WO2015008642A1 - フレキシブル表示装置の製造方法、及び、フレキシブル表示装置 - Google Patents

フレキシブル表示装置の製造方法、及び、フレキシブル表示装置 Download PDF

Info

Publication number
WO2015008642A1
WO2015008642A1 PCT/JP2014/068009 JP2014068009W WO2015008642A1 WO 2015008642 A1 WO2015008642 A1 WO 2015008642A1 JP 2014068009 W JP2014068009 W JP 2014068009W WO 2015008642 A1 WO2015008642 A1 WO 2015008642A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
display device
film
flexible
flexible display
Prior art date
Application number
PCT/JP2014/068009
Other languages
English (en)
French (fr)
Inventor
有希 安田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2015527254A priority Critical patent/JP6139680B2/ja
Priority to CN201480039916.6A priority patent/CN105379422B/zh
Priority to US14/903,068 priority patent/US9887384B2/en
Publication of WO2015008642A1 publication Critical patent/WO2015008642A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13458Terminal pads
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/841Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/179Interconnections, e.g. wiring lines or terminals
    • H10K59/1795Interconnections, e.g. wiring lines or terminals comprising structures specially adapted for lowering the resistance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a flexible display device and a flexible display device. More specifically, the present invention relates to a method for manufacturing a flexible display device including a display device such as an organic electroluminescence element or a liquid crystal layer, and a flexible display device.
  • next-generation display devices having new functions in order to further enhance the merchantability of these thin display devices. Development is underway.
  • One of such next-generation display devices is a foldable flexible display device.
  • Patent Documents 1 and 2 In order to manufacture a flexible display device, it is necessary to form an element such as a thin film transistor on a flexible substrate.
  • a method for that purpose a method of transferring a thin film transistor previously formed on a glass substrate onto a flexible substrate is known (for example, see Patent Documents 1 and 2).
  • Patent Document 2 a terminal used for connection to an external terminal is taken out by removing a predetermined portion of a layer on the terminal by etching.
  • the terminal may be damaged and the characteristics of the display element may be deteriorated.
  • the glass substrate as shown in FIG. 9 of Patent Document 2 is etched with hydrofluoric acid, and the protective film is etched and removed by a reactive ion etching method. Is exposed.
  • wet etching using hydrofluoric acid there is usually a cleaning process after wet etching, so moisture intrusion from a flexible substrate or a sealing material as shown in FIG. It cannot be sufficiently prevented, and it is considered that there arises a problem that the characteristics of the organic electroluminescent element deteriorate.
  • a flexible base material for sealing or an adhesive layer is selectively used in a portion other than the upper portion of the terminal (portion that covers the terminal) so as not to perform the step of taking out the terminal. It is conceivable to stick them together.
  • a member that supports the terminal for example, the flexible base material for sealing, and Since there is no adhesive layer
  • damage such as torn terminals and wrinkles may occur when the glass substrate is peeled off.
  • the present invention has been made in view of the above-described situation, and a method for manufacturing a flexible display device that can perform extraction of a terminal without damaging the terminal and sufficiently prevent deterioration of characteristics of the display element.
  • Another object of the present invention is to provide a flexible display device that can be manufactured by the method for manufacturing a flexible display device.
  • the present inventor has made various investigations on a method for manufacturing a flexible display device that can remove a terminal without damaging the terminal and sufficiently prevent deterioration of the characteristics of the display element. Attention was paid to pre-forming a release layer on the terminal having a weak adhesion. And the adhesive force at the interface between the release layer and the terminal is the weakest of the interfaces between the release layer and the flexible substrate on the opposite side where the terminal is not provided, and the flexible substrate side on the opposite side Then, divide the upper layer of the release layer, and further cut into the release layer to a depth that does not reach the interface with the terminal, peel off the separated release layer, and remove the upper layer and release layer of the separated release layer Thus, it has been found that the terminal can be taken out without damaging the terminal.
  • the present inventors have found that since the terminal is taken out by a dry method rather than a wet method such as wet etching, the deterioration of the characteristics of the display element can be sufficiently prevented. Thus, the inventors have conceived that the above problems can be solved brilliantly and have reached the present invention.
  • a manufacturing method of a flexible display device including (1) to (4) in order may be used.
  • a wiring is formed in the display area on the main surface of the first flexible base material or the temporary support substrate, and a plurality of terminals derived from the wiring are provided in an end region on the main surface.
  • Step of forming (2) Step of forming a release layer that directly covers the plurality of terminals (3) At the interface between the release layer and the second flexible substrate, the release layer and the plurality of terminals A plurality of layers including the first adhesive layer and the second flexible base material are sequentially arranged in the display region and the end region so as to obtain an adhesive force stronger than the adhesive force at the interface with the substrate. Step (4) On the display region side of the end region, the plurality of layers are divided, and the separation layer is cut to a depth that does not reach the interface with the plurality of terminals. Remove the part on the opposite side of the display area from By removing portions of the opposite to the display region side of the shed said plurality of layers and the release layer, exposing at least a portion of said plurality of terminals
  • the wiring and display element which were arrange
  • a flexible display device comprising a second flexible substrate bonded to a region, wherein the plurality of terminals have a portion covered with a release layer on the display region side, the release layer and the plurality of the plurality of terminals.
  • the adhesive strength at the interface with the terminal may be the weakest flexible display device among the interfaces between the release layer and the second flexible substrate.
  • the flexible display device according to another embodiment of the present invention can be manufactured by the method for manufacturing a flexible display device according to one embodiment of the present invention.
  • a method for manufacturing a flexible display device capable of taking out the terminal without damaging the terminal and sufficiently preventing deterioration of the characteristics of the display element, and a method for manufacturing the flexible display device are provided.
  • the flexible display device manufactured more suitably can be provided.
  • FIG. 7 is a schematic plan view of a flexible display device according to Embodiments 1 to 6.
  • FIG. FIG. 2 is a schematic cross-sectional view showing a cross section taken along line A-A ′ in FIG. 1 of the flexible display device according to the first embodiment. It is a cross-sectional schematic diagram of an organic electroluminescent element.
  • FIG. 6 is a schematic cross-sectional view showing a manufacturing flow of the flexible display device according to the first embodiment in a cross section taken along a line A-A ′ in FIG. 1 (steps A to D).
  • FIG. 6 is a schematic cross-sectional view showing a manufacturing flow of the flexible display device according to the first embodiment in a cross section taken along a line A-A ′ in FIG. 1 (steps E to F).
  • FIG. 5 is a schematic cross-sectional view showing a manufacturing flow of the flexible display device according to the first embodiment in a cross section taken along a line A-A ′ in FIG. 1 (steps GH).
  • FIG. 2 is a schematic cross-sectional view showing a manufacturing flow of the flexible display device according to the first embodiment in a cross section taken along a line A-A ′ in FIG. 1 (steps I to J).
  • FIG. 7 is a schematic cross-sectional view showing a manufacturing flow of the flexible display device according to the first embodiment in a cross section taken along a line segment A-A ′ in FIG. 1 (step K).
  • FIG. 5 is a schematic cross-sectional view showing a cross section taken along line A-A ′ in FIG.
  • FIG. 10 is a schematic cross-sectional view showing a manufacturing flow of the flexible display device according to the second embodiment in a cross section taken along a line segment A-A ′ in FIG. 1 (steps A to D).
  • FIG. 10 is a schematic cross-sectional view showing a manufacturing flow of the flexible display device according to the second embodiment in a cross section taken along a line A-A ′ in FIG. 1 (steps E to F).
  • FIG. 10 is a schematic cross-sectional view showing a manufacturing flow of the flexible display device according to the second embodiment in a cross section taken along a line segment A-A ′ in FIG. 1 (step G).
  • FIG. 10 is a schematic cross-sectional view showing a manufacturing flow of the flexible display device according to the second embodiment in a cross section taken along a line segment A-A ′ in FIG. 1 (step G).
  • FIG. 10 is a schematic cross-sectional view showing a manufacturing flow of the flexible display device according to the third embodiment in a cross section taken along a line segment A-A ′ in FIG.
  • FIG. 10 is a schematic cross-sectional view showing a cross section taken along line A-A ′ in FIG. 1 of the flexible display device according to the fourth embodiment.
  • FIG. 10 is a schematic cross-sectional view showing a manufacturing flow of the flexible display device according to the fourth embodiment in a cross section taken along a line segment A-A ′ in FIG. 1 (steps A to C).
  • FIG. 10 is a schematic cross-sectional view showing a manufacturing flow of the flexible display device according to the fourth embodiment in a cross section taken along a line segment A-A ′ in FIG. 1 (steps D to E).
  • FIG. 10 is a schematic cross-sectional view showing a manufacturing flow of the flexible display device according to the fourth embodiment in a cross section taken along a line A-A ′ in FIG. 1 (steps F to G).
  • FIG. 10 is a schematic cross-sectional view showing a manufacturing flow of the flexible display device according to the fourth embodiment in a cross section taken along a line segment A-A ′ in FIG. 1 (step H).
  • FIG. 10 is a schematic cross-sectional view showing a cross section taken along line A-A ′ in FIG. 1 of the flexible display device according to the fifth embodiment.
  • FIG. 10 is a schematic cross-sectional view showing a manufacturing flow of the flexible display device according to the fifth embodiment in a cross section taken along a line segment A-A ′ in FIG.
  • FIG. 10 is a schematic cross-sectional view showing a manufacturing flow of the flexible display device according to the fifth embodiment in a cross section taken along a line A-A ′ in FIG. 1 (steps D to E).
  • FIG. 10 is a schematic cross-sectional view showing a manufacturing flow of the flexible display device according to the fifth embodiment in a cross section taken along a line A-A ′ in FIG. 1 (steps F to G).
  • FIG. 10 is a schematic cross-sectional view showing a manufacturing flow of the flexible display device according to the fifth embodiment in a cross section taken along a line segment A-A ′ in FIG. 1 (step H).
  • FIG. 10 is a schematic cross-sectional view showing a manufacturing flow of the flexible display device according to the fifth embodiment in a cross section taken along a line segment A-A ′ in FIG. 1 (step H).
  • FIG. 10 is a schematic cross-sectional view showing a cross section taken along line A-A ′ in FIG. 1 of the flexible display device according to the sixth embodiment.
  • FIG. 10 is a schematic cross-sectional view showing a manufacturing flow of the flexible display device according to the sixth embodiment in a cross section taken along a line segment A-A ′ in FIG. 1 (steps A to C).
  • FIG. 10 is a schematic cross-sectional view showing a manufacturing flow of the flexible display device according to the sixth embodiment in a cross section taken along line A-A ′ in FIG. 1 (steps D to E).
  • FIG. 10 is a schematic cross-sectional view showing a manufacturing flow of the flexible display device according to the sixth embodiment in a cross section taken along a line A-A ′ in FIG. 1 (steps F to G).
  • FIG. 10 is a schematic cross-sectional view showing a manufacturing flow of the flexible display device according to the sixth embodiment in a cross section taken along a line segment A-A ′ in FIG. 1 (
  • the main surface of a 1st flexible base material or a temporary support substrate means the surface by the side of the 2nd flexible base material of a 1st flexible base material or a temporary support substrate.
  • the main surface of the second flexible substrate refers to the surface of the second flexible substrate on the first flexible substrate or the temporary support substrate side.
  • the sealing film formed on the organic electroluminescence element is also formed on the terminal and used as a release layer.
  • a flexible display apparatus is manufactured by the process of forming an organic electroluminescent element etc. on the main surface of a glass substrate, and peeling and bonding a glass substrate to a flexible base material after that.
  • FIG. 1 is a schematic plan view of the flexible display device according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view illustrating a cross section taken along line A-A ′ in FIG. 1 of the flexible display device according to the first embodiment.
  • the display area AR1 on the main surface of the flexible base material 2a includes wiring 5 and organic electroluminescence.
  • the sense element 6 is arranged, and a plurality of terminals 3 led out from the wiring 5 are arranged in the end region AR2 on the main surface of the flexible substrate 2a.
  • a flexible base material 2b (second flexible base material) is bonded to the flexible base material 2a by an adhesive layer 4b (first adhesive layer).
  • an adhesive layer 4a (second adhesive layer), a polyimide layer 7, and a protective film 8 are laminated in order.
  • the wiring 5 in the display area AR1 and the terminal 3 in the end area AR2 are provided on the protective film 8.
  • the organic electroluminescence element 6 is provided on the wiring 5.
  • sealing films 9a, 9b, and 9c that cover the organic electroluminescence element 6 are further disposed.
  • sealing films 9b 'and 9c are stacked on the terminals 3 in the vicinity of the display region AR1.
  • a flexible printed circuit board 11 is laminated via an anisotropic conductive film 10 in a portion where the terminal 3 of the end region AR2 is exposed.
  • FIG. 3 is a schematic cross-sectional view of an organic electroluminescence element.
  • the organic electroluminescent element 6 is comprised from the electrode 13a (1st electrode), the organic electroluminescent layer 14, and the electrode 13b (2nd electrode).
  • the electrode 13 a is electrically connected to the wiring 5 through an opening provided in the insulating film 12 a covering the wiring 5.
  • An edge cover 15 is provided around the organic electroluminescent layer 14 disposed on the electrode 13a, and covers the end of the electrode 13a.
  • the electrode 13 b covers the organic electroluminescent layer 14 and the edge cover 15.
  • the flexible display device 1a has a bottom emission that emits light from the wiring 5 side when the electrode 13a is an electrode having light transmissivity or light translucency and the electrode 13b is an electrode having light reflectivity. Become a mold. Further, when the electrode 13a is an electrode having light reflectivity and the electrode 13b is an electrode having light transmission property or light semi-transmission property, a top emission type in which light is emitted from the sealing film 9a side is obtained. In the following, the case of the top emission type will be described.
  • FIGS. 4-1 to 4-5 are schematic cross-sectional views showing the manufacturing flow of the flexible display device according to the first embodiment in a cross section taken along the line A-A ′ in FIG.
  • (A) Formation of Heat Absorption Layer and Polyimide Layer As shown in FIG. 4A, first, the display area AR1 and the end area AR2 on the main surface of the glass substrate 16 that is a temporary support substrate are formed.
  • the heat absorption layer 17 is formed.
  • a molybdenum (Mo) film having a thickness of 10 nm to 50 nm is formed by sputtering.
  • a film made of a polyimide precursor is formed by, for example, spin coating, slit coater, or screen printing so as to cover the heat absorption layer 17.
  • the surface treatment may be performed dry or wet.
  • the dry surface treatment include reduced-pressure plasma treatment, normal-pressure plasma treatment, and UV (Ultra violet) treatment.
  • the wet surface treatment include a method of applying a surface treatment agent on the glass substrate 16.
  • a coupling agent such as a silane coupling agent, an aluminum coupling agent, or a titanate coupling agent may be used.
  • a silane coupling agent is suitable.
  • a polyimide layer 7 is formed by firing a film made of a polyimide precursor.
  • the firing temperature is preferably higher than the treatment temperature when forming the wiring 5, the terminal 3 and the like in a later step, for example, 350 ° C. to 500 ° C. By increasing the firing temperature, it is possible to prevent display defects and characteristic deterioration of the flexible display device caused by the gas generated from the polyimide layer 7.
  • the thickness of the polyimide layer 7 is preferably 5 ⁇ m or more and 50 ⁇ m or less. If the thickness of the polyimide layer 7 is less than 5 ⁇ m, it is difficult to ensure mechanical strength. When the thickness of the polyimide layer 7 exceeds 50 ⁇ m, the laminate may not be stably formed due to the influence of the polyimide layer 7 peeling off.
  • a protective film 8 is formed so as to cover the polyimide layer 7. This is because the organic electroluminescence element 6 formed in a later process has a property of being vulnerable to moisture and oxygen, and prevents entry of moisture and the like from the glass substrate 16 side.
  • Examples of the material of the protective film 8 include oxides or nitrides such as silicon (Si) and aluminum (Al) having high moisture resistance.
  • Examples of the oxide include silicon dioxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ).
  • Examples of the nitride include silicon nitride (SiNx) and silicon nitride carbide (SiCN).
  • Examples of the method for forming the protective film 8 include a plasma CVD (Chemical Vapor Deposition) method, a thermal CVD method, and a sputtering method. In order to improve moisture resistance, the protective film 8 may be a laminate.
  • the wiring 5 is formed in the display area AR1 on the protective film 8, and the wiring 5 is formed in the end area AR2 on the protective film 8.
  • the derived terminal 3 is formed.
  • the wiring 5 and the terminal 3 may be formed simultaneously with elements constituting the thin film transistor element.
  • examples of the material of the semiconductor layer in the thin film transistor element include low-temperature polysilicon and an oxide semiconductor.
  • a compound (In—Ga—Zn—O) which is a kind of oxide semiconductor and is composed of indium (In), gallium (Ga), zinc (Zn), and oxygen (O) is preferably used.
  • the processing temperature of the oxide semiconductor is usually about 400 ° C. lower than the processing temperature of low-temperature polysilicon (usually about 600 ° C.), and the heat resistance temperature of the polyimide layer 7 formed before the semiconductor layer. It is because it can be made lower than (normally about 500 degreeC).
  • the organic electroluminescent element 6 is formed on the wiring 5. As shown in FIG. 3, the organic electroluminescent element 6 is obtained by forming the electrode 13a, the organic electroluminescent layer 14, the electrode 13b, etc. in order.
  • a metal such as aluminum (Al) having conductivity and light reflectivity may be formed by a vacuum deposition method or the like.
  • the electrode 13b for example, indium tin oxide (ITO) having conductivity and light transmittance may be formed by a sputtering method or the like.
  • ITO indium tin oxide
  • a colorization technique an RGB coating method that separates red (R), green (G), and blue (B), or a method that uses a white light emitting layer and a color filter layer in combination, etc. Good.
  • a sealing film 9a is formed so as to cover the organic electroluminescent element 6 in the display area AR1.
  • the sealing film 9b is formed on the sealing film 9a in the display area AR1, and the sealing film 9b as a peeling layer is formed so as to cover a part of the terminal 3 and the protective film 8 in the end area AR2. 'Form.
  • a sealing film 9c is formed so as to cover the sealing film 9b and a part of the wiring 5 in the display area AR1 and so as to cover the sealing film 9b ′ in the end area AR2.
  • the sealing film is a film formed so as to cover the organic electroluminescent element, and is formed for the purpose of protecting the organic electroluminescent element from moisture or the like.
  • the sealing films 9a and 9c are inorganic films, and the sealing films 9b and 9b ′ are organic films having the same composition.
  • the configuration of the sealing film is not limited to the above.
  • the sealing film may be a single layer type composed of only an inorganic film, a multilayer type where an inorganic film is laminated, or a multilayer type where an inorganic film and an organic film are laminated. Good.
  • Examples of the material of the inorganic film include oxides or nitrides such as silicon (Si) and aluminum (Al) having high moisture resistance.
  • the oxide include silicon dioxide (SiO 2 ) and aluminum oxide (Al 2 O 3 ).
  • Examples of the nitride include silicon nitride (SiNx) and silicon nitride carbide (SiCN).
  • Examples of the method for forming the inorganic film include a plasma CVD method, a thermal CVD method, a vacuum deposition method, and a sputtering method.
  • Examples of the material for the organic film include acrylate, polyurea, parylene, polyimide, and polyamide.
  • a vacuum deposition method may be used.
  • examples of the multilayer sealing film in which inorganic films are stacked include SiNx / SiCN / SiNx.
  • Examples of the multi-layer sealing film in which the inorganic film and the organic film are stacked include SiNx / acrylate / SiNx.
  • the end face of the film 9b) is preferably formed so as to be covered with an inorganic film (sealing film 9c) having high moisture resistance.
  • the organic film (sealing film 9b) fills the pinhole of the inorganic film (sealing film 9a) or the organic film (sealing film 9b).
  • the film thickness of the organic film (sealing film 9b) is preferably 3 ⁇ m or more and 5 ⁇ m or less. If it is about 5 ⁇ m, it is possible to cover normal pinholes and foreign matters.
  • the sealing film 9b ′ is formed so that the terminal can be easily taken out in a later step.
  • the adhesion at the interface between the sealing film 9b ′ and the terminal 3 is such that the sealing film 9b ′ is organic. If it is a film, the interface between the flexible substrate 2b and the adhesive layer 4b, the interface between the adhesive layer 4b and the sealing film 9c, and the sealing film 9c and the sealing film 9b ′, which will be arranged in a later step. It is weaker than the adhesion at the interface. If the sealing film 9b 'is an inorganic film, the adhesion becomes weak as described above if the lower layer is made of SiCN. Usually, the organic film has lower adhesion than the inorganic film, but the adhesion of the inorganic film can be adjusted according to the film formation conditions.
  • the sealing film 9a that is the first layer is formed using a mask, and the sealing films 9b and 9b ′ that are the second layer are formed.
  • the sealing films 9b and 9b ′ are formed.
  • Simultaneously formed using the same mask so as to form a delimited pattern as shown in FIG. 4E
  • a third layer sealing film 9c is formed so as to cover the sealing film 9b To do. Therefore, it is not necessary to add a mask for forming only the sealing film 9b '.
  • the second-layer sealing films 9b and 9b ′ are formed in a segmented pattern as shown in FIG.
  • the second-layer sealing film If the organic film is formed on one surface without partitioning, the second-layer sealing film (organic film) will be in contact with a part of the wiring 5 in addition to the terminal 3.
  • the second-layer sealing film (organic film) in contact with a part of the wiring 5 is also peeled off. This is because the portion (a part of the wiring 5) may be exposed.
  • the sealing film 9c is formed in the end region AR2 as shown in FIG. It may be formed so as to cover 9b ′.
  • the sealing films 9a, 9b, 9b ', and 9c are preferably formed so as not to significantly increase the temperature of the organic electroluminescent element from the viewpoint of sufficiently preventing deterioration of characteristics.
  • the temperature of the organic electroluminescent layer 14 is preferably 100 ° C. or lower, and more preferably 80 ° C. or lower.
  • the temperature of the organic electroluminescent layer 14 is more preferably closer to room temperature.
  • an inorganic film is formed by CVD as the sealing films 9a, 9b, 9b ′, 9c, the moisture-proof performance of the film is high. Therefore, the deterioration of the characteristics of the organic electroluminescent layer is in a trade-off relationship.
  • the flexible base material 2b is bonded to the glass substrate 16 through the adhesive layer 4b. At the time of bonding, it is preferable to bond in a vacuum in order to prevent generation of bubbles.
  • the flexible substrate 2b it is preferable to use a film made of aramid, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyetherimide, polyarylate, polyimide, or the like.
  • the adhesive layer 4b for example, a reactive curable adhesive, a thermosetting adhesive, or an ultraviolet curable adhesive can be used.
  • the flexible base material 2b is not only flexible but transparent. Specific examples include a transparent film and a transparent plastic substrate.
  • the thickness of the flexible base material 2b is not particularly limited, but if it is too thin (for example, 5 ⁇ m or more and 20 ⁇ m or less), the flexible base material 2b supports other members when the glass substrate 16 is peeled in a subsequent step. And the wrinkles may occur after the glass substrate 16 is peeled off due to the stress of the sealing films 9a, 9b, 9b ′, 9c, the wiring 5, the terminal 3, the protective film 8, and the like. Therefore, the thickness of the flexible substrate 2b is preferably a thickness that does not cause wrinkles as described above, and is preferably, for example, 50 ⁇ m or more.
  • a thin film having a thickness of about 5 ⁇ m and a film with a self-adsorption layer having a thickness of about 100 ⁇ m for example, polyethylene terephthalate. If the film with the self-adsorption layer is peeled off, a flexible display device using a thin film can be manufactured, and the flexible display device can be thinned.
  • the flexible substrate 2b and the adhesive layer 4b are divided from the flexible substrate 2b side along the line aa ′ shown in FIG.
  • the remaining layers and the glass substrate 16 are divided from the substrate 16 side.
  • the cutting position indicated by the line aa ′ may be a position that crosses the heat absorption layer 17 and does not cross the wiring 5 and the terminal 3, and this is because the glass substrate 16 is peeled off in a later step. This is because a method of peeling from the interface between the heat absorption layer 17 and the polyimide layer 7 is employed as the method of performing this.
  • the dividing method from the flexible substrate 2b side is not particularly limited, and examples thereof include a method using a laser.
  • a normal method for dividing the glass substrate can be used as a method for dividing from the glass substrate 16 side. For example, a method of cutting with a diamond wheel and applying an external force to cut from the cutting portion can be given. It is done.
  • (H) Laser irradiation to heat absorption layer As shown by the arrow in (H) of FIG. 4-3, laser is irradiated from the divided glass substrate 16 side. Thereby, since the heat absorption layer 17 absorbs heat, the adhesiveness between the heat absorption layer 17 and the polyimide layer 7 decreases, and from the interface between the heat absorption layer 17 and the polyimide layer 7 in a later step, Both the glass substrate 16 and the heat absorption layer 17 can be peeled off.
  • the laser for example, ultraviolet light may be used, and excimer laser light (for example, wavelength 308 nm) is preferably used. Note that there is no change in the characteristics of the thin film transistor element before and after laser irradiation.
  • both the glass substrate 16 and the heat absorption layer 17 are peeled from the interface between the heat absorption layer 17 and the polyimide layer 7.
  • a peeling method a person may peel off, for example, and you may peel off with apparatuses, such as a drive roll or a robot.
  • the sealing films 9a, 9b, 9b ′, 9c, the wiring 5, the terminal 3, the protective film 8, and the like are formed. It cannot be supported, and wrinkles may occur after peeling of the glass substrate 16 due to the stress. Therefore, when the glass substrate 16 is peeled off, the flexible base material 2b and the adhesive layer 4b are also provided on the upper layer of the terminal 3 (the portion covering the terminal 3).
  • the above-described process may be performed when the glass substrate 16 is peeled off. Wrinkles may occur.
  • the flexible base material 2a is bonded to the flexible base material 2b via the adhesive layer 4a. At the time of bonding, it is preferable to bond in a vacuum in order to prevent generation of bubbles.
  • the flexible substrate 2a it is preferable to use a film made of aramid, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyetherimide, polyarylate, polyimide, or the like.
  • a reaction curable adhesive, a thermosetting adhesive, an ultraviolet curable adhesive, or the like can be used as the adhesive layer 4a.
  • the flexible base material 2a and the adhesive layer 4a it is preferable to use the same material as the flexible base material 2b and the adhesive layer 4b, respectively. This is because the flexible display device is not bent due to stress or the like in a completed state.
  • (K) Terminal removal The flexible base material 2b, the adhesive layer 4b, and the sealing film 9c are divided from the flexible base material 2b side along the line bb ′ shown in FIG. Further, a cut is made in the sealing film 9b ′.
  • Laser irradiation is suitable as the dividing method.
  • the same laser as that used in the above-described substrate cutting after bonding can be used as the laser.
  • the part on the end region AR2 side of the divided sealing film 9b ' is peeled off.
  • the adhesive force at the interface between the sealing film 9b ′ and the terminal 3 is, as described above, the interface between the flexible substrate 2b and the adhesive layer 4b, the interface between the adhesive layer 4b and the sealing film 9c, and This is because it is weaker than the adhesive force at the interface between the sealing film 9c and the sealing film 9b ′, and can be peeled off when the sealing film 9b ′ is cut.
  • the position of the end b ′ of the dividing position indicated by the line segment bb ′ is in the vicinity of the display area AR1 in the end area AR2 in the horizontal direction in FIG. In the vertical direction in ⁇ 5 (K), the depth does not reach the interface between the sealing film 9 b ′ and the terminal 3.
  • the end b 'of the dividing position is preferably a position (depth) at which 50% or more and 90% or less of the thickness of the sealing film 9b' on the terminal 3 is divided. As the depth at which the sealing film 9b 'is divided is deeper, a part of the divided sealing film 9b' can be more easily peeled off.
  • the depth at which the sealing film 9b ′ is divided is less than 50% of the thickness of the sealing film 9b ′ on the terminal 3, it may be difficult to peel off, and the sealing film 9b ′ may be on the terminal 3 of the sealing film 9b ′. If the thickness exceeds 90%, the terminal 3 may be damaged at the time of division.
  • the terminal 3 is exposed by removing portions of the divided flexible base material 2b, the adhesive layer 4b, the sealing film 9c, and the sealing film 9b 'on the end region AR2 side.
  • the flexible base material 2b and the adhesive layer 4b are not present on the upper layer of the terminal 3.
  • the flexible substrate 2b cannot support the terminal 3, and the sealing films 9a, 9b, 9b ′, 9c, the wiring 5, the terminal 3, the protective film 8, and the like. Due to the stress, wrinkles may occur after the glass substrate 16 is peeled off.
  • the terminal 3 can be taken out without damaging the terminal 3. Moreover, since the terminal is taken out by a dry method, the deterioration of the characteristics of the organic electroluminescence element 6 can be sufficiently prevented.
  • the flexible printed circuit board 11 is pressure-bonded to the exposed terminal 3 using the anisotropic conductive film 10 to complete the flexible display device 1a shown in FIG.
  • the sealing film 9b 'that has been divided when the terminal is taken out remains in the vicinity of the flexible printed circuit board 11. This makes it possible to confirm that the manufacturing method of the present embodiment has been used even in a state after manufacture.
  • the sealing film 9b 'remains will be described below.
  • the amount of blur difference between the designed film formation width and the actual film formation width
  • the divided sealing film 9b is divided. It is difficult to divide at exactly the same position as the end of the sealing film 9b 'so that' is not left.
  • the amount of blur is large, and also when the CVD method is used, the amount of blur varies greatly depending on the chamber of the apparatus, so the film thickness at the end of the sealing film 9b ′ is designed. It may be different from the target value above.
  • the sealing film formed on the organic electroluminescence element is also formed on the terminal and used as a release layer. Moreover, a flexible base material is bonded together on the main surface of a glass substrate, an organic electroluminescent element etc. are formed further, and a flexible display apparatus is manufactured by the process of peeling a glass substrate after that.
  • FIG. 5 is a schematic cross-sectional view showing a cross section taken along line A-A ′ in FIG. 1 of the flexible display device according to the second embodiment.
  • the flexible display device 1 b according to the second embodiment is a flexible display according to the first embodiment except that the adhesive layer 4 a and the polyimide layer 7 are not present between the flexible base material 2 a and the protective film 8. This is the same as the display device 1a.
  • the protective film 8 is arrange
  • FIGS. 6A to 6C are schematic cross-sectional views showing a manufacturing flow of the flexible display device according to the second embodiment in a cross section taken along the line segment A-A ′ in FIG.
  • the manufacturing method of the flexible display apparatus which concerns on Embodiment 2 replaced the thing which integrated the glass substrate, the heat absorption layer, and the polyimide layer with what bonded the flexible base material on the main surface of the glass substrate. Since it is the same as that of the manufacturing method of the flexible display apparatus concerning Embodiment 1, description is abbreviate
  • FIG. 6-1 (A) on the main surface of the glass substrate 16 which is a temporary support substrate, in a later step
  • the flexible substrate 2a is bonded using a peelable resin release layer or the like.
  • a resin release layer a UV curable type or a thermosetting type is known.
  • the material of the resin release layer include acrylic resin, epoxy resin, and polyimide.
  • the protective film 8 is formed in the display area AR1 and the end area AR2 on the main surface of the flexible substrate 2a.
  • a sealing film 9a is formed in the display area AR1 so as to cover the organic electroluminescence element 6.
  • the sealing film 9b is formed on the sealing film 9a in the display area AR1, and the sealing film 9b as a peeling layer is formed so as to cover a part of the terminal 3 and the protective film 8 in the end area AR2. 'Form.
  • a sealing film 9c is formed so as to cover the sealing film 9b and a part of the wiring 5 in the display area AR1 and to cover the sealing film 9b ′ in the end area AR2.
  • the sealing films 9a and 9c are inorganic films, and the sealing films 9b and 9b 'are organic films having the same composition.
  • the sealing film 9b ′ is formed to facilitate the removal of the terminal in a later step, and the adhesion at the interface between the sealing film 9b ′ and the terminal 3 is that the sealing film 9b ′ is an organic film. If present, at the interface between the flexible substrate 2b and the adhesive layer 4b, the interface between the adhesive layer 4b and the sealing film 9c, and the interface between the sealing film 9c and the sealing film 9b ′, which are arranged in a later step. It is weaker than adhesion.
  • the sealing film 9b ′ is an inorganic film, the adhesion becomes weak as described above if the lower layer is made of SiCN.
  • the sealing film 9 b ′ may be an inorganic film as long as it satisfies the above-described relationship of adhesion.
  • the part on the end region AR2 side of the divided sealing film 9b ' is peeled off.
  • the adhesive force at the interface between the sealing film 9b ′ and the terminal 3 is, as described above, the interface between the flexible substrate 2b and the adhesive layer 4b, the interface between the adhesive layer 4b and the sealing film 9c, and This is because it is weaker than the adhesive force at the interface between the sealing film 9c and the sealing film 9b ′, and can be peeled off when the sealing film 9b ′ is cut.
  • the position of the end b ′ of the dividing position indicated by the line segment bb ′ is in the vicinity of the display area AR1 in the end area AR2 in the horizontal direction in FIG. ⁇ 3 in (G), the depth does not reach the interface between the sealing film 9 b ′ and the terminal 3.
  • the terminal 3 is exposed by removing the part of the end region AR2 of the divided flexible base material 2b, the adhesive layer 4b, the sealing film 9c, and the sealing film 9b '. Further, between the state of FIG. 6-3 (G) and the state of FIG. 5, a part of the flexible base material 2a and the protective film 8 in the end region AR2 is laser-cut by a panel cutting line.
  • the terminal 3 can be taken out without damaging the terminal 3. Moreover, since the terminal 3 is taken out by a dry method, the deterioration of the characteristics of the organic electroluminescence element 6 can be sufficiently prevented.
  • the flexible printed circuit board 11 is pressure-bonded to the exposed terminal 3 using the anisotropic conductive film 10 to complete the flexible display device 1b shown in FIG.
  • the sealing film 9 b ′ separated when the terminal is taken out remains in the vicinity of the flexible printed board 11. This makes it possible to confirm that the manufacturing method of the second embodiment is used even in a state after manufacturing.
  • the number of manufacturing steps in the second embodiment is smaller than the number of manufacturing steps in the first embodiment, and the manufacturing method of the flexible display device according to the second embodiment can increase the manufacturing efficiency.
  • the method for manufacturing a flexible display device according to the third embodiment is the same as the method for manufacturing the flexible display device according to the first embodiment except that the glass substrate, the heat absorption layer, and the polyimide layer are replaced with a flexible base material. Since they are the same as those in FIG.
  • the configuration of the flexible display device according to the third embodiment in the plane is the same as that in the first embodiment, and a schematic plan view thereof is as shown in FIG. Moreover, the structure in the cross section of the flexible display apparatus which concerns on Embodiment 3 is the same as that of Embodiment 2, and the cross-sectional schematic diagram is as having shown in FIG.
  • FIG. 7 is a schematic cross-sectional view showing a manufacturing flow of the flexible display device according to the third embodiment in a cross section taken along the line A-A ′ in FIG. 1.
  • the protective film 8 is formed in the display area AR1 and the end area AR2 on the main surface of the flexible substrate 2a.
  • a sealing film 9a is formed in the display area AR1 so as to cover the organic electroluminescence element 6.
  • the sealing film 9b is formed on the sealing film 9a in the display area AR1, and the sealing film 9b as a peeling layer is formed so as to cover a part of the terminal 3 and the protective film 8 in the end area AR2. 'Form.
  • a sealing film 9c is formed so as to cover the sealing film 9b and a part of the wiring 5 in the display area AR1 and to cover the sealing film 9b ′ in the end area AR2.
  • the sealing films 9a and 9c are inorganic films, and the sealing films 9b and 9b 'are organic films having the same composition.
  • the sealing film 9b ′ is formed for suitably taking out the terminal in a later step, and the adhesion at the interface between the sealing film 9b ′ and the terminal 3 is such that the sealing film 9b ′ is organic. If it is a film, the interface between the flexible substrate 2b and the adhesive layer 4b, the interface between the adhesive layer 4b and the sealing film 9c, and the sealing film 9c and the sealing film 9b ′, which will be arranged in a later step. It is weaker than the adhesion at the interface. If the sealing film 9b 'is an inorganic film, the adhesion becomes weak as described above if the lower layer is made of SiCN.
  • the terminal can be extracted in the same manner as in the second embodiment. As described above, the terminal 3 can be taken out without damaging the terminal 3. Moreover, since the terminal 3 is taken out by a dry method, the deterioration of the characteristics of the organic electroluminescence element 6 can be sufficiently prevented.
  • the flexible printed circuit board 11 is pressure-bonded to the exposed terminal 3 using the anisotropic conductive film 10 to complete the flexible display device 1b as shown in FIG. .
  • the number of manufacturing steps of the third embodiment is smaller than the number of manufacturing steps of the first and second embodiments, and the manufacturing method of the flexible display device according to the third embodiment can increase the manufacturing efficiency.
  • the organic electroluminescent layer of an organic electroluminescent element is formed also on a terminal, and is utilized as a peeling layer.
  • a flexible display apparatus is manufactured by the process of forming an organic electroluminescent element etc. on the main surface of a glass substrate, and peeling and bonding a glass substrate to a flexible base material after that.
  • FIG. 8 is a schematic cross-sectional view showing a cross section taken along the line A-A ′ in FIG. 1 of the flexible display device according to the fourth embodiment.
  • the flexible display device 1c according to the fourth embodiment is implemented except that the shape of the sealing film 9c and the organic electroluminescence layer 14 ′ are used instead of the sealing film 9b ′. Since it is the same as that of the flexible display device 1a according to the first aspect, the description of overlapping points will be omitted as appropriate.
  • the adhesive layer 4a, the polyimide layer 7, and the protective film 8 are laminated
  • the wiring 5 is arranged, and in the end area AR2 on the protective film 8, the terminal 3 derived from the wiring 5 is arranged.
  • the organic electroluminescent element 6 including the organic electroluminescent layer 14 is provided on the wiring 5, and sealing films 9a, 9b, and 9c that cover the organic electroluminescent element 6 are provided. .
  • the organic electroluminescent layer 14 ' is stacked on the terminal 3 in the vicinity of the display region AR1.
  • a flexible printed circuit board 11 is laminated on the exposed portion of the terminal 3 with an anisotropic conductive film 10 interposed therebetween.
  • FIGS. 9-1 to 9-4 are schematic cross-sectional views showing a manufacturing flow of the flexible display device according to the fourth embodiment in a cross section taken along the line segment A-A ′ in FIG.
  • the manufacturing method of the flexible display device according to the fourth embodiment is the same as that of the first embodiment except that the shape of the sealing film 9c and the organic electroluminescent layer 14 ′ are formed instead of the sealing film 9b ′. Therefore, the description of overlapping points is omitted as appropriate.
  • the formation of the heat absorption layer, the polyimide layer, the protective film, the wiring, and the terminal is the same as that in the first embodiment, and therefore, the description of overlapping points is omitted.
  • (A) Formation of Organic Electroluminescent Element As shown in FIG. 9A, the organic electroluminescent element 6 is formed on the wiring 5 in the display area AR1, and the end area AR2 An organic electroluminescent layer 14 ′ as a release layer is formed so as to cover the terminal 3 and part of the protective film 8.
  • the organic electroluminescent element 6 has a structure as already described with reference to FIG.
  • the organic electroluminescent layer 14 included in the organic electroluminescent element 6 may be a single layer type composed of only a light emitting layer, and in addition to the light emitting layer, a hole injection layer, a hole transport layer, an electron A multilayer type in which a transport layer, an electron injection layer, a hole blocking layer, an electron blocking layer and the like are laminated may be used. Two or more functions such as a hole injection layer / hole transport layer in which a hole injection layer and a hole transport layer are integrated, and an electron injection layer / electron transport layer in which an electron transport layer and an electron injection layer are integrated The layer which has it may be included.
  • Examples of the layer structure of the organic electroluminescent layer 14 include those shown in the following (a) to (e).
  • (A) Light emitting layer (b) Hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer (c) Hole injection layer / hole transport layer / light emitting layer / electron injection layer / electron transport layer (D) Hole injection layer / hole transport layer / electron blocking layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer (e) hole injection layer / hole transport layer / electron blocking layer / light emitting layer / Hole blocking layer / Electron injection / electron transport layer
  • the organic electroluminescent layer 14 ′ is formed simultaneously with at least one of the layers included in the organic electroluminescent layer 14 and has the same composition.
  • the organic electroluminescent layer 14 ′ is formed in order to suitably take out the terminal in a later step, and the adhesion at the interface between the organic electroluminescent layer 14 ′ and the terminal 3 is determined in the subsequent step. It is weaker than the adhesive force at the interface between the flexible substrate 2b and the adhesive layer 4b and the interface between the adhesive layer 4b and the organic electroluminescent layer 14 ′.
  • the organic electroluminescent layers 14 and 14 ' are arranged separately from each other as shown in FIG. 9A, but can be formed simultaneously using the same mask. Therefore, it is not necessary to add a mask for forming only the organic electroluminescent layer 14 '.
  • the organic electroluminescent layers 14 and 14 ′ are separated if the organic electroluminescent layer is formed on one side without being separated, and the terminal 3 is covered when the terminal is taken out in a later step. This is because if the upper layer of the end region AR2 is peeled off, the organic electroluminescence layer in the display region AR1 is also peeled off, and a portion other than the terminal 3 (a part of the wiring 5) may be exposed.
  • a sealing film 9a is formed in the display area AR1 so as to cover the organic electroluminescent element 6.
  • the sealing film 9b is formed on the sealing film 9a.
  • a sealing film 9 c is formed so as to cover a part of the sealing film 9 b and the wiring 5.
  • the sealing films 9a and 9c are inorganic films, and the sealing film 9b is an organic film.
  • the sealing film 9a that is the first layer is formed using a mask
  • the sealing film 9b that is the second layer is formed using the sealing film 9a.
  • a sealing film 9c, which is the third layer, is formed using the same mask as that used to form the sealing film so as to cover the sealing film 9b. Therefore, the number of masks used for forming the sealing film according to the fourth embodiment can be reduced by one from the number of masks used for forming the sealing film according to the first embodiment.
  • the cutting position indicated by the line aa ′ may be a position that crosses the heat absorption layer 17 and does not cross the wiring 5 and the terminal 3, and this is because the glass substrate 16 is peeled off in a later step. This is because a method of peeling from the interface between the heat absorption layer 17 and the polyimide layer 7 is employed as the method of performing this.
  • the portion of the divided organic electroluminescence layer 14 ′ on the end region AR 2 side is peeled off.
  • the adhesive force at the interface between the organic electroluminescent layer 14 ′ and the terminal 3 is the interface between the flexible substrate 2b and the adhesive layer 4b, and the adhesive layer 4b and the organic electroluminescent layer 14 as described above. This is because it is weaker than the adhesive strength at the interface with ', and can be peeled off if the organic electroluminescent layer 14' is cut.
  • the position of the end b ′ of the dividing position indicated by the line segment bb ′ is in the vicinity of the display area AR1 in the end area AR2 in the horizontal direction in FIG. In the vertical direction in (H) of ⁇ 4, the depth does not reach the interface between the organic electroluminescent layer 14 ′ and the terminal 3.
  • the end b 'of the dividing position is preferably a position (depth) at which 50% or more and 90% or less of the thickness of the organic electroluminescent layer 14' on the terminal 3 is divided. Note that as the depth at which the organic electroluminescent layer 14 ′ is divided is larger, a part of the divided organic electroluminescent layer 14 ′ can be more easily peeled off.
  • the depth at which the organic electroluminescent layer 14 ′ is divided is less than 50% of the thickness of the organic electroluminescent layer 14 ′ on the terminal 3, peeling may be difficult, and the organic electroluminescent layer When it exceeds 90% of the thickness on the terminal 3 of 14 ', since the thickness of the organic electroluminescence layer 14' is usually as thin as about 200 nm or more and 400 nm or less, the terminal 3 may be damaged at the time of division. .
  • the terminal 3 is exposed by removing portions of the divided flexible base material 2b, the adhesive layer 4b, and the organic electroluminescence layer 14 'on the end region AR2 side.
  • the terminal 3 can be taken out without damaging the terminal 3. Moreover, since the terminal is taken out by a dry method, the deterioration of the characteristics of the organic electroluminescence element 6 can be sufficiently prevented.
  • the flexible printed circuit board 11 is pressure-bonded to the exposed terminal 3 using the anisotropic conductive film 10 to complete the flexible display device 1c as shown in FIG. .
  • the organic electroluminescence layer 14 'separated by taking out the terminals described above remains in the vicinity of the flexible printed circuit board 11. This makes it possible to confirm that the manufacturing method of the present embodiment has been used even in a state after manufacture.
  • the reason why the organic electroluminescence layer 14 ′ remains will be described.
  • the end portion of the organic electroluminescent layer 14 ′ is completely not to leave the separated organic electroluminescent layer 14 ′. It is difficult to split at the same position.
  • the amount of blur is large, so the film thickness at the end of the organic electroluminescent layer 14 ′ may be different from the designed target value. Therefore, in order to increase the production efficiency, if the film thickness of the organic electroluminescent layer 14 ′ is divided at a stable position, adjustment of the dividing position or the like occurs each time.
  • the organic electroluminescent layer 14 ' remains in the flexible display device 1c.
  • an organic electroluminescence element or the like is formed on the main surface of the glass substrate, and then a process of peeling the glass substrate and attaching it to a flexible substrate is adopted.
  • a process of peeling the glass substrate and attaching it to a flexible substrate is adopted.
  • the method is the same as the method for manufacturing the flexible display device according to the second embodiment except that the shape of the sealing film 9c and the organic electroluminescent layer 14 ′ are formed instead of the sealing film 9b ′. .
  • the method is the same as the manufacturing method of the flexible display device according to the third embodiment except that the shape of the sealing film 9c and the organic electroluminescence layer 14 ′ are formed instead of the sealing film 9b ′. .
  • Embodiment 5 a film having a self-adsorption layer is used as the release layer. Moreover, a flexible display apparatus is manufactured by the process of forming an organic electroluminescent element etc. on the main surface of a glass substrate, and peeling and bonding a glass substrate to a flexible base material after that.
  • FIG. 10 is a schematic cross-sectional view showing a cross section taken along line A-A ′ in FIG. 1 of the flexible display device according to the fifth embodiment.
  • the flexible display device 1d according to the fifth embodiment has a configuration other than the shape of the sealing film 9c and the film 18 having the self-adsorption layer 19 instead of the sealing film 9b ′. Since it is the same as that of the flexible display device 1a according to the first embodiment, description of overlapping points will be omitted as appropriate.
  • the adhesive layer 4a, the polyimide layer 7, and the protective film 8 are laminated
  • the wiring 5 is arranged, and in the end area AR2 on the protective film 8, the terminal 3 derived from the wiring 5 is arranged.
  • an organic electroluminescence element 6 is provided on the wiring 5, and sealing films 9a, 9b, and 9c that cover the organic electroluminescence element 6 are provided.
  • the self-adsorption layer 19 and the film 18 are laminated on the terminal 3 in the vicinity of the display region AR1.
  • a flexible printed circuit board 11 is laminated on the exposed portion of the terminal 3 with an anisotropic conductive film 10 interposed therebetween.
  • FIGS. 11-1 to 11-4 are schematic cross-sectional views showing a manufacturing flow of the flexible display device according to the fifth embodiment in a cross section taken along the line segment A-A ′ in FIG.
  • the manufacturing method of the flexible display device according to the fifth embodiment is the same as that of the first embodiment except that the shape of the sealing film 9c and the film 18 having the self-adsorption layer 19 are used instead of the sealing film 9b ′. Therefore, the description of overlapping points is omitted as appropriate.
  • the formation of the heat absorption layer / polyimide layer, the protective film, the wiring / terminal, and the organic electroluminescence element is the same as that in the first embodiment.
  • a sealing film 9a is formed in the display area AR1 so as to cover the organic electroluminescence element 6.
  • the sealing film 9b is formed on the sealing film 9a, and the sealing film 9c is formed so as to cover the sealing film 9b and part of the wiring 5.
  • the sealing films 9a and 9c are inorganic films, and the sealing film 9b is an organic film.
  • the sealing film 9a that is the first layer is formed using a mask
  • the sealing film 9b that is the second layer is formed using the sealing film 9a.
  • a sealing film 9c, which is the third layer, is formed using the same mask as that used to form the sealing film so as to cover the sealing film 9b. Therefore, the number of masks used for forming the sealing film according to the fifth embodiment can be reduced by one from the number of masks used for forming the sealing film according to the first embodiment.
  • the end region AR2 is provided with a self-adsorption layer 19 as a peeling layer so as to cover a part of the terminal 3 and the protective film 8.
  • a film 18 having the same is attached.
  • the film 18 may be bonded using an adhesive or the like.
  • the terminal 3 Since the adhesive or the like does not adhere to the terminal, the terminal can be taken out suitably.
  • the material of the film 18 include polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the self-adsorption layer 19 include a layer formed by subjecting the film 18 to surface processing, an olefin-based adhesive layer, and a resin layer whose adhesion is lowered by UV irradiation.
  • the film 18 having the self-adsorptive layer 19 is formed in order to suitably take out the terminal in a later process, and the adhesive force at the interface between the self-adsorptive layer 19 and the terminal 3 is the same as that of the flexible substrate 2b. It is weaker than the adhesive force at the interface between the adhesive layer 4b and the interface between the adhesive layer 4b and the film 18.
  • the adhesive force at the interface between the self-adsorption layer 19 and the terminal 3 is stronger than the adhesive force at the interface between the flexible substrate 2b and the adhesive layer 4b and the interface between the adhesive layer 4b and the film 18,
  • the film 18 having the self-adsorbing layer 19 is peeled in this step, the terminal 3 is damaged, or a peeling residue is generated, and the peeling residue or the like needs to be removed.
  • the film is bonded after the formation of the sealing film.
  • the reason is that the film 18 is formed because the sealing film is formed in vacuum according to the CVD method, the vapor deposition method, or the like. This is because there is a possibility of deteriorating the characteristics of the organic electroluminescence element 6 due to the gas generated from the above.
  • the film bonding in this embodiment may be performed before the formation of the sealing film.
  • the number of manufacturing steps of the flexible display device in the present embodiment is greater than that in the first embodiment because there is a film bonding step, but the organic electroluminescence element 6 and the sealing films 9a, 9b, 9c and the like have the same pattern as that of a normal organic electroluminescence display device, and a mask can be shared. Therefore, a new mask need not be added.
  • the flexible substrate 2b, the adhesive layer 4b, the film 18 and the self-adsorptive layer from the flexible substrate 2b side along the line aa ′ shown in FIG. 19 is divided using a laser or the like, and then the remaining layers and the glass substrate 16 are divided from the glass substrate 16 side.
  • the cutting position indicated by the line aa ′ may be a position that crosses the heat absorption layer 17 and does not cross the wiring 5 and the terminal 3, and this is because the glass substrate 16 is peeled off in a later step. This is because a method of peeling from the interface between the heat absorption layer 17 and the polyimide layer 7 is employed as the method of performing this.
  • the part of the divided film 18 and the end region AR2 side of the self-adsorption layer 19 is peeled off. This is because the adhesion at the interface between the self-adsorption layer 19 and the terminal 3 is greater than the adhesion at the interface between the flexible substrate 2b and the adhesive layer 4b and the interface between the adhesive layer 4b and the film 18, as described above. This is because the film can be peeled off if the self-adsorption layer 19 is cut.
  • the position of the end b ′ of the dividing position indicated by the line segment bb ′ is in the vicinity of the display area AR1 of the end area AR2 in the horizontal direction in FIG. 4 (H), the depth does not reach the interface between the self-adsorption layer 19 and the terminal 3.
  • the end b 'of the dividing position is preferably a position (depth) at which 50% or more and 90% or less of the thickness of the self-adsorption layer 19 on the terminal 3 is divided. Note that, as the depth at which the self-adsorption layer 19 is divided is larger, a part of the divided film 18 and the self-adsorption layer 19 can be more easily peeled off. If the depth at which the self-adsorption layer 19 is divided is less than 50% of the thickness of the self-adsorption layer 19 on the terminal 3, peeling may be difficult. If it exceeds 90%, the terminal 3 may be damaged when it is divided.
  • the terminal 3 is exposed by removing portions of the divided flexible base material 2b, the adhesive layer 4b, the film 18 and the self-adsorption layer 19 on the end region AR2 side.
  • the terminal 3 can be taken out without damaging the terminal 3. Moreover, since the terminal is taken out by a dry method, the deterioration of the characteristics of the organic electroluminescence element 6 can be sufficiently prevented.
  • the flexible printed circuit board 11 is pressure-bonded to the exposed terminal 3 using the anisotropic conductive film 10 to complete the flexible display device 1d as shown in FIG. .
  • the film 18 and the self-adsorptive layer 19 which are separated by taking out the terminals described above remain in the vicinity of the flexible printed circuit board 11. This makes it possible to confirm that the manufacturing method of the present embodiment has been used even in a state after manufacture. In taking out the terminals described above, it is difficult to divide at the same position as the ends of the film 18 and the self-adsorption layer 19 in consideration of the cutting accuracy of the cutting device. Therefore, the film 18 and the self-adsorption layer 19 remain in the flexible display device 1d.
  • an organic electroluminescence element or the like is formed on the main surface of the glass substrate, and then a process of peeling the glass substrate and attaching it to a flexible substrate is adopted.
  • a process of peeling the glass substrate and attaching it to a flexible substrate is adopted.
  • an organic electroluminescent element etc. are formed on what bonded the flexible base material on the main surface of a glass substrate, and the process of peeling a glass substrate at a next process is employ
  • it is the same as the manufacturing method of the flexible display device according to the second embodiment except that the shape of the sealing film 9c and the film 18 having the self-adsorption layer 19 are formed instead of the sealing film 9b ′. is there.
  • Embodiment 6 relates to a flexible display device including a liquid crystal layer, and uses an interlayer film as a release layer.
  • a flexible display device is manufactured by a process in which a liquid crystal layer or the like is disposed on the main surface of the glass substrate, and then the glass substrate is peeled off and attached to a flexible base material.
  • FIG. 12 is a schematic cross-sectional view showing a cross section taken along the line A-A ′ in FIG. 1 of the flexible display device according to the sixth embodiment.
  • the flexible display device 1e according to the sixth embodiment has a configuration in which a liquid crystal layer 23 and a sealing material 22 are disposed between a flexible substrate 2a and a flexible substrate 2b.
  • an adhesive layer 4a, a polyimide layer 7, and a protective film 8 are sequentially laminated.
  • the wiring 5 is arranged, and in the end area AR2 on the protective film 8, the terminal 3 derived from the wiring 5 is arranged.
  • an interlayer film 12b provided with an opening and a pixel electrode 20 electrically connected to the wiring 5 through the opening of the interlayer film 12b are arranged on the wiring 5.
  • an interlayer film 12b ' is stacked on the terminal 3 in the vicinity of the display region AR1.
  • a color filter layer 21 facing the pixel electrode 20 is disposed on the surface of the flexible substrate 2b on the liquid crystal layer 23 side.
  • a flexible printed circuit board 11 is laminated on the exposed portion of the terminal 3 with an anisotropic conductive film 10 interposed therebetween.
  • FIGS. 13-1 to 13-4 are schematic cross-sectional views showing a manufacturing flow of the flexible display device according to the sixth embodiment in a cross section taken along the line segment A-A ′ in FIG.
  • the formation of the heat absorption layer, the polyimide layer, the protective film, the wiring, and the terminal is the same as that in the first embodiment, and therefore, the description of overlapping points is omitted.
  • an interlayer film 12b having an opening is formed on the wiring 5 in the display area AR1, and in the end area AR2,
  • An interlayer film 12b ′ as a peeling layer is formed so as to cover the terminal 3 and part of the protective film 8.
  • the interlayer films 12b and 12b ′ have the same composition.
  • the interlayer film 12b ′ is formed in order to suitably take out the terminal in a subsequent process. Examples of the material for the interlayer films 12b and 12b ′ include acrylic resins.
  • the interlayer films 12b and 12b ' are arranged separately from each other as shown in FIG. 13A, but are formed simultaneously using the same mask. Therefore, it is not necessary to add a mask for forming only the interlayer film 12b '.
  • the interlayer films 12b and 12b ′ are separated if the interlayer film is formed on one surface without being separated, and the upper layer of the end region AR2 that covers the terminal 3 when the terminal is taken out in a later step. This is because the interlayer film and the sealing material 22 in the display area AR1 are peeled off, and the part other than the terminal 3 (part of the wiring 5) may be exposed.
  • the display area AR1 is formed on the interlayer film 12b so as to be electrically connected to the wiring 5 through the opening of the interlayer film 12b.
  • the pixel electrode 20 is formed on the wiring 5 in the opening.
  • a flexible base material 2b (hereinafter also referred to as a color filter substrate) in which the color filter layer 21 is formed on the main surface. ) So as to face the glass substrate 16 through the sealing material 22.
  • the color filter layer 21 is bonded so as to face the pixel electrode 20.
  • the liquid crystal material for forming the liquid crystal layer 23 may be dropped in advance on either the substrate on which the plurality of layers described above are formed on the main surface of the glass substrate 16 or the color filter substrate. Then, the substrates may be encapsulated after being bonded together.
  • the method of forming the color filter layer 21 directly on the main surface of the flexible base material 2b for example, or providing the transparent film for peeling on a glass substrate
  • a method may be used in which the color filter layer 21 is formed on the transparent film, the glass substrate is peeled off, and then the flexible substrate 2b is bonded using an adhesive or the like.
  • the flexible substrate 2b is divided from the flexible substrate 2b side along the line aa ′ shown in FIG. Then, from the glass substrate 16 side, the layers other than the glass substrate 16 and the terminal 3 of the end region AR2 are divided.
  • the cutting position indicated by the line aa ′ may be a position that crosses the heat absorption layer 17 and does not cross the wiring 5 and the terminal 3, and this is because the glass substrate 16 is peeled off in a later step. This is because a method of peeling from the interface between the heat absorption layer 17 and the polyimide layer 7 is employed as the method of performing this.
  • the flexible base material 2b is divided from the flexible base material 2b side along the line segment bb ′ shown in FIG. 13-4 (H), and further cut into the interlayer film 12b ′.
  • Laser irradiation is suitable as the dividing method.
  • the same laser as that used in the above-described substrate cutting after bonding can be used as the laser.
  • the portion on the end region AR2 side of the divided interlayer film 12b ' is peeled off. This is because the adhesive force at the interface between the interlayer film 12b 'and the terminal 3 is weak, so that if the interlayer film 12b' is cut, it can be peeled off.
  • the position of the end b ′ of the dividing position indicated by the line segment bb ′ is in the vicinity of the display area AR1 of the end area AR2 in the horizontal direction in FIG. 4 (H), the depth does not reach the interface between the interlayer film 12 b ′ and the terminal 3.
  • the end b 'of the dividing position is preferably a position (depth) at which 50% or more and 90% or less of the thickness of the interlayer film 12b' on the terminal 3 is divided. Note that as the depth at which the interlayer film 12 b ′ is divided is larger, a part of the divided interlayer film 12 b ′ can be more easily separated.
  • the depth at which the interlayer film 12b ′ is divided is less than 50% of the thickness on the terminal 3 of the interlayer film 12b ′, peeling may be difficult, and the thickness of the interlayer film 12b ′ on the terminal 3 may be difficult. If it exceeds 90%, the terminal 3 may be damaged when it is divided.
  • the terminal 3 is exposed by removing the divided flexible base material 2b and the portion on the end region AR2 side of the interlayer film 12b '.
  • the terminal 3 can be taken out without damaging the terminal 3. Further, since the terminal is taken out by a dry method, the deterioration of the characteristics of the liquid crystal layer 23 can be sufficiently prevented.
  • the flexible printed circuit board 11 is pressure-bonded to the exposed terminal 3 using the anisotropic conductive film 10 to complete the flexible display device 1e as shown in FIG. .
  • the interlayer film 12b 'separated by the above-described terminal removal remains in the vicinity of the flexible printed circuit board 11. This makes it possible to confirm that the manufacturing method of the present embodiment has been used even in a state after manufacture.
  • the interlayer film 12b 'remains will be described below. Considering the amount of blur when the interlayer film 12b ′ is formed using a mask, it is difficult to divide at the same position as the end of the interlayer film 12b ′ so that the divided interlayer film 12b ′ does not remain. It is. Further, the film thickness at the end of the interlayer film 12b 'may be different from a design target value. Therefore, in order to increase the manufacturing efficiency, if the film thickness of the interlayer film 12b 'is to be divided at a stable position, adjustment of the dividing position or the like occurs each time. Furthermore, in consideration of the cutting accuracy of the cutting device, it is difficult to cut at the end of the interlayer film 12b ′. Further, if the cutting position is shifted to the display area AR1, the sealing material 22 is damaged. become. Therefore, the interlayer film 12b 'remains in the flexible display device 1e.
  • a liquid crystal layer or the like is formed on the main surface of the glass substrate, and then a process of peeling the glass substrate and attaching it to a flexible base material is adopted.
  • a liquid crystal layer or the like is formed on a glass substrate on which a flexible base material is bonded and a process of peeling the glass substrate in a later step is employed.
  • the interlayer films 12b and 12b ′, the pixel electrode 20, the sealing material 22 and the liquid crystal layer 23 are formed instead of the organic electroluminescence element 6, the sealing films 9a, 9b, 9b ′ and 9c and the adhesive layer 4b. Except for this, it is the same as the method for manufacturing the flexible display device according to the second embodiment.
  • the interlayer films 12b and 12b ′, the pixel electrode 20, the sealing material 22 and the liquid crystal layer 23 are formed instead of the organic electroluminescence element 6, the sealing films 9a, 9b, 9b ′ and 9c and the adhesive layer 4b. Except for this, it is the same as the method for manufacturing the flexible display device according to the third embodiment.
  • the adhesion at the interface between the release layer and the plurality of terminals is preferably 0.05 N / 25 mm or more and 0.5 N / 25 mm or less. Thereby, a part of the separated release layer can be easily peeled, and the terminal can be taken out without damaging the terminal.
  • the said adhesive force is less than 0.05 N / 25mm, there exists a possibility that peeling layer itself may peel without permission in the process after peeling layer formation. If it exceeds 0.5 N / 25 mm, peeling may be difficult, and other layers (upper layer or lower layer than the terminal) may be peeled off or a peeling residue may be formed on the upper part of the terminal.
  • the adhesion can be measured by a 90 ° peel test for glass.
  • an autograph apparatus manufactured by Shimadzu Corporation can be used as an apparatus for measuring the adhesion.
  • the depth that does not reach the interface with the plurality of terminals is preferably a depth at which 50% or more and 90% or less of the thickness of the release layer on the plurality of terminals is divided.
  • a part of the separated release layer can be easily peeled, and the terminal can be taken out without damaging the terminal.
  • the depth at which the release layer is divided is larger, a part of the separated release layer can be more easily released.
  • the depth at which the release layer is divided is less than 50% of the thickness of the release layer on the plurality of terminals, it is difficult to easily release a part of the separated release layer. If it exceeds 90% of the thickness of the release layer on the plurality of terminals, the terminal may be damaged when divided.
  • the wiring preferably includes a portion constituting a thin film transistor element, and the thin film transistor element preferably includes a semiconductor layer including an oxide semiconductor.
  • the processing temperature of an oxide semiconductor is usually lower than that of low-temperature polysilicon. For this reason, when the heat resistance of the other member formed before the semiconductor layer is taken into consideration, a flexible display device can be more preferably manufactured by forming a semiconductor layer containing an oxide semiconductor.
  • an oxide semiconductor has an advantage of higher mobility and less characteristic variation than amorphous silicon. For this reason, a thin film transistor element including an oxide semiconductor can be driven at a higher speed than a thin film transistor element including amorphous silicon, has a high driving frequency, and can reduce a ratio of one pixel. This is suitable for driving a next-generation display device.
  • the oxide semiconductor film is formed by a simpler process than the polycrystalline silicon film, it has an advantage that it can be applied to a device that requires a large area.
  • oxide semiconductor examples include a compound (In—Ga—Zn—O) including indium (In), gallium (Ga), zinc (Zn), and oxygen (O), indium (In), From a compound composed of tin (Tin), zinc (Zn) and oxygen (O) (In-Tin-Zn-O), indium (In), aluminum (Al), zinc (Zn) and oxygen (O) Examples thereof include a compound (In—Al—Zn—O).
  • a layer having the same composition as the release layer may be disposed in the display area so as to be separated from the release layer.
  • an organic electroluminescent element As said flexible display apparatus, what is provided with an organic electroluminescent element is mentioned.
  • the flexible display device is a first electrically connected to the wiring.
  • An organic electroluminescent element having an electrode, a second electrode, and an organic electroluminescent layer between the first electrode and the second electrode is provided in the display region, and is the same as the release layer.
  • the layer which is the composition is at least a part of the sealing film covering the organic electroluminescence element, and at the time of forming the release layer in the step (2), at least a part of the sealing film is formed together.
  • the flexible display device is between the first electrode electrically connected to the wiring, the second electrode, and the first electrode and the second electrode.
  • Organic electroluminescence An organic electroluminescent element having a sense layer is provided in the display region, and the layer having the same composition as the release layer is the organic electroluminescent layer, and the release layer is formed in the step (2). The aspect which forms together the said organic electroluminescent layer is mentioned.
  • a release layer when a release layer is formed, a specific layer is formed together” means, for example, that a film is formed at the same time using a common apparatus, and this film is formed simultaneously using a common mask. It means filming (patterning).
  • a layer having a composition different from that of the release layer may be disposed in the display area so as to be separated from the release layer.
  • the flexible display device further includes a first electrode electrically connected to the wiring, a second electrode, and a gap between the first electrode and the second electrode.
  • the organic electroluminescent element which has the organic electroluminescent layer which exists in the said display area is provided in the said display area,
  • the aspect whose said peeling layer is a film which has a self-adsorption layer is mentioned.
  • the step of forming the sealing film so as to cover the organic electroluminescence element may be between the step (1) and the step (2).
  • the step (2) and the step ( It may be between 3).
  • a sealing film may be formed so as to cover the organic electroluminescent element between the step (1) and the step (2), or the step (2) and the step (3). Between them, a sealing film may be formed so as to cover the organic electroluminescent element. According to these, a flexible display apparatus provided with an organic electroluminescent element can be manufactured suitably.
  • the sealing film examples include an inorganic film, a laminated inorganic film, and a laminated inorganic film and organic film. Since the inorganic film has high moisture resistance, deterioration of the characteristics of the organic electroluminescent element due to moisture can be effectively prevented by using it as a sealing film. In addition, since the organic film can be easily thickened, it can be used as a sealing film to cover the foreign matter, and the foreign matter can be sufficiently prevented from affecting the display quality.
  • the flexible display device may be the first flexible base material or the temporary support substrate.
  • the interlayer film is formed together with the interlayer film when the release layer is formed in the step (2).
  • the adhesion at the interface between the release layer and the plurality of terminals is preferably 0.05 N / 25 mm or more and 0.5 N / 25 mm or less.
  • the wiring preferably includes a portion constituting a thin film transistor element, and the thin film transistor element preferably includes a semiconductor layer including an oxide semiconductor.
  • a layer having the same composition as the release layer may be disposed, and the release layer and the layer having the same composition as the release layer may be spaced apart.
  • the flexible display device examples include an organic electroluminescent element.
  • the display element includes a first electrode electrically connected to the wiring, a second electrode, and the first electrode.
  • the layer having the same composition as the release layer is the organic electroluminescent element.
  • Examples of the configuration of the sealing film include an inorganic film, a laminated inorganic film, and a laminated inorganic film and organic film.
  • a layer having a composition different from that of the release layer may be disposed in the display area, and the release layer and a layer having a composition different from that of the release layer may be disposed separately from each other.
  • the display element includes a first electrode electrically connected to the wiring, a second electrode, and an organic layer between the first electrode and the second electrode. It is an organic electroluminescent element which has an electroluminescent layer, The aspect whose said peeling layer is a film which has a self-adsorption layer is mentioned.
  • the display element is a liquid crystal layer
  • the flexible display device further includes the wiring and A mode in which the pixel electrode that is electrically connected and the interlayer film between the wiring and the pixel electrode and having the same composition as the peeling layer is the interlayer film is exemplified.
  • a second adhesive layer, a polyimide layer, and a protective film may be sequentially disposed between the first flexible substrate and the wiring.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)

Abstract

本発明は、端子に損傷を与えることなく端子の取り出しを行い、かつ、表示素子の特性の劣化を充分に防止することができるフレキシブル表示装置の製造方法と、上記フレキシブル表示装置の製造方法により好適に製造されるフレキシブル表示装置とを提供する。本発明のフレキシブル表示装置の製造方法は、第1の接着層によって貼り合わされた、第1のフレキシブル基材、及び、第2のフレキシブル基材を備えるフレキシブル表示装置の製造方法であって、(1)配線及び複数の端子を形成する工程、(2)上記複数の端子を直に覆う剥離層を形成する工程、(3)上記剥離層と上記第2のフレキシブル基材との間にある界面で、上記剥離層と上記複数の端子との界面における密着力よりも強い密着力が得られるように、上記第1の接着層、及び、上記第2のフレキシブル基材を含む複数層を順次配置する工程、及び、(4)上記複数の端子を露出させる工程を順に含む。 

Description

フレキシブル表示装置の製造方法、及び、フレキシブル表示装置
本発明は、フレキシブル表示装置の製造方法、及び、フレキシブル表示装置に関する。より詳しくは、有機エレクトロルミネセンス素子、又は、液晶層等の表示素子を備えるフレキシブル表示装置の製造方法、及び、フレキシブル表示装置に関するものである。
近年、液晶表示装置、有機エレクトロルミネセンス表示装置等の薄型表示装置が急速に普及しているが、これらの薄型表示装置の商品性を更に高めるため、新たな機能を備えた次世代の表示装置の開発が行われている。そのような次世代の表示装置の一つとして、折り曲げ可能なフレキシブル表示装置が挙げられる。
フレキシブル表示装置を製造するためには、フレキシブルな基板上に薄膜トランジスタ等の素子を形成する必要がある。そのための方法として、ガラス基板上に予め形成した薄膜トランジスタをフレキシブルな基板上に転写する方法が知られている(例えば、特許文献1、2参照)。この方法において、特許文献2では、外部端子への接続に用いられる端子の取り出しを、端子上部にある層の所定部分をエッチングで除去することにより行っている。
特開2004-214281号公報 特開2009-205941号公報
フレキシブル表示装置の製造において、端子の取り出し方法によっては、端子に損傷を与え、表示素子の特性の劣化が生じることがあった。例えば、上記特許文献2に記載の発明では、上記特許文献2の図9に示されたようなガラス基板をフッ酸でエッチングし、保護膜を反応性イオンエッチング法によりエッチング除去することで、端子を露出させている。しかしながら、フッ酸を用いたウェットエッチングを行う場合は、通常、ウェットエッチング後に洗浄工程が存在するため、上記特許文献2の図9に示されたようなフレキシブル基板やシール材からの水分の侵入を充分に防止することができず、有機エレクトロルミネセンス素子の特性が劣化するという問題が生じると考えられる。
このように、有機エレクトロルミネセンス素子を備えるフレキシブル表示装置の場合、ウェットエッチング等で端子上部にある封止用のフレキシブル基材や接着層等を除去することによって端子の取り出しを行うと、有機エレクトロルミネセンス素子の特性が劣化することがあった。これは、有機エレクトロルミネセンス素子が、水分や酸素に弱い性質を有しているためである。また、有機エレクトロルミネセンス素子を覆うように封止膜を形成する場合においても、ウェットエッチング等による水分等の侵入の影響を充分に防止することはできなかった。
一方、フレキシブル表示装置の製造方法において、端子の取り出し工程を行わないようにするため、例えば、封止用のフレキシブル基材や接着層を、端子上部(端子を覆う部分)以外の部分に選択的に貼り合わせることが考えられる。しかしながら、この場合は、封止用のフレキシブル基材に対向するフレキシブル基材を貼り合わせる前段階としてガラス基板を剥離する際に、端子を支持する部材(例えば、封止用のフレキシブル基材、及び、接着層)が無いため、ガラス基板の剥離時に端子の破れやしわ等の損傷が生じることがあった。
本発明は、上記現状に鑑みてなされたものであり、端子の取り出しを端子に損傷を与えることなく行い、かつ、表示素子の特性の劣化を充分に防止することができるフレキシブル表示装置の製造方法と、上記フレキシブル表示装置の製造方法により製造できるフレキシブル表示装置とを提供することを目的とするものである。
本発明者は、端子の取り出しを端子に損傷を与えることなく行い、かつ、表示素子の特性の劣化を充分に防止することができるフレキシブル表示装置の製造方法について種々検討したところ、端子との界面における密着力が弱い剥離層を端子上に予め形成することに着目した。そして、剥離層と端子との界面における密着力を、剥離層及び端子が設けられていない対向側のフレキシブル基材との間にある界面のうちで最も弱いものとし、対向側のフレキシブル基材側から、剥離層の上層を分断し、更に端子との界面に到達しない深さまで剥離層に切り込みを入れ、分断された剥離層を剥離し、分断された剥離層の上層及び剥離層を除去することで、端子に損傷を与えることなく端子の取り出しを行うことができることを見出した。また、ウェットエッチング等の湿式の方法ではなく、乾式の方法により端子の取り出しを行うため、表示素子の特性の劣化を充分に防止することができることを見出した。これにより、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
すなわち、本発明の一態様によれば、第1の接着層によって貼り合わされた、第1のフレキシブル基材、及び、第2のフレキシブル基材を備えるフレキシブル表示装置の製造方法であって、下記工程(1)~(4)を順に含むフレキシブル表示装置の製造方法であってもよい。
(1)上記第1のフレキシブル基材、又は、仮の支持基板の主面上の表示領域に配線を形成するとともに、上記主面上の端部領域に上記配線から導出された複数の端子を形成する工程
(2)上記複数の端子を直に覆う剥離層を形成する工程
(3)上記剥離層と上記第2のフレキシブル基材との間にある界面で、上記剥離層と上記複数の端子との界面における密着力よりも強い密着力が得られるように、上記第1の接着層、及び、上記第2のフレキシブル基材を含む複数層を上記表示領域及び上記端部領域に順次配置する工程
(4)上記端部領域の上記表示領域側で、上記複数層を分断、及び上記複数の端子との界面に到達しない深さまで上記剥離層に切り込みを入れ、更に、分断された上記剥離層の上記表示領域側とは反対側の部分を剥離し、分断された上記複数層及び上記剥離層の上記表示領域側とは反対側の部分を除去することにより、上記複数の端子の少なくとも一部を露出させる工程
また、本発明の別の一態様によれば、第1のフレキシブル基材と、上記第1のフレキシブル基材の主面上の表示領域に配置された配線及び表示素子と、上記第1のフレキシブル基材の主面上の端部領域に配置され、上記配線から導出された複数の端子と、少なくとも上記表示領域に配置された第1の接着層と、上記第1の接着層によって少なくとも上記表示領域に貼り合わされた第2のフレキシブル基材とを備えるフレキシブル表示装置であって、上記複数の端子は、上記表示領域側に剥離層に覆われた部分を有し、上記剥離層と上記複数の端子との界面における密着力は、上記剥離層と上記第2のフレキシブル基材との間にある界面のうちで最も弱いフレキシブル表示装置であってもよい。
なお、上記本発明の別の一態様におけるフレキシブル表示装置は、上記本発明の一態様におけるフレキシブル表示装置の製造方法により製造することができる。
本発明によれば、端子に損傷を与えることなく端子の取り出しを行い、かつ、表示素子の特性の劣化を充分に防止することができるフレキシブル表示装置の製造方法と、上記フレキシブル表示装置の製造方法により好適に製造されるフレキシブル表示装置とを提供することができる。
実施形態1~6に係るフレキシブル表示装置の平面模式図である。 実施形態1に係るフレキシブル表示装置の図1中の線分A-A’に沿った断面を示す断面模式図である。 有機エレクトロルミネセンス素子の断面模式図である。 実施形態1に係るフレキシブル表示装置の製造フローを、図1中の線分A-A’に沿った断面において示した断面模式図である(工程A~D)。 実施形態1に係るフレキシブル表示装置の製造フローを、図1中の線分A-A’に沿った断面において示した断面模式図である(工程E~F)。 実施形態1に係るフレキシブル表示装置の製造フローを、図1中の線分A-A’に沿った断面において示した断面模式図である(工程G~H)。 実施形態1に係るフレキシブル表示装置の製造フローを、図1中の線分A-A’に沿った断面において示した断面模式図である(工程I~J)。 実施形態1に係るフレキシブル表示装置の製造フローを、図1中の線分A-A’に沿った断面において示した断面模式図である(工程K)。 実施形態2及び3に係るフレキシブル表示装置の図1中の線分A-A’に沿った断面を示す断面模式図である。 実施形態2に係るフレキシブル表示装置の製造フローを、図1中の線分A-A’に沿った断面において示した断面模式図である(工程A~D)。 実施形態2に係るフレキシブル表示装置の製造フローを、図1中の線分A-A’に沿った断面において示した断面模式図である(工程E~F)。 実施形態2に係るフレキシブル表示装置の製造フローを、図1中の線分A-A’に沿った断面において示した断面模式図である(工程G)。 実施形態3に係るフレキシブル表示装置の製造フローを、図1中の線分A-A’に沿った断面において示した断面模式図である。 実施形態4に係るフレキシブル表示装置の図1中の線分A-A’に沿った断面を示す断面模式図である。 実施形態4に係るフレキシブル表示装置の製造フローを、図1中の線分A-A’に沿った断面において示した断面模式図である(工程A~C)。 実施形態4に係るフレキシブル表示装置の製造フローを、図1中の線分A-A’に沿った断面において示した断面模式図である(工程D~E)。 実施形態4に係るフレキシブル表示装置の製造フローを、図1中の線分A-A’に沿った断面において示した断面模式図である(工程F~G)。 実施形態4に係るフレキシブル表示装置の製造フローを、図1中の線分A-A’に沿った断面において示した断面模式図である(工程H)。 実施形態5に係るフレキシブル表示装置の図1中の線分A-A’に沿った断面を示す断面模式図である。 実施形態5に係るフレキシブル表示装置の製造フローを、図1中の線分A-A’に沿った断面において示した断面模式図である(工程A~C)。 実施形態5に係るフレキシブル表示装置の製造フローを、図1中の線分A-A’に沿った断面において示した断面模式図である(工程D~E)。 実施形態5に係るフレキシブル表示装置の製造フローを、図1中の線分A-A’に沿った断面において示した断面模式図である(工程F~G)。 実施形態5に係るフレキシブル表示装置の製造フローを、図1中の線分A-A’に沿った断面において示した断面模式図である(工程H)。 実施形態6に係るフレキシブル表示装置の図1中の線分A-A’に沿った断面を示す断面模式図である。 実施形態6に係るフレキシブル表示装置の製造フローを、図1中の線分A-A’に沿った断面において示した断面模式図である(工程A~C)。 実施形態6に係るフレキシブル表示装置の製造フローを、図1中の線分A-A’に沿った断面において示した断面模式図である(工程D~E)。 実施形態6に係るフレキシブル表示装置の製造フローを、図1中の線分A-A’に沿った断面において示した断面模式図である(工程F~G)。 実施形態6に係るフレキシブル表示装置の製造フローを、図1中の線分A-A’に沿った断面において示した断面模式図である(工程H)。
以下に実施形態を掲げ、本発明について図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。また、以下の実施形態における各形態は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよいし、変更されてもよい。なお、本明細書中、第1のフレキシブル基材又は仮の支持基板の主面とは、第1のフレキシブル基材又は仮の支持基板の、第2のフレキシブル基材側の面のことを言う。また、第2のフレキシブル基材の主面とは、第2のフレキシブル基材の、第1のフレキシブル基材又は仮の支持基板側の面のことを言う。
[実施形態1]
実施形態1では、有機エレクトロルミネセンス素子上に形成される封止膜を、端子上にも形成し、剥離層として利用する。また、ガラス基板の主面上に有機エレクトロルミネセンス素子等を形成し、その後に、ガラス基板を剥離してフレキシブル基材に貼り変えるプロセスによって、フレキシブル表示装置を製造する。
図1は、実施形態1に係るフレキシブル表示装置の平面模式図である。図2は、実施形態1に係るフレキシブル表示装置の図1中の線分A-A’に沿った断面を示す断面模式図である。図1及び図2に示すように、実施形態1に係るフレキシブル表示装置1aにおいて、フレキシブル基材2a(第1のフレキシブル基材)の主面上の表示領域AR1には、配線5及び有機エレクトロルミネセンス素子6が配置され、フレキシブル基材2aの主面上の端部領域AR2には、配線5から導出された複数の端子3が配置されている。フレキシブル基材2aには、接着層4b(第1の接着層)によってフレキシブル基材2b(第2のフレキシブル基材)が貼り合わされている。
フレキシブル基材2aの主面上には、接着層4a(第2の接着層)、ポリイミド層7及び保護膜8が順に積層されている。上述した表示領域AR1の配線5及び端部領域AR2の端子3は、保護膜8上に設けられている。また、有機エレクトロルミネセンス素子6は、配線5上に設けられている。表示領域AR1においては、更に、有機エレクトロルミネセンス素子6を覆う封止膜9a、9b及び9cが配置されている。端部領域AR2においても、表示領域AR1近傍では端子3上に封止膜9b’及び9cが積層されている。また、端部領域AR2の端子3が露出した部分には、異方性導電膜10を介してフレキシブルプリント基板11が積層されている。
有機エレクトロルミネセンス素子6について、図3を参照して説明する。図3は、有機エレクトロルミネセンス素子の断面模式図である。図3に示すように、有機エレクトロルミネセンス素子6は、電極13a(第1の電極)、有機エレクトロルミネセンス層14及び電極13b(第2の電極)から構成されている。電極13aは、配線5を覆う絶縁膜12aに設けられた開口部分を通じて、配線5と電気的に接続されている。電極13a上に配置された有機エレクトロルミネセンス層14の周囲にはエッジカバー15が設けられており、電極13aの端部を覆っている。電極13bは、有機エレクトロルミネセンス層14及びエッジカバー15を覆っている。
実施形態1に係るフレキシブル表示装置1aは、電極13aが光透過性又は光半透過性を有する電極で、電極13bが光反射性を有する電極である場合、配線5側から光出射するボトム・エミッション型となる。また、電極13aが光反射性を有する電極で、電極13bが光透過性又は光半透過性を有する電極である場合、封止膜9a側から光出射するトップ・エミッション型となる。以下では、トップ・エミッション型の場合を説明する。
次に、図4-1~4-5を参照して実施形態1に係るフレキシブル表示装置の製造方法を説明する。図4-1~4-5は、実施形態1に係るフレキシブル表示装置の製造フローを、図1中の線分A-A’に沿った断面において示した断面模式図である。
(A)熱吸収層及びポリイミド層の形成
図4-1の(A)に示すように、最初に、仮の支持基板であるガラス基板16の主面上の表示領域AR1及び端部領域AR2に熱吸収層17を形成する。熱吸収層17としては、例えば、スパッタ方式によって、厚さが10nm~50nmのモリブデン(Mo)膜を形成する。次に、熱吸収層17を覆うように、例えば、スピンコート法、スリットコーター法又はスクリーン印刷法によって、ポリイミドの前駆体からなる膜を形成する。
なお、ポリイミドの前駆体からなる膜を形成する前に、濡れ性及び接着性を改善する目的で、熱吸収層17であるMo膜の表面処理を行ってもよい。表面処理は、乾式で行われてもよく、湿式で行われてもよい。乾式の表面処理としては、減圧プラズマ処理、常圧プラズマ処理、UV(Ultra violet:紫外線)処理等が挙げられる。湿式の表面処理としては、表面処理剤をガラス基板16上に塗布する方法等が挙げられる。上記表面処理剤としては、例えば、シランカップリング剤、アルミニウム系カップリング剤、又は、チタネート系カップリング剤等のカップリング剤を用いてもよい。特にシランカップリング剤が好適である。
ポリイミドの前駆体からなる膜を焼成することによりポリイミド層7を形成する。焼成温度は、後の工程で配線5、端子3等を形成する際の処理温度よりも高いことが好ましく、例えば、350℃~500℃とする。焼成温度を高くすることによって、ポリイミド層7から発生するガスによって生じる、フレキシブル表示装置の表示不良や特性劣化を防止できる。
ポリイミド層7の厚みは、5μm以上、50μm以下が好ましい。ポリイミド層7の厚みが5μm未満であると、機械的な強度を確保することが困難である。ポリイミド層7の厚みが50μmを超えると、ポリイミド層7が剥離してしまう等の影響で、積層体を安定的に形成できないおそれがある。
(B)保護膜の形成
図4-1の(B)に示すように、ポリイミド層7を覆うように保護膜8を形成する。これは、後の工程で形成される有機エレクトロルミネセンス素子6が水分や酸素に弱い性質を有しており、ガラス基板16側からの水分等の侵入を防止するためである。
保護膜8の材料としては、例えば、防湿性の高いシリコン(Si)やアルミニウム(Al)等の酸化物又は窒化物が挙げられる。上記酸化物としては、例えば、二酸化ケイ素(SiO)、酸化アルミニウム(Al)が挙げられる。上記窒化物としては、例えば、窒化シリコン(SiNx)、窒化シリコンカーバイト(SiCN)が挙げられる。保護膜8の成膜方法としては、例えば、プラズマCVD(Chemical Vapor Deposition:化学蒸着)方式、熱CVD方式、スパッタ方式が挙げられる。防湿性を高めるために、保護膜8は、積層体であってもよい。
(C)配線及び端子の形成
図4-1の(C)に示すように、保護膜8上の表示領域AR1に配線5を形成し、保護膜8上の端部領域AR2に、配線5から導出された端子3を形成する。ここで、配線5及び端子3は、薄膜トランジスタ素子を構成する要素と同時に形成されてもよい。
なお、薄膜トランジスタ素子が設けられる場合、薄膜トランジスタ素子内の半導体層の材料としては、例えば、低温ポリシリコン、酸化物半導体が挙げられる。なかでも、酸化物半導体の一種である、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)及び酸素(O)から構成される化合物(In-Ga-Zn-O)が好適に用いられる。これは、通常、酸化物半導体の処理温度が、低温ポリシリコンの処理温度(通常、600℃程度)よりも低い400℃程度であり、半導体層よりも前に形成されるポリイミド層7の耐熱温度(通常、500℃程度)よりも低くすることができるためである。
(D)有機エレクトロルミネセンス素子の形成
図4-1の(D)に示すように、配線5上に有機エレクトロルミネセンス素子6を形成する。有機エレクトロルミネセンス素子6は、図3に示すように、電極13a、有機エレクトロルミネセンス層14、及び、電極13b等を順に形成することで得られる。
電極13aとしては、例えば、導電性及び光反射性を有するアルミニウム(Al)等の金属を、真空蒸着方式等によって形成するものであってもよい。電極13bとしては、例えば、導電性及び光透過性を有するインジウムスズ酸化物(ITO:Indium Tin Oxide)等を、スパッタ方式等によって形成するものであってもよい。また、カラー化技術としては、赤色(R)、緑色(G)、及び、青色(B)を塗り分けるRGB塗り分け方式、又は、白色発光層及びカラーフィルタ層を併用する方式等であってもよい。
(E)封止膜の形成
図4-2の(E)に示すように、表示領域AR1において、有機エレクトロルミネセンス素子6を覆うように封止膜9aを形成する。次に、表示領域AR1において、封止膜9a上に封止膜9bを形成し、端部領域AR2において、端子3及び保護膜8の一部を覆うように、剥離層としての封止膜9b’を形成する。その後、表示領域AR1において、封止膜9b及び配線5の一部を覆うように、端部領域AR2において、封止膜9b’を覆うように、封止膜9cを形成する。なお、封止膜とは、有機エレクトロルミネセンス素子を覆うように形成される膜であり、水分等から有機エレクトロルミネセンス素子を保護する目的で形成されるものである。
封止膜9a、9cは無機膜であり、封止膜9b、9b’は同じ組成の有機膜である。上記に限らず、封止膜の構成としては、無機膜のみから構成される単層型、無機膜が積層された多層型、又は、無機膜及び有機膜が積層された多層型であってもよい。上記無機膜の材料としては、例えば、防湿性の高いシリコン(Si)やアルミニウム(Al)等の酸化物又は窒化物が挙げられる。上記酸化物としては、例えば、二酸化ケイ素(SiO)、酸化アルミニウム(Al)が挙げられる。上記窒化物としては、例えば、窒化シリコン(SiNx)、窒化シリコンカーバイト(SiCN)が挙げられる。上記無機膜の成膜方法としては、プラズマCVD式、熱CVD方式、真空蒸着方式、スパッタ方式等が挙げられる。上記有機膜の材料としては、例えば、アクリレート、ポリ尿素、パリレン、ポリイミド、ポリアミドが挙げられる。上記有機膜の成膜方法としては、真空蒸着方式が挙げられる。また、無機膜が積層された多層型の封止膜としては、例えば、SiNx/SiCN/SiNxが挙げられる。無機膜及び有機膜が積層された多層型の封止膜としては、例えば、SiNx/アクリレート/SiNxが挙げられる。
また、無機膜及び有機膜が積層された多層型の封止膜とする場合は、有機膜の防湿性が低いことから、図4-2の(E)に示すように、有機膜(封止膜9b)の端面を、防湿性が高い無機膜(封止膜9c)で覆うように形成することが好ましい。ここで、図4-2の(E)に示す構成において、有機膜(封止膜9b)は、無機膜(封止膜9a)のピンホールを埋めたり、有機膜(封止膜9b)の成膜前、成膜中に発生した異物を覆ったりする役割を果たす。そのため、有機膜(封止膜9b)の膜厚は、3μm以上、5μm以下が好ましい。5μm程度あれば、通常のピンホールや異物を覆うことは可能である。
なお、封止膜9b’は、後の工程で端子を取り出しやすくするために形成されたものであり、封止膜9b’と端子3との界面における密着力は、封止膜9b’が有機膜であれば、後の工程で配置されるフレキシブル基材2bと接着層4bとの界面、接着層4bと封止膜9cとの界面、及び、封止膜9cと封止膜9b’との界面における密着力よりも弱い。封止膜9b’が無機膜であれば、下層をSiCNで構成すると上記のように密着性が弱くなる。通常は、有機膜の方が無機膜よりも密着力が低いが、無機膜の密着力は、成膜条件によって調整可能である。
封止膜9a、9b、9b’、9cの形成方法としては、第1層目である封止膜9aをマスクを用いて成膜し、第2層目である封止膜9b、9b’を、図4-2の(E)に示すような区切ったパターンになるように同じマスクを用いて同時に形成し、第3層目である封止膜9cを、封止膜9bを覆うように形成する。そのため、封止膜9b’のみを形成するためのマスクを追加する必要がない。ここで、第2層目である封止膜9b、9b’を、図4-2の(E)に示すような区切ったパターンで形成するのは、もし、第2層目の封止膜(有機膜)を区切らずに一面に形成すると、第2層目の封止膜(有機膜)が、端子3以外に配線5の一部と接してしまうことになるため、後の工程で端子の取り出しを行う際、端子3の上層(端子3を覆う部分)を剥離すると、配線5の一部と接している第2層目の封止膜(有機膜)も剥離されてしまい、端子3以外の部分(配線5の一部)も露出してしまうおそれがあるためである。また、後の工程で端子の取り出しを行う際、端子3の上層は剥離されるため、図4-2の(E)に示すように、封止膜9cは、端部領域AR2で封止膜9b’を覆うように形成されていてもよい。
封止膜9a、9b、9b’、9cは、特性の劣化を充分に防止する観点から、有機エレクトロルミネセンス素子の温度を大幅に上昇させることのないように形成することが好ましい。例えば、有機エレクトロルミネセンス層14の温度は、100℃以下が好ましく、80℃以下がより好ましい。なお、有機エレクトロルミネセンス層14の温度は、室温に近い程より好ましいが、封止膜9a、9b、9b’、9cとして、CVDで無機膜を成膜する場合には、膜の防湿性能が低下するため、有機エレクトロルミネセンス層の特性の劣化とトレードオフの関係になる。
(F)第2のフレキシブル基材の貼り合わせ
図4-2の(F)に示すように、接着層4bを介してフレキシブル基材2bをガラス基板16に対向するように貼り合わせる。貼り合わせの際には、気泡の発生を防止するため、真空中で貼り合わせることが好ましい。フレキシブル基材2bとしては、アラミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリエーテルイミド、ポリアリレート、又は、ポリイミド等を材質とするフィルムを用いることが好ましい。接着層4bとしては、例えば、反応硬化型接着剤、熱硬化型接着剤、紫外線硬化型接着剤を用いることができる。
なお、有機エレクトロルミネセンス素子6をトップ・エミッション型となるように形成する場合は、フレキシブル基材2bは、フレキシブルであるだけでなく、透明であることが好ましい。具体的には、例えば、透明なフィルム、透明なプラスチック基板が挙げられる。
フレキシブル基材2bの厚みは特に限定されないが、薄過ぎる場合(例えば、5μm以上、20μm以下)は、後の工程でガラス基板16を剥離する際に、フレキシブル基材2bがその他の部材を支持することができなくなり、封止膜9a、9b、9b’、9c、配線5、端子3、及び、保護膜8等の応力によって、ガラス基板16の剥離後にしわが発生するおそれがある。よって、フレキシブル基材2bの厚みは、上述したようなしわが発生しないような厚みであることが好ましく、例えば、50μm以上であることが好ましい。また、例えば、厚みが5μm程度の薄いフィルムに、厚みが100μm程度の自己吸着層付きのフィルム(例えば、ポリエチレンテレフタレート)を貼り合わせたものを用いて、後の工程でガラス基板16を剥離した後に、自己吸着層付きのフィルムを剥離すれば、薄いフィルムを用いたフレキシブル表示装置を製造することができ、フレキシブル表示装置の薄型化を図ることができる。
(G)貼り合わせ後の基板分断
図4-3の(G)に示す線分a-a’に沿ってフレキシブル基材2b側から、フレキシブル基材2b及び接着層4bを分断し、続いてガラス基板16側から、残りの層及びガラス基板16を分断する。ここで、線分a-a’で示した分断位置は、熱吸収層17を横断し、配線5及び端子3を横断しない位置であればよく、これは、後の工程でガラス基板16を剥離する方法として、熱吸収層17とポリイミド層7との界面から剥離する方法を採用するためである。フレキシブル基材2b側からの分断方法としては、特に限定されず、レーザーを用いる方法等が挙げられる。また、ガラス基板16側からの分断方法としては、ガラス基板を分断する通常の方法を用いることができ、例えば、ダイヤモンドホイール等で切りかけを入れ、外力を加えることで切りかけ部から分断する方法が挙げられる。
(H)熱吸収層へのレーザー照射
図4-3の(H)中の矢印のように、分断されたガラス基板16側からレーザーを照射する。これにより、熱吸収層17が熱を吸収するため、熱吸収層17とポリイミド層7との間の密着性が低下し、後の工程で、熱吸収層17とポリイミド層7との界面から、ガラス基板16及び熱吸収層17をともに剥離することができる。ここで、レーザーとしては、例えば、紫外線を用いてもよく、エキシマレーザー光(例えば、波長308nm)を用いることが好ましい。なお、レーザー照射前後での薄膜トランジスタ素子の特性に変化はない。
(I)ガラス基板の剥離
図4-4の(I)に示すように、熱吸収層17とポリイミド層7との界面から、ガラス基板16及び熱吸収層17をともに剥離する。ここで、剥離方法としては、例えば、人が引き剥がしてもよいし、駆動ロール又はロボット等の装置により引き剥がしてもよい。
上述した熱吸収層へのレーザー照射の際、フレキシブル基材2bが存在しない状態でレーザー照射を行うと、封止膜9a、9b、9b’、9c、配線5、端子3及び保護膜8等を支持できず、それらの応力によってガラス基板16の剥離後にしわが発生するおそれがある。そのため、ガラス基板16を剥離する際は、端子3の上層(端子3を覆う部分)にもフレキシブル基材2b及び接着層4bを設けている。仮に、端子の取り出しを行わないようにするために、フレキシブル基材2b及び接着層4bを、端子3の上層以外の部分に選択的に貼り合わせた場合、ガラス基板16を剥離する際に、上述したようなしわが発生するおそれがある。
また、本実施形態では、熱吸収層17とポリイミド層7との界面から剥離する方法を採用しているが、上記特許文献1に開示された剥離方法を用いてもよい。すなわち、ガラス基板16の主面上に金属膜を形成し、その金属膜上にその金属を含有する酸化物層を形成し、加熱処理を行うことにより酸化物層を結晶化させ、酸化物層の層内、又は、酸化物層と金属膜との界面から剥離する方法を用いてもよい。
(J)第1のフレキシブル基材の貼り合わせ
図4-4の(J)に示すように、接着層4aを介してフレキシブル基材2aをフレキシブル基材2bに対向するように貼り合わせる。貼り合わせの際には、気泡の発生を防止するため、真空中で貼り合わせることが好ましい。フレキシブル基材2aとしては、アラミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリエーテルイミド、ポリアリレート、又は、ポリイミド等を材質とするフィルムを用いることが好ましい。また、透明プラスチック基板等の透明なフレキシブル基材を用いてもよい。また、接着層4aとしては、反応硬化型接着剤、熱硬化型接着剤、紫外線硬化型接着剤等を用いることができる。また、フレキシブル基材2a及び接着層4aとしては、各々、フレキシブル基材2b及び接着層4bと同じ材質のものを用いることが好ましい。これは、フレキシブル表示装置として完成した状態で、応力等で湾曲しないためである。
(K)端子の取り出し
図4-5の(K)に示す線分b-b’に沿ってフレキシブル基材2b側から、フレキシブル基材2b、接着層4b、及び封止膜9cを分断し、更に封止膜9b’に切り込みを入れる。分断方法としては、レーザー照射が好適である。ここで、レーザーは、上述した貼り合わせ後の基板分断の際に用いたレーザーと同じものを用いることができる。
次に、分断された封止膜9b’の端部領域AR2側の部分を剥離する。これは、封止膜9b’と端子3との界面における密着力が、上述したように、フレキシブル基材2bと接着層4bとの界面、接着層4bと封止膜9cとの界面、及び、封止膜9cと封止膜9b’との界面における密着力よりも弱いために、封止膜9b’に切り込みが入れば、剥離することができるためである。
また、線分b-b’で示した分断位置の終端b’の位置は、図4-5の(K)中の横方向では、端部領域AR2内の表示領域AR1近傍にあり、図4-5の(K)中の縦方向では、封止膜9b’と端子3との界面に到達しない深さにある。ここで、分断位置の終端b’は、封止膜9b’の端子3上の厚みの50%以上、90%以下が分断される位置(深さ)であることが好ましい。なお、封止膜9b’が分断される深さが深いほど、分断された封止膜9b’の一部をより容易に剥離することができる。封止膜9b’が分断される深さが、封止膜9b’の端子3上の厚みの50%未満であると、剥離が困難になるおそれがあり、封止膜9b’の端子3上の厚みの90%を超える場合は、分断時に端子3に損傷を与えるおそれがある。
次に、分断されたフレキシブル基材2b、接着層4b、封止膜9c及び封止膜9b’の端部領域AR2側の部分を除去することにより、端子3を露出させる。端子の取り出しは、ガラス基板16を剥離する前に行う方が、後述するフレキシブルプリント基板11の圧着を行いやすくなるが、仮に、端子3の上層にフレキシブル基材2b及び接着層4b等が存在しない状態で、上述した熱吸収層へのレーザー照射を行うと、フレキシブル基材2bが端子3を支持できず、封止膜9a、9b、9b’、9c、配線5、端子3及び保護膜8等の応力によって、ガラス基板16の剥離後にしわが発生するおそれがある。
以上より、端子3に損傷を与えることなく端子3の取り出しを行うことができる。また、乾式の方法により端子の取り出しを行うため、有機エレクトロルミネセンス素子6の特性の劣化を充分に防止することができる。
上述のようにして端子3の取り出しを行った後、露出した端子3に異方性導電膜10を用いて、フレキシブルプリント基板11を圧着し、図2に示すフレキシブル表示装置1aが完成する。
ここで、フレキシブル表示装置1aには、フレキシブルプリント基板11近傍に、上述した端子の取り出しの際に分断された封止膜9b’が残っている。これによって、本実施形態の製法を用いたことが、製造後の状態においても確認可能である。
以下に、封止膜9b’が残る理由を示す。マスクを用いて封止膜9b’(有機膜)を成膜する際のボケ量(設計上の成膜幅と実際の成膜幅との差)等を考慮すると、分断された封止膜9b’が残らないように封止膜9b’の端部とまったく同じ位置で分断することは困難である。通常、蒸着方式を用いた場合は上記ボケ量が大きく、また、CVD方式を用いた場合も装置のチャンバーによって上記ボケ量が大きく変わるため、封止膜9b’の端部の膜厚は、設計上の狙い値と異なる場合もある。よって、製造効率を上げるために封止膜9b’の膜厚が安定した位置で分断しようとすると、分断位置等の調整がその都度生じてしまう。更に、分断装置の分断精度等も考慮すると、封止膜9b’の端部で分断することは困難である。よって、フレキシブル表示装置1aには、封止膜9b’が残ってしまうことになる。
[実施形態2]
実施形態2では、有機エレクトロルミネセンス素子上に形成される封止膜を、端子上にも形成し、剥離層として利用する。また、ガラス基板の主面上にフレキシブル基材を貼り合わせ、更に有機エレクトロルミネセンス素子等を形成し、その後に、ガラス基板を剥離するプロセスによって、フレキシブル表示装置を製造する。
実施形態2に係るフレキシブル表示装置の平面における構成は、実施形態1と同様であり、その平面模式図は図1に示した通りである。図5は、実施形態2に係るフレキシブル表示装置の図1中の線分A-A’に沿った断面を示す断面模式図である。図5に示すように、実施形態2に係るフレキシブル表示装置1bは、接着層4a及びポリイミド層7が、フレキシブル基材2aと保護膜8との間に存在しないこと以外、実施形態1に係るフレキシブル表示装置1aと同様である。図5に示すように、フレキシブル基材2aの主面上には保護膜8が配置されている。
次に、図6-1~6-3を参照して実施形態2に係るフレキシブル表示装置の製造方法を説明する。図6-1~6-3は、実施形態2に係るフレキシブル表示装置の製造フローを、図1中の線分A-A’に沿った断面において示した断面模式図である。
実施形態2に係るフレキシブル表示装置の製造方法は、ガラス基板、熱吸収層及びポリイミド層を一体化したものを、ガラス基板の主面上にフレキシブル基材を貼り合わせたものに置換したこと以外は、実施形態1に係るフレキシブル表示装置の製造方法と同様であるため、重複する点については適宜説明を省略する。
(A)ガラス基板とフレキシブル基材の貼り合わせ、及び、保護膜の形成
図6-1の(A)に示すように、仮の支持基板であるガラス基板16の主面上に、後工程で剥離可能な樹脂剥離層等を用いて、フレキシブル基材2aを貼り合わせる。樹脂剥離層としては、UV硬化型や熱硬化型のものが知られている。樹脂剥離層の材質としては、アクリル樹脂、エポキシ樹脂、ポリイミド等が挙げられる。また、樹脂の耐熱性(400℃程度)のため、薄膜トランジスタ素子作製時の温度も合わせて低くする必要がある。次に、フレキシブル基材2aの主面上の表示領域AR1及び端部領域AR2に保護膜8を形成する。
(B)配線及び端子の形成
図6-1の(B)に示すように、保護膜8上の表示領域AR1に配線5を形成し、保護膜8上の端部領域AR2に、配線5から導出された端子3を形成する。
(C)有機エレクトロルミネセンス素子の形成
図6-1の(C)に示すように、配線5上に有機エレクトロルミネセンス素子6を形成する。
(D)封止膜の形成
図6-1の(D)に示すように、表示領域AR1には、有機エレクトロルミネセンス素子6を覆うように封止膜9aを形成する。次に、表示領域AR1において、封止膜9a上に封止膜9bを形成し、端部領域AR2において、端子3及び保護膜8の一部を覆うように、剥離層としての封止膜9b’を形成する。その後、表示領域AR1では、封止膜9b及び配線5の一部を覆い、端部領域AR2では、封止膜9b’を覆うように、封止膜9cを形成する。
封止膜9a、9cは無機膜であり、封止膜9b、9b’は同じ組成の有機膜である。封止膜9b’は、後の工程で端子の取り出しやすくするために形成されたものであり、封止膜9b’と端子3との界面における密着力は、封止膜9b’が有機膜であれば、後の工程で配置されるフレキシブル基材2bと接着層4bとの界面、接着層4bと封止膜9cとの界面、及び、封止膜9cと封止膜9b’との界面における密着力よりも弱い。封止膜9b’が無機膜であれば、下層をSiCNで構成すると上記のように密着性が弱くなる。ここで、封止膜9b’は、上述したような密着力の関係を満たすものであれば、無機膜であってもよい。
(E)第2のフレキシブル基材の貼り合わせ
図6-2の(E)に示すように、接着層4bを介してフレキシブル基材2bをガラス基板16に対向するように貼り合わせる。
(F)ガラス基板の剥離
図6-2の(F)に示すように、フレキシブル基材2aと樹脂剥離層との界面から、ガラス基板16を物理的に剥離する。このため、樹脂剥離層はガラス基板16側に残り、フレキシブル基材2a側にはない。実施形態2においては、樹脂剥離層が用いられているため、実施形態1とは異なり、ガラス基板16を剥離するためのレーザー照射(熱吸収層へのレーザー照射)等を行わなくてもよい。
(G)端子の取り出し
図6-3の(G)に示すように、レーザー等を用いて、線分b-b’に沿ってフレキシブル基材2b側からフレキシブル基材2b、接着層4b、及び封止膜9cを分断し、更に封止膜9b’に切り込みを入れる。
次に、分断された封止膜9b’の端部領域AR2側の部分を剥離する。これは、封止膜9b’と端子3との界面における密着力が、上述したように、フレキシブル基材2bと接着層4bとの界面、接着層4bと封止膜9cとの界面、及び、封止膜9cと封止膜9b’との界面における密着力よりも弱いために、封止膜9b’に切り込みが入れば、剥離することができるためである。
また、線分b-b’で示した分断位置の終端b’の位置は、図6-3の(G)中の横方向では、端部領域AR2内の表示領域AR1近傍にあり、図6-3の(G)中の縦方向では、封止膜9b’と端子3との界面に到達しない深さにある。
次に、分断されたフレキシブル基材2b、接着層4b、封止膜9c及び封止膜9b’の端部領域AR2の部分を除去することにより、端子3を露出させる。また、図6-3の(G)の状態から図5の状態の間に、端部領域AR2のフレキシブル基材2a及び保護膜8の一部が、パネル分断ラインでレーザーカットされる。
以上より、端子3に損傷を与えることなく端子3の取り出しを行うことができる。また、乾式の方法により端子3の取り出しを行うため、有機エレクトロルミネセンス素子6の特性の劣化を充分に防止することができる。
上述のようにして端子3の取り出しを行った後、露出した端子3に異方性導電膜10を用いて、フレキシブルプリント基板11を圧着し、図5に示すフレキシブル表示装置1bが完成する。
ここで、フレキシブル表示装置1bには、フレキシブルプリント基板11近傍に、上述した端子の取り出しの際に分断された封止膜9b’が残っている。これによって、本実施形態2の製法を用いたことが、製造後の状態においても確認可能である。
また、実施形態2の製造工程数は、実施形態1の製造工程数よりも少なく、実施形態2に係るフレキシブル表示装置の製造方法によれば、製造効率を高めることができる。
[実施形態3]
実施形態3に係るフレキシブル表示装置の製造方法は、ガラス基板、熱吸収層及びポリイミド層を一体化したものを、フレキシブル基材に置換したこと以外は、実施形態1に係るフレキシブル表示装置の製造方法と同様であるため、重複する点については適宜説明を省略する。
実施形態3に係るフレキシブル表示装置の平面における構成は、実施形態1と同様であり、その平面模式図は図1に示した通りである。また、実施形態3に係るフレキシブル表示装置の断面における構成は、実施形態2と同様であり、その断面模式図は図5に示した通りである。
図7を参照して実施形態3に係るフレキシブル表示装置の製造方法を説明する。図7は、実施形態3に係るフレキシブル表示装置の製造フローを、図1中の線分A-A’に沿った断面において示した断面模式図である。
(A)保護膜の形成
図7の(A)に示すように、フレキシブル基材2aの主面上の表示領域AR1及び端部領域AR2に、保護膜8を形成する。
(B)配線及び端子の形成
図7の(B)に示すように、保護膜8上の表示領域AR1に配線5を形成し、保護膜8上の端部領域AR2に、配線5から導出された端子3を形成する。
(C)有機エレクトロルミネセンス素子の形成
図7の(C)に示すように、配線5上に有機エレクトロルミネセンス素子6を形成する。
(D)封止膜の形成
図7の(D)に示すように、表示領域AR1には、有機エレクトロルミネセンス素子6を覆うように封止膜9aを形成する。次に、表示領域AR1において、封止膜9a上に封止膜9bを形成し、端部領域AR2において、端子3及び保護膜8の一部を覆うように、剥離層としての封止膜9b’を形成する。その後、表示領域AR1では、封止膜9b及び配線5の一部を覆い、端部領域AR2では、封止膜9b’を覆うように、封止膜9cを形成する。
封止膜9a、9cは無機膜であり、封止膜9b、9b’は同じ組成の有機膜である。封止膜9b’は、後の工程で好適に端子の取り出しを行うために形成されたものであり、封止膜9b’と端子3との界面における密着力は、封止膜9b’が有機膜であれば、後の工程で配置されるフレキシブル基材2bと接着層4bとの界面、接着層4bと封止膜9cとの界面、及び、封止膜9cと封止膜9b’との界面における密着力よりも弱い。封止膜9b’が無機膜であれば、下層をSiCNで構成すると上記のように密着性が弱くなる。
(E)第2のフレキシブル基材の貼り合わせ
図7の(E)に示すように、接着層4bを介してフレキシブル基材2bをフレキシブル基材2aに対向するように貼り合わせる。
(F)端子の取り出し
本実施形態において、端子の取り出しは、実施形態2と同様にして行うことができる。以上より、端子3に損傷を与えることなく端子3の取り出しを行うことができる。また、乾式の方法により端子3の取り出しを行うため、有機エレクトロルミネセンス素子6の特性の劣化を充分に防止することができる。
上述のようにして端子3の取り出しを行った後、露出した端子3に異方性導電膜10を用いて、フレキシブルプリント基板11を圧着し、図5に示すようなフレキシブル表示装置1bが完成する。
また、実施形態3の製造工程数は、実施形態1及び2の製造工程数よりも少なく、実施形態3に係るフレキシブル表示装置の製造方法によれば、製造効率を高めることができる。
[実施形態4]
実施形態4では、有機エレクトロルミネセンス素子の有機エレクトロルミネセンス層を、端子上にも形成し、剥離層として利用する。また、ガラス基板の主面上に有機エレクトロルミネセンス素子等を形成し、その後に、ガラス基板を剥離してフレキシブル基材に貼り変えるプロセスによって、フレキシブル表示装置を製造する。
実施形態4に係るフレキシブル表示装置の平面における構成は、実施形態1と同様であり、その平面模式図は図1に示した通りである。図8は、実施形態4に係るフレキシブル表示装置の図1中の線分A-A’に沿った断面を示す断面模式図である。図8に示すように、実施形態4に係るフレキシブル表示装置1cは、封止膜9cの形状、及び、封止膜9b’に代えて有機エレクトロルミネセンス層14’を用いたこと以外は、実施形態1に係るフレキシブル表示装置1aと同様であるため、重複する点については適宜説明を省略する。
図8に示すように、フレキシブル基材2aの主面上には、接着層4a、ポリイミド層7及び保護膜8が順に積層されている。保護膜8上の表示領域AR1には、配線5が配置され、保護膜8上の端部領域AR2には、配線5から導出された端子3が配置されている。表示領域AR1には、配線5上に、有機エレクトロルミネセンス層14を含む有機エレクトロルミネセンス素子6が設けられ、有機エレクトロルミネセンス素子6を覆う封止膜9a、9b及び9cが設けられている。端部領域AR2においても、表示領域AR1近傍では端子3上に有機エレクトロルミネセンス層14’が積層されている。また、端子3の露出した部分には、異方性導電膜10を介してフレキシブルプリント基板11が積層されている。
次に、図9-1~9-4を参照して実施形態4に係るフレキシブル表示装置の製造方法を説明する。図9-1~9-4は、実施形態4に係るフレキシブル表示装置の製造フローを、図1中の線分A-A’に沿った断面において示した断面模式図である。
実施形態4に係るフレキシブル表示装置の製造方法は、封止膜9cの形状、及び、封止膜9b’の代わりに有機エレクトロルミネセンス層14’を形成すること以外は、実施形態1と同様であるため、重複する点については適宜説明を省略する。
本実施形態において、熱吸収層、ポリイミド層、保護膜、配線及び端子の形成は、それぞれ実施形態1と同様であるため、重複する点については説明を省略する。
(A)有機エレクトロルミネセンス素子の形成
図9-1の(A)に示すように、表示領域AR1には、配線5上に有機エレクトロルミネセンス素子6を形成し、端部領域AR2には、端子3及び保護膜8の一部を覆うように、剥離層としての有機エレクトロルミネセンス層14’を形成する。
有機エレクトロルミネセンス素子6は、図3を参照して既に説明したとおりの構造を有する。有機エレクトロルミネセンス素子6が備える有機エレクトロルミネセンス層14は、発光層のみで構成される単層型であってもよいし、発光層の他に、正孔注入層、正孔輸送層、電子輸送層、電子注入層、正孔ブロッキング層、電子ブロッキング層等が積層された多層型であってもよい。正孔注入層と正孔輸送層を一体化した正孔注入層兼正孔輸送層や、電子輸送層と電子注入層を一体化した電子注入層兼電子輸送層のように、2以上の機能を有する層を含んでもよい。
有機エレクトロルミネセンス層14の層構成としては、例えば、下記(a)~(e)に示すものが挙げられる。
(a)発光層
(b)正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層
(c)正孔注入層兼正孔輸送層/発光層/電子注入層兼電子輸送層
(d)正孔注入層/正孔輸送層/電子ブロッキング層/発光層/正孔ブロッキング層/電子輸送層/電子注入層
(e)正孔注入層兼正孔輸送層/電子ブロッキング層/発光層/正孔ブロッキング層/電子注入層兼電子輸送層
有機エレクトロルミネセンス層14’は、有機エレクトロルミネセンス層14に含まれる層の少なくとも1つと同時に形成されたものであり、同じ組成を有する。有機エレクトロルミネセンス層14’は、後の工程で好適に端子の取り出しを行うために形成されたものであり、有機エレクトロルミネセンス層14’と端子3との界面における密着力は、後の工程で配置されるフレキシブル基材2bと接着層4bとの界面、及び、接着層4bと有機エレクトロルミネセンス層14’との界面における密着力よりも弱い。
有機エレクトロルミネセンス層14及び14’は、図9-1に示すように互いに分離して配置されているが、同じマスクを用いて同時に形成できる。そのため、有機エレクトロルミネセンス層14’のみを形成するためのマスクを追加する必要がない。ここで、有機エレクトロルミネセンス層14及び14’を分離するのは、仮に、有機エレクトロルミネセンス層を分離せずに一面に形成すると、後の工程で端子の取り出しを行う際、端子3を覆う端部領域AR2の上層を剥離すると、表示領域AR1の有機エレクトロルミネセンス層まで剥離されてしまい、端子3以外の部分(配線5の一部)も露出してしまうおそれがあるためである。
(B)封止膜の形成
図9-1の(B)に示すように、表示領域AR1には、有機エレクトロルミネセンス素子6を覆うように封止膜9aを形成する。次に、表示領域AR1において、封止膜9a上に封止膜9bを形成する。その後、封止膜9b及び配線5の一部を覆うように封止膜9cを形成する。ここで、封止膜9a、9cは無機膜であり、封止膜9bは有機膜である。
封止膜9a、9b、9cの形成方法としては、第1層目である封止膜9aをマスクを用いて成膜し、第2層目である封止膜9bを、封止膜9aを形成する際と同じマスクを用いて形成し、第3層目である封止膜9cを、封止膜9bを覆うように形成する。そのため、実施形態4に係る封止膜の形成で用いるマスクの枚数を、実施形態1に係る封止膜の形成で用いるマスクの枚数よりも、1枚減らすことができる。
(C)第2のフレキシブル基材の貼り合わせ
図9-1の(C)に示すように、接着層4bを介してフレキシブル基材2bをガラス基板16に対向するように貼り合わせる。
(D)貼り合わせ後の基板分断
図9-2の(D)に示すように、線分a-a’に沿って、フレキシブル基材2b及び接着層4bを、フレキシブル基材2b側からレーザー等を用いて分断し、続いてガラス基板16側から、残りの層及びガラス基板16を分断する。ここで、線分a-a’で示した分断位置は、熱吸収層17を横断し、配線5及び端子3を横断しない位置であればよく、これは、後の工程でガラス基板16を剥離する方法として、熱吸収層17とポリイミド層7との界面から剥離する方法を採用するためである。
(E)熱吸収層へのレーザー照射
図9-2の(E)中の矢印のように、分断されたガラス基板16側からレーザーを照射する。これにより、熱吸収層17が熱を吸収するため、熱吸収層17とポリイミド層7との間の密着性が低下し、後の工程で、熱吸収層17とポリイミド層7との界面から、ガラス基板16及び熱吸収層17をともに剥離することができる。
(F)ガラス基板の剥離
図9-3の(F)に示すように、熱吸収層17とポリイミド層7との界面から、ガラス基板16及び熱吸収層17をともに剥離する。
(G)第1のフレキシブル基材の貼り合わせ
図9-3の(G)に示すように、接着層4aを介してフレキシブル基材2aをフレキシブル基材2bに対向するように貼り合わせる。
(H)端子の取り出し
図9-4の(H)に示す線分b-b’に沿ってフレキシブル基材2b側から、フレキシブル基材2b及び接着層4bを分断し、更に有機エレクトロルミネセンス層14’に切り込みを入れる。分断方法としては、レーザー照射が好適である。ここで、レーザーは、上述した貼り合わせ後の基板分断で用いたレーザーと同じものを用いることができる。
次に、分断された有機エレクトロルミネセンス層14’の端部領域AR2側の部分を剥離する。これは、有機エレクトロルミネセンス層14’と端子3との界面における密着力が、上述したように、フレキシブル基材2bと接着層4bとの界面、及び、接着層4bと有機エレクトロルミネセンス層14’との界面における密着力よりも弱いために、有機エレクトロルミネセンス層14’に切り込みが入れば、剥離することができるためである。
また、線分b-b’で示した分断位置の終端b’の位置は、図9-4の(H)中の横方向では、端部領域AR2内の表示領域AR1近傍にあり、図9-4の(H)中の縦方向では、有機エレクトロルミネセンス層14’と端子3との界面に到達しない深さにある。ここで、分断位置の終端b’は、有機エレクトロルミネセンス層14’の端子3上の厚みの50%以上、90%以下が分断される位置(深さ)であることが好ましい。なお、有機エレクトロルミネセンス層14’が分断される深さが深いほど、分断された有機エレクトロルミネセンス層14’の一部をより容易に剥離することができる。有機エレクトロルミネセンス層14’が分断される深さが、有機エレクトロルミネセンス層14’の端子3上の厚みの50%未満であると、剥離が困難になるおそれがあり、有機エレクトロルミネセンス層14’の端子3上の厚みの90%を超える場合は、有機エレクトロルミネセンス層14’の厚みが、通常、200nm以上、400nm以下程度と薄いため、分断時に端子3に損傷を与えるおそれがある。
次に、分断されたフレキシブル基材2b、接着層4b及び有機エレクトロルミネセンス層14’の端部領域AR2側の部分を除去することにより、端子3を露出させる。
以上より、端子3に損傷を与えることなく端子3の取り出しを行うことができる。また、乾式の方法により端子の取り出しを行うため、有機エレクトロルミネセンス素子6の特性の劣化を充分に防止することができる。
上述のようにして端子3の取り出しを行った後、露出した端子3に異方性導電膜10を用いて、フレキシブルプリント基板11を圧着し、図8に示すようなフレキシブル表示装置1cが完成する。
ここで、フレキシブル表示装置1cには、フレキシブルプリント基板11近傍に、上述した端子の取り出しにて分断された有機エレクトロルミネセンス層14’が残っている。これによって、本実施形態の製法を用いたことが、製造後の状態においても確認可能である。
以下に、有機エレクトロルミネセンス層14’が残る理由を示す。マスクを用いて有機エレクトロルミネセンス層14’を蒸着する際のボケ量等を考慮すると、分断された有機エレクトロルミネセンス層14’が残らないように有機エレクトロルミネセンス層14’の端部とまったく同じ位置で分断することは困難である。通常、蒸着方式を用いた場合はボケ量が大きいため、有機エレクトロルミネセンス層14’の端部の膜厚は、設計上の狙い値と異なる場合もある。よって、製造効率を上げるために、有機エレクトロルミネセンス層14’の膜厚が安定した位置で分断しようとすると、分断位置等の調整がその都度生じてしまう。更に、分断装置の分断精度等も考慮すると、有機エレクトロルミネセンス層14’の端部で分断することは困難である。よって、フレキシブル表示装置1cには、有機エレクトロルミネセンス層14’が残ってしまうことになる。
本実施形態では、ガラス基板の主面上に有機エレクトロルミネセンス素子等を形成し、その後に、ガラス基板を剥離してフレキシブル基材に貼り変えるプロセスを採用しているが、本実施形態の変形例として、ガラス基板の主面上にフレキシブル基材を貼り合わせたものの上に有機エレクトロルミネセンス素子等を形成し、後の工程でガラス基板を剥離するプロセスを採用する場合が挙げられる。この場合は、封止膜9cの形状、及び、封止膜9b’の代わりに有機エレクトロルミネセンス層14’を形成すること以外は、実施形態2に係るフレキシブル表示装置の製造方法と同様である。
また、本実施形態の他の変形例として、フレキシブル基材の主面上に有機エレクトロルミネセンス素子等を形成するプロセスを採用する場合が挙げられる。この場合は、封止膜9cの形状、及び、封止膜9b’の代わりに有機エレクトロルミネセンス層14’を形成すること以外は、実施形態3に係るフレキシブル表示装置の製造方法と同様である。
[実施形態5]
実施形態5では、剥離層として自己吸着層を有するフィルムを利用する。また、ガラス基板の主面上に有機エレクトロルミネセンス素子等を形成し、その後に、ガラス基板を剥離してフレキシブル基材に貼り変えるプロセスによって、フレキシブル表示装置を製造する。
実施形態5に係るフレキシブル表示装置の平面における構成は、実施形態1と同様であり、その平面模式図は図1に示した通りである。図10は、実施形態5に係るフレキシブル表示装置の図1中の線分A-A’に沿った断面を示す断面模式図である。図10に示すように、実施形態5に係るフレキシブル表示装置1dは、封止膜9cの形状、及び、封止膜9b’に代えて自己吸着層19を有するフィルム18を用いたこと以外は、実施形態1に係るフレキシブル表示装置1aと同様であるため、重複する点については適宜説明を省略する。
図10に示すように、フレキシブル基材2aの主面上には、接着層4a、ポリイミド層7及び保護膜8が順に積層されている。保護膜8上の表示領域AR1には、配線5が配置され、保護膜8上の端部領域AR2には、配線5から導出された端子3が配置されている。表示領域AR1には、配線5上に、有機エレクトロルミネセンス素子6が設けられ、有機エレクトロルミネセンス素子6を覆う封止膜9a、9b及び9cが設けられている。端部領域AR2においても、表示領域AR1近傍では端子3上に自己吸着層19及びフィルム18が積層されている。また、端子3の露出した部分には、異方性導電膜10を介してフレキシブルプリント基板11が積層されている。
次に、図11-1~11-4を参照して実施形態5に係るフレキシブル表示装置の製造方法を説明する。図11-1~11-4は、実施形態5に係るフレキシブル表示装置の製造フローを、図1中の線分A-A’に沿った断面において示した断面模式図である。
実施形態5に係るフレキシブル表示装置の製造方法は、封止膜9cの形状、及び、封止膜9b’の代わりに自己吸着層19を有するフィルム18を用いること以外は、実施形態1と同様であるため、重複する点については適宜説明を省略する。
本実施形態において、熱吸収層・ポリイミド層、保護膜、配線・端子、及び、有機エレクトロルミネセンス素子の形成は、それぞれ実施形態1と同様であるため、重複する点については説明を省略する。
(A)封止膜の形成
図11-1の(A)に示すように、表示領域AR1には、有機エレクトロルミネセンス素子6を覆うように封止膜9aを形成する。次に、表示領域AR1には、封止膜9a上に封止膜9bを形成し、封止膜9b及び配線5の一部を覆うように封止膜9cを形成する。ここで、封止膜9a、9cは無機膜であり、封止膜9bは有機膜である。
封止膜9a、9b、9cの形成方法としては、第1層目である封止膜9aをマスクを用いて成膜し、第2層目である封止膜9bを、封止膜9aを形成する際と同じマスクを用いて形成し、第3層目である封止膜9cを、封止膜9bを覆うように形成する。そのため、実施形態5に係る封止膜の形成で用いるマスクの枚数を、実施形態1に係る封止膜の形成で用いるマスクの枚数よりも、1枚減らすことができる。
(B)フィルムの貼り合わせ
図11-1の(B)に示すように、端部領域AR2には、端子3及び保護膜8の一部を覆うように、剥離層としての自己吸着層19を有するフィルム18を貼り合わせる。ここで、フィルム18を接着剤等を用いて貼り合わせてもよいが、自己吸着層19を有するフィルム18を用いると、後の工程でフィルム18及び自己吸着層19をともに剥離する際、端子3に接着剤等が付着しないため、端子の取り出しを好適に行うことができる。フィルム18の材質としては、例えば、ポリエチレンテレフタレート(PET)が挙げられる。また、自己吸着層19としては、例えば、フィルム18に表面加工が施されて形成された層、オレフィン系の粘着層、UV照射によって密着力が下がる樹脂の層が挙げられる。
自己吸着層19を有するフィルム18は、後の工程で好適に端子の取り出しを行うために形成されたものであり、自己吸着層19と端子3との界面における密着力は、フレキシブル基材2bと接着層4bとの界面、及び、接着層4bとフィルム18との界面における密着力よりも弱い。もし、自己吸着層19と端子3との界面における密着力が、フレキシブル基材2bと接着層4bとの界面、及び、接着層4bとフィルム18との界面における密着力よりも強い場合は、後の工程で自己吸着層19を有するフィルム18を剥離する際に、端子3に損傷を与える、又は、剥離残りが発生し、剥離剤等でその剥離残りを除去する必要が生じてしまう。
なお、本実施形態では、フィルムの貼り合わせを封止膜の形成後に行っているが、その理由は、CVD方式、蒸着方式等によれば真空中で封止膜を成膜するので、フィルム18から発生するガスが原因で、有機エレクトロルミネセンス素子6の特性の劣化を引き起こすおそれがあるためである。真空中でも有機エレクトロルミネセンス素子6の特性に影響を与えないようなフィルム18を用いる場合は、本実施形態におけるフィルム貼り合わせを封止膜の形成前に行ってもよい。
また、本実施形態におけるフレキシブル表示装置の製造工程数は、フィルムの貼り合わせの工程が存在するため、実施形態1よりも増えてしまうが、有機エレクトロルミネセンス素子6及び封止膜9a、9b、9c等は、通常の有機エレクトロルミネセンス表示装置と同様なパターンとし、マスクを共用することができるため、新たなマスクを追加しなくてもよい。
(C)第2のフレキシブル基材の貼り合わせ
図11-1の(C)に示すように、接着層4bを介してフレキシブル基材2bをガラス基板16に対向するように貼り合わせる。
(D)貼り合わせ後の基板分断
図11-2の(D)に示す線分a-a’に沿ってフレキシブル基材2b側から、フレキシブル基材2b、接着層4b、フィルム18及び自己吸着層19を、レーザー等を用いて分断し、続いてガラス基板16側から、残りの層及びガラス基板16を分断する。ここで、線分a-a’で示した分断位置は、熱吸収層17を横断し、配線5及び端子3を横断しない位置であればよく、これは、後の工程でガラス基板16を剥離する方法として、熱吸収層17とポリイミド層7との界面から剥離する方法を採用するためである。
(E)熱吸収層へのレーザー照射
図11-2の(E)中の矢印のように、分断されたガラス基板16側からレーザーを照射する。これにより、熱吸収層17が熱を吸収するため、熱吸収層17とポリイミド層7との間の密着性が低下し、後の工程で、熱吸収層17とポリイミド層7との界面から、ガラス基板16及び熱吸収層17をともに剥離することができる。
(F)ガラス基板の剥離
図11-3の(F)に示すように、熱吸収層17とポリイミド層7との界面から、ガラス基板16及び熱吸収層17をともに剥離する。
(G)第1のフレキシブル基材の貼り合わせ
図11-3の(G)に示すように、接着層4aを介してフレキシブル基材2aをフレキシブル基材2bに対向するように貼り合わせる。
(H)端子の取り出し
図11-4の(H)に示す線分b-b’に沿ってフレキシブル基材2b側から、フレキシブル基材2b、接着層4b、及びフィルム18を分断し、更に自己吸着層19に切り込みを入れる。分断方法としては、レーザー照射が好適である。ここで、レーザーは、上述した貼り合わせ後の基板分断で用いたレーザーと同じものを用いることができる。
次に、分断されたフィルム18及び自己吸着層19の端部領域AR2側の部分を剥離する。これは、自己吸着層19と端子3との界面における密着力が、上述したように、フレキシブル基材2bと接着層4bとの界面、及び、接着層4bとフィルム18との界面における密着力よりも弱いために、自己吸着層19に切り込みが入れば、剥離することができるためである。
また、線分b-b’で示した分断位置の終端b’の位置は、図11-4の(H)中の横方向では、端部領域AR2の表示領域AR1近傍にあり、図11-4の(H)中の縦方向では、自己吸着層19と端子3との界面に到達しない深さにある。ここで、分断位置の終端b’は、自己吸着層19の端子3上の厚みの50%以上、90%以下が分断される位置(深さ)であることが好ましい。なお、自己吸着層19が分断される深さが深いほど、分断されたフィルム18及び自己吸着層19の一部をより容易に剥離することができる。自己吸着層19が分断される深さが、自己吸着層19の端子3上の厚みの50%未満であると、剥離が困難になるおそれがあり、自己吸着層19の端子3上の厚みの90%を超える場合は、分断する際に端子3に損傷を与えるおそれがある。
次に、分断されたフレキシブル基材2b、接着層4b、フィルム18及び自己吸着層19の端部領域AR2側の部分を除去することにより、端子3を露出させる。
以上より、端子3に損傷を与えることなく端子3の取り出しを行うことができる。また、乾式の方法により端子の取り出しを行うため、有機エレクトロルミネセンス素子6の特性の劣化を充分に防止することができる。
上述のようにして端子3の取り出しを行った後、露出した端子3に異方性導電膜10を用いて、フレキシブルプリント基板11を圧着し、図10に示すようなフレキシブル表示装置1dが完成する。
ここで、フレキシブル表示装置1dには、フレキシブルプリント基板11近傍に、上述した端子の取り出しにて分断されたフィルム18及び自己吸着層19が残っている。これによって、本実施形態の製法を用いたことが、製造後の状態においても確認可能である。上述した端子の取り出しにおいては、分断装置の分断精度等を考慮すると、フィルム18及び自己吸着層19の端部とまったく同じ位置で分断することは困難である。よって、フレキシブル表示装置1dには、フィルム18及び自己吸着層19が残ってしまうことになる。
本実施形態では、ガラス基板の主面上に有機エレクトロルミネセンス素子等を形成し、その後に、ガラス基板を剥離してフレキシブル基材に貼り変えるプロセスを採用しているが、本実施形態の変形例として、ガラス基板の主面上にフレキシブル基材を貼り合わせたものの上に有機エレクトロルミネセンス素子等を形成し、後の工程でガラス基板を剥離するプロセスを採用する場合が挙げられる。この場合は、封止膜9cの形状、及び、封止膜9b’の代わりに自己吸着層19を有するフィルム18を形成すること以外は、実施形態2に係るフレキシブル表示装置の製造方法と同様である。
また、本実施形態の他の変形例として、フレキシブル基材の主面上に有機エレクトロルミネセンス素子等を形成するプロセスを採用する場合が挙げられる。この場合は、封止膜9cの形状、及び、封止膜9b’の代わりに自己吸着層19を有するフィルム18を形成すること以外は、実施形態3に係るフレキシブル表示装置の製造方法と同様である。
[実施形態6]
実施形態6は、液晶層を備えるフレキシブル表示装置に関するものであり、剥離層として層間膜を利用する。また、ガラス基板の主面上に液晶層等を配置し、その後に、ガラス基板を剥離してフレキシブル基材に貼り変えるプロセスによって、フレキシブル表示装置を製造する。
実施形態6に係るフレキシブル表示装置の平面における構成は、実施形態1と同様であり、その平面模式図は図1に示した通りである。図12は、実施形態6に係るフレキシブル表示装置の図1中の線分A-A’に沿った断面を示す断面模式図である。図12に示すように、実施形態6に係るフレキシブル表示装置1eは、フレキシブル基材2aとフレキシブル基材2bとの間に、液晶層23及びシール材22が配置された構成を有する。
フレキシブル基材2aの主面上には、接着層4a、ポリイミド層7及び保護膜8が順に積層されている。保護膜8上の表示領域AR1には、配線5が配置され、保護膜8上の端部領域AR2には、配線5から導出された端子3が配置されている。表示領域AR1には、配線5上に、開口が設けられた層間膜12bと、層間膜12bの開口を通じて配線5と電気的に接続された画素電極20とが配置されている。端部領域AR2においても、表示領域AR1近傍では端子3上に層間膜12b’が積層されている。また、フレキシブル基材2bの液晶層23側の面上には、画素電極20に対向するカラーフィルタ層21が配置されている。また、端子3の露出した部分には、異方性導電膜10を介してフレキシブルプリント基板11が積層されている。
次に、図13-1~13-4を参照して実施形態6に係るフレキシブル表示装置の製造方法を説明する。図13-1~13-4は、実施形態6に係るフレキシブル表示装置の製造フローを、図1中の線分A-A’に沿った断面において示した断面模式図である。
本実施形態において、熱吸収層、ポリイミド層、保護膜、配線及び端子の形成は、それぞれ実施形態1と同様であるため、重複する点については説明を省略する。
(A)層間膜の形成
図13-1の(A)に示すように、表示領域AR1には、配線5上に、開口が設けられた層間膜12bを形成し、端部領域AR2には、端子3及び保護膜8の一部を覆うように、剥離層としての層間膜12b’を形成する。ここで、層間膜12b、12b’は同じ組成である。また、層間膜12b’は、後の工程で好適に端子の取り出しを行うために形成されたものである。層間膜12b、12b’の材質としては、例えば、アクリル系の樹脂が挙げられる。
層間膜12b及び12b’は、図13-1の(A)に示すように互いに分離して配置されているが、同じマスクを用いて同時に形成する。そのため、層間膜12b’のみを形成するためのマスクを追加する必要がない。ここで、層間膜12b及び12b’を分離するのは、仮に、層間膜を分離せずに一面に形成すると、後の工程で端子の取り出しを行う際、端子3を覆う端部領域AR2の上層を剥離すると、表示領域AR1の層間膜及びシール材22まで剥離されてしまい、端子3以外の部分(配線5の一部)も露出してしまうおそれがあるためである。
(B)画素電極の形成
図13-1の(B)に示すように、表示領域AR1には、層間膜12bの開口を通じて配線5と電気的に接続されるように、層間膜12b上、及び、上記開口内の配線5上に、画素電極20を形成する。
(C)第2のフレキシブル基材の貼り合わせ
図13-1の(C)に示すように、カラーフィルタ層21が主面上に形成されたフレキシブル基材2b(以下、カラーフィルタ基板とも言う。)を、シール材22を介してガラス基板16と対向するように貼り合わせる。ここで、カラーフィルタ層21が画素電極20と対向するように貼り合わせる。なお、液晶層23を形成する液晶材料は、ガラス基板16の主面上に上述した複数の層が形成された基板、又は、カラーフィルタ基板上のどちらかに、予め滴下しておいてもよいし、各々の基板を貼り合わせた後に封入してもよい。また、カラーフィルタ基板の製造方法としては、例えば、フレキシブル基材2bの主面上にカラーフィルタ層21を直接形成する方法であってもよいし、ガラス基板上に剥離用の透明膜を設け、その透明膜上にカラーフィルタ層21を形成し、ガラス基板を剥離した後に接着剤等を用いてフレキシブル基材2bを貼り合わせる方法であってもよい。
(D)貼り合わせ後の基板分断
図13-2の(D)に示す線分a-a’に沿ってフレキシブル基材2b側から、フレキシブル基材2bを、レーザー等を用いて分断し、続いてガラス基板16側から、ガラス基板16、及び、端部領域AR2の端子3以外の層を分断する。ここで、線分a-a’で示した分断位置は、熱吸収層17を横断し、配線5及び端子3を横断しない位置であればよく、これは、後の工程でガラス基板16を剥離する方法として、熱吸収層17とポリイミド層7との界面から剥離する方法を採用するためである。
(E)熱吸収層へのレーザー照射
図13-2の(E)中の矢印のように、分断されたガラス基板16側からレーザーを照射する。これにより、熱吸収層17が熱を吸収するため、熱吸収層17とポリイミド層7との間の密着性が低下し、後の工程で、熱吸収層17とポリイミド層7との界面から、ガラス基板16、及び、熱吸収層17をともに剥離することができる。
(F)ガラス基板の剥離
図13-3の(F)に示すように、熱吸収層17とポリイミド層7との界面から、ガラス基板16及び熱吸収層17をともに剥離する。
(G)第1のフレキシブル基材の貼り合わせ
図13-3の(G)に示すように、接着層4aを介してフレキシブル基材2aをフレキシブル基材2bに対向するように貼り合わせる。
(H)端子の取り出し
図13-4の(H)に示す線分b-b’に沿ってフレキシブル基材2b側から、フレキシブル基材2bを分断し、更に層間膜12b’に切り込みを入れる。分断方法としては、レーザー照射が好適である。ここで、レーザーは、上述した貼り合わせ後の基板分断で用いたレーザーと同じものを用いることができる。
次に、分断された層間膜12b’の端部領域AR2側の部分を剥離する。これは、層間膜12b’と端子3との界面における密着力が弱いために、層間膜12b’に切り込みが入れば、剥離することができるためである。
また、線分b-b’で示した分断位置の終端b’の位置は、図13-4の(H)中の横方向では、端部領域AR2の表示領域AR1近傍にあり、図13-4の(H)中の縦方向では、層間膜12b’と端子3との界面に到達しない深さにある。ここで、分断位置の終端b’は、層間膜12b’の端子3上の厚みの50%以上、90%以下が分断される位置(深さ)であることが好ましい。なお、層間膜12b’が分断される深さが深いほど、分断された層間膜12b’の一部をより容易に剥離することができる。層間膜12b’が分断される深さが、層間膜12b’の端子3上の厚みの50%未満であると、剥離が困難になるおそれがあり、層間膜12b’の端子3上の厚みの90%を超える場合は、分断する際に端子3に損傷を与えるおそれがある。
次に、分断されたフレキシブル基材2b及び層間膜12b’の端部領域AR2側の部分を除去することにより、端子3を露出させる。
以上より、端子3に損傷を与えることなく端子3の取り出しを行うことができる。また、乾式の方法により端子の取り出しを行うため、液晶層23の特性の劣化を充分に防止することができる。
上述のようにして端子3の取り出しを行った後、露出した端子3に異方性導電膜10を用いて、フレキシブルプリント基板11を圧着し、図12に示すようなフレキシブル表示装置1eが完成する。
ここで、フレキシブル表示装置1eには、フレキシブルプリント基板11近傍に、上述した端子の取り出しにて分断された層間膜12b’が残っている。これによって、本実施形態の製法を用いたことが、製造後の状態においても確認可能である。
以下に、層間膜12b’が残る理由を示す。マスクを用いて層間膜12b’を成膜する際のボケ量等を考慮すると、分断された層間膜12b’が残らないように層間膜12b’の端部とまったく同じ位置で分断することは困難である。また、層間膜12b’の端部の膜厚は、設計上の狙い値と異なる場合もある。よって、製造効率を上げるために、層間膜12b’の膜厚が安定した位置で分断しようとすると、分断位置等の調整がその都度生じてしまう。更に、分断装置の分断精度等も考慮すると、層間膜12b’の端部で分断することは困難であり、更に、分断位置が表示領域AR1側にずれた場合は、シール材22を損傷することになる。よって、フレキシブル表示装置1eには、層間膜12b’が残ってしまうことになる。
本実施形態では、ガラス基板の主面上に液晶層等を形成し、その後に、ガラス基板を剥離してフレキシブル基材に貼り変えるプロセスを採用しているが、本実施形態の変形例として、ガラス基板の主面上にフレキシブル基材を貼り合わせたものの上に液晶層等を形成し、後の工程でガラス基板を剥離するプロセスを採用する場合が挙げられる。この場合は、有機エレクトロルミネセンス素子6、封止膜9a、9b、9b’、9c及び接着層4bの代わりに、層間膜12b、12b’、画素電極20、シール材22及び液晶層23を形成すること以外は、実施形態2に係るフレキシブル表示装置の製造方法と同様である。
また、本実施形態の他の変形例として、フレキシブル基材の主面上に液晶層等を形成するプロセスを採用する場合が挙げられる。この場合は、有機エレクトロルミネセンス素子6、封止膜9a、9b、9b’、9c及び接着層4bの代わりに、層間膜12b、12b’、画素電極20、シール材22及び液晶層23を形成すること以外は、実施形態3に係るフレキシブル表示装置の製造方法と同様である。
[付記]
以下に、本発明に係るフレキシブル表示装置の製造方法の好ましい態様の例を挙げる。各例は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
上記剥離層と上記複数の端子との界面における密着力は、0.05N/25mm以上、0.5N/25mm以下であることが好ましい。これにより、分断された上記剥離層の一部を容易に剥離することができ、端子に損傷を与えることなく端子の取り出しを行うことができる。上記密着力が0.05N/25mm未満である場合は、剥離層形成以降のプロセスで剥離層自体が勝手に剥離してしまうおそれがある。0.5N/25mmを超える場合は、剥離が困難になり他の層(剥離層上部、又は、端子よりも下層)が剥離したり、端子上部に剥離の残渣が生じるおそれがある。上記密着力は、対ガラスの90°剥離試験等で測定することができる。上記密着力を測定する装置としては、島津製作所製のオートグラフ装置等を用いることができる。
上記複数の端子との界面に到達しない深さは、上記剥離層の上記複数の端子上の厚みの50%以上、90%以下が分断される深さであることが好ましい。これにより、分断された上記剥離層の一部を容易に剥離することができ、端子に損傷を与えることなく端子の取り出しを行うことができる。なお、上記剥離層が分断される深さが深いほど、分断された上記剥離層の一部をより容易に剥離することができる。また、上記剥離層が分断される深さが、上記剥離層の上記複数の端子上の厚みの50%未満である場合は、分断された上記剥離層の一部を容易に剥離することが困難になるおそれがあり、上記剥離層の上記複数の端子上の厚みの90%を超える場合は、分断する際に端子に損傷を与えるおそれがある。
上記配線は、薄膜トランジスタ素子を構成する部分を有し、上記薄膜トランジスタ素子は、酸化物半導体を含む半導体層を有するものであることが好ましい。酸化物半導体の処理温度は、通常、低温ポリシリコンのそれよりも低い。このため、半導体層よりも前段階で形成される他の部材の耐熱性を考慮した場合、酸化物半導体を含む半導体層を形成する方が、フレキシブル表示装置をより好適に製造することができる。
また、酸化物半導体は、アモルファスシリコンよりも移動度が高く、特性ばらつきも小さいという利点を有している。このため、酸化物半導体を含む薄膜トランジスタ素子は、アモルファスシリコンを含む薄膜トランジスタ素子よりも高速で駆動することができ、駆動周波数が高く、1画素に占める割合を小さくすることができるため、より高精細である次世代表示装置の駆動に好適である。また、酸化物半導体膜は、多結晶シリコン膜よりも簡便なプロセスで形成されるため、大面積が必要とされる装置にも適用できるという利点を有している。
また、酸化物半導体としては、例えば、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)及び酸素(O)から構成される化合物(In-Ga-Zn-O)や、インジウム(In)、スズ(Tin)、亜鉛(Zn)及び酸素(O)から構成される化合物(In-Tin-Zn-O)や、インジウム(In)、アルミニウム(Al)、亜鉛(Zn)及び酸素(O)から構成される化合物(In-Al-Zn-O)等が挙げられる。
上記工程(2)において、上記表示領域に、上記剥離層と同じ組成である層が、上記剥離層と離間されて配置されるものであってもよい。これにより、上記剥離層のみを形成するための工程を追加する必要がなく、製造効率を高めることができる。
上記フレキシブル表示装置としては、有機エレクトロルミネセンス素子を備えるものが挙げられる。この場合、上記剥離層と同じ組成である層が上記剥離層と離間されて配置される態様としては、例えば、[1]上記フレキシブル表示装置は、上記配線と電気的に接続された第1の電極と、第2の電極と、上記第1の電極と上記第2の電極との間にある有機エレクトロルミネセンス層とを有する有機エレクトロルミネセンス素子を上記表示領域に備え、上記剥離層と同じ組成である層は、上記有機エレクトロルミネセンス素子を覆う封止膜の少なくとも一部であり、上記工程(2)において上記剥離層を形成する際に、上記封止膜の少なくとも一部をともに形成する態様や、[2]上記フレキシブル表示装置は、上記配線と電気的に接続された第1の電極と、第2の電極と、上記第1の電極と上記第2の電極との間にある有機エレクトロルミネセンス層とを有する有機エレクトロルミネセンス素子を上記表示領域に備え、上記剥離層と同じ組成である層は、上記有機エレクトロルミネセンス層であり、上記工程(2)において上記剥離層を形成する際に、上記有機エレクトロルミネセンス層をともに形成する態様が挙げられる。
なお、本明細書中、「剥離層を形成する際に、特定の層をともに形成する」とは、例えば、共通の装置によって同時に膜を形成し、この膜を共通のマスクを用いて同時に成膜(パターニング)することを意味する。
上記工程(2)において、上記表示領域に、上記剥離層と異なる組成の層が、上記剥離層と離間されて配置されるものであってもよい。具体例としては、例えば、上記フレキシブル表示装置は、更に、上記配線と電気的に接続された第1の電極と、第2の電極と、上記第1の電極と上記第2の電極との間にある有機エレクトロルミネセンス層とを有する有機エレクトロルミネセンス素子を上記表示領域に備え、上記剥離層は、自己吸着層を有するフィルムである態様が挙げられる。この場合、上記有機エレクトロルミネセンス素子を覆うように封止膜を形成する工程は、上記工程(1)と上記工程(2)の間であってもよく、上記工程(2)と上記工程(3)との間であってもよい。すなわち、上記工程(1)と上記工程(2)との間に、上記有機エレクトロルミネセンス素子を覆うように封止膜を形成してもよいし、上記工程(2)と上記工程(3)との間に、上記有機エレクトロルミネセンス素子を覆うように封止膜を形成してもよい。これらによれば、有機エレクトロルミネセンス素子を備えるフレキシブル表示装置を好適に製造することができる。
上記封止膜の構成としては、無機膜である場合、無機膜が積層されたものである場合、無機膜及び有機膜が積層された場合が挙げられる。無機膜は防湿性が高いので、封止膜として用いることにより水分による有機エレクトロルミネセンス素子の特性の劣化を効果的に防止することができる。また、有機膜は厚膜化が容易なので、封止膜として用いることにより異物を覆うことができ、異物が表示品位に影響するのを充分に防止することができる。
上記フレキシブル表示装置としては、液晶層を備えるものが挙げられる。この場合、上記剥離層と同じ組成である層が上記剥離層と離間されて配置される態様としては、例えば、上記フレキシブル表示装置は、上記第1のフレキシブル基材、又は、上記仮の支持基板の主面上の上記表示領域に、上記配線と電気的に接続された画素電極と、上記配線と上記画素電極との間にある層間膜とを備え、上記剥離層と同じ組成である層は、上記層間膜であり、上記工程(2)において上記剥離層を形成する際に、上記層間膜をともに形成する態様が挙げられる。これにより、液晶層を備えるフレキシブル表示装置を好適に製造することができる。
次に、本発明に係るフレキシブル表示装置の好ましい態様の例を挙げる。各例は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。なお、上述した、本発明に係るフレキシブル表示装置の製造方法の好ましい態様の説明と重複する点については、適宜省略する。
上記剥離層と上記複数の端子との界面における密着力は、0.05N/25mm以上、0.5N/25mm以下であることが好ましい。
上記配線は、薄膜トランジスタ素子を構成する部分を有し、上記薄膜トランジスタ素子は、酸化物半導体を含む半導体層を有するあることが好ましい。
上記表示領域に、上記剥離層と同じ組成である層が配置され、上記剥離層、及び、上記剥離層と同じ組成である層は、離間されて配置されているものであってもよい。
上記フレキシブル表示装置としては、有機エレクトロルミネセンス素子を備えるものが挙げられ、例えば、上記表示素子が、上記配線と電気的に接続された第1の電極と、第2の電極と、上記第1の電極と上記第2の電極との間にある有機エレクトロルミネセンス層とを有する有機エレクトロルミネセンス素子であるものが挙げられる。この場合、上記剥離層と同じ組成である層が上記剥離層と離間されて配置される態様としては、例えば、[1]上記剥離層と同じ組成である層は、上記有機エレクトロルミネセンス素子を覆うように配置された封止膜の少なくとも一部である態様、[2]上記剥離層と同じ組成である層は、上記有機エレクトロルミネセンス層である態様が挙げられる。
上記封止膜の構成としては、無機膜である場合、無機膜が積層されたものである場合、無機膜及び有機膜が積層された場合が挙げられる。
上記表示領域に、上記剥離層と異なる組成の層が配置され、上記剥離層、及び、上記剥離層と異なる組成の層が、離間されて配置されているものであってもよい。具体例としては、例えば、上記表示素子は、上記配線と電気的に接続された第1の電極と、第2の電極と、上記第1の電極と上記第2の電極との間にある有機エレクトロルミネセンス層とを有する有機エレクトロルミネセンス素子であり、上記剥離層は、自己吸着層を有するフィルムである態様が挙げられる。
上記フレキシブル表示装置としては、液晶層を備えるものが挙げられる。この場合、上記剥離層と同じ組成である層が上記剥離層と離間されて配置される態様としては、例えば、上記表示素子は、液晶層であり、上記フレキシブル表示装置は、更に、上記配線と電気的に接続された画素電極と、上記配線と上記画素電極との間にある層間膜とを有し、上記剥離層と同じ組成である層は、上記層間膜である態様が挙げられる。
上記第1のフレキシブル基材と上記配線との間に、第2の接着層、ポリイミド層、及び、保護膜が順に配置されるものであってもよい。
1a、1b、1c、1d、1e:フレキシブル表示装置
2a、2b:フレキシブル基材
3:端子
4a、4b:接着層
5:配線
6:有機エレクトロルミネセンス素子
7:ポリイミド層
8:保護膜
9a、9b、9b’、9c:封止膜
10:異方性導電膜
11:フレキシブルプリント基板
12a:絶縁膜
12b、12b’:層間膜
13a、13b:電極
14、14’:有機エレクトロルミネセンス層
15:エッジカバー
16:ガラス基板
17:熱吸収層
18:フィルム
19:自己吸着層
20:画素電極
21:カラーフィルタ層
22:シール材
23:液晶層
AR1:表示領域
AR2:端部領域
 

Claims (15)

  1. 第1の接着層によって貼り合わされた、第1のフレキシブル基材、及び、第2のフレキシブル基材を備えるフレキシブル表示装置の製造方法であって、
    下記工程(1)~(4)を順に含むことを特徴とするフレキシブル表示装置の製造方法。
    (1)前記第1のフレキシブル基材、又は、仮の支持基板の主面上の表示領域に配線を形成するとともに、前記主面上の端部領域に前記配線から導出された複数の端子を形成する工程
    (2)前記複数の端子を直に覆う剥離層を形成する工程
    (3)前記剥離層と前記第2のフレキシブル基材との間にある界面で、前記剥離層と前記複数の端子との界面における密着力よりも強い密着力が得られるように、前記第1の接着層、及び、前記第2のフレキシブル基材を含む複数層を前記表示領域及び前記端部領域に順次配置する工程
    (4)前記端部領域の前記表示領域側で、前記複数層を分断、及び前記複数の端子との界面に到達しない深さまで前記剥離層に切り込みを入れ、更に、分断された前記剥離層の前記表示領域側とは反対側の部分を剥離し、分断された前記複数層及び前記剥離層の前記表示領域側とは反対側の部分を除去することにより、前記複数の端子の少なくとも一部を露出させる工程
  2. 前記複数の端子との界面に到達しない深さは、前記剥離層の前記複数の端子上の厚みの50%以上、90%以下が分断される深さであることを特徴とする請求項1に記載のフレキシブル表示装置の製造方法。
  3. 前記工程(2)において、前記表示領域に、前記剥離層と同じ組成である層が、前記剥離層と離間されて配置されることを特徴とする請求項1又は2に記載のフレキシブル表示装置の製造方法。
  4. 前記フレキシブル表示装置は、前記配線と電気的に接続された第1の電極と、第2の電極と、前記第1の電極と前記第2の電極との間にある有機エレクトロルミネセンス層とを有する有機エレクトロルミネセンス素子を前記表示領域に備え、
    前記剥離層と同じ組成である層は、前記有機エレクトロルミネセンス素子を覆う封止膜の少なくとも一部であり、
    前記工程(2)において前記剥離層を形成する際に、前記封止膜の少なくとも一部をともに形成することを特徴とする請求項3に記載のフレキシブル表示装置の製造方法。
  5. 前記フレキシブル表示装置は、前記配線と電気的に接続された第1の電極と、第2の電極と、前記第1の電極と前記第2の電極との間にある有機エレクトロルミネセンス層とを有する有機エレクトロルミネセンス素子を前記表示領域に備え、
    前記剥離層と同じ組成である層は、前記有機エレクトロルミネセンス層であり、
    前記工程(2)において前記剥離層を形成する際に、前記有機エレクトロルミネセンス層をともに形成することを特徴とする請求項3に記載のフレキシブル表示装置の製造方法。
  6. 前記フレキシブル表示装置は、更に、前記配線と電気的に接続された第1の電極と、第2の電極と、前記第1の電極と前記第2の電極との間にある有機エレクトロルミネセンス層とを有する有機エレクトロルミネセンス素子を前記表示領域に備え、
    前記剥離層は、自己吸着層を有するフィルムであることを特徴とする請求項1又は2に記載のフレキシブル表示装置の製造方法。
  7. 前記フレキシブル表示装置は、前記第1のフレキシブル基材、又は、前記仮の支持基板の主面上の前記表示領域に、液晶層と、前記配線と電気的に接続された画素電極と、前記配線と前記画素電極との間にある層間膜とを備え、
    前記剥離層と同じ組成である層は、前記層間膜であり、
    前記工程(2)において前記剥離層を形成する際に、前記層間膜をともに形成することを特徴とする請求項3に記載のフレキシブル表示装置の製造方法。
  8. 第1のフレキシブル基材と、
    前記第1のフレキシブル基材の主面上の表示領域に配置された配線及び表示素子と、
    前記第1のフレキシブル基材の主面上の端部領域に配置され、前記配線から導出された複数の端子と、
    少なくとも前記表示領域に配置された第1の接着層と、
    前記第1の接着層によって少なくとも前記表示領域に貼り合わされた第2のフレキシブル基材とを備えるフレキシブル表示装置であって、
    前記複数の端子は、前記表示領域側に剥離層に覆われた部分を有し、
    前記剥離層と前記複数の端子との界面における密着力は、前記剥離層と前記第2のフレキシブル基材との間にある界面のうちで最も弱いことを特徴とするフレキシブル表示装置。
  9. 前記剥離層と前記複数の端子との界面における密着力は、0.05N/25mm以上、0.5N/25mm以下であることを特徴とする請求項8に記載のフレキシブル表示装置。
  10. 前記表示領域に、前記剥離層と同じ組成である層が配置され、
    前記剥離層、及び、前記剥離層と同じ組成である層は、離間されて配置されていることを特徴とする請求項8又は9に記載のフレキシブル表示装置。
  11. 前記表示素子は、前記配線と電気的に接続された第1の電極と、第2の電極と、前記第1の電極と前記第2の電極との間にある有機エレクトロルミネセンス層とを有する有機エレクトロルミネセンス素子であり、
    前記剥離層は、前記有機エレクトロルミネセンス素子を覆うように配置された封止膜の少なくとも一部、前記有機エレクトロルミネセンス層、又は、自己吸着層を有するフィルムであることを特徴とする請求項8又は9に記載のフレキシブル表示装置。
  12. 前記封止膜は、無機膜であることを特徴とする請求項11に記載のフレキシブル表示装置。
  13. 前記封止膜は、無機膜が積層されたものであることを特徴とする請求項11に記載のフレキシブル表示装置。
  14. 前記封止膜は、無機膜及び有機膜が積層されたものであることを特徴とする請求項11に記載のフレキシブル表示装置。
  15. 前記表示素子は、液晶層であり、
    前記フレキシブル表示装置は、更に、前記配線と電気的に接続された画素電極と、前記配線と前記画素電極との間にある層間膜とを有し、
    前記剥離層と同じ組成である層は、前記層間膜であることを特徴とする請求項10に記載のフレキシブル表示装置。
     
PCT/JP2014/068009 2013-07-16 2014-07-07 フレキシブル表示装置の製造方法、及び、フレキシブル表示装置 WO2015008642A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015527254A JP6139680B2 (ja) 2013-07-16 2014-07-07 フレキシブル表示装置の製造方法、及び、フレキシブル表示装置
CN201480039916.6A CN105379422B (zh) 2013-07-16 2014-07-07 柔性显示装置的制造方法和柔性显示装置
US14/903,068 US9887384B2 (en) 2013-07-16 2014-07-07 Method for producing flexible display device, and flexible display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-148002 2013-07-16
JP2013148002 2013-07-16

Publications (1)

Publication Number Publication Date
WO2015008642A1 true WO2015008642A1 (ja) 2015-01-22

Family

ID=52346110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068009 WO2015008642A1 (ja) 2013-07-16 2014-07-07 フレキシブル表示装置の製造方法、及び、フレキシブル表示装置

Country Status (4)

Country Link
US (1) US9887384B2 (ja)
JP (1) JP6139680B2 (ja)
CN (1) CN105379422B (ja)
WO (1) WO2015008642A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016154227A (ja) * 2015-02-13 2016-08-25 株式会社半導体エネルギー研究所 機能パネル、機能モジュール、発光モジュール、表示モジュール、位置情報入力モジュール、発光装置、照明装置、表示装置、情報処理装置、機能パネルの作製方法
WO2017002372A1 (ja) * 2015-07-01 2017-01-05 シャープ株式会社 表示装置の製造方法
CN106711171A (zh) * 2015-11-17 2017-05-24 三星显示有限公司 显示装置和制造显示装置的方法
WO2017096627A1 (zh) * 2015-12-11 2017-06-15 深圳市柔宇科技有限公司 柔性显示模组的绑定方法
EP3185327A1 (en) * 2015-12-22 2017-06-28 Samsung Display Co., Ltd. Method of manufacturing display apparatus and display apparatus manufactured using the same
KR20170092748A (ko) * 2016-02-03 2017-08-14 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
JP2017147046A (ja) * 2016-02-15 2017-08-24 セイコーエプソン株式会社 電気光学装置、電子機器
WO2017170056A1 (ja) * 2016-03-29 2017-10-05 シャープ株式会社 有機el表示装置
KR20170125638A (ko) * 2016-05-04 2017-11-15 엘지디스플레이 주식회사 플렉서블 디스플레이 패널 및 그 제조 방법
JP2017535824A (ja) * 2014-10-22 2017-11-30 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. アレイ基板及びその製造方法、フレキシブル表示パネルと表示装置
WO2018163337A1 (ja) * 2017-03-08 2018-09-13 シャープ株式会社 可撓性表示パネル、可撓性表示装置及び可撓性表示パネルの製造方法
JP2018173542A (ja) * 2017-03-31 2018-11-08 株式会社半導体エネルギー研究所 素子、半導体装置、発光装置、表示装置、剥離方法、半導体装置の作製方法、発光装置の作製方法及び表示装置の作製方法
JP2018181564A (ja) * 2017-04-11 2018-11-15 株式会社ジャパンディスプレイ 有機el表示装置の製造方法及び有機el表示装置
WO2018211355A1 (ja) * 2017-05-19 2018-11-22 株式会社半導体エネルギー研究所 表示装置およびその作製方法
WO2019186771A1 (ja) * 2018-03-28 2019-10-03 シャープ株式会社 表示デバイスの製造方法
JP2021012886A (ja) * 2019-07-26 2021-02-04 堺ディスプレイプロダクト株式会社 フレキシブルoledデバイス、その製造方法及び支持基板
JP2022058367A (ja) * 2017-03-31 2022-04-12 株式会社半導体エネルギー研究所 剥離方法
US11735604B2 (en) 2018-03-08 2023-08-22 Sharp Kabushiki Kaisha Method for producing flexible display device to suppress peeling of a layered structure

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102288354B1 (ko) * 2015-08-10 2021-08-11 삼성디스플레이 주식회사 플렉서블 디스플레이 장치의 제조 방법
JP6474337B2 (ja) * 2015-08-27 2019-02-27 株式会社ジャパンディスプレイ 表示装置及びその製造方法
WO2017116892A1 (en) * 2015-12-28 2017-07-06 3M Innovative Properties Company Flexible electronic device with fluid cavity design
KR102675011B1 (ko) 2016-11-28 2024-06-17 삼성디스플레이 주식회사 표시장치
WO2018179168A1 (ja) * 2017-03-29 2018-10-04 シャープ株式会社 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置、成膜装置
WO2019073567A1 (ja) * 2017-10-12 2019-04-18 シャープ株式会社 ベース層を備えた非可撓性基板、可撓性表示装置及びその製造方法
JP2019153551A (ja) * 2018-03-06 2019-09-12 株式会社ジャパンディスプレイ 有機el表示装置
KR20210060718A (ko) * 2019-11-18 2021-05-27 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 제조 방법
CN113826232B (zh) * 2020-03-31 2023-07-04 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321561A (ja) * 1999-05-17 2000-11-24 Sharp Corp 液晶表示素子の製造方法
JP2002151254A (ja) * 2000-11-09 2002-05-24 Denso Corp 有機el素子の製造方法
WO2004034746A1 (ja) * 2002-10-09 2004-04-22 Semiconductor Energy Laboratory Co., Ltd. 発光装置の製造方法
JP2004214281A (ja) * 2002-12-27 2004-07-29 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法、剥離方法並びに転写方法
JP2009123653A (ja) * 2007-11-19 2009-06-04 Hitachi Displays Ltd 有機el表示装置およびその製造方法
JP2009205941A (ja) * 2008-02-28 2009-09-10 Sony Corp 表示装置の製造方法、表示装置、照明装置の製造方法および照明装置
WO2012090770A1 (ja) * 2010-12-27 2012-07-05 シャープ株式会社 蒸着膜の形成方法及び表示装置の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW494447B (en) * 2000-02-01 2002-07-11 Semiconductor Energy Lab Semiconductor device and manufacturing method thereof
JP3875130B2 (ja) * 2002-03-26 2007-01-31 株式会社東芝 表示装置及びその製造方法
US8144140B2 (en) * 2007-06-13 2012-03-27 Sony Corporation Display apparatus and method of manufacturing the same
JP2012003988A (ja) * 2010-06-17 2012-01-05 Hitachi Displays Ltd 有機エレクトロルミネッセンスパネルの製造方法
DE102012214325B4 (de) * 2012-08-10 2017-06-08 Osram Oled Gmbh Verfahren zum Herstellen eines optoelektronischen Bauelementes und Verfahren zum Strukturieren eines organischen, optoelektronischen Bauelementes
JP6462325B2 (ja) * 2014-11-14 2019-01-30 株式会社ジャパンディスプレイ 表示装置の製造方法および表示装置の端子露出方法
JP2016208020A (ja) * 2015-04-22 2016-12-08 株式会社半導体エネルギー研究所 回路基板の作製方法、発光装置の作製方法、及び発光装置
JP6517643B2 (ja) * 2015-09-16 2019-05-22 株式会社ジャパンディスプレイ 表示装置の製造方法、および、表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321561A (ja) * 1999-05-17 2000-11-24 Sharp Corp 液晶表示素子の製造方法
JP2002151254A (ja) * 2000-11-09 2002-05-24 Denso Corp 有機el素子の製造方法
WO2004034746A1 (ja) * 2002-10-09 2004-04-22 Semiconductor Energy Laboratory Co., Ltd. 発光装置の製造方法
JP2004214281A (ja) * 2002-12-27 2004-07-29 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法、剥離方法並びに転写方法
JP2009123653A (ja) * 2007-11-19 2009-06-04 Hitachi Displays Ltd 有機el表示装置およびその製造方法
JP2009205941A (ja) * 2008-02-28 2009-09-10 Sony Corp 表示装置の製造方法、表示装置、照明装置の製造方法および照明装置
WO2012090770A1 (ja) * 2010-12-27 2012-07-05 シャープ株式会社 蒸着膜の形成方法及び表示装置の製造方法

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017535824A (ja) * 2014-10-22 2017-11-30 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. アレイ基板及びその製造方法、フレキシブル表示パネルと表示装置
JP2016154227A (ja) * 2015-02-13 2016-08-25 株式会社半導体エネルギー研究所 機能パネル、機能モジュール、発光モジュール、表示モジュール、位置情報入力モジュール、発光装置、照明装置、表示装置、情報処理装置、機能パネルの作製方法
US10177347B2 (en) 2015-07-01 2019-01-08 Sharp Kabushiki Kaisha Method for manufacturing display device
WO2017002372A1 (ja) * 2015-07-01 2017-01-05 シャープ株式会社 表示装置の製造方法
CN106711171A (zh) * 2015-11-17 2017-05-24 三星显示有限公司 显示装置和制造显示装置的方法
US11974453B2 (en) 2015-11-17 2024-04-30 Samsung Display Co., Ltd. Display device with block members having different heights
US10405436B2 (en) 2015-12-11 2019-09-03 Shenzhen Royole Technologies Co., Ltd. Flexible display module bonding method
WO2017096627A1 (zh) * 2015-12-11 2017-06-15 深圳市柔宇科技有限公司 柔性显示模组的绑定方法
US10699947B2 (en) 2015-12-22 2020-06-30 Samsung Display Co., Ltd. Method of manufacturing display apparatus and display apparatus manufactured using the same
KR102474203B1 (ko) * 2015-12-22 2022-12-06 삼성디스플레이 주식회사 디스플레이 장치 제조방법 및 이에 따라 제조된 디스플레이 장치
US10217961B2 (en) 2015-12-22 2019-02-26 Samsung Display Co., Ltd. Method of manufacturing display apparatus and display apparatus manufactured using the same
KR20170075120A (ko) * 2015-12-22 2017-07-03 삼성디스플레이 주식회사 디스플레이 장치 제조방법 및 이에 따라 제조된 디스플레이 장치
EP3185327A1 (en) * 2015-12-22 2017-06-28 Samsung Display Co., Ltd. Method of manufacturing display apparatus and display apparatus manufactured using the same
KR102520559B1 (ko) * 2016-02-03 2023-04-13 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
KR20170092748A (ko) * 2016-02-03 2017-08-14 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
JP2017147046A (ja) * 2016-02-15 2017-08-24 セイコーエプソン株式会社 電気光学装置、電子機器
WO2017170056A1 (ja) * 2016-03-29 2017-10-05 シャープ株式会社 有機el表示装置
US10461270B2 (en) 2016-03-29 2019-10-29 Sharp Kabushiki Kaisha Organic EL display device
KR20170125638A (ko) * 2016-05-04 2017-11-15 엘지디스플레이 주식회사 플렉서블 디스플레이 패널 및 그 제조 방법
KR102512040B1 (ko) 2016-05-04 2023-03-20 엘지디스플레이 주식회사 플렉서블 디스플레이 패널 및 그 제조 방법
US10784319B2 (en) 2017-03-08 2020-09-22 Sharp Kabushiki Kaisha Flexible display panel, flexible display device, and method for producing flexible display panel
WO2018163337A1 (ja) * 2017-03-08 2018-09-13 シャープ株式会社 可撓性表示パネル、可撓性表示装置及び可撓性表示パネルの製造方法
JP2022058367A (ja) * 2017-03-31 2022-04-12 株式会社半導体エネルギー研究所 剥離方法
JP7213330B2 (ja) 2017-03-31 2023-01-26 株式会社半導体エネルギー研究所 剥離方法
JP2018173542A (ja) * 2017-03-31 2018-11-08 株式会社半導体エネルギー研究所 素子、半導体装置、発光装置、表示装置、剥離方法、半導体装置の作製方法、発光装置の作製方法及び表示装置の作製方法
JP2018181564A (ja) * 2017-04-11 2018-11-15 株式会社ジャパンディスプレイ 有機el表示装置の製造方法及び有機el表示装置
WO2018211355A1 (ja) * 2017-05-19 2018-11-22 株式会社半導体エネルギー研究所 表示装置およびその作製方法
US11735604B2 (en) 2018-03-08 2023-08-22 Sharp Kabushiki Kaisha Method for producing flexible display device to suppress peeling of a layered structure
WO2019186771A1 (ja) * 2018-03-28 2019-10-03 シャープ株式会社 表示デバイスの製造方法
JP2021012886A (ja) * 2019-07-26 2021-02-04 堺ディスプレイプロダクト株式会社 フレキシブルoledデバイス、その製造方法及び支持基板

Also Published As

Publication number Publication date
CN105379422B (zh) 2017-05-31
JPWO2015008642A1 (ja) 2017-03-02
CN105379422A (zh) 2016-03-02
JP6139680B2 (ja) 2017-05-31
US9887384B2 (en) 2018-02-06
US20160164030A1 (en) 2016-06-09

Similar Documents

Publication Publication Date Title
JP6139680B2 (ja) フレキシブル表示装置の製造方法、及び、フレキシブル表示装置
USRE49770E1 (en) Flexible display having a crack suppressing layer
KR101759029B1 (ko) 표시 장치의 제조 방법
US9666832B2 (en) Display device and method of manufacturing the same
TWI627742B (zh) 有機發光二極體顯示器,包含彼之電子裝置,以及製造該有機發光二極體顯示器之方法
US9536929B2 (en) Display device and method of manufacturing the same
US20180165996A1 (en) Flexible electronic device and method for manufacturing flexible electronic device
US8710739B2 (en) Flexible organic light emitting device and manufacturing method thereof
US10177347B2 (en) Method for manufacturing display device
JP5071152B2 (ja) 表示装置の製造方法および照明装置の製造方法
JP2015050181A (ja) フレキシブル有機電界発光装置及びその製造方法
JP2000003782A (ja) 電界発光素子
JP2012238580A (ja) 有機el表示装置の製造方法
JP6868904B2 (ja) 有機el表示パネルの製造方法
KR20140096982A (ko) 표시 패널의 제조 방법, 표시 패널 및 표시 장치
JP2009123645A (ja) 有機el表示装置およびその製造方法
JP2009076437A (ja) 表示装置
JP2006202722A (ja) 有機el表示装置の製造方法
KR102066079B1 (ko) 유기 발광 다이오드 표시 장치 및 이의 제조 방법
WO2014162395A1 (ja) 発光装置
KR102335496B1 (ko) 유기 발광 표시 장치 및 유기 발광 표시 장치 제조 방법
JP2007242313A (ja) 表示装置の製造方法
JP2017174641A (ja) 表示装置の製造方法
KR20160140157A (ko) 유기 발광 표시 장치 및 이의 제조 방법
KR20150142603A (ko) 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826592

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015527254

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14903068

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14826592

Country of ref document: EP

Kind code of ref document: A1