WO2015008553A1 - 磁気光学材料及びその製造方法並びに磁気光学デバイス - Google Patents

磁気光学材料及びその製造方法並びに磁気光学デバイス Download PDF

Info

Publication number
WO2015008553A1
WO2015008553A1 PCT/JP2014/064953 JP2014064953W WO2015008553A1 WO 2015008553 A1 WO2015008553 A1 WO 2015008553A1 JP 2014064953 W JP2014064953 W JP 2014064953W WO 2015008553 A1 WO2015008553 A1 WO 2015008553A1
Authority
WO
WIPO (PCT)
Prior art keywords
magneto
optical
rare earth
wavelength
optical material
Prior art date
Application number
PCT/JP2014/064953
Other languages
English (en)
French (fr)
Inventor
真憲 碇
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to JP2015527216A priority Critical patent/JP5979317B2/ja
Priority to CA2918508A priority patent/CA2918508C/en
Priority to KR1020167001311A priority patent/KR102262771B1/ko
Priority to CN201480040902.6A priority patent/CN105378542B/zh
Priority to US14/904,504 priority patent/US9891452B2/en
Priority to EP14826337.9A priority patent/EP3023831B1/en
Publication of WO2015008553A1 publication Critical patent/WO2015008553A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/288Sulfides
    • C01F17/294Oxysulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties

Definitions

  • the present invention relates to a magneto-optical material, a method for manufacturing the same, and a magneto-optical device, and more particularly, a magneto-optical device comprising a transparent ceramic or single crystal containing rare earth oxysulfide suitable for constituting a magneto-optical device such as an optical isolator.
  • the present invention relates to a material, a method for manufacturing the magneto-optical material, and a magneto-optical device using the magneto-optical material.
  • the optical isolator includes a Faraday rotator, a polarizer disposed on the light incident side of the Faraday rotator, and an analyzer disposed on the light emitting side of the Faraday rotator.
  • the Faraday rotator is used by applying a magnetic field parallel to the traveling direction of light. At this time, the polarization line of light rotates only in a fixed direction regardless of whether it travels forward or backward in the Faraday rotator. Further, the Faraday rotator is adjusted to such a length that the polarization segment of light is rotated exactly 45 degrees.
  • the forward polarization of the light is transmitted because it coincides at the polarizer position and the analyzer position.
  • the polarization of the backward light is rotated 45 degrees in the opposite direction to the deviation angle direction of the polarization plane of the polarizer which is shifted 45 degrees from the analyzer position.
  • the light traveling in this way functions as an optical isolator that transmits and emits light and blocks the returning light traveling backward.
  • TGG crystal Tb 3 Ga 5 O 12
  • TSAG crystal Tb (3-x) Sc 2 Al 3 O 12
  • the Verde constant of a TGG crystal is relatively large, 40 rad / (T ⁇ m), and is currently widely used for standard fiber laser devices.
  • the TSAG crystal has a Verde constant of about 1.3 times that of the TGG crystal, which is also a material mounted on the fiber laser device.
  • JP-A 2010-285299 (Patent Document 3) describes (Tb x R 1-x ) 2 O 3 (x is 0.4 ⁇ x ⁇ 1.0), and R is scandium.
  • a single crystal or ceramics mainly composed of an oxide selected from the group consisting of yttrium, lanthanum, europium, gadolinium, ytterbium, holmium, and lutetium is disclosed.
  • the oxide composed of the above components has a Verde constant of 0.18 min / (Oe ⁇ cm) or more, and in the examples, there is a description up to a maximum of 0.33 min / (Oe ⁇ cm). Further, in the text of the same document, the TGG Verde constant is also described as 0.13 min / (Oe ⁇ cm). The difference between the two Verde constants has actually reached 2.5 times.
  • Patent Document 4 discloses an oxide composed of substantially the same component, and describes that it has a larger Verde constant than a TGG single crystal.
  • yttrium iron garnet (common name: YIG) single crystal containing iron (Fe) (Japanese Patent Laid-Open No. 2000-266947 (Patent Document 5)).
  • iron (Fe) has a large light absorption at a wavelength of 0.9 ⁇ m, and an optical isolator in the wavelength range of 0.9 to 1.1 ⁇ m is affected by this light absorption. Therefore, the optical isolator using the yttrium iron garnet single crystal is difficult to be used in a fiber laser device that is remarkably increasing in output.
  • the (Tb x R 1-x ) 2 O 3 oxide disclosed in Patent Documents 3 and 4 is certainly a TGG crystal disclosed in Patent Document 1 or referred to in the text of Patent Document 3.
  • the Verde constant is 1.4 to 2.5 times as large, but the oxide emits fiber laser light with a wavelength band of 0.9 to 1.1 ⁇ m which is expected to be used. Absorbs slightly.
  • the output of fiber laser devices in recent years is becoming increasingly high power, and it is a matter of course that there is a large absorption like yttrium iron garnet, even if it is a slightly absorbing optical isolator, it will be mounted there This causes a problem of beam quality deterioration due to the thermal lens effect.
  • the present invention has been made in view of the above circumstances, does not absorb fiber laser light having a wavelength band of 0.9 to 1.1 ⁇ m, and therefore does not generate a thermal lens, and the Verde constant is larger than that of a TGG crystal. It is an object of the present invention to provide a magneto-optical material suitable for constituting a magneto-optical device such as an optical isolator, a manufacturing method thereof, and a magneto-optical device.
  • the present invention provides the following magneto-optical material, a manufacturing method thereof, and a magneto-optical device.
  • x is 0.3 or more and less than 1, and R is at least one rare earth element selected from the group consisting of yttrium, lutetium, gadolinium, holmium, scandium, ytterbium, europium, and dysprosium.
  • R is at least one rare earth element selected from the group consisting of yttrium, lutetium, gadolinium, holmium, scandium, ytterbium, europium, and dysprosium.
  • a terbium oxide powder, at least one rare earth oxide powder selected from the group consisting of yttrium, lutetium, gadolinium, holmium, scandium, ytterbium, europium, and dysprosium, and a sulfur powder were fired in a crucible. Thereafter, the rare earth oxysulfide raw material powder is pulverized to form a rare earth oxysulfide raw material powder.
  • the rare earth oxysulfide raw material powder is press-molded into a predetermined shape, sintered, and then subjected to hot isostatic pressing to represent a rare earth oxy represented by the following formula (1).
  • a magneto-optical device comprising the magneto-optical material according to any one of [1] to [3].
  • An optical isolator comprising the magneto-optical material as a Faraday rotator and having a polarizing material before and after the optical axis of the Faraday rotator and usable in a wavelength band of 0.9 ⁇ m to 1.1 ⁇ m
  • the magneto-optical device described above [7] The magneto-optical device according to [6], wherein the Faraday rotator has an antireflection film on an optical surface thereof.
  • oxysulfide in which a part of terbium is substituted with other rare earth elements at a predetermined ratio, beam quality is deteriorated even when mounted on a fiber laser device having a wavelength band of 0.9 to 1.1 ⁇ m. Therefore, it is possible to provide a magneto-optical material suitable for constructing a magneto-optical device such as an optical isolator having a Verde constant larger by 1.4 times or more than that of a TGG crystal and capable of being miniaturized.
  • the magneto-optical material according to the present invention comprises a transparent ceramic containing a rare earth oxysulfide represented by the following formula (1) as a main component or a single crystal of a rare earth oxysulfide represented by the following formula (1), and has a verde at a wavelength of 1064 nm.
  • the constant is 0.14 min / (Oe ⁇ cm) or more.
  • x is 0.3 or more and less than 1, and R is yttrium (Y), lutetium (Lu), gadolinium (Gd), holmium (Ho), scandium (Sc), ytterbium (Yb), europium (Eu ), At least one rare earth element selected from the group consisting of dysprosium (Dy).)
  • Terbium is a material having the largest Verde constant among paramagnetic elements other than iron (Fe), and is transparent at a wavelength of 1.06 ⁇ m (linear transmittance of light at an optical path length of 1 mm is 80% or more). It is the most suitable element for use in an optical isolator in this wavelength range. However, in order to make use of this transparency, terbium must not be in a metal-bonded state but must be finished in a stable compound state.
  • a chalcogenide is mentioned as a general element which forms a stable compound.
  • the elements forming chalcogenides there are two kinds of elements, oxygen and sulfur, which are transparent at a wavelength of 1.06 ⁇ m. That is, oxides or sulfides comprising a terbium-containing system are preferable for use in an optical isolator having a wavelength region of 1.06 ⁇ m.
  • terbium is an oxide or a sulfide
  • it is affected by the phase change as it is, so that it is difficult to pull up a single crystal or to produce a transparent ceramic by sintering. Therefore, a rare earth element having the same crystal structure as that of terbium oxide or sulfide, having a close ionic radius, having no phase change below 1000 ° C., and having transparency at a wavelength of 1.06 ⁇ m. It is preferable to prepare a solid solution with a high element.
  • yttrium, lutetium, gadolinium, holmium, scandium, ytterbium, europium, and dysprosium can be suitably used.
  • Yari and SO for toxic gases such as x is released, if even when selecting a sulfide, were replaced by oxygen as far part as possible of the sulfur ions as a by-product in the production process of a sulfide It is preferable to suppress the release of toxic gas.
  • the oxysulfide represented by the above formula (1) has a wavelength band of 0.9 which is expected to be used compared to that of a simple oxide while suppressing the substitution amount of sulfur ions. It has been found that the slight absorption at ⁇ 1.1 ⁇ m is further reduced, which increases the maximum incident power that can be incident without producing a thermal lens.
  • R is not particularly limited as long as it contains at least one rare earth element selected from the group consisting of yttrium, lutetium, gadolinium, holmium, scandium, ytterbium, europium, dysprosium, Other elements may be contained. Examples of other elements include thulium and cerium.
  • the content of other elements is preferably 10 or less, more preferably 0.1 or less, and 0.001 or less (substantially zero) when the total amount of R is 100. Particularly preferred.
  • R may be a single type, or a plurality of Rs may be included in any ratio, and is not particularly limited.
  • R is preferably yttrium, lutetium, or gadolinium, more preferably yttrium, from the viewpoint of easy availability of raw materials.
  • x is 0.3 or more and less than 1.0, preferably 0.3 or more and 0.8 or less, and more preferably 0.45 or more and 0.75 or less.
  • x is in the above range because a high Verde constant is obtained and the transparency is further excellent.
  • x is 0.8 or less because the occurrence of cracks due to the effect of terbium phase change is suppressed.
  • the magneto-optical material of the present invention contains a rare earth oxysulfide represented by the above formula (1) as a main component. That is, the magneto-optical material of the present invention may contain the rare earth oxysulfide represented by the above formula (1) as a main component, and may contain other components as subcomponents.
  • containing as a main component means containing 50% by mass or more of the rare earth oxysulfide represented by the above formula (1).
  • the content of the rare earth oxysulfide represented by the formula (1) is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 99% by mass or more, and 99.5%. It is particularly preferable that the content is at least mass%.
  • components other than the main component include dopants that are doped during single crystal growth, flux, sintering aids that are added during ceramic production, and the like.
  • dopants that are doped during single crystal growth, flux, sintering aids that are added during ceramic production, and the like.
  • examples include magnesium, titanium, silicon, calcium, aluminum, strontium, barium, zirconium, and hafnium oxides.
  • titanium, silicon, calcium, aluminum, barium, zirconium, hafnium oxides or carbonates can be typically exemplified.
  • the magneto-optical material of the present invention there are a single crystal manufacturing method such as a floating zone method and a micro pull-down method, and a ceramic manufacturing method, and any manufacturing method may be used.
  • the single crystal manufacturing method has a certain degree of restriction in the design of the concentration ratio of the solid solution, and the ceramic manufacturing method is more preferable in the present invention.
  • the ceramic production method will be described in more detail as an example of the production method of the magneto-optical material of the present invention, but the single crystal production method that follows the technical idea of the present invention is not excluded.
  • the raw material used in the present invention is made of terbium and a rare earth element R (R is at least one rare earth element selected from the group consisting of yttrium, lutetium, gadolinium, holmium, scandium, ytterbium, europium, and dysprosium).
  • R is at least one rare earth element selected from the group consisting of yttrium, lutetium, gadolinium, holmium, scandium, ytterbium, europium, and dysprosium.
  • Rare earth metal powders that are constituent elements of the magneto-optical material of the present invention aqueous solutions of nitric acid, sulfuric acid, uric acid, or the like, or rare earth oxide powders, sulfide powders, and the like can be suitably used.
  • a method of obtaining the rare earth oxysulfide having a desired configuration by purchasing oxide powder of the above constituent elements and sulfur (S) powder, weighing them, mixing them, and firing. Is preferred.
  • the purity of these raw materials is preferably 99.9% by mass or more.
