WO2019003841A1 - 水素吸蔵体、水素吸蔵方法および水素吸蔵体の製造方法 - Google Patents

水素吸蔵体、水素吸蔵方法および水素吸蔵体の製造方法 Download PDF

Info

Publication number
WO2019003841A1
WO2019003841A1 PCT/JP2018/021737 JP2018021737W WO2019003841A1 WO 2019003841 A1 WO2019003841 A1 WO 2019003841A1 JP 2018021737 W JP2018021737 W JP 2018021737W WO 2019003841 A1 WO2019003841 A1 WO 2019003841A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen storage
hydrogen
metal
calcium aluminate
storage body
Prior art date
Application number
PCT/JP2018/021737
Other languages
English (en)
French (fr)
Inventor
平尾 一之
ヘイディ ビスバル
卓也 大村
数馬 林
恵美 庄野
Original Assignee
国立大学法人京都大学
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, 日立造船株式会社 filed Critical 国立大学法人京都大学
Publication of WO2019003841A1 publication Critical patent/WO2019003841A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/16Preparation of alkaline-earth metal aluminates or magnesium aluminates; Aluminium oxide or hydroxide therefrom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to a hydrogen storage body and its production, and a technology for storing hydrogen in the hydrogen storage body.
  • the present invention is directed to a hydrogen storage body, and aims to increase the hydrogen storage capacity of the hydrogen storage body.
  • a hydrogen storage body comprises a main body formed of a calcium aluminate compound and a metal portion supported on the surface of the main body, and stores hydrogen in the main body. According to the present invention, the hydrogen storage capacity of the hydrogen storage body can be increased.
  • the body portion includes a void structure having a plurality of voids capable of taking in ions, atoms, molecules or electrons.
  • the void structure is mayenite containing Ca 12 Al 14 O 33 .
  • the metal portion includes metal particles having a particle size of less than 1 ⁇ m dispersed on the surface of the main body portion.
  • the molar ratio of the metal part to the main body part is 0.005 or more and 0.5 or less.
  • the present invention is also directed to a hydrogen storage method for storing hydrogen in a hydrogen storage body.
  • a hydrogen storage method comprises the steps of: a) preparing the above-mentioned hydrogen storage body; and b) heating the hydrogen storage body under a hydrogen-containing gas atmosphere to obtain the hydrogen storage body. And occluding hydrogen in the main body. According to the present invention, the hydrogen storage capacity of the hydrogen storage body can be increased.
  • a hydrogen storage method comprises the steps of: a) preparing a hydrogen storage formed of a calcium aluminate compound; and b) contacting the hydrogen storage with metal particles. And a step of storing the hydrogen in the hydrogen storage material by heating the hydrogen storage material in a hydrogen-containing gas atmosphere. According to the present invention, the hydrogen storage capacity of the hydrogen storage body can be increased.
  • the hydrogen storage material is heated by irradiating the hydrogen storage material with microwaves or plasma.
  • the heating temperature of the hydrogen storage material is 400 ° C. or more and 1350 ° C. or less.
  • the present invention is also directed to a method of producing a hydrogen storage material.
  • the method for producing a hydrogen storage material comprises the steps of: preparing a calcium aluminate compound as a main body for storing hydrogen; and supporting a metal portion on the surface of the calcium aluminate compound. Prepare.
  • the hydrogen storage capacity of the hydrogen storage body can be increased.
  • a method of producing a hydrogen storage material comprises the steps of mixing a compound raw material which is a raw material of a calcium aluminate compound and a metal raw material which is a raw material of a metal part to produce a raw material; By heating the raw material in a hydrogen-containing gas atmosphere, a hydrogen absorbing material is produced which comprises a main body formed of a calcium aluminate compound and a metal portion supported on the surface of the main body, and the main body And occluding hydrogen. According to the present invention, the hydrogen storage capacity of the hydrogen storage body can be increased.
  • FIG. 1 is an enlarged view of a surface of a hydrogen storage body 1 according to one embodiment of the present invention.
  • FIG. 1 shows a result of observation of a part of the outer surface of the hydrogen storage element 1 by a transmission electron microscope.
  • the hydrogen storage body 1 includes a main body 12 and a metal part 13.
  • the body portion 12 is substantially formed of a calcium aluminate compound.
  • the metal portion 13 is substantially formed of metal, and is supported on the surface of the main portion 12. That is, the hydrogen storage body 1 is a metal-supported compound in which the metal portion 13 is supported on the surface of the main body portion 12.
  • the hydrogen storage body 1 stores hydrogen in the main body 12.
  • the main portion 12 of the hydrogen storage body 1 stores hydrogen, for example, in the state of hydrogen molecules (H 2 ) or hydrogen anions (H ⁇ ).
  • the metal portion 13 includes metal particles 131 dispersed on the surface of the main portion 12.
  • the plurality of metal particles 131 are each surrounded by a thin solid circle.
  • the arithmetic mean particle size (hereinafter simply referred to as “particle size”) of each of the plurality of metal particles 131 is, for example, less than 1 ⁇ m (micrometer). In other words, the metal particles 131 are nano metal particles.
  • the particle size of the metal particles 131 is preferably 1 nm or more and 100 nm or less.
  • the plurality of metal particles 131 are supported on the surface of the main body 12 in a non-contact manner (that is, spaced apart from each other).
  • the calcium aluminate compound of the main body 12 includes, for example, a void structure.
  • the void structure is a crystal structure having a plurality of voids (also referred to as cages) capable of taking in ions, atoms, molecules, or electrons. In the void structure, a plurality of voids are connected, for example, three-dimensionally.
  • the void structure contained in the main body 12 is, for example, mayenite. Mayenite is a compound having a crystal structure in which voids having a diameter of about 0.4 nm (nanometers) are three-dimensionally connected (ie, mayenite type crystal structure), and is also referred to as a mayenite type compound.
  • the mayenite is, Ca 12 Al 14 O 33 (as denoted both 12CaO ⁇ 7Al 2 O 3.) Is a compound mainly containing.
  • mayenite has Ca 12 Al 14 O 33 as a representative composition.
  • the molar ratio of calcium (Ca) to aluminum (Al) in the mayenite is preferably 13:12 to 11:16.
  • some or all of the calcium atoms may be substituted with other atoms (sodium (Na), potassium (K), magnesium (Mg), etc.).
  • some or all of the aluminum atoms may be substituted with another atom (such as boron (B), gallium (Ga), carbon (C), etc.).
  • some or all of the free oxygen ions in the void may be replaced with other anions.
  • the metal portion 13 is nickel (Ni), platinum (Pt), cobalt (Co), iron (Fe), copper (Cu), molybdenum (Mo), tungsten (W), vanadium (V), chromium It is formed of one or more kinds of pure metals such as Cr), palladium (Pd), ruthenium (Ru), iridium (Ir), rhodium (Rh) and the like.
  • the metal portion 13 is a nickel particle having a particle diameter of less than 1 ⁇ m dispersed on the surface of the main portion 12.
  • the molar ratio of the metal portion 13 to the main body portion 12 is preferably 0.005 or more and 0.5 or less.
  • the molar ratio of the metal part 13 described above means the number of moles of the metal part 13 carried on the 1 mol main body part 12.
  • the molar ratio of the main body portion 12 to the metal portion 13 is preferably 1: 0.005 to 0.5. More preferably, the molar ratio of the metal part 13 to the main body part 12 is 0.005 or more and 0.15 or less, and more preferably 0.01 or more and 0.1 or less.
  • a compound raw material which is a raw material of the calcium aluminate compound is prepared (step S11).
  • the compound raw material and the calcium aluminate compound are respectively kaatoite (Ca 3 Al 2 (OH) 12 ) and mayenite.
  • calcium aluminate and hydrogen are produced by, for example, stirring aluminum powder and calcium hydroxide (Ca (OH) 2 ) in an aqueous medium. The stirring is performed, for example, until generation of hydrogen stops.
  • Calcium aluminate precipitates in water.
  • the precipitated calcium aluminate is collected by filtration and dried (ie, the water is removed) to obtain cataite.
  • the catoite is, for example, granular with a particle size of 0.5 ⁇ m to 5 ⁇ m.
  • the above-mentioned aqueous medium is preferably ion exchanged water.
  • the weight ratio of aluminum powder to calcium hydroxide to be mixed is, for example, 2: 1 to 3: 1.
  • the weight of the aqueous medium added to the mixture of aluminum powder and calcium hydroxide is, for example, 10 or less times the weight of the mixture.
  • the said stirring process is performed under normal temperature, atmospheric pressure, and an air atmosphere, for example.
  • the temperature conditions, the pressure conditions, the atmospheric conditions, etc. in the drying process of the collected precipitate are not particularly limited.
  • the drying process is performed, for example, at about 70 ° C. under atmospheric pressure and an air atmosphere.
  • the drying time may be determined as appropriate.
  • catayite which is a compound raw material obtained in step S11 is fired to generate mayenite which is a calcium aluminate compound (step S12).
  • the mayenite is, for example, particulate having a particle size of 1 ⁇ m to 10 ⁇ m.
  • mayenite is produced, for example, by firing catoite for about 2 hours at about 300 ° C. under atmospheric pressure and an air atmosphere.
  • the temperature conditions, the pressure conditions, the atmosphere conditions, the baking time, and the like in step S12 may be variously changed.
  • the temperature condition in step S12 is preferably 300 ° C. or more and 500 ° C. or less.
  • the mayenite that is, the calcium aluminate compound which is the main portion 12
  • the metal raw material which is the raw material of the metal portion 13, and the solvent
  • the mixture is dried to remove water (step S13).
  • the metal source is nickel acetate tetrahydrate (Ni (CH 3 COO) 2. 4H 2 O).
  • the metal source may be variously changed.
  • the metal source may be an oxide, nitrate or chloride of nickel, or may be nickel alone (ie, nickel which is a pure metal).
  • methanol is used, for example.
  • the molar ratio of the calcium aluminate compound to the metal source mixed in step S13 is preferably 1: 0.005 to 0.5.
  • the molar ratio of the metal source to the calcium aluminate compound is preferably 0.005 or more and 0.5 or less.
  • the molar ratio of the calcium aluminate compound and metal raw material mixed in step S13 may be changed from the above-mentioned example.
  • substances other than the calcium aluminate compound and the metal raw material may be mixed together. There are no particular limitations on the temperature conditions, pressure conditions, atmospheric conditions, and the like in the stirring process of the mixture in step S13.
  • the said stirring process is performed under normal temperature, atmospheric pressure, and an air atmosphere, for example.
  • the temperature conditions, the pressure conditions, the atmospheric conditions, etc. in the drying process of the mixture are not particularly limited.
  • the drying process is performed, for example, at about 60 ° C. under atmospheric pressure and an air atmosphere.
  • the drying time may be determined as appropriate.
  • step S14 the dried mixture obtained in step S13 is heated and fired to generate the hydrogen storage body 1 including the main body portion 12 and the metal portion 13 as shown in FIG.
  • the metal part 13 is supported on the surface of the main part 12 which is a calcium aluminate compound by the baking treatment (step S14).
  • the hydrogen storage body 1 is, for example, particulate having a particle diameter of 1 ⁇ m to 10 ⁇ m.
  • step S14 for example, the mixture is fired at about 850 ° C. under atmospheric pressure and air atmosphere for about 4 hours, and then fired at about 850 ° C. under atmospheric pressure and hydrogen atmosphere for about 4 hours. An occlusion body 1 is generated.
  • the temperature conditions, the pressure conditions, the atmosphere conditions, the baking time, and the like in step S14 may be variously changed.
  • the manufacturing method of the hydrogen storage body 1 is not limited to the above-mentioned method, and may be variously modified.
  • the formation of the calcium aluminate compound may be performed by another method such as a sol-gel method or a solid phase reaction method instead of the liquid phase method shown in the above-mentioned steps S11 and S12.
