WO2020021638A1 - 発熱装置 - Google Patents

発熱装置 Download PDF

Info

Publication number
WO2020021638A1
WO2020021638A1 PCT/JP2018/027746 JP2018027746W WO2020021638A1 WO 2020021638 A1 WO2020021638 A1 WO 2020021638A1 JP 2018027746 W JP2018027746 W JP 2018027746W WO 2020021638 A1 WO2020021638 A1 WO 2020021638A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactant
heat transfer
heating
contact
transfer structure
Prior art date
Application number
PCT/JP2018/027746
Other languages
English (en)
French (fr)
Inventor
齊藤 元章
Original Assignee
齊藤 公章
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 齊藤 公章 filed Critical 齊藤 公章
Priority to PCT/JP2018/027746 priority Critical patent/WO2020021638A1/ja
Publication of WO2020021638A1 publication Critical patent/WO2020021638A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B3/00Low temperature nuclear fusion reactors, e.g. alleged cold fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Definitions

  • the present invention relates to a heat generating device, and more particularly to a method for generating heat more efficiently and continuously in a reactor to which deuterium gas or light hydrogen gas is supplied, and more efficiently extracting heat to the outside of the reactor.
  • the present invention relates to a heating device that can be used.
  • a metal such as a Group 10 element in particular, Ni
  • Pd or Cu is further used as a reaction accelerator to obtain deuterium gas or light hydrogen. It has been reported that excess heat can be obtained using gas as fuel. It has also been found that it is necessary to heat the reactants in order to generate heat efficiently.
  • Pd or Cu is used as a reaction accelerator in many cases
  • deuterium gas or light hydrogen gas is used as a fuel.
  • the present invention has been made in view of the above problems, and provides a heat generating device capable of generating large heat more efficiently and continuously and extracting the heat more efficiently outside the reactor. With the goal.
  • a heating device A reactor to which deuterium gas or light hydrogen gas is supplied, A heat transfer structure that is in contact with, connected to, or integrally formed with the reaction furnace inner surface, A reactant made of a metal or an alloy, which is in contact with, connected to or integrally formed with the heat transfer structure; A heat source for heating the reactants; Including The reactant is formed into a mesh, a film or a sheet, or is formed into a porous structure, The heat transfer structure supports one or more of the mesh, a film or sheet-like reactant, or one or more of the porous structure reactants, The one or more mesh, film or sheet-like reactants are provided in the reactor so as to form a zigzag shape across the sidewalls of the reactor, A plurality of the mesh, film or sheet-shaped reactants are arranged at predetermined intervals so as to cross between the side walls of the reactor, or are provided in the reactor, or A reactant of the one or more porous structures is
  • a heating device A reactor to which deuterium gas or light hydrogen gas is supplied, A heat transfer structure that is in contact with, connected to, or integrally formed with the inner surface of the reaction furnace; A reactant made of a metal or an alloy, which is in contact with, connected to or integrally formed with the heat transfer structure; A heat source for heating the reactants; Including The heat transfer structure, A base plate located at the bottom of the reactor, One or more side plates located near the side wall of the reactor; A pair of side plates respectively located near the side wall of the reaction furnace, A combination of the base plate and the one or more side plates located closer to the side wall of the reactor, A combination of the base plate and the pair of side plates respectively located near the side wall of the reaction furnace, A combination of the base plate and a plurality of flat plates provided at predetermined intervals on the base plate, or a combination of the base plate and a plurality of support members provided in an array on the base plate.
  • the reactant is formed into a mesh, a film or a sheet, or is formed into a porous structure
  • the mesh, film or sheet-like reactant is placed on the base plate of the heat transfer structure in multiple layers at predetermined intervals, or the one or more side plates or the side plates located near the side wall of the reaction furnace
  • the reactants of the porous structure are placed on the base plate of the heat transfer structure or are positioned near the side wall of the reaction furnace. Supported by more than one side plate, Heating device.
  • a heating device A reactor to which deuterium gas or light hydrogen gas is supplied, A heat transfer structure that is in contact with, connected to, or integrally formed with the inner surface of the reaction furnace; A reactant made of a metal or an alloy, which is in contact with, connected to or integrally formed with the heat transfer structure; A heat source for heating the reactants; Including The heat transfer structure, A combination of a base plate located at the bottom of the reactor and a porous structure placed on the base plate, A combination of at least one side plate located near the side wall of the reaction furnace and the porous structure connected to one surface of the at least one side plate; Combination of the base plate and a three-dimensional lattice-shaped structure placed on the base plate, A combination of the base plate and a plurality of flat plates provided at predetermined intervals on the base plate, or a combination of the base plate and a plurality of support members provided in an array on the base plate.
  • the reactant is formed as a film covering part or all of the
  • a reactant made of thin Ni in a mesh form is placed in contact with the heat transfer structure so as to be entangled or arranged at regular intervals, and is assembled to form a square.
  • the reactor has a length of 20 times or more the length of one side of the square of the bottom surface and has a width equal to the height of the inner surface of the square pillar. Since the reactants can be accommodated in this reactor as a thin Ni mesh having a very large surface area, the total amount of the reactants can be increased.
  • the heat transfer structure also plays a role as a framework for stably arranging and holding the reactants having an enormous length and surface area in an orderly and space-efficient manner without overlapping or sticking.
  • a large contact area can be secured between the heat transfer structure and the reactant, and the heat transfer efficiency can be increased.
  • heating is performed by using a heat source from the outside of the reactor at a portion in contact with the heat transfer structure on one or more surfaces of the reactor, or a heat source is embedded in those surfaces and heated.
  • the entire reactant is uniformly and quickly heated to a high temperature via the heat transfer structure.
  • a heat source such as an electric resistor may be embedded in the heat transfer structure or placed on the surface of the heat transfer structure so that the heat is generated by energizing the heat source from outside the reaction furnace, so that the entire reaction body is uniformly and promptly heated. Heated to a high temperature. Further, the reactant heated to a high temperature reacts with deuterium gas or light hydrogen gas sealed in the reaction furnace to generate large heat, and the heat obtained here has a sufficient contact area. To the heat transfer structure, and can be efficiently removed and recovered outside the reactor via one or more surfaces of the reactor.
  • a metal such as Group 10 element (Ni, Pd, Pt) or Ti or an alloy composed of one or more of these metals is preferable, but a metal or alloy other than these may be used.
  • the reactant in the form of a mesh, film or sheet may include a film or sheet in which a large number of holes are formed regularly or randomly.
  • the porous structure may be one in which a large number of depressions are formed on at least the surface of the structure. In addition to the depressions on the surface of the structure, a large number of holes communicating with the depressions on the surface are provided inside the structure. It may include those that are present (eg, spongy structures).
  • the plurality of flat plates provided at predetermined intervals on the base plate may include a plate having a large number of slits or holes or a flat member in a mesh shape.
  • each of the plurality of support members provided in an array on the base plate may be a pin or a fin having a circular, elliptical, or polygonal cross section (including a triangle, square, rectangle, and trapezoid). .
  • the first reactant layer receiving heat from the heat source generates heat
  • the heat generated by the first reactant layer is transmitted to the adjacent second reactant layer, and is used for heat generation of the second reactant layer.
  • the heat transfer and the generation of heat are repeated, and the input heat is efficiently used for heat generation, so that the exothermic reaction is more likely to occur as a whole of the reactant, and the amount of generated heat is increased. It becomes possible.
  • the reactant when the reactant has sufficient electric resistance, it is electrically connected to the reactant from outside the reactor while keeping the sealed space, and is supplied with electricity from the outside. By doing so, heating can be performed. If the reactants do not have sufficient electric resistance or if sufficient heating cannot be obtained by energization, use a nichrome wire or the like to knit or sandwich this over the entire reactant or create it integrally. Then, the Nichrome wire can be heated from the outside of the reactor to obtain a desired reactant temperature.
  • the reactant has a mesh shape of Ni
  • a nichrome wire is previously knitted at a constant interval when the mesh is formed, or a nichrome wire is arranged at a constant interval between two meshes and sandwiched in a sandwich shape.
  • the heat transfer structure does not heat the reactants, but only transfers the heat generated by the reactants to the outside of the reactor, and the direction of the heat transfer is also one direction, thereby increasing the efficiency. .
  • two or more heat transfer structures are used in combination, one or more of the heat transfer structures being dedicated to heating the reactants, and another one or more heat transfer structures.
  • the heating structure by using a combination of the heating structure and the heat transfer structure so as to thermally sandwich the reactant, the direction of heat flow becomes one. Also, since the roles of heating and heat transfer to the outside of the furnace are clearly shared, the heating structure does not have any connection or contact for heat transfer other than the reactants. All the energy input for the reaction is transferred to the reactants, and both the efficiency of heating the reactants and the efficiency of heat transfer outside the furnace are improved.
  • the plurality of flat plates arranged at predetermined intervals in the heating structure may include a plate having a large number of slits or holes or a flat member in a mesh shape.
  • the film of the reactant is a heat transfer structure, a porous structure, a three-dimensional lattice structure, or a plurality of projecting members provided in an array on a base plate. Adhesion at a part or all of the surface area of the substrate improves the bidirectional heat transfer efficiency.
  • Each of the plurality of projecting members provided in an array on the base plate may be a pin or fin having a circular, elliptical, or polygonal cross section (including a triangle, square, rectangle, and trapezoid).
  • a driving source for applying a physical stimulus including a fluctuating magnetic field, a high-frequency electromagnetic field, ultrasonic vibration or other physical vibration, high voltage, or a combination thereof to the reactant is provided. , May be provided inside the reaction furnace or outside the reaction furnace.
  • the reaction can be efficiently promoted by using both physical stimulation and action and direct and indirect heating of the reactant by a heat source.
  • a fine concavo-convex structure is formed on part or all of the surface of the reactant, and the fine concavo-convex structure includes a Group 10 element (Ni, Pd, Pt), Rh , Co, Cu, Au, and Ag, one or more metals different from the metal of the reactant, the same metal as the metal of the reactant, or different from the metal of the reactant
  • a metal nanoparticle having a particle size of 1 to 1000 nm, consisting of a combination of the same metal as the metal, is formed by adhering or melting and fixing to the surface of the reactant, or by embedding a part of the metal nanoparticle in the reactant. May be.
  • the heat generating device controls the supply of the gas to the reactor and the discharge of the gas from the reactor at a preset time.
  • a timer for generating a signal may be further included.
  • the heating device detects that the concentration of the gas has fallen below a preset threshold, and supplies the gas to the reactor, and supplies the gas from the reactor. It may further comprise a first control unit for generating a control signal for respectively controlling the discharge. Additionally or alternatively, the heating device detects that the temperature in the reactor or the temperature of the reactant has fallen below a preset threshold, and supplies the gas to the reactor. And a second control unit for generating a control signal for controlling the discharge of gas from the reaction furnace.
  • the heating device supplies the gas to the reactor at a preset flow rate and discharges gas from the reactor at the same flow rate as the preset flow rate. May be further included.
  • the heat generating device may include a temperature of the gas in the reactor, a temperature of the reactant, a temperature of the heat transfer structure, a temperature outside the reactor, and a temperature collected outside the reactor.
  • a sensor that measures one or more of the amount of heat generated, or the amount of power generated when generating power using the recovered heat, or the amount of hydrogen generated when generating hydrogen using the recovered heat, Based on the result of comparing the value measured by the sensor with a desired range or a predetermined value, adjust the concentration or flow rate of the gas, or adjust the output of the heat source that heats the reactant, the temperature,