  • ceramics are finally produced using a rare earth oxysulfide powder having a desired configuration, but the powder shape at that time is not particularly limited, and for example, square, spherical, and plate-like powders are suitable. Available to: Moreover, it can use suitably even if it is the powder which carried out secondary aggregation, and it can use suitably also if it is the granular powder granulated by granulation processes, such as a spray-dry process. Furthermore, the preparation process of these raw material powders is not particularly limited.
  • a raw material powder produced by a coprecipitation method, a pulverization method, a spray pyrolysis method, a sol-gel method, an alkoxide hydrolysis method, or any other synthesis method can be suitably used. Further, the obtained raw material powder may be appropriately treated by a wet ball mill, a bead mill, a jet mill, a dry jet mill, a hammer mill or the like.
  • a sintering inhibitor may be appropriately added.
  • a sintering suppression aid that is suitable for terbium oxysulfide and other selected rare earth oxysulfides.
  • the purity is preferably 99.9% by mass or more. 5 mass% or less is preferable with respect to the mass (100 mass%) of the whole main component, 1 mass% or less is more preferable, and 0.5 mass% or less is still more preferable.
  • a sintering inhibitor when a sintering inhibitor is not added, it is preferable to select a raw material powder that has a primary particle size of nano-size and extremely high sintering activity. Such a selection may be made as appropriate.
  • organic additives may be added for the purpose of improving the quality stability and yield in the manufacturing process.
  • these are not particularly limited. That is, various dispersants, binders, lubricants, plasticizers, and the like can be suitably used.
  • the above raw material powder is pressed into a predetermined shape, degreased, and then sintered to produce a sintered body with a relative density of at least 92% or more. It is preferable to perform a hot isostatic pressing (HIP) process as a subsequent process.
  • HIP hot isostatic pressing
  • a normal press molding process can be suitably used. That is, it is possible to use a very general press process in which a mold is filled and pressurized from a certain direction, or a CIP (Cold Isostatic Press) process in which the mold is hermetically stored in a deformable waterproof container and pressurized with hydrostatic pressure.
  • the applied pressure may be appropriately adjusted while confirming the relative density of the obtained molded body, and is not particularly limited. For example, if the pressure is controlled within a pressure range of about 300 MPa or less that can be handled by a commercially available CIP device, the manufacturing cost can be suppressed. It's okay.
  • Alternatively, not only a molding process but also a hot press process, a discharge plasma sintering process, a microwave heating process, and the like that can be performed all at once at the time of molding can be suitably used.
  • a normal degreasing step can be suitably used. That is, it is possible to go through a temperature rising degreasing process by a heating furnace. Also, the type of atmospheric gas at this time is not particularly limited, and air, oxygen, hydrogen, and the like can be suitably used.
  • the degreasing temperature is not particularly limited, but when a raw material mixed with an organic additive is used, it is preferable to raise the temperature to a temperature at which the organic component can be decomposed and eliminated.
  • a general sintering process can be suitably used. That is, a heating and sintering process such as a resistance heating method or an induction heating method can be suitably used.
  • the atmosphere at this time is not particularly limited, but an inert gas, oxygen, hydrogen, vacuum, or the like can be suitably used.
  • the sintering temperature in the sintering process of the present invention is appropriately adjusted depending on the starting material selected. In general, using a selected starting material, a temperature lower by several tens to 100 ° C. or 200 ° C. than the melting point of the rare earth oxysulfide sintered body to be manufactured is suitably selected. In addition, when trying to produce a rare earth oxysulfide sintered body in which a temperature zone in which a phase change to a phase other than a cubic crystal exists in the vicinity of the selected temperature, the temperature should be strictly controlled to be equal to or lower than that temperature. When sintered, a phase transition from cubic to non-cubic crystals does not substantially occur, so that there is an advantage that optical distortion and cracks are hardly generated in the material.
  • the sintering holding time in the sintering process of the present invention is appropriately adjusted depending on the starting material selected. In general, a few hours is often sufficient. However, the relative density of the rare earth oxysulfide sintered body after the sintering process must be densified to at least 92%.
  • HIP Hot isostatic pressing
  • an inert gas such as argon or nitrogen, or Ar—O 2 or Ar—SO 2 can be preferably used as the kind of the pressurized gas medium.
  • the pressure applied by the pressurized gas medium is preferably 50 to 300 MPa, more preferably 100 to 300 MPa. If the pressure is less than 50 MPa, the transparency improvement effect may not be obtained. If the pressure exceeds 300 MPa, further improvement in transparency cannot be obtained even if the pressure is increased, and the load on the device may be excessive and may damage the device. .
  • the applied pressure is preferably 196 MPa or less, which can be processed with a commercially available HIP device, for convenience and convenience.
  • the treatment temperature (predetermined holding temperature) at that time may be appropriately set depending on the kind of material and / or the sintering state, and is set in the range of, for example, 1000 to 2000 ° C., preferably 1100 to 1600 ° C.
  • it is essential that the rare earth oxysulfide is not higher than the melting point and / or the phase transition point of the rare earth oxysulfide constituting the sintered body as in the case of the sintering step.
  • the rare earth oxysulfide sintered body exceeds the melting point or exceeds the phase transition point, making it difficult to perform an appropriate HIP treatment.
  • the heat treatment temperature is less than 1000 ° C., the effect of improving the transparency of the sintered body cannot be obtained.
  • the heater material, the heat insulating material, and the processing container for HIP processing are not particularly limited, but graphite or molybdenum (Mo) can be suitably used.
  • optical polishing In the production method of the present invention, it is preferable to optically polish both end faces on the optically utilized axis of the transparent rare earth oxysulfide sintered body (transparent ceramic) that has undergone the above series of production steps.
  • a magneto-optical material having a Verde constant at a wavelength of 1064 nm of 0.14 min / (Oe ⁇ cm) or more can be obtained.
  • the magneto-optical material of the present invention preferably has a linear transmittance of 60% or more at the base line of light transmission at a wavelength of 1064 nm per optical path length of 10 mm.
  • the “linear transmittance at the base line” is extrapolated on the assumption that absorption of the sintering aid or rare earth oxysulfide is not present in the wavelength-transmittance transmission spectrum. Means the linear transmittance in the transmission spectrum.
  • the linear transmittance is a value obtained by subtracting the scattering transmittance (diffuse transmittance) from the total light transmittance in accordance with JIS K7361 and JIS K7136.
  • the maximum value of the incident power of the laser beam that does not generate a thermal lens is 40 W or more. Is preferable, and 80 W or more is more preferable. If the maximum value of the incident power of laser light that is not generated by the thermal lens is less than 40 W, it may be difficult to use in a high-power fiber laser device.
  • FIG. 1 is a schematic cross-sectional view showing an example of an optical isolator which is an optical device having a Faraday rotator made of the magneto-optical material of the present invention as an optical element.
  • an optical isolator 100 includes a Faraday rotator 110 made of a magneto-optical material of the present invention, and a polarizer 120 and an analyzer 130 that are polarizing materials are provided before and after the Faraday rotator 110. .
  • the optical isolator 100 is preferably arranged in the order of the polarizer 120, the Faraday rotator 110, and the analyzer 130, and the magnet 140 is preferably placed on at least one of these side surfaces.
  • the optical isolator 100 can be suitably used for an industrial fiber laser device. That is, it is suitable for preventing the reflected light of the laser light emitted from the laser light source from returning to the light source and causing oscillation to become unstable.
  • the obtained powder raw material was filled in an alumina crucible, and then covered with an alumina lid and baked at 1300 ° C. for 4 hours to obtain oxysulfide raw materials and oxide raw materials of the respective systems. All of the obtained raw materials were once subjected to dry pulverization treatment, and then subjected to uniaxial press molding and hydrostatic pressure press treatment at a pressure of 198 MPa to obtain a CIP compact. Subsequently, the obtained molded body was charged in a vacuum heating furnace and treated at 1300 ° C. ⁇ 20 ° C. for 3 hours to obtain a sintered body. At this time, the sintering temperature was finely adjusted so that the sintered relative density of all the samples was 92%.
  • Each obtained sintered body was charged into a HIP furnace made of Mo heater and subjected to HIP treatment in Ar at 150 MPa, 1350 ° C. for 3 hours.
  • Each ceramic sintered body thus obtained was ground and polished so as to have a length of 10 mm, and then the optical end faces of each sample were finally optically polished with an optical surface accuracy of ⁇ / 8, and the center wavelength was 1064 nm.
  • the linear transmittance is obtained when a spectroscopic analyzer “Spectrophotometer, trade name V670” (manufactured by JASCO Corporation) is used and light having a wavelength of 1064 nm is transmitted with a beam diameter of 1 to 3 mm ⁇ . Based on the following formula, it was determined based on JIS K7361 and JIS K7136.
  • V ⁇ H ⁇ L (Where, ⁇ is the Faraday rotation angle (min), V is the Verde constant, H is the magnitude of the magnetic field (Oe), and L is the length of the Faraday rotator (in this case, 1 cm).) (Measurement method of maximum value of incident power that does not generate thermal lens)
  • the maximum value of the incident power that is not generated by the thermal lens is that the change in focal length is 0.1 m or less when the light of each incident power is emitted as a spatial light of 1.6 mm and the Faraday rotator is inserted there. It was determined by reading the maximum incident power when The high power laser used had a maximum output of up to 100 W, so no further thermal lens evaluation was possible. All these results are summarized in Table 1.
  • the solid solution ratio of terbium is 0.3 or more, the Verde constant is 0.14 min / (Oe ⁇ cm), and in the case of oxysulfide, the maximum value of incident power that does not generate a thermal lens is 40 W or more. It was confirmed that Furthermore, it was confirmed that when the solid solution ratio of terbium is limited to 0.3 or more and 0.7 or less, the maximum value of the incident power not generated by the thermal lens is improved to 80 W or more. On the contrary, it was also clarified that the terbium solid solution ratio is 0.2 or less and the Verde constant is less than 0.1 min / (Oe ⁇ cm). Furthermore, when the compound is not oxysulfide but oxide, it has been found that the maximum value of the incident power at which no thermal lens is generated is 20 W or less.
  • All of the obtained raw materials were once subjected to dry pulverization treatment, and then subjected to uniaxial press molding and hydrostatic pressure press treatment at a pressure of 198 MPa to obtain a CIP compact. Subsequently, the obtained molded body was charged in a vacuum heating furnace and treated at 1300 ° C. ⁇ 20 ° C. for 3 hours to obtain a sintered body. At this time, the sintering temperature was finely adjusted so that the sintered relative density of all the samples was 92%. Each obtained sintered body was charged into a HIP furnace made of Mo heater and subjected to HIP treatment in Ar at 150 MPa, 1350 ° C. for 3 hours.
  • a polarizing element was set before and after each obtained ceramic sample, and then covered with a magnet, and both end surfaces were used using a high power laser (beam diameter 1.6 mm) manufactured by IPG Photonics Japan.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 波長帯0.9~1.1μmのファイバーレーザー光を吸収することなく、熱レンズの発生も起こらず、ベルデ定数はTGG結晶よりも大きな、光アイソレータなどの磁気光学デバイスを構成するのに好適な磁気光学材料として、下記式(1)で表わされる希土類オキシサルファイドを主成分として含む透明セラミックス又は下記式(1)で表わされる希土類オキシサルファイドの単結晶からなり、波長1064nmでのベルデ定数が0.14min/(Oe・cm)以上である磁気光学材料を提供する。 (Tbx1-x22S (1) (式中、xは0.3以上1未満であり、Rはイットリウム、ルテチウム、ガドリニウム、ホルミウム、スカンジウム、イッテルビウム、ユーロピウム、ディスプロシウムよりなる群から選択された少なくとも1つの希土類元素である。)

Description

磁気光学材料及びその製造方法並びに磁気光学デバイス
 本発明は、磁気光学材料及びその製造方法並びに磁気光学デバイスに関し、より詳細には、光アイソレータなどの磁気光学デバイスを構成するのに好適な希土類オキシサルファイドを含む透明セラミックス又は単結晶からなる磁気光学材料、該磁気光学材料の製造方法並びに上記磁気光学材料を用いた磁気光学デバイスに関する。
 近年、高出力化が可能となってきたこともあり、ファイバーレーザーを用いたレーザー加工機の普及が目覚しい。ところで、レーザー加工機に組み込まれるレーザー光源は、外部からの光が入射すると共振状態が不安定化し、発振状態が乱れる現象が起こる。特に発振された光が途中の光学系で反射されて光源に戻ってくると、発振状態は大きく撹乱される。これを防止するために、通常光アイソレータが光源の手前等に設けられる。
 光アイソレータは、ファラデー回転子と、ファラデー回転子の光入射側に配置された偏光子と、ファラデー回転子の光出射側に配置された検光子とからなる。また、ファラデー回転子は、光の進行方向に平行に磁界を加えて利用する。この時、光の偏波線分はファラデー回転子中を前進しても後進しても一定方向にしか回転しなくなる。更に、ファラデー回転子は光の偏波線分が丁度45度回転される長さに調整される。ここで偏光子と検光子の偏波面を、前進する光の回転方向に45度ずらせておくと、前進する光の偏波は、偏光子位置と検光子位置で一致するため透過する。他方、後進する光の偏波は、検光子位置から、45度ずれている偏光子の偏波面のずれ角方向とは逆回転に45度回転することになる。すると偏光子位置における戻り光の偏波面は、偏光子の偏波面に対して45度-(-45度)=90度のずれとなり、偏光子を透過できない。こうして前進する光は透過、出射させ、後進する戻り光は遮断する光アイソレータとして機能する。
 上記、光アイソレータを構成するファラデー回転子として用いられる材料では、従来からTGG結晶(Tb3Ga512)やTSAG結晶(Tb(3-x)Sc2Al312)が知られている(特開2011-213552号公報、特開2002-293693号公報(特許文献1、2))。TGG結晶のベルデ定数は比較的大きく、40rad/(T・m)であり、現在標準的なファイバーレーザー装置用として広く搭載されている。TSAG結晶のベルデ定数はTGG結晶の1.3倍程度あるとされており、こちらもファイバーレーザー装置に搭載される材料である。
 上記以外では、特開2010-285299号公報(特許文献3)に、(Tbx1-x23(xは、0.4≦x≦1.0)であり、Rは、スカンジウム、イットリウム、ランタン、ユウロピウム、ガドリニウム、イッテルビウム、ホルミウム、及び、ルテチウムよりなる群から選択される酸化物を主成分とする単結晶あるいはセラミックスが開示されている。上記成分からなる酸化物は、ベルデ定数が0.18min/(Oe・cm)以上あり、実施例では最大0.33min/(Oe・cm)のものまで記載がある。また、同一文献の本文中にはTGGのベルデ定数が0.13min/(Oe・cm)とも記載されている。両者のベルデ定数の差は実に2.5倍に達している。
 特開2011-121837号公報(特許文献4)にもほぼ同様成分からなる酸化物が開示されており、TGG単結晶よりも大きなベルデ定数を有すると記載されている。
 上記特許文献3、4のように、ベルデ定数の大きな光アイソレータが得られると、45度回転するために必要な全長を短くすることができ、光アイソレータの小型化につながり好ましい。
 ところで、単位長さあたりのベルデ定数が非常に大きな材料として、鉄(Fe)を含むイットリウム鉄ガーネット(通称:YIG)単結晶がある(特開2000-266947号公報(特許文献5))。ただし、鉄(Fe)は波長0.9μmに大きな光吸収があり、波長0.9~1.1μm帯の光アイソレータにはこの光吸収の影響が出る。そのため、このイットリウム鉄ガーネット単結晶を用いた光アイソレータは、高出力化傾向の著しいファイバーレーザー装置での利用は困難となっている。
特開2011-213552号公報 特開2002-293693号公報 特開2010-285299号公報 特開2011-121837号公報 特開2000-266947号公報
 しかしながら、上記特許文献3、4に開示されている(Tbx1-x23酸化物は、確かに特許文献1に開示されているTGG結晶、あるいは特許文献3の本文中で言及されているTGG結晶に比べ、ベルデ定数が1.4~2.5倍と非常に大きいが、該酸化物は、その利用が想定される波長帯0.9~1.1μmのファイバーレーザー光をわずかながら吸収してしまう。近年のファイバーレーザー装置はその出力がどんどんとハイパワー化しており、イットリウム鉄ガーネットのように大きな吸収があるのは論外として、わずかに吸収のある光アイソレータであっても、そこに搭載してしまうと、熱レンズ効果によるビーム品質の劣化をまねき問題となる。
 本発明は、上記事情に鑑みなされたもので、波長帯0.9~1.1μmのファイバーレーザー光を吸収することなく、そのため熱レンズの発生も起こらず、ベルデ定数はTGG結晶よりも大きな、光アイソレータなどの磁気光学デバイスを構成するのに好適な磁気光学材料及びその製造方法、並びに磁気光学デバイスを提供することを目的とする。
 本発明は、上記目的を達成するため、下記の磁気光学材料及びその製造方法並びに磁気光学デバイスを提供する。
〔1〕 下記式(1)で表わされる希土類オキシサルファイドを主成分として含む透明セラミックス又は下記式(1)で表わされる希土類オキシサルファイドの単結晶からなり、波長1064nmでのベルデ定数が0.14min/(Oe・cm)以上であることを特徴とする磁気光学材料。
 (Tbx1-x22S   (1)
(式中、xは0.3以上1未満であり、Rはイットリウム、ルテチウム、ガドリニウム、ホルミウム、スカンジウム、イッテルビウム、ユーロピウム、ディスプロシウムよりなる群から選択された少なくとも1つの希土類元素である。)
〔2〕 光路長10mmとして波長1064nmのレーザー光をビーム径1.6mmで入射させた場合、熱レンズが発生しないレーザー光の入射パワーの最大値が40W以上であることを特徴とする〔1〕記載の磁気光学材料。
〔3〕 光路長10mm当たりの波長1064nmの光の直線透過率が60%以上である〔1〕又は〔2〕記載の磁気光学材料。
〔4〕 酸化テルビウム粉末と、イットリウム、ルテチウム、ガドリニウム、ホルミウム、スカンジウム、イッテルビウム、ユーロピウム、ディスプロシウムよりなる群から選択された少なくとも1つの希土類酸化物粉末と、硫黄粉末とをるつぼ内で焼成した後、粉砕して希土類オキシサルファイド原料粉末とし、この希土類オキシサルファイド原料粉末を所定形状にプレス成形した後に焼結し、更に熱間等方圧プレス処理して下記式(1)で表わされる希土類オキシサルファイドを主成分とする透明セラミックスの焼結体を得る磁気光学材料の製造方法。
 (Tbx1-x22S   (1)
(式中、xは0.3以上1未満であり、Rはイットリウム、ルテチウム、ガドリニウム、ホルミウム、スカンジウム、イッテルビウム、ユーロピウム、ディスプロシウムよりなる群から選択された少なくとも1つの希土類元素である。)
〔5〕 〔1〕~〔3〕のいずれかに記載の磁気光学材料を用いて構成されることを特徴とする磁気光学デバイス。
〔6〕 上記磁気光学材料をファラデー回転子として備え、該ファラデー回転子の光学軸上の前後に偏光材料を備えた波長帯0.9μm以上1.1μm以下で利用可能な光アイソレータである〔5〕記載の磁気光学デバイス。
〔7〕 上記ファラデー回転子は、その光学面に反射防止膜を有することを特徴とする〔6〕記載の磁気光学デバイス。
 本発明によれば、テルビウムの一部を所定比率で他の希土類元素に置換したオキシサルファイドとすることにより、波長帯0.9~1.1μmのファイバーレーザー装置に搭載してもビーム品質を劣化させることなく、ベルデ定数をTGG結晶よりも1.4倍以上大きくした、小型化の可能な、光アイソレータなどの磁気光学デバイスを構成するのに好適な磁気光学材料を提供できる。
本発明に係る磁気光学材料をファラデー回転子として用いた光アイソレータの構成例を示す断面模式図である。
[磁気光学材料]
 以下、本発明に係る磁気光学材料について説明する。
 本発明に係る磁気光学材料は、下記式(1)で表わされる希土類オキシサルファイドを主成分として含む透明セラミックス又は下記式(1)で表わされる希土類オキシサルファイドの単結晶からなり、波長1064nmでのベルデ定数が0.14min/(Oe・cm)以上であることを特徴とする。
 (Tbx1-x22S   (1)
(式中、xは0.3以上1未満であり、Rはイットリウム(Y)、ルテチウム(Lu)、ガドリニウム(Gd)、ホルミウム(Ho)、スカンジウム(Sc)、イッテルビウム(Yb)、ユーロピウム(Eu)、ディスプロシウム(Dy)よりなる群から選択された少なくとも1つの希土類元素である。)
 テルビウムは鉄(Fe)を除く常磁性元素のなかで最大のベルデ定数をもつ材料であり、かつ波長1.06μmにおいて透明(光路長1mmにおける光の直線透過率が80%以上)であるため、この波長域の光アイソレータに使用するには最も適した元素である。ただし、この透明性を活かすためにはテルビウムが金属結合状態であってはならず、安定な化合物状態に仕上げる必要がある。
 ここで、安定な化合物を形成する一般的な元素としてはカルコゲン化物が挙げられる。更にカルコゲン化物を形成する元素の中で波長1.06μmにおいて透明な元素としては酸素、硫黄の2種がある。即ち、テルビウムを含む系からなる酸化物、ないしは硫化物が波長域1.06μmの光アイソレータに使用するには好ましい。
 ただし、テルビウムは酸化物であっても硫化物であっても、そのままでは相変化の影響が出るため、単結晶を引き上げることも、焼結によって透明セラミックスを作製することも難しい。そこでテルビウムの酸化物ないしは硫化物と同じ結晶構造を有し、イオン半径の近い希土類元素であって、更に1000℃以下での相変化のないものであって、かつ波長1.06μmにおける透明性の高い元素との固溶体を作製することが好ましい。
 そのような元素として、イットリウム、ルテチウム、ガドリニウム、ホルミウム、スカンジウム、イッテルビウム、ユーロピウム、ディスプロシウムが好適に利用できる。
 なお、硫化物の製造過程においては副生成物としてSOx等の毒性ガスが放出されるため、もし硫化物を選択する場合でも、その硫黄イオンの一部を可能な限り酸素で置換させてやり、毒性ガスの放出を抑制させてやることが好ましい。
 本発明にあっては、上記式(1)で表されるオキシサルファイドが、硫黄イオンの置換量を抑えつつ、ただの酸化物のものに比べて、その利用が想定される波長帯0.9~1.1μmでのわずかな吸収がより低減され、そのため熱レンズを生じさせずに入射できる入射パワーの最大値が増大することが判明した。
 上記式(1)中、Rとしてはイットリウム、ルテチウム、ガドリニウム、ホルミウム、スカンジウム、イッテルビウム、ユーロピウム、ディスプロシウムよりなる群から選択された少なくとも1つの希土類元素を含むものであれば特に限定されず、その他の元素を含有していてもよい。その他の元素としては、ツリウム、セリウムが例示できる。
 その他の元素の含有量は、Rの全量を100としたとき、10以下であることが好ましく、0.1以下であることが更に好ましく、0.001以下(実質的にゼロ)であることが特に好ましい。
 ここで、Rは一種単独であってもよいし、複数のRが任意の比率で含まれていてもよく、特に制限されない。これらの中でも、原料が入手容易であるという観点から、Rとしては、イットリウム、ルテチウム、ガドリニウムが好ましく、より好ましくはイットリウムである。
 式(1)中、xは0.3以上1.0未満であり、0.3以上0.8以下であることが好ましく、0.45以上0.75以下であることが更に好ましい。式(1)中、xが0.3未満であると、高いベルデ定数を得ることができない。また、xが上記範囲内であると高いベルデ定数が得られ、更に透明性に優れるので好ましい。なお、xが0.8以下であると、テルビウムの相変化の影響によるクラックの発生が抑制されるので好ましい。
 本発明の磁気光学材料は、上記式(1)で表される希土類オキシサルファイドを主成分として含有する。即ち、本発明の磁気光学材料は、上記式(1)で表される希土類オキシサルファイドを主成分として含有していればよく、その他の成分を副成分として含有していてもよい。
 ここで、主成分として含有するとは、上記式(1)で表される希土類オキシサルファイドを50質量%以上含有することを意味する。式(1)で表される希土類オキシサルファイドの含有量は80質量%以上であることが好ましく、90質量%以上であることがより好ましく、99質量%以上であることが更に好ましく、99.5質量%以上であることが特に好ましい。
 一般的に例示される、その他の副成分(主成分以外の成分)としては、単結晶育成の際にドープされるドーパント、フラックス、セラミックス製造の際に添加される焼結助剤等があり、マグネシウム、チタン、ケイ素、カルシウム、アルミニウム、ストロンチウム、バリウム、ジルコニウム、ハフニウムの酸化物などが例示できる。なかでもセラミックス製造の際に添加される焼結助剤として好適な副成分としては、チタン、ケイ素、カルシウム、アルミニウム、バリウム、ジルコニウム、ハフニウムの酸化物、ないしは炭酸塩が典型的に例示できる。
 本発明の磁気光学材料の製法としては、フローティングゾーン法、マイクロ引下げ法などの単結晶製造方法、並びにセラミックス製造法があり、いずれの製法を用いても構わない。ただし、一般に単結晶製造方法では固溶体の濃度比の設計に一定程度の制約があり、セラミックス製造法の方が本発明ではより好ましい。
 以下、本発明の磁気光学材料の製造方法の例としてセラミックス製造法について更に詳述するが、本発明の技術的思想を踏襲した単結晶製造方法を排除するものではない。
《セラミックス製造法》
[原料]
 本発明で用いる原料としては、テルビウム及び希土類元素R(Rはイットリウム、ルテチウム、ガドリニウム、ホルミウム、スカンジウム、イッテルビウム、ユーロピウム、ディスプロシウムよりなる群から選択された少なくとも1つの希土類元素である)からなる本発明の磁気光学材料の構成元素となる希土類金属粉末、ないしは硝酸、硫酸、尿酸等の水溶液、あるいは上記希土類の酸化物粉末、硫化物粉末等が好適に利用できる。
 また費用の点を考慮すると、上記構成元素の酸化物粉末と、硫黄(S)粉末を購入し、それらを所定量秤量後、混合してから焼成して所望の構成の希土類オキシサルファイドを得る方法が好ましい。なお、これら原料の純度は99.9質量%以上が好ましい。
 また、最終的には所望の構成の希土類オキシサルファイド粉末を用いてセラミックス製造をすることになるが、その際の粉末形状については特に限定されず、例えば角状、球状、板状の粉末が好適に利用できる。また、二次凝集している粉末であっても好適に利用できるし、スプレードライ処理等の造粒処理によって造粒された顆粒状粉末であっても好適に利用できる。更に、これらの原料粉末の調製工程については特に限定されない。共沈法、粉砕法、噴霧熱分解法、ゾルゲル法、アルコキシド加水分解法、その他あらゆる合成方法で作製された原料粉末が好適に利用できる。また、得られた原料粉末を適宜湿式ボールミル、ビーズミル、ジェットミルや乾式ジェットミル、ハンマーミル等によって処理してもよい。
 本発明で用いる希土類オキシサルファイド粉末原料中には、適宜焼結抑制助剤を添加してもよい。特に高い透明性を得るためには、テルビウムオキシサルファイド、及びその他選択される希土類オキシサルファイドに見合った焼結抑制助剤を添加することが好ましい。ただし、その純度は99.9質量%以上が好ましい。焼結抑制助剤の添加量は、主成分全体の質量(100質量%)に対して5質量%以下が好ましく、1質量%以下がより好ましく、0.5質量%以下が更に好ましい。なお、焼結抑制助剤を添加しない場合には、使用する原料粉末についてその一次粒子の粒径がナノサイズであって焼結活性が極めて高いものを選定するとよい。こうした選択は適宜なされてよい。
 更に製造工程での品質安定性や歩留り向上の目的で、各種の有機添加剤が添加される場合がある。本発明においては、これらについても特に限定されない。即ち、各種の分散剤、結合剤、潤滑剤、可塑剤等が好適に利用できる。
[製造工程]
 本発明では、上記原料粉末を用いて、所定形状にプレス成形した後に脱脂を行い、次いで焼結して、相対密度が最低でも92%以上に緻密化した焼結体を作製する。その後工程として熱間等方圧プレス(HIP)処理を行うことが好ましい。
(プレス成形)
 本発明の製造方法においては、通常のプレス成形工程を好適に利用できる。即ち、ごく一般的な、型に充填して一定方向から加圧するプレス工程や変形可能な防水容器に密閉収納して静水圧で加圧するCIP(Cold Isostatic Press)工程が利用できる。なお、印加圧力は得られる成形体の相対密度を確認しながら適宜調整すればよく、特に制限されないが、例えば市販のCIP装置で対応可能な300MPa以下程度の圧力範囲で管理すると製造コストが抑えられてよい。あるいはまた、成形時に成形工程のみでなく一気に焼結まで実施してしまうホットプレス工程や放電プラズマ焼結工程、マイクロ波加熱工程なども好適に利用できる。
(脱脂)
 本発明の製造方法においては、通常の脱脂工程を好適に利用できる。即ち、加熱炉による昇温脱脂工程を経ることが可能である。また、この時の雰囲気ガスの種類も特に制限はなく、空気、酸素、水素等が好適に利用できる。脱脂温度も特に制限はないが、もしも有機添加剤が混合されている原料を用いる場合には、その有機成分が分解消去できる温度まで昇温することが好ましい。
(焼結)
 本発明の製造方法においては、一般的な焼結工程を好適に利用できる。即ち、抵抗加熱方式、誘導加熱方式等の加熱焼結工程を好適に利用できる。この時の雰囲気は特に制限されないが、不活性ガス、酸素、水素、真空等が好適に利用できる。
 本発明の焼結工程における焼結温度は、選択される出発原料により適宜調整される。一般的には選択された出発原料を用いて、製造しようとする希土類オキシサルファイド焼結体の融点よりも数10℃から100℃ないしは200℃程度低温側の温度が好適に選定される。また、選定される温度の近傍に立方晶以外の相に相変化する温度帯が存在する希土類オキシサルファイド焼結体を製造しようとする際には、厳密にその温度以下となるように管理して焼結すると、立方晶から非立方晶への相転移が事実上発生しないため材料中に光学歪やクラックなどが発生し難いメリットがある。
 本発明の焼結工程における焼結保持時間は、選択される出発原料により適宜調整される。一般的には数時間程度で十分な場合が多い。ただし、焼結工程後の希土類オキシサルファイド焼結体の相対密度は最低でも92%以上に緻密化されていなければならない。
(熱間等方圧プレス(HIP))
 本発明の製造方法においては、焼結工程を経た後に更に追加で熱間等方圧プレス(HIP(Hot Isostatic Press))処理を行う工程を設けることができる。
 なお、このときの加圧ガス媒体種類は、アルゴン、窒素等の不活性ガス、又はAr-O2、Ar-SO2が好適に利用できる。加圧ガス媒体により加圧する圧力は、50~300MPaが好ましく、100~300MPaがより好ましい。圧力50MPa未満では透明性改善効果が得られない場合があり、300MPa超では圧力を増加させてもそれ以上の透明性改善が得られず、装置への負荷が過多となり装置を損傷するおそれがある。印加圧力は市販のHIP装置で処理できる196MPa以下であると簡便で好ましい。
 また、その際の処理温度(所定保持温度)は材料の種類及び/又は焼結状態により適宜設定すればよく、例えば1000~2000℃、好ましくは1100~1600℃の範囲で設定される。このとき、焼結工程の場合と同様に焼結体を構成する希土類オキシサルファイドの融点以下及び/又は相転移点以下とすることが必須であり、熱処理温度が2000℃超では本発明で想定している希土類オキシサルファイド焼結体が融点を超えるか相転移点を超えてしまい、適正なHIP処理を行うことが困難となる。また、熱処理温度が1000℃未満では焼結体の透明性改善効果が得られない。なお、熱処理温度の保持時間については特に制限されないが、焼結体を構成する希土類オキシサルファイドの特性を見極めながら適宜調整するとよい。
 なお、HIP処理するヒーター材、断熱材、処理容器は特に制限されないが、グラファイト、ないしはモリブデン(Mo)が好適に利用できる。