  • FIG. 3 is a diagram showing an example of the production flow of the hydrogen storage material 1 using a sol-gel method.
  • a solution of a compound raw material which is a raw material of a calcium aluminate compound is prepared (step S21).
  • the solution is produced, for example, by mixing calcium nitrate (Ca (NO 3 ) 2 ) and aluminum nitrate (Al (NO 3 ) 3 ), which are compound materials, and pure water, which is a solvent.
  • the solution is solified by causing, for example, hydrolysis and polymerization reaction in the solution (Step S22). Then, the reaction (for example, hydrolysis and polymerization reaction) in the solution is further advanced to gelate the sol (step S23). Thereafter, the gel produced in step S23 is dried and further fired to produce mayenite which is a calcium aluminate compound (step S24).
  • the calcium aluminate compound is mixed with a metal raw material which is a raw material of the metal part 13 (step S25), and the mixture is calcined to obtain hydrogen containing the main part 12 and the metal part 13 as shown in FIG. An occlusion body 1 is generated.
  • the metal part 13 is supported on the surface of the main part 12 which is a calcium aluminate compound by the baking treatment (step S26).
  • the raw material of the metal portion 13 is formed by CVD (Chemical Vapor Deposition), PVD (Physical Vapor Deposition), etc., instead of the method shown in the above steps S13 and S14.
  • the metal part 13 may be supported on the main body 12 by introducing the metal raw material from the gas phase and depositing the metal raw material on the surface of the main body 12 prepared in step S12.
  • the metal part 13 may be supported on the main body part 12 by various methods such as an impregnation method, a physical mixing method, a thermal decomposition method, a liquid phase method, a sputtering method or a vapor deposition method.
  • step S31 the hydrogen storage body 1 manufactured by the above-described manufacturing method or the like is prepared. Then, in the heating device 7 illustrated in FIG. 5, the hydrogen storage body 1 is heated in a hydrogen-containing gas atmosphere, whereby hydrogen (eg, hydrogen molecules or hydrogen anions) is added to the main portion 12 of the hydrogen storage body 1. Are stored (step S32).
  • hydrogen eg, hydrogen molecules or hydrogen anions
  • the heating device 7 illustrated in FIG. 5 includes a compound storage container 71, a reaction container 72, and an irradiation unit 73.
  • the compound storage container 71 is a closed container that accommodates the hydrogen storage element 1 therein.
  • the reaction container 72 is a closed container that accommodates the compound storage container 71 therein.
  • the irradiation unit 73 irradiates the inside of the reaction container 72 with microwaves.
  • the irradiation unit 73 is, for example, a magnetron type microwave oscillator.
  • the irradiation unit 73 may be a solid state microwave oscillator using a semiconductor element.
  • the frequency of the microwaves irradiated from the irradiation unit 73 is, for example, 910 MHz (megahertz), 2.45 GHz (gigahertz), or 5.8 GHz.
  • the particulate hydrogen storage body 1 is stored in the compound storage container 71 together with the hydrogen-containing gas.
  • the hydrogen-containing gas may be hydrogen gas or may be hydrogen gas and other types of gas.
  • the microwaves irradiated from the irradiation unit 73 into the reaction container 72 are reflected by the inner surface of the reaction container 72, and the compound storage container 71 is irradiated. Thereby, the hydrogen storage body 1 in the compound storage container 71 is heated.
  • hydrogen is stored in the main portion 12 of the hydrogen storage body 1 as described above by heating the hydrogen storage body 1 with a microwave in a hydrogen-containing gas atmosphere as described above.
  • conductivity is imparted to the main body 12.
  • the heating temperature of the hydrogen storage element 1 in the heating device 7 is preferably 400 ° C. or more and 1350 ° C. or less, more preferably 500 ° C. or more and 1200 ° C. or less, and still more preferably 600 ° C. or more and 1100 ° C. or less.
  • the heating time of the hydrogen storage body 1 is 5 minutes or more and 60 minutes or less, for example.
  • the heating device 7 instead of the microwaves, plasma may be irradiated from the irradiation unit 73 toward the hydrogen storage body 1.
  • the hydrogen storage body 1 is heated in a hydrogen-containing gas atmosphere by plasma irradiation.
  • the heating temperature of the hydrogen storage element 1 is preferably 400 ° C. or more and 1350 ° C. or less, more preferably 500 ° C. or more and 1200 ° C. or less, and still more preferably 600 ° C. or more and 1100 ° C. or less.
  • the heating time of the hydrogen storage body 1 is 5 minutes or more and 60 minutes or less, for example.
  • the hydrogen storage body 1 (ie, hydrogen storage mayenite) that stores hydrogen in steps S31 to S32 does not substantially release hydrogen at normal temperature (for example, around 25 ° C.) and at atmospheric pressure.
  • hydrogen for example, hydrogen molecules
  • the upper limit value of the heating temperature of the hydrogen storage material 1 at the time of releasing hydrogen is not particularly limited, but is, for example, 90 ° C. or less. That is, the heating temperature of the hydrogen storage element 1 is preferably 40 ° C. or more and 90 ° C. or less. More preferably, the heating temperature of the hydrogen storage element 1 is 40 ° C. or more and 80 ° C.
  • the heating of the hydrogen storage element 1 is performed, for example, by bringing a heat medium into contact with the hydrogen storage element 1 directly or indirectly.
  • a heat carrier for example, water, air or an inert gas can be used.
  • the hydrogen storage body 1 having released hydrogen is, for example, stored hydrogen by being treated again by the hydrogen storage method shown in FIG.
  • the hydrogen storage processing is performed after drying the hydrogen storage body 1 to remove water. It is preferred to be done.
  • FIG. 6 is a view showing the molar ratio of the metal part 13 in Examples 1 to 4 and Comparative Examples 1 to 2, the heating temperature and the amount of absorbed hydrogen in the case of hydrogen storage treatment.
  • the hydrogen storage body 1 including the main body portion 12 formed of mayenite and the metal portion 13 formed of nickel was used.
  • mayenite having no metal part 13 was used as a hydrogen storage material.
  • Example 1 the hydrogen storage body 1 was manufactured by the manufacturing method shown in the above-mentioned steps S21 to S26 (see FIG. 3). Specifically, first, 28.77 g of calcium nitrate ⁇ tetrahydrate (Ca (NO 3 ) 2 .4H 2 O) was put in a 600 mL (milliliter) beaker, and 21.52 mL of pure water was added and stirred. Subsequently, 53.59 g of aluminum nitrate 9 hydrate (Al (NO 3 ) 3 .9H 2 O) was added to the solution in the beaker, and the solution was stirred while maintaining the temperature of the solution at about 60 ° C.
  • Ca (NO 3 ) 2 .4H 2 O calcium nitrate ⁇ tetrahydrate
  • Al (NO 3 ) 3 .9H 2 O aluminum nitrate 9 hydrate
  • anhydrous citric acid (C (OH) (CH 2 COOH) 2 COOH)
  • C (OH) CH 2 COOH 2 COOH
  • the solution in the beaker is solified by stirring at about 80 ° C. to 90 ° C. for about 2 hours.
  • the gel is dried at about 60 ° C. for 24 hours, the gel is fired at about 600 ° C. under atmospheric pressure and air atmosphere for about 5 hours, and further, about 1300 ° C. under atmospheric pressure and air atmosphere
  • the calcium aluminate compound which is the main part 12 was obtained by baking for 3 hours.
  • the calcium aluminate compound, nickel acetate tetrahydrate which is a metal raw material, and 50 mL of methanol which is a solvent were mixed and stirred.
  • the molar ratio of the calcium aluminate compound and the metal source to be mixed is 1: 0.02.
  • the mixture is dried at about 60 ° C. under atmospheric pressure and air atmosphere, and fired at about 850 ° C. under atmospheric pressure and air atmosphere for about 4 hours, and further, about 850 ° C. at atmospheric pressure and hydrogen Baking was performed for about 4 hours under an atmosphere.
  • the hydrogen storage body 1 of Example 1 was obtained.
  • the molar ratio of the metal part 13 to the main part 12 is 0.02.
  • hydrogen was stored in the hydrogen storage body 1 by the hydrogen storage processing shown in steps S31 to S32 (see FIG. 4). Specifically, in the heating device 7 shown in FIG. 5, hydrogen was absorbed in the hydrogen storage material 1 by irradiating the 3 g hydrogen storage material 1 with microwaves for 20 minutes in a hydrogen atmosphere and heating. In Example 1, the heating temperature of the hydrogen storage element 1 in the heating device 7 is about 1000 ° C.
  • the measuring device 8 includes a reactor 81, a dehumidifier 82 filled with a dehumidifying agent (for example, silica gel), and a mass flow meter 83.
  • the hydrogen storage body 1 storing hydrogen and water are stored in the reactor 81 and heated to 60 ° C. by the heater.
  • the hydrogen-containing gas flowing out of the reactor 81 is dehumidified by passing through the dehumidifier 82 and becomes hydrogen gas.
  • the hydrogen gas is introduced to a mass flow meter 83, and the mass flow meter 83 measures the amount of hydrogen gas generated from the hydrogen storage element 1.
  • the hydrogen storage amount of the hydrogen storage body 1 can be obtained.
  • the gas after passing through the dehumidifier 82 is hydrogen gas.
  • TCD Thermal Conductivity Detector
  • GC-8A Thermal Conductivity Detector type gas chromatography
  • Example 2 to 4 the hydrogen storage material 1 was manufactured and the amount of absorbed hydrogen was measured by substantially the same method as in Example 1.
  • the molar ratio of the metal part 13 to the main part 12 of the hydrogen storage element 1 is 0.02, 0.04 and 0.12, respectively.
  • the heating temperature of the hydrogen storage body 1 at the time of the hydrogen storage treatment in Examples 2 to 4 is 700.degree.
  • the hydrogen storage capacities of Examples 2 to 4 were 11 mL / g, 12.5 mL / g and 6 mL / g, respectively.
  • Comparative Examples 1 and 2 a calcium aluminate compound (in the above example, mayenite) manufactured by the same method as that of Examples 1 to 4 described above was used as a hydrogen storage material.
  • hydrogen was absorbed in the calcium aluminate compound in the same manner as in Example 1.
  • Comparative Example 2 hydrogen was absorbed in the calcium aluminate compound in the same manner as in Examples 2 to 4. Thereafter, the amount of absorbed hydrogen of the calcium aluminate compound was measured in the same manner as in Examples 1 to 4.
  • the heating temperature of the hydrogen storage body 1 at the time of hydrogen storage treatment was 1000 ° C., and the hydrogen storage amount was 11 mL / g.
  • the heating temperature of the hydrogen storage material 1 at the time of hydrogen storage treatment was 700 ° C., and the hydrogen storage capacity was 3 mL / g.
  • Example 1 and Comparative Example 1 When Example 1 and Comparative Example 1 are compared, it can be seen that the hydrogen storage capacity of the calcium aluminate compound is increased by supporting the metal portion 13 on the calcium aluminate compound (that is, the main body 12). In addition, even when Examples 2 to 4 and Comparative Example 2 are compared, it can be seen that the hydrogen storage amount of the main portion 12 is increased by the metal portion 13. This is considered to be due to the spillover effect of the metal portion 13. When Example 1 and Example 2 are compared, it can be seen that the higher the heating temperature at the time of the hydrogen storage treatment for the hydrogen storage body 1, the larger the amount of hydrogen storage.
  • Example 3 Comparing Example 2 and Example 3, it is understood that when the molar ratio of the metal part 13 to the main part 12 increases from 0.02 to 0.04, the hydrogen storage amount also increases. It is considered that this is because the increase of the metal portion 13 on the surface of the main body portion 12 also increases the above-mentioned spillover effect.
  • Example 3 and Example 4 when the molar ratio of the metal part 13 with respect to the main-body part 12 increases from 0.04 to 0.12, it turns out that the amount of hydrogen occlusion reduces. This is considered to be because when the area covered by the metal part 13 in the surface of the main part 12 becomes larger than a certain extent, the hydrogen storage amount decreases due to the reduction of the contact area between the main part 12 and hydrogen.
  • the hydrogen storage body 1 includes the main body portion 12 formed of a calcium aluminate compound, and the metal portion 13 supported on the surface of the main body portion 12, and occludes hydrogen in the main body portion 12 .