  • the apparatus may further include a feedback control mechanism for maintaining the recovered heat amount, the power generation amount, or the hydrogen generation amount in the desired range or a predetermined value.
  • the reaction product in the closed space of the reactor When the deuterium gas or light hydrogen gas in the closed space of the reactor is consumed as a fuel for the reaction and the reaction product is generated in a gaseous state, eventually all the deuterium gas or light hydrogen gas is consumed and another gas state is produced. Before the inside of the enclosed space is filled with the reaction product, the reaction product in a gaseous state can be automatically taken out and new deuterium gas or light hydrogen gas can be supplied. Thereby, long-term continuous operation of the heating device becomes possible.
  • the reaction in the reactor is controlled by adjusting the concentration of deuterium gas or light hydrogen gas in the closed space, or the reactant is heated by an electric resistor inside or outside the reactor.
  • the output values of the reactor include the gas temperature in the enclosed space inside the reactor, the temperature of the reactants, the temperature of the heat transfer structure, the temperature outside the reactor, the amount of heat recovered outside the reactor, and the heat recovered.
  • power generation when using power generation, hydrogen generation when generating hydrogen, etc. are measured and feedback is used to adjust the concentration of deuterium gas or light hydrogen gas, or to heat the reactants
  • the reactor has a structure for recovering heat from the outer wall on one or more outer walls of the reactor.
  • a collection structure including any one or more of 6) may be further provided.
  • IS Industrial-Sulfer
  • the heating device detects that the temperature of the reactant has exceeded a preset threshold value, and discharges gas from the reactor, or It may further include a third control unit that generates a control signal for controlling supply of outside air or an inert gas to the control unit.
  • the heating device may have a stopper or seal attached to the reactor that melts at a predetermined temperature to release the hermeticity of the reactor. If the reactants in the reactor or the reactor is overheated, the concentration of deuterium gas or light hydrogen gas in the enclosed space is reduced by exhausting, or if the temperature rises, outside air or inert gas is supplied. By breaking the seal in the enclosed space with a plug or seal that eventually melts with heat, it is possible to prevent damage to the apparatus and unexpected gas leakage.
  • the heating device further includes a supply source that supplies heavy water or light water to the reaction furnace in a gas or liquid state as a precursor of deuterium gas or light hydrogen gas. It is good to include.
  • a supply source that supplies heavy water or light water to the reaction furnace in a gas or liquid state as a precursor of deuterium gas or light hydrogen gas. It is good to include.
  • deuterium gas or light hydrogen gas supplied as fuel for the exothermic reaction to the enclosed space of the reactor under specific conditions such as high temperature and low pressure, heavy water or light water may be supplied in a gaseous or liquid state. Since deuterium or deuterium is produced in the reactant part by using these as precursors and the exothermic reaction proceeds, it is possible to use gaseous or liquid heavy water or light water.
  • FIG. 1 It is a schematic plan view which shows an example of a combination of a heat transfer structure and a reactant. It is a perspective view showing an example of a combination of a heat transfer structure and a reactant. It is a perspective view showing an example of a combination of a heat transfer structure and a reactant. It is a perspective view showing an example of a combination of a heat transfer structure and a reactant. It is a perspective view showing an example of a combination of a heat transfer structure and a reactant. It is a perspective view showing an example of a combination of a heat transfer structure and a reactant. It is explanatory drawing which shows an example of the combination of a reactant and an electric resistor. It is explanatory drawing which shows an example of the combination of a reactant and an electric resistor. FIG.
  • FIG. 3 is a diagram illustrating an example of a gas supply / discharge system and a control system of the heating device.
  • FIG. 3 is a diagram illustrating an example of a gas supply / discharge system and a control system of the heating device.
  • FIG. 3 is a diagram illustrating an example of a gas supply / discharge system and a control system of the heating device.
  • FIG. 3 is a diagram illustrating an example of a gas supply / discharge system and a control system of the heating device.
  • It is a perspective view showing an example of a heating device including a heat recovery structure.
  • It is a perspective view showing an example of a heating device including a heat recovery structure.
  • It is a perspective view showing an example of a heating device including a heat recovery structure.
  • It is a perspective view showing an example of a heating device including a heat recovery structure.
  • FIG. 1A is an external view of one embodiment of the reactor 1 of the apparatus of the present invention having a rectangular parallelepiped shape, and the upper surface 4 serving also as a lid of the closed space 12 is closed. Although two of the four side surfaces 3 are drawn, the bottom surface 2 is indicated by a dotted line.
  • Eight high-precision bolts 5 are arranged on the upper surface 4 to maintain the sealed space 12 of the reaction furnace 1 from low pressure close to vacuum to high pressure greatly exceeding normal pressure.
  • the exhaust path 8 and the intake path 9 communicate with each other, a plurality of thermocouples 7 for measuring the temperature inside the enclosed space are provided at the center, and positive and negative electrodes for supplying power to a heat source such as electric resistance in the enclosed space 12 are provided at the back.
  • An electrode 6 is provided.
  • the shape of the reaction furnace 1 is not limited to a rectangular parallelepiped, and may be a cylindrical shape, a polygonal column shape, or a curved surface.
  • FIG. 1B (a) shows a state in which the upper surface 4 of the reaction furnace 1 is closed, and a heat transfer structure 20 is accommodated in a closed space 12, and as an example, a heat sink shape and 20 fins 24 are provided.
  • a heat transfer structure 20 is accommodated in a closed space 12, and as an example, a heat sink shape and 20 fins 24 are provided.
  • the plurality of reactants 30 having a mesh structure are provided side by side at predetermined intervals in the lateral direction so as to cross between the side walls 13 of the reaction furnace 1.
  • a flange surface 10 for providing a flange structure for keeping airtight together with the upper surface 4 and eight bolt holes 11 for receiving eight bolts are drawn on the upper part of the side surface 3 of the reactor 1.
  • FIG. 2A illustrates an embodiment of the heat transfer structure 20, which is fixed to the inner surface of the bottom surface 2 of the reaction furnace 1 with a screw or the like and is in contact with a large contact area.
  • the lower surface 22 of the base plate 21 is not visible, but 20 fins 24 stand on the upper surface 23.
  • Each of the fins 24 has an electric resistor 28 such as a nichrome wire embedded therein or disposed on one side thereof, and all of them are connected to the electrode 6 on the upper surface 4 so as to receive power.
  • FIG. 2B shows a state in which one reactant 30 having a mesh structure is combined with the heat transfer structure 20 in the shape of a heat sink and folded in a single stroke on the 20 fins 24.
  • the single mesh-structured reactant 30 is provided in the reaction furnace 1 so as to form a zigzag shape crossing between the side walls 13 of the reaction furnace 1.
  • a hydrogen storage metal such as Pd, Cu, or the like is previously attached to or embedded in the entire surface so as to form a concavo-convex structure with a nanoscale size in order to promote the reaction. It is desirable.
  • the upper surface 4 of the reactor 1 is closed, eight bolts 5 are securely fastened to secure the hermetic sealing of the hermetic space 12, and then the hermetic space is removed from the exhaust path 8.
  • the air inside 12 is completely exhausted, and then deuterium gas or light hydrogen gas is supplied from the intake passage 9.
  • the reactant 30 made of one or more metals of the Group 10 elements it may be better for the reactant 30 made of one or more metals of the Group 10 elements to occlude hydrogen. Allow a certain time to elapse.
  • deuterium gas may be supplied at 1/100 atm, and deuterium may be occluded while the temperature naturally drops from 300 ° C. to room temperature.
  • Power can be supplied from the electrode 6 to the electric resistor 28 embedded in each of the 20 fins 24.
  • heat is transferred from the outside of the bottom surface 2 of the reaction furnace 1 to the base plate 21 of the heat transfer structure 20 from the bottom surface 2 using an external heat source, and is further filled into the reaction body 30 and the closed space 12 from the fins 24. Can be transferred to the deuterium gas for heating.
  • the closed space 12 of the reactor 1 is filled with high-purity deuterium gas in order to obtain an exothermic reaction.
  • the reactant 30 is Ni and a nano-scale fine uneven structure of Pd is formed on the surface thereof, the reactant 30 can be maintained at, for example, 100 ° C. or more at 1/100 atm and preferably 500 ° C. or more. And a large heat is obtained.
  • a necessary voltage and current are supplied from the electrode 6 to all the electric resistors 28 embedded in each of the 20 fins 24 of the heat transfer structure 20.
  • the power supply conditions from the electrode 6 are adjusted so that desired heat generation and recovery can be performed.
  • the reactant 30 has, for example, a mesh structure of a fine wire having a wire diameter of 50 ⁇ m, and is folded and stored along the fins 24 of the heat transfer structure 20 at a high density. Upon contact with the gas, the reaction is further promoted by the nano-scale fine uneven structure of Pd to generate a large amount of heat. Here, the generated heat is transmitted to the base plate 21 via the fins 24 of the heat transfer structure 20, and further transferred from the lower surface 22 to the outside of the reactor via the bottom surface 2 of the reactor 1. Can be recovered. Therefore, as the material of the heat transfer structure 20 and the bottom surface 2 of the reaction furnace 1, it is desirable to use a material having high heat conductivity and excellent heat resistance, such as Cu.
  • the electric resistor 28 is desirably provided on the fin 24 in the heat transfer structure 20, but may be provided in the base plate 21 when this is difficult. If it is difficult to provide the heat transfer structure, the heat transfer structure may be provided in the bottom surface 2 of the reaction furnace 1 or an external heat source may be provided outside the bottom surface 2.
  • FIG. 2C is an example of another embodiment of the heat generating device.
  • the base plate 21 of the heat transfer structure 20 is integrated with and shared with the bottom surface 2 of the reactor 1. Therefore, a flange surface 10 is provided both below the side surface 3 of the reaction furnace 1 and around the bottom surface 2, and eight bolts 5 for connecting the side surface 3 and the bottom surface 2 to keep the hermetically sealed space 12 tight. Are provided at the lower portion of the side surface 3, and eight bolt holes 11 are provided around the bottom surface 2.
  • Thirteen fins 24 stand on the base plate 21, and twelve fins 224 from the base plate 221 of the heating structure 200 are engaged from above to fill the space between the fins.
  • four square ceramic heaters 230 as electric resistors are embedded in the base plate 221.
  • FIG. 2D shows an example of a combination of a heat transfer structure and a reactant, in which a heating structure 200 and a heat transfer structure 20, and a number of thin meshes sandwiched between their fins 224 and 24. Is a cross-sectional view in which a reactant 30 is drawn, and an intermediate portion in a vertical direction is omitted. At this time, a large number of thin mesh-shaped reactants 30 are arranged in the reactor 1 at predetermined horizontal intervals so as to cross between the side walls 13 of the reactor 1.
  • the heating structure 200 is only in thermal contact with the reactant 30 via the fin 224.
  • power is supplied to the four ceramic heaters 230, and therefore, there is only an electrical connection with the electrode 6, and there is no contact with any other structure of the reaction furnace 1. Absent.
  • the ceramic heater 230 which is a heat source, receives power from the electrode 6 and is heated to a maximum of 1000 ° C., which is transferred from the base plate 221 to only the twelve fins 224 and further disposed on one of the fins 224 on the left and right. In addition, heat is transferred only to the 20 thin mesh-like reactants 30 that are adjacent to and in contact with each other.
  • the heat transferred to the left and right reactants 30 that are in contact with both sides of the fins 224 is transferred to the adjacent contacting reactants 30, and is sandwiched between the fins 224 and the fins 24.
  • the heated reactant 30 reacts with deuterium gas or light hydrogen gas entering the mesh-shaped gap to generate more heat. This heat is transferred to the thirteen fins 24, and the base plate 21 also serves as the bottom surface 2 of the reactor 1, so that heat can be efficiently recovered outside the reactor 1.
  • FIG. 3A shows an example of a combination of a heat transfer structure and a reactant.
  • a large number of thin reactants 30 stand in an array on a base plate 21.
  • FIGS. 3A (a) and 3 (b) show examples of two forms (FIGS. 3A (a) and 3 (b)) of how they are entangled and combined with a columnar structure (support member) 25.
  • FIG. 3A (a) and (b) the reactants 30 are stably arranged without contact with each other, and the contact with many columnar structures 25 can be secured.