(光学研磨)
 本発明の製造方法においては、上記一連の製造工程を経た透明希土類オキシサルファイド焼結体(透明セラミックス)について、その光学的に利用する軸上にある両端面を光学研磨することが好ましい。このときの光学面精度はλ/8以下が好ましく、λ/10以下が特に好ましい(λ=633nmである)。なお、光学研磨された面に適宜反射防止膜を成膜することで光学損失を更に低減させることも可能である。
 以上のようにして、波長1064nmでのベルデ定数が0.14min/(Oe・cm)以上の磁気光学材料が得られる。本発明の磁気光学材料は、光路長10mm当たりの波長1064nmでの光透過のベースラインにおける直線透過率が60%以上であることが好ましい。なお本発明において、「ベースラインにおける直線透過率」とは、波長-透過率の透過スペクトルにおいて、焼結助剤又は希土類オキシサルファイドの吸収が発現する場合は、その吸収がないものとして、外挿した透過スペクトルにおける直線透過率を意味する。また、直線透過率は、JIS K7361及びJIS K7136に準拠し、全光線透過率から散乱透過率(拡散透過率)を減じて得た値である。また、本発明の磁気光学材料は、光路長10mmとして波長1064nmのレーザー光をビーム径1.6mmで入射させた場合、熱レンズが発生しないレーザー光の入射パワーの最大値が40W以上であることが好ましく、80W以上であることがより好ましい。上記熱レンズが発生しないレーザー光の入射パワーの最大値が40W未満では高出力のファイバーレーザー装置での利用が困難となる場合がある。
[磁気光学デバイス]
 本発明の磁気光学材料は、磁気光学デバイス用途に好適であり、特に波長0.9~1.1μmの光アイソレータのファラデー回転子として好適に使用される。
 図1は、本発明の磁気光学材料からなるファラデー回転子を光学素子として有する光学デバイスである光アイソレータの一例を示す断面模式図である。図1において、光アイソレータ100は、本発明の磁気光学材料からなるファラデー回転子110を備え、該ファラデー回転子110の前後には、偏光材料である偏光子120及び検光子130が備えられている。また、光アイソレータ100は、偏光子120、ファラデー回転子110、検光子130の順序で配置され、それらの側面のうちの少なくとも1面に磁石140が載置されていることが好ましい。
 また、上記光アイソレータ100は産業用ファイバーレーザー装置に好適に利用できる。即ち、レーザー光源から発したレーザー光の反射光が光源に戻り、発振が不安定になるのを防止するのに好適である。
 以下に、試験例、実施例及び比較例を挙げて、本発明を更に具体的に説明するが、本発明は下記実施例に限定されるものではない。
[試験例1]
 テルビウム以外の希土類元素としてイットリウム、ルテチウム、ガドリニウムを選定した例について説明する。
 信越化学工業(株)製の酸化テルビウム粉末、酸化イットリウム粉末、酸化ルテチウム粉末、酸化ガドリニウム粉末、並びにフルウチ化学(株)製の硫黄粉末を入手した。純度はいずれも99.9質量%以上であった。更に焼結助剤として、第一稀元素化学工業(株)製酸化ジルコニウム粉末も入手した。こちらも純度は99.9質量%以上であった。
 上記原料を用いて、テルビウムとイットリウムとを固溶させた系、テルビウムとルテチウムとを固溶させた系、テルビウムとガドリニウムとを固溶させた系の3種のグループの作製を行った。ここで、それぞれの系の固溶比率は表1のものを用意した。
 3種のグループのそれぞれ固溶比率の異なった原料に、酸素と硫黄のモル比が2:1となるように秤量した硫黄と、全体の質量に対して0.5質量%の酸化ジルコニウムを添加した。なお、3種のグループそれぞれで硫黄を添加しないものも作製した。
 得られた粉末原料をアルミナるつぼに充填後、アルミナ蓋をかぶせ、1300℃、4時間で焼成処理し、それぞれの系のオキシサルファイド原料及びオキサイド原料を得た。
 得られた原料はいずれも一旦乾式粉砕処理し、それから一軸プレス成形、198MPaの圧力での静水圧プレス処理を施し、CIP成形体を得た。続いて得られた成形体を真空加熱炉に仕込み、1300℃±20℃で3時間処理して焼結体を得た。このとき、すべてのサンプルの焼結相対密度が92%になるように焼結温度を微調整した。
 得られた各焼結体をMoヒーター製HIP炉に仕込み、Ar中、150MPa、1350℃、3時間の条件でHIP処理した。
 こうして得られた各セラミックス焼結体を、長さ10mmになるように研削及び研磨処理し、次いでそれぞれのサンプルの光学両端面を光学面精度λ/8で最終光学研磨し、更に中心波長が1064nmとなるように設計された反射防止膜をコートした。
 図1に示すように、得られた各セラミックスサンプルの前後に偏光素子をセットしてから磁石を被せ、IPGフォトニクスジャパン(株)製ハイパワーレーザー(ビーム径1.6mm)を用いて、両端面から、波長1064nmのハイパワーレーザー光線を入射して、直線透過率とベルデ定数、並びに熱レンズの発生しない入射パワーの最大値を測定した。
(直線透過率の測定方法)
 直線透過率は、分光分析装置「スペクトロフォトメータ、商品名V670」(日本分光(株)製)を用い、波長1064nmの光をビーム径を1~3mmφでの大きさで透過させたときの光の強度により測定され、以下の式に基づき、JIS K7361及びJIS K7136に準拠して求めた。
 直線透過率=I/Io×100
(式中、Iは透過光強度(長さ10mmの試料を直線透過した光の強度)、Ioは入射光強度を示す。)
(ベルデ定数の測定方法)
 ベルデ定数Vは、以下の式に基づいて求めた。
 θ=V×H×L
(式中、θはファラデー回転角(min)、Vはベルデ定数、Hは磁界の大きさ(Oe)、Lはファラデー回転子の長さ(この場合、1cm)である。)
(熱レンズの発生しない入射パワーの最大値の測定方法)
 熱レンズの発生しない入射パワーの最大値は、それぞれの入射パワーの光を1.6mmの空間光にして出射させ、そこへファラデー回転子を挿入した際の焦点距離の変化が0.1m以下となるときの最大入射パワーを読み取ることにより求めた。
 なお、使用したハイパワーレーザーは最大出力が100Wまでのため、これ以上の熱レンズ評価はできなかった。
 これらの結果をすべて表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 上記結果より、テルビウムの固溶比率を0.3以上にするとベルデ定数が0.14min/(Oe・cm)となり、かつオキシサルファイドの場合には熱レンズの発生しない入射パワーの最大値が40W以上となることが確認された。更に、テルビウムの固溶比率が0.3以上0.7以下に限れば、熱レンズの発生しない入射パワーの最大値が80W以上にまで改善されることが確認された。
 逆に、テルビウムの固溶比率0.2以下ではベルデ定数0.1min/(Oe・cm)未満と小さいことも明らかとなった。更に化合物がオキシサルファイドではなく、オキサイドの場合、熱レンズの発生しない入射パワーの最大値は20W以下にとどまってしまうことも判明した。
[試験例2]
 テルビウム以外の希土類元素としてホルミウム、スカンジウム、イッテルビウム、ユーロピウム、ディスプロシウムを選定した例について説明する。
 信越化学工業(株)製の酸化テルビウム粉末、酸化ホルミウム粉末、酸化スカンジウム粉末、酸化イッテルビウム粉末、酸化ユーロピウム粉末、酸化ディスプロシウム粉末、並びにフルウチ化学(株)製の硫黄粉末を入手した。純度はいずれも99.9質量%以上であった。更に焼結助剤として、第一稀元素化学工業(株)製酸化ジルコニウム粉末も入手した。こちらも純度は99.9質量%以上であった。
 上記それぞれの希土類原料を用いて、テルビウムと固溶比率を変えて固溶させたサンプルの作製を行った。ここで、それぞれの系の固溶比率は表2のものを用意した。
 上記のそれぞれ固溶比率の異なった各種原料に、酸素と硫黄のモル比が2:1となるように秤量した硫黄と、全体の質量に対して0.5質量%の酸化ジルコニウムを添加した。なお、上記グループそれぞれで硫黄を添加しないものも作製した。
 得られた粉末原料をアルミナるつぼに充填後、アルミナ蓋をかぶせ、1300℃、4時間で焼成処理し、それぞれの系のオキシサルファイド原料及びオキサイド原料を得た。
 得られた原料はいずれも一旦乾式粉砕処理し、それから一軸プレス成形、198MPaの圧力での静水圧プレス処理を施し、CIP成形体を得た。続いて得られた成形体を真空加熱炉に仕込み、1300℃±20℃で3時間処理して焼結体を得た。このとき、すべてのサンプルの焼結相対密度が92%になるように焼結温度を微調整した。
 得られた各焼結体をMoヒーター製HIP炉に仕込み、Ar中、150MPa、1350℃、3時間の条件でHIP処理した。
 こうして得られた各セラミックス焼結体を、長さ10mmになるように研削及び研磨処理し、次いでそれぞれのサンプルの光学両端面を光学面精度λ/8(λ=633nm)で最終光学研磨し、更に中心波長が1064nmとなるように設計された反射防止膜をコートした。
 図1に示すように、得られた各セラミックスサンプルの前後に偏光素子をセットしてから磁石を被せ、IPGフォトニクスジャパン(株)製ハイパワーレーザー(ビーム径1.6mm)を用いて、両端面から、波長1064nmのハイパワーレーザー光線を入射して、試験例1と同様にして直線透過率とベルデ定数、並びに熱レンズの発生しない入射パワーの最大値を測定した。
 なお、使用したハイパワーレーザーは最大出力が100Wまでのため、これ以上の熱レンズ評価はできなかった。
 これらの結果をすべて表2にまとめて示す。
Figure JPOXMLDOC01-appb-T000002
 上記結果より、テルビウムと固溶させる希土類元素がホルミウム、スカンジウム、イッテルビウム、ユーロピウム、ディスプロシウムの場合でも、試験例1の結果と同等の特性結果が確認された。
 なお、これまで本発明を実施形態をもって説明してきたが、本発明は上記実施形態に限定されるものではなく、他の実施形態、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用効果を奏する限り、本発明の範囲に含まれるものである。
100 光アイソレータ
110 ファラデー回転子
120 偏光子
130 検光子
140 磁石