  • the hydrogen storage amount can be increased as compared with Comparative Examples 1 and 2 in which the metal portion 13 is not provided.
  • the metal portion 13 of the hydrogen storage 1 includes metal particles having a particle diameter of less than 1 ⁇ m dispersed on the surface of the main portion 12.
  • region namely, area
  • the hydrogen storage capacity of the hydrogen storage body 1 can be further increased.
  • the main body 12 of the hydrogen storage element 1 includes a void structure having a plurality of voids.
  • the plurality of voids can take in ions, atoms, molecules or electrons.
  • the hydrogen storage amount of the hydrogen storage body 1 can be further increased.
  • the hydrogen storage material 1 can release occluded hydrogen by heating at a temperature of 40 ° C. or higher (more preferably, 40 ° C. or higher and 90 ° C. or lower) under atmospheric pressure, various kinds of hydrogen can be released. It can be easily used for hydrogen supply in the apparatus.
  • the above-mentioned void structure is mayenite containing Ca 12 Al 14 O 33 . Mayenite can be produced at relatively low cost by the above-mentioned production method and the like. Therefore, the manufacturing cost of the hydrogen storage body 1 can be reduced.
  • FIG. 8 is a view showing the relationship between the molar ratio of the metal portion 13 to the main portion 12 of the hydrogen storage body 1 and the hydrogen storage amount.
  • the solid line 91 in FIG. 8 indicates the relationship between the molar ratio and the amount of absorbed hydrogen
  • the broken line 92 indicates the amount of absorbed hydrogen when the metal portion 13 is not provided (ie, when the molar ratio is zero).
  • the molar ratio of the metal portion 13 to the main portion 12 is preferably 0.005 or more and 0.5 or less. Thereby, compared with the case where it does not have the metal part 13, the hydrogen storage amount of the hydrogen storage body 1 can be increased.
  • the molar ratio of the metal part 13 to the main part 12 is 0.01 or more and 0.1 or less from the viewpoint of making the hydrogen storage amount about twice or more than that in the case where the metal part 13 is not provided. preferable. Thereby, the hydrogen storage amount of the hydrogen storage body 1 can be efficiently increased.
  • the hydrogen absorbing body 1 for absorbing hydrogen is easily provided in the main portion 12 including the main portion 12 formed of a calcium aluminate compound and the metal portion 13 supported on the surface of the main portion 12. Can be provided.
  • step S31 the step of preparing the hydrogen storage body 1 (step S31), and heating the hydrogen storage body 1 in a hydrogen-containing gas atmosphere And a step of storing hydrogen in the main body portion 12 of the storage body 1 (step S32).
  • step S32 a step of storing hydrogen in the main body portion 12 of the storage body 1
  • step S32 the hydrogen storage body 1 is heated by irradiating the hydrogen storage body 1 with microwaves or plasma. Thereby, hydrogen can be stored in the hydrogen storage 1 more efficiently. Further, in parallel with the hydrogen storage into the hydrogen storage body 1, the main body portion 12 can also be provided with conductivity.
  • the heating temperature of the hydrogen storage material 1 is preferably 400 ° C. or more and 1350 ° C. or less, more preferably 500 ° C. or more and 1200 ° C. or less, still more preferably 600 ° C. or more and 1100 ° C. or less It is.
  • the heating temperature is set to 400 ° C. or more, it is possible to prevent the time required for hydrogen storage of the hydrogen storage body 1 from becoming excessively long.
  • 1350 ° C. or less it is possible to prevent the energy required for heating the hydrogen storage body 1 from becoming excessively large.
  • the manufacturing method of the hydrogen storage body 1 and the hydrogen storage method are not limited to the above-mentioned example, and may be variously changed.
  • a compound raw material which is a raw material of a calcium aluminate compound and a metal raw material which is a raw material of the metal part 13 are prepared, and the compound raw material and the metal raw material are mixed to form a raw material.
  • the compound raw material is cataoite and is prepared by the same method as step S11 described above.
  • the metal source is, for example, nickel acetate tetrahydrate.
  • step S41 for example, after a solvent such as methanol, a compound raw material and a metal raw material are mixed and stirred, the raw material is produced by drying the mixture.
  • the above-mentioned raw material is heated in a hydrogen-containing gas atmosphere to form a hydrogen storage body comprising a main body 12 formed of a calcium aluminate compound and a metal portion 13 supported on the surface of the main body 12 1 is generated. Further, along with the generation of the hydrogen storage body 1, hydrogen is stored in the main portion 12 of the hydrogen storage body 1 (step S42). As described above, by simultaneously performing the production of the hydrogen storage 1 and the storage of hydrogen in the hydrogen storage 1, the hydrogen storage 1 in which hydrogen is stored can be easily provided.
  • the heating of the raw material in step S42 is performed, for example, by the above-described heating device 7 (see FIG. 5).
  • the above-described raw materials for example, granular compound raw material and granular metal raw material
  • the hydrogen-containing gas may be hydrogen gas or may be hydrogen gas and other types of gas.
  • the raw material in the compound storage container 71 is heated by the microwave irradiated from the irradiation unit 73 into the reaction container 72. Thereby, in the compound storage container 71, the hydrogen storage 1 is generated, and hydrogen is stored in the main portion 12 of the hydrogen storage 1. In addition, conductivity is imparted to the main body 12.
  • the heating temperature of the raw material in the heating device 7 is preferably 400 ° C. or more and 1350 ° C. or less, more preferably 500 ° C. or more and 1200 ° C. or less, and still more preferably 600 ° C. or more and 1100 ° C. or less.
  • the heating time of a raw material is 5 minutes or more and 60 minutes or less, for example.
  • the heating device 7 instead of the microwave, plasma may be irradiated toward the raw material to heat the raw material.
  • the hydrogen storage 1 is generated, and hydrogen is stored in the main portion 12 of the hydrogen storage 1.
  • conductivity is imparted to the main body 12.
  • the heating temperature of the raw material in the heating device 7 is preferably 400 ° C. or more and 1350 ° C. or less, more preferably 500 ° C. or more and 1200 ° C. or less, and still more preferably 600 ° C. or more and 1100 ° C. or less.
  • the heating time of a raw material is 5 minutes or more and 60 minutes or less, for example.
  • a hydrogen storage material formed of a calcium aluminate compound is prepared (step S51).
  • the hydrogen storage body is formed of, for example, mayenite which is a calcium aluminate compound.
  • the hydrogen storage material is, for example, granular.
  • the hydrogen storage material may have various shapes other than particulate (for example, plate-like or rectangular-like).
  • the said hydrogen storage body is produced
  • metal particles formed of a pure metal such as nickel are prepared.
  • the metal particles are, for example, nano metal particles having a particle size of less than 1 ⁇ m.
  • the hydrogen storage body is heated in a hydrogen-containing gas atmosphere to make the hydrogen storage body Are stored (step S52).
  • the hydrogen storage body and the metal particles are in physical or chemical contact.
  • the heating of the hydrogen storage body in step S52 is performed, for example, by the above-described heating device 7 (see FIG. 5).
  • the heating device 7 the above-mentioned mixture of the hydrogen storage material and the metal particles is stored in the compound storage container 71 together with the hydrogen-containing gas.
  • the hydrogen-containing gas may be hydrogen gas or may be hydrogen gas and other types of gas.
  • the hydrogen storage body is in a state of being in contact with the metal particles.
  • the hydrogen storage body is heated by the microwave (or plasma) irradiated from the irradiation unit 73, whereby the hydrogen storage body stores hydrogen.
  • conductivity is imparted to the hydrogen storage body.
  • the heating temperature of the hydrogen storage material in the heating device 7 is preferably 400 ° C. or more and 1350 ° C. or less, more preferably 500 ° C. or more and 1200 ° C. or less, and still more preferably 600 ° C. or more and 1100 ° C. or less.
  • the heating time of the hydrogen storage material is, for example, 5 minutes or more and 60 minutes or less.
  • a step of preparing a hydrogen storage formed of a calcium aluminate compound (step S51), and a state where metal particles are in contact with the hydrogen storage.
  • a step of storing hydrogen in the hydrogen storage body by heating the hydrogen storage body in a hydrogen-containing gas atmosphere (step S52).
  • the hydrogen storage amount of the hydrogen storage formed by the calcium aluminate compound can be increased by the spillover effect caused by the metal particles.
  • step S52 the hydrogen storage body (that is, the calcium aluminate compound) is irradiated with microwaves or plasma to heat the hydrogen storage body.
  • the hydrogen storage body that is, the calcium aluminate compound
  • microwaves or plasma to heat the hydrogen storage body.
  • conductivity can be imparted to the hydrogen storage in parallel with hydrogen storage into the hydrogen storage.
  • the heating temperature of the hydrogen storage body is preferably 400 ° C. or more and 1350 ° C. or less, more preferably 500 ° C. or more and 1200 ° C. or less, still more preferably 600 ° C. or more and 1100 ° C. or less is there.
  • the heating temperature is set to 400 ° C. or higher, it is possible to prevent the time required for hydrogen storage of the hydrogen storage material from becoming excessively long.
  • the heating temperature to 1350 ° C. or lower, it is possible to prevent the energy required for heating the hydrogen storage material from becoming excessively large.
  • the main body 12 of the hydrogen storage body 1 may contain a substance other than the calcium aluminate compound.
  • the metal portion 13 may contain a substance other than a metal as long as it is substantially formed of a metal.
  • the void structure contained in the calcium aluminate compound of the main body 12 does not necessarily have to be mayenite.
  • the void structure may be [HN (CH 2 CH 2 ) 3 NH) K 1.35 [V 5 O 9 (PO 4 ) 2 ] .xH 2 O, or (CS 3 [V 5 O 9 (PO 4 ) 4 ) 2 ] x H 2 O.
  • the calcium aluminate compound of the main body 12 may not contain a void structure, for example, the calcium aluminate compound of the main body 12 , May be catayite.
  • the plurality of metal particles 131 of the metal portion 13 do not necessarily have to be separated from each other, and may be in contact with the adjacent metal particles 131 on the main body portion 12.
  • the metal portion 13 may be a metal film formed by being supported on the main portion 12 in a state where the plurality of metal particles 131 are in contact with each other.
  • the metal coating covers a part or substantially the entire surface of the main body 12 and has a gap through which hydrogen can pass. When hydrogen is stored in the hydrogen storage body 1, the hydrogen passes through the gap to reach the main body 12 and is stored in the main body 12.
  • the shapes of the compound raw material, the calcium aluminate compound and the hydrogen storage body 1 generated in steps S11 to S14 are not limited to granular form, but may be various shapes. .
  • the manufacturing method of the hydrogen storage body 1 is not limited to the above-mentioned example, The hydrogen storage body 1 may be manufactured by various other methods.
  • the heating temperature of the hydrogen storage body 1 in step S32 may be less than 400 ° C., or may be higher than 1350 ° C.
  • the heating method of the hydrogen storage body 1 in step S32 is not limited to irradiation of a microwave or plasma
  • the hydrogen storage body 1 by other various methods May be heated.
  • the hydrogen storage body 1 may be heated using a tubular furnace. The same applies to the case where hydrogen is stored in the calcium aluminate compound which is a hydrogen storage body in steps S51 to S52.
  • the hydrogen storage method of the hydrogen storage body 1 or the calcium aluminate compound is not limited to the above-mentioned example, and hydrogen may be stored in the hydrogen storage body 1 or the calcium aluminate compound by various other methods.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

水素吸蔵体(1)の製造方法は、カルシウムアルミネート化合物を水素を吸蔵させる本体部(12)として準備する工程と、当該カルシウムアルミネート化合物の表面に金属部(13)を担持させる工程とを備える。当該製造方法によれば、カルシウムアルミネート化合物により形成された本体部(12)と、本体部(12)の表面に担持された金属部(13)とを備え、本体部(12)に水素を吸蔵する水素吸蔵体(1)を容易に提供することができる。当該水素吸蔵体(1)では、水素吸蔵量を増大させることができる。

Description

水素吸蔵体、水素吸蔵方法および水素吸蔵体の製造方法
 本発明は、水素吸蔵体およびその製造、並びに、水素吸蔵体に水素を吸蔵させる技術に関する。
 近年、カルシウムアルミネート化合物の一種であるマイエナイトを利用して、水素を生成する技術が提案されている。例えば、特開2016-204232号公報(文献1)では、マイエナイトに水素分子を吸蔵させた水素分子吸蔵材を、大気圧下で40℃以上に加熱することにより、当該水素分子吸蔵材から水素分子を放出させる技術が開示されている。
 一方、国際公開第2016/208563号(文献2)には、導電性マイエナイトの製造方法として、マイエナイト型化合物と炭素成分との混合物を密閉容器に収容し、真空雰囲気下等でマイクロ波を照射して当該混合物を加熱する技術が開示されている。当該製造方法では、上記混合物がマイクロ波により加熱され、炭素成分がマイエナイト型化合物から酸素を引き抜いて当該マイエナイト型化合物を還元することにより、マイエナイト型化合物への導電性付与が行われる、と考えられている。
 ところで、文献1のような水素吸蔵体は、大気圧下において水素を発生することができるため、様々な用途に利用可能である。このような水素吸蔵体では、水素吸蔵量の更なる増大が求められている。
 本発明は、水素吸蔵体に向けられており、水素吸蔵体の水素吸蔵量を増大させることを目的としている。
 本発明の好ましい一の形態に係る水素吸蔵体は、カルシウムアルミネート化合物により形成された本体部と、前記本体部の表面に担持された金属部とを備え、前記本体部に水素を吸蔵する。本発明によれば、水素吸蔵体の水素吸蔵量を増大させることができる。
 好ましくは、前記本体部が、イオン、原子、分子または電子を取り込み可能な複数のボイドを有するボイド構造体を含む。
 より好ましくは、前記ボイド構造体が、Ca12Al1433を含むマイエナイトである。
 好ましくは、前記金属部が、前記本体部の表面に分散された粒径が1μm未満の金属粒子を含む。
 好ましくは、前記本体部に対する前記金属部のモル比率が、0.005以上かつ0.5以下である。
 本発明は、水素吸蔵体に水素を吸蔵させる水素吸蔵方法にも向けられている。本発明の好ましい一の形態に係る水素吸蔵方法は、a)上述の水素吸蔵体を準備する工程と、b)前記水素吸蔵体を水素含有ガス雰囲気下において加熱することにより、前記水素吸蔵体の前記本体部に水素を吸蔵させる工程とを備える。本発明によれば、水素吸蔵体の水素吸蔵量を増大させることができる。
 本発明の好ましい他の形態に係る水素吸蔵方法は、a)カルシウムアルミネート化合物により形成された水素吸蔵体を準備する工程と、b)前記水素吸蔵体に金属粒子を接触させた状態で、前記水素吸蔵体を水素含有ガス雰囲気下において加熱することにより、前記水素吸蔵体に水素を吸蔵させる工程とを備える。本発明によれば、水素吸蔵体の水素吸蔵量を増大させることができる。
 好ましくは、前記b)工程において、前記水素吸蔵体にマイクロ波またはプラズマを照射することにより前記水素吸蔵体を加熱する。
 好ましくは、前記b)工程において、前記水素吸蔵体の加熱温度が400℃以上かつ1350℃以下である。
 本発明は、水素吸蔵体の製造方法にも向けられている。本発明の好ましい一の形態に係る水素吸蔵体の製造方法は、カルシウムアルミネート化合物を水素を吸蔵する本体部として準備する工程と、前記カルシウムアルミネート化合物の表面に金属部を担持させる工程とを備える。本発明によれば、水素吸蔵体の水素吸蔵量を増大させることができる。
 本発明の好ましい一の形態に係る水素吸蔵体の製造方法は、カルシウムアルミネート化合物の原料である化合物原料と、金属部の原料である金属原料とを混合して原材料を生成する工程と、前記原材料を水素含有ガス雰囲気下で加熱することにより、カルシウムアルミネート化合物により形成された本体部と、前記本体部の表面に担持された金属部とを備える水素吸蔵体を生成するとともに、前記本体部に水素を吸蔵させる工程とを備える。本発明によれば、水素吸蔵体の水素吸蔵量を増大させることができる。
 上述の目的および他の目的、特徴、態様および利点は、添付した図面を参照して以下に行うこの発明の詳細な説明により明らかにされる。
一の実施の形態に係る水素吸蔵体の表面を拡大して示す図である。 水素吸蔵体の製造方法の流れを示す図である。 水素吸蔵体の製造方法の流れを示す図である。 水素吸蔵体の水素吸蔵方法の流れを示す図である。 加熱装置を示す図である。 実施例1~4および比較例1~2における金属部のモル比率、水素吸蔵処理の際の加熱温度および水素吸蔵量を示す図である。 測定装置を示す図である。 金属部のモル比率と水素吸蔵量との関係を示す図である。 水素吸蔵体の製造方法および水素吸蔵方法の流れを示す図である。 水素吸蔵体の水素吸蔵方法の流れを示す図である。
 図1は、本発明の一の実施の形態に係る水素吸蔵体1の表面を拡大して示す図である。図1は、水素吸蔵体1の外表面の一部を透過型電子顕微鏡(Transmission Electron Microscope)により観察した結果を示す。
 水素吸蔵体1は、本体部12と、金属部13とを備える。本体部12は、実質的にカルシウムアルミネート化合物により形成される。金属部13は、実質的に金属により形成されており、本体部12の表面に担持される。すなわち、水素吸蔵体1は、本体部12の表面に金属部13が担持された金属担持化合物である。水素吸蔵体1は、本体部12に水素を吸蔵する。水素吸蔵体1の本体部12は、例えば、水素分子(H)または水素陰イオン(H)の状態で水素を吸蔵する。
 金属部13は、本体部12の表面に分散された金属粒子131を含む。図1では、図の理解を容易にするために、複数の金属粒子131をそれぞれ細実線の円にて囲んでいる。複数の金属粒子131のそれぞれの算術平均粒子径(以下、単に「粒径」という。)は、例えば、1μm(マイクロメートル)未満である。換言すれば、金属粒子131はナノ金属粒子である。金属粒子131の粒径は、好ましくは、1nm以上かつ100nm以下である。図1に示す例では、複数の金属粒子131は、互いに非接触状態で(すなわち、互いに離間して)本体部12の表面上に担持される。
 本体部12のカルシウムアルミネート化合物は、例えばボイド構造体を含む。当該ボイド構造体は、イオン、原子、分子または電子を取り込み可能な複数のボイド(ケージともいう。)を有する結晶構造体である。ボイド構造体では、複数のボイドは、例えば三次元的に連結される。本体部12に含まれるボイド構造体は、例えばマイエナイトである。マイエナイトは、直径約0.4nm(ナノメートル)のボイドが三次元的に連結された結晶構造(すなわち、マイエナイト型結晶構造)を有する化合物であり、マイエナイト型化合物とも呼ばれる。
 当該マイエナイトは、Ca12Al1433(12CaO・7Alとも表記される。)を主に含む化合物である。換言すれば、マイエナイトは、Ca12Al1433を代表組成として有する。当該マイエナイトにおけるカルシウム(Ca)とアルミニウム(Al)とのモル比は、好ましくは、13:12~11:16である。当該マイエナイトでは、カルシウム原子のうち一部または全部の原子が、他の原子(ナトリウム(Na)、カリウム(K)、マグネシウム(Mg)等)に置換されていてもよい。また、アルミニウム原子のうち一部または全部の原子が、他の原子(ホウ素(B)、ガリウム(Ga)、炭素(C)等)に置換されていてもよい。さらに、ボイド中のフリー酸素イオンの一部または全部が、他の陰イオンに置換されていてもよい。
 金属部13は、好ましくは、ニッケル(Ni)、白金(Pt)、コバルト(Co)、鉄(Fe)、銅(Cu)、モリブデン(Mo)、タングステン(W)、バナジウム(V)、クロム(Cr)、パラジウム(Pd)、ルテニウム(Ru)、イリジウム(Ir)、ロジウム(Rh)等の純金属のうち、1種類または2種類以上により形成される。図1に示す例では、金属部13は、本体部12の表面上に分散される粒径が1μm未満のニッケル粒子である。
 図1に例示する水素吸蔵体1では、本体部12に対する金属部13のモル比率は、0.005以上かつ0.5以下であることが好ましい。上述の金属部13のモル比率とは、1モルの本体部12に担持される金属部13のモル数を意味する。換言すれば、本体部12と金属部13とのモル比は、好ましくは、1:0.005~0.5である。より好ましくは、本体部12に対する金属部13のモル比率は、0.005以上かつ0.15以下であり、さらに好ましくは、0.01以上かつ0.1以下である。
 次に、図2を参照しつつ、水素吸蔵体1の製造方法の一例について説明する。水素吸蔵体1が製造される際には、まず、カルシウムアルミネート化合物の原料である化合物原料が準備される(ステップS11)。本製造方法の例では、化合物原料およびカルシウムアルミネート化合物はそれぞれ、カトアイト(CaAl(OH)12)およびマイエナイトである。ステップS11では、例えば、アルミニウム粉体と水酸化カルシウム(Ca(OH))とを水媒体中で撹拌することにより、カルシウムアルミネートおよび水素を生成する。当該撹拌は、例えば、水素の発生が停止するまで行われる。カルシウムアルミネートは水中に沈殿する。沈殿物であるカルシウムアルミネートを濾取して乾燥させる(すなわち、水分を除去する)ことにより、カトアイトが取得される。カトアイトは、例えば、粒径が0.5μm~5μmの粒状である。
 上述の水媒体は、好ましくはイオン交換水である。また、混合されるアルミニウム粉体と水酸化カルシウムとの重量比は、例えば、2:1~3:1である。アルミニウム粉体と水酸化カルシウムとの混合物に添加される水媒体の重量は、当該混合物の重量に対して、例えば10倍以下である。上述の撹拌処理の際の温度条件、圧力条件および雰囲気条件等は特に限定されない。当該撹拌処理は、例えば、常温、大気圧かつ空気雰囲気下にて行われる。また、濾取された沈殿物の乾燥処理の際の温度条件、圧力条件および雰囲気条件等も特に限定されない。当該乾燥処理は、例えば、約70℃、大気圧かつ空気雰囲気下にて行われる。乾燥時間は、適宜決定されてよい。
 続いて、ステップS11で得られた化合物原料であるカトアイトが焼成されることにより、カルシウムアルミネート化合物であるマイエナイトが生成される(ステップS12)。マイエナイトは、例えば、粒径が1μm~10μmの粒状である。ステップS12では、例えば、約300℃、大気圧かつ空気雰囲気下にて、カトアイトが約2時間焼成されることにより、マイエナイトが生成される。ステップS12における温度条件、圧力条件、雰囲気条件および焼成時間等は様々に変更されてよい。ステップS12における温度条件は、好ましくは、300℃以上かつ500℃以下である。これにより、生成されるマイエナイトの比表面積が大きくなり、マイエナイトに吸着される水素の量(すなわち、水素吸蔵量)を増大させることができる。
 次に、ステップS12で準備されたマイエナイト(すなわち、本体部12であるカルシウムアルミネート化合物)と、金属部13の原料である金属原料と、溶媒とが混合され、混合物が撹拌される。そして、当該混合物が乾燥されて水分が除去される(ステップS13)。本製造方法の例では、金属原料は酢酸ニッケル・4水和物(Ni(CHCOO)・4HO)である。金属原料は、様々に変更されてよい。例えば、金属原料は、ニッケルの酸化物、硝酸塩または塩化物であってもよく、ニッケル単体(すなわち、純金属であるニッケル)であってもよい。溶媒としては、例えばメタノールが利用される。
 ステップS13において混合されるカルシウムアルミネート化合物と金属原料とのモル比は、好ましくは、1:0.005~0.5である。換言すれば、ステップS13では、カルシウムアルミネート化合物に対する金属原料のモル比率は、0.005以上かつ0.5以下であることが好ましい。なお、ステップS13において混合されるカルシウムアルミネート化合物と金属原料とのモル比は、上述の例から変更されてもよい。また、ステップS13では、カルシウムアルミネート化合物および金属原料以外の物質も併せて混合されてよい。ステップS13における混合物の撹拌処理の際の温度条件、圧力条件および雰囲気条件等は特に限定されない。当該撹拌処理は、例えば、常温、大気圧かつ空気雰囲気下にて行われる。また、当該混合物の乾燥処理の際の温度条件、圧力条件および雰囲気条件等も特に限定されない。当該乾燥処理は、例えば、約60℃、大気圧かつ空気雰囲気下にて行われる。乾燥時間は、適宜決定されてよい。
 その後、ステップS13にて得られた乾燥後の混合物が、加熱されて焼成されることにより、図1に示すように、本体部12と金属部13とを備える水素吸蔵体1が生成される。換言すれば、当該焼成処理により、カルシウムアルミネート化合物である本体部12の表面に、金属部13が担持される(ステップS14)。水素吸蔵体1は、例えば、粒径が1μm~10μmの粒状である。ステップS14では、例えば、混合物が約850℃、大気圧かつ空気雰囲気下にて約4時間焼成された後、約850℃、大気圧かつ水素雰囲気下にて約4時間焼成されることにより、水素吸蔵体1が生成される。ステップS14における温度条件、圧力条件、雰囲気条件および焼成時間等は様々に変更されてよい。
 水素吸蔵体1の製造方法は、上述の方法には限定されず、様々に変更されてよい。例えば、カルシウムアルミネート化合物の生成は、上述のステップS11,S12に示す液相法に代えて、ゾルゲル法または固相反応法等の他の方法により行われてもよい。
 図3は、ゾルゲル法を利用した水素吸蔵体1の製造の流れの一例を示す図である。図3に示す製造方法では、まず、カルシウムアルミネート化合物の原料である化合物原料の溶液が準備される(ステップS21)。当該溶液は、例えば、化合物原料である硝酸カルシウム(Ca(NO)および硝酸アルミニウム(Al(NO)と、溶媒である純水とを混合することにより生成される。
 続いて、当該溶液中にて、例えば加水分解および重合反応を生じさせることにより、溶液をゾル化させる(ステップS22)。そして、溶液中における反応(例えば、加水分解および重合反応)をさらに進めて、当該ゾルをゲル化させる(ステップS23)。その後、ステップS23にて生成されたゲルを乾燥させ、さらに焼成することにより、カルシウムアルミネート化合物であるマイエナイトが生成される(ステップS24)。
 当該カルシウムアルミネート化合物は、金属部13の原料である金属原料と混合され(ステップS25)、混合物が焼成されることにより、図1に示すように、本体部12と金属部13とを備える水素吸蔵体1が生成される。換言すれば、当該焼成処理により、カルシウムアルミネート化合物である本体部12の表面に、金属部13が担持される(ステップS26)。
 また、水素吸蔵体1の形成では、上述のステップS13,S14に示す方法に代えて、CVD(化学蒸着:Chemical Vapor Deposition)またはPVD(物理蒸着:Physical Vapor Deposition)等により、金属部13の原料である金属原料を気相から導入し、ステップS12で準備された本体部12の表面に析出させることにより、本体部12上に金属部13が担持されてもよい。本体部12上への金属部13の担持は、含浸法、物理的混合法、熱分解法、液相法、スパッタリング法または蒸着法等、様々な方法により行われてよい。
 次に、図4を参照しつつ、水素吸蔵体1に水素を吸蔵させる水素吸蔵方法の一例について説明する。図4に例示する水素吸蔵方法では、まず、上述の製造方法等により製造された水素吸蔵体1が準備される(ステップS31)。そして、図5に例示する加熱装置7において、水素吸蔵体1が、水素含有ガス雰囲気下において加熱されることにより、水素吸蔵体1の本体部12に水素(例えば、水素分子または水素陰イオン)が吸蔵される(ステップS32)。
 図5に示す加熱装置7は、化合物収容容器71と、反応容器72と、照射部73とを備える。化合物収容容器71は、水素吸蔵体1を内部に収容する密閉容器である。反応容器72は、化合物収容容器71を内部に収容する密閉容器である。照射部73は、反応容器72内に向けてマイクロ波を照射する。照射部73は、例えば、マグネトロン式マイクロ波発振機である。照射部73は、半導体素子を利用したソリッドステート式マイクロ波発振機であってもよい。照射部73から照射されるマイクロ波の周波数は、例えば、910MHz(メガヘルツ)、2.45GHz(ギガヘルツ)または5.8GHzである。
 加熱装置7では、粒状の水素吸蔵体1が水素含有ガスと共に化合物収容容器71に収容される。水素含有ガスは、水素ガスであってもよく、水素ガスおよび他の種類のガスを含むガスであってもよい。照射部73から反応容器72内に向けて照射されたマイクロ波は、反応容器72の内面にて反射し、化合物収容容器71に照射される。これにより、化合物収容容器71内の水素吸蔵体1が加熱される。加熱装置7では、水素吸蔵体1が水素含有ガス雰囲気下においてマイクロ波により加熱されることにより、上述のように、水素吸蔵体1の本体部12に水素が吸蔵される。また、本体部12に導電性が付与される。加熱装置7における水素吸蔵体1の加熱温度は、好ましくは400℃以上かつ1350℃以下、より好ましくは500℃以上かつ1200℃以下、さらに好ましくは600℃以上かつ1100℃以下である。また、水素吸蔵体1の加熱時間は、例えば、5分以上かつ60分以下である。
 加熱装置7では、マイクロ波に代えて、プラズマが照射部73から水素吸蔵体1に向けて照射されてもよい。この場合、プラズマの照射により水素吸蔵体1が水素含有ガス雰囲気下において加熱される。これにより、マイクロ波を照射した場合と略同様に、水素吸蔵体1の本体部12に水素が吸蔵されるとともに、本体部12に導電性が付与される。この場合も、水素吸蔵体1の加熱温度は、好ましくは400℃以上かつ1350℃以下、より好ましくは500℃以上かつ1200℃以下、さらに好ましくは600℃以上かつ1100℃以下である。また、水素吸蔵体1の加熱時間は、例えば、5分以上かつ60分以下である。
 ステップS31~S32において水素を吸蔵させた水素吸蔵体1(すなわち、水素吸蔵マイエナイト)は、常温(例えば、25℃前後)かつ大気圧下では水素を実質的に放出しない。当該水素吸蔵体1から水素(例えば、水素分子)を効率良く放出させるためには、水素吸蔵体1を40℃以上に加熱することが好ましい。水素を放出させる際の水素吸蔵体1の加熱温度の上限値については特に制限はないが、例えば、90℃以下である。すなわち、水素吸蔵体1の加熱温度は、好ましくは、40℃以上かつ90℃以下である。より好ましくは、水素吸蔵体1の加熱温度は40℃以上かつ80℃以下であり、さらに好ましくは、60℃以上かつ70℃以下である。水素吸蔵体1の加熱は、例えば、熱媒体を水素吸蔵体1に直接的または間接的に接触させることにより行われる。熱媒体としては、例えば、水、空気または不活性ガスが利用可能である。
 水素を放出した水素吸蔵体1は、例えば、図4に示す水素吸蔵方法にて再度処理されることにより、水素を吸蔵する。なお、水素の放出の際に、水等の液体を熱媒体として水素吸蔵体1に直接的に接触させていた場合は、水素吸蔵体1を乾燥させて水分を除去した後に、水素吸蔵処理が行われることが好ましい。