  • the method of causing the reactant 30 to be entangled with the columnar structure 25 is not limited to these two forms such as the interval, path, and direction.
  • FIGS. 3B and 3C show an example of a combination of a heat transfer structure and a reactant, respectively.
  • the heat transfer structure 20 has a heatsink-like structure
  • the fins 24 standing on the base plate 21 with the reactant 30 are shown.
  • two examples of how they are entangled and combined are shown in a schematic plan view.
  • FIG. 3B has the same form as FIG. 2B, and is suitable for accommodating a single long strip-shaped reactant 30.
  • one reactant 30 having a mesh structure reacts so as to form a zigzag shape crossing between the side walls 13 of the reactor 1. It will be provided in the furnace 1.
  • the reactant may be formed in a film or a sheet. Further, the film or sheet may have a porous structure.
  • FIG. 3C adjusts the size of the reactant 30 (the area and the width of the reactant 30 obtained by laminating a plurality of meshes, films or sheet-like reactants) so as to have a width substantially equal to the width of the fin 24.
  • a large number of such fins 24 are closely arranged between the fins 24 and combined, and a larger surface area can be secured and stable holding can be achieved.
  • FIG. 3D shows still another example of the combination of the heat transfer structure and the reactant.
  • the heat transfer structure 20 is simplified in its structure, and has a base plate 21 and a side plate 27 facing a side plate 26 standing on both sides thereof. This is a three-sided configuration.
  • the reactant 36 is thick at both ends, and is held by the side plates 26 and 27 so that a planar structure is formed between the side plates 26 and 27 with a certain tension. Is kept.
  • the reactants 36 are all adjacent and dense and have a certain mechanical strength as a whole, the base plate 21, the side plate 26, and the One of 27 may be omitted.
  • the heating of the reactant 36 is limited to only three sides that are in contact with the base plate 21 and the side plates 26 and 27. Therefore, an electric resistor such as a nichrome wire is woven into the reactant 36. May be used for heating.
  • the base plate 21 may be omitted, and a configuration having two surfaces of only the side plates 26 and 27 may be adopted. Further, one or two other side plates adjacent to the side plates 26 and 27 may be added to make a configuration of four to five surfaces in total.
  • FIG. 3E shows still another example of the combination of the heat transfer structure and the reactant, in which the reactant 37 has a certain mechanical strength, so that it is supported or pulled by another structure. It is possible to maintain a posture independently without any trouble.
  • the reactants 37 when all the reactants 37 are adjacent and dense, the reactants 37 have a certain mechanical strength as a whole, so that they can maintain their posture independently.
  • the structure of the heat transfer structure 20 can be further simplified, and the reactant 37 can be arranged in the form of a heat sink instead of the fin 24 on the upper surface 23 of the base plate 21 alone.
  • the heating of the reactant 37 is performed by supplying power from the electrode 6 to the electric resistor 38 in the reactant woven into the reactant 37 as in the example shown in FIG. 2A described above. All reactants 37 are heated to a high temperature.
  • the heat generated by the reaction of the reactant 37 with the deuterium gas or light hydrogen gas in the closed space 12 is transferred from the reactant 37 to the base plate 21, and furthermore, from the lower surface 22 to the inner wall surface of the reactor 1. It is possible to take it out of the reaction furnace and collect it. In addition, even when the electric resistor 38 is not provided, the reactant 37 can obtain the heating through the base plate 21 of the heat transfer structure 20 and proceed with the reaction.
  • 3F and 3G show still another example of the combination of the heat transfer structure and the reactant, respectively.
  • the cubic structure 29 having a very fine porous spongy structure constitutes the heat transfer structure 20 together with the base plate 21.
  • the cubic structure 29 has a very large surface area, and a film of the reactant 39 is fixed very thinly on the surface of the cubic structure 29 by plating or the like to uniformly cover the entire surface of the cubic structure.
  • the base plate 21 of the heat transfer structure 20 receives heat from an external heat source of the reactor 1, from a heat source embedded in the reactor wall, or from an electric resistor 28 embedded in the base plate 21. Heat is transferred to the cubic structure 29, and the plated reactant 39 which is in close contact with the entire surface thereof is heated.
  • the heat generated by the reactant 39 reacting with the deuterium gas or light hydrogen gas in the closed space 12 is transferred from the reactant 39 to the cubic structure 29 of the heat transfer structure 20, and subsequently the base plate thereof
  • the heat is transferred to the reactor 21 and is taken out from the lower surface 22 of the reactor 1 via the inner wall surface of the reactor 1 outside the reactor to be recovered.
  • the reactant 40 is fixed very thinly to the surface of the fins 24 of the heat sink structure 20 by plating or the like, and uniformly covers the entire surface of all 20 fins 24. ing.
  • the heating of the reactant 40 uses the electric resistor 28 embedded inside the fin 24, but the heating, heat transfer, and recovery of the generated heat are performed in the same manner as in FIG. 3F described above. Is also good.
  • the shape of the heat transfer structure 20 may be a sword-like shape in which a large number of pins having a circular cross section are placed in an array on the base plate, or another shape having a large surface area.
  • FIGS. 4A and 4B show examples of combinations of reactants and electric resistors, in which a reactant 30 having a mesh structure and an electric resistor 38 made of a nichrome wire or the like are illustrated.
  • the electric resistors 38 are woven at regular intervals in the mesh structure of the reactant 30.
  • the intervals and the weaving pattern need not be this method.
  • the electric resistor 38 is sandwiched and fixed between the two reactants 30.
  • the reactant 30 and the electric resistor 38 are in sufficient contact, and the electric resistor 38 can be efficiently heated to a high temperature by receiving power from the electrode 6. is there.
  • the heat transfer structure can be specialized in the role of efficiently transferring the generated heat to the outside of the reactor efficiently. it can.
  • the drive source for applying these physical stimuli may be a magnetic field generator, a high-frequency electromagnetic field generator, a vibration generator (eg, an ultrasonic generator having a piezo element), a high voltage generator, or the like.
  • the ceramic heater 230 in the example shown in FIGS. 2C and 2D may be configured to have the same shape as that of the ceramic heater 230, and may be arranged inside the reaction furnace or outside the reaction furnace. When used in combination with heating of the reactant, especially when the electrical resistor 38 is brought into direct contact with the reactant 30, the generated heat is efficiently transferred to the outside of the reactor by exclusively using the heat transfer structure. You can specialize in the role you do.
  • FIGS. 5A to 5D show examples of a gas supply / discharge system and a control system of the heating device, respectively.
  • the heat generating device of the present invention since the exothermic reaction proceeds with high efficiency, deuterium gas or light hydrogen gas as a fuel is consumed in a short period of time, and the products of the reaction are also in a gaseous state in the closed space of the reactor. Will be stored. In order to operate the device continuously for a long period of time, an automatic ventilation mechanism is required.
  • 5A to 5D show examples of a gas supply / discharge system and a control system for implementing such an automatic ventilation mechanism, respectively.
  • FIG. 5A shows that the reaction product gas is supplied from the reaction furnace 1 through the exhaust path 8 and the exhaust pipe 55 at a certain time interval or at a predetermined date and time by the setting of the timer 90, and the exhaust valve built-in pump 61 is controlled by the control line 91 To exhaust the gas from the reaction furnace 1 and discharge it from the exhaust pipe 63 with an exhaust valve to the outside air, or collect it in a separately prepared tank (not shown).
  • the pump 60 with a built-in intake valve is started by the control line 92 from the timer 90, and the deuterium connected to the tip of the intake pipe 62 with the intake valve is started.
  • deuterium gas or light hydrogen gas is sucked from a tank 70 for storing light hydrogen gas at a high pressure to a set amount or a set pressure of the suction system gas pressure measuring device 50, and the reaction furnace is passed through a suction pipe 54 and a suction path 9. This is supplied to one closed space 12.
  • FIG. 5B shows a control line 57 for exhausting when the exhaust gas pressure measuring device 53 built in the deuterium / light hydrogen concentration measuring device detects that the concentration of deuterium or light hydrogen gas has dropped below the set reference value.
  • the pump 61 with a built-in valve is started, and the exhaust from the reactor 1 is performed in the same manner as in the example shown in FIG. 5A.
  • the intake valve built-in pump 60 is started by the control line 56, and deuterium or light hydrogen gas is supplied to the reaction furnace 1 as in the example shown in FIG. 5A.
  • the control line 58 monitors the concentration of deuterium / light hydrogen in the tank 70 by the intake gas pressure measuring device 52 inside the deuterium / light hydrogen concentration measuring device, and if necessary, the pump 60 with a built-in intake valve. To warn of tank leaks and low fuel levels.
  • FIG. 5C shows one of a plurality of thermocouples 7 in the reactor 1, one of which has a thermocouple wiring 83 connected to a temperature measuring element of the reactant, and the other has deuterium or deuterium in the enclosed space 12.
  • Thermocouple wires 84 are connected to the temperature monitor 80, respectively, which are connected to those for measuring the temperature of the gas-product gas mixture.
  • the exhaust valve built-in pump 61 is started by the control line 82, and the exhaust from the reaction furnace 1 is performed in the same manner as the example shown in FIG. 5A.
  • the intake valve built-in pump 60 is started by the control line 81 to supply deuterium or light hydrogen to the reaction furnace 1 in the same manner as in the example shown in FIG.
  • FIG. 5D shows that the concentration of deuterium or deuterium in the sealed space of the reactor is kept almost constant by continuously performing the same amount of exhaust and intake little by little without relying on the values from the timer or the measuring instrument. This is an example of implementing a mechanism. However, it should be noted that a certain concentration of deuterium gas or light hydrogen gas may be emitted as waste gas during exhaust.
  • FIGS. 6A to 6C each show an example of a heat generating device including a heat recovery structure.
  • the reactor 1 is turned sideways and the bottom 2 is drawn so as to face the front.
  • the heat transfer structure 20 is in contact with the inner wall, and the heat sink structure is formed by the heat dissipating fins 100 outside the reactor on the bottom surface 2 which is the outer wall thereof.
  • the heat is diffused from the fins 100 to the outside of the reaction furnace and can be used for purposes such as heating.
  • a heat pipe structure may be used instead of the heat sink structure, or a heat sink structure and a heat pipe structure may be used together.
  • the flowing water path 110 is embedded in the bottom surface 2, and water can be injected from the water inlet 111 and hot water or steam can be recovered from the drain 112. Other refrigerants may be used instead of water. Further, a structure for driving the gas turbine by the recovered steam may be added to the example shown in FIG. 6B.
  • thermoelectric element surface 120 is formed on the bottom surface 2, and a thermoelectric (Seebeck) element is embedded in the thermoelectric element surface 120.
  • An electromotive force is generated due to a temperature difference between the bottom surface 2 and the outside of the reactor, and this is recovered as electric power at electric output terminals 121 and 122.
  • the heat recovery structure may be a structure for mounting a thermochemical hydrogen production method in which water is decomposed by using heat, for example, a structure for mounting an IS (Iodine-Sulfer) process for generating hydrogen from water. May be.
  • the gas supply / discharge system and control system of the heating device may be used for automatic control as follows.
  • One of the thermocouples 7 for measuring the gas temperature in the closed space 12 of the reactor 1 one of the thermocouples 7 for measuring the temperature of the reactant 30, and the thermocouple 7 for measuring the temperature of the heat transfer structure 20.
  • the temperature of each of them is measured by a temperature monitor 80 via thermocouple wires 83 and 84.
  • the pump with a built-in intake valve is controlled by using the control lines 81 and 82 so that these temperatures are maintained within a predetermined constant temperature range or value.
  • This control can be performed by applying feedback to the pump 60 and the pump 61 with a built-in exhaust valve to adjust the concentration of deuterium gas or light hydrogen gas in the sealed space 12.
  • the gas supply / discharge system and control system of the heating device shown in FIG. 5C may be further used for automatic control as follows.
  • the pump 61 with a built-in exhaust valve is activated by the control line 82 to activate the exhaust path.
  • the reaction may be suppressed by exhausting deuterium gas or light hydrogen gas from the sealed space 12 through 8 and reducing the concentration thereof.
  • a pump with a built-in intake valve is provided by the control line 81 from the temperature monitor 80.

Abstract

発熱装置は、重水素ガスまたは軽水素ガスが供給される反応炉内面に接触、接続または一体形成される伝熱構造体と、伝熱構造体に接触、接続または一体形成される、金属または合金からなる反応体を含む。反応体は、メッシュ、フィルムもしくはシート状に形成されるか、または多孔質構造体に形成されている。伝熱構造体は、1枚以上のメッシュ、フィルムもしくはシート状の反応体、または1つ以上の多孔質構造体の反応体を支持する。メッシュ、フィルムもしくはシート状の反応体が、反応炉の側壁間を横切るジグザグ状となるように、反応炉の中に設けられているか、複数枚のメッシュ、フィルムもしくはシート状の反応体が、反応炉の側壁間を横切るように、所定間隔に並べて、反応炉の中に設けられている。または多孔質構造体の反応体が反応炉の中に設けられている。

Description

発熱装置
 本発明は発熱装置に関し、特に、重水素ガスまたは軽水素ガスが供給される反応炉内において、より効率的かつ継続的に熱を生成し、より効率的に反応炉外部に熱を取り出すことのできる発熱装置に関するものである。
 低エネルギー核反応などと呼ばれる発熱反応において、第10族元素(特にNi)等の金属を反応体とし、多くの場合ではさらにPdやCuを反応促進体として用いることで、重水素ガスまたは軽水素ガスを燃料に過剰熱の生成が得られることが報告されている。また、熱を効率よく生成させるためには、反応体を加熱することが必要であることも明らかになっている。(例えば、特許文献1、非特許文献1、非特許文献2)。
国際公開第2015/008859号公報
Takehiko Itoh et al., J. Condensed Matter Nucl. Sci. 24 (2017) 179-190 Tadahiko Mizuno, J. Condensed Matter Nucl. Sci. 25 (2017) 1-25
 第10族元素等の金属、特にNiを反応体とし、多くの場合にPdやCuを反応促進体として用い、重水素ガスまたは軽水素ガスを燃料として、低エネルギー核反応などと呼ばれる過剰熱の生成を得る場合には、反応体を高温にすればするほどより大きな熱の生成が得られることがわかっている。
 しかしながら、これまでに報告されている従来技術による発熱装置では、反応体を十分高温にすることができない、反応体の体積や表面積が反応炉に対して小さ過ぎる等のために、十分に大きな熱の生成が得られていない。また生成された熱についても、効率的に反応炉外部に取り出せてはいない。
 したがって、本発明は、上記の問題点に鑑み、大きな熱をより効率的にかつ継続的に生成し、またそれをより効率的に反応炉外部に取り出すことを可能とする発熱装置を提供することを目的とする。
  上記した課題を解決するために、本発明は以下の構成を提供する。
 発熱装置であって、
 重水素ガスまたは軽水素ガスが供給される反応炉と、
 前記反応炉内面に接触、接続または一体形成される伝熱構造体と、
 前記伝熱構造体に接触、接続または一体形成される、金属または合金からなる反応体と、
 前記反応体を加熱する熱源と、
 を含み、
 前記反応体は、メッシュ、フィルムもしくはシート状に形成されるか、または多孔質構造体に形成され、
 前記伝熱構造体は、1枚以上の前記メッシュ、フィルムもしくはシート状の反応体、または1つ以上の前記多孔質構造体の反応体を支持し、
 前記1枚以上の前記メッシュ、フィルムもしくはシート状の反応体が、前記反応炉の側壁間を横切るジグザグ状となるように、前記反応炉の中に設けられているか、
 複数枚の前記メッシュ、フィルムもしくはシート状の反応体が、前記反応炉の側壁間を横切るように、所定間隔に並べて、前記反応炉の中に設けられているか、または、
 前記1つ以上の前記多孔質構造体の反応体が前記反応炉の中に設けられている、
 発熱装置。
  また、本発明は、以下の構成を提供してよい。
 発熱装置であって、
 重水素ガスまたは軽水素ガスが供給される反応炉と、
 前記反応炉内面に接触、接続または一体形成される伝熱構造体と、
 前記伝熱構造体に接触、接続または一体形成される、金属または合金からなる反応体と、
 前記反応体を加熱する熱源と、
 を含み、
 前記伝熱構造体は、
  前記反応炉の底部に位置する基底板、
  前記反応炉の側壁寄りに位置する1枚以上の側板、
  前記反応炉の前記側壁寄りにそれぞれ位置する一対の側板、
  前記基底板と前記反応炉の前記側壁寄りに位置する前記1枚以上の側板との組み合わせ、
  前記基底板と前記反応炉の前記側壁寄りにそれぞれ位置する前記一対の側板との組み合わせ、
  前記基底板と前記基底板上に所定間隔で設けられた複数の平板との組み合わせ、または
  前記基底板と前記基底板上にアレイ状に設けられた複数の支持部材との組み合わせ
 のいずれかを含み、
 前記反応体は、メッシュ、フィルムもしくはシート状に形成されるか、または多孔質構造体に形成され、
 前記メッシュ、フィルムもしくはシート状の反応体が、前記伝熱構造体の前記基底板上に所定間隔で多層に置かれるか、もしくは前記反応炉の側壁寄りに位置する前記1枚以上の側板もしくは前記一対の側板によって所定間隔で多層に支持され、または
 前記多孔質構造体の反応体が、前記伝熱構造体の前記基底板上に置かれるか、もしくは前記反応炉の側壁寄りに位置する前記1枚以上の側板によって支持されている、
 発熱装置。
  また、本発明は、以下の構成を提供してよい。
 発熱装置であって、
 重水素ガスまたは軽水素ガスが供給される反応炉と、
 前記反応炉内面に接触、接続または一体形成される伝熱構造体と、
 前記伝熱構造体に接触、接続または一体形成される、金属または合金からなる反応体と、
 前記反応体を加熱する熱源と、
 を含み、
 前記伝熱構造体は、
  前記反応炉の底部に位置する基底板と前記基底板上に置かれる多孔質構造体との組み合わせ、
  前記反応炉の側壁寄りに位置する1枚以上の側板と、前記1枚以上の側板の一方の面に接続される前記多孔質構造体との組み合わせ、
  前記基底板と前記基底板上に置かれる立体格子状構造体との組みわせ、
  前記基底板と前記基底板上に所定間隔で設けられた複数の平板との組み合わせ、または
  前記基底板と前記基底板上にアレイ状に設けられた複数の支持部材との組み合わせ
 のいずれかを含み、
 前記反応体は、前記伝熱構造体の表面(前記多孔質構造体にあっては、構造体内部孔の表面を含む。)の一部または全部を覆う膜として形成されている、
 発熱装置。
 本発明の1つの局面によれば、例えば、メッシュ状の薄いNiよりなる反応体をこの伝熱構造体に一定間隔で絡ませるか沿わせるように接触させて配置し、組み付けることにより、正方形の底面を持つ四角柱型の反応炉であれば、底面の正方形の一辺の長さの20倍以上の長さを有し、幅が四角柱の内面の高さの反応体となる。非常に大きな表面積をもつ薄いNiメッシュとして、反応体をこの反応炉内に収納することが出来るため、反応体の総量を大きくすることができる。その際、膨大な長さと表面積を持つ反応体を、整然と空間効率よく、そして重なったり固着することなく安定して配置、保持するための骨格としても、この伝熱構造体は役割を果たす。また、伝熱構造体と反応体の間でも大きな接触面積を確保することが出来て、伝熱の効率を高められる。この結果、反応炉の1つ以上の面で伝熱構造体と接している部分で、反応炉の外部から熱源を用いて加熱し、あるいはそれらの面に熱源を埋め込んでおいてこれを加熱することで、伝熱構造体を介して反応体全体が一様に、速やかに高温加熱される。または、伝熱構造体に電気抵抗体などの熱源を埋め込んでおくか、その表面に配置するなどして、これを反応炉外から通電して発熱させることでも、反応体全体が一様に速やかに高温加熱される。更には、高温に加熱された反応体は、反応炉内に密閉された重水素ガスまたは軽水素ガスと反応して大きな熱を生成するが、ここで得られた熱についても、十分な接触面積を持って伝熱構造体に伝えられ、反応炉の1つ以上の面を介して反応炉外部で効率的に取り出して回収することが可能である。
 反応体の材料としては、第10族元素(Ni、Pd、Pt)またはTiなどの金属またはこれら金属の1つ以上からなる合金がよいが、これら以外の金属または合金であってよい。メッシュ、フィルムもしくはシート状の反応体は、多数の孔が規則的にもしくはランダムに形成されたフィルムもしくはシートを含んでよい。また、多孔質構造体は、構造体の少なくとも表面にくぼみが多数形成されたものであればよく、構造体の表面のくぼみに加えて当該表面のくぼみと通じている孔が構造体内部に多数存在するもの(例えば海綿状構造)を含んでよい。さらに、基底板上に所定間隔で設けられる複数の平板は、多数のスリットもしくは孔が形成された板またはメッシュ状の平たい部材を含んでよい。また、基底板上にアレイ状に設けられた複数の支持部材の各々は、断面が円形、楕円形、もしくは多角形(三角形、正方形、長方形、台形を含む。)のピンもしくはフィンであってよい。
 本発明の1つの局面によれば、メッシュ、フィルムもしくはシート状の反応体の3層以上がラミネートされているので、熱源から熱を受けた1つ目の反応体の層が発熱をし、熱源からの熱と当該1つ目の反応体の層が生成した熱が、隣接する2つ目の反応体の層に伝わり、当該2つ目の反応体の層の発熱に利用される。このようにして伝熱と熱の生成が繰り返されて、入力された熱が効率よく発熱に利用されるので、反応体全体として、発熱反応がより生じ易くなり、生成される熱量をより大きくすることが可能となる。
 また、本発明の1つの局面によれば、反応体に十分な電気抵抗が備わっている場合には、これを反応炉外部から密閉空間を保持したままで電気的に接続して、外部から通電することで加熱を行える。反応体が十分な電気抵抗を有していない場合や、通電により十分な加熱が得られない場合には、ニクロム線などを用いて、これを反応体全体に編み込んだり挟み込んだり一体生成することで、このニクロム線を反応炉外部から通電して、所望の反応体温度への加熱を得ることが可能となる。例えば、反応体がNiによるメッシュ形状である場合には、メッシュ形成時に一定間隔でニクロム線を予め編み込むか、2枚のメッシュの間にニクロム線を一定間隔で配置してこれをサンドイッチ状に挟み込んで固定する方法が考えられる。この場合、伝熱構造体は反応体の加熱は行わず、専ら反応体が生成した発熱を反応炉外に伝熱することになり、伝熱の方向も一方向となってその効率が高められる。
 さらに、本発明の1つの局面によれば、伝熱構造体を二つ以上で組み合わせて使用し、そのうちの1つ以上の伝熱構造体を反応体の加熱専用とし、また別の1つ以上の伝熱構造体を生成された反応体の発熱を反応炉外にて取り出すための伝熱の役割に特化させることで、それらの伝熱構造体では熱の流れの方向が1つとなり、また加熱と炉外への伝熱の役割が明確に分担されることで、それぞれの効率が高められる。
 また、本発明の1つの局面によれば、この加熱用構造体と、伝熱構造体とで反応体を熱的に挟み込む形で組み合わせて使用することで、熱の流れの方向が一つとなり、また加熱と炉外への伝熱の役割が明確に分担されることで、更に加熱用構造体は、反応体以外には伝熱を目的とした接続や接触を持たないことから、加熱のためのエネルギーの入力が全て反応体に受け渡されることになり、反応体を加熱する効率と炉外への伝熱の効率がどちらも高められる。加熱用構造体における所定間隔で置かれた複数の平板は、多数のスリットもしくは孔が形成された板またはメッシュ状の平たい部材を含んでよい。
 また、本発明の1つの局面によれば、反応体の膜が、伝熱構造体である多孔質構造体、立体格子状構造体、もしくは基底板上にアレイ状に設けられた複数の突出部材の一部または全表面領域で密着することで、双方向の伝熱効率が高められる。基底板上にアレイ状に設けられた複数の突出部材の各々は、断面が円形、楕円形、もしくは多角形(三角形、正方形、長方形、台形を含む。)のピンもしくはフィンであってよい。
 また、本発明の1つの局面によれば、前記反応体に対して変動磁場、高周波電磁界、超音波振動その他の物理振動、高電圧、もしくはこれらの組み合わせを含む物理刺激を作用させる駆動源が、前記反応炉内部または前記反応炉外部に設けられていてよい。物理的な刺激や作用と、反応体の直接、間接の熱源による加熱を併用して、効率よく反応を進めることができる。
 また、本発明の1つの局面によれば、前記反応体表面の一部または全部に微細な凹凸構造が形成され、前記微細な凹凸構造は、第10族元素(Ni、Pd、Pt)、Rh、Co、Cu、Au、およびAgから選択される1つ以上の金属であって、前記反応体の金属とは異なる金属、前記反応体の金属と同じ金属、もしくは前記反応体の金属とは異なる金属と同じ金属の組み合わせからなる、粒子サイズが1~1000nmの金属ナノ粒子を、前記反応体表面に付着ないし溶融固着させ、もしくは前記金属ナノ粒子の一部を前記反応体内に埋め込ませて形成されていてよい。反応体の表面全体に一様にナノスケールの微細な凹凸構造を形成することで、重水素ガスまたは軽水素ガス中の重水素原子または水素原子が反応体の金属格子構造内に効率的に取り込まれるようになる結果、反応体が熱を生成することを可能としたり、生成される熱を大きくすることを可能とする。
 また、本発明の1つの局面によれば、前記発熱装置は、予め設定された時間に、前記反応炉への前記ガスの供給と、前記反応炉からのガスの排出をそれぞれ制御するための制御信号を発生するタイマーをさらに含んでよい。
 追加的にまたは代替的に、前記発熱装置は、前記ガスの濃度が予め設定された閾値を下回ったことを検知して、前記反応炉への前記ガスの供給と、前記反応炉からのガスの排出をそれぞれ制御するための制御信号を発生する第1の制御ユニットをさらに含んでよい。
 追加的にまたは代替的に、前記発熱装置は、前記反応炉内の温度または前記反応体の温度が予め設定された閾値を下回ったことを検知して、前記反応炉への前記ガスの供給と、前記反応炉からのガスの排出をそれぞれ制御するための制御信号を発生する第2の制御ユニットをさらに含んでよい。
 さらに追加的にまたは代替的に、前記発熱装置は、予め設定された流量で前記反応炉への前記ガスを供給し、前記予め設定された流量と同じ流量で前記反応炉からガスを排出するように調整する、流量調整手段をさらに含んでよい。
 追加的にまたは代替的に、前記発熱装置は、前記反応炉内のガスの温度、前記反応体の温度、前記伝熱構造体の温度、前記反応炉外部の温度、前記反応炉外部で回収される熱量、または前記回収される熱を用いて発電したときの発電量、または前記回収される熱を用いて水素を生成したときの水素生成量のうちの1つ以上を計測するセンサーと、前記センサーで計測された値を所望の範囲もしくは所定の値と比較した結果に基づき、前記ガスの濃度もしく流量を調整し、または前記反応体を加熱する前記熱源の出力を調整し、前記温度、前記回収される熱量、前記発電量、または前記水素生成量を、前記所望の範囲もしくは所定の値に保つフィードバック制御機構と、をさらに含んでよい。
 反応炉の密閉空間内の重水素ガスまたは軽水素ガスが反応の燃料として消費されて反応生成物がガス状態で生じるところ、やがて重水素ガスまたは軽水素ガスが全て消費されて別のガス状態の反応生成物によって密閉空間内が満たされる前に、自動でガス状態の反応生成物を取り出して新たな重水素ガスまたは軽水素ガスを供給することを可能とする。これにより、発熱装置の長期間の連続稼働が可能となる。
 また、本発明の1つの局面によれば、反応炉の反応を密閉空間内の重水素ガスまたは軽水素ガスの濃度を調整することで、あるいは反応体を反応炉内外の電気抵抗体などによる熱源で加熱する、その熱源の出力を調整することで制御して、反応炉の様々な出力値を所望の一定の範囲や一定の値に維持することを可能とする。反応炉の出力値としては、反応炉内の密閉空間のガス温度、反応体の温度、伝熱構造体の温度、反応炉外部の温度、反応炉外部で回収される熱量、回収される熱を用いて発電する場合の発電量、水素を生成する場合の水素生成量などがあり、これらを計測して、フィードバックをかけて重水素ガスまたは軽水素ガス濃度を調整するか、反応体を加熱する熱源の出力を調整するか、その両方を行うことで、反応炉の各種出力値を自動で制御することを可能とする。
 また、本発明の1つの局面によれば、前記反応炉は、前記反応炉の1つ以上の外壁面に、前記外壁面から熱を回収するための構造であって以下の(1)~(6)のいずれか1つ以上を含む回収構造をさらに備えてよい。
 (1)ヒートシンク構造
 (2)ヒートパイプ構造
 (3)熱電素子を組み込んだ発電を行える構造
 (4)水その他の冷媒が通る流路を持つ構造
 (5)水蒸気によりガスタービンを駆動する構造、または
 (6)水素を水から生成するためのIS(Iodine-Sulfer)プロセスを実装する構造。
 これにより、反応炉内の反応体によって生成された熱を、伝熱構造体による伝熱を経て、反応炉の一つ以上の内壁面から、その対応する外壁面に伝熱して反応炉外で取り出す際に、この発熱の回収を効率よく行ったり、発熱を活用する次の工程に効率よく渡すことを可能とする。
 また、本発明の1つの局面によれば、前記発熱装置は、前記反応体の温度が予め設定された閾値を上回ったことを検知して、前記反応炉からのガスの排出、または前記反応炉への外気もしくは不活性ガスの供給を制御するための制御信号を発生する第3の制御ユニットをさらに含むとよい。代替的にまたは追加的に、発熱装置は、所定温度で熱溶解して前記反応炉の気密性を解く栓またはシールが、前記反応炉に取り付けられていてよい。反応炉内の反応体や反応炉が加熱されすぎた場合に、密閉空間内の重水素ガスまたは軽水素ガスの濃度を排気によって下げたり、更に温度が上がる場合には外気や不活性ガスを供給したり、最終的には熱によって溶解する栓またはシールによって、密閉空間内の密閉を破ることで、装置の破損や予想外のガス漏れを防ぐことを可能とする。
 また、本発明の1つの局面によれば、前記発熱装置は、前記反応炉に、重水または軽水を、気体もしくは液体状態で、重水素ガスまたは軽水素ガスの前駆体として供給する供給源をさらに含むとよい。反応炉の密閉空間に発熱反応の燃料として供給する重水素ガスまたは軽水素ガスの代わりに、例えば高温で低圧下といった特定の条件下では、重水または軽水を、気体または液体状態で供給しても、これらを前駆体として反応体部で重水素または軽水素が作られて発熱反応が進められるので、気体または液体状態の重水または軽水を利用することが可能である。
 上記した本発明の目的および利点並びに他の目的および利点は、以下の実施の形態の説明を通じてより明確に理解される。もっとも、以下に記述する実施の形態は例示であって、本発明はこれに限定されるものではない。
発熱装置の一例の外観斜視図である。 発熱装置の一例における部分内部構造を示す斜視図である。 伝熱構造体の一例を示す斜視図である。 伝熱構造体と反応体の組み合わせの一例を示す斜視図である。 発熱装置の一例を示す組立斜視図である。 伝熱構造体と反応体の組み合わせの一例を示す部分断面図である。 伝熱構造体と反応体の組み合わせの一例を示す模式平面図である。 伝熱構造体と反応体の組み合わせの一例を示す模式平面図である。 伝熱構造体と反応体の組み合わせの一例を示す模式平面図である。 伝熱構造体と反応体の組み合わせの一例を示す斜視図である。 伝熱構造体と反応体の組み合わせの一例を示す斜視図である。 伝熱構造体と反応体の組み合わせの一例を示す斜視図である。 伝熱構造体と反応体の組み合わせの一例を示す斜視図である。 反応体と電気抵抗体の組み合わせの一例を示す説明図である。 反応体と電気抵抗体の組み合わせの一例を示す説明図である。 発熱装置のガス供給/排出系と制御システムの一例を示す図である。 発熱装置のガス供給/排出系と制御システムの一例を示す図である。 発熱装置のガス供給/排出系と制御システムの一例を示す図である。 発熱装置のガス供給/排出系と制御システムの一例を示す図である。 熱回収構造を含む発熱装置の一例を示す斜視図である。 熱回収構造を含む発熱装置の一例を示す斜視図である。 熱回収構造を含む発熱装置の一例を示す斜視図である。
 以下、本発明に係る発熱装置の好ましい実施の形態を、図面に基づいて詳細に説明する。
 図1Aは、直方体形状の本発明装置の反応炉1の一形態の外観図であり、密閉空間12の蓋を兼ねる上面4が閉じられている。また、4つの側面3の内の2面が描かれているが、底面2は点線で表されている。
 上面4には、反応炉1の密閉空間12の密閉を真空に近い低圧から常圧を大きく超える高圧でも保つための高精度のボルト5が8個配置されており、手前には密閉空間12と通じる排気経路8と吸気経路9が、中央部には密閉空間内部の温度を計測する熱電対7が複数、そして奥には密閉空間12内の電気抵抗などの熱源に給電するための正負極の電極6が設けられている。なお、反応炉1の形状は直方体に限らず、円柱形状や多角柱形状でもあるいは曲面を有していてもよい。
 図1B(a)は、反応炉1の上面4を閉じた状態を示しており、密閉空間12の中には伝熱構造体20が収められており、一例としてヒートシンク形状でフィン24が20枚の伝熱構造体20に、メッシュ構造の薄い反応体30の上部のみがフィン24に沿って描かれている(図1B(b)参照)。複数枚のメッシュ構造の反応体30は、反応炉1の側壁13の間を横切るように、横方向に所定間隔に並べて設けられている。また、反応炉1の側面3の上部には、上面4と共に密閉を保つためにフランジ構造を提供するフランジ面10と、ボルトを8個受け止めるためにボルト穴11が8個描かれている。
 図2Aは、伝熱構造体20の一形態を例示しており、反応炉1の底面2の内側面にネジ止めなどで固定して大きな接触面積をもって接触している。基底板21の下面22が見えないが、上面23にフィン24が20枚立っている。フィン24にはそれぞれ、ニクロム線などの電気抵抗体28が埋め込まれるか、その片面に配置されており、それらは全て上面4の電極6と接続されて給電を受けられるようになっている。
 図2Bは、ヒートシンク形状の伝熱構造体20にメッシュ構造の1枚の反応体30を、20枚のフィン24に一筆書きのように折りたたむ形で組み合わせた状態を表している。このとき、1枚のメッシュ構造の反応体30は、反応炉1の側壁13の間を横切るジグザグ状となるように、反応炉1の中に設けられることになる。なお、反応体30の表面には、反応促進のため予めPdなどの水素吸蔵金属やCuなどを、ナノスケールの大きさで凹凸構造を形成するように表面全体に付着させたり埋め込んでおいたりすることが望ましい。
 図1A、1B、2A、2Bに示す一形態では、反応炉1の上面4を閉じて、ボルト5の8個をしっかりと締めて密閉空間12の密閉を確保した後、排気経路8から密閉空間12の内部の空気を完全に排気して、次に吸気経路9から重水素ガスまたは軽水素ガスを供給する。この時、発熱反応を得るために、第10族元素のうちの1種以上の金属からなる反応体30が水素を吸蔵しておいた方がよい場合があるが、そのために適した温度と圧力で一定の時間を経過させる。例えば1/100気圧下で重水素ガスを供給し、300℃から室温に自然に温度が降下する中で重水素を吸蔵させる場合があるが、この時の300℃までの加熱は伝熱構造体20のフィン24のそれぞれに埋め込まれた電気抵抗体28に、電極6から給電して行うことができる。あるいは反応炉1の底面2の外側から、外部熱源を使用して熱を底面2から伝熱構造体20の基底板21に伝え、さらにフィン24から反応体30と密閉空間12の中に満たされた重水素ガスに伝えて加熱することができる。
 以上の準備の後、発熱反応を得るために、反応炉1の密閉空間12を高純度の重水素ガスで満たす。反応体30がNiで、その表面にPdのナノスケールの微細凹凸構造が形成されている場合は、例えば1/100気圧で100℃以上で、できれば500℃を超える高温で反応体30を維持できると、大きな発熱を得られる。このための高効率の高温加熱を行うには、伝熱構造体20の20枚のフィン24のそれぞれに埋め込まれた電気抵抗体28の全てに、電極6から必要な電圧と電流を供給しつつ、熱電対7の1つで反応体30の温度を、また他の1つで重水素ガスの温度を、またさらに他の1つで伝熱構造体20の基底板21の温度を確認して、所望の発熱とその回収が行えるように電極6からの給電条件を調整する。
 反応体30は例えば線径が50μmの細線によるメッシュ構造であり、これが高い密度で伝熱構造体20のフィン24に沿って、折りたたまれて収納されているために、非常に大きな表面積で重水素ガスと接触して、更にPdのナノスケールの微細凹凸構造によって促進されて反応が起こり、大きな発熱が生成される。ここで、生成された発熱は伝熱構造体20のフィン24を介して基底板21に伝えられ、更にその下面22から反応炉1の底面2を経由して反応炉外に伝熱され、これを回収することができる。そのため、伝熱構造体20と反応炉1の底面2の材質は、熱伝導性が高く耐熱性にも優れた物質、例えばCuなどを用いることが望ましい。
 なお、電気抵抗体28は、伝熱構造体20の中ではフィン24に設けることが望ましいが、これが難しい場合には基底板21の中に設けてもよい。伝熱構造体に設けることが難しい場合には、反応炉1の底面2の中に設けるか、その外側に外部熱源を設けてもよい。
 図2Cは、発熱装置の他の一形態の例であり、この形態では伝熱構造体20の基底板21が、反応炉1の底面2と一体化されて共有されている。そのため、反応炉1の側面3の下部にも、底面2の周辺にも、フランジ面10が設けられ、側面3と底面2を接続して密閉空間12の密閉を保つためのボルト5の8個が側面3の下部に、またボルト穴11の8個が底面2の周辺に配されている。基底板21にはフィン24が13枚立っており、このフィンの間を上方から、加熱用構造体200の基底板221からフィン224が12枚、埋めるように噛み合わされている。また、基底板221には、電気抵抗体である正方形のセラミックヒーター230が4枚、埋め込まれている。
 図2Dは、伝熱構造体と反応体の組み合わせの一例を示し、加熱用構造体200と伝熱構造体20、そしてそれらのフィン224とフィン24の間に挟まれた、多数の薄いメッシュ状の反応体30が描かれた断面図であり、上下方向の中間部が省かれて描かれている。このとき、多数の薄いメッシュ状の反応体30は、反応炉1の側壁13の間を横切るように、横方向所定間隔に並べて、反応炉1の中に設けられることになる。
 ここで加熱用構造体200は唯一、反応体30とのみフィン224を介して熱的に接触しているだけである。ここでは描かれていないが、それ以外では4枚のセラミックヒーター230への給電を行うため、電極6との電気的な接続があるだけであり、反応炉1の他の構造には一切接していない。熱源であるセラミックヒーター230が電極6からの給電を受けて、最高1000℃まで加熱され、これが基底板221から12枚のフィン224のみに伝熱され、更にフィン224の1枚の左右に配された、互いに隣接して接触している20枚の薄いメッシュ状の反応体30のみに伝熱する。
 フィン224の両側に接する、左右一枚ずつの反応体30に伝えられた熱は、その隣接して接触している反応体30に伝熱され、各フィン224とフィン24の間に挟まれた20枚を次々に伝熱し、この例では全体で20×24=480枚の薄いメッシュ状の反応体30の全てを加熱する。加熱された反応体30は、メッシュ形状の間隙に入り込んでいる重水素ガスまたは軽水素ガスと反応して、より大きな熱を生成する。この発熱は、13枚のフィン24に伝熱され、基底板21が反応炉1の底面2を兼ねているため、効率よく反応炉1の外部で、熱の回収を行うことができる。
 以上のように、4枚のセラミックヒーター230が熱源として発生した熱は、加熱用構造体自体以外は、その全てが反応体30に伝熱され、この加熱に寄与することになる。また、反応体30で生じた熱は、加熱用構造体200が、その先に熱的に接しているものがないために、専ら伝熱構造体20のフィン24を介して、その基底板21でもある反応炉1の底面2に対して一方向に伝熱し、効率良い熱の回収が可能となっている。
 図3Aは、伝熱構造体と反応体の組み合わせの例を示し、伝熱構造体20が剣山状の構造の場合に、反応体30を基底板21の上にアレイ状に立った多数の細い円柱状構造物(支持部材)25に、どのように絡ませて組み合わせるかの二形態(図3A(a)および(b))の例を、模式平面図に表したものである。図3A(a)および(b)のいずれの形態の場合も、反応体30同士が接触したりせずに、安定して配置され、多くの円柱構造物25との接触を確保することができている。但し、円柱構造物25に反応体30を絡ませる方法は、その間隔や経路、方向などこの二形態には限定されない。
 図3Bおよび図3Cは、伝熱構造体と反応体の組み合わせの一例をそれぞれ示し、伝熱構造体20がヒートシンク状の構造の場合に、反応体30を基底板21の上に立ったフィン24に、どのように絡ませて組み合わせるかの二形態の例を、模式平面図に表したものである。
 図3Bは、図2Bと同じ形態であり、一枚の長い帯状の構造の反応体30を収納するのに適している。図3Aおよび図3Bに示す例においては、図2Bの例のときと同様に、1枚のメッシュ構造の反応体30は、反応炉1の側壁13の間を横切るジグザグ状となるように、反応炉1の中に設けられることになる。なお、反応体は、フィルムもしくはシート状に形成されてもよい。また、フィルムもしくはシートが多孔質構造を有していてもよい。
 図3Cは、フィン24の幅と同じ程度の幅を持つように反応体30の大きさ(複数枚のメッシュ、フィルムもしくはシート状の反応体をラミネートした反応体30の面積と幅)を調整して用意できる場合、これをフィン24の間に密に隣接させて多数を配置して組み合わせた例を示すもので、更に大きな表面積を確保することが可能であり、また安定保持も可能となる。
 図3Dは、伝熱構造体と反応体の組み合わせのさらに他の例を示し、伝熱構造体20はその構造が簡略化されて、基底板21とその両側に立つ側板26と対向する側板27の3面の構成となっている。この例では、フィン24が省かれたため、反応体36はその両端が太くなっており、これが側板26と27で保持されることで、一定の張力を持って側板26と27間で平面構造が保たれている。なお、後述するように、反応体36が、全てが隣接し密集し、その全体として一定の機械的強度を有しているときには、図3Dに示したものから、基底板21と、側板26および27の一方を省略してよい。
 図3Dに示す例においては、反応体36の加熱は、基底板21と側板26と27と接する3辺からのみに限定されるため、反応体36の中にニクロム線などの電気抵抗体を編み込むなどして加熱してもよい。また、基底板21を省略して側板26と27のみの2面の構成としてもよい。また側板26と27に隣接する、他の側板の1枚ないし2枚を加えて、合計4面ないし5面の構成としてもよい。
 図3Eは、伝熱構造体と反応体の組み合わせのさらに他の例を示し、反応体37は一定の機械的強度を有しているために、他の構造物に支えられたり引っ張られたりすることなく自立して姿勢を保持することができる。あるいは反応体37が、全てが隣接し密集しているときには、その全体として一定の機械的強度を有しているために、自立して姿勢を保持することができる。これらの場合、伝熱構造体20は更に構造を簡略化して、基底板21のみとして、その上面23にフィン24の代わりに反応体37を、ヒートシンク形状に配することができる。この例では、反応体37の加熱には、上記した図2Aに示す例と同様に、反応体37に編み込まれた反応体内の電気抵抗体38に電極6からの給電を行うことで、20枚全ての反応体37が高温加熱される。
 反応体37が密閉空間12内の重水素ガスまたは軽水素ガスと反応して生成された熱は、反応体37から基底板21に伝熱され、更にその下面22から反応炉1の内壁面を介して反応炉外で取り出し、これを回収することが可能である。なお、電気抵抗体38がない場合でも、反応体37は伝熱構造体20の基底板21を介して加熱を得て反応を進めることが可能である。
 図3Fおよび図3Gは、伝熱構造体と反応体の組み合わせのさらに他の例をそれぞれ示している。
 図3Fでは、非常に微細な多孔質の海綿状構造を有した立方体構造体29が、基底板21と共に伝熱構造体20を構成している。立方体構造体29は非常に大きな表面積を有しており、この表面部には反応体39の膜が、メッキなどにより非常に薄く固着されて一様に立方体構造の表面全体を覆っている。伝熱構造体20の基底板21は反応炉1の外部熱源から、または反応炉壁内に埋め込まれた熱源から、または基底板21内に埋め込まれた電気抵抗体28から加熱を受け、これを立方体構造体29に伝熱し、更にその表面全体に密着して接触しているメッキされた反応体39が加熱される。反応体39が密閉空間12内の重水素ガスまたは軽水素ガスと反応して生成された熱は、反応体39から伝熱構造体20の立方体構造体29に伝熱され、続いてその基底板21に伝熱され、更にその下面22から反応炉1の内壁面を介して反応炉外で取り出し、これを回収することが可能である。
 図3Gに示す例では、ヒートシンク形状の伝熱構造体20のフィン24の表面部に反応体40がメッキ等により非常に薄く固着されて、一様に20枚全てのフィン24の表面全体を覆っている。この形態では、反応体40の加熱はフィン24内部に埋め込まれた電気抵抗体28を用いるが、加熱と伝熱、および生成された熱の回収は、上記の図3Fと同様の方法で行ってもよい。また、伝熱構造体20の形状は、断面が円形の多数のピンが基底板上にアレイ状に置かれている剣山状やその他の表面積が大きな形状であってもよい。
 図4Aおよび図4Bは、反応体と電気抵抗体の組み合わせの例であり、それぞれメッシュ構造の反応体30と、ニクロム線などによる電気抵抗体38が描かれている。
 図4Aでは、反応体30のメッシュ構造の中に、電気抵抗体38が一定の間隔で編み込まれているが、その間隔や編み込みのパターンは、この方法でなくともよい。
 図4Bでは、2枚の反応体30の間に、電気抵抗体38が挟み込まれて固定されている。いずれの場合にも、反応体30と電気抵抗体38は十分に接触しており、電気抵抗体38は電極6からの給電を受けて、反応体30を効率よく高温に加熱することが可能である。このように、反応体を伝熱構造体を介さずに直接加熱することができることで、伝熱構造体は専ら生成された発熱を反応炉外に効率よく伝熱する役割に特化させることができる。
 なお、反応体への磁場変動、電磁波照射、超音波刺激、物理振動付加、高電圧印加などの他の物理的な作用を併用したり、あるいは単独で使用してよい。これらの物理刺激を作用させる駆動源は、磁場発生装置、高周波電磁界発生装置、振動発生装置(例えばピエゾ素子を備える超音波発生装置)、高電圧発生装置などでよく、当該駆動源は、図2Cおよび図2Dに示す例におけるセラミックヒーター230の形状と同様の形状に構成して、反応炉内部または反応炉外部に配置してよい。反応体への加熱と併用する場合には、特に反応体30に電気抵抗体38を直接的に接触させるときは、伝熱構造体を専ら、生成された熱を反応炉外に効率よく伝熱する役割に特化させることができる。
 図5A~図5Dは、発熱装置のガス供給/排出系と制御システムの例をそれぞれ示している。
 本発明の発熱装置によれば、高い効率で発熱反応が進むため、燃料である重水素ガスまたは軽水素ガスが短い期間で消費され、反応による生成物もガス状態で反応炉の密閉空間内に貯留される。装置を長期間にわたり連続稼働させるには、自動の換気機構が求められる。図5A~図5Dは、かかる自動の換気機構を実装するためのガス供給/排出系と制御システムの例をそれぞれ示している。
 図5Aは、タイマー90の設定により、一定の時間間隔または所定の日時において反応炉1から反応生成物ガスを排気経路8と排気管55を通じて、排気用弁内蔵ポンプ61をタイマーからの制御線91で起動し、反応炉1からの排気を行って排気弁付き排気管63から外気に放出するか、別途用意するタンク(図示せず)に回収する。
 続いて、反応炉1に重水素または軽水素ガスを供給するため、タイマー90からの制御線92で吸気用弁内蔵ポンプ60を起動し、吸気弁付き吸気管62の先に接続された重水素または軽水素ガスを高圧で収納するタンク70から、設定した分量、または吸気系ガス圧計測器50の設定圧まで重水素ガスまたは軽水素ガスを吸気し、吸気管54と吸気経路9を通じて反応炉1の密閉空間12にこれを供給する。
 タイマー90の設定を反応炉1内の重水素ガスまたは軽水素ガスが完全に消費されないように設定しておくことで、長期間にわたる連続稼働が可能となる。
 図5Bは、重水素・軽水素濃度測定器内蔵の排気系ガス圧計測器53によって、設定基準値以下に重水素または軽水素ガス濃度が低下したことを検知した際に、制御線57により排気用弁内蔵ポンプ61を起動し、反応炉1からの排気を、図5Aに示す例と同様に行う。続いて、制御線56により吸気用弁内蔵ポンプ60を起動し、図5Aに示す例と同様に反応炉1への重水素または軽水素ガスの供給を行う。
 なお制御線58は、重水素・軽水素濃度測定器内部の吸気系ガス圧計測器52によってタンク70内の重水素・軽水素ガス濃度を監視して、必要に応じて吸気用弁内蔵ポンプ60を制御してタンク漏れや残量減の警告を発する。
 図5Cは、反応炉1の熱電対7が複数あるうちの、1つは反応体の温度を測定するものとつながる熱電対配線83が、もう1つは密閉空間12内の重水素または軽水素ガスと生成物ガスの混合気温度を測定するものとつながる熱電対配線84が、それぞれ温度監視器80に接続されている。
 これらが反応の異常な減速を示す温度低下を察知すると、まずは制御線82により排気用弁内蔵ポンプ61を起動し、反応炉1からの排気を図5Aに示す例と同様に行う。
続いて制御線81により、吸気用弁内蔵ポンプ60を起動し、図5Aに示す例と同様に反応炉1への重水素または軽水素の供給を行う。
 なお、図5A~図5Cでは排気と吸気を同時には行わないため、排気と吸気を切り替える機構を設けることで、排気経路と吸気経路を統合して、計測器やポンプを2系統から1系統に減らすことができる。
 図5Dは、タイマーや計測器からの数値に頼らずに排気と吸気を同量で少量ずつ継続して行うことで、常に反応炉の密閉空間内の重水素または軽水素濃度をほぼ一定に保つ機構を実装する例である。ただし、排気中に、ある程度の濃度の重水素ガスまたは軽水素ガスが、廃棄ガスとして排出されうることに留意する必要がある。
 図6A~図6Cは、熱回収構造を含む発熱装置の一例をそれぞれ示したものである。いずれも反応炉1を横に倒して底面2が前面を向くように描かれている。
 図6Aに示す例では、伝熱構造体20が内壁に接している、その外壁面である底面2にヒートシンク構造が反応炉外の放熱用フィン100によって構成されており、反応炉外の放熱用フィン100から反応炉外に発熱を拡散して暖房等の目的に利用できる。なお、ヒートシンク構造に代えてヒートパイプ構造を用いてよく、またはヒートシンク構造とヒートパイプ構造を併用してよい。
 図6Bに示す例では、底面2に流水経路110が埋め込まれており、吸水口111から水を注入して、排水口112から高温となった水または水蒸気を回収することができる。水に代えて、その他の冷媒を用いてもよい。また、図6Bに示す例に、回収された水蒸気によりガスタービンを駆動する構造を付加してよい。
 図6Cに示す例では、底面2に熱電素子面120が形成されており、当該熱電素子面120に熱電(ゼーベック)素子が埋め込まれている。底面2と反応炉外部の温度差で起電力を生じ、電気出力端子の121と122で、これを電力として回収する。
 熱回収構造は、熱を用いて水を分解する熱化学水素製造法を実装する構造であってもよく、例えば水素を水から生成するためのIS(Iodine-Sulfer)プロセスを実装する構造であってよい。
 再び図5Cを参照して、発熱装置のガス供給/排出系と制御システムを次のように自動制御に使用してよい。反応炉1の密閉空間12内のガス温度を計測する熱電対7の1つ、反応体30の温度を計測する熱電対7の1つ、伝熱構造体20の温度を計測する熱電対7の1つ、のそれぞれから、熱電対配線83、84を介して、それぞれの温度を温度監視器80で計測する。温度監視器80で計測される温度を用いて、予め設定された一定の温度範囲、または値に、これらの温度が保たれるように、制御線81、82を用いて、吸気用弁内蔵ポンプ60と排気用弁内蔵ポンプ61にフィードバックをかけ、密閉空間12内の重水素ガスまたは軽水素ガスの濃度を調整することで、この制御を行うことが可能である。
 また、図5Cに示す発熱装置のガス供給/排出系と制御システムを、さらに次のように自動制御に使用してよい。反応炉1の密閉空間12に収められた反応体30の温度が所定の温度よりも高い値で温度監視器80により検知されると、制御線82により排気用弁内蔵ポンプ61を起動し排気経路8を通して密閉空間12から重水素ガスまたは軽水素ガスを排気して、その濃度を下げることで反応を抑制するとよい。
 それでも反応が継続して温度が上昇したり、下がらなかったりする場合、または最も短時間で反応を抑制したりあるいは停止させたい場合には、温度監視器80から制御線81により吸気用弁内蔵ポンプ60を起動し、その中の三方弁を切り替えて外気を吸気経路9を通じて密閉空間12に供給することで、反応を抑制したり停止させることができる。
 更に、排気経路8と吸気経路9の密閉空間12との接続部の両方またはどちらか一方を、所定温度以上で溶解する栓またはシールで構成することで、緊急の高温発生時には、これが熱により溶解して、密閉空間12の密閉が破れて外気が流入して重水素ガスまたは軽水素ガス濃度が急激に下がることで、反応を停止させることができる。
 1 反応炉
 2 底面 
 3 側面
 4 上面
 5 ボルト
 6 電極(正・負極)
 7 熱電対
 8 排気経路
 9 吸気経路
 10 フランジ面
 11 ボルト穴
 12 密閉空間
 13 側壁
 20 伝熱構造体
 21、221 基底板
 22 下面
 23 上面
 24、224 フィン
 25 円柱状構造物(支持部材)
 26、27 側板
 28 電気抵抗体
 29 立方体構造体(多孔質構造体)
 30、36、37、39、40 反応体
 38 反応体内の電気抵抗体
 50 吸気系ガス圧計測器
 51 排気系ガス圧計測器
 52 吸気系ガス圧計測器(濃度測定計付き)
 53 排気系ガス圧計測器(濃度測定計付き)
 54 吸気菅
 55 排気管
 56~58 制御線
 60 吸気用弁内蔵ポンプ
 61 排気用弁内蔵ポンプ
 62 吸気弁付き吸気管
 63 排気弁付き排気管
 70 タンク(重水素または軽水素用)
 80 温度監視器
 81、82 制御線(温度監視器)
 83、84 熱電対配線
 90 タイマー
 91、92 制御線
 100 反応炉外の放熱用フィン
 110 流水経路
 111 吸水口
 112 排水口
 120 熱電素子面
 121、122 電気出力端子
 200 加熱用構造体
 230 セラミックヒーター

Claims (22)

  1.  発熱装置であって、
     重水素ガスまたは軽水素ガスが供給される反応炉と、
     前記反応炉内面に接触、接続または一体形成される伝熱構造体と、
     前記伝熱構造体に接触、接続または一体形成される、金属または合金からなる反応体と、
     前記反応体を加熱する熱源と、
     を含み、
     前記反応体は、メッシュ、フィルムもしくはシート状に形成され、
     前記伝熱構造体は、1枚以上の前記メッシュ、フィルムもしくはシート状の反応体を支持し、
     前記1枚以上の前記メッシュ、フィルムもしくはシート状の反応体が、前記反応炉の側壁間を横切るジグザグ状となるように、前記反応炉の中に設けられているか、または、
     複数枚の前記メッシュ、フィルムもしくはシート状の反応体が、前記反応炉の側壁間を横切るように、所定間隔に並べて、前記反応炉の中に設けられている
     発熱装置。
  2.  前記メッシュ、フィルムもしくはシート状の反応体が、当該反応体の3層以上をラミネートして形成したラミネート反応体である、
     請求項1に記載の発熱装置。
  3.  前記熱源は、通電により発熱する電気抵抗体であり、
     前記熱源は、前記メッシュ、フィルムもしくはシート状の反応体に接触、接続または一体形成されている、
     請求項1または2に記載の発熱装置。
  4.  前記伝熱構造体とは別の、前記熱源に接触または接続された加熱用構造体をさらに含み、
     前記加熱用構造体は、前記伝熱構造体とは非接触で独立しており、
     前記加熱用構造体は、前記反応体と接触または接続され、前記熱源から熱を前記反応体に伝える、
     請求項1に記載の発熱装置。
  5.  前記加熱用構造体は、所定間隔で置かれた複数の平板を含み、
     前記加熱用構造体の前記平板と前記伝熱構造体の前記平板とが互い違いに位置するように、前記加熱用構造体を前記伝熱構造体と組み合わせたとき、隣り合う前記平板が前記メッシュ、フィルムもしくはシート状の反応体を挟むように、前記伝熱構造体および前記加熱用構造体を前記反応体に接触または接続させる、
     請求項4に記載の発熱装置。
  6.  発熱装置であって、
     重水素ガスまたは軽水素ガスが供給される反応炉と、
     前記反応炉内面に接触、接続または一体形成される伝熱構造体と、
     前記伝熱構造体に接触、接続または一体形成される、金属または合金からなる反応体と、
     前記反応体を加熱する熱源と、
     を含み、
     前記伝熱構造体は、
      前記反応炉の底部に位置する基底板、
      前記基底板と前記反応炉の側壁寄りに位置する1枚以上の側板との組み合わせ、
      前記基底板と前記反応炉の前記側壁寄りにそれぞれ位置する一対の側板との組み合わせ、
      前記基底板と前記基底板上に所定間隔で設けられた複数の平板との組み合わせ、または
      前記基底板と前記基底板上にアレイ状に設けられた複数の支持部材との組み合わせ
     のいずれかを含み、
     前記反応体は、メッシュ、フィルムもしくはシート状に形成され、
     前記メッシュ、フィルムもしくはシート状の反応体が、前記伝熱構造体の前記基底板上に所定間隔で多層に置かれている、
     発熱装置。
  7.  前記メッシュ、フィルムもしくはシート状の反応体が前記伝熱構造体の前記基底板上に所定間隔で多層に置かれるとき、
    (a)複数枚の前記メッシュ、フィルムもしくはシート状の反応体の各々における下端部が、前記基底板上面に接続されている、
    (b)前記複数枚の前記メッシュ、フィルムもしくはシート状の反応体の各々における少なくとも一方の面が、前記複数の平板の一方の面と接触している、
    (c)前記1枚以上の前記メッシュ、フィルムもしくはシート状の反応体が、前記複数の平板間をジグザグに通るように、前記反応体を前記複数の平板に接触させる、
    (d)前記1枚以上の前記メッシュ、フィルムもしくはシート状の反応体が、前記複数の支持部材間をジグザグに通るように、前記反応体を前記複数の支持部材に接触させる、
    (e)前記複数枚の前記メッシュ、フィルムもしくはシート状の反応体の各々における横方向両端部が、前記反応炉の側壁寄りにそれぞれ位置する前記一対の側板に接続されている、または
    (f)前記1枚以上の前記メッシュ、フィルムもしくはシート状の反応体が、前記横方向にジグザグ状に折り曲げられ、その両端部、一方の端部と1つ以上の中間部、または2つ以上の前記中間部が、前記反応炉の側壁寄りにそれぞれ位置する前記一対の側板に接続されている、
     請求項6に記載の発熱装置。
  8.  前記メッシュ、フィルムもしくはシート状の反応体が、当該反応体の3層以上をラミネートして形成したラミネート反応体である、
     請求項6または7に記載の発熱装置。
  9.  前記熱源は、通電により発熱する電気抵抗体であり、
     前記熱源は、前記メッシュ、フィルムもしくはシート状の反応体に接触、接続または一体形成されている、
     請求項6または7に記載の発熱装置。
  10.  前記伝熱構造体とは別の、前記熱源に接触または接続された加熱用構造体をさらに含み、
     前記加熱用構造体は、前記伝熱構造体とは非接触で独立しており、
     前記加熱用構造体は、前記反応体と接触または接続され、前記熱源から熱を前記反応体に伝える、
     請求項6に記載の発熱装置。
  11.  前記加熱用構造体は、所定間隔で置かれた複数の平板を含み、
     前記加熱用構造体の前記平板と前記伝熱構造体の前記平板とが互い違いに位置するように、前記加熱用構造体を前記伝熱構造体と組み合わせたとき、隣り合う平板が前記メッシュ、フィルムもしくはシート状の反応体を挟むように、前記伝熱構造体および前記加熱用構造体を前記反応体に接触または接続させる、
     請求項10に記載の発熱装置。
  12.  発熱装置であって、
     重水素ガスまたは軽水素ガスが供給される反応炉と、
     前記反応炉内面に接触、接続または一体形成される伝熱構造体と、
     前記伝熱構造体に接触、接続または一体形成される、金属または合金からなる反応体と、
     前記反応体を加熱する熱源と、
     を含み、
     前記伝熱構造体は、
      前記反応炉の側壁寄りに位置する1枚以上の側板、
      前記反応炉の前記側壁寄りにそれぞれ位置する一対の側板、
      基底板と前記反応炉の前記側壁寄りに位置する前記1枚以上の側板との組み合わせ、または
      前記基底板と前記反応炉の前記側壁寄りにそれぞれ位置する前記一対の側板との組み合わせ、
     のいずれかを含み、
     前記反応体は、メッシュ、フィルムもしくはシート状に形成され、
     前記メッシュ、フィルムもしくはシート状の反応体が、前記反応炉の側壁寄りに位置する前記1枚以上の側板もしくは前記一対の側板によって所定間隔で多層に支持されている、
     発熱装置。
  13.  前記メッシュ、フィルムもしくはシート状の反応体が前記1枚以上の側板によって所定間隔で多層に支持されるとき、
    (a)前記複数枚の前記メッシュ、フィルムもしくはシート状の反応体の各々における横方向両端部の少なくとも一方が、前記反応炉の側壁寄りに位置する前記側板に接続されている、または
    (b)前記1枚以上の前記メッシュ、フィルムもしくはシート状の反応体が、前記横方向にジグザグ状に折り曲げられ、その両端部、一方の端部と1つ以上の中間部、または2つ以上の前記中間部が、前記1枚以上の側板に接続されている、
     請求項12に記載の発熱装置。
  14.  前記メッシュ、フィルムもしくはシート状の反応体が、当該反応体の3層以上をラミネートして形成したラミネート反応体である、
     請求項12または13に記載の発熱装置。
  15.  前記熱源は、通電により発熱する電気抵抗体であり、
     前記熱源は、前記メッシュ、フィルムもしくはシート状の反応体に接触、接続または一体形成されている、
     請求項12または13に記載の発熱装置。
  16.  前記伝熱構造体とは別の、前記熱源に接触または接続された加熱用構造体をさらに含み、
     前記加熱用構造体は、前記伝熱構造体とは非接触で独立しており、
     前記加熱用構造体は、前記反応体と接触または接続され、前記熱源から熱を前記反応体に伝える、
     請求項12に記載の発熱装置。
  17.  前記加熱用構造体は、所定間隔で置かれた複数の平板を含み、
     前記加熱用構造体の前記平板と前記伝熱構造体の前記平板とが互い違いに位置するように、前記加熱用構造体を前記伝熱構造体と組み合わせたとき、隣り合う平板が前記メッシュ、フィルムもしくはシート状の反応体を挟むように、前記伝熱構造体および前記加熱用構造体を前記反応体に接触または接続させる、
     請求項16に記載の発熱装置。
  18.  発熱装置であって、
     重水素ガスまたは軽水素ガスが供給される反応炉と、
     前記反応炉内面に接触、接続または一体形成される伝熱構造体と、
     前記伝熱構造体に接触、接続または一体形成される、金属または合金からなる反応体と、
     前記反応体を加熱する熱源と、
     を含み、
     前記反応体は、多孔質構造体に形成され、
     前記伝熱構造体は、1つ以上の前記多孔質構造体の反応体を支持し、
     前記1つ以上の前記多孔質構造体の反応体が、前記反応炉の中に設けられている、
     発熱装置。
  19.  発熱装置であって、
     重水素ガスまたは軽水素ガスが供給される反応炉と、
     前記反応炉内面に接触、接続または一体形成される伝熱構造体と、
     前記伝熱構造体に接触、接続または一体形成される、金属または合金からなる反応体と、
     前記反応体を加熱する熱源と、
     を含み、
     前記伝熱構造体は、
      前記反応炉の底部に位置する基底板、
      前記反応炉の側壁寄りに位置する1枚以上の側板、
      前記反応炉の前記側壁寄りにそれぞれ位置する一対の側板、
      前記基底板と前記反応炉の前記側壁寄りに位置する前記1枚以上の側板との組み合わせ、または
      前記基底板と前記反応炉の前記側壁寄りにそれぞれ位置する前記一対の側板との組み合わせ、
     のいずれかを含み、
     前記反応体は、多孔質構造体に形成され、
     前記多孔質構造体の反応体が、前記伝熱構造体の前記基底板上に置かれるか、もしくは、前記反応炉の側壁寄りに位置する前記1枚以上の側板によって支持されている、
     発熱装置。
  20.  前記熱源は、通電により発熱する電気抵抗体であり、
     前記熱源は、前記メッシュ、フィルムもしくはシート状の反応体に接触、接続または一体形成されている、
     請求項18または19に記載の発熱装置。
  21.  前記伝熱構造体とは別の、前記熱源に接触または接続された加熱用構造体をさらに含み、
     前記加熱用構造体は、前記伝熱構造体とは非接触で独立しており、
     前記加熱用構造体は、前記反応体と接触または接続され、前記熱源から熱を前記反応体に伝える、
     請求項18または19に記載の発熱装置。
  22.  発熱装置であって、
     重水素ガスまたは軽水素ガスが供給される反応炉と、
     前記反応炉内面に接触、接続または一体形成される伝熱構造体と、
     前記伝熱構造体に接触、接続または一体形成される、金属または合金からなる反応体と、
     前記反応体を加熱する熱源と、
     を含み、
     前記伝熱構造体は、
      前記反応炉の底部に位置する基底板と前記基底板上に置かれる多孔質構造体との組み合わせ、
      前記反応炉の側壁寄りに位置する1枚以上の側板と、前記1枚以上の側板の一方の面に接続される前記多孔質構造体との組み合わせ、
      前記基底板と前記基底板上に置かれる立体格子状構造体との組み合わせ、
      前記基底板と前記基底板上に所定間隔で設けられた複数の平板との組み合わせ、または
      前記基底板と前記基底板上にアレイ状に設けられた複数の突出部材との組み合わせ
     のいずれかを含み、
     前記反応体は、前記伝熱構造体の表面(前記多孔質構造体にあっては、構造体内部孔の表面を含む。)の一部または全部を覆う膜として形成されている、
     発熱装置。
PCT/JP2018/027746 2018-07-24 2018-07-24 発熱装置 WO2020021638A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/027746 WO2020021638A1 (ja) 2018-07-24 2018-07-24 発熱装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/027746 WO2020021638A1 (ja) 2018-07-24 2018-07-24 発熱装置

Publications (1)

Publication Number Publication Date
WO2020021638A1 true WO2020021638A1 (ja) 2020-01-30

Family

ID=69180971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027746 WO2020021638A1 (ja) 2018-07-24 2018-07-24 発熱装置

Country Status (1)

Country Link
WO (1) WO2020021638A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187286A1 (ja) * 2020-03-16 2021-09-23 三浦工業株式会社 ボイラ
WO2021187285A1 (ja) * 2020-03-16 2021-09-23 三浦工業株式会社 ボイラ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302987A (ja) * 1991-06-19 1993-11-16 Aisin Aw Co Ltd 新エネルギーを利用した電池
JP2012510050A (ja) * 2008-11-24 2012-04-26 ピアンテリ,シルビア エネルギーを生産するための方法及びその装置
WO2015008859A2 (ja) * 2013-07-18 2015-01-22 水素技術応用開発株式会社 反応体、発熱装置及び発熱方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05302987A (ja) * 1991-06-19 1993-11-16 Aisin Aw Co Ltd 新エネルギーを利用した電池
JP2012510050A (ja) * 2008-11-24 2012-04-26 ピアンテリ,シルビア エネルギーを生産するための方法及びその装置
WO2015008859A2 (ja) * 2013-07-18 2015-01-22 水素技術応用開発株式会社 反応体、発熱装置及び発熱方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187286A1 (ja) * 2020-03-16 2021-09-23 三浦工業株式会社 ボイラ
WO2021187285A1 (ja) * 2020-03-16 2021-09-23 三浦工業株式会社 ボイラ
US11326772B2 (en) 2020-03-16 2022-05-10 Miura Co., Ltd. Boiler with a heat generation body that stores hydrogen

Similar Documents

Publication Publication Date Title
JP6704958B2 (ja) 反応器コアの加工方法
KR100721785B1 (ko) 전기화학적 산소 발생 시스템
WO2020021638A1 (ja) 発熱装置
JP4423847B2 (ja) 小型化学反応装置
JP3587840B2 (ja) マイクロシステム用発電装置
CN105493196A (zh) 反应体、发热装置及发热方法
TW201031772A (en) A hydrogen-oxygen generating system
US20190096535A1 (en) The method of generating thermal energy, devices of its implementation and heat generation systems
KR101559598B1 (ko) 가열 장치 및 열 교환기
JP4585313B2 (ja) モジュラーセラミック酸素システム
JP2008545943A (ja) 改良型毛管力気化器
JP5889584B2 (ja) 温度差発電装置及び熱電変換素子フレーム
US20080203849A1 (en) Energy Converting Apparatus, Generator and Heat Pump Provided Therewith and Method of Production Thereof
CN104541582A (zh) 用于提供等离子体流的装置
JPH08222771A (ja) 熱電発電素子及び熱電発電装置
ITMI20120276A1 (it) Reattore per la generazione di energia mediante reazioni lenr (low energy nuclear reactions) tra idrogeno e metalli di transizione e relativo metodo di generazione dell¿energia
JP5559842B2 (ja) 集積ガス供給装置用の平面発熱板およびその製造方法
JP5098685B2 (ja) 小型化学反応装置
WO2015085357A1 (en) Thermal energy storage device
KR101260609B1 (ko) 가정용 보일러의 연통에 설치되는 열전발전장치
JP4246677B2 (ja) サウナ
JP2008267622A (ja) 蓄熱暖房器
KR101876099B1 (ko) 통기성 발열체 및 이를 이용한 통기성 의자
US3719456A (en) Reaction chamber heated device for oxygen generation
CN116154940B (zh) 一种备用电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP