnace can be in a vacuum atmosphere, the open / close valve 11 provided in the vacuum exhaust pipe 13 is closed, and the inside of the furnace is kept in a vacuum state. obtain.
  • the reactor 2 can be in a state in which the deuterium gas is filled into the furnace maintained in a vacuum state by supplying the deuterium gas from the gas supply means 3 into the furnace.
  • thermocouple 18 for measuring the temperature of the reaction furnace 2 is provided on the outer wall surface of the reaction furnace 2.
  • a neutron measuring means 19 for measuring neutrons radiated from the reaction furnace 2 is arranged outside the reaction furnace 2.
  • the thermocouple 18 and the neutron measuring means 19 are connected to a logger 17, and the logger 17 is described above in addition to the temperature measurement data obtained from the thermocouple 18 and the neutron measurement data obtained from the neutron measurement means 19.
  • Pressure measurement data obtained from the pressure measurement means 15 can be collected and sent to the computer 21.
  • the computer 21 displays these data collected via the logger 17 on the display unit, and allows the operator to grasp the state in the reaction furnace 2 based on the data.
  • the reaction furnace 2 includes, for example, a cylindrical portion 2a formed of stainless steel (SUS306 or SUS316) and wall portions 2b and 2c formed of stainless steel (SUS306 or SUS316). Both end openings of 2a are closed by walls 2b and 2c via gaskets (not shown), and a sealed space can be formed by the cylindrical part 2a and the walls 2b and 2c.
  • the cylindrical portion 2a is provided with an opening 29 in the side surface portion, for example, a hollow region of the cylindrical opening visual recognition portion 30 made of stainless steel (SUS306 or SUS316) or the like. One end of the opening visually recognizing part 30 is joined to the side part so as to communicate with the opening 29.
  • the opening visual recognition part 30 has a window part 31 formed of a transparent member such as Kovar glass fitted in the other end, and maintains a sealed state in the furnace while the hollow part from the window part 31 and the opening part 29.
  • the operator can directly visually check the inside of the reaction furnace 2 through the above.
  • the reaction furnace 2 has, for example, a cylindrical portion 2a formed in a cylindrical shape, a total length (between the wall portions 2b and 2c) of 300 [mm], and an outer diameter of the cylindrical portion 2a. Is selected to be 110 [mm].
  • an electrode pair composed of a wound type reactant 25 and a reactant 26 is disposed in the reactor of the reactor 2, and plasma can be generated by glow discharge generated by the electrode pair. It is made like that.
  • the reaction furnace 2 is provided with an opening 28 in one wall 2b, and a rod-shaped wound reactant 25 is inserted into the opening 28, and the wound reactor 25 is placed in the furnace. Can be placed within.
  • the wall 2 b is closed by the insulating member 27 so that the opening 28 is closed by the insulating member 27 provided in the opening 28 and the wound reactant 25 is not in contact with the opening 28.
  • the winding type reactant 25 is held, and the winding type reactant 25 and the reaction furnace 2 are electrically insulated while maintaining a sealed state in the reaction furnace 2.
  • one end of the wound reactant 25 is exposed to the outside of the reaction furnace 2 from the opening 28 of the wall 2b, and the power source 20 is connected to the one end via the wiring 22a.
  • a voltage may be applied from the power source 20.
  • the power supply 20 further includes another wiring 22 b, which is connected to the wall portion 2 b of the reaction furnace 2, and can apply a voltage to the reaction furnace 2.
  • the power source 20 is connected to a computer 21 via a logger 17, and output voltage and the like are collected by the logger 17, which is sent to the computer 21, and the output voltage and the like are managed by the computer 21. .
  • the reactor 2 has a configuration in which the reactant 26 is in contact with the inner wall surface of the cylindrical portion 2a, and reacts the voltage from the power source 20 via the cylindrical portion 2a. Can be applied to the body 26. Thereby, the wound reactant 25 and the reactant 26 can generate glow discharge in the reaction furnace 2 by the voltage applied from the power source 20.
  • the reactant 26 is formed in a cylindrical shape by a hydrogen storage metal including, for example, Ni, Pd, Pt, Ti, or an alloy containing at least one of these elements. It can be installed along the inner wall of the reaction furnace 2 so that the outer surface covers the inner wall of the cylindrical portion 2a of the reaction furnace 2.
  • the reactant 26 covers the inner wall of the cylindrical portion 2a in the reaction furnace 2, so that when the plasma is generated by the electrode pair, electron irradiation to the cylindrical portion 2a causes an element (for example, a stainless steel tube) from the cylindrical portion 2a.
  • the shape part 2a it is possible to suppress the release of iron, light elements, oxygen, nitrogen, carbon, etc.) into the furnace.
  • the surface of the reactant 26 is formed in a mesh shape with fine lines, and a plurality of metal nanoparticles (not shown) having a nanosize with a width of 1000 [nm] or less are fine lines.
  • the surface is formed in a concavo-convex shape.
  • this reactant 26 when this reactant 26 generates plasma by glow discharge in the furnace by the wound reactant 25 and the reactant 26 in the deuterium gas atmosphere (at the time of exothermic reaction treatment described later), by plasma treatment or the like, It is desirable that the oxide film on the surface is removed in advance so that hydrogen atoms (deuterium atoms) can be occluded in the metal nanoparticles, and the metal nanoparticles on the surface are activated.
  • a plurality of nano-sized metal nanoparticles are formed on the surface of the reactant 26 functioning as an electrode, so that it is glowed by the wound reactant 25 and the reactant 26 in a deuterium gas atmosphere.
  • a discharge is generated, hydrogen atoms are occluded in the metal nanoparticles, and the electrons in the nano-sized metal nanoparticles are strongly influenced by surrounding metal atoms and other electrons, acting as heavy electrons.
  • the internuclear distance between the hydrogen atoms in the metal nanoparticles is reduced, and a fusion reaction that generates heat while emitting neutrons in the reaction furnace 2 can be caused.
  • a plurality of metal nanoparticles having a nano size are formed on the surface of the reactant 26.
  • the present invention is not limited to this, and before the reactant 26 is installed in the reaction furnace 2, the reactant 26 is subjected to sputtering treatment, etching treatment, or the like, and the surface of the reactant 26 is nano-sized.
  • a plurality of metal nanoparticles may be formed in advance, and the reactant 26 having the metal nanoparticles formed on the surface thereof may be installed in the reaction furnace 2.
  • the surface of the reactant 26 has a shape in which a part of a spherical particle, elliptical particle, or egg-like particle is embedded in the surface (for example, a hemispherical shape, a semi-elliptical shape, or a semi-oval shape).
  • a plurality of metal nanoparticles having a curved surface is formed.
  • the reactant 26 is formed so that metal nanoparticles are in contact with each other on the surface, and a plurality of metal nanoparticles are formed so as to be densely packed.
  • metal nanoparticles there are also metal nanoparticles in which fine metal nanoparticles having a width (particle diameter) of 1 to 10 [nm] are further formed on the curved surface of the metal nanoparticles. It can be formed such that minute metal nanoparticles having a width of 1 to 10 [nm] are scattered on the uneven surface made of metal nanoparticles.
  • Such metal nanoparticles are formed in a nano size having a width of 1000 [nm] or less, preferably 300 [nm] or less, more preferably 10 [nm] or less, and further 5 [nm] or less. Desirably, by reducing the width of the metal nanoparticles, a fusion reaction can easily occur in the reaction furnace 2 with a small supply amount of deuterium gas.
  • the width (particle size) of the metal nanoparticles is most preferably 1 to It is desirable that the distance between these fine metal nanoparticles at 10 [nm] is such that they are not in contact with each other by thermal motion, preferably at least 3 times the particle size.
  • fine metal nanoparticles having a width (particle diameter) of 1 to 10 [nm] are formed on the surface of the reactant 26 so as to be scattered with fine metal nanoparticles, for example, 1 [cm]. It is preferable that 4 ⁇ 10 8 are formed per 2 ].
  • the thickness of the reactant 26 exceeds 1.0 [mm], it becomes difficult to form nano-sized metal nanoparticles on the surface.
  • the thickness is preferably 1.0 [mm] or less, more preferably 0.3 [mm] or less, and still more preferably 0.1 [mm] or less.
  • the reactant 26 is formed in a mesh shape with fine lines, the thickness can be easily reduced by using fine lines having a small diameter, and metal nanoparticles can be formed.
  • the surface area of the surface to be produced can also be increased.
  • the surface of the reactant 26 is preferably selected so that the width of one mesh is 10 to 30 [mm].
  • the wound reactant 25 constituting the electrode pair with the reactant 26 is, for example, hydrogen containing Pt, Ni, Pd, Ti, or an alloy containing at least one of these elements.
  • a thin wire 36 made of a hydrogen storage metal including Pt, Ni, Pd, Ti, or an alloy containing at least one of these elements spirals around the shaft portion 35 that is a support portion made of the storage metal.
  • the shaft portion 35 is arranged on the central axis of the cylindrical portion 2a.
  • the distance between the wound reactant 25 and the reactant 26 can be selected from 10 to 50 [mm].
  • the wound reactant 25 has a shaft portion 35 having a diameter of 3 [mm] and a length of 200 [mm] made of Ni, and a thin wire 36 having a diameter of 1.0 [mm].
  • the distance from the thin line 36 to the reactant 26 is selected to be 50 [mm].
  • Electrons (free electrons) are strongly influenced by surrounding metal atoms and other electrons and act as heavy electrons. As a result, the internuclear distance between hydrogen atoms in the metal nanoparticles is reduced, and reactor 2 A fusion reaction that generates heat while emitting neutrons inside can be caused.
  • the heating device 1 of the present invention forms a plurality of nano-sized metal nanoparticles on the surface of the reactant 26 and the wound reactant 25 described above, and the reactant 26.
  • plasma treatment for activating the surface of the wound reactant 25 can be performed.
  • the heat generating device 1 is, for example, when a reactant or a wound type reactant in which metal nanoparticles are not formed on the surface is installed in the reaction furnace 2, first, a closed space is formed as a plasma treatment.
  • the gas in the reaction furnace 2 is evacuated and the pressure in the furnace is set to 10 to 500 [Pa] (for example, about 100 [Pa]).
  • the heat generating device 1 applies a voltage of 600 to 1000 [V] (for example, about 1000 [V]) to the electrode pair using, for example, the wound-type reactant 25 as an anode and the reactant 26 as a cathode. Discharge is caused to generate plasma in the reaction furnace 2. At this time, the temperature of the reactant 26 used as the cathode can be raised to, for example, 500 to 600 [° C.].
  • the heat generating device 1 causes the nano discharge on the surface of the reactant 26 or the wound reactant 25 by continuously causing glow discharge in such a vacuum atmosphere for 600 seconds to 100 hours (preferably 10 hours or more). A plurality of metal nanoparticles can be formed and activated by removing the oxide film on the surface of the reactant 26 and the wound reactant 25.
  • the winding reactant 25 is used as an anode and the reactant 26 is used as a cathode to generate plasma, but thereafter, the polarities of the winding reactant 25 and the reactant 26 are continued.
  • plasma may be generated using the wound reactant 25 as a cathode and the reactant 26 as an anode.
  • a voltage of 600 to 1000 [V] (for example, about 1000 [V]) is applied to the electrode pair.
  • the temperature of both the wound reactant 25 serving as the cathode and the reactant 26 serving as the anode can be reliably activated by raising the temperature to, for example, 500 to 600 [° C.].
  • the heat generating apparatus 1 it is desirable for the heat generating apparatus 1 to perform the heat treatment on the wound reactant 25 and the reactant 26 after performing the above-described plasma treatment.
  • this heat treatment for example, the wound reactant 25 and the reactant 26 are directly heated by a heater, and light hydrogen, H 2 O, and a hydrocarbon-based gas are released from the wound reactant 25 and the reactant 26, Hydrogen atoms can be easily stored.
  • such heat treatment is desirably performed until light hydrogen, H 2 O, and hydrocarbon-based gas are no longer released from the wound reactant 25 and the reactant 26, for example, at 100 to 200 [° C.]. It is desirable to carry out for 3 hours or more.
  • the reactant 26 is immersed in aqua regia at room temperature or in a mixed acid for several minutes before the metal nanoparticles are formed.
  • finer metal nanoparticles can be formed.
  • the exothermic device 1 uses the reactant 26 having a plurality of nano-sized metal nanoparticles formed on the surface thereof to cause a fusion reaction in the reaction furnace 2.
  • An exothermic reaction treatment can be performed.
  • deuterium gas is generated in the reaction furnace 2 by the gas supply means 3 while maintaining the inside of the reaction furnace 2 in a vacuum state as an exothermic reaction process following the plasma processing described above. Can be supplied.
  • the wound reactant 25 and the reactant 26 are supplied with 400 to 1500 [V], preferably 600 to 1000 [V], more preferably. Can apply a voltage of 700 to 800 [V] to cause glow discharge in the electrode pair to generate plasma in the reaction furnace 2.
  • the heat generating apparatus 1 while generating plasma in the reaction furnace 2, hydrogen atoms are occluded in the metal nanoparticles on the surface of the wound reactant 25 and the reactant 26, and a fusion reaction occurs. obtain.
  • the heat generating apparatus 1 of the present invention when a plasma is generated in the reaction furnace 2 during the exothermic reaction process, a nuclear fusion reaction occurs in the reaction furnace 2. Fine metal nanoparticles are newly formed on the surface of the body 25, hydrogen atoms are also occluded in the newly formed metal nanoparticles, and a nuclear fusion reaction can occur.
  • deuterium requires a high temperature of about 10 7 K or higher
  • light hydrogen requires a high temperature of about 1.5 ⁇ 10 7 K or higher.
  • Probability is extremely low at 10 -31 / s / atom pair.
  • electrons in the metal nanoparticles are the surrounding metal atoms or other electrons. Strongly affected. That is, by introducing hydrogen atoms into the metal nanoparticles, the hydrogen concentration in the metal nanoparticles increases, and when the hydrogen concentration increases, the properties of the electrons in the metal nanoparticles further change and the mass becomes a large value. Heavy electrons form atoms with hydrogen nuclei, and when heavy electrons become extranuclear electrons, the electron orbit radius decreases and the internuclear distance between heavy electron hydrogen atoms also decreases.
  • the probability of occurrence of a fusion reaction between heavy electron hydrogen atoms due to the tunnel effect is increased, and the fusion reaction is likely to occur.
  • the probability of occurrence of a fusion reaction due to the tunnel effect increases by 10 orders of magnitude, and the fusion reaction can easily occur.
  • the reactant 26 may be, for example, alkalis or alkaline earth atoms (for example, Li, Na, K, Ca, etc. having a hydrogen atom structure). May be attached to the surface of the metal nanoparticle, whereby the electron transfer action in the metal nanoparticle can be greatly increased, and the probability of occurrence of a fusion reaction can be further increased.
  • the fusion reaction can be stably caused in this way, and the heat can be stably generated by the large energy generated during the fusion reaction.
  • a heating device 1 as shown in FIG. 1 is prepared, the above-described plasma processing and exothermic reaction processing are performed, neutron measurement around the reactor 2, Temperature measurement was performed.
  • a reactant made of Ni (purity 99.9%) in which a plurality of nano-sized metal nanoparticles were not formed was prepared and installed in the reaction furnace 2.
  • the inside of the reaction furnace 2 was evacuated by the evacuation means 10 to set the inside of the reaction furnace 2 to about 10 ⁇ 6 atm.
  • the glow discharge was once stopped and the deuterium gas was replenished in the reaction furnace 2, and then the electrode pair was sufficiently cooled, and a voltage of 1 [kV] was applied to the electrode pair again to generate the glow discharge. .
  • the neutron measurement means 19 began to measure neutrons again, and thereafter, the neutrons were continuously measured for several hours.
  • the measurement results of neutrons are shown in FIG.
  • FIG. 3 in this heating device 1, neutrons are generated abruptly after a voltage is supplied to the electrode pair to cause glow discharge. It was speculated that a fusion reaction was taking place.
  • the number of neutrons generated can be controlled by the discharge voltage of the electrode pair, and it was confirmed that the number of generated neutrons increased with an exponential function of the voltage. Incidentally, the generation of stable neutrons by the supply voltage, 106 was obtained. When an exothermic reaction was continued for 200 seconds was 10 5 pieces was calculated neutron generation amount per unit area of the reactant 26.
  • FIG. 4 when the temperature of the reactor 2 was measured with the thermocouple 18 simultaneously with the measurement of neutrons, the result as shown in FIG. 4 was obtained. From FIG. 4, it was confirmed that the temperature of the reaction furnace 2 was increased after the generation of neutrons. Thus, it was confirmed that the heating device 1 could generate heat from the reaction furnace 2. The reason why the temperature rise was measured after the generation of neutrons was because the location of the heat generation and the location of the thermocouple 18 were shifted, and the temperature rise was delayed by the time required for heat conduction. .
  • ⁇ T1 to ⁇ T5 indicate portions provided at predetermined intervals along the cylindrical portion 2a of the reaction furnace 2. Incidentally, the current flowing between the electrode pair at this time was 30 [mA]. That is, the power is 30 [W]. From this, the heat generation amount was 1 [kW], and the heat generation amount with respect to the input reached 33 times.
  • the inside of the reaction furnace 2 is made a vacuum atmosphere before the exothermic reaction treatment is performed.
  • a plurality of nano-sized metal nanoparticles can be formed on the surface of the reactant 26 by performing plasma treatment for generating plasma in the reaction furnace 2 by glow discharge generated by the mold reactant 25 and the reactant.
  • the oxide film on the surface of the reactant 26 can be removed.
  • hydrogen atoms react with the surface of the reactant 26.
  • the active state which can be occluded in the metal nanoparticle of the body 26 can be made, and a nuclear fusion reaction can be caused.
  • the thickness of the surface can be easily reduced simply by reducing the diameter of the fine lines. Can be formed into an optimum thickness that facilitates the formation of a plurality of nano-sized metal nanoparticles.
  • the surface is formed in a mesh shape, so that the surface area can be increased, and accordingly, the formation region of the metal nanoparticles that occlude hydrogen atoms can be widened, and the number of reaction sites that generate heat is increased. Can do.
  • a voltage is applied from the power source 20 to the reaction furnace 2 via the wiring 22b, and the reactant 26 is in contact with the inner wall of the reaction furnace 2 so that the reactant 26 is in contact with the inner wall of the reaction furnace 2.
  • the reactant 26 function as an electrode, it is possible to prevent the inner wall of the reaction furnace 2 from being scraped by electron irradiation due to glow discharge at the same time as the reactant 26.
  • a plurality of nano-sized metal nanoparticles are also formed on the surface of the thin wire 36 of the wound reactant 25 made of a hydrogen storage metal.
  • hydrogen atoms are also occluded in the metal nanoparticles on the surface of the thin wire 36 of the wound reactant 25, and the electrons in the metal nanoparticles are strongly influenced by surrounding metal atoms and other electrons. It acts as a heavy electron, and as a result, the internuclear distance between hydrogen atoms in the metal nanoparticle is reduced, and the probability that a tunnel fusion reaction will occur can be increased.
  • the reactant 26 in which a plurality of metal nanoparticles (metal nano-projections) having a nano size of 1000 nm or less and made of a hydrogen storage metal are formed on the surface becomes a deuterium gas atmosphere.
  • metal nanoparticles metal nano-projections
  • the electrons in the metal nanoparticles are strongly influenced by surrounding metal atoms and other electrons, and heavy atoms are absorbed.
  • the internuclear distance between the hydrogen atoms in the metal nanoparticle is reduced, and the probability of the tunnel fusion reaction occurring can be increased.
  • heat can be generated more stably than in the past.
  • FIG. 5 in which parts corresponding to those in FIG.
  • the heat generating apparatus which concerns on a form is shown,
  • the structure of the reaction furnace 42 and the structure of an electrode pair are different from 1st Embodiment.
  • the heat generating device 41 according to the second embodiment during the exothermic reaction process, the inside of the reaction furnace 42 is heated by the heater without generating plasma by the electrode pair, and the deuterium gas is put into the heated reaction furnace 42. Is different from the heat generating device according to the first embodiment described above in that excess heat equal to or higher than the heating temperature is generated.
  • this heat generating device 41 after excessive heat is generated, plasma is generated by the electrode pair, so that the heat generation temperature further rises and deuterium gas is supplied into the reaction furnace 42 even when the plasma is stopped. As long as it continues, it is different from 1st Embodiment also in the point which can generate
  • the reaction furnace 42 includes a cylindrical portion 43a and wall portions 43b and 43c formed of, for example, stainless steel (SUS306 or SUS316), and both end openings of the cylindrical portion 43a are It is obstruct
  • another opening 45 is formed in the side surface of the tubular portion 43a so as to face the opening 29 provided with the opening visually recognizing portion 30, for example, stainless steel (SUS306 or SUS316) or the like.
  • One end of the pipe communication portion 46 is joined to the side surface portion so that the hollow region of the cylindrical pipe communication portion 46 and the opening 45 communicate with each other.
  • a wall 47 is provided at the other end of the pipe communication part 46 so that the inside of the gas supply pipe 8, the vacuum exhaust pipe 13 and the pressure measurement pipe 48 communicate with the inside of the reaction furnace 42.
  • These gas supply pipe 8, vacuum exhaust pipe 13, and pressure measurement pipe 48 are provided on the wall 47.
  • the pressure measuring means 15 is provided in the pressure measuring pipe 48 and can measure the pressure in the reaction furnace 42 via the pressure measuring pipe 48.
  • the reaction furnace 42 is provided with an electrode pair made up of wound-type reactants 50 and 51 in the furnace, and further the reactants so as to cover the inner wall of the cylindrical portion 43a of the reaction furnace 42. 26 is provided.
  • the wound reactants 50 and 51 are arranged in the furnace so as to face the openings 29 and 45 formed in the cylindrical portion 43a.
  • the deuterium gas from the pipe communication part 46 provided in the gas can be directly blown onto the wound type reactants 50 and 51, and the wound type reactant 50, from the hollow region of the opening visual recognition part 30 provided in the opening 29. The operator can visually check the state of 51 directly.
  • the heating device 41 does not function the reactant 26 as an electrode, and is provided with a winding provided in the reaction furnace 42 separately.
  • the type reactants 50 and 51 are made to function as a cathode and an anode, and plasma processing or the like is performed, a glow discharge is caused by using the wound type reactants 50 and 51 as an electrode pair so that plasma can be generated in the furnace.
  • the reactant 26 has the same configuration as that of the above-described first embodiment, and does not function as an electrode, but plasma treatment using the wound reactants 50 and 51 as an electrode pair (here, plasma treatment).
  • the gas in the reaction furnace 42 in a sealed space is evacuated, the pressure in the furnace is 10 to 500 [Pa], and a voltage of 600 to 1000 [V] is applied to the electrode pair for 600 to 100 hours.
  • a plurality of nano-sized metal nanoparticles are formed on the surface by causing glow discharge to raise the temperature of the reactant 26 to 500 to 600 [° C.], and the vacuum state is thereby maintained.
  • deuterium gas is supplied after being heated by the heater in the reaction furnace 42, hydrogen atoms can be occluded in these metal nanoparticles, and a fusion reaction can occur.
  • the wound reactant 50 is provided at the tip of the electrode holding part 54 and can be arranged at the center in the reaction furnace 42 by the electrode holding part 54.
  • the electrode holding unit 54 is connected to a power source (not shown) via the electrode introducing unit 57, and can apply a voltage from the power source to the wound reactant 50.
  • the electrode holding portion 54 is inserted into the reaction furnace 42 from the opening 55 formed in the wall portion 43 b and is held by the insulating member 56 provided in the opening 55. It arrange
  • the wound reactant 50 includes, for example, Pb, Ti, Pt, Ni, or a thin wire 53 made of a hydrogen storage metal containing an alloy containing at least one of these elements, Al 2 O 3 (alumina ceramics).
  • a plurality of metal nanoparticles having a nano size can be formed on the surface of the thin wire 53 by plasma treatment.
  • the size and shape of the metal nanoparticles formed on the surface of the thin wire 53 in the wound reactant 50 are the same as those of the metal nanoparticles formed on the surface of the reactant 26. That is, the surface of the thin wire 53 in the wound reactant 50 has a shape in which spherical particles, elliptical particles, or part of egg-shaped particles are embedded in the surface (for example, hemispherical or semielliptical) A plurality of metal nanoparticles having a curved surface made of (or semi-egg) can be formed.
  • the surface of the fine line 53 in the wound type reactant 50 is not as large as the reactant 26 formed of Ni.
  • metal nanoparticles were formed in contact with each other on the surface, and a region where a plurality of metal nanoparticles were densely formed was also formed (shown in FIG. 8 described later). Further, the metal nanoparticles formed on the surface of the thin wire 53 in the wound reactant 50 are formed in a nano size having a width of 1000 [nm] or less, similarly to the metal nanoparticles formed on the surface of the reactant 26.
  • it is formed to be 300 [nm] or less, more preferably 10 [nm] or less, and further 5 [nm] or less.
  • the width of the metal nanoparticles By reducing the width of the metal nanoparticles, less deuterium gas is formed. Fusion reaction can easily occur at a supply amount of.
  • the surface of the thin wire 53 in the wound reactant 50 has a metal nanoparticle width (particle diameter) of 1 to 10 [nm], similar to the surface of the reactant 26. It is desirable that the distances between these fine metal nanoparticles are such that they are not in contact with each other by thermal motion, preferably at least three times the particle size. In this case, it is preferable that 4 ⁇ 10 8 metal nanoparticles, for example, per 1 [cm 2 ] are formed on the surface of the reactant, and further formed so that fine metal nanoparticles are scattered. It is desirable that
  • thermocouple 58 is disposed in the reaction furnace 42 so as to contact the support 52 of the wound reactant 50.
  • the temperature of the wound reactant 50 is measured by the thermocouple 58 so that the operator can check the temperature with a computer or the like connected to the thermocouple 58.
  • the thermocouple 58 has a configuration in which a K-type thermocouple element is inserted into the alumina tube, and is held by the insulating member 59 at the wall portion 43 b and insulated from the reaction furnace 42.
  • the other winding-type reactant 51 that forms a pair with the winding-type reactant 50 is provided at the tip of the electrode holding portion 62, and faces the one winding-type reactant 50 by the electrode holding portion 62. Is arranged in the furnace.
  • the electrode holding portion 62 is connected to an electrode introduction portion 64 held by an insulating member 63 provided on the wall portion 43b.
  • the electrode introduction unit 64 is connected to a power source (not shown), and can apply a voltage from the power source to the wound reactant 51 via the electrode holding unit 62.
  • the wound reactant 51 can function as a cathode or an anode when a voltage is applied from the power source.
  • the wound reactant 51 includes, for example, Pb, Ti, Pt, Ni, or a shaft portion 60 formed of a hydrogen storage metal including an alloy containing at least one of these elements.
  • the wound-type reactant 51 can also form a plurality of nano-sized metal nanoparticles on the surface of the shaft portion 60 and the thin wire 61 by plasma treatment.
  • the wound reactant 51 when deuterium gas is supplied into the reaction furnace 42 in which a vacuum state is maintained, hydrogen atoms are introduced into the metal nanoparticles formed on the surfaces of the shaft portion 60 and the thin wire 61. Occluded and a nuclear fusion reaction can occur.
  • the metal nanoparticles formed on the surface of the shaft portion 60 and the thin wire 61 of the wound reactant 51 have the same configuration as the metal nanoparticles formed on the surface of the thin wire 53 of the wound reactant 50 described above. The description thereof is omitted here.
  • the heat generating device 41 can form a plurality of nano-sized metal nanoparticles on the surfaces of the wound reactants 50 and 51 and the reactant 26 by plasma treatment,
  • deuterium gas is supplied into the reaction furnace 42 that is kept in a vacuum state in a state where the wound reactants 50 and 51 and the reactant 26 are heated by the heater that does not, the wound reactants 50 and 51 are supplied.
  • hydrogen atoms are occluded in the metal nanoparticles on the surface of the reactant 26.
  • a nuclear fusion reaction is caused in the reaction furnace 42 to generate heat.
  • the heating temperature when heating the wound reactants 50 and 51 and the reactant 26 with a heater is 200 [° C.] or higher, more preferably 250 [° C.] or higher.
  • the heat generating device 41 when heat is generated in the reaction furnace 42, if the plasma is generated by causing glow discharge by the electrode pair, the heat generation temperature further increases. Even if the plasma is stopped, as long as the inside of the reaction furnace 42 is maintained in the hydrogen gas atmosphere, the state in which the temperature is increased can be maintained as it is.
  • the wound reactant 51 was used in which a thin wire 61 made of Pd (purity 99.9%) having a diameter of 1 [mm] and a length of 300 [mm] was spirally wound around the shaft portion 60 formed of .
  • a cylindrical reactant 26 having a surface formed of fine wires made of Ni (purity 99.9%) having a diameter of 0.1 [mm] was used.
  • thermocouple 58 for directly measuring the temperature of the wound reactant 50 is a K-type stainless steel-coated type having a diameter of 1.6 [mm] and a length of 300 [mm].
  • alumina tube having a diameter of 3 [mm] and a length of 100 [mm]
  • the tip portion was brought into contact with the surface of the wound reactant 50.
  • the gas in the reaction furnace 42 is evacuated, the inside of the reaction furnace 42 is evacuated to several Pa, and the wound reactant 50 is used as an anode, and 600 [V].
  • the DC voltage was applied and discharged at about 20 [mA] for about 600 seconds.
  • the wound reactant 50 was used as a cathode by changing the electrode voltage, a DC voltage of 600 [V] was applied, and the battery was discharged at about 20 [mA] for about 1200 seconds. After repeating this process five times, the reactant 26 and the wound reactant 50 were taken out from the reaction furnace 42, and the surfaces thereof were observed with SEM photographs.
  • FIG. 6A is an SEM photograph in which the surface of the reactant 26 before performing the above-described plasma treatment is imaged, and a plurality of metal nanoparticles having a nano size with a width of 1000 nm or less are present on the surface. It was not formed and it was confirmed that the surface was flat.
  • FIG. 7 is an SEM photograph obtained by imaging the surface of the reactant 26 after performing the above-described plasma treatment, and a plurality of metal nanoparticles having a nano size with a width of 1000 nm or less are formed on the surface. It was confirmed that the surface was uneven. Further, it was confirmed that these metal nanoparticles had a curved surface such as a hemispherical shape or a semi-elliptical shape.
  • FIG. 6B is an SEM photograph in which the surface of the thin wire 53 in the wound reactant 50 before performing the above-described plasma treatment is imaged, and the wound reactant 50 also has a nanometer having a width of 1000 [nm] or less. A plurality of metal nanoparticles having a size were not formed on the surface, and it was confirmed that the surface was flat.
  • FIG. 8 is an SEM photograph obtained by imaging the surface of the thin wire 53 in the wound reactant 50 after performing the above-described plasma treatment, and a plurality of metal nano-particles having a width of 1000 [nm] or less. It was confirmed that the particles were formed on the surface and the surface was uneven.
  • the metal nanoparticles had a curved surface such as a hemispherical shape or a semi-elliptical shape. Note that, on the surface of the thin wire 53 in the wound reactant 50, although not as much as the reactant 26, the surface is formed so that the metal nanoparticles are in contact with each other, and a region where a plurality of metal nanoparticles are densely formed is also formed. It was confirmed that
  • FIGS. 9A and 9B SEM photographs as shown in FIGS. 9A and 9B were obtained. From FIG. 9A and FIG. 9B, metal nanoparticles having a width of 100 [nm] or less are formed, and fine metal nanoparticles having a smaller width are formed on the surface of the metal nanoparticles. It was confirmed that it was formed.
  • a wound type reactant 50 in which a thin Pd wire 53 having a diameter of 0.1 [mm] is wound around the support 52 is used, but a thin Pd wire having a diameter of 1 [mm] is used as the support 52.
  • the discharge was continued for 10 [ks], and by repeating this 10 times, sufficiently active metal nanoparticles could be formed on the surface of the thin wire. It could be confirmed.
  • the vacuum state in the reaction furnace 42 is maintained, and the wound reactants 50 and 51 and the reactant 26 are heated and activated at 100 to 200 [° C.] for about 3 hours with a heater (not shown), Impurities were removed from the wound reactants 50 and 51 and the reactant 26 by releasing light hydrogen, H 2 O, and a hydrocarbon-based gas.
  • FIG. 10 shows the voltage applied to the electrode pair
  • FIG. 11 shows the temperature of the wound reactant 50 when the wound reactant 50 is heated stepwise by the heater.
  • the temperature shown in FIG. 11 is a difference (room temperature difference) between the temperature of the wound reactant 50 and room temperature.
  • the wound reactant 50 is heated stepwise to a room temperature difference of 140 [° C.], and then deuterium gas is introduced into the reaction furnace 42 at 100 [Pa] (that is, 100 [Paper]). ml]), the room temperature difference immediately rose to 220 [° C.] without generating plasma by the electrode pair.
  • the voltage value applied to the electrode pair is set to 45 [V
  • the temperature further increased by 30 [° C.] to 250 ° C.
  • a plurality of nano-sized metal nanoparticles are formed on the surfaces of the wound reactants 50 and 51 and the reactant 26, and the surface is formed. After activation, it was confirmed that a fusion reaction can be caused by supplying deuterium gas into the reaction furnace 42 to generate heat.
  • the heating device 41 also includes the reactant 26 made of a hydrogen storage metal having a plurality of nano-sized metal nanoparticles formed on the surface in the reactor 42.
  • the reactor 26 was heated by a heater to give energy, and deuterium gas was supplied into the reaction furnace 42 kept in a vacuum state, and the inside of the reaction furnace 42 was made a deuterium gas atmosphere.
  • a plurality of nano-sized metal nanoparticles are formed also on the thin wire 53 of the wound reactant 50 made of a hydrogen storage metal and the surface of the wound reactant 51.
  • the heating device 41 energy is given by heating of the heater, whereby hydrogen atoms are occluded in the metal nanoparticles of the wound reactants 50 and 51 and the reactant 26, and electrons in the metal nanoparticles are changed. It is strongly influenced by surrounding metal atoms and other electrons and acts as heavy electrons. As a result, the internuclear distance between hydrogen atoms in the metal nanoparticles is shortened, and the probability of a tunnel fusion reaction occurring is increased. Thus, heat higher than the heating temperature can be generated more stably than in the past.
  • this heat generating device 41 when plasma is generated by the electrode pair in the reaction furnace having a deuterium gas atmosphere, heat generation is promoted to further increase the heat generation temperature, and even if the plasma is stopped, the reaction furnace As long as the inside of 42 is kept in the deuterium gas atmosphere, the temperature rise state can be kept as it is.
  • a wound type reactant 51 is further provided, and a plurality of metal nanoparticles are also formed on the wound type reactant 51.
  • the region where the metal nanoparticles are formed is increased, and accordingly, hydrogen atoms are easily occluded in the metal nanoparticles, and the probability of the fusion reaction occurring can be increased.
  • FIG. 12 in which parts corresponding to those in FIG. 1 are assigned the same reference numerals, 65 denotes a heat generating device according to the third embodiment, which is the same as the first embodiment described above.
  • the configuration of the electrode pair installed in the reaction furnace 2 is different.
  • a wound reactant 66 that functions as an anode and an inner reactant 72 that functions as a cathode are arranged in series on the central axis of the reaction furnace 2.
  • the wound reactant 66 and the inner reactant 72 are arranged in the hollow region of the cylindrical reactant 26 that also functions as a cathode.
  • the reaction furnace 2 is provided so that the reactant 26 is in contact with the inner wall of the cylindrical portion 2a, and the inner reactant 72 is erected with respect to one wall portion 2c. Yes.
  • the reactor 2 has a configuration in which a wiring connected to a power source (not shown) is connected to the outer wall. When a voltage is applied from the power source to the reaction furnace 2 via the wiring, the reactant in contact with the reactor 2 26 and the inner reactant 72 can also be energized.
  • an insulating member 27 is provided in the opening 28 of the wall 2b, and a rod-shaped electrode introduction portion 71 covered with an alumina insulating tube is held by the insulating member 27.
  • the electrode introducing portion 71 has a tip disposed in the reaction furnace 2 while being insulated from the reaction furnace 2 by the insulating member 27, and has a wound-type reactant 66 at the tip.
  • the wound reactant 66 has a shaft portion 69 connected to the tip of the electrode introduction portion 71, and a thin wire 70 is spirally wound around the shaft portion 69.
  • the wound reactant 66 is provided with a support portion 67 having an enlarged diameter at the tip of the shaft portion 69, and a thin wire 68 is wound around the support portion 67.
  • a wiring connected to a power source (not shown) is connected to the electrode introducing portion 71, and a voltage can be applied from the power source via the wiring and the electrode introducing portion 71.
  • the shaft portion 69 and the thin wires 68 and 70 constituting the wound reactant 66 are formed of hydrogen storage metal including Ni, Pd, Ti, Pt, or an alloy containing at least one of these elements.
  • the wound reactant 66 is subjected to plasma treatment in the same manner as the reactant 26 described above, whereby a plurality of nano-sized metal nanoparticles are formed on the surfaces of the shaft portion 69 and the thin wires 68 and 70.
  • the oxide film on the surface is removed, and an active state capable of storing hydrogen atoms can be obtained.
  • the support portion 67 can be formed of a conductive member such as Al 2 O 3 (alumina ceramic).
  • the inner reactant 72 is formed in a hollow quadrangular prism shape, and its surface contains Ni, Pd, Ti, Pt, or at least one of these elements. It is formed in a mesh shape by fine wires made of a hydrogen storage metal including an alloy.
  • the inner reactant 72 has a bottom surface fixed to the wall 2c and is in conduction with the reaction furnace 2, and can function as an electrode when a voltage is applied from the power source through the reaction furnace 2. Further, the inner reactant 72 is arranged such that the top surface portion facing the bottom surface portion is opposed to the support portion 67 of the wound reactant 66 with a predetermined distance, and the wound reactant 66 is arranged. And an electrode pair to generate glow discharge and generate plasma.
  • the inner reactant 72 is also subjected to plasma treatment in the same manner as the reactant 26 and the wound reactant 66, whereby a plurality of nano-sized metal nanoparticles are formed on the surface.
  • the oxide film on the surface is removed, and an active state capable of storing hydrogen atoms can be obtained.
  • the reactant 26 provided on the inner wall of the reaction furnace 2 in addition to the inner reactant 72 can also function as an electrode, and the reactant 26 and the wound reactant 66 constitute an electrode pair.
  • the reactant 26 and the wound reactant 66 can generate glow discharge to generate plasma.
  • the heat generating device 65 can obtain the same effects as those of the second embodiment described above.
  • the reactant 26 and the inner reactant 72 made of a hydrogen storage metal having a plurality of nano-sized metal nanoparticles formed on the surface thereof are provided in the reaction furnace 2, and the reactant 26 and the inner reactant 72 are provided.
  • the reactant 26 and the inner reactant 72 were provided.
  • deuterium gas was supplied into the reaction furnace 42 maintained in a vacuum state, and the inside of the reaction furnace 42 was set to a deuterium gas atmosphere.
  • the heat generating device 65 hydrogen atoms are occluded in the metal nanoparticles of the reactant 26 and the inner reactant 72, and electrons in the metal nanoparticles are strongly influenced by surrounding metal atoms and other electrons, and are overlapped.
  • the internuclear distance between the hydrogen atoms in the metal nanoparticle is reduced, and the probability of the tunnel fusion reaction occurring can be increased.
  • heat can be generated more stably than in the past.
  • this heat generating device 65 a plurality of nano-sized metal nanoparticles are also formed on the surface of the shaft portion 69 and the thin wires 68 and 70 of the wound reactant 66 made of a hydrogen storage metal.
  • hydrogen atoms are also occluded in the metal nanoparticles on the surfaces of the shaft portion 69 and the thin wires 68 and 70, and the electrons in the metal nanoparticles are changed. It is strongly influenced by surrounding metal atoms and other electrons and acts as heavy electrons. As a result, the internuclear distance between hydrogen atoms in the metal nanoparticles is shortened, and the probability of a tunnel fusion reaction occurring is increased. Thus, heat can be generated more stably than in the past.
  • the present invention is not limited to the above-described embodiments, and can be appropriately changed within the scope of the gist of the present invention.
  • the metal nanoparticle having a curved surface that has a shape in which a part of a spherical particle, an elliptical particle, or an oval particle is embedded in the surface as the metal nanoprojection.
  • the present invention is not limited to this, and as shown in FIG. 13A, a band-shaped metal nano-convex portion 83 having a nano size may be applied, and as shown in FIG. It is good also as the reactant 80 of a shape.
  • the reactant 80 is, for example, a band-shaped metal nano-projection formed with a hydrogen storage metal and having a width of 1000 nm or less on a 0.5 mm thick substrate 82 formed with a hydrogen storage metal. It has the structure which arrange
  • a strip-shaped metal nano-projection 83 can be easily formed into a strip having a nano size of, for example, a width of 5 [nm] using an etching technique or the like.
  • the metal nano-projections 83 may be formed on the surface of the reactant in advance using an etching technique or the like before the reactant is installed in the reaction furnace.
  • the reactant 80 made of a hydrogen storage metal having a plurality of nano-sized metal nano-projections 83 formed on the surface in this manner is placed in a reaction furnace that is in a deuterium gas atmosphere, thereby providing hydrogen.
  • the atoms are occluded in the metal nano-projections 83 of the reactant 80, and the electrons in the metal nano-projections 83 are strongly influenced by surrounding metal atoms and other electrons and act as heavy electrons.
  • the internuclear distance between hydrogen atoms in the nanoconvex portion 83 is shortened, and the probability that a tunnel fusion reaction occurs can be increased, and thus heat can be generated more stably than in the past.
  • a concave portion 84 formed in a lattice shape is formed on a substrate 82 made of a hydrogen storage metal, and a cubic hydrogen having a width of 1000 nm or less is formed.
  • the hydrogen atoms can be obtained by placing the reactant 81 made of a hydrogen storage metal having a plurality of nano-sized metal nano-projections 85 formed on the surface in a reaction furnace in a deuterium gas atmosphere.
  • the electrons in the metal nano convex portion 85 are strongly influenced by surrounding metal atoms and other electrons and act as heavy electrons.
  • the metal nano convex portion The internuclear distance between the hydrogen atoms in the portion 85 is shortened, and the probability that the tunnel fusion reaction occurs can be increased, and thus heat can be generated more stably than in the prior art.
  • the metal nano-projections are formed to have a width of 1000 [nm] or less, preferably 300 [nm] or less, more preferably 10 [nm] or less, and further 5 [nm] or less.
  • the shape may be other various shapes such as a belt shape, a rectangular parallelepiped shape, or the like.
  • deuterium (D 2 ) gas is supplied into the reaction furnace 2, 42.
  • deuterium (D 2 ) gas is supplied into the reaction furnace 2 and 42, 2, 42 may be a heavy water gas atmosphere
  • light hydrogen (H 2 ) gas may be supplied into the reaction furnace 2, 42
  • the inside of the reaction furnace 2, 42 may be a light hydrogen gas atmosphere
  • (H 2 O) gas may be supplied into the reaction furnace 2 and the inside of the reaction furnace 2 and 42 may be a light water gas atmosphere.
  • the heat generating apparatus 1 (FIG. 1) according to the first embodiment using heavy water gas, light hydrogen gas, or light water gas instead of deuterium gas, the deuterium gas atmosphere, light hydrogen gas atmosphere, or
  • the deuterium gas atmosphere By performing an exothermic reaction process in which plasma is generated by the wound reactants 25 and 26 in the reactor 2 in a light water gas atmosphere and energy is given, hydrogen atoms are converted into the reactants 26 and the wound reactants. It can be occluded within 25 metal nanoparticles.
  • the electrons in the metal nanoparticles are strongly influenced by surrounding metal atoms and other electrons and act as heavy electrons, and as a result, the internuclear distance between hydrogen atoms in the metal nanoparticles. Can shrink and increase the probability of tunnel fusion reactions.
  • the reactant 26 and the wound reactants 50 and 51 made of a hydrogen storage metal having a plurality of nano-sized metal nanoparticles formed on the surface thereof.
  • the reactant 26 and the wound reactors 50 and 51 are heated by a heater to give energy, and a reaction in which heavy water gas, light hydrogen gas, or light water gas is maintained in a vacuum state. Supply into the furnace 42.
  • hydrogen atoms are occluded in the metal nanoparticles of the wound reactants 50 and 51 and the reactant 26, and the electrons in the metal nanoparticles are strongly influenced by surrounding metal atoms and other electrons.
  • the internuclear distance between the hydrogen atoms in the metal nanoparticle is reduced, and the probability that a tunnel fusion reaction will occur can be increased. Can also be produced stably.
  • a heavy water gas atmosphere after excessive heat generation, a heavy water gas atmosphere, a light hydrogen gas atmosphere, or a light water gas atmosphere.
  • a light water gas atmosphere When the plasma is generated by the electrode pair in the reaction furnace 42, heat generation is promoted and the heat generation temperature is further increased. Even if the plasma is stopped, the reaction furnace 42 is maintained in a heavy water gas atmosphere or a light hydrogen gas atmosphere. Alternatively, as long as the light water gas atmosphere is maintained, the state in which the temperature has risen can be maintained as it is.
  • the heat generating device 65 (FIG. 12) according to the third embodiment, heavy water gas, light hydrogen gas, or light water gas can be used instead of deuterium gas. These heavy water gas, light hydrogen gas, Even if light water gas is used, the same effects as those of the second embodiment described above can be obtained. That is, also in the heating device 65 shown in FIG. 12, the reactant 26 and the inner reactant 72 made of a hydrogen storage metal having a plurality of nano-sized metal nanoparticles formed on the surface thereof are provided in the reaction furnace 2, and the reactant 26 The inner reactant 72 is heated by a heater to give energy, and heavy water gas, light hydrogen gas, and light water gas are supplied into the reaction furnace 42 maintained in a vacuum state.
  • the surface of the shaft portion 69 and the thin wires 68 and 70 of the wound reactant 66 made of hydrogen storage metal is nano-sized.
  • a plurality of metal nanoparticles can also be formed.
  • the heating device 41 used for the verification test has a mesh of 100 mesh formed by a fine wire made of Ni (purity 99.9%) having a diameter of 0.05 [mm], a height of 30 [cm], and a width of 30 A [cm] reactant 26 was prepared, and was installed so that the outer peripheral surface of the reactant 26 was in close contact with the inner wall of the reaction furnace 42. At this stage, a plurality of nano-sized metal nanoparticles are not formed on the surface of the cylindrical reactant 26.
  • a wound type reactant 50 in which a fine wire 53 made of Pd (purity: 99.9%) was wound 15 times was used.
  • a shaft portion 60 made of Pd (purity: 99.9%) with a diameter of 3 [mm] and a length of 50 [mm] is applied to a Pd (with a diameter of 1 [mm] and a length of 300 [mm].
  • a wound type reactant 51 in which a thin wire 61 having a purity of 99.9%) was spirally wound without any gap was used.
  • thermocouple 58 for directly measuring the temperature of the wound reactant 50 is a K-type stainless steel-coated type having a diameter of 1.6 [mm] and a length of 300 [mm].
  • alumina tube having a diameter of 3 [mm] and a length of 100 [mm]
  • the tip portion was brought into contact with the surface of the wound reactant 50. Note that the polarity of the anode and the cathode of the wound reactants 50 and 51 serving as the electrode pair can be changed.
  • the gas in the reaction furnace 42 is evacuated and the reaction furnace 42 is evacuated to several Pa, and then the winding type reactant 50 is used as the anode and the other winding type is used.
  • the reactant 51 was used as a cathode, a DC voltage of 600 to 800 [V] was applied, and the battery was discharged at about 20 [mA] for about 600 seconds.
  • the wound reactant 50 is used as a cathode and the other wound reactant 51 is used as an anode, and a DC voltage of 600 to 800 [V] is applied and 10 to about 20 to 30 [mA].
  • the battery was discharged for 3 to 10 4 seconds.
  • the vacuum state in the reaction furnace 42 was maintained, and the wound reactants 50 and 51 and the reactant 26 were heated and activated by a heater (not shown).
  • the winding reactants 50 and 51 and the reactant 26 were heated until no light hydrogen, H 2 O, and hydrocarbon-based gas were released from the winding reactants 50 and 51 and the reactant 26.
  • the wound reactants 50 and 51 and the reactant 26 are heated and activated at 100 to 200 [° C.] for about 3 hours by a heater, and the wound reactants 50 and 51 and the reactant 26 are lightly activated. Impurities were removed by releasing hydrogen, H 2 O, and hydrocarbon gases.
  • the wound reactant 50 was used as an anode, a DC voltage of 600 to 800 [V] was applied, and a discharge was performed for about 10 [ks] seconds at about 20 to 30 [mA]. .
  • a plurality of metal nanoparticles having a nano size were formed on the surfaces of the wound reactants 50 and 51 and the reactant 26.
  • kJ is the total input energy (kJ)
  • “Output Electrode kJ” in the twelfth column is calculated from the temperature of the electrode (rolled reactant 50).
  • the output total energy (kJ) in the 13th column is the output total energy (kJ) calculated from the outer wall temperature of the reaction furnace 42.
  • Test numbers No. 6 to No. 13 show a series of continuous test results. From Table 1, in all cases using deuterium gas, the total output energy (12th and 13th rows) is larger than the total input energy (11th row), and excessive heat generation is observed. It was confirmed that the heat generating device 41 can generate heat.
  • FIG. 14A shows a mass analysis result of deuterium gas as a raw material gas.
  • the horizontal axis indicates the mass number of the gas M / e, and the vertical axis indicates the gas component in the reaction furnace 42 by partial pressure.
  • a standard amount of deuterium gas as shown in FIG. 14A was obtained from the partial pressure value, the volume 5 [l] of the reactor 42, the temperature, and the pressure.
  • the deuterium gas as the source gas was mainly deuterium, and the mass number 4 was 202 [Pa].
  • mass number 3 HD + is 42 [Pa]
  • mass number of 2 H 2 + was 5 [Pa].
  • the mass number 18 estimated to be H 2 O + or OD + was included.
  • the mass number 17 is estimated as OH +
  • the mass number 19 is estimated as OHD +
  • the mass number 20 is estimated as OD 2 + .
  • an exothermic reaction process was performed in the exothermic device 41, and gas components in the reaction furnace 42 after the exothermic reaction process were examined.
  • the electrode winding type reactant 50
  • the electrode was heated by a heater for about 84 [ks] while supplying deuterium gas into the reaction furnace 42 in a vacuum exhaust state.
  • the first 7 [ks] was set to 46 [W] for the input to the heater, and thereafter 81 [W].
  • gas was exhausted from the reactor 42 several times, but excessive heat was continuously generated.
  • FIG. 14B shows the gas in the reaction furnace 42 for 10 [ks] after the above-described exothermic reaction treatment (that is, after the electrode heating by the heater is completed, hereinafter also referred to as the test completion). The result of having investigated the component is shown. From FIG. 14B, after the test was completed, HD + with a mass number of 3 increased, and then H 2 + with a mass number of 2 and OHD + with a mass number of 19 increased.
  • FIG. 15 and FIG. 16 show the measurement results showing the increase / decrease of the gas component at this time along the test time.
  • the horizontal axis indicates the passage of time
  • the vertical axis indicates the gas amount
  • FIG. 16 is an enlarged graph of a region where the gas amount is 15 [cm 3 ] or less in FIG. 15 and 16, “Total exclude 2” indicates the total gas amount.
  • the excessive heat was 15 [W] at the minimum with respect to the input 80 [W].
  • the elapsed time is multiplied by 15 [W]
  • heat generation energy that is, joule is obtained. From this, it can be calculated as 40 [MJ] with an elapsed time of 2.7 [Ms].
  • the mass number 4 mainly composed of deuterium (D 2 + ) decreased, and then the rate of decrease decreased, but decreased linearly with time.
  • the mass number 2 estimated to be a deuterium atom (D + ) increased contrary to the mass number 4 (D 2 + )).
  • the dissociation energy of such a hydrogen molecule was 436 [kJ / mol] at 25 [° C.], and the dissociation degree was about 1.0 ⁇ 10 ⁇ 7 at 1000 [° C.]. Further, even when the heating of the reactant 26 made of nickel by the heater was stopped, this mass gas existed stably.
  • the mass number 3 increased in inverse correlation with the mass decrease of the mass number 2 after the start of the verification test, but thereafter decreased corresponding to the behavior of the mass number 4.
  • the mass number 28 also increased with time, and the amount was 2.3 [cm 3 ] in 30 days.
  • the other components hardly changed. Note that the total of components other than the mass number 2 was almost constant after the first change.
  • the mass number 3 (HD + ) and the mass number 4 (D + ) both depended on the gas pressure and the total output energy, but the tendency is opposite. While the total energy increases, the mass number 4 decreases as the gas pressure and the total output energy increase. This indicates that mass number 4 contributes to generation of mass number 2 and mass number 3.
  • the mass number 2 (H 2 + ) increases as the total output energy increases, but does not depend on the gas pressure of deuterium gas, while the mass number 3 (HD + ) It was found that the gas pressure of deuterium gas and the calorific value increase.
  • the other winding-type reactant 51 formed of Pd in the above-described verification test is formed of Ni, and the winding-type reactant 50 of Pd is used as an anode.
  • Heavy water gas was supplied into the reaction furnace 42 using the wound reactant 51 made of Ni as a cathode, and the wound reactants 50 and 51 and the reactant 26 were heated by a heater. Further, plasma was generated by glow discharge in the reaction furnace 42 as necessary. And the output energy etc. in the heat generating apparatus 41 at this time were measured.
  • the Pd electrode indicates the wound reactant 50
  • the Ni electrode indicates the wound reactant 51.
  • the exothermic reaction process in which the heating type reactors 50 and 51 and the reactant 26 are heated by the heater in the reaction furnace 42 in the heavy water gas atmosphere in the heating device 41. By doing, output energy exceeding input energy was obtained, and it was confirmed that heat was generated.
  • these exothermic devices 41 as shown by “hydrogen generation amount” in the 7th and 8th rows of Table 2, it was confirmed that hydrogen was generated when the exothermic reaction treatment was performed.
  • the wound reactants 50 and 51 to be an electrode pair are formed of Pd, and deuterium gas, heavy water gas, or light water gas is used as a raw material gas supplied into the reaction furnace 42.
  • deuterium gas, heavy water gas, or light water gas is used as a raw material gas supplied into the reaction furnace 42.
  • “Gas Component Significant” in the second row indicates the type of gas used
  • “Gas Pressure Pa” in the third row indicates the gas pressure when the gas is supplied into the reactor 42.
  • “Power in / W Heat Watt W” indicates the input heating wattage (W) of the heater when heating the wound type reactants 50 and 51 and the reactant 26.
  • “Power in / W Plasma V” indicates an input voltage value when plasma discharge is generated by the wound reactants 50 and 51 serving as electrodes
  • “Power in / W Plasma W” in the sixth column The input wattage when plasma discharge is generated by the pair of wound reactants 50 and 51 is shown, and “Power in / W Total” in the seventh column is shown. "Indicates the total input wattage of the input heating wattage by the heater and the input wattage to the electrode pair during plasma discharge.
  • Table 4 shows the result of the verification test when light hydrogen (H 2 ) gas was used in the heating device 41.
  • the wound type reactants 50 and 51 are made of Ni, and these wound type reactants 50 and 51 are used as electrode pairs, and plasma treatment is performed under the same conditions as those obtained in Table 1 above. It was. Subsequently, as a result of performing an exothermic reaction process in the heat generating device 41, the results shown in Table 4 were obtained.
  • pressure in the third column indicates the gas pressure (Pa) when light hydrogen gas is supplied into the reaction furnace 42
  • input / W indicates a wound type reactant. 50 and 51 and the input heating wattage (W) of the heater when the reactant 26 is heated
  • time / ks indicates the excessive heat duration
  • Internal temperature calculation” in the sixth column Indicates the calorific value calculated from the temperature (° C.) in the reaction furnace 42
  • the “furnace temperature calculation” in the seventh column indicates the calorific value calculated from the temperature (° C.) of the reaction furnace 42 itself.
  • the wound reactants 50 and 51 and the reactant 26 made of hydrogen storage metal having a plurality of nano-sized metal nanoparticles formed on the surface by plasma treatment are provided.
  • the reaction furnace 42 provided in the reaction furnace 42 and maintained in a vacuum state has a deuterium gas atmosphere, a heavy water gas atmosphere, a light hydrogen gas atmosphere, and a light water gas atmosphere. It was confirmed that heat at a temperature higher than the heating temperature can be generated by applying energy by heating with a heater.
  • the heating device 1 shown in FIG. 1, the heating device 41 shown in FIG. 5, and the heating device 65 shown in FIG. A plurality of nano-sized metal nanoparticles are formed on the surface of the reactants 26, 80, 81 as metal nano-projections, for example, in the form of fine particles smaller than metal nanoparticles (metal nano-projections).
  • the hydrogen storage metal fine particles of Ni, Pd, Pt, and Ti (hereinafter referred to as hydrogen storage metal fine particles) are attached to the surfaces of the metal nanoparticles on the surfaces of the reactants 26, 80, 81.
  • the surface of the metal nanoparticles may be formed in an uneven shape.
  • plasma is generated under a hydrogen gas atmosphere under a pressure of 1 to 50 [Pa].
  • a part of the other electrode made of the hydrogen storage metal can be scraped off and scattered into the reaction furnaces 2 and 42 as a hydrogen storage metal fine particle.
  • the scattered hydrogen storage metal fine particles adhere to the surface of the metal nanoparticles on the surfaces of the reactants 26, 80, 81, and the surface of the metal nanoparticles can be formed into fine irregularities.
  • a hydrogen atom can be occluded also in the hydrogen occlusion metal fine particle body by setting it as the structure which the hydrogen occlusion metal fine particle body adhered to the surface of such a metal nanoparticle.
  • the electrons are strongly influenced by surrounding metal atoms and other electrons in the hydrogen storage metal fine particles, and act as heavy electrons.
  • the hydrogen storage metal Even within the fine particle, the internuclear distance between hydrogen atoms is reduced, and the probability of the tunnel fusion reaction occurring can be further increased, and thus heat can be generated more stably than in the past.
  • the reactant 26 to be one electrode is formed of Ni, Pd, Pt or the like
  • the shaft portion 35 and the thin wire 36 ( 2) is a structure formed of Ni, Pd, Pt or the like.
  • the heat generating apparatus 1 shown in FIG. 1 by generating plasma in the reaction furnace 2, for example, a part of one of the winding-type reactants 25 of the electrode pair is scraped, and the hydrogen-occlusion metal fine particle body.
  • the fine hydrogen storage metal fine particles made of Ni, Pd or the like can be attached to the surface of the metal nanoparticles on the surface of the reactant 26.
  • the heat generating apparatus 1 for example, a plurality of hydrogen storage metal fine particles made of the same Ni or different kinds of Pd are attached to the surface of the metal nanoparticles made of Ni or the like. As the unevenness progresses, the probability of a tunnel fusion reaction occurring in the subsequent exothermic reaction process is further increased, and thus heat can be generated more stably than in the prior art.
  • the reactant 26 is formed of Ni, Pd, Pt, or the like, and the thin wires 53, 61 of the wound reactants 50, 51 are made of Ni, Pd, Pt, or the like. It is set as the formed structure.
  • the heat generating device 41 shown in FIG. 5 by generating plasma in the reaction furnace 42, a part of the wound reactants 50 and 51 serving as the electrode pair is scraped to form hydrogen storage metal fine particles. Fine hydrogen storage metal fine particles made of Pd scattered in the reaction furnace 42 can adhere to the surface of the metal nanoparticles on the surface of the reactant 26.
  • the heat generating device 41 has a structure in which a plurality of hydrogen storage metal fine particles made of Ni or different types of Pd are attached to the surface of the metal nanoparticles made of Ni or the like, and the surface of the reactant 26 is further finely uneven.
  • the probability of the tunnel fusion reaction occurring in the subsequent exothermic reaction process can be further increased, and thus heat can be generated more stably than in the prior art.
  • the reactant 26 to be one electrode is formed of Ni, Pd, Pt or the like, and the shaft portion 69 and the support portion 67 of the wound reactant 66 to be another electrode.
  • the thin wires 68 and 70 are made of a hydrogen storage metal such as Ni, Pd, or Pt.
  • the inner reactant 72 in the heat generating device 65 is formed of the same hydrogen storage metal as that of the reactant 26 among hydrogen storage metals such as Ni, Pd, and Pt, or is formed of the same hydrogen storage metal as that of the wound-type reactant 66.
  • the reactant 26 and the wound reactant 66 may be formed of a different hydrogen storage metal.
  • the heat generating device 65 shown in FIG. 12 by generating plasma in the reaction furnace 2, for example, a part of the reactant 26, the wound reactant 66, and the inner reactant 72 are scraped.
  • the hydrogen storage metal fine particles scattered in the reaction furnace 2 and the fine hydrogen storage metal fine particles made of Ni, Pd, or the like are formed on the surface of each metal nanoparticle of the reactant 26, the wound reactant 66, and the inner reactant 72.
  • a plurality of hydrogen storage metal fine particles made of the same Ni or different kinds of Pd are attached to the surface of the metal nanoparticles made of Ni or the like.
  • the surface of each of the reactants 66 and the inner reactant 72 is further finer, and the probability of the tunnel fusion reaction occurring during the subsequent exothermic reaction process is further increased, thus generating more stable heat than before. Can do.
  • the metal nanoparticles on the surface of which the hydrogen storage metal fine particles finer than the metal nanoparticles are formed are the reactants 26, 80, 81, the wound reactants 25, 50, 51, 66, the inner reactant.
  • these reactants 26, 80, 81, wound reactants 25, 50, 51, 66, inner reaction are performed using a CVD (chemical vapor deposition) method or sputtering method in advance. It may be formed on the surface of the body 72.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Plasma Technology (AREA)

Abstract

 従来よりも安定的に熱を生成し得る反応体、発熱装置及び発熱方法を提供する。表面にナノサイズでなる複数の金属ナノ粒子(金属ナノ凸部)が形成されている水素吸蔵金属からなる反応体(26)を、重水素ガス雰囲気となる反応炉内に設置するようにしたことにより、水素原子が反応体(26)の金属ナノ粒子内に吸蔵されると、当該金属ナノ粒子内の電子が周囲の金属原子や他の電子から強く影響を受けて重電子として作用し、その結果、金属ナノ粒子内での水素原子間の核間距離が縮み、トンネル核融合反応の起こる確率を上げることができ、かくして従来よりも安定的に熱を生成し得る。

Description

反応体、発熱装置及び発熱方法
 本発明は、反応体、発熱装置及び発熱方法に関するものである。
 1989年、フライッシュマン教授とポンズ教授らの共同研究チームによって、室温で核融合反応を起こすことに成功したとの発表がなされた(例えば、非特許文献1参照)。この発表によると、室温にて核融合反応を起こす常温核融合反応は、陰極としてPd電極やTi電極を用い、陽極としてPt電極を用いて重水を電気分解すると、電気分解に伴い発生する熱以上の熱が発生し、これと同時にγ線や中性子が観測され得るというものであった。このような常温核融合反応は、反応時に異常な過剰熱が発生することから、この発熱現象を制御することができれば、この発熱現象を発熱装置の熱源として利用することも可能である。
M.Fleischmann and S.Pons, J.Electroanalytical Chem., 261,P301(1989)
 しかしながら、実際、このような常温核融合反応は、そのメカニズムが解明されておらず、再現性にも乏しいことから、その発熱現象が安定して発現し得ない。そのため、このような常温核融合反応を発熱装置の熱源として利用しようとした場合には、発熱現象の発生確率が極めて低く、安定的に熱を生成し得ないという問題があった。
 そこで本発明は、上記の問題点に鑑み、従来よりも安定的に熱を生成し得る反応体、発熱装置及び発熱方法を提供することを目的とする。
 かかる課題を解決するため本発明の請求項1に示す反応体は、重水素ガス雰囲気、重水ガス雰囲気、軽水素ガス雰囲気、又は軽水ガス雰囲気の反応炉内に設置される反応体であって、水素吸蔵金属により形成され、1000[nm]以下のナノサイズからなる複数の金属ナノ凸部が表面に形成されていることを特徴とする。
 また、本発明の請求項10に示す発熱装置は、重水素ガス、重水ガス、軽水素ガス、又は軽水ガスのうちいずれかが、真空状態に保持された炉内に供給される反応炉と、前記反応炉内に設置されるとともに、1000[nm]以下のナノサイズでなる複数の金属ナノ凸部が表面に形成されている水素吸蔵金属からなる反応体とを備え、前記反応炉内にプラズマを発生させるか、又は前記反応体を加熱させるかして、前記金属ナノ凸部に水素原子を吸蔵させることを特徴とする。
 また、本発明の請求項15に示す発熱方法は、水素吸蔵金属からなる反応体が設置された反応炉内にプラズマを発生させるか、又は前記反応体を加熱させるかして、ガス供給手段によって、重水素ガス、重水ガス、軽水素ガス、又は軽水ガスのうちいずれかを、真空状態の前記反応炉内に供給する供給ステップと、前記反応体の表面に形成されている、1000[nm]以下のナノサイズからなる複数の金属ナノ凸部に、水素原子を吸蔵させ、前記反応体が中性子を発生しながら熱を発する発熱ステップとを備えることを特徴とする。
 本発明の請求項1、請求項10及び請求項15によれば、水素原子が反応体の金属ナノ凸部内に吸蔵され、当該金属ナノ凸部内の電子が周囲の金属原子や他の電子から強く影響を受けて重電子として作用し、その結果、金属ナノ凸部内での水素原子間の核間距離が縮み、トンネル核融合反応の起こる確率を上げることができ、かくして従来よりも安定的に熱を生成し得る。
本発明による第1の実施の形態の発熱装置の構成を示す概略図である。 反応炉内の断面構成を示す概略図である。 第1の実施の形態による発熱装置の中性子の測定結果を示すグラフである。 第1の実施の形態による発熱装置の温度測定結果を示すグラフである。 本発明による第2の実施の形態による発熱装置の構成を示す概略図である。 第2の実施の形態における発熱装置において、図6Aは、プラズマ処理前の反応体の表面の様子を示すSEM写真であり、図6Bは、プラズマ処理前の巻回型反応体の表面の様子を示すSEM写真である。 プラズマ処理後の反応体の表面の様子を示すSEM写真である。 プラズマ処理後の巻回型反応体の表面の様子を示すSEM写真である。 図9A及び図9Bは、巻回型反応体の表面を拡大したSEM写真である。 第2の実施の形態による発熱装置を用いた検証試験において巻回型反応体に印加した電圧を示すグラフである。 第2の実施の形態による発熱装置を用いた検証試験において巻回型反応体の温度測定結果を示すグラフである。 第3の実施の形態による発熱装置の構成を示す概略図である。 他の実施の形態による反応体の構成を示す概略図である。 図14Aは、重水素ガスの質量分布を示すグラフであり、図14Bは、検証試験後10[ks]での反応炉内のガス成分を示すグラフである。 時間経過に伴うガス成分の増減量を示すグラフである。 図15のグラフを一部拡大したグラフである。
 以下、図面を参照して本発明の実施形態について詳細に説明する。
(1)第1の実施の形態
(1-1)第1の実施の形態による発熱装置の全体構成
 図1において、1は第1の実施の形態による発熱装置を示し、巻回型反応体25及び反応体26が電極対として反応炉2内に設けられており、当該反応炉2内で室温にて核融合反応を起こし、これにより発熱し得るようになされている。この実施の形態の場合、反応炉2には、管状の熱輸送パイプ32が反応炉2の外壁に沿って螺旋状に巻きつけられている。熱輸送パイプ32は、供給口32aから排出口32bに向けて内部に水等の流体が流れており、炉内で発生した熱により、熱輸送パイプ32内に流れる流体が加熱され、加熱された流体をそのまま排出口32bから排出し、例えば図示しない発電装置等に送って流体の熱を発電等に利用させ得る。
 ここで、反応炉2には、ガス供給手段3が設けられており、当該ガス供給手段3からガス供給管8を介して炉内に反応ガスとして重水素ガス(純度99.99%)が供給され得る。なお、ガス供給手段3は、重水素ガスボンベ5とガス溜6とを有し、重水素ガスボンベ5から排出された高圧の重水素ガスをガス溜6に蓄えた後、重水素ガスを1気圧程度に減圧して反応炉2内に供給し得る。ここで、ガス供給管8には、開閉バルブ7が設けられているとともに、分岐部16を介して圧力測定手段15が設けられている。反応炉2は、開閉バルブ7の開閉及び開閉量が調整されることにより、炉内への重水素ガスの供給量が調整され得る。なお、ガス供給管8に設けた圧力測定手段15は、ガス供給管8内の圧力を測定し得、これにより得られた圧力測定データを、反応炉2内の圧力としてロガー17に送出し得る。
 また、反応炉2には、真空排気管13を介して真空排気手段10が設けられている。反応炉2は、真空排気手段10によって炉内の気体が外部に排気され、炉内が真空雰囲気となり得、真空排気管13に設けた開閉バルブ11が閉められ、炉内が真空状態に保持され得る。この際、反応炉2は、ガス供給手段3から炉内に重水素ガスが供給されることで、真空状態に保持された炉内に重水素ガスが充満した状態となり得る。
 因みに、この反応炉2には、反応炉2の温度を測定するための熱電対18が反応炉2の外壁表面に設けられている。また、反応炉2の外部には、反応炉2から放射される中性子を測定する中性子測定手段19が配置されている。これら熱電対18及び中性子測定手段19はロガー17に接続されており、ロガー17は、熱電対18から得られた温度測定データや、中性子測定手段19から得られた中性子測定データの他、上述した圧力測定手段15から得られた圧力測定データを収集し、これらデータをコンピュータ21に送出し得る。コンピュータ21は、例えばロガー17を介して収集されたこれらデータを表示部に表示させ、当該データを基に作業者に対して反応炉2内の状態を把握させ得るようになされている。
 ここで、反応炉2は、例えばステンレス(SUS306やSUS316)等で形成された筒状部2aと、同じくステンレス(SUS306やSUS316)等で形成された壁部2b,2cとを備え、筒状部2aの両端開口部が、ガスケット(図示せず)を介して壁部2b,2cにより閉塞されており、筒状部2a及び壁部2b,2cで密閉空間を形成し得る。なお、この実施の形態の場合、筒状部2aには、側面部に開口部29が穿設されており、例えばステンレス(SUS306やSUS316)等でなる筒状の開口視認部30の中空領域と開口部29とが連通するように、当該開口視認部30の一端が側面部に接合されている。この開口視認部30は、コバールガラス等の透明部材で形成された窓部31が他端に嵌め込まれており、炉内の密封状態を維持しつつ、窓部31から中空領域、及び開口部29を介して反応炉2内の様子を作業者が直接目視確認し得るようになされている。因みに、この実施の形態の場合、反応炉2は、例えば筒状部2aが円筒状に形成されており、全長(壁部2b,2c間)が300[mm]、筒状部2aの外径が110[mm]に選定されている。
 かかる構成に加えて、この反応炉2の炉内には、巻回型反応体25と反応体26とからなる電極対が配置されており、電極対により発生するグロー放電によりプラズマが発生し得るようになされている。実際上、反応炉2には、一方の壁部2bに開口部28が穿設されており、当該開口部28に棒状の巻回型反応体25が挿通され、巻回型反応体25が炉内に配置され得る。実際上、壁部2bは、開口部28に設けた絶縁部材27により当該開口部28が閉塞されているとともに、巻回型反応体25が開口部28に非接触となるように絶縁部材27で当該巻回型反応体25を保持しており、反応炉2内の密閉状態を維持しつつ、巻回型反応体25と反応炉2とを電気的に絶縁させている。
 この実施の形態の場合、巻回型反応体25は、壁部2bの開口部28から反応炉2の外部に一端が露出しており、当該一端に配線22aを介して電源20が接続され、当該電源20から電圧が印加され得る。この電源20は、さらに他の配線22bを有しており、当該配線22bが反応炉2の壁部2bに接続されており、反応炉2に対しても電圧を印加し得る。なお、この電源20は、ロガー17を介してコンピュータ21に接続されており、出力電圧等がロガー17で収集され、これがコンピュータ21に送出されて、当該コンピュータ21により出力電圧等が管理されている。
 かかる構成に加えて、反応炉2は、筒状部2aの内壁表面に反応体26が接触するように配置された構成を有し、電源20からの電圧を、筒状部2aを介して反応体26に印加し得る。これにより、巻回型反応体25と反応体26は、電源20から印加される電圧によって、反応炉2内においてグロー放電を発生させ得る。
 実際上、この実施の形態の場合、反応体26は、例えばNi、Pd、Pt、Ti、或いはこれら元素のうち少なくともいずれか1種を含有した合金を含む水素吸蔵金属により筒状に形成されており、反応炉2の内壁に沿って配置され、外面が反応炉2の筒状部2aの内壁を覆うように設置され得る。反応体26は、反応炉2における筒状部2aの内壁を覆うことにより、電極対によるプラズマ発生時、筒状部2aへの電子照射により、当該筒状部2a内から元素(例えばステンレスの筒状部2aの場合、鉄や、軽元素、酸素、窒素、炭素等の元素)が炉内に放出されることを抑制し得るようになされている。
 かかる構成に加えて、この反応体26は、その表面が細線で網目状に形成されており、さらに幅が1000[nm]以下のナノサイズでなる複数の金属ナノ粒子(図示せず)が細線の表面に形成され、当該表面が凹凸状に形成されている。なお、この反応体26は、重水素ガス雰囲気中で巻回型反応体25及び反応体26により炉内にグロー放電によるプラズマを発生させる際(後述する発熱反応処理時)、プラズマ処理等によって、予め水素原子(重水素原子)が当該金属ナノ粒子内に吸蔵し得るように表面の酸化被膜が除去され、表面の金属ナノ粒子が活性化した状態になっていることが望ましい。
 ここで本発明では、電極として機能する反応体26の表面に、ナノサイズでなる複数の金属ナノ粒子を形成することで、重水素ガス雰囲気中で巻回型反応体25及び反応体26によりグロー放電を発生させた際、金属ナノ粒子中に水素原子が吸蔵され、ナノサイズの金属ナノ粒子内の電子が周囲の金属原子や他の電子から強く影響を受けて重電子として作用し、その結果、金属ナノ粒子内での水素原子間の核間距離が縮み、反応炉2内において中性子を放出しながら熱を発生させる核融合反応を起こさせることができる。
 因みに、この実施の形態においては、後述するプラズマ処理を行うことにより、反応体26を反応炉2内に設置した後に、当該反応体26の表面にナノサイズでなる複数の金属ナノ粒子を形成するが、本発明はこれに限らず、反応体26を反応炉2内に設置する前に、反応体26に対してスパッタ処理や、エッチング処理等を行い、当該反応体26の表面にナノサイズでなる複数の金属ナノ粒子を予め形成しておき、当該金属ナノ粒子が表面に形成されている反応体26を反応炉2内に設置するようにしてもよい。但し、この場合であっても、重水素ガス雰囲気中で巻回型反応体25及び反応体26により炉内にグロー放電によるプラズマが発生した際に、水素原子が金属ナノ粒子内に吸蔵し得るように、後述するプラズマ処理を行い、反応体26の表面の酸化被膜を除去し、表面の金属ナノ粒子を活性化した状態にする必要がある。
 実際上、反応体26の表面には、球状粒子、楕円状粒子、又は卵状粒子の一部が当該表面に埋め込まれたような形状(例えば、半球状や、半楕円状、又は半卵状)でなる湾曲表面を有した複数の金属ナノ粒子が形成されている。また、この実施の形態の場合、反応体26には、表面に金属ナノ粒子同士が接触するように形成されており、複数の金属ナノ粒子が密集するように形成されている。また、金属ナノ粒子の中には、当該金属ナノ粒子の湾曲表面に、幅(粒径)が1~10[nm]の微小な金属ナノ粒子がさらに形成された金属ナノ粒子もあり、複数の金属ナノ粒子でなる凹凸状の表面に、幅が1~10[nm]の微小な金属ナノ粒子が点在するように形成され得る。
 このような金属ナノ粒子は、幅が1000[nm]以下のナノサイズに形成され、好ましくは300[nm]以下、さらに好ましくは10[nm]以下、さらには5[nm]以下に形成されていることが望ましく、金属ナノ粒子の幅を小さくすることで、少ない重水素ガスの供給量で反応炉2内において核融合反応が起こり易くなり得る。
 ここで、このような金属ナノ粒子のサイズについて、核融合反応発生確率を示す理論計算を利用して、さらに理論的に解析すると、最も好ましくは、金属ナノ粒子の幅(粒径)が1~10[nm]で、これら微小な金属ナノ粒子の互いの距離が熱運動によって接触しない距離、好ましくは粒径の3倍以上の距離を空けて形成されていることが望ましい。この場合、反応体26の表面には、微小な金属ナノ粒子が点在するように形成されつつ、幅(粒径)が1~10[nm]の微小な金属ナノ粒子が、例えば1[cm]あたり、4×10個形成されていることが好ましい。
 なお、この実施の形態の場合、反応体26は、厚さが1.0[mm]を超えると、表面にナノサイズの細かな金属ナノ粒子が形成され難くなることから、表面にナノサイズの金属ナノ粒子を形成するためには厚さが1.0[mm]以下であることが好ましく、より好ましくは0.3[mm]以下、さらに好ましくは0.1[mm]以下であること望ましい。また、この実施の形態の場合、反応体26は、細線により網目状に形成されていることから、直径が小さい細線を用いることで容易にその厚みを薄く形成し得、また金属ナノ粒子が形成される表面の表面積を大きくすることもできる。なお、反応体26の表面は、1つの網目の幅が10~30[mm]に選定されていることが望ましい。
 図2に示すように、反応体26と電極対を構成する巻回型反応体25は、例えばPt、Ni、Pd、Ti、或いはこれら元素のうち少なくともいずれか1種を含有した合金を含む水素吸蔵金属からなる支持部たる軸部35の周辺に、同じくPt、Ni、Pd、Ti、或いはこれら元素のうち少なくともいずれか1種を含有した合金を含む水素吸蔵金属からなる細線36が螺旋状に巻きつけられた構成を有し、筒状部2aの中心軸上に軸部35が配置されている。また、巻回型反応体25と反応体26との距離は、10~50[mm]に選定され得る。なお、この実施の形態の場合、巻回型反応体25は、直径3[mm]、長さ200[mm]の軸部35をNiで形成するとともに、直径1.0[mm]の細線36をPtで形成しており、細線36から反応体26までの距離を50[mm]に選定している。
 因みに、上述した実施の形態では、反応体26の表面に着目し、ナノサイズでなる複数の金属ナノ粒子が、反応体26の表面に形成されている場合について述べているが、このようなナノサイズでなる複数の金属ナノ粒子は、巻回型反応体25の細線36にも形成されている。実際上、この実施の形態の場合、巻回型反応体25は、水素吸蔵金属により形成されていることから、細線36の表面に、ナノサイズでなる複数の金属ナノ粒子が形成されていることで、重水素ガス雰囲気中で巻回型反応体25及び反応体26によりプラズマを発生させた際、巻回反応体25の金属ナノ粒子中にも水素原子が吸蔵され、ナノサイズの金属ナノ粒子内の電子(自由電子)が周囲の金属原子や他の電子から強く影響を受けて重電子として作用し、その結果、金属ナノ粒子内での水素原子間の核間距離が縮み、反応炉2内において中性子を放出しながら熱を発生させる核融合反応を起こさせることができる。
(1-2)プラズマ処理
 ここで本発明の発熱装置1は、上述した反応体26や巻回型反応体25の表面にナノサイズでなる複数の金属ナノ粒子を形成するとともに、当該反応体26や巻回型反応体25の表面を活性化するプラズマ処理を行え得るようになされている。実際上、発熱装置1は、例えば、表面に金属ナノ粒子が形成されていない反応体や巻回型反応体が反応炉2内に設置された場合、プラズマ処理として、先ず始めに密閉空間とした反応炉2内の気体を真空排気し、炉内の圧力を10~500[Pa](例えば100[Pa]程度)とする。
 この状態で発熱装置1は、例えば巻回型反応体25を陽極とし、反応体26を陰極として、電極対に600~1000[V](例えば1000[V]程度)の電圧を印加してグロー放電を起こさせ、反応炉2内にプラズマを発生させる。なおこの際、陰極とした反応体26の温度は例えば500~600[℃]まで上昇し得る。発熱装置1は、このような真空雰囲気中でグロー放電を600秒~100時間(好ましくは10時間以上)継続して起こさせることにより、反応体26や巻回型反応体25の表面にナノサイズでなる複数の金属ナノ粒子を形成し得るとともに、これら反応体26や巻回型反応体25の表面の酸化被膜を除去して活性化し得る。
 因みに、プラズマ処理では、上述したように巻回型反応体25を陽極とし、反応体26を陰極としてプラズマを発生させるだけでなく、その後、続けて巻回型反応体25及び反応体26の極性を逆にして、巻回型反応体25を陰極とし、反応体26を陽極としてプラズマを発生させてもよい。このように、巻回型反応体25を陰極とし、反応体26を陽極としてグロー放電を起こさせる場合も、電極対に600~1000[V](例えば1000[V]程度)の電圧を印加してグロー放電を600秒~100時間(好ましくは、10時間以上)継続して起こさせることが望ましい。これにより、陰極とした巻回型反応体25と、陽極とした反応体26の両方は、例えば500~600[℃]まで温度が上昇して表面を確実に活性化し得る。
 なお、発熱装置1は上述したプラズマ処理を行った後、巻回型反応体25及び反応体26に対して加熱処理を行うことが望ましい。この加熱処理は、例えば巻回型反応体25及び反応体26をヒータにより直接加熱し、巻回型反応体25及び反応体26から軽水素や、HO、炭化水素系ガスを放出させ、水素原子を吸蔵し易くさせることができる。なお、このような加熱処理は、巻回型反応体25及び反応体26から軽水素や、HO、炭化水素系ガスが放出されなくなるまで行うことが望ましく、例えば100~200[℃]で3時間以上を行うことが望ましい。
 ここで、反応体26は、金属ナノ粒子が形成される前に、室温の王水や、混酸中で数分間浸けて、表面を予め酸洗処理しておくことにより、プラズマ処理時、その表面に一段と細かな金属ナノ粒子を形成させることができる。
(1-3)発熱反応処理
 続いて、発熱装置1では、このようなナノサイズでなる複数の金属ナノ粒子が表面に形成された反応体26を用い、反応炉2内において核融合反応を起こさせる発熱反応処理を行え得る。この実施の形態の場合、発熱装置1では、上述したプラズマ処理に続き、発熱反応処理として、反応炉2内を真空状態に保持しつつ、ガス供給手段3によって反応炉2内に重水素ガスが供給され得る。
 次いで、発熱装置1では、重水素ガス雰囲気となった反応炉2内において、巻回型反応体25及び反応体26に、400~1500[V]、好ましくは600~1000[V]、さらに好ましくは700~800[V]の電圧を印加し、電極対にグロー放電を起こさせて反応炉2内にプラズマを発生させ得る。これにより、発熱装置1では、反応炉2内にプラズマを発生させている間、巻回型反応体25や反応体26の表面にある金属ナノ粒子に水素原子が吸蔵され、核融合反応が起こり得る。
 ここで、本発明の発熱装置1では、発熱反応処理時、反応炉2内にプラズマを発生させると、反応炉2内において核融合反応が起こるが、その際、反応体26や巻回型反応体25の表面に微細な金属ナノ粒子が新たに形成されてゆき、新たに形成された金属ナノ粒子にも水素原子が吸蔵され、核融合反応が起こり得る。
(1-4)本発明による発熱装置における核融合反応の概要
 ここで、反応体26に着目し、その表面にナノサイズでなる複数の金属ナノ粒子を形成したことにより核融合反応が起こり易くなる概要について以下簡単に説明する。一般的には金属への電子照射によって中性子等の放射や熱は発生しない。しかしながら、ナノサイズのように一定サイズ以下の金属ナノ粒子中では、電子が重フェルミオン(重電子)として作用し、水素原子同士を接近させ核融合反応を起こす。通常、核融合反応を起こさせるには重水素の場合、10K=1keV以上のエネルギーが必要である。そのような大きなエネルギーを温度で与えようとすると、例えば、重水素の場合、約10K以上、軽水素の場合、約1.5×10K以上の高温が必要であり、核融合発生確率が10-31/s/atom pairと極めて低い。
 しかしながら、本発明のように反応体26の表面にナノサイズでなる複数の金属ナノ粒子(金属ナノ凸部)を形成した場合、金属ナノ粒子内において電子は、周囲の金属原子や他の電子の影響を強く受ける。すなわち、金属ナノ粒子中に水素原子が導入することによって、金属ナノ粒子中の水素濃度が上がり、当該水素濃度が上がるとさらに金属ナノ粒子中の電子の性質が変化し質量が大きな値となる。重い電子は水素原子核と原子を形成し、重い電子が核外電子になると、電子軌道半径が縮み、重電子水素原子間の核間距離も縮む。その結果、反応体26では、トンネル効果による重電子水素原子間の核融合反応発生確率が上がり、核融合反応が起こり易くなる。例えば、Pdからなる金属ナノ粒子中の場合、電子質量が2倍に増えると、トンネル効果による核融合反応発生確率は10桁増加し、核融合反応が起こり易くなり得る。
 なお、反応体26は、重電子水素原子間の核融合反応発生確率を増やすために、例えばアルカリ類や、アルカリ土類原子(例として水素原子構造を持つ、Li、Na、K、Ca等)を金属ナノ粒子の表面に添附してもよく、これにより金属ナノ粒子中での電子の受け渡し作用を大幅に増加させることができ、一段と核融合反応発生確率を上げることができる。本発明の発熱装置1では、このようにして核融合反応を安定的に起こさせ、核融合反応時に生成される大きなエネルギーによって、安定的に発熱し得る。
(1-5)検証試験
 次に、図1に示すような発熱装置1を用意し、上述したプラズマ処理及び発熱反応処理を実行し、反応炉2周辺での中性子の測定と、反応炉2の温度測定とを行った。ここでは、先ず始めに、ナノサイズでなる複数の金属ナノ粒子が形成されていないNi(純度99.9%)でなる反応体を用意し、これを反応炉2内に設置した。次いで、プラズマ処理を行うため、真空排気手段10によって反応炉2内を真空排気し、反応炉2内を10-6気圧程度とした。
 続いて、この状態で巻回型反応体25及び反応体26に1[kV]の電圧を印加してグロー放電を発生させ、反応炉2内に当該グロー放電を30時間発生させ続けた。その後、この時点で反応体26を反応炉2から取り出して、反応体26の表面状態をSEM写真等により確認したところ、粒径が1000[nm]以下のナノサイズでなる複数の金属ナノ粒子が密集するように形成され、表面が凹凸状になっていることが確認できた。
 これとは別に、発熱反応処理を行うため、反応体26を反応炉2から取り出すことなく、上述したように電極対に1[kV]を印加してグロー放電を発生させ続け、反応炉2内を10-6気圧程度とし、ガス供給手段3により反応炉2内に重水素ガスをガス圧10-2気圧で供給した。これにより発熱装置1では、1~2分後に中性子測定手段19によって中性子が測定された。
 次いで一旦、グロー放電を中止し、反応炉2内に重水素ガスを補給した後、十分に電極対を冷却し、再び電極対に1[kV]の電圧を印加してグロー放電を発生させた。これにより中性子測定手段19によって、再び中性子を測定し始め、この後、中性子を数時間継続して測定した。ここで、中性子の測定結果を図3に示す。図3に示すように、この発熱装置1では、グロー放電を起こさせるために電極対に電圧を供給した後から急激に中性子が発生していることから、反応炉2内で中性子発生を伴う核融合反応が起こっていることが推測できた。また、このような中性子の発生数は、電極対の放電電圧によって制御でき、電圧の指数関数で発生中性子数が増加することが確認できた。なお、安定的な中性子の発生は、電圧の供給により、10個が得られた。発熱反応を200秒間継続させたときの反応体26の単位面積あたりの中性子発生量を計算したところ10個であった。
 また、中性子の測定と同時に、反応炉2の温度を熱電対18で測定したところ、図4に示すような結果が得られた。図4から、中性子が発生した後、反応炉2の温度が上昇していることが確認でき、これによりこの発熱装置1は反応炉2から熱を生成できることが確認できた。なお、中性子の発生に遅れて温度上昇が測定されたのは、発熱箇所と熱電対18の設置場所がずれているためであり、温度上昇に熱伝導に要する時間分だけ遅れが生じたからである。なお、図4中、△T1~△T5は、反応炉2の筒状部2aに沿って所定間隔を空けて設けられた箇所を示している。因みに、このとき電極対間に流れた電流は30[mA]であった。すなわち、電力としては30[W]となる。これから熱発生量は1[kW]となり、入力に対する発熱量は33倍に達した。
(1-6)作用及び効果
 以上の構成において、本発明に係る発熱装置1では、1000[nm]以下のナノサイズでなり、水素吸蔵金属からなる複数の金属ナノ粒子が表面に形成された反応体26を反応炉2内に設け、重水素ガス雰囲気となった反応炉2内で巻回型反応体25及び反応体26でプラズマを発生させてエネルギーを与える発熱反応処理を行うようにした。これにより発熱装置1では、水素原子が反応体26の金属ナノ粒子内に吸蔵され、当該金属ナノ粒子内の電子が周囲の金属原子や他の電子から強く影響を受けて重電子として作用し、その結果、金属ナノ粒子内での水素原子間の核間距離が縮み、トンネル核融合反応の起こる確率を上げることができる。
 また、この発熱装置1では、表面に金属ナノ粒子が形成されていない反応体を反応炉2内に設けた場合でも、発熱反応処理を行う前に、反応炉2内を真空雰囲気とし、巻回型反応体25及び反応体により起こるグロー放電により反応炉2内にプラズマを発生させるプラズマ処理を行うことにより、ナノサイズでなる複数の金属ナノ粒子を反応体26の表面に形成できる。さらに、発熱装置1では、発熱反応処理前にプラズマ処理を行うことで、反応体26の表面にある酸化被膜を除去でき、かくして、発熱反応処理時に、反応体26の表面を、水素原子が反応体26の金属ナノ粒子内に吸蔵可能な活性状態にでき、核融合反応を起こさせることができる。
 また、この実施の形態の場合、反応体26は、表面が細線により網目状に形成されていることから、細線の直径を小さくするだけで表面の厚さを容易に薄くでき、表面の厚さを、ナノサイズでなる複数の金属ナノ粒子が形成し易い最適な薄さにできる。さらに、反応体26では、表面を網目状に形成したことにより、表面積を増やすことができ、その分、水素原子を吸蔵させる金属ナノ粒子の形成領域を広くでき、発熱が生じる反応箇所を増やすことができる。
 また、この発熱装置1では、電源20から配線22bを介して反応炉2に電圧を印加するとともに、反応体26を反応炉2の内壁に接するようにして当該反応体26で反応炉2の内壁を覆うようにしたことにより、反応体26を電極として機能させつつ、それと同時に反応体26によって反応炉2の内壁がグロー放電による電子照射によって削られるのを防ぐことができる。
 さらに、発熱装置1では、水素吸蔵金属からなる巻回型反応体25の細線36の表面にもナノサイズでなる複数の金属ナノ粒子を形成するようにした。これにより発熱装置1では、巻回型反応体25の細線36表面の金属ナノ粒子内にも水素原子が吸蔵され、当該金属ナノ粒子内の電子が周囲の金属原子や他の電子から強く影響を受けて重電子として作用し、その結果、金属ナノ粒子内での水素原子間の核間距離が縮み、トンネル核融合反応の起こる確率を上げることができる。
 以上の構成によれば、1000[nm]以下のナノサイズでなり水素吸蔵金属でなる複数の金属ナノ粒子(金属ナノ凸部)が表面に形成された反応体26を、重水素ガス雰囲気となる反応炉内に設置するようにしたことにより、水素原子が反応体26の金属ナノ粒子内に吸蔵され、当該金属ナノ粒子内の電子が周囲の金属原子や他の電子から強く影響を受けて重電子として作用し、その結果、金属ナノ粒子内での水素原子間の核間距離が縮み、トンネル核融合反応の起こる確率を上げることができ、かくして従来よりも安定的に熱を生成し得る。
(2)第2の実施の形態
(2-1)第2の実施の形態による発熱装置の構成
 図1との対応部分に同一符号を付して示す図5において、41は第2の実施の形態に係る発熱装置を示し、反応炉42の構成と、電極対の構成とが第1の実施の形態とは相違している。また、この第2の実施の形態による発熱装置41では、発熱反応処理時、電極対によりプラズマを発生させずに、ヒータにより反応炉42内を加熱し、加熱した反応炉42内に重水素ガスを供給することで、加熱温度以上の過剰熱を発生させている点で、上述した第1の実施の形態による発熱装置とは異なっている。さらに、この発熱装置41では、過剰熱が発生した後に、電極対によりプラズマを発生させることで、発熱温度がさらに上昇し、プラズマを停止させても、重水素ガスを反応炉42内に供給し続ける限り、温度上昇した高温の熱を生成し続けることができる点でも、第1の実施の形態とは相違している。
 なお、この発熱装置41は、その他の構成については上述した第1の実施の形態と同じであることから、ガス供給手段3や真空排気手段10、電源20等の図示や、その説明は省略する。実際上、この実施の形態の場合、反応炉42は、例えばステンレス(SUS306やSUS316)等で形成された筒状部43a及び壁部43b,43cを備え、筒状部43aの両端開口部が、ガスケット(図示しない)を介して壁部43b,43cにより閉塞されており、筒状部43a及び壁部43b,43cで密閉空間を形成し得る。
 この場合、筒状部43aには、開口視認部30が設けられた開口部29と対向するように他の開口部45が側面部に穿設されており、例えばステンレス(SUS306やSUS316)等でなる筒状の配管連通部46の中空領域と開口部45とが連通するように、当該配管連通部46の一端が側面部に接合されている。配管連通部46の他端には、壁部47が設けられており、ガス供給管8、真空排気管13及び圧力測定用配管48の管内部と、反応炉42内とが連通するように、これらガス供給管8、真空排気管13及び圧力測定用配管48が壁部47に設けられている。なお、圧力測定手段15は、圧力測定用配管48に設けられており、圧力測定用配管48を介して反応炉42内の圧力を測定し得る。
 かかる構成に加えて、反応炉42には、炉内に巻回型反応体50,51からなる電極対が設けられており、さらに反応炉42の筒状部43aの内壁を覆うように反応体26が設けられている。なお、この実施の形態の場合には、筒状部43aに穿設された開口部29,45と対向するように巻回型反応体50,51が炉内に配置されており、開口部45に設けた配管連通部46からの重水素ガスが巻回型反応体50,51に直接吹き付けることができるとともに、開口部29に設けた開口視認部30の中空領域から巻回型反応体50,51の様子を作業者が直接目視確認し得るようになされている。
 ここで、この実施の形態の場合、発熱装置41では、上述した第1の実施の形態とは異なり反応体26を電極として機能させずに、これとは別に反応炉42内に設けた巻回型反応体50,51を陰極及び陽極として機能させ、プラズマ処理等を行う際、これら巻回型反応体50,51を電極対としてグロー放電を起こさせ、炉内にプラズマを発生させ得るようになされている。反応体26は、上述した第1の実施の形態と同様の構成を有しており、電極として機能しないものの、巻回型反応体50,51を電極対としたプラズマ処理(ここで、プラズマ処理とは、密閉空間とした反応炉42内の気体を真空排気し、炉内の圧力を10~500[Pa]として、電極対に600~1000[V]の電圧を印加して600~100時間、グロー放電を起こさせて反応体26の温度を500~600[℃]まで上昇させることを言う)によりナノサイズでなる複数の金属ナノ粒子が表面に形成され、これにより真空状態が保持された反応炉42内でヒータにより加熱された後、重水素ガスが供給されると、これら金属ナノ粒子内に水素原子を吸蔵し得、核融合反応が起こり得る。
 巻回型反応体50は、電極保持部54の先端に設けられており、当該電極保持部54により反応炉42内の中央に配置され得る。電極保持部54は、電極導入部57を介して図示しない電源に接続され、当該電源からの電圧を巻回型反応体50に印加し得る。なお、電極保持部54は、壁部43bに穿設された開口部55から反応炉42内に挿通され、当該開口部55に設けた絶縁部材56により保持されているとともに、開口部55において当該絶縁部材56により壁部43bと非接触となるように配置され、反応炉42と電気的に絶縁されている。巻回型反応体50は、例えばPb、Ti、Pt、Ni、或いはこれら元素のうち少なくともいずれか1種を含有した合金を含む水素吸蔵金属からなる細線53が、Al(アルミナセラミックス)等の導通部材でなる支持部52に螺旋状に巻き付けられた構成を有し、プラズマ処理によって細線53の表面にナノサイズでなる複数の金属ナノ粒子を形成させることができる。これにより巻回型反応体50でも、真空状態が保持された反応炉42内でヒータにより加熱されるとともに、重水素ガスが供給されると、これら金属ナノ粒子内に水素原子が吸蔵され、核融合反応が起こり得る。
 なお、巻回型反応体50における細線53の表面に形成される金属ナノ粒子のサイズや形状は、反応体26の表面に形成される金属ナノ粒子と同様である。すなわち、巻回型反応体50における細線53の表面には、球状粒子、楕円状粒子、又は卵状粒子の一部が当該表面に埋め込まれたような形状(例えば、半球状や、半楕円状、又は半卵状)でなる湾曲表面を有した複数の金属ナノ粒子が形成され得る。
 因みに、反応体26をNiにより形成し、巻回型反応体50における細線53をPbにより形成したところ、巻回型反応体50における細線53の表面には、Niで形成した反応体26ほどではないが、表面に金属ナノ粒子同士が接触するようにして形成され、複数の金属ナノ粒子が密集する領域も形成された(後述する図8に示す)。また、巻回型反応体50における細線53の表面に形成される金属ナノ粒子は、反応体26の表面に形成される金属ナノ粒子と同様に、幅が1000[nm]以下のナノサイズに形成され、好ましくは300[nm]以下、さらに好ましくは10[nm]以下、さらには5[nm]以下に形成されていることが望ましく、金属ナノ粒子の幅を小さくすることで、少ない重水素ガスの供給量で核融合反応が起こり易くなり得る。
 なお、この場合であっても、巻回型反応体50における細線53の表面には、反応体26の表面と同様に、金属ナノ粒子の幅(粒径)が1~10[nm]で、これら微小な金属ナノ粒子の互いの距離が熱運動によって接触しない距離、好ましくは粒径の3倍以上の距離を設けて形成されていることが望ましい。この場合、反応体の表面には、金属ナノ粒子が、例えば1[cm]あたり、4×10個形成されていることが好ましく、さらに微小な金属ナノ粒子が点在するように形成されていることが望ましい。
 なお、反応炉42には、巻回型反応体50の支持部52に熱電対58が接触するように配置されている。これにより巻回型反応体50は、熱電対58によって温度が測定され、熱電対58に接続されたコンピュータ等により作業者が温度確認し得るようになされている。この場合、熱電対58は、アルミナ管の内部にK型の熱電対素子が挿入された構成を有し、壁部43bにおいて絶縁部材59により保持され、反応炉42と絶縁されている。
 巻回型反応体50と対をなす他方の巻回型反応体51は、電極保持部62の先端に設けられており、当該電極保持部62によって、一方の巻回型反応体50と対向するように炉内に配置されている。なお、電極保持部62は、壁部43bに設けた絶縁部材63により保持された電極導入部64に接続されている。電極導入部64は、図示しない電源に接続されており、当該電源からの電圧を、電極保持部62を介して巻回型反応体51に印加し得る。これにより巻回型反応体51は電源から電圧が印加されて陰極又は陽極として機能し得る。
 巻回型反応体51は、例えばPb、Ti、Pt、Ni、或いはこれら元素のうち少なくともいずれか1種を含有した合金を含む水素吸蔵金属で形成された軸部60に、同じくPb、Ti、Pt、Ni、或いはこれら元素のうち少なくともいずれか1種を含有した合金を含む水素吸蔵金属で形成された細線61が螺旋状に巻き付けられた構成を有し、軸部60の根本が電極保持部62の先端に取り付けられている。この巻回型反応体51も、上述した巻回型反応体50と同様に、プラズマ処理によって、軸部60や細線61の表面にナノサイズでなる複数の金属ナノ粒子を形成させることができる。かくして、巻回型反応体51でも、真空状態が保持された反応炉42内に重水素ガスが供給されると、軸部60や細線61の表面に形成された金属ナノ粒子内に水素原子が吸蔵され、核融合反応が起こり得る。なお、巻回型反応体51の軸部60や細線61の表面に形成される金属ナノ粒子は、上述した巻回型反応体50の細線53の表面に形成される金属ナノ粒子と同様の構成を有することから、ここではその説明は省略する。
 かくして、第2の実施の形態による発熱装置41は、プラズマ処理によって巻回型反応体50,51及び反応体26の表面にナノサイズでなる複数の金属ナノ粒子を形成し得、続けて、図示しないヒータにより巻回型反応体50,51や反応体26が加熱された状態で、真空状態が保持された反応炉42内に重水素ガスが供給されると、巻回型反応体50,51及び反応体26の表面にある金属ナノ粒子内に水素原子が吸蔵され、その結果、反応炉42内で核融合反応を起こさせ、発熱し得るようになされている。ここで、ヒータにより巻回型反応体50,51や反応体26を加熱する際の加熱温度は、200[℃]以上、さらに好ましくは250[℃]以上であることが望ましい。
 また、この第2の実施の形態による発熱装置41では、このような反応炉42内で発熱している際に、電極対によりグロー放電を起こさせてプラズマを発生させると、発熱温度がさらに上昇し、当該プラズマを停止させても、反応炉42内を水素ガス雰囲気に維持し続ける限り、そのまま温度上昇した状態を維持し続けることができる。
(2-2)検証試験
 次に、図5に示した発熱装置41を用い、反応炉42が発熱するか否かについて検証試験を行った。ここでは、体積15[l]、重量50[kg]の反応炉42をステンレス(SUS306)で形成した。また、この検証試験では、縦横30[mm]、厚さ2[mm]のAl(アルミナセラミックス)で形成された支持部52に、直径0.1[mm]、長さ1000[mm]のPd(純度99.9%)でなる細線53を15回巻き付けた巻回型反応体50を用い、また、直径3[mm]、長さ50[mm]のPd(純度99.9%)でなる軸部60に、直径1[mm]、長さ300[mm]のPd(純度99.9%)でなる細線61を隙間なく螺旋状に巻き付けた巻回型反応体51を用いた。また、この検証試験では、直径0.1[mm]のNi(純度99.9%)でなる細線で表面が網目状に形成されている筒状の反応体26を用いた。
 次いで、これら巻回型反応体50,51及び反応体26をアルコールとアセトンで超音波洗浄を行い、油脂の汚染が起きないように洗浄状態を保って反応炉42内に設置した。なお、この反応炉42は全体が接地電位となっている。また、巻回型反応体50の温度を直接計るための熱電対58は直径1.6[mm]、長さ300[mm]のK型でステンレス被覆型のものを用い、さらにステンレス外皮の外側を直径3[mm]、長さ100[mm]のアルミナ管で絶縁し、先端部分を巻回型反応体50表面に接触させた。
 そして、先ず始めにプラズマ処理として、反応炉42内の気体を真空排気してゆき、反応炉42内を数Paの真空雰囲気とした後、巻回型反応体50を陽極とし、600[V]の直流電圧を加え、20[mA]程度で600秒程度放電させた。次に、電極電圧を変えて巻回型反応体50を陰極とし、600[V]の直流電圧を加え、20[mA]程度で1200秒程度放電させた。この過程を5回繰り返した後、反応炉42から反応体26と巻回型反応体50を取り出してその表面をSEM写真により観察した。
 ここで、図6Aは、上述したプラズマ処理を行う前の反応体26の表面を撮像したSEM写真であり、幅が1000[nm]以下のナノサイズでなる複数の金属ナノ粒子がその表面には形成されておらず、平坦な表面であることが確認できた。一方、図7は、上述したプラズマ処理を行った後の反応体26の表面を撮像したSEM写真であり、幅が1000[nm]以下のナノサイズでなる複数の金属ナノ粒子がその表面に形成され、表面が凹凸状になっていることが確認できた。また、これら金属ナノ粒子は、半球状、半楕円状等、湾曲表面になっていることが確認できた。
 また、図6Bは、上述したプラズマ処理を行う前の巻回型反応体50における細線53の表面を撮像したSEM写真であり、当該巻回型反応体50でも幅が1000[nm]以下のナノサイズでなる複数の金属ナノ粒子がその表面には形成されておらず、平坦な表面であることが確認できた。一方、図8は、上述したプラズマ処理を行った後の巻回型反応体50における細線53の表面を撮像したSEM写真であり、幅が1000[nm]以下のナノサイズでなる複数の金属ナノ粒子がその表面に形成され、表面が凹凸状になっていることが確認できた。また、この場合も金属ナノ粒子は、半球状、半楕円状等、湾曲表面になっていることが確認できた。なお、巻回型反応体50における細線53の表面には、反応体26ほどではないが、表面に金属ナノ粒子同士が接触するようにして形成され、複数の金属ナノ粒子が密集する領域も形成されることが確認できた。
 ここで、巻回型反応体50について、プラズマ処理後の細線53の表面をさらに拡大して観察したところ、図9A及び図9Bに示すようなSEM写真が得られた。この図9A及び図9Bから、幅が100[nm]以下の金属ナノ粒子が形成されており、金属ナノ粒子の表面にさらに幅が小さい微小な金属ナノ粒子が形成される等、表面が凹凸状に形成されていることが確認できた。因みに、この検証試験では、直径0.1[mm]のPdの細線53を支持部52に巻き付けた巻回型反応体50を用いたが、直径1[mm]のPdの細線を支持部52に巻き付けた巻回型反応体を用いて検証試験を行ったところ、放電を10[ks]継続し、これを10回繰り返すことにより、当該細線の表面に十分活性な金属ナノ粒子を形成できることが確認できた。
 次いで、この検証試験では、反応炉42内の真空状態を保持し、図示しないヒータによって巻回型反応体50,51及び反応体26を100~200[℃]で3時間程度、加熱活性化し、巻回型反応体50,51及び反応体26から、軽水素、HO、さらに炭化水素系のガスを放出させて不純物を取り除いた。
 次いで、発熱反応処理として、第2の実施の形態による発熱装置41の検証試験では、図10及び図11に示すように、反応炉42内の真空状態を保持したまま段階的に巻回型反応体50を加熱してゆき、室温差140[℃]のとき、ガス供給管8から反応炉42内に重水素ガスを100[Pa]で導入した。ここで、図10は、電極対に印加した電圧を示し、図11は、ヒータにより巻回型反応体50を段階的に加熱していったときからの巻回型反応体50の温度を示す。なお、図11に示す温度は、巻回型反応体50の温度と、室温との差(室温差)である。
 この検証試験では、図11に示すように、巻回型反応体50を段階的に室温差140[℃]まで加熱した後、反応炉42内に重水素ガスを100[Pa](すなわち100[ml])で供給すると、電極対によってプラズマを発生させなくても、直ぐに室温差が220[℃]まで上昇した。その後、図10及び図11に示すように、巻回型反応体50の細線53(図10中ではPd細線と呼ぶ)の表面を活性化させるため、電極対に印加する電圧値を45[V]まで上昇させて4000秒間プラズマによる活性化処理を行ったところ、さらに30[℃]温度上昇して250℃となった。その後、電極対に印加する電圧値を32[V]まで下げてプラズマを停止させても、重水素ガスを反応炉42から排出するまで、温度上昇した状態がそのまま安定して継続した。
 また、この際、中性子測定手段によって反応炉42の周囲の中性子を測定したところ、重水素ガスを反応炉42内に導入し巻回型反応体50が発熱し始めてから、中性子測定手段において中性子が測定された。このように巻回型反応体50における発熱と、中性子の測定とから、反応炉42内では核融合反応が起こっていると推測できる。因みに、図10及び図11に示すように、250[℃]で安定して発熱している状態になった後、再び巻回型反応体50の細線53の表面を活性化させるため、電極対に電圧を印加しグロー放電を起こさせ、プラズマによる活性化処理を行ったが、さらなる温度上昇は確認できなかった。以上の検証試験により、第2の実施の形態に係る発熱装置41では、巻回型反応体50,51や反応体26の表面にナノサイズでなる複数の金属ナノ粒子を形成し、当該表面を活性化させた後、反応炉42内に重水素ガスを供給することにより核融合反応を起こさせて熱を生成できることが確認できた。
(2-3)作用及び効果
 以上の構成において、本発明に係る発熱装置41でも、ナノサイズでなる複数の金属ナノ粒子が表面に形成された水素吸蔵金属からなる反応体26を反応炉42内に設け、反応体26をヒータにより加熱してエネルギーを与え、真空状態に保持された反応炉42内に重水素ガスを供給し、反応炉42内を重水素ガス雰囲気とした。また、発熱装置41では、水素吸蔵金属からなる巻回型反応体50の細線53や巻回型反応体51の表面にもナノサイズでなる複数の金属ナノ粒子を形成するようにした。これにより発熱装置41では、ヒータの加熱によりエネルギーが与えられることにより、巻回型反応体50,51や反応体26の金属ナノ粒子内に水素原子が吸蔵され、当該金属ナノ粒子内の電子が周囲の金属原子や他の電子から強く影響を受けて重電子として作用し、その結果、金属ナノ粒子内での水素原子間の核間距離が縮み、トンネル核融合反応の起こる確率を上げることができ、かくして加熱温度以上の熱を従来よりも安定的に生成し得る。
 また、この発熱装置41では、重水素ガス雰囲気となる反応炉内で、電極対によりプラズマを発生させると、発熱が促進して発熱温度がさらに上昇し、当該プラズマを停止させても、反応炉42内を重水素ガス雰囲気に維持し続ける限り、そのまま温度上昇した状態を維持し続けることができる。
 また、発熱装置41では、反応体26及び巻回型反応体50に加え、さらに巻回型反応体51を設け、この巻回型反応体51にも複数の金属ナノ粒子が形成されることから、当該金属ナノ粒子が形成されている領域が増え、その分、水素原子が金属ナノ粒子内に吸蔵され易くなり、核融合反応が起こる確率を高くできる。
(3)第3の実施の形態
 図1との対応部分に同一符号を付して示す図12において、65は第3の実施の形態による発熱装置を示し、上述した第1の実施の形態とは、反応炉2内に設置される電極対の構成が相違している。実際上、この発熱装置65における反応炉2には、反応炉2の中心軸上に、例えば陽極として機能する巻回型反応体66と、陰極として機能する内側反応体72とが直列に配置されており、同じく陰極として機能する筒状の反応体26の中空領域内に、これら巻回型反応体66及び内側反応体72が配置されている。
 この実施の形態の場合、反応炉2には、筒状部2aの内壁に反応体26が接するように設けられているとともに、一方の壁部2cに対して内側反応体72が立設されている。反応炉2は、図示しない電源に接続された配線が外壁に接続された構成を有し、電源から配線を介して反応炉2に電圧が印加されると、当該反応炉2に接した反応体26及び内側反応体72にも電圧を印加し得るようになされている。
 この実施の形態の場合、壁部2bの開口部28には、絶縁部材27が設けられており、アルミナ絶縁管で覆われた棒状の電極導入部71が当該絶縁部材27により保持されている。電極導入部71は、絶縁部材27によって反応炉2と絶縁状態が保たれた状態で反応炉2内にその先端が配置され、当該先端に巻回型反応体66を有する。巻回型反応体66は、電極導入部71の先端に接続された軸部69を有し、軸部69に細線70が螺旋状に巻き付けられている。また、巻回型反応体66は、軸部69の先端に拡径状の支持部67が設けられており、当該支持部67にも細線68が巻き付けられている。巻回型反応体66は、図示しない電源に接続された配線が電極導入部71に接続されており、当該配線及び電極導入部71を介して電源から電圧が印加され得る。
 ここで巻回型反応体66を構成する軸部69及び細線68,70は、Ni、Pd、Ti、Pt、或いはこれら元素のうち少なくともいずれか1種を含有した合金を含む水素吸蔵金属により形成されている。これにより巻回型反応体66は、上述した反応体26と同様に、プラズマ処理が行われることにより、軸部69及び細線68,70の表面に、ナノサイズでなる複数の金属ナノ粒子が形成されるとともに、表面の酸化被膜が除去されて水素原子を吸蔵可能な活性状態となり得る。なお、支持部67は例えばAl(アルミナセラミックス)等の導通部材で形成され得る。
 かかる構成に加えて、内側反応体72は、内部が中空状の四角柱状に形成されており、その表面が、Ni、Pd、Ti、Pt、或いはこれら元素のうち少なくともいずれか1種を含有した合金を含む水素吸蔵金属からなる細線により網目状に形成されている。この内側反応体72は、底面部が壁部2cに固着されて反応炉2と導通状態となっており、電源から反応炉2を介して電圧が印加されることで電極として機能し得る。また、この内側反応体72は、底面部と対向する天面部が、巻回型反応体66の支持部67と所定距離を設けて対向するように配置されており、当該巻回型反応体66と電極対を構成しグロー放電を起こしてプラズマを発生させ得る。
 ここで、この内側反応体72も、反応体26や巻回型反応体66と同様に、プラズマ処理が行われることにより、ナノサイズでなる複数の金属ナノ粒子が表面に形成されるとともに、当該表面の酸化被膜が除去され、水素原子を吸蔵可能な活性状態となり得る。また、この発熱装置65では、内側反応体72に加えて反応炉2の内壁に設けた反応体26も電極として機能し得、当該反応体26と巻回型反応体66とでも電極対を構成し、これら反応体26及び巻回型反応体66でもグロー放電を起こしてプラズマを発生させ得る。
 以上の構成において、この発熱装置65でも上述した第2の実施の形態と同様の効果を得ることができる。例えば発熱装置65では、ナノサイズでなる複数の金属ナノ粒子が表面に形成された水素吸蔵金属からなる反応体26及び内側反応体72を反応炉2内に設け、反応体26及び内側反応体72をヒータにより加熱してエネルギーを与え、真空状態に保持された反応炉42内に重水素ガスを供給し、反応炉42内を重水素ガス雰囲気とした。これにより発熱装置65では、水素原子が反応体26及び内側反応体72の金属ナノ粒子内に吸蔵され、当該金属ナノ粒子内の電子が周囲の金属原子や他の電子から強く影響を受けて重電子として作用し、その結果、金属ナノ粒子内での水素原子間の核間距離が縮み、トンネル核融合反応の起こる確率を上げることができ、かくして従来よりも安定的に熱を生成し得る。
 また、この発熱装置65では、水素吸蔵金属からなる巻回型反応体66の軸部69及び細線68,70の表面にもナノサイズでなる複数の金属ナノ粒子を形成するようにした。これにより発熱装置65では、ヒータの加熱によりエネルギーが与えられることにより、軸部69及び細線68,70の表面にある金属ナノ粒子内にも水素原子が吸蔵され、当該金属ナノ粒子内の電子が周囲の金属原子や他の電子から強く影響を受けて重電子として作用し、その結果、金属ナノ粒子内での水素原子間の核間距離が縮み、トンネル核融合反応の起こる確率を上げることができ、かくして従来よりも安定的に熱を生成し得る。
(4)他の実施の形態
 本発明は上述した実施の形態に限定されるものではなく、本発明の趣旨の範囲内で適宜変更することが可能である。例えば、上述した実施の形態においては、金属ナノ凸部として、球状粒子、楕円状粒子、又は卵状粒子の一部が当該表面に埋め込まれたような形状でなる湾曲表面を有した金属ナノ粒子について述べたが、本発明はこれに限らず、図13Aに示すように、幅がナノサイズでなる帯状の金属ナノ凸部83を適用してもよく、また、図13Aに示すように、板状の反応体80としてもよい。
 この場合、反応体80は、例えば水素吸蔵金属で形成された厚さ0.5[mm]の基板82上に、水素吸蔵金属で形成された幅が1000[nm]以下の帯状の金属ナノ凸部83と、帯状の凹部84とを一定の間隔で交互に配置した構成を有している。このような帯状の金属ナノ凸部83は、エッチング技術等を用いれば、例えば幅が5[nm]のナノサイズでなる帯状に容易に形成し得る。このように金属ナノ凸部83は、反応炉内に反応体を設置する前に予めエッチング技術等を用いて反応体の表面に形成しておいてもよい。
 そして、このように、表面にナノサイズでなる複数の金属ナノ凸部83が形成されている水素吸蔵金属からなる反応体80を、重水素ガス雰囲気となる反応炉内に設置することにより、水素原子が反応体80の金属ナノ凸部83内に吸蔵され、当該金属ナノ凸部83内の電子が周囲の金属原子や他の電子から強く影響を受けて重電子として作用し、その結果、金属ナノ凸部83内での水素原子間の核間距離が縮み、トンネル核融合反応の起こる確率を上げることができ、かくして従来よりも安定的に熱を生成し得る。
 また、その他の実施の形態として、図13Bに示すように、水素吸蔵金属からなる基板82上に、格子状に形成された凹部84を形成し、幅が1000[nm]以下の立方体状の水素吸蔵金属でなる金属ナノ凸部85がマトリクス状に配置された反応体81を適用してもよい。この場合でも、表面にナノサイズでなる複数の金属ナノ凸部85が形成されている水素吸蔵金属からなる反応体81を、重水素ガス雰囲気となる反応炉内に設置することにより、水素原子が反応体81の金属ナノ凸部85内に吸蔵され、当該金属ナノ凸部85内の電子が周囲の金属原子や他の電子から強く影響を受けて重電子として作用し、その結果、金属ナノ凸部85内での水素原子間の核間距離が縮み、トンネル核融合反応の起こる確率を上げることができ、かくして従来よりも安定的に熱を生成し得る。
 このように金属ナノ凸部は、幅が1000[nm]以下、好ましくは300[nm]以下、さらに好ましくは10[nm]以下、さらには5[nm]以下に形成されていることが望ましく、その形状は帯状や、直方体状等その他種々の形状であってもよい。
 (4-1)重水ガス、軽水素ガス、及び軽水ガスの利用について
 上述した実施の形態による発熱装置1,41,65では、重水素(D)ガスを反応炉2,42内に供給し、当該反応炉2,42内を重水素ガス雰囲気とした場合について述べたが、本発明はこれに限らず、重水(DO)ガスを反応炉2,42内に供給し、当該反応炉2,42内を重水ガス雰囲気としてもよく、また軽水素(H)ガスを反応炉2,42内に供給し、当該反応炉2,42内を軽水素ガス雰囲気としてもよく、さらには軽水(HO)ガスを反応炉2,42内に供給し、当該反応炉2,42内を軽水ガス雰囲気としてもよい。
 すなわち、重水素ガスの替わりに、重水ガスや、軽水素ガス、又は軽水ガスを用いた第1の実施の形態による発熱装置1(図1)でも、重水素ガス雰囲気、軽水素ガス雰囲気、又は軽水ガス雰囲気となった反応炉2内で巻回型反応体25及び反応体26でプラズマを発生させてエネルギーを与える発熱反応処理を行うことで、水素原子が反応体26や巻回型反応体25の金属ナノ粒子内に吸蔵され得る。これにより発熱装置1では、金属ナノ粒子内の電子が周囲の金属原子や他の電子から強く影響を受けて重電子として作用し、その結果、金属ナノ粒子内での水素原子間の核間距離が縮み、トンネル核融合反応の起こる確率を上げることができる。
 また、第2の実施の形態による発熱装置41(図5)でも、ナノサイズでなる複数の金属ナノ粒子が表面に形成された水素吸蔵金属からなる反応体26及び巻回型反応体50,51を反応炉42内に設け、これら反応体26及び巻回型反応体50,51をヒータにより加熱してエネルギーを与え、重水ガスや、軽水素ガス、軽水ガスを、真空状態に保持された反応炉42内に供給する。これにより発熱装置41でも、巻回型反応体50,51や反応体26の金属ナノ粒子内に水素原子が吸蔵され、当該金属ナノ粒子内の電子が周囲の金属原子や他の電子から強く影響を受けて重電子として作用し、その結果、金属ナノ粒子内での水素原子間の核間距離が縮み、トンネル核融合反応の起こる確率を上げることができ、かくして加熱温度以上の熱を従来よりも安定的に生成し得る。
 さらに、重水ガスや、軽水素ガス、軽水ガスを用いた第2の実施の形態による発熱装置41でも、上述と同様に、過剰熱発生後、重水ガス雰囲気、軽水素ガス雰囲気、又は軽水ガス雰囲気とした反応炉42内で、電極対によりプラズマを発生させると、発熱が促進して発熱温度がさらに上昇し、当該プラズマを停止させても、反応炉42内を重水ガス雰囲気、軽水素ガス雰囲気、又は軽水ガス雰囲気に維持し続ける限り、そのまま温度上昇した状態を維持し続けることができる。
 さらに、第3の実施の形態による発熱装置65(図12)でも、重水素ガスの替わりに、重水ガスや、軽水素ガス、軽水ガスを用いることができ、これら重水ガスや、軽水素ガス、軽水ガスを用いても、上述した第2の実施の形態と同様の効果を得ることができる。すなわち、図12に示す発熱装置65でも、ナノサイズでなる複数の金属ナノ粒子が表面に形成された水素吸蔵金属からなる反応体26及び内側反応体72を反応炉2内に設け、反応体26及び内側反応体72をヒータにより加熱してエネルギーを与え、重水ガスや、軽水素ガス、軽水ガスを、真空状態に保持された反応炉42内に供給する。
 重水ガス雰囲気、軽水素ガス雰囲気、又は軽水ガス雰囲気の反応炉42内では、水素原子が反応体26及び内側反応体72の金属ナノ粒子内に吸蔵され、当該金属ナノ粒子内の電子が周囲の金属原子や他の電子から強く影響を受けて重電子として作用し、その結果、金属ナノ粒子内での水素原子間の核間距離が縮み、トンネル核融合反応の起こる確率を上げることができ、かくして従来よりも安定的に熱を生成し得る。
 また、このような重水ガスや、軽水素ガス、軽水ガスを用いた発熱装置65でも、水素吸蔵金属からなる巻回型反応体66の軸部69及び細線68,70の表面にナノサイズでなる複数の金属ナノ粒子を形成することもでき、ヒータの加熱によりエネルギーが与えられると、軸部69及び細線68,70の表面にある金属ナノ粒子内に水素原子が吸蔵され、当該金属ナノ粒子内の電子が周囲の金属原子や他の電子から強く影響を受けて重電子として作用し、その結果、金属ナノ粒子内での水素原子間の核間距離が縮み、トンネル核融合反応の起こる確率を上げることができ、かくして従来よりも安定的に熱を生成し得る。
 (4-2)重水素ガス、重水ガス、軽水ガス、及び軽水素ガスを用いた検証試験について
 次に、図5に示した構成の発熱装置41を用いて、重水素ガス、重水ガス、軽水ガス、及び軽水素ガスを用いたときの出力総エネルギー等について調べる検証試験を行った。ここで、検証試験に用いる発熱装置41は、直径0.05[mm]のNi(純度99.9%)でなる細線により、100メッシュの網目が形成され、高さ30[cm]、幅30[cm]の反応体26を用意し、この反応体26の外周面が反応炉42内の内壁に沿って密着するように設置した。なお、この段階では、円筒状の反応体26の表面に、ナノサイズでなる複数の金属ナノ粒子が形成されていない。
 また、この検証試験では、縦横30[mm]、厚さ2[mm]のAl(アルミナセラミックス)で形成された支持部52に、直径0.2[mm]、長さ1000[mm]のPd(純度99.9%)でなる細線53を15回巻き付けた巻回型反応体50を用いた。さらに、この検証試験では、直径3[mm]、長さ50[mm]のPd(純度99.9%)でなる軸部60に、直径1[mm]、長さ300[mm]のPd(純度99.9%)でなる細線61を隙間なく螺旋状に巻き付けた巻回型反応体51を用いた。
 次いで、これら巻回型反応体50,51及び反応体26をアルコールとアセトンで超音波洗浄を行い、油脂の汚染が起きないように洗浄状態を保って反応炉42内に設置した。なお、この反応炉42は全体が接地電位となっている。また、巻回型反応体50の温度を直接計るための熱電対58は直径1.6[mm]、長さ300[mm]のK型でステンレス被覆型のものを用い、さらにステンレス外皮の外側を直径3[mm]、長さ100[mm]のアルミナ管で絶縁し、先端部分を巻回型反応体50表面に接触させた。なお、電極対となる巻回型反応体50,51は、陽極及び陰極の極性を変えることができる。
 次いで、先ず始めにプラズマ処理として、反応炉42内の気体を真空排気してゆき、反応炉42内を数Paの真空雰囲気とした後、巻回型反応体50を陽極、他方の巻回型反応体51を陰極とし、600~800[V]の直流電圧を加え、20[mA]程度で600秒程度放電させた。次に、電極電圧を変えて巻回型反応体50を陰極、他方の巻回型反応体51を陽極とし、600~800[V]の直流電圧を加え、20~30[mA]程度で10~10秒程度放電させた。
 次いで、この検証試験では、プラズマ処理として、反応炉42内の真空状態を保持し、図示しないヒータによって巻回型反応体50,51及び反応体26を加熱して活性化させた。巻回型反応体50,51及び反応体26の加熱は、巻回型反応体50,51及び反応体26から、軽水素、HO、さらに炭化水素系のガスが放出されなくなるまで行った。具体的には、ヒータによって巻回型反応体50,51及び反応体26を100~200[℃]で3時間程度、加熱活性化し、巻回型反応体50,51及び反応体26から、軽水素、HO、さらに炭化水素系のガスを放出させて不純物を取り除いた。
 さらに、この検証試験では、プラズマ処理として、巻回型反応体50を陽極とし、600~800[V]の直流電圧を加え、20~30[mA]程度で10[ks]秒程度放電させた。このようにして巻回型反応体50,51及び反応体26の表面にナノサイズでなる複数の金属ナノ粒子を形成した。なお、このようなプラズマ処理後、重水素ガスを反応炉42内に供給し、反応炉42内のガス圧力を調べたところ、当該ガス圧力が170[Pa]から40[Pa]に低下することが確認できた。このことから、試料金属たる巻回型反応体50,51及び反応体26が6.5[cm]の重水素ガスを吸収したことが確認できた。
 また、このようなナノサイズでなる複数の金属ナノ粒子が表面に形成された巻回型反応体50,51及び反応体26を用い、反応炉42内において核融合反応を起こさせる発熱反応処理を行った。この検証試験では、発熱反応処理として、反応炉42内を真空状態に保持しつつ、ガス供給手段3によって反応炉42内に供給されるガスの種類や、ガス供給時のガス圧力、電極対を加熱するヒータの入力加熱ワット数を変え、反応炉42の温度等の各種数値を調べた。ここでは先ず始めに、反応炉42内に供給するガスとして重水素ガスを用いたときの結果を、下記の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1において、1列目の「No.」は試験番号であり、2列目の「Gas Pressure Pa」は重水素ガスのガス圧力(Pa)であり、3列目の「Input Watt」はヒータの入力加熱ワット数(W)であり、4列目の「Out put/W Electrode」は電極(巻回型反応体50)の温度から計算した熱出力(W)であり、5列目の「Out put/W Reactor」は反応炉42の温度から計算した熱出力(W)である。
 また、表1において、6列目の「Time ks」は過剰熱継続時間(ks)であり、7列目の「Hout/Hin Electrode」は電極(巻回型反応体50)の温度から求めた出力/入力比値であり、8列目の「Hout/Hin Reactor」は反応炉42の外壁温度から求めた出力/入力比であり、9列目の「Temperature/C Electrode」は試験中における電極(巻回型反応体50)の定常温度(℃)であり、10列目の「Temperature/C Reactor」は試験中における反応炉42の定常温度(℃)であり、11列目の「Input Energy kJ」は入力総エネルギー(kJ)であり、12列目の「Output Electrode kJ」は電極(巻回型反応体50)の温度から計算した出力総エネルギー(kJ)であり、13列目の「Output Reactor kJ」は反応炉42の外壁温度から計算した出力総エネルギー(kJ)である。
 なお、試験番号No.6~No.13までは連続した一連の試験結果を示す。表1から、重水素ガスを用いた、いずれの場合でも、入力総エネルギー(11列目)よりも大きな出力総エネルギー(12列目及び13列目)が得られており、過剰熱発生が観察でき、発熱装置41により発熱可能であることが確認できた。
 次に、発熱装置41において、重水素ガスを用いたときの発熱前後におけるガス成分について調べた。図14Aは、原料ガスである重水素ガスの質量分析結果であり、横軸にガスM/eの質量数を示し、縦軸に反応炉42内のガス成分を分圧により示したものである。分圧値と、反応炉42の体積5[l]と、温度と、圧力とから、図14Aに示すような重水素ガスの標準状態のガス量を得た。図14Aに示すように、原料ガスである重水素ガスは、重水素が主であり、質量数4が202[Pa]であった。また、その他に質量数3のHDが42[Pa]、質量数2のH が5[Pa]であった。不純物としては、HあるいはODと推測される質量数18が含まれていた。なお、質量数17はOH、質量数19はOHD、質量数20はOD と推定される。
 次に、発熱装置41において発熱反応処理を行い、発熱反応処理後の反応炉42内におけるガス成分を調べた。ここで、発熱反応処理としては、真空排気状態で重水素ガスを反応炉42内に供給しつつ、ヒータにより電極(巻回型反応体50)を約84[ks]間加熱した。この際、初めの7[ks]はヒータへの入力を46[W]とし、それ以後は81[W]とした。なお、その間、反応炉42内のガス排気を数回行ったが、過剰熱は継続して発生していた。
 図14Bは、上述した発熱反応処理を行った後(すなわち、ヒータによる電極加熱を終了した後のことであり、以下、試験終了後とも呼ぶ)、10[ks]間の反応炉42内のガス成分を調べた結果を示す。図14Bから、試験終了後では、質量数3であるHDが多くなり、次に、質量数2であるH と、質量数19であるOHDとが多くなっていた。
 そして、さらに正確にガス成分の同定を行うために、発熱装置41において重水素ガスを用いた熱発生試験を30日間行った。図15及び図16は、このときのガス成分の増減を試験時間経過に沿って表した測定結果である。図15及び図16は、横軸が時間経過であり、縦軸がガス量を示しており、図16は、図15においてガス量15[cm]以下の領域を拡大したグラフである。図15及び図16中、「Total exclude2」とは全ガス量を示す。なお、過剰熱は、入力80[W]に対して、最低値で15[W]となっていた。経過時間に15[W]を乗すると発熱エネルギー、すなわちジュールとなる。このことからすると経過時間2.7[Ms]で40[MJ]と計算できる。
 図15及び図16から、検証試験の開始直後、重水素(D )が主である質量数4が減少し、その後減少速度は落ちるが、時間経過に伴い直線的に減っていった。これに対して、重水素原子(D)と推測される質量数2が、質量数4(D ))とは逆に増加していった。このような水素分子の解離エネルギーは25[℃]で436[kJ/mol]、解離度は1000[℃]で1.0×10-7程度であった。また、ニッケルでなる反応体26のヒータによる加熱を停止しても、この質量ガスは安定に存在していた。
 質量数3は、検証試験開始後、質量数2の質量減少に対し逆相関で増加していったが、その後は質量数4の挙動と対応して減っていった。また、質量数28も時間とともに増加してゆき、その量は30日で2.3[cm]であった。それ以外の成分は殆ど変化しなかった。なお、質量数2以外の成分の総計は初めの変化以後、殆ど一定であった。そして、質量数3(HD)と、質量数4(D)は、ともにガス圧力と出力総エネルギーとに依存していたが、その傾向は逆であり、質量数3はガス圧力や出力総エネルギーが増えると増加するが、質量数4はガス圧力や出力総エネルギーが増えると減少した。このことは質量数4が質量数2や質量数3の生成に寄与していることを示している。なお、検証試験によって、質量数2(H )は、出力総エネルギーが大きいほど発生量が増えるが、重水素ガスのガス圧力には依存せず、一方、質量数3(HD)は、重水素ガスのガス圧力と発熱量の増大によって増えることが分かった。
 また、重水素ガスに替えて重水ガスを用いて発熱装置41における出力エネルギー等について調べたところ、下記の表2に示すような結果が得られた。
Figure JPOXMLDOC01-appb-T000002
 なお、この検証試験に用いる発熱装置41では、上述の検証試験ではPdで形成していた他方の巻回型反応体51をNiで形成し、Pdでなる巻回型反応体50を陽極とし、Niでなる巻回型反応体51を陰極として反応炉42内に重水ガスを供給し、これら巻回型反応体50,51及び反応体26をヒータにより加熱を行った。また、必要に応じて反応炉42内にグロー放電によりプラズマを発生させた。そして、このときの発熱装置41における出力エネルギー等を測定した。
 なお、表2中、Pd極とは巻回型反応体50を示し、Ni極とは巻回型反応体51を示す。表2から、発熱装置41では、重水ガスを用いたいずれの場合でも、重水ガス雰囲気下の反応炉42内で巻回型反応体50,51及び反応体26をヒータにより加熱する発熱反応処理を行うことで、入力エネルギーを上回る出力エネルギーが得られており、発熱することが確認できた。なお、これら発熱装置41では、表2の7行目及び8行目の「水素発生量」で示すように、発熱反応処理を行った際、水素が発生することも確認できた。
 ここで、発熱装置41において、電極対となる巻回型反応体50,51をPdにより形成し、反応炉42内に供給する原料ガスとして、重水素ガス、重水ガス、又は軽水ガスを用いたときの検証試験の結果を下記の表3に示す。
Figure JPOXMLDOC01-appb-T000003
 なお、表3において、2列目の「Gas Component Significant」は、用いたガスの種類を示し、3列目の「Gas Pressure Pa」は、反応炉42内にガスを供給する際のガス圧力を示し、4列目の「Power in /W Heat Watt W」は、巻回型反応体50,51及び反応体26を加熱する際のヒータの入力加熱ワット数(W)を示し、5列目の「Power in /W Plasma V」は、電極となる巻回型反応体50,51によりプラズマ放電を発生させる際の入力電圧値を示し、6列目の「Power in /W Plasma W」は、電極対となる巻回型反応体50,51によりプラズマ放電を発生させる際の入力ワット数を示し、7列目の「Power in /W Total」は、ヒータによる入力加熱ワット数と、プラズマ放電時における電極対への入力ワット数とを合わせた全入力ワットを示す。
 また、表3において、8列目の「Time ks」は、過剰熱継続時間を示し、9列目の「Heat out/W Estimated by Electrode temp」は、電極(巻回型反応体50)の温度から計算した発熱量を示し、10列目の「Heat out/W Estimated by reactor temp」は、反応炉42の外壁温度から計算した発熱量を示し、11列目の「Hout/Hin Estimated by Electrode temp」は、電極(巻回型反応体50)の温度を基に計算した出力/入力比を示し、12列目の「Hout/Hin Estimated by reactor temp」は、反応炉42の外壁温度を基に計算した出力/入力比を示す。
 なお、重水素ガスを用いた試料No.33では、プラズマ放電を行わず、かつヒータによる電極対の加熱も行っておらず、この場合、11列目及び12列目の出力/入力比から過剰熱が発生しないことが確認できた。
 一方、それ以外の試料では、11列目及び12列目の出力/入力比から過剰熱が発生していることが確認できた。発熱装置41では、発熱反応処理時、重水素ガスだけでなく、重水ガスや軽水ガスを反応炉42内に供給し、反応炉42内を重水ガス雰囲気や軽水ガス雰囲気としても、巻回型反応体50,51及び反応体26をヒータにより加熱することで過剰熱が発生することが確認できた。
 次に、発熱装置41において、軽水素(H)ガスを用いたときの検証試験の結果を表4に示す。この場合、巻回型反応体50,51をNiにより形成し、これら巻回型反応体50,51を電極対とし、上述した表1の結果を得たときと同じ条件にてプラズマ処理を行った。続いて、発熱装置41において発熱反応処理を行った結果、表4のような結果を得た。
Figure JPOXMLDOC01-appb-T000004
 表4において、3列目の「圧力」は、反応炉42内に軽水素ガスを供給する際のガス圧力(Pa)を示し、4列目の「入力/W」は、巻回型反応体50,51及び反応体26を加熱する際のヒータの入力加熱ワット数(W)を示し、5列目の「時間/ks」は過剰熱継続時間を示し、6列目の「内部温度計算」は、反応炉42内の温度(℃)から計算した発熱量を示し、7列目の「炉温度計算」は、反応炉42自体の温度(℃)から計算した発熱量を示す。また、表4において、8列目の「内部温度計算」は、反応炉42内の温度から計算した発熱量を基に求めた出力/入力比を示し、9列目の「炉温度計算」は、反応炉42自体の温度から計算した発熱量を基に求めた出力/入力比を示す。
 表4からも、8列目の「内部温度計算」及び9列目の「炉温度計算」の出力/入力比の少なくとも一方が1以上となることから、反応炉42内を軽水素ガス雰囲気とし、この状態で反応炉42内の巻回型反応体50,51及び反応体26をヒータにより加熱することにより、過剰熱が発生することが確認できた。
 以上、表1~表4から、発熱装置41では、プラズマ処理によってナノサイズでなる複数の金属ナノ粒子が表面に形成された水素吸蔵金属からなる巻回型反応体50,51及び反応体26を反応炉42内に設け、真空状態に保持された反応炉42内を重水素ガス雰囲気や、重水ガス雰囲気、軽水素ガス雰囲気、軽水ガス雰囲気とし、巻回型反応体50,51及び反応体26をヒータにより加熱してエネルギーを与えることで、加熱温度以上の熱を生成できることが確認できた。
 (4-3)他の実施の形態による反応体
 図1に示した発熱装置1や、図5に示した発熱装置41、図12に示した発熱装置65では、細線により網目状に形成された反応体26,80,81の表面に、金属ナノ凸部としてナノサイズでなる複数の金属ナノ粒子が形成されているが、例えば金属ナノ粒子(金属ナノ凸部)よりも小さい微細な粒子状でなる、NiやPd、Pt、Tiの水素吸蔵金属(以下、水素吸蔵金属微粒子体と呼ぶ)を、反応体26,80,81の表面にある金属ナノ粒子表面に付着させ、水素吸蔵金属微粒子体により金属ナノ粒子の表面を凹凸状に形成するようにしてもよい。
 例えば、上述した「(1-2)プラズマ処理」により金属ナノ粒子(金属ナノ凸部)を形成した後に、水素ガス雰囲気中、1~50[Pa]の圧力の条件下、プラズマを発生させることにより、水素吸蔵金属でなる他の電極の一部が削られて水素吸蔵金属微粒子体として反応炉2,42内に飛散し得る。飛散した水素吸蔵金属微粒子体は、反応体26,80,81の表面にある金属ナノ粒子表面に付着し、金属ナノ粒子の表面を微細な凹凸状に形成し得る。そして、上述した発熱装置1,41,65では、このような金属ナノ粒子の表面に水素吸蔵金属微粒子体が付着した構成とすることで、水素原子が水素吸蔵金属微粒子体内にも吸蔵され得る。水素吸蔵金属微粒子体が表面に付着した金属ナノ粒子では、当該水素吸蔵金属微粒子体内でも電子が周囲の金属原子や他の電子から強く影響を受けて重電子として作用し、その結果、水素吸蔵金属微粒子体内でも水素原子間の核間距離が縮み、トンネル核融合反応の起こる確率を更に一段と上げることができ、かくして従来よりも安定的に熱を生成し得る。
 例えば、図1に示した発熱装置1では、一の電極となる反応体26をNiやPd、Pt等により形成し、他の電極となる巻回型反応体25の軸部35及び細線36(図2)を、NiやPd、Pt等により形成した構成とする。このような図1に示した発熱装置1では、反応炉2内にてプラズマを発生させることにより、例えば電極対の一方の巻回型反応体25の一部が削られて水素吸蔵金属微粒子体として反応炉2内に飛散し、NiやPd等でなる微細な水素吸蔵金属微粒子体を反応体26表面の金属ナノ粒子表面に付着させることができる。これにより発熱装置1では、例えばNi等でなる金属ナノ粒子の表面に、同じNiや、異種のPd等でなる複数の水素吸蔵金属微粒子体が付着した構成となり、反応体26表面で更に一段と微細凹凸化が進み、その後の発熱反応処理の際におけるトンネル核融合反応の起こる確率が更に一段と上がり、かくして従来よりも安定的に熱を生成し得る。
 また、図5に示した発熱装置41では、例えば、反応体26をNiやPd、Pt等により形成し、巻回型反応体50,51の細線53,61を、NiやPd、Pt等により形成した構成とする。このような図5に示した発熱装置41では、反応炉42内にてプラズマを発生させることにより、電極対となる巻回型反応体50,51の一部が削られて水素吸蔵金属微粒子として反応炉42内に飛散し、Pdでなる微細な水素吸蔵金属微粒子体が、反応体26表面にある金属ナノ粒子表面に付着し得る。これにより発熱装置41では、Ni等でなる金属ナノ粒子の表面に、同じくNiや、異種のPd等でなる複数の水素吸蔵金属微粒子体が付着した構成となり、反応体26表面で更に一段と微細凹凸化が進み、その後の発熱反応処理の際におけるトンネル核融合反応の起こる確率を更に一段と上げることができ、かくして従来よりも安定的に熱を生成し得る。
 さらに、図12に示した発熱装置65では、一の電極となる反応体26をNiやPd、Pt等で形成し、他の電極となる巻回型反応体66の軸部69、支持部67及び細線68,70を、NiやPd、Pt等の水素吸蔵金属により形成した構成とする。なお、発熱装置65における内側反応体72は、NiやPd、Pt等の水素吸蔵金属のうち反応体26と同じ水素吸蔵金属により形成したり、巻回型反応体66と同じ水素吸蔵金属により形成したり、或いは、これら反応体26及び巻回型反応体66とは異なる水素吸蔵金属により形成してもよい。
 このような図12に示した発熱装置65では、反応炉2内にてプラズマを発生させることにより、例えば反応体26や、巻回型反応体66、内側反応体72の一部が削られて水素吸蔵金属微粒子体として反応炉2内に飛散し、NiやPd等でなる微細な水素吸蔵金属微粒子体を反応体26や、巻回型反応体66、内側反応体72の各金属ナノ粒子表面に付着させることができる。これにより発熱装置65では、例えばNi等でなる金属ナノ粒子の表面に、同じNiや、異種のPd等でなる複数の水素吸蔵金属微粒子体が付着した構成となり、反応体26や、巻回型反応体66、内側反応体72の各表面で更に一段と微細凹凸化が進み、その後の発熱反応処理の際におけるトンネル核融合反応の起こる確率が更に一段と上がり、かくして従来よりも安定的に熱を生成し得る。
 なお、金属ナノ粒子よりも微細な水素吸蔵金属微粒子体が表面に形成された金属ナノ粒子は、反応体26,80,81や、巻回型反応体25,50,51,66、内側反応体72を反応炉内に設置する前に予めCVD(chemical vapor deposition)法やスパッタ法を用いて、これら反応体26,80,81や、巻回型反応体25,50,51,66、内側反応体72の表面に形成するようにしてもよい。
 1、41、65 発熱装置
 2、42 反応炉
 3 ガス供給手段
 26、80、81 反応体
 72 内側反応体(反応体)
 25、50、51、66 巻回型反応体(反応体)

Claims (17)

  1.  重水素ガス雰囲気、重水ガス雰囲気、軽水素ガス雰囲気、又は軽水ガス雰囲気の反応炉内に設置される反応体であって、
     水素吸蔵金属により形成され、1000[nm]以下のナノサイズからなる複数の金属ナノ凸部が表面に形成されている
     ことを特徴とする反応体。
  2.  前記表面には、幅が300[nm]以下の前記金属ナノ凸部が複数形成されている
     ことを特徴とする請求項1記載の反応体。
  3.  前記金属ナノ凸部は、球状粒子、楕円状粒子、又は卵状粒子の一部が前記表面に埋め込まれ、湾曲表面を有する金属ナノ粒子である
     ことを特徴とする請求項1又は2記載の反応体。
  4.  前記水素吸蔵金属からなる細線により網目状に形成され、前記細線の表面に前記金属ナノ凸部が形成されている
     ことを特徴とする請求項1~3のうちいずれか1項記載の反応体。
  5.  前記水素吸蔵金属からなる細線と、
     前記細線が巻き付けられる支持部と
     を備えることを特徴とする請求項1~3のうちいずれか1項記載の反応体。
  6.  電源と電気的に接続され、前記反応炉内でプラズマを発生させるための電極として機能する
     ことを特徴とする請求項1~5のうちいずれか1項記載の反応体。
  7.  前記金属ナノ凸部の表面には、前記金属ナノ凸部よりも小さく、水素吸蔵金属からなる複数の水素吸蔵金属微粒子体が付着しており、
     前記金属ナノ粒子の表面が前記水素吸蔵金属微粒子により凹凸状に形成されている
     ことを特徴とする請求項1~6のうちいずれか1項記載の反応体。
  8.  前記水素吸蔵金属微粒子は、前記金属ナノ凸部の前記水素吸蔵金属とは異なる水素吸蔵金属により形成されている
     ことを特徴とする請求項7記載の反応体。
  9.  前記金属ナノ凸部がNi、Pt及びPdのうちいずれかの水素吸蔵金属で形成され、前記水素吸蔵金属微粒子体がNi、Pt及びPdのうち前記金属ナノ凸部とは異なる水素吸蔵金属で形成されている
     ことを特徴とする請求項8記載の反応体。
  10.  重水素ガス、重水ガス、軽水素ガス、又は軽水ガスのうちいずれかが、真空状態に保持された炉内に供給される反応炉と、
     前記反応炉内に設置されるとともに、1000[nm]以下のナノサイズでなる複数の金属ナノ凸部が表面に形成されている水素吸蔵金属からなる反応体とを備え、
     前記反応炉内にプラズマを発生させるか、又は前記反応体を加熱させるかして、前記金属ナノ凸部に水素原子を吸蔵させる
     ことを特徴とする発熱装置。
  11.  前記反応体が、前記プラズマを発生させる電極として機能する
     ことを特徴とする請求項10記載の発熱装置。
  12.  前記反応体は、前記水素吸蔵金属からなる細線により網目状に形成されているとともに、前記反応炉内の内壁に沿って配置され、該内壁を覆うように設置されている
     ことを特徴とする請求項10又は11記載の発熱装置。
  13.  前記反応体の中空領域には、
     前記水素吸蔵金属により形成され、表面にナノサイズからなる複数の金属ナノ凸部が形成されている内側反応体が設けられている
     ことを特徴とする請求項12記載の発熱装置。
  14.  前記金属ナノ凸部の表面には、前記金属ナノ凸部よりも小さく、水素吸蔵金属からなる複数の水素吸蔵金属微粒子体が付着しており、
     前記金属ナノ粒子の表面が前記水素吸蔵金属微粒子により凹凸状に形成されている
     ことを特徴とする10~13のうちいずれか1項記載の発熱装置。
  15.  水素吸蔵金属からなる反応体が設置された反応炉内にプラズマを発生させるか、又は前記反応体を加熱させるかして、ガス供給手段によって、重水素ガス、重水ガス、軽水素ガス、又は軽水ガスのうちいずれかを、真空状態の前記反応炉内に供給する供給ステップと、
     前記反応体の表面に形成されている、1000[nm]以下のナノサイズからなる複数の金属ナノ凸部に、水素原子を吸蔵させ、前記反応体が中性子を発生しながら熱を発する発熱ステップと
     を備えることを特徴とする発熱方法。
  16.  前記供給ステップで前記反応体を加熱している場合には、重水素ガス雰囲気、重水ガス雰囲気、軽水素ガス雰囲気、又は軽水ガス雰囲気の前記反応炉内にプラズマを発生させ、発熱を促進させて発熱温度を上昇させる発熱促進ステップを、前記発熱ステップの後に備える
     ことを特徴とする請求項15記載の発熱方法。
  17.  前記反応炉内に設けた電極対によりプラズマを発生させて、前記反応体の表面に複数の前記金属ナノ凸部を形成する形成ステップを、前記供給ステップの前に備える
     ことを特徴とする請求項15又は16記載の発熱方法。
PCT/JP2014/069198 2013-07-18 2014-07-18 反応体、発熱装置及び発熱方法 WO2015008859A2 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
BR112016000822-7A BR112016000822B1 (pt) 2013-07-18 2014-07-18 Dispositivo e método de geração de calor
CN201480040068.0A CN105493196B (zh) 2013-07-18 2014-07-18 反应体、发热装置及发热方法
TW103124876A TWI643207B (zh) 2013-07-18 2014-07-18 反應體、發熱裝置及發熱方法
RU2016105246A RU2671005C2 (ru) 2013-07-18 2014-07-18 Реагент, устройство нагрева и способ нагрева
ES14825637T ES2735014T3 (es) 2013-07-18 2014-07-18 Dispositivo de calentamiento y método de calentamiento
CA2918343A CA2918343A1 (en) 2013-07-18 2014-07-18 Reactant, heating device and heating method
EP14825637.3A EP3023991B1 (en) 2013-07-18 2014-07-18 Heating device, and heating method
AU2014291181A AU2014291181B2 (en) 2013-07-18 2014-07-18 Reactant, heating device, and heating method
JP2015527347A JPWO2015008859A1 (ja) 2013-07-18 2014-07-18 発熱装置及び発熱方法
KR1020167004083A KR102222184B1 (ko) 2013-07-18 2014-07-18 반응체, 발열 장치 및 발열 방법
US14/905,426 US20160155518A1 (en) 2013-07-18 2014-07-18 Reactant, heating device, and heating method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-148987 2013-07-18
JP2013148987 2013-07-18
JP2014-053445 2014-03-17
JP2014053445 2014-03-17

Publications (2)

Publication Number Publication Date
WO2015008859A2 true WO2015008859A2 (ja) 2015-01-22
WO2015008859A3 WO2015008859A3 (ja) 2015-03-26

Family

ID=52346808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069198 WO2015008859A2 (ja) 2013-07-18 2014-07-18 反応体、発熱装置及び発熱方法

Country Status (12)

Country Link
US (1) US20160155518A1 (ja)
EP (1) EP3023991B1 (ja)
JP (1) JPWO2015008859A1 (ja)
KR (1) KR102222184B1 (ja)
CN (1) CN105493196B (ja)
AU (1) AU2014291181B2 (ja)
BR (1) BR112016000822B1 (ja)
CA (1) CA2918343A1 (ja)
ES (1) ES2735014T3 (ja)
RU (1) RU2671005C2 (ja)
TW (1) TWI643207B (ja)
WO (1) WO2015008859A2 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105206313A (zh) * 2015-10-15 2015-12-30 西安雍科建筑科技有限公司 一种冷聚变反应试验装置
WO2017104602A1 (ja) 2015-12-15 2017-06-22 株式会社クリーンプラネット 発熱システム
WO2018062115A1 (ja) 2016-09-28 2018-04-05 株式会社クリーンプラネット 発熱システム
JP2018155708A (ja) * 2017-03-21 2018-10-04 水素技術応用開発株式会社 発熱装置用電極及び発熱装置並びに発熱方法
WO2018230447A1 (ja) * 2017-06-15 2018-12-20 株式会社クリーンプラネット 発熱装置および発熱方法
WO2019003841A1 (ja) * 2017-06-30 2019-01-03 国立大学法人京都大学 水素吸蔵体、水素吸蔵方法および水素吸蔵体の製造方法
WO2020021638A1 (ja) * 2018-07-24 2020-01-30 齊藤 公章 発熱装置
WO2020122098A1 (ja) * 2018-12-11 2020-06-18 株式会社クリーンプラネット 熱利用システムおよび発熱装置
JP6795129B1 (ja) * 2019-10-25 2020-12-02 三浦工業株式会社 ボイラ
WO2021045230A1 (ja) 2019-09-06 2021-03-11 株式会社テクノバ ナノ複合金属材料、および、ナノ複合金属材料の製造方法
WO2021100784A1 (ja) * 2019-11-19 2021-05-27 株式会社クリーンプラネット 発熱装置、熱利用システムおよびフィルム状発熱体
WO2021187285A1 (ja) * 2020-03-16 2021-09-23 三浦工業株式会社 ボイラ
JP2021148305A (ja) * 2020-03-16 2021-09-27 三浦工業株式会社 ボイラ
WO2021200843A1 (ja) * 2020-03-31 2021-10-07 株式会社クリーンプラネット 発熱装置
US11371695B2 (en) 2019-10-25 2022-06-28 Miura Co., Ltd. Boiler
RU2826662C1 (ru) * 2019-11-19 2024-09-16 Клин Плэнет Инк. Теплогенерирующее устройство, система утилизации тепла и пленочный теплогенерирующий элемент

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10906017B2 (en) * 2013-06-11 2021-02-02 University Of Florida Research Foundation, Inc. Solar thermochemical reactor and methods of manufacture and use thereof
US10385468B2 (en) 2016-06-06 2019-08-20 Ih Ip Holdings Limited Plasma frequency trigger
US20180197643A1 (en) * 2016-10-26 2018-07-12 Industrial Heat, Llc Monitoring and Controlling Exothermic Reactions Using Photon Detection Devices
NL2018127B1 (nl) * 2017-01-04 2018-07-25 Ebel Van Der Schoot Jelle Werkwijze en een inrichting voor kernfusie
RU2019130440A (ru) * 2017-03-29 2021-04-29 Их Ип Холдингз Лимитед Инициация экзотермических реакций при высоких скоростях насыщения водородом
WO2019016606A1 (en) * 2017-07-20 2019-01-24 Ih Ip Holdings Limited HEAT GENERATING APPARATUS IN EXCESS
US11488728B2 (en) * 2020-02-18 2022-11-01 Innoven Energy Llc Confinement walls for inertial confinement fusion chambers
CN114111028A (zh) * 2021-11-12 2022-03-01 长春大学 热水器

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090116604A1 (en) * 1989-04-18 2009-05-07 Swartz Mitchell R Machine for producing flow of Isotopic fuel through a material
US5348629A (en) * 1989-11-17 1994-09-20 Khudenko Boris M Method and apparatus for electrolytic processing of materials
JPH04212092A (ja) * 1990-03-09 1992-08-03 Canon Inc 核融合発生方法およびその装置、熱エネルギー出力装置
WO1991018397A1 (en) * 1990-05-17 1991-11-28 Jerome Drexler Deuterium accumulation energy conversion apparatus
IT1282858B1 (it) * 1994-01-27 1998-04-01 Francesco Piantelli Termofusore generatore di energia a effetto fasec: fusione anarmonica stimolata con emissione di calore.
RU2073964C1 (ru) * 1994-09-19 1997-02-20 Российский материаловедческий центр Способ получения нейтронов и гамма-квантов
WO1996035215A1 (en) * 1995-05-01 1996-11-07 Massachusetts Institute Of Technology Method of maximizing anharmonic oscillations in deuterated alloys
US8090071B2 (en) * 2001-08-08 2012-01-03 James Robert DeLuze Apparatus for hot fusion of fusion-reactive gases
JP2004077200A (ja) * 2002-08-12 2004-03-11 Mitsubishi Heavy Ind Ltd 元素変換体およびその製造方法
CN1549276A (zh) * 2003-05-05 2004-11-24 万金华 新双星系水基体式冷聚和类冷核聚变动态工程系统
US20050129160A1 (en) * 2003-12-12 2005-06-16 Robert Indech Apparatus and method for facilitating nuclear fusion
WO2006119080A2 (en) * 2005-04-29 2006-11-09 Larsen Lewis G Apparatus and method for generation of ultra low momentum neutrons
JP2008202942A (ja) * 2007-02-16 2008-09-04 Kyoto Univ 核融合中性子生成装置
KR20090100151A (ko) * 2008-03-19 2009-09-23 한국과학기술연구원 동위원소 제조 및 핵종 변환을 위한 핵변환 방법
JP2008261868A (ja) * 2008-05-09 2008-10-30 Yoshiaki Arata 超高密度重水素化ナノ粒子を用いる核融合による多量の発熱及びヘリウムの造出方法並びにその装置
JP2010042972A (ja) * 2008-08-10 2010-02-25 Shigemi Sawada 13cの製造方法
IT1392217B1 (it) * 2008-11-24 2012-02-22 Ghidini Metodo per produrre energia e generatore che attua tale metodo
MX367435B (es) * 2010-03-18 2019-08-21 Blacklight Power Inc Star Sistema electroquimico de energia a base de catalizador-hidrogeno.
BR112013001396A2 (pt) * 2010-07-20 2017-01-31 Ishikawa Yasuo método de transformação nuclear, e, aparelho para transformação nuclear
US20130044847A1 (en) * 2011-07-12 2013-02-21 Dan Steinberg Apparatus and Method for Low Energy Nuclear Reactions
EP2783369B1 (en) * 2011-11-27 2017-06-14 Etiam Oy Thermal-energy producing system and method
JP2014037996A (ja) * 2012-08-13 2014-02-27 Tadahiko Mizuno 核融合反応方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M. FLEISCHMANN; S. PONS, J. ELECTROANALYTICAL CHEM., vol. 261, 1989, pages 301

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105206313A (zh) * 2015-10-15 2015-12-30 西安雍科建筑科技有限公司 一种冷聚变反应试验装置
RU2686136C1 (ru) * 2015-12-15 2019-04-24 Клин Плэнет Инк. Теплогенерирующая система
WO2017104602A1 (ja) 2015-12-15 2017-06-22 株式会社クリーンプラネット 発熱システム
US10641525B2 (en) 2015-12-15 2020-05-05 Clean Planet Inc. Heat generating system
WO2018062115A1 (ja) 2016-09-28 2018-04-05 株式会社クリーンプラネット 発熱システム
JPWO2018062115A1 (ja) * 2016-09-28 2018-09-27 株式会社クリーンプラネット 発熱システム
RU2756166C2 (ru) * 2016-09-28 2021-09-28 Клин Плэнет Инк. Тепловыделяющая система
JP2018155708A (ja) * 2017-03-21 2018-10-04 水素技術応用開発株式会社 発熱装置用電極及び発熱装置並びに発熱方法
JP2019168221A (ja) * 2017-06-15 2019-10-03 株式会社クリーンプラネット 発熱装置および発熱方法
TWI788901B (zh) * 2017-06-15 2023-01-01 日商綠淨星球股份有限公司 發熱裝置及發熱方法
AU2018282712B2 (en) * 2017-06-15 2021-07-22 Clean Planet Inc. Heat generating device and method for generating heat
TWI734918B (zh) * 2017-06-15 2021-08-01 日商綠淨星球股份有限公司 發熱裝置及發熱方法
CN111094867A (zh) * 2017-06-15 2020-05-01 绿净星球股份有限公司 发热装置及发热方法
WO2018230447A1 (ja) * 2017-06-15 2018-12-20 株式会社クリーンプラネット 発熱装置および発熱方法
US11971199B2 (en) 2017-06-15 2024-04-30 Clean Planet Inc. Heat generating device and method for generating heat
JPWO2018230447A1 (ja) * 2017-06-15 2019-06-27 株式会社クリーンプラネット 発熱装置および発熱方法
CN111094867B (zh) * 2017-06-15 2022-01-25 绿净星球股份有限公司 发热装置及发热方法
EP3640564A4 (en) * 2017-06-15 2020-12-30 Clean Planet Inc. HEAT GENERATING DEVICE AND METHOD FOR HEAT GENERATION
RU2740834C1 (ru) * 2017-06-15 2021-01-21 Клин Плэнет Инк. Теплогенерирующее устройство и способ выработки тепла
WO2019003841A1 (ja) * 2017-06-30 2019-01-03 国立大学法人京都大学 水素吸蔵体、水素吸蔵方法および水素吸蔵体の製造方法
JP2019010611A (ja) * 2017-06-30 2019-01-24 国立大学法人京都大学 水素吸蔵体、水素吸蔵方法および水素吸蔵体の製造方法
WO2020021638A1 (ja) * 2018-07-24 2020-01-30 齊藤 公章 発熱装置
US20220034599A1 (en) * 2018-12-11 2022-02-03 Clean Planet Inc. Heat utilization system, and heat generating device
WO2020122098A1 (ja) * 2018-12-11 2020-06-18 株式会社クリーンプラネット 熱利用システムおよび発熱装置
TWI765198B (zh) * 2018-12-11 2022-05-21 日商綠淨星球股份有限公司 熱利用系統及發熱裝置
US11499789B2 (en) 2018-12-11 2022-11-15 Clean Planet Inc. Heat utilization system, and heat generating device
JP6749035B1 (ja) * 2018-12-11 2020-09-02 株式会社クリーンプラネット 熱利用システムおよび発熱装置
US12091732B2 (en) 2019-09-06 2024-09-17 Technova Inc. Nanocomposite metal material and method for manufacturing nanocomposite metal material
WO2021045230A1 (ja) 2019-09-06 2021-03-11 株式会社テクノバ ナノ複合金属材料、および、ナノ複合金属材料の製造方法
WO2021079489A1 (ja) * 2019-10-25 2021-04-29 三浦工業株式会社 ボイラ
US20240125466A1 (en) * 2019-10-25 2024-04-18 Miura Co., Ltd. Boiler
JP6795129B1 (ja) * 2019-10-25 2020-12-02 三浦工業株式会社 ボイラ
US11371695B2 (en) 2019-10-25 2022-06-28 Miura Co., Ltd. Boiler
WO2021100784A1 (ja) * 2019-11-19 2021-05-27 株式会社クリーンプラネット 発熱装置、熱利用システムおよびフィルム状発熱体
RU2826662C1 (ru) * 2019-11-19 2024-09-16 Клин Плэнет Инк. Теплогенерирующее устройство, система утилизации тепла и пленочный теплогенерирующий элемент
JP7441083B2 (ja) 2020-03-16 2024-02-29 三浦工業株式会社 ボイラ
JP2021148305A (ja) * 2020-03-16 2021-09-27 三浦工業株式会社 ボイラ
WO2021187285A1 (ja) * 2020-03-16 2021-09-23 三浦工業株式会社 ボイラ
JP2021162227A (ja) * 2020-03-31 2021-10-11 株式会社クリーンプラネット 発熱装置
WO2021200843A1 (ja) * 2020-03-31 2021-10-07 株式会社クリーンプラネット 発熱装置
JP7488548B2 (ja) 2020-03-31 2024-05-22 株式会社クリーンプラネット 発熱装置

Also Published As

Publication number Publication date
CN105493196A (zh) 2016-04-13
AU2014291181A1 (en) 2016-03-03
EP3023991A2 (en) 2016-05-25
ES2735014T3 (es) 2019-12-13
RU2671005C2 (ru) 2018-10-29
AU2014291181B2 (en) 2018-04-19
TWI643207B (zh) 2018-12-01
KR102222184B1 (ko) 2021-03-09
CA2918343A1 (en) 2015-01-22
CN105493196B (zh) 2018-04-06
JPWO2015008859A1 (ja) 2017-03-02
KR20160041937A (ko) 2016-04-18
US20160155518A1 (en) 2016-06-02
TW201523635A (zh) 2015-06-16
EP3023991A4 (en) 2017-03-08
BR112016000822A2 (ja) 2017-08-22
BR112016000822B1 (pt) 2022-03-22
WO2015008859A3 (ja) 2015-03-26
EP3023991B1 (en) 2019-05-01
RU2016105246A3 (ja) 2018-03-02
RU2016105246A (ru) 2017-08-23

Similar Documents

Publication Publication Date Title
WO2015008859A2 (ja) 反応体、発熱装置及び発熱方法
Liu et al. Air‐assisted transient synthesis of metastable nickel oxide boosting alkaline fuel oxidation reaction
Liu et al. Vertically aligned 1D ZnO nanostructures on bulk alloy substrates: direct solution synthesis, photoluminescence, and field emission
Kuo et al. Growth of ultralong ZnO nanowires on silicon substrates by vapor transport and their use as recyclable photocatalysts
Kalidindi et al. Highly monodisperse colloidal magnesium nanoparticles by room temperature digestive ripening
Liu et al. From copper nanocrystalline to CuO nanoneedle array: synthesis, growth mechanism, and properties
CN108264087B (zh) 一种单一试剂自反应制备具有定向排列Nb2O5纳米棒的方法
Qiao et al. Thermal shock synthesis of nanocatalyst by 3d‐printed miniaturized reactors
JP2014037996A (ja) 核融合反応方法
Cao et al. Liquid antimony anode fluidization within a tubular direct carbon fuel cell
JP2018155708A (ja) 発熱装置用電極及び発熱装置並びに発熱方法
Pan et al. Simple reactor for the synthesis of silver nanoparticles with the assistance of ethanol by gas–liquid discharge plasma
CN101351075A (zh) 一种等离子体处理装置
Gholhaki et al. Exposure of mass-selected bimetallic Pt–Ti nanoalloys to oxygen explored using scanning transmission electron microscopy and density functional theory
JP4781662B2 (ja) カーボンナノチューブの作製方法およびカーボンナノチューブの作製装置
Mizuno Method of controlling a chemically induced nuclear reaction in metal nanoparticles
Mizuno et al. Experimental procedures for excess heat generation from cold fusion reactions
KR101883076B1 (ko) 아나타제 졸을 이용한 다공성 코팅층 형성방법
Moularas Photophysical and catalytic study of plasmonic-semiconducting nanomaterials developed by flame spray pyrolysis technology
EP1953764A1 (en) Method of generating heat energy and apparatus for generating heat energy
JP2020037491A (ja) 酸素欠損型金属酸化物の製造方法
JPH08277101A (ja) 水素吸蔵性金属又はその合金に吸蔵される水素又はその同位体の吸蔵率を高める方法
JP2018036275A (ja) 核融合反応方法及び核融合反応装置
TW202408146A (zh) 電位差產生裝置
JP2017062243A (ja) 核融合反応方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480040068.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14825637

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2015527347

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2918343

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14905426

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016000822

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2014825637

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167004083

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016105246

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014291181

Country of ref document: AU

Date of ref document: 20140718

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016000822

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160114