 以下では、上述の製造方法により製造された水素吸蔵体1の複数の実施例1~4について説明する。また、実施例1~4と比較するための比較例1~2についても説明する。図6は、実施例1~4および比較例1~2における金属部13のモル比率、水素吸蔵処理の際の加熱温度および水素吸蔵量を示す図である。実施例1~4では、マイエナイトにより形成された本体部12と、ニッケルにより形成された金属部13とを備える水素吸蔵体1を使用した。比較例1~2では、金属部13を有しないマイエナイトを水素吸蔵体として使用した。
 実施例1では、上述のステップS21~S26(図3参照)に示す製造方法により水素吸蔵体1を製造した。具体的には、まず、硝酸カルシウム・4水和物(Ca(NO・4HO)28.77gを600mL(ミリリットル)ビーカーに入れ、純水21.52mLを加えて撹拌した。続いて、硝酸アルミニウム・9水和物(Al(NO・9HO)53.59gをビーカー内の溶液に加え、溶液の温度を約60℃に維持した状態で撹拌した。さらに、無水クエン酸(C(OH)(CHCOOH)COOH)5.91gをビーカー内に加え、約80℃~90℃にて約2時間撹拌することにより、ビーカー内の溶液をゾル化させ、さらにゲル化させた。そして、当該ゲルを約60℃にて24時間乾燥させた後、約600℃、大気圧かつ空気雰囲気下にて約5時間焼成し、さらに、約1300℃、大気圧かつ空気雰囲気下にて約3時間焼成することにより、本体部12であるカルシウムアルミネート化合物を得た。
 その後、当該カルシウムアルミネート化合物と、金属原料である酢酸ニッケル・4水和物と、溶媒であるメタノール50mLとを混合して撹拌した。混合されるカルシウムアルミネート化合物と金属原料とのモル比は、1:0.02である。そして当該混合物を、約60℃、大気圧かつ空気雰囲気下にて乾燥させた後、約850℃、大気圧かつ空気雰囲気下にて約4時間焼成し、さらに、約850℃、大気圧かつ水素雰囲気下にて約4時間焼成した。これにより、実施例1の水素吸蔵体1を得た。実施例1の水素吸蔵体1では、本体部12に対する金属部13のモル比率は、0.02である。
 そして、ステップS31~S32(図4参照)に示す水素吸蔵処理により、当該水素吸蔵体1に水素を吸蔵させた。具体的には、図5に示す加熱装置7において、3gの水素吸蔵体1に水素雰囲気下にてマイクロ波を20分間照射して加熱することにより、水素吸蔵体1に水素を吸蔵させた。実施例1では、加熱装置7における水素吸蔵体1の加熱温度は、約1000℃である。
 その後、図7に示す測定装置8により、水素吸蔵体1の水素吸蔵量を測定した。測定装置8は、反応器81と、除湿剤(例えば、シリカゲル)が充填された除湿器82と、マスフローメータ83とを備える。測定装置8では、水素を吸蔵した水素吸蔵体1と水とが反応器81に収容され、ヒータにより60℃に加熱される。反応器81から流出する水素含有ガスは、除湿器82を通過することにより水分が除去されて水素ガスとなる。当該水素ガスはマスフローメータ83に導かれ、マスフローメータ83により水素吸蔵体1からの水素ガスの発生量が測定される。そして、マスフローメータ83の測定値から、水素吸蔵体1の水素吸蔵量が求められる。なお、除湿器82を通過した後のガスが水素ガスであることは、ガスクロマトグラフィにより同定した。ガスクロマトグラフィとしては、TCD(Thermal Conductivity Detector)型ガスクロマトグラフィ(株式会社島津製作所製のGC-8A)を利用した。実施例1における水素吸蔵体1の水素吸蔵量は、18mL/gであった。
 実施例2~4では、実施例1と略同様の方法により、水素吸蔵体1を製造して水素吸蔵量を測定した。実施例2~4では、水素吸蔵体1の本体部12に対する金属部13のモル比率はそれぞれ、0.02、0.04および0.12である。実施例2~4における水素吸蔵処理時の水素吸蔵体1の加熱温度は、700℃である。実施例2~4の水素吸蔵量はそれぞれ、11mL/g,12.5mL/gおよび6mL/gであった。
 比較例1~2では、上述の実施例1~4と同様の方法で製造したカルシウムアルミネート化合物(上記例では、マイエナイト)を水素吸蔵体として使用した。比較例1では、実施例1と同様の方法で、当該カルシウムアルミネート化合物に水素を吸蔵させた。比較例2では、実施例2~4と同様の方法で、当該カルシウムアルミネート化合物に水素を吸蔵させた。その後、実施例1~4と同様の方法で、当該カルシウムアルミネート化合物の水素吸蔵量を測定した。比較例1では、水素吸蔵処理時の水素吸蔵体1の加熱温度は1000℃であり、水素吸蔵量は11mL/gであった。比較例2では、水素吸蔵処理時の水素吸蔵体1の加熱温度は700℃であり、水素吸蔵量は3mL/gであった。
 実施例1と比較例1とを比較すると、カルシウムアルミネート化合物(すなわち、本体部12)上に金属部13が担持されることにより、カルシウムアルミネート化合物の水素吸蔵量が増大することが分かる。また、実施例2~4と比較例2とを比較しても、金属部13により本体部12の水素吸蔵量が増大することが分かる。これは、金属部13によるスピルオーバー効果によるものであると考えられる。実施例1と実施例2とを比較すると、水素吸蔵体1に対する水素吸蔵処理の際の加熱温度が高い方が、水素吸蔵量が大きいことが分かる。
 実施例2と実施例3とを比較すると、本体部12に対する金属部13のモル比率が0.02から0.04に増大すると、水素吸蔵量も増大することが分かる。これは、本体部12の表面上における金属部13が増大することにより、上述のスピルオーバー効果も増大したためと考えられる。一方、実施例3と実施例4とを比較すると、本体部12に対する金属部13のモル比率が0.04から0.12に増大すると、水素吸蔵量は減少することが分かる。これは、本体部12の表面のうち金属部13により覆われる領域がある程度以上大きくなると、本体部12と水素との接触面積減少により水素吸蔵量が減少するためと考えられる。
 以上に説明したように、水素吸蔵体1は、カルシウムアルミネート化合物により形成された本体部12と、本体部12の表面に担持された金属部13とを備え、本体部12に水素を吸蔵する。当該水素吸蔵体1では、上述の実施例1~4に示すように、金属部13を有しない比較例1~2に比べて、水素吸蔵量を増大させることができる。
 また、水素吸蔵体1の金属部13は、本体部12の表面に分散された粒径が1μm未満の金属粒子を含む。これにより、本体部12の表面において金属部13が存在しない領域(すなわち、金属粒子間の隙間から本体部12が露出する領域)を増大させることができる。その結果、スピルオーバー効果が増大するため、水素吸蔵体1の水素吸蔵量をさらに増大させることができる。
 上述のように、水素吸蔵体1の本体部12は、複数のボイドを有するボイド構造体を含む。当該複数のボイドは、イオン、原子、分子または電子を取り込み可能である。これにより、水素吸蔵体1の水素吸蔵量をさらに増大させることができる。また、水素吸蔵体1は、大気圧下にて40℃以上(より好ましくは、40℃以上かつ90℃以下)の温度で加熱することにより、吸蔵した水素を放出することができるため、様々な装置における水素供給に容易に利用することができる。上述のボイド構造体は、Ca12Al1433を含むマイエナイトである。マイエナイトは、上述の製造方法等により、比較的低コストにて生成することができる。したがって、水素吸蔵体1の製造コストを低減することができる。
 図8は、水素吸蔵体1の本体部12に対する金属部13のモル比率と、水素吸蔵量との関係を示す図である。図8中の実線91は、当該モル比率と水素吸蔵量との関係を示し、破線92は、金属部13が設けられない場合(すなわち、当該モル比率がゼロである場合)の水素吸蔵量を示す。図8に示すように、水素吸蔵体1では、本体部12に対する金属部13のモル比率が、0.005以上かつ0.5以下であることが好ましい。これにより、金属部13を有しない場合に比べて、水素吸蔵体1の水素吸蔵量を増大させることができる。水素吸蔵量を、金属部13が設けられない場合の約2倍以上にするという観点からは、本体部12に対する金属部13のモル比率は、0.01以上かつ0.1以下であることが好ましい。これにより、水素吸蔵体1の水素吸蔵量を効率良く増大させることができる。
 上述の水素吸蔵体1の製造方法は、カルシウムアルミネート化合物を水素を吸蔵する本体部12として準備する工程(ステップS12)と、本体部12の表面に金属部13を担持させる工程(ステップS14)とを備える。当該製造方法によれば、カルシウムアルミネート化合物により形成された本体部12と、本体部12の表面に担持された金属部13とを備え、本体部12に水素を吸蔵する水素吸蔵体1を容易に提供することができる。
 上述のように、水素吸蔵体1に水素を吸蔵させる水素吸蔵方法は、水素吸蔵体1を準備する工程(ステップS31)と、水素吸蔵体1を水素含有ガス雰囲気下において加熱することにより、水素吸蔵体1の本体部12に水素を吸蔵させる工程(ステップS32)とを備える。これにより、水素吸蔵体1に容易に、かつ、効率良く水素を吸蔵させることができる。
 当該水素吸蔵方法では、ステップS32において、水素吸蔵体1にマイクロ波またはプラズマを照射することにより、水素吸蔵体1を加熱する。これにより、水素吸蔵体1にさらに効率良く水素を吸蔵させることができる。また、水素吸蔵体1への水素吸蔵と並行して、本体部12に導電性を付与することもできる。
 当該水素吸蔵方法では、ステップS32において、水素吸蔵体1の加熱温度が、好ましくは400℃以上かつ1350℃以下、より好ましくは500℃以上かつ1200℃以下、さらに好ましくは600℃以上かつ1100℃以下である。当該加熱温度を400℃以上とすることにより、水素吸蔵体1の水素吸蔵に要する時間が過剰に長くなることを防止することができる。また、当該加熱温度を1350℃以下とすることにより、水素吸蔵体1の加熱に要するエネルギーが過剰に大きくなることを防止することができる。
 水素吸蔵体1の製造方法および水素吸蔵方法は、上述の例には限定されず、様々に変更されてよい。例えば、図9に示すように、まず、カルシウムアルミネート化合物の原料である化合物原料、および、金属部13の原料である金属原料が準備され、化合物原料と金属原料とが混合されて原材料が生成される(ステップS41)。本製造方法の例では、化合物原料はカトアイトであり、上述のステップS11と同様の方法により準備される。金属原料は、例えば、酢酸ニッケル・4水和物である。ステップS41では、例えば、メタノール等の溶媒、化合物原料および金属原料が混合されて撹拌された後、混合物が乾燥されることにより原材料が生成される。
 続いて、上記原材料が、水素含有ガス雰囲気下において加熱されることにより、カルシウムアルミネート化合物により形成された本体部12と、本体部12の表面に担持された金属部13とを備える水素吸蔵体1が生成される。また、水素吸蔵体1の生成とともに、水素吸蔵体1の本体部12に水素が吸蔵される(ステップS42)。このように、水素吸蔵体1の製造と水素吸蔵体1への水素の吸蔵とを同時に行うことにより、水素を吸蔵した水素吸蔵体1を容易に提供することができる。
 ステップS42における原材料の加熱は、例えば、上述の加熱装置7(図5参照)により行われる。加熱装置7では、上述の原材料(例えば、粒状の化合物原料および粒状の金属原料)が、水素含有ガスと共に化合物収容容器71に収容される。水素含有ガスは、水素ガスであってもよく、水素ガスおよび他の種類のガスを含むガスであってもよい。化合物収容容器71内の原材料は、照射部73から反応容器72内に向けて照射されたマイクロ波により加熱される。これにより、化合物収容容器71内において、水素吸蔵体1が生成されるとともに、水素吸蔵体1の本体部12に水素が吸蔵される。また、本体部12に導電性が付与される。加熱装置7における原材料の加熱温度は、好ましくは400℃以上かつ1350℃以下、より好ましくは500℃以上かつ1200℃以下、さらに好ましくは600℃以上かつ1100℃以下である。また、原材料の加熱時間は、例えば、5分以上かつ60分以下である。
 加熱装置7では、マイクロ波に代えて、プラズマが原材料に向けて照射されて原材料が加熱されてもよい。これにより、マイクロ波を照射した場合と同様に、水素吸蔵体1が生成されるとともに、水素吸蔵体1の本体部12に水素が吸蔵される。また、本体部12に導電性が付与される。加熱装置7における原材料の加熱温度は、好ましくは400℃以上かつ1350℃以下、より好ましくは500℃以上かつ1200℃以下、さらに好ましくは600℃以上かつ1100℃以下である。また、原材料の加熱時間は、例えば、5分以上かつ60分以下である。
 金属によるスピルオーバー効果を利用してカルシウムアルミネート化合物の水素吸蔵量を増大させるという観点からは、必ずしも、本体部12および金属部13を備える水素吸蔵体1を利用する必要はない。例えば、図10に示す水素吸蔵方法により、カルシウムアルミネート化合物への水素の吸蔵が行われてもよい。
 図10に示す例では、まず、カルシウムアルミネート化合物により形成された水素吸蔵体が準備される(ステップS51)。当該水素吸蔵体は、例えば、カルシウムアルミネート化合物であるマイエナイトにより形成される。水素吸蔵体は、例えば粒状である。水素吸蔵体は、粒状以外の様々な形状(例えば、板状または直方体状)であってもよい。当該水素吸蔵体は、例えば、上述のステップS11,S12と同様の方法により生成される。また、ニッケル等の純金属により形成された金属粒子が準備される。当該金属粒子は、例えば、粒径が1μm未満のナノ金属粒子である。
 続いて、上述の水素吸蔵体(例えば、粒状のカルシウムアルミネート化合物)に金属粒子を接触させた状態で、水素吸蔵体が水素含有ガス雰囲気下において加熱されることにより、当該水素吸蔵体に水素が吸蔵される(ステップS52)。ステップS52では水素吸蔵体と金属粒子とは、物理的または化学的に接触している。また、ステップS52における水素吸蔵体の加熱は、例えば、上述の加熱装置7(図5参照)により行われる。加熱装置7では、上述の水素吸蔵体と金属粒子との混合物が、水素含有ガスと共に化合物収容容器71に収容される。水素含有ガスは、水素ガスであってもよく、水素ガスおよび他の種類のガスを含むガスであってもよい。
 加熱装置7の化合物収容容器71内では、水素吸蔵体は金属粒子と接触した状態である。化合物収容容器71内では、照射部73から照射されたマイクロ波(またはプラズマ)により水素吸蔵体が加熱されることにより、水素吸蔵体に水素が吸蔵される。また、水素吸蔵体に導電性が付与される。加熱装置7における水素吸蔵体の加熱温度は、好ましくは400℃以上かつ1350℃以下、より好ましくは500℃以上かつ1200℃以下、さらに好ましくは600℃以上かつ1100℃以下である。また、水素吸蔵体の加熱時間は、例えば、5分以上かつ60分以下である。
 以上に説明したように、図10に示す水素吸蔵方法は、カルシウムアルミネート化合物により形成された水素吸蔵体を準備する工程(ステップS51)と、当該水素吸蔵体に金属粒子を接触させた状態で、水素吸蔵体を水素含有ガス雰囲気下において加熱することにより、水素吸蔵体に水素を吸蔵させる工程(ステップS52)とを備える。当該水素吸蔵方法では、金属粒子により惹起されるスピルオーバー効果により、カルシウムアルミネート化合物により形成された水素吸蔵体の水素吸蔵量を増大させることができる。
 当該水素吸蔵方法では、ステップS52において、水素吸蔵体(すなわち、カルシウムアルミネート化合物)にマイクロ波またはプラズマを照射することにより、当該水素吸蔵体を加熱する。これにより、水素吸蔵体にさらに効率良く水素を吸蔵させることができる。また、水素吸蔵体への水素吸蔵と並行して、水素吸蔵体に導電性を付与することもできる。
 当該水素吸蔵方法では、ステップS52において、水素吸蔵体の加熱温度が、好ましくは400℃以上かつ1350℃以下、より好ましくは500℃以上かつ1200℃以下、さらに好ましくは600℃以上かつ1100℃以下である。当該加熱温度を400℃以上とすることにより、水素吸蔵体の水素吸蔵に要する時間が過剰に長くなることを防止することができる。また、当該加熱温度を1350℃以下とすることにより、水素吸蔵体の加熱に要するエネルギーが過剰に大きくなることを防止することができる。
 上述の水素吸蔵体1、水素吸蔵体1の製造方法および水素吸蔵方法、並びに、水素吸蔵体の水素吸蔵方法では、様々な変更が可能である。
 例えば、水素吸蔵体1の本体部12は、実質的にカルシウムアルミネート化合物により形成されているのであれば、カルシウムアルミネート化合物以外の物質を含んでいてもよい。金属部13は、実質的に金属により形成されているのであれば、金属以外の物質を含んでいてもよい。
 本体部12のカルシウムアルミネート化合物に含まれるボイド構造体は、必ずしもマイエナイトである必要はない。例えば、当該ボイド構造体は、[HN(CHCH)3NH)K1.35[V(PO ]・xHO、または、(CS[V(PO]・xHOを含むものであってもよい。また、本体部12のカルシウムアルミネート化合物は、ボイド構造体を含まなくてもよい。例えば、本体部12のカルシウムアルミネート化合物は、カトアイトであってもよい。
 金属部13の複数の金属粒子131は、必ずしも互いに離間している必要はなく、本体部12上において隣接する金属粒子131と接触していてもよい。また、金属部13は、複数の金属粒子131が接触した状態で本体部12上に担持されることにより形成された金属被膜であってもよい。当該金属被膜は、本体部12の表面の一部または略全体を覆うとともに、水素が通過可能な間隙を有する。水素吸蔵体1に水素が吸蔵される際には、水素は当該間隙を通過して本体部12へと到達し、本体部12に吸蔵される。
 水素吸蔵体1の上記製造方法では、ステップS11~S14において生成される化合物原料、カルシウムアルミネート化合物および水素吸蔵体1の形状はそれぞれ、粒状には限定されず、様々な形状であってもよい。水素吸蔵体1の製造方法は上述の例には限定されず、他の様々な方法により水素吸蔵体1が製造されてもよい。
 水素吸蔵体1の水素吸蔵方法では、ステップS32における水素吸蔵体1の加熱温度は、400℃未満であってもよく、1350℃よりも高くてもよい。また、ステップS32における水素吸蔵体1の加熱方法は、マイクロ波またはプラズマの照射には限定されず、他の様々な方法(例えば、マイクロ波以外の電磁波を使用した誘導加熱)により水素吸蔵体1が加熱されてもよい。あるいは、管状炉を利用して水素吸蔵体1が加熱されてもよい。ステップS51~S52において、水素吸蔵体であるカルシウムアルミネート化合物に水素を吸蔵させる場合においても同様である。
 水素吸蔵体1またはカルシウムアルミネート化合物の水素吸蔵方法は、上述の例には限定されず、他の様々な方法により水素吸蔵体1またはカルシウムアルミネート化合物に水素が吸蔵されてもよい。
 上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。
 発明を詳細に描写して説明したが、既述の説明は例示的であって限定的なものではない。したがって、本発明の範囲を逸脱しない限り、多数の変形や態様が可能であるといえる。
 1  水素吸蔵体
 12  本体部
 13  金属部
 131  金属粒子
 S11~S14,S21~S26,S31~S32,S41~S42,S51~S52  ステップ

Claims (11)

  1.  水素吸蔵体であって、
     カルシウムアルミネート化合物により形成された本体部と、
     前記本体部の表面に担持された金属部と、
    を備え、
     前記本体部に水素を吸蔵する。
  2.  請求項1に記載の水素吸蔵体であって、
     前記本体部が、イオン、原子、分子または電子を取り込み可能な複数のボイドを有するボイド構造体を含む。
  3.  請求項2に記載の水素吸蔵体であって、
     前記ボイド構造体が、Ca12Al1433を含むマイエナイトである。
  4.  請求項1ないし3のいずれか1つに記載の水素吸蔵体であって、
     前記金属部が、前記本体部の表面に分散された粒径が1μm未満の金属粒子を含む。
  5.  請求項1ないし4のいずれか1つに記載の水素吸蔵体であって、
     前記本体部に対する前記金属部のモル比率が、0.005以上かつ0.5以下である。
  6.  水素吸蔵体に水素を吸蔵させる水素吸蔵方法であって、
     a)請求項1ないし5のいずれか1つに記載の水素吸蔵体を準備する工程と、
     b)前記水素吸蔵体を水素含有ガス雰囲気下において加熱することにより、前記水素吸蔵体の前記本体部に水素を吸蔵させる工程と、
    を備える。
  7.  水素吸蔵体に水素を吸蔵させる水素吸蔵方法であって、
     a)カルシウムアルミネート化合物により形成された水素吸蔵体を準備する工程と、
     b)前記水素吸蔵体に金属粒子を接触させた状態で、前記水素吸蔵体を水素含有ガス雰囲気下において加熱することにより、前記水素吸蔵体に水素を吸蔵させる工程と、
    を備える。
  8.  請求項6または7に記載の水素吸蔵方法であって、
     前記b)工程において、前記水素吸蔵体にマイクロ波またはプラズマを照射することにより前記水素吸蔵体を加熱する。
  9.  請求項6ないし8のいずれか1つに記載の水素吸蔵方法であって、
     前記b)工程において、前記水素吸蔵体の加熱温度が400℃以上かつ1350℃以下である。
  10.  水素吸蔵体の製造方法であって、
     カルシウムアルミネート化合物を水素を吸蔵する本体部として準備する工程と、
     前記カルシウムアルミネート化合物の表面に金属部を担持させる工程と、
    を備える。
  11.  水素吸蔵体の製造方法であって、
     カルシウムアルミネート化合物の原料である化合物原料と、金属部の原料である金属原料とを混合して原材料を生成する工程と、
     前記原材料を水素含有ガス雰囲気下で加熱することにより、カルシウムアルミネート化合物により形成された本体部と、前記本体部の表面に担持された金属部とを備える水素吸蔵体を生成するとともに、前記本体部に水素を吸蔵させる工程と、
    を備える。
PCT/JP2018/021737 2017-06-30 2018-06-06 水素吸蔵体、水素吸蔵方法および水素吸蔵体の製造方法 WO2019003841A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-128220 2017-06-30
JP2017128220A JP6949584B2 (ja) 2017-06-30 2017-06-30 水素吸蔵体、水素吸蔵方法および水素吸蔵体の製造方法

Publications (1)

Publication Number Publication Date
WO2019003841A1 true WO2019003841A1 (ja) 2019-01-03

Family

ID=64740537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021737 WO2019003841A1 (ja) 2017-06-30 2018-06-06 水素吸蔵体、水素吸蔵方法および水素吸蔵体の製造方法

Country Status (2)

Country Link
JP (1) JP6949584B2 (ja)
WO (1) WO2019003841A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10655169B2 (en) 2004-04-20 2020-05-19 University Of Utah Research Foundation Nucleic acid melting analysis with saturation dyes
JP2021525017A (ja) * 2018-04-20 2021-09-16 チャイナ アカデミー オブ テレコミュニケーションズ テクノロジー データ伝送方法及び装置
US20220299163A1 (en) * 2021-03-17 2022-09-22 Hyundai Motor Company Solid state hydrogen storage system
WO2023017199A1 (es) 2021-08-10 2023-02-16 Advanced Thermal Devices S.L. Cátodo basado en el material c12a7:e "electride" para la emisión termiónica de electrones y procedimiento para el empleo del mismo

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003305565A (ja) * 2002-04-12 2003-10-28 Samco International Inc はんだ接合用銅電極の製造方法及び該銅電極
JP2004290811A (ja) * 2003-03-26 2004-10-21 Taiheiyo Cement Corp 水素貯蔵体およびその製造方法
JP2005046702A (ja) * 2003-07-31 2005-02-24 Hitachi Powdered Metals Co Ltd 黒鉛系水素吸蔵材料及びその製造方法
JP2012511415A (ja) * 2008-12-11 2012-05-24 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 水素捕捉材料、調製方法および使用
JP2012526720A (ja) * 2009-05-11 2012-11-01 本田技研工業株式会社 調整可能な新種のガス貯蔵材料及びガス感知材料
WO2015008859A2 (ja) * 2013-07-18 2015-01-22 水素技術応用開発株式会社 反応体、発熱装置及び発熱方法
JP2016204232A (ja) * 2015-04-28 2016-12-08 日立造船株式会社 水素分子吸蔵材およびその水素発生方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596055B2 (en) * 2000-11-22 2003-07-22 Air Products And Chemicals, Inc. Hydrogen storage using carbon-metal hybrid compositions
JP2003230832A (ja) * 2002-02-08 2003-08-19 Mitsubishi Heavy Ind Ltd 水素貯蔵体の製造方法
JP6048933B2 (ja) * 2013-01-17 2016-12-21 日立造船株式会社 水素製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003305565A (ja) * 2002-04-12 2003-10-28 Samco International Inc はんだ接合用銅電極の製造方法及び該銅電極
JP2004290811A (ja) * 2003-03-26 2004-10-21 Taiheiyo Cement Corp 水素貯蔵体およびその製造方法
JP2005046702A (ja) * 2003-07-31 2005-02-24 Hitachi Powdered Metals Co Ltd 黒鉛系水素吸蔵材料及びその製造方法
JP2012511415A (ja) * 2008-12-11 2012-05-24 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 水素捕捉材料、調製方法および使用
JP2012526720A (ja) * 2009-05-11 2012-11-01 本田技研工業株式会社 調整可能な新種のガス貯蔵材料及びガス感知材料
WO2015008859A2 (ja) * 2013-07-18 2015-01-22 水素技術応用開発株式会社 反応体、発熱装置及び発熱方法
JP2016204232A (ja) * 2015-04-28 2016-12-08 日立造船株式会社 水素分子吸蔵材およびその水素発生方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10655169B2 (en) 2004-04-20 2020-05-19 University Of Utah Research Foundation Nucleic acid melting analysis with saturation dyes
JP2021525017A (ja) * 2018-04-20 2021-09-16 チャイナ アカデミー オブ テレコミュニケーションズ テクノロジー データ伝送方法及び装置
JP7052078B2 (ja) 2018-04-20 2022-04-11 大唐移▲動▼通信▲設▼▲備▼有限公司 データ伝送方法及び装置
US11621807B2 (en) 2018-04-20 2023-04-04 Datang Mobile Communications Equipment Co., Ltd. Data transmission method and device
US20220299163A1 (en) * 2021-03-17 2022-09-22 Hyundai Motor Company Solid state hydrogen storage system
US11946597B2 (en) * 2021-03-17 2024-04-02 Hyundai Motor Company Solid state hydrogen storage system
WO2023017199A1 (es) 2021-08-10 2023-02-16 Advanced Thermal Devices S.L. Cátodo basado en el material c12a7:e "electride" para la emisión termiónica de electrones y procedimiento para el empleo del mismo

Also Published As

Publication number Publication date
JP2019010611A (ja) 2019-01-24
JP6949584B2 (ja) 2021-10-13

Similar Documents

Publication Publication Date Title
WO2019003841A1 (ja) 水素吸蔵体、水素吸蔵方法および水素吸蔵体の製造方法
Sui et al. Advanced support materials and interactions for atomically dispersed noble‐metal catalysts: from support effects to design strategies
Zhang et al. Ni/Ln 2 Zr 2 O 7 (Ln= La, Pr, Sm and Y) catalysts for methane steam reforming: the effects of A site replacement
Di et al. Cold plasma treatment of catalytic materials: a review
Zhu et al. A highly efficient and robust Cu/SiO 2 catalyst prepared by the ammonia evaporation hydrothermal method for glycerol hydrogenolysis to 1, 2-propanediol
Yang et al. A novel approach to synthesizing highly active Ni2P/SiO2 hydrotreating catalysts
Li et al. Photocatalytic oxidative desulfurization of dibenzothiophene under simulated sunlight irradiation with mixed-phase Fe 2 O 3 prepared by solution combustion
Tunç et al. Preparation and characterization of Ni-M (M: Ru, Rh, Pd) nanoclusters as efficient catalysts for hydrogen evolution from ammonia borane methanolysis
KR100965834B1 (ko) 이중금속―탄소나노튜브 혼성촉매 및 이의 제조방법
Ombaka et al. Pyrrolic nitrogen-doped carbon nanotubes: physicochemical properties, interactions with Pd and their role in the selective hydrogenation of nitrobenzophenone
KR101328294B1 (ko) 카본 나노 튜브의 제조 방법 및 카본 나노 튜브 제조용촉매
JP6284197B2 (ja) 金属ナノ粒子複合体の製造方法およびその方法により製造された金属ナノ粒子複合体
Yang et al. RuCuCo nanoparticles supported on MIL-101 as a novel highly efficient catalysts for the hydrolysis of ammonia borane
Bennici et al. Highly active heteropolyanions supported Co catalysts for fast hydrogen generation in NaBH4 hydrolysis
Wang et al. The synthesis of a Ag–ZnO nanohybrid with plasmonic photocatalytic activity under visible-light irradiation: the relationship between tunable optical absorption, defect chemistry and photocatalytic activity
Liu et al. gC 3 N 4 supported metal (Pd, Ag, Pt) catalysts for hydrogen-production from formic acid
Zhang et al. Direct Visualization of the Evolution of a Single‐Atomic Cobalt Catalyst from Melting Nanoparticles with Carbon Dissolution
Gulcan et al. Synthesized polyvidone-stabilized Rh (0) nanoparticles catalyzed the hydrolytic dehydrogenation of methylamine-borane in ambient conditions
Wang et al. Synthesis and characterizations of CoPt nanoparticles supported on poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) functionalized multi-walled carbon nanotubes with superior activity for NaBH4 hydrolysis
Quarta et al. A sustainable multi-function biomorphic material for pollution remediation or UV absorption: Aerosol assisted preparation of highly porous ZnO-based materials from cork templates
Park et al. Effect of reduction conditions of Mo-Fe/MgO on the formation of carbon nanotube in catalytic methane decomposition
Tran et al. Efficient ambient ammonia synthesis by Lewis acid pair over cobalt single atom catalyst with suppressed proton reduction
Dyachenko et al. Preparation and characterization of Ni–Co/SiO 2 nanocomposite catalysts for CO 2 methanation
Wysocka et al. Nickel phase deposition on V2CTx/V2AlC as catalyst precursors for a dry methane reforming: The effect of the deposition method on the morphology and catalytic activity
Ren et al. Design and synthesis of La-modified copper phyllosilicate nanotubes for hydrogenation of methyl acetate to ethanol

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823818

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18823818

Country of ref document: EP

Kind code of ref document: A1