Claims (7)

  1.  下記式(1)で表わされる希土類オキシサルファイドを主成分として含む透明セラミックス又は下記式(1)で表わされる希土類オキシサルファイドの単結晶からなり、波長1064nmでのベルデ定数が0.14min/(Oe・cm)以上であることを特徴とする磁気光学材料。
     (Tbx1-x22S   (1)
    (式中、xは0.3以上1未満であり、Rはイットリウム、ルテチウム、ガドリニウム、ホルミウム、スカンジウム、イッテルビウム、ユーロピウム、ディスプロシウムよりなる群から選択された少なくとも1つの希土類元素である。)
  2.  光路長10mmとして波長1064nmのレーザー光をビーム径1.6mmで入射させた場合、熱レンズが発生しないレーザー光の入射パワーの最大値が40W以上であることを特徴とする請求項1記載の磁気光学材料。
  3.  光路長10mm当たりの波長1064nmの光の直線透過率が60%以上である請求項1又は2記載の磁気光学材料。
  4.  酸化テルビウム粉末と、イットリウム、ルテチウム、ガドリニウム、ホルミウム、スカンジウム、イッテルビウム、ユーロピウム、ディスプロシウムよりなる群から選択された少なくとも1つの希土類酸化物粉末と、硫黄粉末とをるつぼ内で焼成した後、粉砕して希土類オキシサルファイド原料粉末とし、この希土類オキシサルファイド原料粉末を所定形状にプレス成形した後に焼結し、更に熱間等方圧プレス処理して下記式(1)で表わされる希土類オキシサルファイドを主成分とする透明セラミックスの焼結体を得る磁気光学材料の製造方法。
     (Tbx1-x22S   (1)
    (式中、xは0.3以上1未満であり、Rはイットリウム、ルテチウム、ガドリニウム、ホルミウム、スカンジウム、イッテルビウム、ユーロピウム、ディスプロシウムよりなる群から選択された少なくとも1つの希土類元素である。)
  5.  請求項1~3のいずれか1項記載の磁気光学材料を用いて構成されることを特徴とする磁気光学デバイス。
  6.  上記磁気光学材料をファラデー回転子として備え、該ファラデー回転子の光学軸上の前後に偏光材料を備えた波長帯0.9μm以上1.1μm以下で利用可能な光アイソレータである請求項5記載の磁気光学デバイス。
  7.  上記ファラデー回転子は、その光学面に反射防止膜を有することを特徴とする請求項6記載の磁気光学デバイス。
PCT/JP2014/064953 2013-07-19 2014-06-05 磁気光学材料及びその製造方法並びに磁気光学デバイス WO2015008553A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015527216A JP5979317B2 (ja) 2013-07-19 2014-06-05 磁気光学材料及びその製造方法並びに磁気光学デバイス
CA2918508A CA2918508C (en) 2013-07-19 2014-06-05 Magneto-optical material, method for producing same and magneto-optical device
KR1020167001311A KR102262771B1 (ko) 2013-07-19 2014-06-05 자기 광학 재료 및 그 제조 방법과 자기 광학 디바이스
CN201480040902.6A CN105378542B (zh) 2013-07-19 2014-06-05 磁光材料及其制造方法以及磁光器件
US14/904,504 US9891452B2 (en) 2013-07-19 2014-06-05 Magneto-optical material, method for producing same and magneto-optical device
EP14826337.9A EP3023831B1 (en) 2013-07-19 2014-06-05 Magneto-optical material, method for producing same and magneto-optical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-150316 2013-07-19
JP2013150316 2013-07-19

Publications (1)

Publication Number Publication Date
WO2015008553A1 true WO2015008553A1 (ja) 2015-01-22

Family

ID=52346027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064953 WO2015008553A1 (ja) 2013-07-19 2014-06-05 磁気光学材料及びその製造方法並びに磁気光学デバイス

Country Status (7)

Country Link
US (1) US9891452B2 (ja)
EP (1) EP3023831B1 (ja)
JP (1) JP5979317B2 (ja)
KR (1) KR102262771B1 (ja)
CN (1) CN105378542B (ja)
CA (1) CA2918508C (ja)
WO (1) WO2015008553A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016169115A (ja) * 2015-03-11 2016-09-23 信越化学工業株式会社 磁気光学材料及び磁気光学デバイス
EP3290997A1 (en) * 2016-09-02 2018-03-07 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Magneto-optical light modulator
JP2019156712A (ja) * 2018-03-09 2019-09-19 信越化学工業株式会社 透明複合酸化物焼結体の製造方法、透明複合酸化物焼結体並びに磁気光学デバイス
WO2022054595A1 (ja) * 2020-09-09 2022-03-17 信越化学工業株式会社 常磁性ガーネット型透明セラミックス、磁気光学デバイス及び常磁性ガーネット型透明セラミックスの製造方法
WO2022230528A1 (ja) * 2021-04-28 2022-11-03 信越化学工業株式会社 光アイソレータ
CN115594502A (zh) * 2022-10-17 2023-01-13 闽都创新实验室(Cn) 一种磁光透明陶瓷及其制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10274754B2 (en) * 2015-03-11 2019-04-30 Shin-Etsu Chemical Co., Ltd. Magneto-optical material, method for producing same and magneto-optical device
CN115321973B (zh) * 2022-05-10 2024-06-04 北京科技大学 一种基于稀土正铁氧体的太赫兹波介质陶瓷及其构筑方法
CN114988876B (zh) * 2022-06-24 2023-05-12 中国工程物理研究院化工材料研究所 一种Eu、Sc共掺杂的透明氧化镥陶瓷及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252495A (ja) * 1990-03-01 1991-11-11 Kasei Optonix Co Ltd 希土類酸硫化物蛍光体の製造方法
JP2000255947A (ja) 1999-03-11 2000-09-19 Mitsubishi Electric Corp エレベータ用昇降駆動装置
JP2000266947A (ja) 1999-03-19 2000-09-29 Univ Tokyo 光アイソレータ
JP2002293693A (ja) 2001-03-30 2002-10-09 Nec Tokin Corp テルビウム・アルミニウム・ガーネット単結晶及びその製造方法
JP2004123884A (ja) * 2002-10-02 2004-04-22 Konoshima Chemical Co Ltd 希土類オキシ硫化物セラミックス蓄冷材とその製造方法、及びこの蓄冷材を用いた極低温蓄冷器
JP2010285299A (ja) 2009-06-09 2010-12-24 Shin-Etsu Chemical Co Ltd 酸化物及び磁気光学デバイス
JP2011121837A (ja) 2009-12-14 2011-06-23 Oxide Corp 磁気光学素子用透光性酸化テルビウム焼結体
JP2011213552A (ja) 2010-03-31 2011-10-27 Oxide Corp 磁気光学素子用ガーネット結晶

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001272A (en) * 1996-03-18 1999-12-14 Seiko Epson Corporation Method for producing rare earth bond magnet, composition for rare earth bond magnet, and rare earth bond magnet
JP2000036403A (ja) * 1998-07-21 2000-02-02 Seiko Epson Corp 希土類ボンド磁石用組成物、希土類ボンド磁石および希土類ボンド磁石の製造方法
WO2003078543A1 (en) * 2002-03-13 2003-09-25 University Of Florida Novel methods for preparing rare-earth oxysulfide phosphors, and resulting materials
GB0420383D0 (en) * 2004-09-14 2004-10-13 Koninkl Philips Electronics Nv A fibre or filament
JP5762715B2 (ja) * 2010-10-06 2015-08-12 信越化学工業株式会社 磁気光学材料、ファラデー回転子、及び光アイソレータ
KR101899587B1 (ko) * 2011-03-16 2018-11-02 신에쓰 가가꾸 고교 가부시끼가이샤 세라믹스 자기 광학 재료 및 그 선정 방법
JP6027756B2 (ja) * 2011-03-16 2016-11-16 信越化学工業株式会社 光モジュール

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252495A (ja) * 1990-03-01 1991-11-11 Kasei Optonix Co Ltd 希土類酸硫化物蛍光体の製造方法
JP2000255947A (ja) 1999-03-11 2000-09-19 Mitsubishi Electric Corp エレベータ用昇降駆動装置
JP2000266947A (ja) 1999-03-19 2000-09-29 Univ Tokyo 光アイソレータ
JP2002293693A (ja) 2001-03-30 2002-10-09 Nec Tokin Corp テルビウム・アルミニウム・ガーネット単結晶及びその製造方法
JP2004123884A (ja) * 2002-10-02 2004-04-22 Konoshima Chemical Co Ltd 希土類オキシ硫化物セラミックス蓄冷材とその製造方法、及びこの蓄冷材を用いた極低温蓄冷器
JP2010285299A (ja) 2009-06-09 2010-12-24 Shin-Etsu Chemical Co Ltd 酸化物及び磁気光学デバイス
JP2011121837A (ja) 2009-12-14 2011-06-23 Oxide Corp 磁気光学素子用透光性酸化テルビウム焼結体
JP2011213552A (ja) 2010-03-31 2011-10-27 Oxide Corp 磁気光学素子用ガーネット結晶

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016169115A (ja) * 2015-03-11 2016-09-23 信越化学工業株式会社 磁気光学材料及び磁気光学デバイス
EP3290997A1 (en) * 2016-09-02 2018-03-07 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Magneto-optical light modulator
WO2018041666A1 (en) * 2016-09-02 2018-03-08 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Magneto-optical light modulator
US11022827B2 (en) 2016-09-02 2021-06-01 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Magneto-optical light modulator
JP2019156712A (ja) * 2018-03-09 2019-09-19 信越化学工業株式会社 透明複合酸化物焼結体の製造方法、透明複合酸化物焼結体並びに磁気光学デバイス
JP7135920B2 (ja) 2018-03-09 2022-09-13 信越化学工業株式会社 透明複合酸化物焼結体の製造方法、透明複合酸化物焼結体並びに磁気光学デバイス
WO2022054595A1 (ja) * 2020-09-09 2022-03-17 信越化学工業株式会社 常磁性ガーネット型透明セラミックス、磁気光学デバイス及び常磁性ガーネット型透明セラミックスの製造方法
JP7472995B2 (ja) 2020-09-09 2024-04-23 信越化学工業株式会社 常磁性ガーネット型透明セラミックス、磁気光学デバイス及び常磁性ガーネット型透明セラミックスの製造方法
WO2022230528A1 (ja) * 2021-04-28 2022-11-03 信越化学工業株式会社 光アイソレータ
JP7474725B2 (ja) 2021-04-28 2024-04-25 信越化学工業株式会社 光アイソレータ
CN115594502A (zh) * 2022-10-17 2023-01-13 闽都创新实验室(Cn) 一种磁光透明陶瓷及其制备方法和应用
CN115594502B (zh) * 2022-10-17 2023-10-03 闽都创新实验室 一种磁光透明陶瓷及其制备方法和应用

Also Published As

Publication number Publication date
CN105378542A (zh) 2016-03-02
EP3023831B1 (en) 2018-08-01
US9891452B2 (en) 2018-02-13
JP5979317B2 (ja) 2016-08-24
JPWO2015008553A1 (ja) 2017-03-02
KR20160034295A (ko) 2016-03-29
EP3023831A1 (en) 2016-05-25
EP3023831A4 (en) 2017-01-18
CA2918508C (en) 2020-12-08
KR102262771B1 (ko) 2021-06-08
US20160209683A1 (en) 2016-07-21
CA2918508A1 (en) 2015-01-22
CN105378542B (zh) 2018-01-16

Similar Documents

Publication Publication Date Title
JP5979317B2 (ja) 磁気光学材料及びその製造方法並びに磁気光学デバイス
JP6135766B2 (ja) 磁気光学材料及びその製造方法、並びに磁気光学デバイス
CA2979022C (en) Magneto-optical material, method for producing same and magneto-optical device
US11472745B2 (en) Paramagnetic garnet-type transparent ceramic, magneto-optical material, and magneto-optical device
JP2012208490A (ja) 光モジュール
JP6265155B2 (ja) 磁気光学材料及び磁気光学デバイス
JP2019199387A (ja) 常磁性ガーネット型透明セラミックス、磁気光学材料及び磁気光学デバイス
JP6137044B2 (ja) 磁気光学材料及び磁気光学デバイス
JP6187379B2 (ja) 磁気光学材料及び磁気光学デバイス
JP2022019246A (ja) 磁気光学材料及び磁気光学デバイス
WO2023112508A1 (ja) 磁気光学素子用透明セラミックス、及び磁気光学素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826337

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015527216

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014826337

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14904504

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2918508

Country of ref document: CA

Ref document number: 20167001311

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE