WO2015008572A1 - 金属製研磨パッドおよびその製造方法 - Google Patents

金属製研磨パッドおよびその製造方法 Download PDF

Info

Publication number
WO2015008572A1
WO2015008572A1 PCT/JP2014/066169 JP2014066169W WO2015008572A1 WO 2015008572 A1 WO2015008572 A1 WO 2015008572A1 JP 2014066169 W JP2014066169 W JP 2014066169W WO 2015008572 A1 WO2015008572 A1 WO 2015008572A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
polishing pad
catalyst
molded body
workpiece
Prior art date
Application number
PCT/JP2014/066169
Other languages
English (en)
French (fr)
Inventor
修 江龍
英二 山口
Original Assignee
国立大学法人名古屋工業大学
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋工業大学, 新東工業株式会社 filed Critical 国立大学法人名古屋工業大学
Priority to US14/904,832 priority Critical patent/US9815170B2/en
Priority to CN201480051594.7A priority patent/CN105556642B/zh
Priority to KR1020167003929A priority patent/KR102127547B1/ko
Priority to JP2015527226A priority patent/JP6225991B2/ja
Priority to EP14826661.2A priority patent/EP3024015B1/en
Publication of WO2015008572A1 publication Critical patent/WO2015008572A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • B24D18/0009Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for using moulds or presses
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/14Making alloys containing metallic or non-metallic fibres or filaments by powder metallurgy, i.e. by processing mixtures of metal powder and fibres or filaments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing

Definitions

  • the present invention relates to a metal polishing pad for smoothing the surface of a difficult-to-process material by a catalyst-assisted chemical processing method, a manufacturing method thereof, and a catalyst-assisted chemical processing method using the metal polishing pad. .
  • Si silicon
  • SiC silicon carbide
  • GaN gallium nitride
  • Patent Documents 1 and 2 As a prior art for efficiently smoothing the surface of these difficult-to-process materials, there are catalyst-assisted chemical processing methods described in Patent Documents 1 and 2.
  • Patent Document 1 In the method described in Patent Document 1, a work piece is arranged in a solution of an oxidant, a catalyst made of a transition metal is brought into contact with or in close proximity to the work surface of the work piece, In this method, a workpiece is processed by removing or eluting a compound generated by a chemical reaction between an active species having an oxidizing power and a surface atom of the workpiece.
  • Patent Document 1 as an example of this method, it is described that a surface plate in which all or part of the surface is made of a transition metal is used.
  • Patent Document 2 In the method described in Patent Document 2, a workpiece such as GaN or SiC is disposed in a treatment liquid in which molecules containing halogen such as hydrofluoric acid are dissolved, and a catalyst made of molybdenum or a molybdenum compound is disposed on the workpiece. In this method, the work surface of the work piece is processed by relatively moving the catalyst and the work piece while being in contact with or in close proximity to the work surface.
  • Patent Document 2 describes the use of a catalyst surface plate made of molybdenum or a molybdenum compound as an example of this method.
  • Patent Documents 1 and 2 are both polishing methods using only active species generated from an oxidizing agent without using abrasive grains.
  • Japanese Patent No. 4873694 (paragraph 0031, FIG. 7) Japanese Patent Laying-Open No. 2008-81389 (paragraph 0057, FIG. 25)
  • hydroxyl radicals and halogen radicals which are active species having a strong oxidizing power generated on the catalyst surface, can only exist for about 1 / 1,000,000 second from generation to extinction. If the work surface of the work piece is separated from the catalyst, the oxidizing action by the active species cannot be obtained. For this reason, it is necessary to bring the catalyst into contact with or extremely close to the work surface of the work piece.
  • the polishing surface plate is a dense bulk body of metal, the rigidity becomes high.
  • the processed surface of the workpiece usually has undulations and fine irregularities (roughness) on the order of several tens of ⁇ m. For this reason, when the work surface of the workpiece and the surface of the surface plate are pressed together, only the vertices of the convex portions existing on the surface of the work contact the surface of the surface plate, and the work surface of the work and the surface of the surface plate A fine gap is formed between the two. Therefore, when the polishing surface plate is made of a catalyst metal, a region in contact with or in close proximity to the catalyst on the processing surface of the workpiece is reduced.
  • a metal polishing pad (2) for smoothing the work surface (6a) of the work piece (6) by a catalyst-assisted chemical working method and a compression molded body of metal fibers (21, 22, 23) made of a transition metal catalyst and having a predetermined porosity.
  • the polishing pad of the present invention is composed of metal fibers and has voids, the metal fibers present on the surface of the polishing pad can be elastically deformed. For this reason, when the polishing pad surface of the present invention and the work surface of the workpiece are pressed together, the metal fibers are deformed corresponding to the fine irregularities present on the work surface, and the polishing pad surface and A gap generated between the surface to be processed can be reduced. Thereby, compared with the above-mentioned prior art, the region in contact with or in close proximity to the catalyst on the surface to be processed can be increased. As a result, the active species having a strong oxidizing power generated on the catalyst surface can be efficiently applied to the work surface of the work piece, and the processing speed of the smoothing process can be increased.
  • the entire polishing surface of the polishing pad is configured to be deformable, but when the entire surface to be processed is deformed when the processing surface is pressed against the polishing surface. Smoothing processing becomes difficult.
  • the polishing pad of the present invention is composed of a metal fiber compression-molded body, the polishing pad as a whole has high rigidity, and when the work surface is pressed against the polishing surface of the polishing pad. Deformation of the entire polished surface is suppressed. Therefore, by using the polishing pad of the present invention, highly accurate smoothing can be performed.
  • the porosity is preferably 10% or more and 90% or less.
  • the molded body can be easily molded and the strength of the molded body can be secured.
  • the compression recovery rate is preferably 90% or more and 100% or less.
  • the compression recovery rate is the thickness T1 of the metal polishing pad when a polishing load of 300 g / cm 2 is applied to the surface of the metal polishing pad for 10 seconds, and the polishing load of 1800 g / cm 2 on the surface of the metal polishing pad.
  • the thickness T2 of the metal polishing pad when the load is applied for 10 seconds, and the metal polishing pad when the polishing load of 1800 g / cm 2 is applied to the surface of the metal polishing pad for 10 seconds and then the polishing load of 300 g / cm 2 is applied for 10 seconds Is defined by the following equation.
  • Compression recovery rate (%) (T3-T2) / (T1-T2) ⁇ 100
  • the compression recovery rate 90% or more, even if there are irregularities or undulations on the work surface of the work piece before smoothing, the metal polishing pad and the work piece are processed during the smoothing process.
  • the work surface of the object can be brought into close proximity or contact sufficiently.
  • the metal fiber (21, 22, 23) is selected from titanium, nickel, copper, iron, chromium, cobalt, and platinum.
  • the processing speed can be adjusted by selecting the material of the metal fiber, that is, the type of catalyst, in accordance with the oxidizability of the workpiece.
  • the structure of the compression molded body is the first metal fiber (22) and the second metal fiber made of a material different from the first metal fiber. (23) is preferable. In this way, the processing speed can be adjusted by selecting the material of the metal fiber, that is, the type of the catalyst, in accordance with the oxidizability of the workpiece.
  • a cushion sheet having rubber elasticity is provided on the other surface opposite to the one surface serving as the polishing surface. It is preferable to have a configuration. According to this, when performing catalyst-assisted chemical processing, the processing pressure applied to the processing surface can be made uniform by the cushion sheet.
  • the invention according to claim 8 is the method for producing a metal polishing pad according to any one of claims 1 to 7,
  • metal fibers are fixed together by sintering,
  • the secondary molding step one surface (10a) of the primary molded body is covered with a mold material (11) that is not deformed by hydrostatic pressure, and the remaining surface (10b) of the primary molded body is covered with a covering material (12) that can be deformed by hydrostatic pressure. It is characterized by being hydrostatically pressed in a state where it is covered.
  • the metal fibers are sintered with each other by hot pressing, an isostatic pressing at room temperature that is hardly affected by distortion due to thermal expansion of the mold material or the molded body is performed. High flatness can be secured. Further, in the hydrostatic press in the secondary molding process, since a uniform pressure is applied from the coating material side to the mold material side, the flat shape of the mold material can be accurately transferred to the compression molded body, and the metal polishing pad A uniform porosity can be obtained in any part.
  • the hydrostatic press in the secondary molding process is molded at room temperature, there is no need to use a hot isostatic press that is expensive and requires a lot of energy. Therefore, it is not necessary to prepare a material having a particularly high heat resistance for the mold material, and it is sufficient that the mold material is slightly harder than the material selected as the metal fiber, and a metal polishing pad can be used at an industrially inexpensive cost. Can be manufactured.
  • the invention according to claim 10 is characterized in that, in the invention according to claim 9, auxiliary abrasive particles are supplied together with an oxidizing agent.
  • the surface modified layer of the workpiece generated with the active species can be efficiently compared with the case of processing with only the active species as in the conventional technique described above. Can be removed.
  • the use of particles that are softer than the workpiece as the auxiliary abrasive particles can suppress the formation of linear marks on the workpiece.
  • the processing speed can be increased by using the auxiliary abrasive particles that are harder than the surface modified layer of the workpiece.
  • the oxidant is one selected from pure water, hydrogen peroxide, oxalic acid and hydrofluoric acid. Or a mixed solution composed of a combination of two or more.
  • the processing speed can be adjusted by selecting the type of oxidant according to the oxidizability of the workpiece. Thereby, adjustment of processing accuracy can be performed easily.
  • FIG. 1 It is a conceptual diagram which shows the whole structure of the catalyst assistance type chemical processing apparatus in 1st Embodiment. It is a schematic diagram of the metal polishing pad in FIG. 1, and is a cross-sectional view parallel to the polishing surface. It is a schematic diagram of the metal polishing pad in FIG. 1, and is a cross-sectional view perpendicular to the polishing surface. It is a flowchart showing the manufacturing process of the metal polishing pad in 1st Embodiment. It is sectional drawing which shows the state of the primary molded object at the time of performing an isostatic pressing in the secondary shaping
  • FIG. 3 is an enlarged view of the vicinity of the processing surface of the workpiece when the various polishing pads and the workpiece are pressed together in the first embodiment.
  • FIG. 6 is an enlarged view of the vicinity of a processing surface of a workpiece when various polishing pads and the workpiece are pressed together in Comparative Example 1. It is an enlarged view of the workpiece surface vicinity of a workpiece when the various polishing pad and workpiece in the comparative example 2 are pressed together.
  • It is sectional drawing which shows the metal polishing pad and surface plate of the catalyst assistance type chemical processing apparatus in 2nd Embodiment. 2 is a scanning electron micrograph of a metal polishing pad made of titanium fiber having a diameter of 20 microns in Example 1 and having a porosity of 36%.
  • FIG. 3 is a scanning electron micrograph of a metal polishing pad made of titanium fiber having a diameter of 20 microns and having a porosity of 78% in Example 2.
  • FIG. 3 is a scanning electron micrograph of a metal polishing pad made of titanium fiber and nickel fiber having a diameter of 20 microns in Example 3.
  • FIG. It is a roughness curve of the SiC wafer surface before grind
  • polishing a SiC wafer. 2 is a roughness curve of a SiC wafer surface after the SiC wafer is polished using the metal polishing pad of Example 1.
  • FIG. 3 is a roughness curve of the surface of a SiC wafer after further polishing the SiC wafer using the metal polishing pad of Example 1.
  • FIG. 2 is a photograph of an SiC wafer surface observed with a laser microscope after the SiC wafer is polished using the metal polishing pad of Example 1.
  • FIG. 2 is an observation photograph of the surface of a SiC wafer after further polishing the SiC wafer using the metal polishing pad of Example 1, using a laser microscope.
  • 6 is a scanning electron micrograph of a metal polishing pad made of titanium fibers with a diameter of 80 microns in Example 5 and having a porosity of 56%.
  • 6 is a scanning electron micrograph of a metal polishing pad made of titanium fiber having a diameter of 80 microns and having a porosity of 78% in Example 6.
  • FIG. 1 is a conceptual diagram of a processing apparatus that performs catalyst-assisted chemical processing using the metal polishing pad of the present invention.
  • the processing apparatus includes a surface plate 1, a metal polishing pad 2, a holder 3, a first nozzle 4, and a second nozzle 5.
  • the surface plate 1 has a flat upper surface and is rotatable about a rotation axis perpendicular to the upper surface.
  • the metal polishing pad 2 is attached to the upper surface of the surface plate 1.
  • the polishing surface 2 a of the metal polishing pad 2 is wider than the processing surface 6 a of the workpiece 6.
  • the holder 3 holds a workpiece 6 made of a difficult-to-process material.
  • the holder 3 is rotatable about a rotation axis provided parallel and eccentric to the rotation axis of the surface plate 1.
  • both the surface plate 1 and the holder 3 can rotate, the structure which only one rotates may be sufficient.
  • the rotation directions of the surface plate 1 and the holder 3 may be the same or different.
  • the first nozzle 4 is a first supply unit that supplies an oxidant between the polishing surface 2 a of the metal polishing pad 2 and the processing surface 6 a of the workpiece 6.
  • the second nozzle 5 is a second supply unit that supplies auxiliary abrasive particles between the polishing surface 2 a of the metal polishing pad 2 and the processing surface 6 a of the workpiece 6.
  • the difficult-to-process material mentioned in the present specification means a material that is difficult to process under mechanically strong conditions because the material has high hardness and is brittle.
  • High hardness means that the hardness is higher than Si or the like.
  • industrial value is particularly high when any one of SiC, GaN, diamond, sapphire, and ruby is used.
  • the material constituting the workpiece is not limited to difficult-to-process materials, and may be any material that can be processed by a catalyst-assisted chemical processing method.
  • oxidizing agent a single solution selected from pure water, hydrogen peroxide solution, oxalic acid, and hydrofluoric acid, or a mixed solution composed of a combination of two or more types can be used.
  • the oxidizing agent is selected from the types of oxidizing agents that cause an optimal catalytic reaction for difficult-to-process materials to be processed.
  • the auxiliary abrasive particles are auxiliary processing materials used to remove a surface modification layer formed on the surface of the workpiece, which will be described later.
  • auxiliary abrasive particles those that are softer than the workpiece are used, more preferably those that are softer than the workpiece and harder than the surface modified layer of the workpiece.
  • the hardness of the auxiliary abrasive particles By setting the hardness of the auxiliary abrasive particles to be harder than the hardness of the surface modified layer and softer than the hardness of the workpiece, it is possible to process at a high processing speed without damaging the workpiece Become.
  • the material for the auxiliary abrasive particles include alumina, boron carbide, and silica.
  • the particle diameter of the auxiliary abrasive particles may be selected depending on the material of the workpiece or the smoothness after processing, and is not particularly limited.
  • FIG. 2A shows a cross section parallel to the polishing surface 2a of the metal polishing pad 2
  • FIG. 2B shows a cross section perpendicular to the polishing surface 2a of the metal polishing pad 2.
  • the metal polishing pad 2 is composed of a compression-molded body of metal fibers 21 made of a transition metal catalyst, and has a predetermined porosity.
  • the compression molded body is formed by heating and compressing cotton-like metal fibers.
  • the cotton-like metal fiber is composed of one or a plurality of metal fibers. The details of the method for manufacturing the metal polishing pad 2 will be described later.
  • the metal polishing pad 2 has the metal fibers 21 intersecting each other, and the intersecting portions 21a are sintered. Is fixed. Further, as shown in FIG. 2B, the polishing surface 2a of the metal polishing pad 2 has high flatness. That is, the metal fibers 21 are arranged on the polished surface 2a so as to form a flat surface. Further, as shown in FIGS. 2A and 2B, the metal polishing pad 2 is composed of metal fibers 21 having a substantially uniform diameter.
  • the diameter of the metal fiber 21 that is a raw material of the metal polishing pad 2 is preferably 1 ⁇ m or more and 500 ⁇ m or less.
  • the diameter of the metal fiber 21 exceeds 500 ⁇ m, the strength of the metal fiber 21 itself is too high, and it is difficult to perform compression molding uniformly at high density. If the metal fibers 21 cannot be molded at a high density, the effect of increasing the surface area for catalytic reaction, which is one of the purposes for fiberizing the raw materials, cannot be obtained sufficiently, so that the advantage of using the raw materials for the metal fibers 21 is reduced.
  • the metal fibers 21 having a diameter of 1 ⁇ m or more can be used.
  • the diameter of the metal fiber 21 is more preferably 10 ⁇ m or more for the following reason.
  • the diameter of the metal fiber 21 is less than 10 ⁇ m, the production of the metal fiber 21 as a raw material is costly. In this case, the metal fiber 21 is too active during heating in the molding process described later, and is oxidized with oxygen in the atmosphere.
  • the diameter of the metal fiber 21 in this specification refers to the equivalent circle diameter calculated from the cross-sectional area of the metal fiber 21.
  • the above-mentioned diameter of the metal fiber 21 is an average value of the diameter per one metal fiber used as a raw material.
  • the diameter of all the plurality of metal fibers 21 is preferably 1 ⁇ m or more and 500 ⁇ m or less.
  • the diameter of the metal fiber 21 after the manufacture of the metal polishing pad 2 is substantially equal to the diameter of the metal fiber 21 before the manufacture of the metal polishing pad 2, the diameter of the metal fiber 21 described above is the metal polishing. It is the diameter of the metal fiber 21 constituting the pad 2.
  • the porosity of the metal polishing pad 2 is not too small and is not too large. If the porosity is too small, the metal fibers 21 cannot be elastically deformed. Therefore, when the metal polishing pad 2 and the workpiece 6 are pressed together, there are few regions in contact with or close to the catalyst on the processing surface 6a. turn into. If the porosity is too small, it becomes difficult to sufficiently hold the oxidizing agent and auxiliary abrasive particles used for processing on the polishing pad surface 2a facing the processing surface 6a of the processing object 6. On the other hand, if the porosity is too large, the reaction surface area for generating active species having oxidizing power cannot be increased.
  • the porosity of the metal polishing pad 2 is 10% or more and 90% or less. This is because when the inventor molded the compression-molded body so as to have various porosity, it is difficult to make the porosity less than 10%. If it exceeds 90%, the molded body is removed when the mold is removed. This is because the shape of was not maintained.
  • the compression recovery rate of the metal polishing pad 2 varies depending on the diameter of the metal fibers and the molding density of the molded body when compression molded, but is preferably 90% or more and 100% or less. When the compression recovery rate is less than 90%, it is difficult to uniformly contact the entire surface of the workpiece and the metal polishing pad when the metal polishing pad and the workpiece are processed under pressure. This is because it becomes a contact.
  • the metal fiber is made of, for example, one kind of metal selected from titanium, nickel, copper, iron, chromium, cobalt, and platinum, or an alloy made of a combination of two or more kinds.
  • the material of the metal fiber is selected from the types of metal materials that cause an optimal catalytic reaction for difficult-to-process materials to be processed.
  • the material of the metal fiber which comprises a compression molding body is all the same.
  • FIG. 3 the flowchart showing the manufacturing process of the metal polishing pads 2 is shown.
  • the metal polishing pad 2 is manufactured by performing a raw material preparation step S1, a primary molding step S2, and a secondary molding step S3.
  • a metal fiber made of a transition metal catalyst is prepared as a raw material for the metal polishing pad 2.
  • the metal fibers to be prepared may be plural or one, but in the case of plural, it is preferable to use relatively long ones. This is to prevent the metal fibers from falling off during the smoothing process by the catalyst-assisted chemical processing method.
  • the primary molding (preliminary molding) is molded by hot pressing the metal fiber. At this time, metal fibers are arranged in a cotton form in the mold, and heated and pressurized.
  • the heating temperature is a temperature at which the contact portion between the intersecting metal fibers is sintered and solidified.
  • the heating temperature is set to 700 ° C. or higher and 1000 ° C. or lower.
  • the molding temperature is less than 700 ° C., the deformation of the metal fibers is not sufficient, the density of the molded body becomes non-uniform, and a molded body that can be used as the metal polishing pad 2 cannot be obtained.
  • the molding temperature exceeds 1000 ° C., the metal fibers are locally sintered and fused with each other to be contracted. As a result, the surface area of the molded body is reduced, and the effect of increasing the catalytic reaction area targeting the raw material as metal fibers is reduced.
  • the vacuum hot press method can be used, which can suppress the oxidation of the metal fiber forming the preform, and there is no fear of molding failure due to air entrainment in the molded body. It is preferable to adopt. As a result, it is possible to obtain a molded body having a large surface area for catalytic reaction and good dimensional accuracy.
  • the secondary molded body is molded by isostatically pressing the primary molded body at room temperature.
  • FIG. 4 the state of the primary molded object at the time of performing an isostatic pressing in secondary molding process S3 is shown. Specifically, as shown in FIG. 4, one surface 10a of the primary molded body 10 is covered with a mold material 11 that is not deformed by the hydrostatic pressure during hydrostatic pressure pressing, and the primary molded body 10 is covered with a covering material 12 that can be deformed by hydrostatic pressure. Hydrostatic pressure pressing is performed with the remaining surface including the other surface 10b covered. Thereby, the one surface 10a of the primary molded body 10 is flattened. One surface 10 a of the primary molded body 10 becomes the polishing surface 2 a of the metal polishing pad 2.
  • the mold material 11 a highly rigid mold material made of iron, aluminum, glass or the like can be used.
  • the covering material 12 a sheet-like member made of an elastic material such as rubber can be employed.
  • this secondary molding step S3 there is no need to prepare a special mold material having heat resistance such as that used for hot isostatic pressing. Normal temperature here means the temperature in the state which is not heated.
  • the metal polishing pad 2 when the metal polishing pad 2 is manufactured by performing hot pressing or hot isostatic pressing alone, the shrinkage of the molded body due to sintering or the distortion due to the thermal expansion of the mold material or the molded body. Due to the influence, the flatness of the molded body is lowered, and the porosity is not uniform.
  • the metal fibers are sintered with each other by hot pressing, a hydrostatic press is performed at room temperature that is hardly affected by distortion due to thermal expansion of the mold material or the molded body. High flatness can be secured. Further, in the hydrostatic press in the secondary molding step S3, since a uniform pressure is applied from the coating material 12 side to the mold material 11 side, the flat shape of the mold material 11 can be precisely transferred to the molded body, and the metal A uniform porosity can be obtained in any part of the polishing pad 2.
  • the isostatic pressing in the secondary molding step S3 molding is performed at room temperature, so there is no need to use a hot isostatic pressing apparatus that is expensive and requires a lot of energy. Therefore, it is not necessary to prepare a material having a particularly high heat resistance for the mold material 11, and it is sufficient that the mold material 11 is a material that is slightly harder than the material selected as the metal fiber, and the metal polishing is performed at an industrially inexpensive cost.
  • the pad 2 can be manufactured.
  • the work surface 6a of the work 6 and the polishing surface 2a of the metal polishing pad 2 are pressed together while rotating the surface plate 1 and the holder 3 respectively. Then, the oxidizing agent and the auxiliary abrasive particles are supplied from the first and second nozzles 4 and 5 between the work surface 6a and the polishing surface 2a.
  • active species having strong oxidizing power are generated from the oxidizing agent on the surface of the metal fiber constituting the metal polishing pad 2.
  • the metal fiber is made of titanium and hydrogen peroxide is used as the oxidizing agent, hydroxy radicals are generated by the Fenton reaction.
  • the surface layer of the processed surface 6a is modified to an oxide layer, that is, a surface modified layer is formed on the processed surface 6a. Then, the surface modified layer is scraped off by the auxiliary abrasive particles. In this way, the processed surface 6a of the workpiece 6 is smoothed.
  • Comparative Example 1 shown in FIG. 5 (b) is an example using a polishing platen J1 made of a catalytic metal described in the column of problems to be solved by the invention.
  • the polishing platen J1 has high rigidity, so that the polishing platen J1 corresponds to the fine irregularities present on the processed surface 6a of the workpiece 6. Does not deform. For this reason, a fine gap is generated between the surface 6a to be processed and the surface of the polishing surface plate J1.
  • the metal polishing pad 2 of the present embodiment is composed of the metal fibers 21 and has voids, so that the metal fibers existing on the polishing pad surface 2a can be elastically deformed. For this reason, as shown in FIG. 5A, when the polishing pad surface 2a and the work surface 6a of the work piece 6 are pressed against each other, polishing is performed corresponding to the fine irregularities present on the work surface 6a. Since the pad surface 2a is deformed, a gap generated between the polishing pad surface 2a and the processing surface 6a can be reduced.
  • the metal fibers 21 that are in contact with the convex portions of the processing surface 6a on the polishing pad surface 2a are pressed, and the metal fibers 21 that face the concave portions of the processing surface 6a enter the concave portions.
  • contact can be increased.
  • the active species having a strong oxidizing power generated on the catalyst surface can be efficiently acted on the work surface of the work piece. That is, the surface modification layer can be quickly formed on the processing surface 6a, and the processing speed of the smoothing process can be increased.
  • Comparative Example 2 shown in FIG. 5C is an example using a polishing pad J2 having high flexibility.
  • the polishing pad J2 is not composed of a catalyst metal, but is composed of, for example, a nonwoven fabric made of polyurethane resin.
  • the polishing pad surface J2a is deformed corresponding to the fine irregularities present on the processing surface 6a, so that the polishing pad surface J2a and the workpiece are processed.
  • the gap between the surface 6a can be eliminated.
  • the polishing pad surface J2a is pushed by the processing surface 6a and deformed. Specifically, when the polishing pad surface J2a is larger than the workpiece surface 6a, when the polishing pad surface J2a is pressed against the workpiece surface 6a, a portion of the polishing pad surface J2a that faces the edge of the workpiece 6 is located. It will be deformed. For this reason, it becomes difficult to smooth the processed surface 6a.
  • the metal polishing pad 2 of the present embodiment is composed of a compression-molded body of the metal fibers 21, the polishing pad as a whole has high rigidity and pushes the processing surface 6a against the polishing surface 2a. Deformation of the entire polishing surface 2a when applied is suppressed. That is, when the processing surface 6a is pressed against the polishing surface 2a, the polishing surface 2a maintains high flatness. Therefore, by using the metal polishing pad 2 of the present embodiment, highly accurate smoothing can be performed.
  • the catalyst metal has a fiber shape of 500 ⁇ m or less and has voids around the fiber, so that the catalyst metal is oxidized compared to the case of a dense bulk shape. It is possible to increase the reaction surface area for generating active species having force.
  • the metal polishing pad 2 of the present embodiment since there are voids on the polishing surface, a sufficient amount of oxidant and auxiliary polishing particles for holding the processing surface of the workpiece are held on the polishing surface. can do.
  • the surface modification of the workpiece 6 is performed by supplying not only the oxidizing agent but also auxiliary abrasive particles between the processing surface 6a and the polishing surface 2a.
  • the quality layer is removed.
  • the surface modification layer of a workpiece can be removed efficiently.
  • FIG. 6 shows a metal polishing pad and a surface plate of a catalyst-assisted chemical processing apparatus according to the second embodiment.
  • the metal polishing pad 2 is directly attached to the surface plate 1.
  • the metal polishing pad 2 is fixed by interposing a cushion sheet 13 having rubber elasticity. It may be attached to the panel 1. That is, the cushion sheet 13 may be provided on the surface (other surface) 2b opposite to the polishing surface (one surface) 2a of the metal polishing pad 2.
  • the processing pressure applied to the processing surface 6a by the cushion sheet 13 can be made uniform.
  • the materials of the metal fibers constituting the compression molded body are not limited to the same case, and may be different. That is, the compression molded body may be configured to include, as metal fibers, first metal fibers and second metal fibers made of a material different from the first metal fibers (see Example 3).
  • the processing speed can be adjusted by selecting the material of the metal fiber, that is, the type of the catalyst, in accordance with the oxidizability of the workpiece.
  • auxiliary abrasive particles are supplied from the second nozzle 5.
  • the auxiliary abrasive particles are supplied. Catalyst-assisted chemical processing may be performed without supplying abrasive particles.
  • the catalyst-assisted chemical processing apparatus is configured to rotate the workpiece 6 and the metal polishing pad 2, but the workpiece 6 and the metal polishing pad 2 A configuration in which at least one of them is linearly reciprocated may be used. In short, the catalyst-assisted chemical processing apparatus may be configured to relatively move the workpiece 6 and the metal polishing pad 2.
  • the metal polishing pad 2 is composed of one type of metal fiber 21 with a diameter, but may be composed of a plurality of types of metal fibers. Good. Even in this case, the diameter of one metal fiber is preferably 1 ⁇ m or more and 500 ⁇ m or less.
  • Examples of the present invention will be described below.
  • Examples 1 to 3 are production examples of a metal polishing pad.
  • Example 4 is an example of smoothing by a catalyst-assisted chemical processing method using a metal polishing pad.
  • Example 1 A metal polishing pad having a porosity of 36% was manufactured by the method for manufacturing a metal polishing pad described in the first embodiment. Specific conditions will be described below.
  • the metal fibers shown in Table 1 were prepared (raw material preparation step S1). In addition, the prepared metal fiber has a substantially uniform diameter.
  • the preforming body was shape
  • the target density of the preform was set by calculating back from the compression rate of the secondary molding step and the porosity of the target metal polishing pad.
  • the molding stroke to be compressed with a uniaxial vacuum hot press was adjusted so that the porosity was 45%, which was slightly higher.
  • the reason why the porosity of the target metal polishing pad is slightly higher than that of the metal polishing pad is that it is necessary to consider the formability in a hydrostatic press that is finally molded to the target porosity. If the density of the molded body after uniaxial vacuum hot pressing is too high, the amount of deformation in the hydrostatic press is reduced, making it difficult to make the density of the molded body uniform.
  • a metal polishing pad was molded by a hydrostatic press under the molding conditions shown in Table 3 (secondary molding step S3).
  • the molding pressure of the hydrostatic press was set according to the porosity of the final metal polishing pad, the diameter of the titanium fiber, and the density of the preform after uniaxial vacuum hot pressing.
  • Example 2 A scanning electron micrograph of the metal polishing pad having a porosity of 36% produced in this manner is shown in FIG. From FIG. 7, it can be confirmed that the surface of the molded metal polishing pad has a uniform density. Further, the compression recovery rate of the metal polishing pad having a porosity of 36% was measured. As a result, the compression recovery rate was 99%.
  • Example 2 A metal polishing pad having a porosity of 78% was produced in the same manner as in Example 1. The molding stroke in the uniaxial vacuum hot press was adjusted and the molding pressure in the hydrostatic press was adjusted so that the porosity of the metal polishing pad was 78%.
  • FIG. 8 shows a scanning electron micrograph of the manufactured metal polishing pad having a porosity of 78%. Further, the compression recovery rate of the metal polishing pad having a porosity of 78% was measured. As a result, the compression recovery rate was 97%.
  • Example 3 A metal polishing pad was produced in the same manner as in Example 1 using nickel fibers (first metal fibers) and titanium fibers (second metal fibers). A photomicrograph of the manufactured metal polishing pad is shown in FIG. From FIG. 9, it can be confirmed that the nickel polishing pad 22 and the titanium fiber 23 constitute a metal polishing pad.
  • Example 4 Using the metal polishing pad manufactured in Example 1, the workpiece was smoothed by the catalyst-assisted chemical processing method by the processing apparatus of FIG. 1 described in the first embodiment. Table 4 shows the processing conditions at this time.
  • FIG. 10A and 10B when the Si surface of the SiC wafer, which is a difficult-to-process material, is smoothed by a catalyst-assisted chemical processing method using the metal polishing pad manufactured in Example 1.
  • the roughness curve before and behind the processing of the SiC wafer surface is shown.
  • FIG. 10A shows a roughness curve before processing
  • FIG. 10B shows a roughness curve after processing. Comparing the roughness curve before processing with the roughness curve after processing, the shape of the valley in the roughness curve is changed from an acute angle to a round shape while the valley shape in the roughness curve is maintained at an acute angle shape. Recognize. Therefore, from the roughness curves before and after processing, it can be confirmed that only the roughness convex portions on the surface of the SiC wafer before processing are selectively processed.
  • FIGS. 11A and 11B show SiC before and after processing when the surface of a difficult-to-process material is smoothed by a catalyst-assisted chemical processing method using the metal polishing pad manufactured in Example 1.
  • the observation photograph by the laser microscope of the wafer surface is shown.
  • FIG. 11A shows the surface state before processing
  • FIG. 11B shows the surface state after processing. Comparing the surface state before processing with the surface state after processing, there are many linear marks on the surface of the SiC wafer before processing, but many surfaces are smoothed by reducing the linear marks after processing. I can observe.
  • FIGS. 10 (c) and 11 (c) show the roughness of the SiC wafer surface when the smoothing process is further performed on the SiC wafer surface in the state shown in FIGS. 10 (b) and 11 (b), respectively.
  • Fig. 2 shows a photograph of a depth curve and a laser microscope. As shown in FIG. 10C and FIG. 11C, it is understood that the flatness of the SiC wafer surface is increased by further smoothing.
  • Example 5 A metal polishing pad having a porosity of 56% was manufactured in the same manner as in Example 1 using metal fibers made of pure titanium and having a diameter of 80 ⁇ m. A scanning electron micrograph of the manufactured metal polishing pad is shown in FIG.
  • Example 6 A metal polishing pad having a porosity of 78% was manufactured in the same manner as in Example 1 using metal fibers made of pure titanium and having a diameter of 80 ⁇ m. A scanning electron micrograph of the manufactured metal polishing pad is shown in FIG.
  • the present invention is a powerful process generated from a metal catalyst by processing the surface of a difficult-to-process material by a catalyst-assisted chemical processing method using a metal polishing pad made of metal fibers. It is possible to efficiently bring active species having a sufficient oxidizing power into contact or close proximity to the work surface of the work piece. Not only is the processing speed high, but there are no defects on the surface of the work material. It is possible to provide a polishing method that does not exist.
  • the catalyst-assisted chemical processing method using the metal polishing pad of the present invention is suitable for processing difficult-to-process materials, in particular, SiC used as a power semiconductor material, GaN, diamond, sapphire, ruby and the like. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Catalysts (AREA)

Abstract

 被加工面における触媒と接触または極近接する領域を増大できる金属製研磨パッドを提供する。被加工物(6)の被加工面(6a)を触媒支援型の化学加工方法で平滑化加工するための金属製研磨パッド(2)を、遷移金属触媒からなる金属繊維の圧縮成型体で構成する。この圧縮成型体は、金属繊維から構成されており、空隙を有しているので、研磨パッド表面(2a)に存在する金属繊維は弾性変形が可能である。このため、研磨パッド表面(2a)と被加工物(6)の被加工面(6a)とが押し合わされると、被加工面(6a)に存在する微細な凹凸に対応して、金属繊維が変形することで、研磨パッド表面(2a)と被加工面(6a)との間に生じる隙間を小さくできる。これにより、被加工面(6a)における触媒と接触もしくは極近接する領域を増大させることができる。

Description

金属製研磨パッドおよびその製造方法
 本発明は、難加工材料の表面を触媒支援型の化学加工方法で平滑化加工するための金属製研磨パッドおよびその製造方法や、その金属製研磨パッドを用いた触媒支援型の化学加工方法に関する。
 近年の環境問題やエネルギー問題の観点から、自動車や鉄道車両、産業機器、家電製品などの電力制御における省エネルギーを促進するために、パワーエレクトロニクス機器の高性能化が要求されている。従来、これらのパワーエレクトロニクス機器にはパワー半導体材料としてシリコン(以下、Siと略記する。)が使われてきたが、更なる省エネルギーを実現する方法として、シリコンカーバイト(以下、SiCと略記する。)であるとか、窒化ガリウム(以下、GaNと略記する。)、ダイヤモンドなどの新しいパワー半導体材料が提案されはじめている。これらの新しいパワー半導体材料は、Siと比較して高硬度で且つ脆い材料であり難加工材料であるといった課題があった。
 これらの難加工材料の表面を効率的に平滑化加工する先行技術として、特許文献1、2に記載された触媒支援型の化学加工方法がある。
 特許文献1に記載の方法は、酸化剤の溶液中に被加工物を配し、遷移金属からなる触媒を被加工物の被加工面に接触もしくは極近接させ、触媒表面上で生成した強力な酸化力を持つ活性種と被加工物の表面原子との化学反応で生成した化合物を除去あるいは溶出させることによって被加工物を加工する方法である。特許文献1には、この方法の実施例として、表面の全部または一部が遷移金属で構成された定盤を用いることが記載されている。
 特許文献2に記載の方法は、フッ化水素酸等のハロゲンを含む分子が溶けた処理液中に、GaNやSiC等の被加工物を配し、モリブデンまたはモリブデン化合物からなる触媒を被加工物の被加工面に接触または極近接させながら該触媒と被加工物とを相対移動させて被加工物の被加工面を加工する方法である。特許文献2には、この方法の実施例として、モリブデンまたはモリブデン化合物からなる触媒定盤を用いることが記載されている。
 なお、特許文献1、2に記載の方法は、どちらも、砥粒を用いずに、酸化剤から発生した活性種のみで研磨する方法である。
特許第4873694号公報(段落0031、図7) 特開2008-81389号公報(段落0057、図25)
 上記した触媒支援型の化学加工方法においては、触媒表面上で生成した強力な酸化力を持つ活性種であるヒドロキシルラジカルやハロゲンラジカルが、発生から消滅までに100万分の1秒程度しか存在できないので、被加工物の被加工面が触媒から離れていると、活性種による酸化作用が得られない。このため、触媒を被加工物の被加工面に接触または極近接させる必要がある。
 しかし、上記した従来技術のように、研磨定盤を触媒金属で構成した場合、下記の理由により、被加工物の被加工面において、触媒と接触または極近接する領域が少ないという問題が生じる。
 すなわち、研磨定盤は金属の緻密なバルク体であるため、剛性が高くなってしまう。一方、被加工物の被加工面には、通常、うねりや数十μmオーダーの微細な凹凸(粗さ)が存在する。このため、被加工物の被加工面と定盤表面を押し合わせたとき、被加工面に存在する凸部の頂点のみが定盤表面に接触し、被加工物の被加工面と定盤表面との間に微細な隙間が生じる。したがって、研磨定盤を触媒金属で構成した場合、被加工物の被加工面における触媒と接触または極近接する領域が少なくなってしまう。
 この結果、触媒表面上で生成した強力な酸化力を持つ活性種を被加工物の被加工面に効率よく作用させることができず、被加工物の平滑化加工の際の加工速度が小さくなり、加工時間が長くなってしまう。
 本発明は、上記点に鑑みて、被加工面における触媒と接触または極近接する領域を増大できる金属製研磨パッドおよびその製造方法を提供することを目的とする。また、本発明は、その金属製研磨パッドを用いた触媒支援型の化学加工方法を提供することを他の目的とする。
 上記目的を達成するため、請求項1に記載の発明では、被加工物(6)の被加工面(6a)を触媒支援型の化学加工方法で平滑化加工するための金属製研磨パッド(2)であって、遷移金属触媒からなる金属繊維(21、22、23)の圧縮成型体で構成され、所定の空隙率を有することを特徴としている。
 本発明の研磨パッドは、金属繊維から構成されており、空隙を有しているので、研磨パッド表面に存在する金属繊維は弾性変形が可能である。このため、本発明の研磨パッド表面と被加工物の被加工面とが押し合わされると、被加工面に存在する微細な凹凸に対応して、金属繊維が変形することで、研磨パッド表面と被加工面との間に生じる隙間を小さくできる。これにより、上記した従来技術と比較して、被加工面における触媒と接触もしくは極近接する領域を増大させることができる。この結果、触媒表面上で生成した強力な酸化力を持つ活性種を被加工物の被加工面に効率よく作用させることが可能となり、平滑化加工の加工速度を大きくできる。
 ところで、隙間を埋めるだけであれば、研磨パッドの研磨面全体が変形可能に構成されていれば良いが、研磨面に被加工面を押し当てた際に、研磨面全体が変形してしまうと、平滑化加工が困難となる。
 これに対して、本発明の研磨パッドは、金属繊維の圧縮成型体で構成されているので、研磨パッド全体としては、剛性が高く、研磨パッドの研磨面に被加工面を押し当てた際の研磨面全体の変形は抑制される。よって、本発明の研磨パッドを用いることで、高精度な平滑化加工が可能である。
 請求項1に記載の発明においては、請求項2に記載の発明のように、金属繊維(21、22、23)として、直径が1μm以上500μm以下であるものを用いることが好ましい。この場合に、圧縮成型体の製造の際に、高密度かつ均一に圧縮成型することが容易となる。
 請求項1に記載の発明においては、請求項3に記載の発明のように、空隙率は、10%以上90%以下とすることが好ましい。この場合に、成型体を容易に成型できるとともに、成型体の強度を確保できる。
 請求項1に記載の発明においては、請求項4に記載の発明のように、圧縮回復率が90%以上100%以下であることが好ましい。
 ここで、圧縮回復率は、金属製研磨パッドの表面に研磨荷重300g/cmを10sec負荷したときの金属製研磨パッドの厚さT1と、金属製研磨パッドの表面に研磨荷重1800g/cmを10sec負荷したときの金属製研磨パッドの厚さT2と、金属製研磨パッドの表面に研磨荷重1800g/cmを10sec負荷した後に研磨荷重300g/cmを10sec負荷したときの金属製研磨パッドの厚さT3とを用いて、次式で定義される。
 圧縮回復率(%)=(T3-T2)/(T1-T2)×100
 この圧縮回復率が90%以上である場合に、平滑化加工する前の被加工物の被加工面に凹凸やうねりがあった場合でも、平滑化加工の最中に金属製研磨パッドと被加工物の被加工面を十分に極近接または接触させることができる。
 請求項1に記載の発明においては、請求項5に記載の発明のように、金属繊維(21、22、23)として、チタン、ニッケル、銅、鉄、クロム、コバルト、白金の中から選択された1種の金属または2種類以上の組み合わせからなる合金で構成されたものを採用できる。被加工物の酸化性に合わせて、金属繊維の材質、すなわち、触媒の種類を選択することにより、加工速度を調整することが可能となる。
 請求項1に記載の発明においては、請求項6に記載の発明のように、圧縮成型体の構成を、第1金属繊維(22)と、第1金属繊維とは異なる材質の第2金属繊維(23)とを備える構成とすることが好ましい。このように、被加工物の酸化性に合わせて、金属繊維の材質、すなわち、触媒の種類を組み合わせて選択することにより、加工速度を調整することが可能となる。
 請求項1に記載の発明においては、請求項7に記載の発明のように、成型体の構成を、研磨面となる一面とは反対側の他面に、ゴム弾性を有するクッションシートが設けられている構成とすることが好ましい。これによれば、触媒支援型の化学加工を行う際に、クッションシートによって被加工面にかかる加工圧力を均一にすることができる。
 請求項8に記載の発明では、請求項1ないし7のいずれか1つに記載の金属製研磨パッドの製造方法であって、
 遷移金属触媒からなる金属繊維をホットプレスして一次成型体を成型する一次成型工程(S2)と、
 一次成型体を常温で静水圧プレスして二次成型体を成型する二次成型工程(S3)とを有し、
 一次成型工程によって、金属繊維同士を焼結により固定させ、
 二次成型工程では、静水圧で変形しない型材(11)により一次成型体の一面(10a)を覆うとともに、静水圧で変形可能な被覆材(12)により一次成型体の残りの面(10b)を覆った状態で静水圧プレスすることを特徴としている。
 ところで、本発明と異なり、ホットプレスまたは熱間静水圧プレスを単独で行って金属製研磨パッドを製造する場合、焼結による成型体の収縮や、型材や成型体の熱膨張による歪の影響により、成型体の平坦度が低下し、空隙率も不均一となってしまう。
 これに対して、本発明では、ホットプレスによって金属繊維同士を焼結させた後に、型材や成型体の熱膨張による歪の影響をほとんど受けない常温での静水圧プレスを行うので、成型体の高い平坦度を確保できる。また、二次成型工程の静水圧プレスでは、被覆材側から型材側に均一の圧力がかかるので、型材の平坦形状を圧縮成型体に精密に転写させることができ、かつ、金属製研磨パッドのどの部位においても均一な空隙率とすることができる。
 また、二次成型工程の静水圧プレスでは、常温で成型するので、高価で多くのエネルギーを必要とする熱間静水圧プレス装置を用いる必要が無い。したがって、型材も特別に耐熱性の高い材料を準備する必要は無く、型材は金属繊維として選択した材料よりも若干硬い材料であれば十分であり、工業的に安価なコストで金属製研磨パッドを製造できる。
 請求項9に記載の発明では、難加工材料からなる被加工物(6)の被加工面(6a)を平滑化加工する触媒支援型の化学加工方法において、
 請求項1ないし7のいずれか1つに記載の金属製研磨パッド(2)の研磨面(2a)と被加工面(6a)とを押し合わせ、被加工面(6a)と研磨面(2a)との間に酸化剤を供給しながら、被加工物(6)と金属製研磨パッド(2)とを相対移動させることを特徴としている。
 これによれば、請求項1に記載の金属製研磨パッドを用いるので、請求項1に記載の発明と同様の効果が得られる。
 請求項10に記載の発明では、請求項9に記載の発明において、酸化剤とともに、補助研磨粒子を供給することを特徴としている。
 これによれば、補助研磨粒子を供給することで、上記した従来技術のように活性種のみで加工する場合と比較して、活性種で生じた被加工物の表面改質層を効率的に除去できる。このとき、請求項11に記載の発明のように、補助研磨粒子として、被加工物よりも軟らかいものを用いることで、被加工物に線状痕がつくことを抑制できる。さらに、請求項12に記載の発明のように、補助研磨粒子として、被加工物の表面改質層よりも硬いものを用いることで、加工速度を大きくできる。
 請求項9~12に記載の発明は、請求項13に記載の発明のように、難加工材料が、SiC、GaN、ダイヤモンド、サファイヤ、ルビーのいずれか1つである場合に、特に有効である。
 請求項9~13に記載の発明においては、請求項14に記載の発明のように、酸化剤として、純水、過酸化水素水、シュウ酸、フッ化水素酸の中から選択された1種の溶液または2種類以上の組み合わせから成る混合溶液を用いることができる。被加工物の酸化性に合わせて、酸化剤の種類を選択することで、加工速度を調整することが可能となる。これにより、加工精度の調整を容易に行うことができる。
 なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
第1実施形態における触媒支援型の化学加工装置の全体構成を示す概念図である。 図1中の金属製研磨パッドの模式図であり、研磨面に平行な断面図である。 図1中の金属製研磨パッドの模式図であり、研磨面に垂直な断面図である。 第1実施形態における金属製研磨パッドの製造工程を表すフローチャートである。 図3中の二次成型工程で静水圧プレスを行う際の一次成型体の状態を示す断面図である。 第1実施形態における各種研磨パッドと被加工物とを押し合わせたときの被加工物の被加工面近傍の拡大図である。 比較例1における各種研磨パッドと被加工物とを押し合わせたときの被加工物の被加工面近傍の拡大図である。 比較例2における各種研磨パッドと被加工物とを押し合わせたときの被加工物の被加工面近傍の拡大図である。 第2実施形態における触媒支援型の化学加工装置の金属製研磨パッドおよび定盤を示す断面図である。 実施例1の直径20ミクロンのチタン繊維からなる、空隙率36%の金属製研磨パッドの走査型電子顕微鏡写真である。 実施例2の直径20ミクロンのチタン繊維からなる、空隙率78%の金属製研磨パッドの走査型電子顕微鏡写真である。 実施例3の直径20ミクロンのチタン繊維とニッケル繊維からなる金属製研磨パッドの走査型電子顕微鏡写真である。 SiCウエハを研磨する前のSiCウエハ表面の粗さ曲線である。 実施例1の金属製研磨パッドを用いてSiCウエハを研磨した後のSiCウエハ表面の粗さ曲線である。 実施例1の金属製研磨パッドを用いてSiCウエハを更に研磨した後のSiCウエハ表面の粗さ曲線である。 SiCウエハを研磨する前のSiCウエハ表面のレーザー顕微鏡による観察写真である。 実施例1の金属製研磨パッドを用いてSiCウエハを研磨した後のSiCウエハ表面のレーザー顕微鏡による観察写真である。 実施例1の金属製研磨パッドを用いてSiCウエハを更に研磨した後のSiCウエハ表面のレーザー顕微鏡による観察写真である。 実施例5の直径80ミクロンのチタン繊維からなる、空隙率56%の金属製研磨パッドの走査型電子顕微鏡写真である。 実施例6の直径80ミクロンのチタン繊維からなる、空隙率78%の金属製研磨パッドの走査型電子顕微鏡写真である。
 以下、本発明の実施形態について図に基づいて説明する。
(第1実施形態)
 まず、本発明の第1実施形態における触媒支援型の化学加工装置および触媒支援型の化学加工方法について説明する。図1に、本発明の金属製研磨パッドを用いた触媒支援型の化学加工を行う加工装置の概念図を示す。
 図1に示すように、加工装置は、定盤1と、金属製研磨パッド2と、ホルダー3と、第1ノズル4と、第2ノズル5とを備えている。
 定盤1は、平坦な上面を有し、上面に垂直な回転軸心を中心に回転可能となっている。金属製研磨パッド2は、定盤1の上面に取り付けられる。金属製研磨パッド2の研磨面2aは、被加工物6の被加工面6aよりも広い。ホルダー3は、難加工材料からなる被加工物6を保持する。ホルダー3は、定盤1の回転軸心に対して平行かつ偏心して設けられた回転軸を中心に回転可能となっている。なお、定盤1とホルダー3の両方が回転可能であるが、一方のみが回転する構成であっても良い。定盤1とホルダー3の回転方向は同じでも異なっていても良い。
 第1ノズル4は、金属製研磨パッド2の研磨面2aと被加工物6の被加工面6aとの間に、酸化剤を供給する第1供給部である。第2ノズル5は、金属製研磨パッド2の研磨面2aと被加工物6の被加工面6aとの間に、補助研磨粒子を供給する第2供給部である。
 本明細書で言う難加工材料は、材料が高硬度かつ脆いために、機械的に強い条件で加工することが困難な材料を意味する。高硬度とは、Si等よりも硬度が高いことを意味する。このような難加工材料の中でもSiC、GaN、ダイヤモンド、サファイヤ、ルビーのいずれか1つである場合に、工業的な価値が特に高い。ただし、被加工物を構成する材料は、難加工材料に限定されるものではなく、触媒支援型の化学加工方法で加工できる材料であれば良い。
 酸化剤としては、純水、過酸化水素水、シュウ酸、フッ化水素酸の中から選択された1種の溶液または2種類以上の組み合わせからなる混合溶液を用いることができる。酸化剤は、加工する難加工材料に対して最適な触媒反応を起こす酸化剤の種類から選択される。
 補助研磨粒子は、後述する、被加工物の表面に形成される表面改質層を除去するために用いられる補助加工材である。補助研磨粒子としては、被加工物よりも軟らかものを用い、より好ましくは、被加工物よりも軟らかく、かつ、被加工物の表面改質層よりも硬いものを用いる。補助研磨粒子の硬さを被加工物の硬さより軟らかく設定することで、被加工物の表面を損傷することなく、表面改質層を除去することができ、新たな触媒反応を促進することが可能となる。補助研磨粒子の硬さを表面改質層の硬さよりも硬く、被加工物の硬さより軟らかい硬さに設定することで、被加工材を損傷することなく大きな加工速度で加工することが可能となる。補助研磨粒子の材質としては、例えば、アルミナ、炭化ホウ素、シリカなどが挙げられる。補助研磨粒子の粒子径は、被加工材の材質、あるいは加工後の平滑度により選択されれば良く、特に限定されるものではない。
 次に、金属製研磨パッド2について説明する。図2(a)に、金属製研磨パッド2の研磨面2aに平行な断面を示し、図2(b)に、金属製研磨パッド2の研磨面2aに垂直な断面を示す。
 金属製研磨パッド2は、遷移金属触媒からなる金属繊維21の圧縮成型体で構成されたものであり、所定の空隙率を有している。圧縮成型体は、綿状の金属繊維に対して加熱および圧縮して成型されたものである。綿状の金属繊維は、1本もしくは複数本の金属繊維から構成されている。なお、金属製研磨パッド2の製造方法の詳細は後述する。
 より具体的には、図2(a)に示すように、金属製研磨パッド2は、金属繊維21同士が交差しており、交差した箇所21aが焼結していることにより、金属繊維21同士が固定されている。また、図2(b)に示すように、金属製研磨パッド2の研磨面2aは高い平坦度を有している。すなわち、研磨面2aでは金属繊維21が平坦面をなすように並んでいる。また、図2(a)、図2(b)に示すように、金属製研磨パッド2は、直径がほぼ均一である金属繊維21によって構成されている。
 金属製研磨パッド2の原料となる金属繊維21の直径は、1μm以上500μm以下が好適である。金属繊維21の直径が500μmを超える場合、金属繊維21自体の強度が高すぎて高密度かつ均一に圧縮成型することが困難となる。金属繊維21を高密度に成型できないと、原材料を繊維化する目的の一つである触媒反応させる表面積を増大させる効果が十分に得られないので、原料を金属繊維21とする利点が小さくなる。現在では、集束引抜き法によって直径1μmまでの極細径の金属繊維の製造が可能であるので、金属繊維21としては直径1μm以上のものが使用可能である。ただし、次の理由により、金属繊維21の直径は、10μm以上とすることが、より好ましい。金属繊維21の直径が10μm未満の場合、原料となる金属繊維21の製造にコストがかかってしまう。また、この場合、後述する成型工程での加熱の際に、金属繊維21の活性が高すぎて大気中の酸素で酸化してしまう。
 なお、本明細書でいう金属繊維21の直径とは、金属繊維21の断面積から算出した円相当径を言う。また、上記した金属繊維21の直径とは、原料として使用する金属繊維の1本あたりの直径の平均値である。複数本の金属繊維21を用いて金属製研磨パッド2を製造する場合、複数本の金属繊維21の全てにおいて、直径が1μm以上500μm以下であることが好適である。また、金属製研磨パッド2の製造後における金属繊維21の直径は、金属製研磨パッド2の製造前の金属繊維21の直径とほぼ等しいことから、上記した金属繊維21の直径は、金属製研磨パッド2を構成する金属繊維21の直径のことである。
 金属製研磨パッド2の空隙率は、小さすぎず、大きすぎない所定の範囲内である。空隙率が小さすぎると、金属繊維21が弾性変形できなくなるため、金属製研磨パッド2と被加工物6とを押し合わせたときに、被加工面6aにおける触媒と接触または極近接する領域が少なくなってしまう。また、空隙率が小さすぎると、加工に用いる酸化剤や補助研磨粒子を被加工物6の被加工面6aに対向する研磨パッド表面2aで十分に保持することも困難となる。一方、空隙率が大きすぎると、酸化力を持つ活性種を発生させる反応表面積を大きくすることができなくなる。
 具体的には、金属製研磨パッド2の空隙率を10%以上90%以下とする。これは、本発明者が種々の空隙率となるように圧縮成型体を成型したところ、空隙率10%未満とすることは困難であり、90%超とすると、型を外した際に成型体の形状が維持されなかったからである。
 金属製研磨パッド2の圧縮回復率は、金属繊維の直径と圧縮成型した際の成型体の成型密度により変化するが、90%以上100%以下とすることが好適である。圧縮回復率が90%未満の場合は、金属製研磨パッドと被加工物を加圧状態で加工した際に被加工物と金属製研磨パッドの全面を均一に接触させる事が難しく、局部的な接触となってしまうからである。
 金属繊維は、例えば、チタン、ニッケル、銅、鉄、クロム、コバルト、白金の中から選択された1種の金属または2種類以上の組み合わせからなる合金で構成される。金属繊維の材質は、加工する難加工材料に対して最適な触媒反応を起こす金属材料の種類から選択される。本実施形態では、圧縮成型体を構成する金属繊維の材質は全て同じである。
 次に、金属製研磨パッド2の製造方法について説明する。図3に、金属製研磨パッド2の製造工程を表すフローチャートを示す。図3に示すように、原料準備工程S1と、一次成型工程S2と、二次成型工程S3とを行うことで、金属製研磨パッド2を製造する。
 原料準備工程S1では、金属製研磨パッド2の原料として、遷移金属触媒からなる金属繊維を準備する。このとき、準備する金属繊維は複数本でも1本でもよいが、複数本の場合、比較的長いものを用いることが好ましい。触媒支援型の化学加工法による平滑化加工の際における金属繊維の脱落を防止するためである。
 一次成型工程S2では、金属繊維をホットプレスして一次成型体(予備成型体)を成型する。このとき、金型内に金属繊維を綿状に配置して、加熱および加圧する。
 加熱温度は、交差した金属繊維同士の接触箇所が焼結して固化する温度である。例えば、金属繊維をチタンで構成する場合、加熱温度を700℃以上1000℃以下とする。成型温度が700℃未満であると金属繊維の変形が十分でなく成型体の密度が不均一となり、金属製研磨パッド2として使用できる成型体が得られない。成型温度が1000℃を超えると、金属繊維同士が局部的に焼結融合して接合されて収縮する。その結果、成型体の表面積が小さくなり、原料を金属繊維として狙う触媒反応面積を増大する効果が小さくなってしまう。また、成型体の焼結が進みすぎると、成型体自体の寸法が収縮してしまい成型体の寸法精度を確保することが困難となり、被加工物との密着を確保することが可能な金属製研磨パッド2の形状を得ることが困難となる。
 また、ホットプレスの方法としては、金属繊維が酸化しやすい場合、予備成型体をなす金属繊維の酸化を抑制できて、成型体内への空気巻き込みによる成型不良の心配が無い、真空ホットプレス法を採用することが好ましい。これにより、触媒反応させる表面積が大きく、寸法精度の良い成型体を得ることができる。
 二次成型工程S3では、一次成型体を常温で静水圧プレスして二次成型体を成型する。図4に、二次成型工程S3で静水圧プレスを行う際の一次成型体の状態を示す。具体的には、図4に示すように、静水圧プレス時の静水圧で変形しない型材11により一次成型体10の一面10aを覆うとともに、静水圧で変形可能な被覆材12により一次成型体10の他面10bを含む残りの面を覆った状態で静水圧プレスする。これにより、一次成型体10の一面10aを平坦化させる。一次成型体10の一面10aが金属製研磨パッド2の研磨面2aとなる。
 型材11としては、鉄、アルミ、ガラスなどで構成された剛性の高い型材を採用できる。被覆材12としては、ゴムなどの弾性材料で構成されたシート状部材を採用できる。この二次成型工程S3では、熱間静水圧プレスに使用するような耐熱性のある特殊な金型材料を準備する必要は全く無い。ここでいう常温とは、加熱しない状態での温度を意味する。
 ところで、本実施形態と異なり、ホットプレスまたは熱間静水圧プレスを単独で行って金属製研磨パッド2を製造する場合、焼結による成型体の収縮や、型材や成型体の熱膨張による歪の影響により、成型体の平坦度が低下し、空隙率も不均一となってしまう。
 これに対して、本実施形態では、ホットプレスによって金属繊維同士を焼結させた後に、型材や成型体の熱膨張による歪の影響をほとんど受けない常温での静水圧プレスを行うので、成型体の高い平坦度を確保できる。また、二次成型工程S3の静水圧プレスでは、被覆材12側から型材11側に均一の圧力がかかるので、型材11の平坦形状を成型体に精密に転写させることができ、かつ、金属製研磨パッド2のどの部位においても均一な空隙率とすることができる。
 また、二次成型工程S3の静水圧プレスでは、常温で成型するので、高価で多くのエネルギーを必要とする熱間静水圧プレス装置を用いる必要が無い。したがって、型材11も特別に耐熱性の高い材料を準備する必要は無く、型材11は金属繊維として選択した材料よりも若干硬い材料であれば十分であり、工業的に安価なコストで金属製研磨パッド2を製造できる。
 次に、上記した構成の加工装置を用いた触媒支援型の化学加工方法について説明する。定盤1とホルダー3とをそれぞれ回転させながら、被加工物6の被加工面6aと金属製研磨パッド2の研磨面2aとを押し合わせる。そして、第1、第2ノズル4、5から酸化剤と補助研磨粒子を、被加工面6aと研磨面2aとの間に供給する。
 このとき、金属製研磨パッド2を構成する金属繊維の表面において、酸化剤から強力な酸化力を持つ活性種が発生する。例えば、金属繊維がチタンで構成され、酸化剤として過酸化水素を用いた場合、フェントン反応によって、ヒドロキシラジカルが発生する。この活性種によって、被加工面6aの表層が酸化層に改質され、すなわち、被加工面6aに表面改質層が形成される。そして、補助研磨粒子によって、この表面改質層が削り取られる。このようにして、被加工物6の被加工面6aが平滑化加工される。
 次に、本実施形態の主な特徴について説明する。図5(a)、図5(b)、図5(c)のそれぞれに、本実施形態、比較例1、比較例2における各種研磨パッドと被加工物とを押し合わせたときの被加工物の被加工面近傍の拡大図を示す。
 図5(b)に示す比較例1は、上記発明が解決する課題の欄に記載の触媒金属で構成した研磨定盤J1を用いた例である。この研磨定盤J1と被加工物6とを押し合わせると、研磨定盤J1は剛性が高いため、研磨定盤J1は被加工物6の被加工面6aに存在する微細な凹凸に対応して変形しない。このため、被加工面6aと研磨定盤J1の表面との間に微細な隙間が生じてしまう。
 これに対して、本実施形態の金属製研磨パッド2は、金属繊維21から構成されており、空隙を有しているので、研磨パッド表面2aに存在する金属繊維は弾性変形が可能である。このため、図5(a)に示すように、研磨パッド表面2aと被加工物6の被加工面6aとが押し合わされると、被加工面6aに存在する微細な凹凸に対応して、研磨パッド表面2aが変形することで、研磨パッド表面2aと被加工面6aとの間に生じる隙間を小さくできる。すなわち、研磨パッド表面2aにおける被加工面6aの凸部に接する金属繊維21が押されて、被加工面6aの凹部に対向する金属繊維21が凹部に入り込む。これにより、比較例1と比較して、被加工面6aにおける触媒と接触もしくは極近接する領域を増大させることができる。この結果、触媒表面上で生成した強力な酸化力を持つ活性種を被加工物の被加工面に効率よく作用させることが可能となる。すなわち、被加工面6aに表面改質層を速く形成でき、平滑化加工の加工速度を大きくできる。
 また、図5(c)に示す比較例2は、柔軟性が高い研磨パッドJ2を用いた例である。この研磨パッドJ2は、触媒金属で構成されたものではなく、例えば、ポリウレタン樹脂製の不織布で構成されている。比較例2の研磨パッドJ2と被加工物6とを押し合わせ場合、被加工面6aに存在する微細な凹凸に対応して、研磨パッド表面J2aが変形することで、研磨パッド表面J2aと被加工面6aとの間の隙間をなくすことができる。
 しかし、この場合、研磨パッドJ2の柔軟性が高すぎるため、研磨パッド表面J2aが被加工面6aに押されて変形してしまう。具体的には、研磨パッド表面J2aが被加工面6aよりも大きい場合、研磨パッド表面J2aが被加工面6aに押されると、研磨パッド表面J2aのうち被加工物6の縁に対向する部位が変形してしまう。このため、被加工面6aの平滑化加工が困難となる。
 これに対して、本実施形態の金属製研磨パッド2は、金属繊維21の圧縮成型体で構成されているので、研磨パッド全体としては、剛性が高く、研磨面2aに被加工面6aを押し当てた際の研磨面2a全体の変形は抑制される。すなわち、研磨面2aに被加工面6aを押し当てた際、研磨面2aは高い平坦度が維持される。よって、本実施形態の金属製研磨パッド2を用いることで、高精度な平滑化加工が可能である。
 また、本実施形態の金属製研磨パッド2によれば、触媒金属が500μ以下の繊維形状であり、繊維の周囲に空隙を有するので、触媒金属が緻密なバルク形状の場合と比較して、酸化力を持つ活性種を発生させる反応表面積を大きくすることができる。
 さらに、本実施形態の金属製研磨パッド2によれば、研磨面に空隙が存在するので、被加工物の被加工面の加工に十分な量の酸化剤や補助研磨粒子を、研磨面に保持することができる。
 また、本実施形態の触媒支援型の化学加工方法では、被加工面6aと研磨面2aとの間に、酸化剤だけでなく、補助研磨粒子も供給することにより、被加工物6の表面改質層を除去するようにしている。このため、本実施形態によれば、上記した従来技術のように活性種のみで加工する場合と比較して、被加工物の表面改質層を効率的に除去できる。
(第2実施形態)
 図6に、第2実施形態における触媒支援型の化学加工装置の金属製研磨パッドおよび定盤を示す。
 第1実施形態では、金属製研磨パッド2を、直接、定盤1に取り付けたが、図6に示すように、ゴム弾性を有するクッションシート13を介在させて、金属製研磨パッド2を、定盤1に取り付けてもよい。すなわち、金属製研磨パッド2のうち研磨面(一面)2aの反対側の面(他面)2bに、クッションシート13を設けてもよい。
 これによれば、触媒支援型の化学加工を行う際に、クッションシート13によって被加工面6aにかかる加工圧力を均一にすることができる。
(第3実施形態)
 圧縮成型体を構成する金属繊維の材質は、全て同じ場合に限らず、異なっていても良い。すなわち、圧縮成型体が、金属繊維として、第1金属繊維と、この第1金属繊維とは異なる材質の第2金属繊維とを備える構成としてもよい(実施例3参照)。
 このように、被加工物の酸化性に合わせて、金属繊維の材質、すなわち、触媒の種類を組み合わせて選択することにより、加工速度を調整することが可能となる。
(他の実施形態)
 (1)第1実施形態では、触媒支援型の化学加工を行う際に、第2ノズル5から補助研磨粒子を供給したが、上記した特許文献1、2に記載の従来技術のように、補助研磨粒子を供給せずに、触媒支援型の化学加工を行ってもよい。
 (2)第1実施形態では、触媒支援型の化学加工装置が、被加工物6と金属製研磨パッド2とを回転運動させる構成であったが、被加工物6と金属製研磨パッド2の少なくとも一方を直線的な往復運動させる構成であってもよい。要するに、触媒支援型の化学加工装置は、被加工物6と金属製研磨パッド2とを相対移動させる構成であればよい。
 (3)第1実施形態では、金属製研磨パッド2は、直径の大きさが1種類の金属繊維21によって構成されていたが、直径の大きさが複数種類の金属繊維によって構成されていてもよい。この場合であっても、1本の金属繊維の直径は1μm以上500μm以下であることが好ましい。
 (4)上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
 以下、本発明の実施例について説明する。実施例1~3は、金属製研磨パッドの製造例である。実施例4は、金属製研磨パッドを用いた触媒支援型の化学加工法による平滑化加工の例である。
(実施例1)
 上記した第1実施形態に記載の金属製研磨パッドの製造方法によって、空隙率36%の金属製研磨パッドを製造した。以下、具体的な条件を説明する。
 表1に示す金属繊維を準備した(原料準備工程S1)。なお、準備した金属繊維は、直径がほぼ均一のものである。
Figure JPOXMLDOC01-appb-T000001
 そして、表2に示す成型条件にて、一軸真空ホットプレスにより、予備成型体を成型した(一次成型工程S2)。このとき、予備成型体の目標密度を、二次成型工程の圧縮率と目的とする金属製研磨パッドの空隙率より逆算して設定した。
 具体的には、目的とする金属製研磨パッドの空隙率が36%のときでは、空隙率がやや高い45%となるように一軸真空ホットプレスで圧縮する成型ストロークを調整した。目的とする金属製研磨パッドの空隙率もよりもやや高い空隙率とする理由は、目標とする空隙率に最終成型する静水圧プレスでの成型性を考慮する必要があるためである。一軸真空ホットプレス後の成型体の密度が高すぎると、静水圧プレスでの変形量が少なくなり成型体の密度を均一化することが難しくなる。逆に、一軸真空ホットプレス後の成型体の密度が低すぎると、静水圧プレスでの変形量が大きくなり、目標とする成型密度に圧縮することができず、さらに、成型体に大きな圧縮残留応力が生じて、成型体が大きく変形してしまうからである。
Figure JPOXMLDOC01-appb-T000002
 その後、表3に示す成型条件にて、静水圧プレスにより、金属製研磨パッドを成型した(二次成型工程S3)。このとき、静水圧プレスの成型圧力を、最終的に目的とする金属製研磨パッドの空隙率、チタン繊維の直径や一軸真空ホットプレス後の予備成型体の密度に応じて設定した。
Figure JPOXMLDOC01-appb-T000003
 このようにして製造された空隙率36%の金属製研磨パッドの走査型電子顕微鏡写真を図7に示す。図7より、成型した金属製研磨パッドの表面が均一な密度であることが確認できる。また、空隙率36%の金属製研磨パッドについて、圧縮回復率を測定した結果、圧縮回復率は99%であった。
(実施例2)
 実施例1と同様の方法により、空隙率78%の金属製研磨パッドを製造した。なお、金属製研磨パッドの空隙率78%となるように、一軸真空ホットプレスでの成型ストロークを調整するとともに、静水圧プレスでの成形圧力を調整した。
 製造された空隙率78%の金属製研磨パッドの走査型電子顕微鏡写真を図8に示す。また、空隙率78%の金属製研磨パッドについて、圧縮回復率を測定した結果、圧縮回復率は97%であった。
(実施例3)
 ニッケル繊維(第1金属繊維)とチタン繊維(第2金属繊維)とを用いて、実施例1と同様の方法により、金属製研磨パッドを製造した。製造された金属研磨パッドの顕微鏡写真を図9に示す。図9より、ニッケル繊維22と、チタン繊維23とによって、金属製研磨パッドが構成されていることが確認できる。
(実施例4)
 実施例1で製造した金属製研磨パッドを用い、第1実施形態で説明した図1の加工装置によって、触媒支援型の化学加工方法で被加工物の平滑化加工を行った。このときの加工条件を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 図10(a)、図10(b)に、実施例1で製造した金属製研磨パッドを用いて難加工材料であるSiCウエハのSi面を触媒支援型の化学加工方法で平滑化加工したときのSiCウエハ表面の加工前後の粗さ曲線を示す。図10(a)が加工前の粗さ曲線、図10(b)が加工後の粗さ曲線を示している。加工前の粗さ曲線と加工後の粗さ曲線を比較すると、粗さ曲線における谷の形状が鋭角形状に維持されつつ、粗さ曲線における山の形状が鋭角から丸い形状に変わっていることがわかる。よって、加工前後の粗さ曲線より、加工前のSiCウエハ表面の粗さ凸部のみが選択的に加工されていることが確認できる。
 これは、一般的なダイヤモンドスラリーを用いたポリッシングでは、SiCウエハ表面の粗さ凸部と凹部両方が同時に加工されてしまい目的とする表面粗さとするまでに多くの加工代を必要とするが、本発明の金属製研磨パッドを用いたSiCウエハの加工方法では、凸部のみが選択的に加工できて加工代が少なくて済み、効率的であるといったことを証明している。
 図11(a)、図11(b)に、実施例1で製造した金属製研磨パッドを用いて難加工材料の表面を触媒支援型の化学加工方法で平滑化加工したときの加工前後のSiCウエハ表面のレーザー顕微鏡による観察写真を示す。図11(a)が加工前の表面状態、図11(b)が加工後の表面状態を示している。加工前の表面状態と加工後の表面状態を比較すると、加工前のSiCウエハ表面に多くの線状痕があるのに対して、加工後は線状痕が減少して平滑化した表面が多く観察できる。
 ところで、一般的なダイヤモンドスラリーを用いたポリッシングでは、平滑化した表面にもダイヤモンドの粒子で傷つけられた線状痕が必ず残る。
 これに対して、図11(b)に示されるように、本発明の金属製研磨パッドを用いたSiCウエハの加工方法では、平滑化した表面に全く線状痕が存在していない。これは、SiCウエハの加工のほとんどが化学的な作用で行われており、加工による欠陥が全く無い、無欠陥、つまりダメージレスで、SiCウエハの表面が形成できるといったことを証明している。
 図10(c)、図11(c)に、それぞれ、図10(b)および図11(b)に示す状態のSiCウエハ表面に対して更に平滑化加工を進めたときのSiCウエハ表面の粗さ曲線、レーザー顕微鏡による観察写真を示す。図10(c)、図11(c)に示されるように、更に平滑化加工を進めることで、SiCウエハ表面の平坦度が増すことがわかる。
(実施例5)
 純チタンで構成され、直径が80μmである金属繊維を用いて、実施例1と同様の方法により、空隙率56%の金属製研磨パッドを製造した。製造された金属製研磨パッドの走査型電子顕微鏡写真を図12に示す。
(実施例6)
 純チタンで構成され、直径が80μmである金属繊維を用いて、実施例1と同様の方法により、空隙率78%の金属製研磨パッドを製造した。製造された金属製研磨パッドの走査型電子顕微鏡写真を図13に示す。
 上記の説明から明らかなように、本発明は、金属繊維からなる金属製研磨パッドを用いて難加工材料の表面を触媒支援型の化学加工方法で加工することにより、金属触媒から発生させた強力な酸化力を持つ活性種を、効率的に、被加工物の被加工面に接触、もしくは極近接させることが可能であり、加工速度が大きいばかりではなく、被加工材の表面に欠陥が全く無い研磨方法を提供することができる。
 本発明の金属製研磨パッドを用いた触媒支援型の化学加工方法は、難加工材料、特に、パワー半導体材料として使用されるSiCであるとか、GaN、ダイヤモンド、サファイヤ、ルビーなどの加工に好適である。
 1   定盤
 2   金属製研磨パッド
 2a  研磨面
 21  金属繊維(触媒)
 3   ホルダー
 4   第1ノズル
 5   第2ノズル
 6   被加工物
 6a  被加工面
 10  一次成型体
 11  型材
 12  被覆材
 13  クッションシート  

Claims (14)

  1.  被加工物(6)の被加工面(6a)を触媒支援型の化学加工方法で平滑化加工するための金属製研磨パッド(2)であって、遷移金属触媒からなる金属繊維(21、22、23)の圧縮成型体で構成され、所定の空隙率を有することを特徴とする金属製研磨パッド。
  2.  前記金属繊維(21、22、23)は、直径が1μm以上500μm以下であることを特徴とする請求項1に記載の金属製研磨パッド。
  3.  前記空隙率は、10%以上90%以下であることを特徴とする請求項1または2に記載の金属製研磨パッド。
  4.  前記圧縮成型体は、圧縮回復率が90%以上100%以下であることを特徴とする請求項1ないし3のいずれか1つに記載の金属製研磨パッド。
  5.  前記金属繊維(21、22、23)は、チタン、ニッケル、銅、鉄、クロム、コバルト、白金の中から選択された1種の金属または2種類以上の組み合わせからなる合金で構成されることを特徴とする請求項1ないし4のいずれか1つに記載の金属製研磨パッド。
  6.  前記圧縮成型体は、第1金属繊維(22)と、前記第1金属繊維とは異なる材質の第2金属繊維(23)とを備えることを特徴とする請求項1ないし5のいずれか1つに記載の金属製研磨パッド。
  7.  前記圧縮成型体は、研磨面となる一面(2a)と、それとは反対側の他面(2b)とを有し、
     前記他面にゴム弾性を有するクッションシート(13)が設けられていることを特徴とする請求項1ないし6のいずれか1つに記載の金属製研磨パッド。
  8.  請求項1ないし7のいずれか1つに記載の前記金属製研磨パッドの製造方法であって、
     遷移金属触媒からなる金属繊維をホットプレスして一次成型体を成型する一次成型工程(S2)と、
     前記一次成型体を常温で静水圧プレスして二次成型体を成型する二次成型工程(S3)とを有し、
     前記一次成型工程によって、前記金属繊維同士を焼結により固定させ、
     前記二次成型工程では、静水圧で変形しない型材(11)により前記一次成型体の一面(10a)を覆うとともに、静水圧で変形可能な被覆材(12)により前記一次成型体の残りの面(10b)を覆った状態で前記静水圧プレスすることを特徴とする金属製研磨パッドの製造方法。
  9.  難加工材料からなる被加工物(6)の被加工面(6a)を平滑化加工する触媒支援型の化学加工方法において、
     請求項1ないし7のいずれか1つに記載の前記金属製研磨パッド(2)の研磨面(2a)と前記被加工面(6a)とを押し合わせ、前記被加工面(6a)と前記研磨面(2a)との間に酸化剤を供給しながら、前記被加工物(6)と前記金属製研磨パッド(2)とを相対移動させることを特徴する触媒支援型の化学加工方法。
  10.  前記酸化剤とともに、補助研磨粒子を供給することを特徴とする請求項9に記載の触媒支援型の化学加工方法。
  11.  前記補助研磨粒子として、前記被加工物よりも軟らかいものを用いることを特徴とする請求項10に記載の触媒支援型の化学加工方法。
  12.  前記補助研磨粒子は、前記被加工物の表面改質層よりも硬いことを特徴とする請求項11に記載の触媒支援型の化学加工方法。
  13.  前記難加工材料は、SiC、GaN、ダイヤモンド、サファイヤ、ルビーのいずれか1つであることを特徴とする請求項9ないし12のいずれか1つに記載の触媒支援型の化学加工方法。
  14.  前記酸化剤として、純水、過酸化水素水、シュウ酸、フッ化水素酸の中から選択された1種の溶液または2種類以上の組み合わせから成る混合溶液を用いることを特徴とする請求項9ないし13のいずれか1つに記載の触媒支援型の化学加工方法。 
PCT/JP2014/066169 2013-07-19 2014-06-18 金属製研磨パッドおよびその製造方法 WO2015008572A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/904,832 US9815170B2 (en) 2013-07-19 2014-06-18 Metallic abrasive pad and method for manufacturing same
CN201480051594.7A CN105556642B (zh) 2013-07-19 2014-06-18 金属制研磨衬垫及其制造方法
KR1020167003929A KR102127547B1 (ko) 2013-07-19 2014-06-18 금속제 연마 패드 및 그 제조 방법
JP2015527226A JP6225991B2 (ja) 2013-07-19 2014-06-18 金属製研磨パッドおよびその製造方法
EP14826661.2A EP3024015B1 (en) 2013-07-19 2014-06-18 Metallic polishing pad and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013150678 2013-07-19
JP2013-150678 2013-07-19

Publications (1)

Publication Number Publication Date
WO2015008572A1 true WO2015008572A1 (ja) 2015-01-22

Family

ID=52346045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066169 WO2015008572A1 (ja) 2013-07-19 2014-06-18 金属製研磨パッドおよびその製造方法

Country Status (7)

Country Link
US (1) US9815170B2 (ja)
EP (1) EP3024015B1 (ja)
JP (1) JP6225991B2 (ja)
KR (1) KR102127547B1 (ja)
CN (1) CN105556642B (ja)
TW (1) TWI636499B (ja)
WO (1) WO2015008572A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019155232A (ja) * 2018-03-08 2019-09-19 株式会社ジェイテックコーポレーション 洗浄方法及び洗浄装置
TWI740042B (zh) * 2017-06-06 2021-09-21 日商丸石產業股份有限公司 使用具備吸附層之研磨墊的研磨方法
CN117020936A (zh) * 2023-10-10 2023-11-10 青禾晶元(天津)半导体材料有限公司 一种光催化复合抛光垫及其制备方法与抛光方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112015002319T5 (de) 2014-12-31 2017-02-09 Osaka University Planarisierungsbearbeitungsverfahren und Planarisierungsbearbeitungsvorrichtung
CN104745095B (zh) * 2015-04-03 2017-06-06 清华大学 一种GaN厚膜片CMP组合物及其制备方法
JP6564624B2 (ja) * 2015-06-10 2019-08-21 株式会社ディスコ 研削砥石
JP6187948B1 (ja) 2016-03-11 2017-08-30 東邦エンジニアリング株式会社 平坦加工装置、その動作方法および加工物の製造方法
CN106363528A (zh) * 2016-08-30 2017-02-01 天通银厦新材料有限公司 一种针对蓝宝石的固结磨料及研磨工艺
CN109957735A (zh) * 2017-12-22 2019-07-02 宜兴安纳西智能机械设备有限公司 一种卧式收卷装置用摩擦轮材料
US20210205958A1 (en) * 2018-06-15 2021-07-08 Mirka Ltd Abrading with an abrading plate
CN110614580B (zh) * 2019-10-22 2021-11-19 西安奕斯伟材料科技有限公司 抛光垫及其制备方法、化学机械研磨设备
CN115349162A (zh) * 2020-04-03 2022-11-15 三菱电机株式会社 研磨方法、半导体基板的制造方法
CN114227530B (zh) * 2021-12-10 2022-05-10 湖北鼎汇微电子材料有限公司 一种抛光垫及半导体器件的制造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271968A (ja) * 1988-09-02 1990-03-12 Cmk Corp プリント配線板の製造工程に於ける表面研磨等の平面部材の表面研磨方法
JPH07266215A (ja) * 1994-03-31 1995-10-17 Hitachi Ltd 円形部材の研磨装置及び方法、円柱状又は円筒状部材及び被圧延材
JPH09267270A (ja) * 1996-03-29 1997-10-14 Riken Korandamu Kk ダイヤモンド研磨ベルトおよびそれを用いたセメント板の研磨方法
JP2005236200A (ja) * 2004-02-23 2005-09-02 Toyo Tire & Rubber Co Ltd 研磨パッドおよびそれを使用する半導体デバイスの製造方法
JP2008081389A (ja) 2006-08-28 2008-04-10 Osaka Univ 触媒支援型化学加工方法及び装置
JP2008254136A (ja) * 2007-04-06 2008-10-23 Toray Ind Inc 研磨布
JP2010058170A (ja) * 2008-08-08 2010-03-18 Kuraray Co Ltd 研磨パッド
JP2011129596A (ja) * 2009-12-15 2011-06-30 Osaka Univ 研磨具及び研磨装置
JP4873694B2 (ja) 2006-04-12 2012-02-08 国立大学法人 熊本大学 触媒支援型化学加工方法
JP2013508197A (ja) * 2009-10-21 2013-03-07 スリーエム イノベイティブ プロパティズ カンパニー 多孔質多層体物品及び製造法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1694594C3 (de) * 1960-01-11 1975-05-28 Minnesota Mining And Manufacturing Co., Saint Paul, Minn. (V.St.A.) Reinigungs- und Polierkörper
US5030233A (en) * 1984-10-17 1991-07-09 Paul Ducheyne Porous flexible metal fiber material for surgical implantation
US4699849A (en) * 1985-07-17 1987-10-13 The Boeing Company Metal matrix composites and method of manufacture
JPH0627020B2 (ja) * 1986-03-26 1994-04-13 工業技術院長 長繊維金属複合材料の製造方法
US4715150A (en) * 1986-04-29 1987-12-29 Seiken Co., Ltd. Nonwoven fiber abrasive disk
US6197251B1 (en) * 1996-07-29 2001-03-06 Matsushita Electric Industrial Co., Ltd. Porous metal material, and method for manufacturing same
BE1011244A3 (nl) * 1997-06-30 1999-06-01 Bekaert Sa Nv Gelaagde buisvormige metaalstructuur.
JPH11133116A (ja) * 1997-11-04 1999-05-21 Mitsubishi Electric Corp プローブカード用プローブ針の研磨部材およびクリーニング装置
US6200523B1 (en) * 1998-10-01 2001-03-13 Usf Filtration And Separations Group, Inc. Apparatus and method of sintering elements by infrared heating
JP4345746B2 (ja) * 1999-11-16 2009-10-14 株式会社デンソー メカノケミカル研磨装置
JP2001284297A (ja) * 2000-03-31 2001-10-12 Sony Corp 研磨装置、研磨方法および半導体装置の製造方法
JP2003305635A (ja) * 2000-12-01 2003-10-28 Toyobo Co Ltd 研磨パッド用クッション層及びそれを用いた研磨パッド
US7294048B2 (en) * 2004-06-18 2007-11-13 3M Innovative Properties Company Abrasive article
US20070066186A1 (en) * 2005-09-22 2007-03-22 3M Innovative Properties Company Flexible abrasive article and methods of making and using the same
US20070243802A1 (en) * 2006-04-14 2007-10-18 Petersen John G Laminated flexible resilient abrasive article
EP1894900A3 (en) * 2006-08-28 2010-02-24 Osaka University Catalyst-aided chemical processing method and apparatus
US8647179B2 (en) * 2007-02-01 2014-02-11 Kuraray Co., Ltd. Polishing pad, and method for manufacturing polishing pad
KR100788295B1 (ko) * 2007-03-09 2007-12-27 주움텍스타일 주식회사 연마기재 및 연마포
JP4887266B2 (ja) * 2007-10-15 2012-02-29 株式会社荏原製作所 平坦化方法
US8247328B2 (en) * 2009-05-04 2012-08-21 Cabot Microelectronics Corporation Polishing silicon carbide
US8912095B2 (en) 2009-12-15 2014-12-16 Osaka University Polishing method, polishing apparatus and polishing tool
US8500515B2 (en) * 2010-03-12 2013-08-06 Wayne O. Duescher Fixed-spindle and floating-platen abrasive system using spherical mounts
CN102601727B (zh) * 2012-03-26 2015-02-18 清华大学 化学机械抛光垫及化学机械抛光方法
CN106272116A (zh) * 2015-06-29 2017-01-04 圣戈班磨料磨具有限公司 磨具

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271968A (ja) * 1988-09-02 1990-03-12 Cmk Corp プリント配線板の製造工程に於ける表面研磨等の平面部材の表面研磨方法
JPH07266215A (ja) * 1994-03-31 1995-10-17 Hitachi Ltd 円形部材の研磨装置及び方法、円柱状又は円筒状部材及び被圧延材
JPH09267270A (ja) * 1996-03-29 1997-10-14 Riken Korandamu Kk ダイヤモンド研磨ベルトおよびそれを用いたセメント板の研磨方法
JP2005236200A (ja) * 2004-02-23 2005-09-02 Toyo Tire & Rubber Co Ltd 研磨パッドおよびそれを使用する半導体デバイスの製造方法
JP4873694B2 (ja) 2006-04-12 2012-02-08 国立大学法人 熊本大学 触媒支援型化学加工方法
JP2008081389A (ja) 2006-08-28 2008-04-10 Osaka Univ 触媒支援型化学加工方法及び装置
JP2008254136A (ja) * 2007-04-06 2008-10-23 Toray Ind Inc 研磨布
JP2010058170A (ja) * 2008-08-08 2010-03-18 Kuraray Co Ltd 研磨パッド
JP2013508197A (ja) * 2009-10-21 2013-03-07 スリーエム イノベイティブ プロパティズ カンパニー 多孔質多層体物品及び製造法
JP2011129596A (ja) * 2009-12-15 2011-06-30 Osaka Univ 研磨具及び研磨装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI740042B (zh) * 2017-06-06 2021-09-21 日商丸石產業股份有限公司 使用具備吸附層之研磨墊的研磨方法
JP2019155232A (ja) * 2018-03-08 2019-09-19 株式会社ジェイテックコーポレーション 洗浄方法及び洗浄装置
CN117020936A (zh) * 2023-10-10 2023-11-10 青禾晶元(天津)半导体材料有限公司 一种光催化复合抛光垫及其制备方法与抛光方法
CN117020936B (zh) * 2023-10-10 2023-12-29 青禾晶元(天津)半导体材料有限公司 一种光催化复合抛光垫及其制备方法与抛光方法

Also Published As

Publication number Publication date
EP3024015B1 (en) 2019-08-14
JPWO2015008572A1 (ja) 2017-03-02
CN105556642B (zh) 2017-10-31
TWI636499B (zh) 2018-09-21
TW201523717A (zh) 2015-06-16
JP6225991B2 (ja) 2017-11-15
CN105556642A (zh) 2016-05-04
US9815170B2 (en) 2017-11-14
KR20160043962A (ko) 2016-04-22
EP3024015A1 (en) 2016-05-25
US20160167193A1 (en) 2016-06-16
EP3024015A4 (en) 2017-03-15
KR102127547B1 (ko) 2020-06-26

Similar Documents

Publication Publication Date Title
JP6225991B2 (ja) 金属製研磨パッドおよびその製造方法
KR100213855B1 (ko) 분리형 연마정반 및 그를 이용한 연마장치
WO2014073335A1 (ja) ディスプレイ用カバーガラスの製造方法及びディスプレイ用カバーガラスの製造装置
KR101268287B1 (ko) Cmp 패드를 컨디셔닝하기 위한 편평하고 일관된 표면 형태를 가지는 연마 공구 및 그 제조 방법
KR100953293B1 (ko) 정밀 가공 방법
US9180572B2 (en) Chemical mechanical polishing conditioner and manufacturing methods thereof
JP7241434B2 (ja) 大型単結晶ダイヤモンドの研削方法
TW201423857A (zh) 拋光半導體晶圓的方法
WO2008117883A1 (ja) 合成砥石
TWI260256B (en) Conditioner and conditioning methods for smooth pads
JP2018030227A (ja) 基板の製造方法
TWI568538B (zh) 化學機械硏磨修整器及其製法
JP5343250B2 (ja) 触媒支援型化学加工方法及びそれを用いた加工装置
KR100757287B1 (ko) 반도체 웨이퍼의 제조 방법
KR100879761B1 (ko) 화학적 기계적 연마 장치 및 이를 이용한 연마 패드 드레싱방법
JP5928672B2 (ja) アルミナセラミックス接合体の製造方法
CN104347357A (zh) 减薄替代抛光及后序清洗的衬底加工方法
KR101233239B1 (ko) 수명이 종료된 cmp 패드 컨디셔너 재활용방법 및 상기 재활용방법이 수행된 재활용 cmp 패드 컨디셔너
TW201507807A (zh) 利用編織預形體製作之化學機械研磨修整器
JP6236314B2 (ja) 炭化珪素接合体及びその製造方法
KR20160057585A (ko) 웨이퍼 평탄화 설비의 웨이퍼 부착 장치 및 웨이퍼 평탄화 방법
JP2019055897A (ja) 炭化珪素部材の製造方法
Xu et al. ELID Grinding and Polishing
JP2008302454A (ja) 研磨パッドおよびその製造方法
JP4554799B2 (ja) フッ素樹脂をベースとした研磨工具

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480051594.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826661

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14904832

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015527226

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167003929

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014826661

Country of ref document: EP