WO2015008525A1 - 液圧ブレーキシステム - Google Patents

液圧ブレーキシステム Download PDF

Info

Publication number
WO2015008525A1
WO2015008525A1 PCT/JP2014/062609 JP2014062609W WO2015008525A1 WO 2015008525 A1 WO2015008525 A1 WO 2015008525A1 JP 2014062609 W JP2014062609 W JP 2014062609W WO 2015008525 A1 WO2015008525 A1 WO 2015008525A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
hydraulic
chamber
control
linear valve
Prior art date
Application number
PCT/JP2014/062609
Other languages
English (en)
French (fr)
Inventor
雄介 神谷
雅明 駒沢
清之 内田
雅樹 二之夕
西尾 彰高
将来 丸山
Original Assignee
トヨタ自動車株式会社
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社, 株式会社アドヴィックス filed Critical トヨタ自動車株式会社
Priority to KR1020167000415A priority Critical patent/KR101728284B1/ko
Priority to US14/902,664 priority patent/US9919687B2/en
Priority to CN201480039564.4A priority patent/CN105408176B9/zh
Priority to EP14826704.0A priority patent/EP3023311B1/en
Publication of WO2015008525A1 publication Critical patent/WO2015008525A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • B60T13/145Master cylinder integrated or hydraulically coupled with booster
    • B60T13/146Part of the system directly actuated by booster pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4077Systems in which the booster is used as an auxiliary pressure source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/42Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition having expanding chambers for controlling pressure, i.e. closed systems
    • B60T8/4275Pump-back systems
    • B60T8/4291Pump-back systems having means to reduce or eliminate pedal kick-back
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D61/00Brakes with means for making the energy absorbed available for use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/604Merging friction therewith; Adjusting their repartition

Definitions

  • the present invention relates to suppression of hydraulic vibration in a hydraulic brake system.
  • Patent Document 1 includes (i) a plurality of brake cylinders, (ii) a high-pressure source including a pump device, (iii) a common passage in which the plurality of brake cylinders and the high-pressure source are connected, and (iv) left and right A master cylinder connected to the brake cylinder of the front wheel via a master shut-off valve, (v) a pressure increasing linear valve and a pressure reducing linear valve for controlling the fluid pressure in the common passage, and (iv) a common passage and a plurality of brake cylinders.
  • a hydraulic brake system is described that includes an anti-lock control valve device that is provided between each and includes a plurality of anti-lock control valves.
  • the master cylinder is disconnected from the left and right front brake cylinders by the master cutoff valve, and the hydraulic pressure in the common passage is controlled by the control of the pressure increasing linear valve and the pressure reducing linear valve.
  • the hydraulic pressures of a plurality of brake cylinders are controlled in common.
  • the hydraulic pressure in the common passage is controlled by the pressure-increasing linear valve and pressure-decreasing linear valve, and the hydraulic pressure in the brake cylinder is individually controlled by multiple anti-lock control valves.
  • the opening / closing switching pressure of the valve and the pressure-reducing linear valve is made higher than that during normal braking.
  • the pressure-increasing linear valve is opened, and the pressure-reducing linear valve is closed, whereby the change in the hydraulic pressure in the common passage accompanying the opening / closing operation of the antilock control valve can be suppressed.
  • An object of the present invention is to suppress vibration of hydraulic pressure upstream of a slip control device in a hydraulic brake system.
  • the present invention relates to a hydraulic brake system provided with a slip control device that controls the slip state of a wheel by controlling the hydraulic pressure of each brake cylinder, and the upstream side of the slip control device by the hydraulic pressure generator. Is controlled, and vibration of the upstream hydraulic pressure is suppressed. Thus, since the vibration of the hydraulic pressure on the upstream side is suppressed, it is possible to suppress a decrease in control accuracy of the brake cylinder hydraulic pressure by the slip control device.
  • a hydraulic brake system including a slip control device,
  • the hydraulic pressure generating device includes a stiffness reducing unit that reduces the stiffness of the upstream side portion of the slip control device when the slip control device is in an operating state compared to when the slip control device is in an inoperative state.
  • K ⁇ Fp / ⁇ q
  • the hydraulic pressure generator includes (i) (a) a pressure piston that is liquid-tightly and slidably fitted to the housing, and (b) provided in front of the pressure piston, the upstream side A master cylinder having a front pressurization chamber connected to the unit, (c) a back chamber provided behind the pressurization piston, and (ii) a rear hydraulic pressure control capable of controlling the hydraulic pressure of the back chamber.
  • the rigidity reducing portion includes a back chamber rigidity reducing portion that reduces the rigidity of the front pressurizing chamber by reducing the rigidity of the back chamber, and the back chamber rigidity reducing portion is included in the back surface hydraulic pressure control device.
  • the hydraulic pressure in the front pressurizing chamber is vibrated with the vibration of the hydraulic pressure on the upstream side. Further, the vibration of the hydraulic pressure in the front pressurizing chamber is transmitted to the back chamber via the pressurizing piston.
  • the rigidity of the back chamber is reduced, the rigidity of the front pressurizing chamber can be reduced, and the rigidity of the upstream side portion can be reduced.
  • the front pressurizing chamber and the upstream side portion may be connected in a state where they are always in communication, or may be connected in a state where switching between communication and blocking is possible.
  • the back chamber rigidity reducing portion includes a volume change allowing portion that allows a change in volume of the back chamber as compared with a case where the slip control device is in an inoperative state in an operating state of the slip control device ( The hydraulic brake system according to item 2). If a change in volume (increase / decrease in volume) of the back chamber is allowed, axial vibrations (forward, backward) of the pressurizing piston can be absorbed. As a result, the vibration of the hydraulic pressure in the front pressurizing chamber can be suppressed, and the vibration of the hydraulic pressure in the upstream side portion can be suppressed.
  • the back hydraulic pressure control device is (i) (a) a control piston liquid-tightly and slidably fitted to the housing; (b) a control pressure chamber provided behind the control piston; and (c) provided in front of the control piston.
  • a regulator having a servo chamber connected to the back chamber; (ii) (a) at least one of a pressure increasing linear valve provided between the control pressure chamber and the high pressure source, and a pressure reducing linear valve provided between the control pressure chamber and the low pressure source, (iii) Control pressure chamber fluid pressure control for controlling the fluid pressure of the servo chamber by controlling at least one of the pressure increasing linear valve and the pressure reducing linear valve to control the fluid pressure of the servo chamber Including
  • the back chamber rigidity reducing portion is controlled by one or more of at least one of the pressure-increasing linear valve and the pressure-reducing linear valve so that the control pressure is higher than that in the non-operating state in the operating state of the slip control device.
  • a hydraulic brake system including a control pressure chamber rigidity reduction unit that reduces the rigidity of the chamber, wherein the control pressure chamber rigidity reduction unit is included in the control pressure chamber hydraulic pressure control unit .
  • the vibration of the hydraulic pressure in the back chamber is transmitted to the servo chamber and is transmitted to the control pressure chamber via the control piston.
  • the rigidity of the control pressure chamber is reduced, the vibration of the hydraulic pressure in the servo chamber and the back chamber can be suppressed, and the vibration of the hydraulic pressure in the front pressurization chamber and the upstream side portion can be suppressed. it can.
  • the hydraulic pressure in the back chamber and the hydraulic pressure in the servo chamber are almost the same, and a relationship determined by the structure of the regulator or the like is established between the hydraulic pressure in the servo chamber and the hydraulic pressure in the control pressure chamber. There is a one-to-one correspondence between the hydraulic pressure in the back chamber and the hydraulic pressure in the control pressure chamber. Therefore, if the actual hydraulic pressure in the control pressure chamber is controlled so as to approach the target hydraulic pressure, the actual hydraulic pressure in the back chamber can be brought close to the target hydraulic pressure.
  • the hydraulic pressure in the servo chamber and the hydraulic pressure in the control pressure chamber can be made substantially the same.
  • a power hydraulic pressure source can be used, and for example, a pump device and an accumulator can be provided.
  • the back surface hydraulic pressure control device includes a pressure reducing linear valve provided between the control pressure chamber and a low pressure source, When the pressure-reducing linear valve has a small differential pressure between the control pressure chamber and the low-pressure source, the valve-opening current is smaller than when the pressure difference is large,
  • the control pressure chamber rigidity reduction unit includes a pressure reduction linear valve current control unit that reduces a supply current to the coil of the pressure reduction linear valve when the slip control device is in an operating state, compared to a case where the slip control device is in an inactive state.
  • the slip control device In the hydraulic control of the back chamber, even if the target hydraulic pressure and the actual hydraulic pressure in the control pressure chamber are the same, the slip control device is supplied to the coil of the pressure-reducing linear valve in the operating state than in the non-operating state. The current is reduced. The pressure-reducing linear valve is opened even if the differential pressure is small. As a result, the volume change of the control pressure chamber is allowed in the operating state of the slip control device as compared with the non-operating state, and the rigidity can be reduced.
  • the back hydraulic pressure control device includes a pressure reducing linear valve provided between the control pressure chamber and a low pressure source, The pressure reducing linear valve is in an open state when the supply pressure to the coil is maintained and the hydraulic pressure in the control pressure chamber is higher than the switching pressure determined by the supply current,
  • the control pressure chamber rigidity reduction unit includes a pressure-reducing linear valve control unit that lowers the open / close switching pressure when the slip control device is in an inoperative state when it is in an inoperative state (4) or (5) The hydraulic brake system according to item.
  • a differential pressure acting force Fp corresponding to a differential pressure between a high pressure side and a low pressure side acting on the solenoid valve, an elastic force Fs of a spring, and supply to a coil
  • the relative positional relationship between the valve element and the valve seat is determined by the relationship with the electromagnetic driving force Fd corresponding to the current.
  • the differential pressure acting force Fp acting on the pressure-reducing linear valve as the electromagnetic valve is larger when the hydraulic pressure in the control pressure chamber is large when the hydraulic pressure of the low-pressure source is constant than when it is small.
  • the elastic force Fs of the spring acts in a direction to separate the valve element from the valve seat, and the electromagnetic driving force Fd is the difference between the differential pressure acting force and the elastic force of the spring. When it becomes larger than the sum, it is switched to the closed state (Fd> Fs + Fp: closed).
  • the elastic force Fs of the spring acts in the direction in which the valve element is seated on the valve seat, and the sum of the electromagnetic driving force Fd and the differential pressure acting force Fp is the elastic force of the spring.
  • the open state Fd + Fp> Fs: open).
  • the control pressure chamber remains open as long as the hydraulic pressure in the control pressure chamber is higher than the switching pressure determined by the supply current, and the control pressure chamber communicates with the low pressure source. Be made.
  • the pressure reducing linear valve is a normally open valve
  • the switching current is reduced by reducing the supply current
  • the linear valve is a normally closed valve
  • the switching current is reduced by increasing the supply current. It will be lost.
  • the back hydraulic pressure control device includes a target hydraulic pressure determining unit that determines a target hydraulic pressure of the control pressure chamber based on a braking request
  • the pressure-reducing linear valve control unit includes a target hydraulic pressure change corresponding pressure-reducing linear valve control unit that lowers the opening / closing switching pressure when the target hydraulic pressure in the control pressure chamber is in a decreasing tendency than in the increasing tendency
  • the hydraulic brake system according to item 6).
  • the target hydraulic pressure can be determined based on, for example, a braking request determined based on the operating state of the brake operation member by the driver. Further, when the automatic brake is operated, when traction control, vehicle stability control is performed, etc., it can be determined based on the operation request of the automatic brake and the braking request determined by the request in each control.
  • the back surface hydraulic pressure control device at least increases the hydraulic pressure in the control pressure chamber and decreases the pressure by controlling the actual hydraulic pressure in the control pressure chamber and the target hydraulic pressure. Including a pressure increase / decrease control unit that performs any of Item (6) or (7), wherein the pressure-reducing linear valve control unit makes the opening / closing switching pressure smaller when pressure-reducing control is performed by the pressure-increasing / depressurizing control unit than when the pressure-increasing control is performed.
  • the pressure-increasing / depressurizing control unit may perform either pressure-increasing control or pressure-reducing control, or may perform any of pressure-increasing control, pressure-reducing control, or holding control.
  • the actual hydraulic pressure in the control pressure chamber may be detected directly by a sensor or the like, or may be estimated based on the control mode of the pressure-increasing linear valve or the pressure-decreasing linear valve.
  • the back surface hydraulic pressure control device includes: (a) a pressure reducing linear valve provided between the control pressure chamber and a low pressure source; and (b) the pressure reducing linear valve as a target hydraulic pressure in the control pressure chamber.
  • a target hydraulic pressure-reducing linear valve controller that controls based on The control pressure chamber rigidity reduction unit includes a target hydraulic pressure determination unit for pressure-reducing linear valve control that determines the target hydraulic pressure to a value smaller than that when the slip control device is in an inoperative state when the slip control device is in an activated state.
  • the hydraulic brake system according to any one of (4) to (8). For example, when the pressure reducing linear valve is controlled to be open while the actual hydraulic pressure in the control pressure chamber is greater than the target hydraulic pressure, and to be closed when the actual hydraulic pressure reaches the target hydraulic pressure When the target hydraulic pressure is lowered, the pressure-reducing linear valve opens.
  • the back hydraulic pressure control device includes a pressure increasing linear valve provided between the control pressure chamber and a high pressure source,
  • the pressure-increasing linear valve is characterized in that the relationship between the differential pressure between the high pressure source and the control pressure chamber and the valve opening current has a characteristic that the valve opening current decreases as the differential pressure increases,
  • the control pressure chamber rigidity reduction unit includes a pressure-increasing linear valve control unit that increases a supply current as compared with a case where the slip control device is in an inoperative state in an operating state of the items (4) to (9).
  • the slip control device In the hydraulic pressure control of the back chamber, even if the target hydraulic pressure and the actual hydraulic pressure in the control pressure chamber are the same, the slip control device is activated in the coil of the pressure-increasing linear valve than in the non-activated state. Supply current is increased. Even if the differential pressure is small, the pressure-increasing linear valve is in an open state, and is open. As a result, the volume change of the control pressure chamber is allowed and the rigidity of the control pressure chamber can be reduced compared to the case where the slip control device is in the non-operating state.
  • the back hydraulic pressure control device includes a pressure increasing linear valve provided between the control pressure chamber and a high pressure source, The pressure-increasing linear valve is in an open state when the supply current to the coil is held and the hydraulic pressure in the control pressure chamber is lower than the switching pressure determined by the supply current,
  • the control pressure chamber rigidity reduction unit includes a pressure-increasing linear valve control unit that increases the open / close switching pressure as compared with a case where the slip control device is in an inoperative state in operation (4) to (10) The hydraulic brake system according to any one of the items.
  • the differential pressure acting force acting on the pressure-increasing linear valve is smaller when the hydraulic pressure in the control pressure chamber is large when the hydraulic pressure at the high pressure source is constant than when it is small.
  • the pressure-increasing linear valve is in a closed state when the current is not supplied to the coil and the elastic force of the spring is equal to or greater than the differential pressure acting force.
  • the control pressure chamber is communicated with the high pressure source.
  • the pressure increasing linear valve when the supply current to the coil is increased, the pressure increasing linear valve is opened even if the differential pressure is small (even if the hydraulic pressure in the control pressure chamber is high). It makes me feel.
  • the back hydraulic pressure control device includes a target hydraulic pressure determination unit that determines a target hydraulic pressure of the control pressure chamber based on a braking request, When the target hydraulic pressure in the control pressure chamber determined by the target hydraulic pressure determining unit is in an increasing tendency, the pressure increasing linear valve control unit is more likely to decrease the coil to the boosting linear valve than in the case of a decreasing tendency.
  • the target hydraulic pressure tends to increase, the control pressure chamber becomes easier to communicate with the high pressure source than when the target hydraulic pressure tends to decrease (the switching pressure is increased), and the hydraulic pressure in the control pressure chamber can be increased favorably. Can be brought close to the target hydraulic pressure.
  • the back surface hydraulic pressure control device at least increases pressure control to increase the hydraulic pressure in the control pressure chamber and reduces pressure reduction control by comparing the actual hydraulic pressure in the control pressure chamber with the target hydraulic pressure.
  • Including a pressure increase / decrease control unit that performs any of When the pressure-increasing linear valve control unit performs pressure-increasing control by the pressure-increasing / depressurizing control unit, the supply current to the coil of the pressure-increasing linear valve is increased as compared with the case where the pressure-increasing control is performed ( The hydraulic brake system according to any one of items 10) to (12).
  • the back hydraulic pressure control device includes: (a) a pressure-increasing linear valve provided between the control pressure chamber and a high-pressure source; and (b) the pressure-increasing linear valve in the actual control pressure chamber.
  • the rigidity reduction unit includes a target hydraulic pressure determination unit for pressure-increasing linear valve control that determines the target hydraulic pressure to a larger value when the slip control device is in an inoperative state than in a non-operating state (4 The hydraulic brake system according to any one of items) to (13).
  • the back surface hydraulic pressure control device is provided between (a) a pressure-increasing linear valve provided between the control pressure chamber and the high pressure source, and (b) provided between the control pressure chamber and the low pressure source. (C) an open control unit that opens both the pressure-increasing linear valve and the pressure-reducing linear valve at least at one time when the slip control device is in an operating state (4) The hydraulic brake system according to any one of items) to (14).
  • both the pressure-increasing linear valve and the pressure-decreasing linear valve are opened at least at one time while the slip control device is in the operating state, and it is opened during the entire period while the slip control device is in the operating state. It is not always necessary.
  • the back hydraulic pressure control device is provided (a) a pressure-increasing linear valve provided between the control pressure chamber and the high pressure source, and (b) provided between the control pressure chamber and the low pressure source.
  • the pressure reducing linear valve and (c) both the pressure increasing linear valve and the pressure reducing linear valve are opened when the fluid pressure in the control pressure chamber is within a set range determined by the target fluid pressure.
  • the hydraulic brake system according to any one of (4) to (15), including a control unit.
  • the slip control device uses the fluid pressure of each of the plurality of brake cylinders to utilize the fluid pressure of the fluid pressure generating device, and the slip of each of the plurality of wheels provided with the plurality of brake cylinders.
  • the hydraulic brake system according to any one of items (1) to (16), including a slip control unit that controls so that is maintained within an appropriate range determined by a friction coefficient of the road surface.
  • the slip control unit includes not only the anti-lock control unit but also the traction control unit, vehicle This also applies to the stability control unit. Note that the hydraulic pressure control of the brake cylinder may be performed in a state where the brake cylinder and the hydraulic pressure generator are in communication with each other.
  • the slip control device can control the hydraulic pressures of the brake cylinders by communicating the brake cylinders with either the hydraulic pressure generator or the low pressure source, respectively.
  • the hydraulic brake system according to any one of items (1) to (16), including an electromagnetic valve for slip control.
  • the low pressure source can be a master reservoir or a decompression reservoir, and the slip control device can be a discharge type, a reflux type, or the like.
  • the operating state of the slip control device means a state in which at least the slip control electromagnetic valve is operated.
  • the hydraulic pressure upstream of the slip control solenoid valve is vibrated with the opening and closing of the slip control solenoid valve, but the vibration is suppressed.
  • the slip control electromagnetic valve examples include a pressure increasing valve (holding valve) provided between the hydraulic pressure generator and the brake cylinder, a pressure reducing valve provided between the brake cylinder and the low pressure source, and the like.
  • the slip control device includes a pump device that pumps up hydraulic fluid discharged from the plurality of brake cylinders and supplies the pumped fluid to the upstream side portion.
  • the operating state of the slip control device means at least one of a state where the slip control electromagnetic valve is operated and a state where the pump device is operated. With the operation of the pump device, the hydraulic pressure on the upstream side of the slip control solenoid valve is vibrated, but the vibration is suppressed.
  • a damper is provided to suppress the vibration caused by the operation of the pump device.
  • the hydraulic pressure vibration of the upstream side portion is controlled by the control of the hydraulic pressure generator. It is suppressed.
  • the slip control device includes, for example, a slip control solenoid valve, a decompression reservoir that stores hydraulic fluid that has flowed out from a plurality of brake cylinders, and a pump device that pumps up the hydraulic fluid from the decompression reservoir and supplies it to the upstream side portion. Can be included.
  • a first slip control solenoid valve that is one or more of the plurality of slip control solenoid valves is provided between the hydraulic pressure generating device and the plurality of brake cylinders, respectively.
  • the slip control device includes the first slip control electromagnetic valve, the output hydraulic pressure of the hydraulic pressure generating device, and the hydraulic pressure of each of one or more brake cylinders to which the first slip control electromagnetic valve is connected.
  • the hydraulic pressures of the plurality of brake cylinders can be individually controlled by the plurality of slip control solenoid valves.
  • the back hydraulic pressure control device includes: (a) a back chamber pressure-increasing linear valve provided between the back chamber and the high pressure source; and a back surface provided between the back chamber and the low pressure source. Controlling the hydraulic pressure in the back chamber by controlling at least one of the pressure reducing linear valve for the chamber, and (b) at least one of the pressure increasing linear valve for the back chamber and the pressure reducing linear valve for the back chamber, respectively.
  • the hydraulic brake system according to any one of Items (20) to (20).
  • the pressure increasing linear valve and the pressure reducing linear valve are directly connected to the back chamber, and the fluid pressure in the front pressurizing chamber is controlled by controlling the fluid pressure in the back chamber.
  • the technical features described in any one of items (5) to (16) can be employed.
  • the hydraulic pressure generator includes a power hydraulic pressure source and an upstream hydraulic pressure control unit that controls the hydraulic pressure of the upstream side using the hydraulic pressure of the power hydraulic pressure source.
  • the hydraulic brake system according to any one of (17) to (20).
  • the hydraulic pressure generator may or may not include a manual hydraulic pressure source such as a master cylinder.
  • the upstream side hydraulic pressure is controlled using the hydraulic pressure of the power hydraulic pressure source while the upstream side is cut off from the manual hydraulic pressure source.
  • the upstream side hydraulic pressure control unit suppresses the vibration of the hydraulic pressure on the upstream side.
  • the upstream side hydraulic pressure control unit includes (i) one or more solenoid valves, and controls the upstream side hydraulic pressure by controlling one or more solenoid valves.
  • the hydraulic pressure generating device includes: (i) a high pressure source; (ii) an upstream pressure increasing linear valve provided between the high pressure source and the upstream side portion, the upstream side portion, and the low pressure source. And at least one of an upstream pressure reducing linear valve provided between The rigidity reducing portion is more upstream than in the non-operating state in the operating state of the slip control device by one or more controls of at least one of the upstream pressure increasing linear valve and the upstream pressure reducing linear valve.
  • the hydraulic brake system according to any one of (1), (17) to (20), and (22), which reduces the rigidity of the side portion.
  • (24) a plurality of brake cylinders; (a) a pressure piston liquid-tightly and slidably fitted to the housing; (b) a forward force control device that applies a forward force that is a forward force from the rear of the pressure piston; and (c).
  • the motion conversion mechanism is also a motion transmission mechanism that converts the rotational force of the output shaft of the electric motor into a forward force and transmits it to the pressure piston.
  • the technical features described in any one of the items (1) to (23) can be employed in the hydraulic brake system described in this item.
  • the technical features of the rigidity reduction unit can be adopted for the vibration suppression unit.
  • (25) a plurality of brake cylinders; (i) (a) a pressure piston liquid-tightly and slidably fitted to the housing; and (b) a front pressure chamber provided in front of the pressure piston and connected to the plurality of brake cylinders.
  • a hydraulic pressure generator comprising: (c) a master cylinder having a back chamber provided behind the pressurizing piston; and (ii) a back hydraulic pressure control device capable of controlling the hydraulic pressure in the back chamber.
  • a slip control device capable of individually controlling the hydraulic pressure of each of the plurality of brake cylinders by communicating each of the plurality of brake cylinders with either the front pressurizing chamber or the low pressure source;
  • a hydraulic brake system comprising: The hydraulic brake system, wherein the rear hydraulic pressure control device includes a vibration suppressing unit that suppresses vibration of hydraulic pressure in the front pressurizing chamber when the slip control device is in an operating state.
  • a hydraulic brake system including a slip control device comprising: The hydraulic brake system, wherein the hydraulic pressure generating device includes a vibration suppressing unit that suppresses vibration of hydraulic pressure in the upstream side portion by electronic control.
  • a hydraulic brake system including a pump device that returns the discharged hydraulic fluid to an upstream portion that is an upstream portion of the plurality of brake cylinders,
  • the hydraulic pressure generator includes a hydraulic pressure reduction unit that reduces the rigidity of the upstream side portion when the pump device is in an operating state compared to when the pump device is in an inactive state.
  • Brake system The technical features described in any one of the items (1) to (23) can be employed in the hydraulic brake system described in this item.
  • FIG. 1 is a circuit diagram of a hydraulic brake system according to Embodiment 1 of the present invention.
  • (a) It is sectional drawing of the pressure increase linear valve contained in the said hydraulic brake system.
  • (b) It is a figure which shows the characteristic of the said pressure increase linear valve.
  • (a) It is sectional drawing of the pressure-reduction linear valve contained in the said hydraulic brake system.
  • (b) It is a figure which shows the characteristic of the said pressure reduction linear valve.
  • FIG. 1 It is a circuit diagram of the hydraulic brake system which concerns on Example 2 of this invention. It is a circuit diagram of the hydraulic brake system which concerns on Example 3 of this invention. It is a figure for demonstrating control of the pressure-reduction linear valve contained in the hydraulic brake system which concerns on the said Example, Comprising: The relationship between differential pressure
  • FIG. It is a circuit diagram of the hydraulic brake system which concerns on Example 4 of this invention. It is a circuit diagram of the hydraulic brake system which concerns on Example 5 of this invention.
  • the hydraulic brake system can be mounted on a hybrid vehicle, mounted on an electric vehicle or a fuel cell vehicle, or mounted on an internal combustion drive vehicle.
  • a hybrid vehicle mounted on an electric vehicle, a fuel cell vehicle, etc.
  • regenerative braking force is applied to the drive wheels, so regenerative cooperative control is performed, but in an internal combustion drive vehicle, regenerative cooperative control is performed.
  • the brake force of the hydraulic brake is electrically controlled so as to have a desired magnitude.
  • the hydraulic brake system includes (i) hydraulic pressures provided on the brake cylinders 6FL and 6FR of the hydraulic brakes 4FL and 4FR provided on the left and right front wheels 2FL and 2FR and on the left and right rear wheels 8RL and 8RR.
  • Brake cylinders 12RL, 12RR of the brakes 10RL, 10RR (ii) a hydraulic pressure generator 14 capable of supplying hydraulic pressure to the brake cylinders 6FL, 6FR, 12RL, 12RR, (iii) the brake cylinders 6FL, 6FR, 12RL, 12RR And a slip control device 16 provided between the hydraulic pressure generation device 14 and the like.
  • the hydraulic pressure generation device 14, the slip control device 16, and the like are controlled by a brake ECU 20 (see FIG. 4) mainly composed of a computer.
  • the hydraulic pressure generator 14 includes (i) a brake pedal 24 as a brake operation member, (ii) a master cylinder 26, (iii) a rear hydraulic pressure controller 28 that controls the hydraulic pressure in the rear chamber of the master cylinder 26, and the like. .
  • the master cylinder 26 includes (a) a housing 30, (b) pressure pistons 32 and 34 and an input piston 36 and the like which are fitted in a cylinder bore formed in the housing 30 in series with each other in a liquid-tight and slidable manner. Including.
  • the fronts of the pressurizing pistons 32 and 34 are front pressurizing chambers 40 and 42, respectively.
  • the front pressurizing chamber 40 is connected to the left and right front wheels 2FL, 2FR via the fluid passage 44, and the brake cylinders 6FL, 6FR of the 4FR are connected to the front pressurizing chamber 42 via the fluid passage 46.
  • the brake cylinders 12RL and 12RR of the hydraulic brakes 10RL and 10RR of the wheels 8RL and 8RR are connected.
  • These hydraulic brakes 4FL, 4FR, 10RL, and 10RR are operated by supplying hydraulic pressure to the brake cylinders 6FL, 6FR, 12RL, and 12RR, respectively, and suppress the rotation of the wheels 2FL, 2FR, 8RL, and 8RR. .
  • FL, FR, RL, and RR representing the wheel position may be omitted when it is not necessary to distinguish the wheel position for a hydraulic brake, a solenoid valve described later, and the like.
  • return springs are disposed between the pressure piston 32 and the housing 30 and between the two pressure pistons 32 and 34, respectively, and urge the pressure pistons 32 and 34 in the backward direction.
  • the front pressurizing chambers 40 and 42 are respectively communicated with a master reservoir (also referred to as a reservoir tank) 52.
  • the pressurizing piston 34 includes (a) a front piston portion 56 provided at the front portion, (b) an intermediate piston portion 58 provided at the intermediate portion and projecting in the radial direction, and (c) provided at the rear portion.
  • a rear small diameter portion 60 having a smaller diameter than the piston portion 58 is included.
  • the front piston portion 56 and the intermediate piston portion 58 are respectively fitted to the housing 30 so as to be liquid-tight and slidable.
  • the front piston portion 56 is a front pressurizing chamber 42 and the intermediate piston portion 58 is anterior. This is a chamber 62.
  • the housing 30 is provided with an annular inner peripheral projection 64, and the rear piston portion 58, that is, the rear small-diameter portion 60 is fitted in a liquid-tight and slidable manner.
  • a back chamber 66 is formed between the intermediate piston portion 58 and the inner peripheral projection 64 behind the intermediate piston portion 58.
  • the input piston 36 is positioned behind the pressure piston 34, and the space between the rear small diameter portion 60 and the input piston 36 is an input chamber 70.
  • the brake pedal 24 is linked to the rear portion of the input piston 36 via an operating rod 72 or the like. It can be considered that the pressure piston (or pressure piston part) is constituted by the front piston part 56 and the intermediate piston part 58 of the pressure piston 34.
  • the annular chamber 62 and the input chamber 70 are connected by a connecting passage 80, and a communication control valve 82 is provided in the connecting passage 80.
  • the communication control valve 82 is an electromagnetic on-off valve that is opened / closed by turning on / off the current supplied to the coil 82s, and is a normally closed valve that is closed when the current is off.
  • a portion of the connection passage 80 closer to the annular chamber 62 than the communication control valve 82 is connected to the master reservoir 52 by a reservoir passage 84, and a reservoir cutoff valve 86 is provided in the reservoir passage 84.
  • the reservoir shut-off valve 86 is an electromagnetic on-off valve that is opened and closed by turning on and off the supply current to the coil 86s, and is a normally open valve that is open when it is off.
  • a stroke simulator 90 is connected to the portion of the connection passage 80 closer to the annular chamber 62 than the communication control valve 82 via the simulator passage 88. Since the stroke simulator 90 is connected to the input chamber 70 via the simulator passage 88 and the connection passage 80, the stroke simulator 90 is allowed to operate when the communication control valve 82 is open and is blocked when the communication control valve 82 is closed. Thus, the communication control valve 82 has a function as a simulator control valve. Furthermore, a hydraulic pressure sensor 92 is provided in a portion closer to the annular chamber than a portion where the reservoir passage 84 of the connection passage 80 is connected.
  • the hydraulic pressure sensor 92 detects the hydraulic pressure in the annular chamber 62 and the input chamber 70 in a state where the annular chamber 62 and the input chamber 70 are communicated with each other and are disconnected from the master reservoir 52. Since the hydraulic pressure detected by the hydraulic pressure sensor 92 has a magnitude corresponding to the operating force of the brake pedal 24, it can be referred to as an operating force sensor or an operating hydraulic pressure sensor.
  • a back hydraulic pressure control device 28 is connected to the back chamber 66.
  • the back hydraulic pressure control device 28 includes (a) a high pressure source 100, (b) a regulator 102, (c) a linear valve device 103, and the like.
  • the high pressure source 100 includes a pump device 106 including a pump 104 and a pump motor 105, and an accumulator 108 that stores hydraulic fluid discharged from the pump device 106 in a pressurized state.
  • the accumulator pressure which is the hydraulic pressure of the hydraulic fluid stored in the accumulator 108, is detected by the accumulator pressure sensor 109, but the pump motor 105 is controlled so that the accumulator pressure is maintained within a predetermined set range.
  • the The regulator 102 includes (d) a housing 110, and (e) a pilot piston 112 and a control piston 114 provided in the housing 110 in a direction parallel to the axis L and arranged in series with each other.
  • a cylinder bore having a stepped shape is formed in the housing 110, and a pilot piston 112 and a control piston 114 are fitted in a liquid-tight and slidable manner on the large diameter portion, and connected to the high pressure source 100 on the small diameter portion.
  • a high pressure chamber 116 is formed.
  • a pilot pressure chamber 120 is provided between the pilot piston 112 and the housing 110, and a control pressure chamber 122 is provided behind the control piston 114. Between the control piston 114 and a step portion between the large diameter portion and the small diameter portion of the cylinder bore. Is the servo chamber 124.
  • a high pressure supply valve 126 is provided between the servo chamber 124 and the high pressure chamber 116.
  • the high-pressure supply valve 126 is a normally closed valve.
  • the valve seat 130 (g) The valve element 132 provided so as to be seated and separated from the valve seat 130, and (h) The valve element 132 is attached to the valve seat 130. It includes a spring 136 and the like that applies an elastic force in the seating direction (retracting direction).
  • a fitting hole extending in parallel with the axis L is formed at the center of the main body of the control piston 114, and a portion extending in a direction (radial direction) orthogonal to the axis L is provided.
  • a liquid passage 140 communicated with the liquid is formed.
  • the liquid passage 140 is always in communication with a low pressure port connected to the master reservoir.
  • a valve opening member 144 extending in parallel with the axis L is fitted into the fitting hole.
  • An axial passage 146 is formed in the central portion of the valve opening member 144 in parallel with the axis L, the rear end opens to the liquid passage 140, and the front end faces the valve element 132.
  • the front end portion of the valve opening member 144 facing the valve element 132 and the low pressure port are connected via the axial passage 146 and the liquid passage 140.
  • a spring 150 is provided between the valve opening member 144 and the housing 110 to urge the control piston 114 (having the valve opening member 144) in the backward direction.
  • the pilot pressure chamber 120 is connected to the liquid passage 46 via the pilot passage 152. Therefore, the hydraulic pressure of the pressurizing chamber 42 of the master cylinder 26 acts on the pilot piston 112. Further, the back chamber 66 of the master cylinder 26 is connected to the servo chamber 124 via a servo passage 154. Since the servo chamber 124 and the back chamber 66 are directly connected, the hydraulic pressure in the servo chamber 124 and the hydraulic pressure in the back chamber 66 are basically the same height.
  • the servo passage 154 is provided with a servo fluid pressure sensor (also referred to as a back surface fluid pressure sensor) 156 to detect the fluid pressure in the servo chamber 124 (the fluid pressure in the back surface chamber 66).
  • a linear valve device 103 including a pressure increasing linear valve 160 and a pressure reducing linear valve 162 is connected to the control pressure chamber 122, and the hydraulic pressure in the control pressure chamber 122 is controlled by the coil 160 s of the pressure increasing linear valve 160 and the pressure reducing linear valve. Control is performed by controlling the current supplied to the coil 162s of 162.
  • the pressure-increasing linear valve 160 includes a poppet valve portion 170 and a solenoid 172.
  • the poppet valve portion 170 includes a valve seat 174 and a valve element 176, and the valve element 176 as a valve seat 174.
  • the solenoid 172 includes a coil 160s and a plunger 182 that applies an electromagnetic driving force Fd generated when electric current is supplied to the coil 160s to the valve element 176.
  • the pressure-increasing linear valve 160 is provided in such a posture that a differential pressure acting force Fp corresponding to a hydraulic pressure difference between the high pressure source 100 and the control pressure chamber 122 acts in a direction in which the valve element 176 is separated from the valve seat 174.
  • Fp + Fd Fs
  • the pressure-increasing linear valve 160 is switched from the closed state to the open state when the sum of the differential pressure acting force Fp and the electromagnetic driving force Fd becomes larger than the elastic force Fs of the spring 178.
  • FIG. 2 (b) has a characteristic that is a relationship between the valve opening current IopenA and the differential pressure. Further, from FIG. 2 (b), it is clear that the poppet valve portion 170 is switched to the open state even when the differential pressure acting force Fp is small, when the supply current to the coil 160s is large, compared to when the current is small. That is, the hydraulic pressure in the control pressure chamber 122 corresponds to the differential pressure determined by the characteristic and the supply current shown in FIG. When it is low, the poppet valve unit 170 is in an open state, but when the supply current is large, the opening / closing switching pressure is larger than when it is small.
  • the pressure-reducing linear valve 162 includes a poppet valve portion 186 and a solenoid 188.
  • the poppet valve portion 186 includes a valve seat 190, a valve element 191, and a valve element 191 from the valve seat 190.
  • the solenoid 188 includes a coil 162s and a plunger 195.
  • the spring 192 applies an elastic force Fs in the direction of separation.
  • an electromagnetic driving force Fd in a direction for seating the valve element 191 on the valve seat 190 is applied.
  • a differential pressure acting force Fp corresponding to the differential pressure between the control pressure chamber 122 and the master reservoir acts in a direction to separate the valve element 191 from the valve seat 190.
  • the pressure reducing linear valve 162 is switched from the open state to the closed state when the electromagnetic driving force Fd becomes greater than the sum of the differential pressure acting force Fp and the spring elastic force Fs.
  • Fd has a characteristic that is a relationship between the valve opening current IopenR and the differential pressure.
  • the poppet valve section 186 is opened even if the differential pressure (the hydraulic pressure in the control pressure chamber 122) is higher than when the current supplied to the coil 162s is small. That is, the poppet valve section 186 has a differential pressure determined by the characteristics shown in FIG.
  • the control pressure chamber 122 is open when the hydraulic pressure is high.
  • the switching pressure is made lower than when the supply pressure is large.
  • the slip control device 16 is provided between the pressurizing chamber 40 and each of the brake cylinders 6FR and FL, the holding valves 200FR and FL, and between the brake cylinders 6FR and FL and the pressure reducing reservoir 202F. It includes a pressure reducing valve 204FR, FL and a pump device 206F that pumps hydraulic fluid in the pressure reducing reservoir 202F and outputs it to the upstream side of the holding valve 200FR, FL, and each of the pressure chamber 42 and the brake cylinders 12RR, RL.
  • the pump devices 206F and R include pumps 208F and R and a pump motor 210, respectively, but the pump motor 210 is common.
  • the holding valve 200 and the pressure reducing valve 204 are electromagnetic valves that are opened and closed by controlling the current supplied to the coils 200s and 204s, the holding valve 200 is a normally open valve, and the pressure reducing valve 204 is a normally closed valve. Duty control is performed on the current supplied to the coils 200s and 204s of the holding valve 200 and the pressure reducing valve 204, and a differential pressure having a magnitude determined by the duty ratio is realized.
  • the actual differential pressure which is a value obtained by subtracting the hydraulic pressure in the brake cylinders 6 and 12 from the hydraulic pressure in the front pressurizing chambers 40 and 42, is the estimated hydraulic pressure in the front pressurizing chambers 40 and 42.
  • the duty ratio is determined so as to approach the target differential pressure, which is the difference from the target hydraulic pressure of the cylinders 6 and 12, and when the duty ratio is large, the differential pressure becomes smaller than when the duty ratio is small. Is lower than the hydraulic pressure in the front pressurizing chambers 40 and 42.
  • the actual pressure of the brake cylinders 6 and 12 which is a value obtained by subtracting the hydraulic pressures of the pressure reducing reservoirs 202F and R (which can be estimated to be atmospheric pressure) from the hydraulic pressures of the brake cylinders 6 and 12, respectively.
  • the duty ratio is determined so that the hydraulic pressure approaches the target hydraulic pressure, and duty control is performed.
  • this slip control device is a reflux type.
  • the supply units 212F and R are portions on the liquid passages 44 and 46, and are in communication with the front pressurizing chambers 40 and 42. Further, the portions including the connection portions 212F, R and the upstream portion of the liquid passages 44, 46 from the holding valve 200 are defined as the upstream portions 214F, R.
  • the brake ECU 20 is mainly composed of a computer including an execution unit 220, a storage unit 222, an input / output unit 224, and the input / output unit 224 includes the above-described operation hydraulic pressure sensors 92, An accumulator pressure sensor 109 and a servo hydraulic pressure sensor 156 are connected, a stroke sensor 230 for detecting a stroke of the brake pedal 24 (hereinafter sometimes referred to as an operation stroke), front and rear wheels 2FR, FL, 8RR,
  • the wheel speed sensor 232 for detecting the wheel speed of the RL, the yaw rate sensor 234 for detecting the yaw rate of the vehicle, and the like are connected, and the pump motors 105 and 210 are connected through a drive circuit (not shown), and the pressure increasing linear valve 160, coils of electromagnetic valves such as a pressure reducing linear valve 162, a holding valve 200, a pressure reducing valve 204, etc.
  • the hydraulic pressure of the input chamber 70 in the pressurizing piston 34 Since the area of the pressure receiving surface facing the annular chamber 62 of the intermediate piston portion 58 is the same as the area of the pressure receiving surface facing the input chamber 70 of the rear small diameter portion 60, the hydraulic pressure of the input chamber 70 in the pressurizing piston 34. The force in the forward direction caused by the pressure and the force in the backward direction caused by the hydraulic pressure in the annular chamber 62 are balanced. As the brake pedal 24 advances, the input piston 36 is advanced relative to the pressurizing piston 34 and the stroke simulator 90 is activated. Further, the linear valve device 103 is not controlled, and the regulator 102 is in an inoperative state. No hydraulic pressure is supplied to the back chamber 66 of the master cylinder 26. The pressurizing piston 34 is not moved forward, no hydraulic pressure is generated in the front pressurizing chambers 40, 42, and the hydraulic brakes 4, 10 are in an inoperative state.
  • the hydraulic brakes 4 and 10 are operated.
  • the hydraulic pressure in the control pressure chamber 122 is increased by the control of the linear valve device 103.
  • the control piston 114 is advanced, and the hydraulic pressure in the servo chamber 124 is increased.
  • the high pressure supply valve 126 is switched to the open state, communicated with the high pressure chamber 116, and the hydraulic pressure in the servo chamber 124 is supplied to the back chamber 66.
  • the pressurizing piston 34 is advanced by the hydraulic pressure in the back chamber 66, the hydraulic pressure is generated in the front pressurizing chambers 40, 42, supplied to the brake cylinders 6, 12, and the hydraulic brake 4 , 10 are activated.
  • the hydraulic pressure of the brake cylinders 6 and 12 is controlled by the control of the linear valve device 103, and the braking force requested by the driver (required braking force or demanded) by the hydraulic braking force and the regenerative braking force. (Which can be referred to as total braking force).
  • the slip control device 16 is not controlled.
  • the holding valve 200 and the pressure reducing valve 204 are in the illustrated positions, and the pump motor 210 is in a stopped state.
  • the required braking force (required total braking force) can be expressed by the operation state of the brake pedal 24 (at least one of the operation stroke detected by the stroke sensor 230 and the operation force detected by the operation hydraulic pressure sensor 92). To be determined.
  • the target hydraulic braking force is determined based on a value obtained by subtracting the regenerative braking force from the required braking force.
  • the regenerative cooperative control is performed based on the required braking force.
  • the target hydraulic braking force is determined.
  • the target hydraulic pressure of the front pressurizing chambers 40 and 42 is determined based on the target hydraulic pressure braking force, and the target hydraulic pressure Pref of the back chamber 66 is determined accordingly, and the target hydraulic pressure of the control pressure chamber 122 is determined. Is done. Then, the supply current to the pressure-increasing linear valve 160s and the pressure-decreasing linear valve 162s is controlled so that the actual fluid pressure in the control pressure chamber 122 approaches the target fluid pressure.
  • a relationship determined by the structure of the master cylinder 26 and the like is established between the hydraulic pressure in the front pressurizing chambers 40 and 42 and the hydraulic pressure in the rear chamber 66, and the servo chamber 124 having the same height as the hydraulic pressure in the rear chamber 66.
  • the relationship determined by the structure of the regulator 102 and the like is established between the hydraulic pressure and the hydraulic pressure in the control pressure chamber 122.
  • the hydraulic pressure in the servo chamber 124 and the hydraulic pressure in the control pressure chamber 122 are set to the same height. Therefore, the target hydraulic pressure of the rear chamber 66 determined based on the target hydraulic pressure of the front pressurizing chambers 40 and 42 (the same as the target hydraulic pressure of the servo chamber 124, hereinafter referred to as the target rear hydraulic pressure Pref). ) Is considered to be controlled so that the actual hydraulic pressure in the back chamber 66 (the detected hydraulic pressure of the servo hydraulic pressure sensor 156, hereinafter referred to as the actual rear hydraulic pressure P *) approaches. be able to.
  • the control mode is determined based on at least one of the change tendency of the target back surface fluid pressure Pref and the difference between the target back surface fluid pressure Pref and the actual back surface fluid pressure P *.
  • the pressure increasing mode is set in at least one of the case where the target back surface fluid pressure Pref is increasing and the case where the actual back surface fluid pressure P * is smaller than the target back surface fluid pressure Pref.
  • the pressure reduction mode is set in at least one of the case where the pressure Pref is decreasing and the case where the actual back surface fluid pressure P * is larger than the target back surface fluid pressure Pref, and the target back surface fluid pressure Pref is substantially constant.
  • the holding mode is set when at least one of the actual back surface hydraulic pressure P * is within the set range determined by the target back surface fluid pressure Pref.
  • the method for determining the control mode is not limited.
  • the pressure increasing linear valve (SLA) 160 is controlled to be opened, and the pressure reducing linear valve (SLR) 162 is closed.
  • the coil 160s of the pressure increasing linear valve 160 includes a valve opening current Iopen determined by the differential pressure determined by the target back surface hydraulic pressure Pref and the detected value of the accumulator pressure sensor 109 and the characteristics shown in FIG.
  • the sum (Iopen + IFB) of the feedback current IFB determined according to the deviation between the pressure P * and the target back surface hydraulic pressure Pref is supplied, and the coil 162s of the pressure-reducing linear valve 162 has a current (seal that can be kept closed). (Referred to as current Iseal).
  • control is performed so that the pressure-increasing linear valve 160 is closed and the pressure-reducing linear valve 162 is opened.
  • the supply current to the coil 160s of the pressure-increasing linear valve 160 is 0, and the coil 162s of the pressure-reducing linear valve 162 has a valve opening current Iopen determined by the target back surface hydraulic pressure Pref and the table in FIG. A current (Iopen + IFB) of a feedback current IFB ( ⁇ 0) determined according to the deviation between the back surface hydraulic pressure P * and the target back surface fluid pressure Pref is supplied.
  • the pressure increasing linear valve 160 and the pressure reducing linear valve 162 are controlled to be closed.
  • the supply current to the coil 160s of the pressure-increasing linear valve 160 is 0, and the supply current to the coil 162s of the pressure-reduction linear valve 162 is the seal current Iseal.
  • the control state of the pressure increasing linear valve 160 and the pressure reducing linear valve 162 is conceptually shown in FIG.
  • the pressure increasing linear valve 160 is in an open state while the actual back surface hydraulic pressure P * is lower than the target back surface fluid pressure Pref, and is closed when the target back surface fluid pressure Pref is substantially reached.
  • the pressure-reducing linear valve 162 is kept closed while the actual back surface fluid pressure P * is lower than the height (Pref + Px) obtained by adding the fluid pressure (Px) to the target back surface fluid pressure Pref.
  • the pressure reducing linear valve 162 is in an open state while the actual back surface hydraulic pressure P * is higher than the target back surface fluid pressure Pref, but is closed when the target back surface fluid pressure Pref is substantially reached.
  • the pressure increasing linear valve 160 is held in the closed state.
  • the supply current to the coils 160s and 162 of the pressure increasing linear valve 160 and the pressure reducing linear valve 162 is basically the closed state when the actual back surface hydraulic pressure P * is substantially equal to the target back surface hydraulic pressure Pref. It is controlled to become. In principle, both the pressure increasing linear valve 160 and the pressure reducing linear valve 162 are not opened.
  • ABS Anti-lock control
  • the hydraulic pressures of the brake cylinders 6 and 12 are individually controlled by the slip control device 16 so that braking slip of the wheels 2 and 8 is suppressed and kept within an appropriate range determined by the friction coefficient of the road surface.
  • the supply current to the coil of the holding valve 200 is such that the actual differential pressure approaches the target differential pressure that is the difference between the estimated hydraulic pressure in the front pressurizing chambers 40 and 42 and the target hydraulic pressure in the brake cylinders 6 and 12. Be controlled.
  • the front side is based on the target hydraulic pressure of the front pressurizing chambers 40, 42 determined by the required hydraulic braking force.
  • the fluid pressure in the pressurizing chambers 40 and 42 is estimated (Pm).
  • the hydraulic pressure in the brake cylinders 6 and 12 can be regarded as the same as the hydraulic pressure in the front pressurizing chambers 40 and 42. Is estimated based on the estimated hydraulic pressure of the front pressurizing chambers 40 and 42 immediately before the start of the antilock control and the control mode of the holding valve 200 and the pressure reducing valve 204 (Pw).
  • the target hydraulic pressure Pwref of the brake cylinders 6 and 12 is acquired based on the slip state of the wheels 2 and 8. From the above, the supply current amount to the coil of the holding valve 200 is determined so that the actual differential pressure (Pm ⁇ Pw) approaches the target differential pressure (Pm ⁇ Pwref), and the supply current is controlled. The duty ratio is determined. The supply current to the coil of the pressure reducing valve 204 is controlled so that the estimated hydraulic pressure Pw of the brake cylinders 6 and 12 approaches the target hydraulic pressure Pwref. The pressure reducing valve 204 is switched to the open state when the hydraulic pressure in the brake cylinders 6 and 12 is reduced. Further, during the antilock control, the pump devices 206F and R are operated. The hydraulic fluid in the pressure-reducing reservoirs 202F and R is pumped up by the pumps 208F and R, and returned to the upstream side portions 214F and R (upstream side of the holding valve 200 and the brake cylinders 6 and 12).
  • the hydraulic pressures of the upstream side portions 214F and R may be vibrated.
  • the hydraulic pressure in the brake cylinders 4 and 12 is lowered relative to the hydraulic pressure in the front pressurizing chambers 40 and 42 by the operation of the pressure reducing valve 204 and the holding valve 200. , 42 and the brake cylinders 4, 12 cause a hydraulic pressure difference.
  • the hydraulic pressure of the upstream side portion 214 may vibrate as the holding valve 200 is opened and closed.
  • it may be vibrated by pulsation caused by the operation of the pumps 208F and R.
  • the vibration of the hydraulic pressure caused by the pulsation of the pumps 208F and R is a vibration whose frequency is equal to or higher than a set value. Further, when the hydraulic pressure of the upstream side portions 214F and R, that is, the hydraulic pressure of the front pressurizing chambers 40 and 42 is vibrated, there arises a problem that the control accuracy of the hydraulic pressure of the brake cylinder 12 is lowered. As described above, in the anti-lock control, the hydraulic pressure of the brake cylinders 6 and 12 is controlled based on the estimated hydraulic pressure Pm of the front pressurizing chambers 40 and 42. Therefore, as shown in FIG. If the actual hydraulic pressures 40 and 42 are different from the estimated hydraulic pressure Pm, the hydraulic pressure control accuracy of the brake cylinders 6 and 12 is lowered.
  • the vibration of the hydraulic pressure in the upstream side portions 214F and 214 that is, the vibration of the hydraulic pressure in the front pressurizing chambers 40 and 42 is transmitted to the back chamber 66 through the pressurizing piston 34, and is controlled by the regulator 102. This is transmitted to the control pressure chamber 122 via the piston 114. Therefore, it is conceivable to suppress the vibration by increasing / decreasing the supply current of the linear valve device 103 by following the vibration of the hydraulic pressure in the control pressure chamber 122. However, it is difficult to suppress the vibration by increasing / decreasing the supply current of the linear valve device 103 by following the vibration of the hydraulic pressure of the upstream side portions 214F and 214R.
  • a current (Iopen + ⁇ ) obtained by adding the set current ⁇ to the valve opening current Iopen is supplied to the coil 160s of the pressure increase linear valve 160, and the coil 162s of the pressure reduction linear valve 162 is A current (Iopen- ⁇ ) obtained by subtracting the set current ⁇ (> 0) from the valve opening current Iopen is supplied.
  • the set current ⁇ is larger than the set current ⁇ ( ⁇ > ⁇ )
  • the set current ⁇ is larger than the set current ⁇ ( ⁇ > ⁇ ).
  • Control states of the pressure-increasing linear valve 160 and the pressure-decreasing linear valve 162 are conceptually shown in accordance with FIG.
  • the pressure increasing linear valve 160 is opened while the actual back surface fluid pressure P * is lower than the target back surface fluid pressure Pref plus the set pressure P ⁇ determined by the set current ⁇ or the like (Pref + P ⁇ ).
  • Pref + P ⁇ the target back surface fluid pressure
  • the pressure reducing linear valve 162 is in an open state while the actual back surface fluid pressure P * is higher than the fluid pressure (Pref ⁇ P ⁇ ) obtained by subtracting the set pressure P ⁇ determined by the set current ⁇ from the target back surface fluid pressure Pref.
  • Pref ⁇ P ⁇ fluid pressure obtained by subtracting the set pressure P ⁇ determined by the set current ⁇ from the target back surface fluid pressure Pref.
  • Pref ⁇ P ⁇ fluid pressure obtained by subtracting the set pressure P ⁇ determined by the set current ⁇ from the target back surface fluid pressure Pref.
  • the inflow / outflow of the hydraulic fluid (through the throttle) via the pressure increasing linear valve 160 and the pressure reducing linear valve 162 is allowed, and the volume change (volume increase / decrease) of the control pressure chamber 122 is allowed. Therefore, the rigidity of the control pressure chamber 122 is lowered. Thereby, the vibration of the hydraulic pressure in the control pressure chamber 122 is absorbed. Further, as shown in FIG. 6 (a), since the set current ⁇ is set to a value larger than the set current ⁇ , the pressure increasing linear valve 160 in the case where the actual back surface fluid pressure P * is substantially equal to the target back surface fluid pressure Pref. The opening is made larger than the opening of the pressure-reducing linear valve 162.
  • the hydraulic pressure ⁇ P *> at which the opening degree of both the pressure increasing linear valve 160 and the pressure reducing linear valve 162 is the same is higher than the target back surface hydraulic pressure Pref.
  • the actual back surface hydraulic pressure P * can be made less likely to be lower than the target back surface fluid pressure Pref.
  • the pressure increasing linear valve 160 is opened while the actual back surface fluid pressure P * is lower than the fluid pressure (Pref + P ⁇ ) obtained by adding the set pressure P ⁇ determined by the set current ⁇ or the like to the target back surface fluid pressure Pref.
  • the pressure-reducing linear valve 162 is in an open state while the actual back surface fluid pressure P * is higher than the fluid pressure (Pref ⁇ P ⁇ ) obtained by subtracting the set pressure P ⁇ determined by the set current ⁇ and the like from the target back surface fluid pressure Pref. .
  • both the pressure increasing linear valve 160 and the pressure reducing linear valve 162 are opened while the actual back surface fluid pressure P * is within the set range determined by the target back surface fluid pressure Pref ⁇ (Pref ⁇ P ⁇ ) ⁇ P * ⁇ (Pref + P ⁇ ) ⁇ .
  • the set current ⁇ is set to a value larger than the set current ⁇
  • the opening degree of the pressure reducing linear valve 162 is made larger than the opening degree of the pressure increasing linear valve 160, and the hydraulic pressures having the same opening degree.
  • ⁇ P *> becomes lower than the target back surface hydraulic pressure Pref.
  • the actual back surface hydraulic pressure P * can be made less likely to be higher than the target back surface fluid pressure Pref.
  • the slip control device 16 is controlled by executing a slip control program represented by the flowchart of FIG. In step 1 (hereinafter abbreviated as S1. The same applies to other steps), it is determined whether or not the anti-lock control is being performed. If the control is not being performed, whether or not the start condition is satisfied in S2. Is determined. For example, it is determined that the start condition is satisfied when the braking slip becomes excessive. When the start condition is not satisfied, the slip control device 16 is not controlled. On the other hand, when the start condition is satisfied, the antilock control is performed in S3. When antilock control is started, an antilock control in-progress flag is set. The supply currents of the holding valve 200 and the pressure reducing valve 204 are controlled as described above.
  • the pump motor 210 is operated, and the hydraulic fluid in the decompression reservoir 202 is pumped up by the pump 208 and output to the upstream side portion 214.
  • the end condition For example, when the operation of the brake pedal 24 is released, or when the braking slip is maintained in an appropriate range, the condition is satisfied. It is said that While the end condition is not satisfied, the determination is NO, S1, 4 and 3 are repeatedly executed, and the antilock control is continuously performed. If the end condition is satisfied, anti-lock control end processing is performed in S5. The pump motor 210 is stopped, and the holding valve 200 and the pressure reducing valve 204 are returned to their original positions.
  • the linear valve device 103 is controlled in accordance with the execution of the linear valve control program represented by the flowchart of FIG.
  • the target back hydraulic pressure Pref is determined based on the required braking force
  • the control mode is determined based on the change tendency of the target back hydraulic pressure Pref.
  • Supply currents ISLA and ISLR to the coils 160s and 162s of the pressure-increasing linear valve 160 and the pressure-decreasing linear valve 162 are as follows.
  • the control mode is the pressure increasing mode, the holding mode, or the pressure reducing mode.
  • the determination in S15 is YES, and in S17, it is the same as in the pressure increasing mode.
  • both the pressure-increasing linear valve 160 and the pressure-decreasing linear valve 162 are opened during the anti-lock control, so that the volume change is allowed in the control pressure chamber 122. , Rigidity is lowered.
  • the vibration of the hydraulic pressure in the control pressure chamber 122 resulting from the operation of the slip control device 16 is satisfactorily absorbed, and the vibration of the hydraulic pressure in the front pressurizing chambers 40 and 42 can be suppressed.
  • the vibration is a vibration with a large frequency, such as vibration caused by the pulsation of the pump device 206. Can also be absorbed well.
  • the opening degree of the pressure increasing linear valve 160 is made larger than the opening degree of the pressure reducing linear valve 162, and when the pressure reducing mode is set, the opening degree of the pressure reducing linear valve 162 is set. Is larger than the opening of the pressure-increasing linear valve 160, the actual back surface hydraulic pressure P * can be controlled to a height in the vicinity of the target back surface fluid pressure Pref. As a result, it is possible to improve the control accuracy of the brake cylinder hydraulic pressure in the antilock control, and it is possible to favorably avoid an increase in the braking distance.
  • the part that stores S16-18 of the linear valve device control program represented by the flowchart of FIG. 8 of the brake ECU 20, the part that executes it, the rigidity reducing part, the back room rigidity reducing part, the control pressure A chamber rigidity reducing part, a pressure-reducing linear valve control part, a pressure-increasing linear valve control part, an opening control part, and a volume change permission part are configured.
  • the portion for storing S16, the portion for executing, etc. constitutes a target hydraulic pressure change corresponding pressure increasing linear valve control unit, and the portion for storing, executing, etc., the target fluid pressure change corresponding decreasing pressure linear valve control unit.
  • the control pressure chamber hydraulic pressure control unit is configured by the part that stores S12 to S18, the part that executes S12 to 18 and the like.
  • a target hydraulic pressure determination unit is configured by a part that stores S9, a part that executes S9, and the like.
  • the slip control unit is configured by the part that stores S3 and the part that executes S3 in the slip control device control program represented by the flowchart of FIG. 7, and the slip control electromagnetic valve is configured by the holding valve 200, the pressure reducing valve 204, and the like. Composed.
  • the hydraulic brake system may have the structure shown in FIG.
  • the hydraulic pressure in the back chamber 66 is directly controlled by controlling the pressure increasing linear valve and the pressure reducing linear valve.
  • symbol is attached
  • the rear hydraulic pressure control device 250 is connected to the rear chamber 66.
  • the back hydraulic pressure control device 250 does not include a regulator, and includes the high pressure source 100 and the linear valve device 252.
  • the linear valve device 252 includes a pressure increasing linear valve 254 as a pressure increasing linear valve for the back chamber provided between the high pressure source 100 and the back chamber 66, and a back surface provided between the back chamber 66 and the reservoir 52. And a decompression linear valve 256 as a decompression linear valve for the room. Further, a back surface hydraulic pressure sensor 258 for detecting the hydraulic pressure in the back chamber 66 is provided.
  • the supply current to the coil 254s of the pressure increasing linear valve 254 and the coil 256s of the pressure reducing linear valve 256 is controlled in the same manner as in the first embodiment.
  • the pressure increasing linear valve 254 and the pressure reducing linear valve 256 are opened, so that the volume change of the back chamber 66 is allowed.
  • the rigidity is lowered.
  • the vibration of the hydraulic pressure is absorbed, the vibration of the hydraulic pressure in the front pressurizing chambers 40, 42 can be satisfactorily suppressed, and the control accuracy of the hydraulic pressure in the brake cylinders 6, 12 can be improved. it can.
  • the back hydraulic pressure control unit is configured by the part that stores the linear valve control program of the brake ECU 20 and the part that executes it, and the rigidity of the back chamber is directly reduced by the part that stores S16 to 18 and the part that executes S16-18.
  • the part is composed. Note that the structure of the master cylinder is not limited to the structure shown in the first and second embodiments, and any structure including a back chamber provided behind the pressurizing piston may be used.
  • the hydraulic brake system may have a structure shown in FIG.
  • symbol is attached
  • the present hydraulic brake system there are two front and rear systems, and the front pressurizing chambers 304 and 305 in front of the two pressurizing pistons 302 and 303 of the master cylinder 300 are respectively connected via the master passages 306 and 307.
  • the left and right front wheel brake cylinders 6 and the left and right rear wheel brake cylinders are connected.
  • the brake system for the front wheels is described, and the description for the brake system for the rear wheels is omitted.
  • a slip control device 310 is provided between the brake cylinders 6FL, FR of the left and right front wheels 2FL, FR and the front pressurizing chamber 304. Since the structure of the slip control device 310 is the same as that of a part of the slip control device 16 of the first embodiment, the same reference numerals are given and description thereof is omitted.
  • a stroke simulator device 312, a master shut-off valve 314, and an upstream control device 316 are provided in this order from the upstream side in a portion between the upstream side portion 214 ⁇ / b> F of the master passage 306 and the front pressurizing chamber 304.
  • the master shut-off valve 314 is a normally open electromagnetic on-off valve
  • the stroke simulator device 312 includes a normally closed simulator control valve and a stroke simulator.
  • the upstream side control device 316 includes a power hydraulic pressure source 320 as a high pressure source and a linear valve device 322, and the linear valve device 322 is a normally closed portion provided between the high pressure source 320 and the upstream side portion 214F.
  • a pressure increasing linear valve 324 as an upstream pressure increasing linear valve and a pressure reducing linear valve 328 as a normally closed upstream pressure reducing linear valve provided between the upstream side portion 214F and the reservoir 326 are included.
  • the hydraulic pressure of the upstream side portion 214F is detected by the hydraulic pressure sensor 330.
  • the slip control device 310, the linear valve device 322, and the like are controlled by a brake ECU 340 mainly including a computer.
  • a rigidity reducing unit 342 is configured by a part that controls the pressure increasing linear valve 324 and the pressure reducing linear valve 328 of the brake ECU 340. It is not indispensable that the hydraulic pressure generating device 316 includes the linear valve device 322, and the vibration of the upstream side portion 214F can be suppressed by the control of the power type hydraulic pressure source 320.
  • the hydraulic brake system may have a structure shown in FIG. Note that parts having the same structure as those of the first to third embodiments are denoted by the same reference numerals and description thereof is omitted.
  • the slip control device 400 is a discharge type and does not include a pump device.
  • Brake cylinders 6FL, FR, 12RL, RR of the front, rear, left and right wheels 2FL, FR, 8RL, RR are connected to the common passage 410 via individual pressure increasing passages 412FL, FR, RL, RR, respectively.
  • FR, 12RL, RR and the master reservoir 414 are connected via the individual pressure reducing passages 416FL, FR, RL, RR, respectively.
  • the individual pressure increasing passages 412FL, FR, RL, RR are respectively provided with holding valves 420FL, FR, RL, RR, and the individual pressure reducing passages 416FL, FR, RL, RR are respectively provided with pressure reducing valves 422FL, FR, RL and RR are provided.
  • a master cylinder 430 and a hydraulic booster 432 are connected to the common passage 410 via manual passages 434 and 436, respectively, and a hydraulic pressure generator 438 is connected to the common passage 410.
  • Manual shut-off valves 440 and 442 are provided in the manual passages 434 and 436, respectively.
  • the hydraulic pressure generator 438 includes a power hydraulic pressure source 320 and a linear valve device 322 as high pressure sources, and the linear valve device 322 includes a high pressure source.
  • 320 includes a normally-closed pressure-increasing linear valve 324 provided between 320 and the common passage 410, a normally-closed pressure-reducing linear valve 328 provided between the common passage 410 and the master reservoir 414, and the like.
  • the common passage 410 is provided with a normally closed front / rear shut-off valve 452.
  • the slip control device 400, the linear valve device 322, and the like are controlled based on a command from a brake ECU 340 mainly composed of a computer.
  • the common passage 410 corresponds to the upstream side portion.
  • the current of (Iopen + ⁇ *) is When the pressure increasing mode and the holding mode are set for the pressure increasing linear valve 324, the current of (Iopen + ⁇ *) is When the pressure reduction mode is set, a current of (Iopen + ⁇ *) is supplied. When the pressure increasing mode and the holding mode are set for the pressure reducing linear valve 328, a current of (Iopen + ⁇ *) is supplied, and when the pressure reducing mode is set, a current of (Iopen + ⁇ *) is supplied. . As described above, when the anti-lock control is performed (when the slip control device 400 is operated), the rigidity of the upstream side portion that is the common passage 410 is lowered, so that the holding valve 200 and the pressure reducing valve 204 are operated. The vibration of the hydraulic pressure of the accompanying common channel
  • the hydraulic brake system may have the structure shown in FIG. Parts having the same structure as those of the first to fourth embodiments are denoted by the same reference numerals and description thereof is omitted.
  • the hydraulic pressure generator 500 includes an electric motor.
  • the hydraulic pressure generating device 500 includes a master cylinder 502 and a forward force control device 504.
  • the master cylinder 502 includes two pressure pistons 506 and 508 and an input piston 510 linked to the brake pedal 24, and the input piston 510 can be moved relative to the pressure piston 508.
  • the front pressure chambers 512 and 514 in front of the pressure pistons 506 and 508 are connected to the brake cylinders 6 and 12 via liquid passages 44 and 46, respectively. 6 and 12 is provided with a slip control device 16.
  • the forward force control device 504 includes an electric motor 518 and a motion conversion mechanism 520.
  • the motion conversion mechanism 520 converts the rotation of the output shaft 522 of the electric motor 518 into a linear motion to move the output member 524 linearly, converts the rotational force of the electric motor 518 into a forward force, and pressurizes the piston 508.
  • the brake ECU 530 includes a stroke sensor 230. A wheel speed sensor 232 and the like are connected, and an electric motor 518 is connected via a drive circuit 532.
  • the brake ECU 530 includes a motor control unit 534.
  • the supply current to the electric motor 518 is controlled so that the hydraulic pressure in the front pressurizing chambers 512 and 514 approaches the magnitude corresponding to the target hydraulic braking force.
  • the vibration of the hydraulic pressure in the front pressurizing chambers 512 and 514 is suppressed by the control of the electric motor 518.
  • the vibration can be suppressed by reducing the rigidity of the front pressurizing chambers 512 and 514 by controlling the electric motor 518.
  • the anti-lock control it is possible to satisfactorily suppress the vibration of the upstream side portions 214F and R accompanying the operation of the slip control device 16.
  • the pressure increasing valve can also be a normally open valve.
  • various modifications and improvements can be made based on the knowledge of those skilled in the art in addition to the above-described aspects such as being applicable to the case where the pump device is operated. It can be carried out in the applied manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)

Abstract

 アンチロック制御中のスリップ制御装置の作動による上流側部の液圧の振動に起因するブレーキシリンダ液圧の制御精度の低下を抑制する。 上流側部の液圧の振動は、マスタシリンダの加圧ピストン、レギュレータの制御ピストンを介して制御圧室に伝達される。それに対して、アンチロック制御中においては、増圧リニア弁、減圧リニア弁が開状態とされ、制御圧室の容積変化が許容され、剛性が低くされる。それにより、制御圧室の液圧の振動が抑制され、前方加圧室の液圧の振動が抑制される。その結果、前方加圧室の液圧を利用して行われるアンチロック制御において、ブレーキシリンダの液圧の制御精度の低下を抑制することができ、制動距離が長くなることを良好に回避することができる。

Description

液圧ブレーキシステム
 本発明は、液圧ブレーキシステムにおける液圧の振動抑制に関するものである。
 特許文献1には、(i)複数のブレーキシリンダと、(ii)ポンプ装置を備えた高圧源と、(iii)複数のブレーキシリンダと高圧源とが接続された共通通路と、(iv)左右前輪のブレーキシリンダにマスタ遮断弁を介して接続されたマスタシリンダと、(v)共通通路の液圧を制御する増圧リニア弁および減圧リニア弁と、(iv)共通通路と複数のブレーキシリンダの各々との間に設けられ、複数のアンチロック制御弁を備えたアンチロック制御弁装置とを含む液圧ブレーキシステムが記載されている。
 この液圧ブレーキシステムにおいて、通常制動時に、マスタ遮断弁によりマスタシリンダが左右前輪のブレーキシリンダから遮断された状態で、増圧リニア弁、減圧リニア弁の制御により共通通路の液圧が制御され、複数のブレーキシリンダの液圧が共通に制御される。アンチロック制御時には、増圧リニア弁、減圧リニア弁により共通通路の液圧が制御されるとともに、複数のアンチロック制御弁によりブレーキシリンダの液圧が個別に制御されるのであるが、増圧リニア弁、減圧リニア弁の開閉切換圧が、通常制動時に比較して高くされる。増圧リニア弁が開状態とされ、減圧リニア弁が閉状態とされるのであり、それにより、アンチロック制御弁の開閉作動に伴う共通通路の液圧の変化を抑制することができる。
特開2012-192767
 本発明の課題は、液圧ブレーキシステムにおいて、スリップ制御装置の上流側の液圧の振動を抑制することである。
課題を解決するための手段および効果
 本願発明は、ブレーキシリンダの液圧をそれぞれ制御することにより、車輪のスリップ状態を制御するスリップ制御装置を備えた液圧ブレーキシステムに係るものであり、液圧発生装置によってスリップ制御装置の上流側の液圧が制御されるとともに、上流側の液圧の振動が抑制される。
 このように、上流側の液圧の振動が抑制されるため、ブレーキシリンダ液圧のスリップ制御装置による制御精度の低下を抑制することができる。
特許請求可能な発明
 以下、本願において特許請求が可能と認識されている発明、あるいは、発明の特徴点について説明する。
(1)車両に設けられた複数の車輪の各々に設けられた複数のブレーキシリンダと、
 液圧発生装置と、
 それら液圧発生装置と前記複数のブレーキシリンダとの間に設けられ、前記複数のブレーキシリンダのうちの1つ以上ずつの液圧をそれぞれ制御して、前記複数の車輪の各々のスリップ状態を制御するスリップ制御装置と
を含む液圧ブレーキシステムであって、
 前記液圧発生装置が、前記スリップ制御装置の上流側部の剛性を、前記スリップ制御装置が作動状態にある場合に、非作動状態にある場合に比較して小さくする剛性低減部を含むことを特徴とする液圧ブレーキシステム。
 上流側部の剛性が小さくされれば、スリップ制御装置の作動に伴う振動を良好に吸収することができ、振動を抑制することができる。
 剛性Kとは、上流側部に作用した力(液圧により生じる力)の増加分ΔFpを、上流側部の容積の変化量Δqで割った値(K=ΔFp/Δq)であり、剛性Kが小さい場合は大きい場合より、小さい力で容積変化が生じ易くなり、振動が吸収され易くなる。このように、上流側部の剛性が小さくされるため、スリップ制御装置の作動に起因する振動を良好に吸収することができる。
 なお、スリップ制御装置において、複数のブレーキシリンダの各々の液圧が個別に制御されるようにしても、2つのブレーキシリンダの液圧が共通に制御されるようにしてもよい。
(2)前記液圧発生装置が、(i)(a)ハウジングに液密かつ摺動可能に嵌合された加圧ピストンと、(b)その加圧ピストンの前方に設けられ、前記上流側部に接続された前方加圧室と、(c)前記加圧ピストンの後方に設けられた背面室とを有するマスタシリンダと、(ii)前記背面室の液圧を制御可能な背面液圧制御装置とを備え、
 前記剛性低減部が、前記背面室の剛性を小さくすることにより、前記前方加圧室の剛性を小さくする背面室剛性低減部を含み、その背面室剛性低減部が前記背面液圧制御装置に含まれる(1)項に記載の液圧ブレーキシステム。
 上流側部の液圧の振動に伴って前方加圧室の液圧が振動させられる。また、前方加圧室の液圧の振動は加圧ピストンを介して背面室に伝達される。それに対して、背面室の剛性が小さくされれば前方加圧室の剛性を小さくすることができ、上流側部の剛性を小さくすることができる。
 なお、前方加圧室と上流側部とは常に連通させられた状態で接続されても、連通と遮断とに切り換え可能な状態で接続されてもよい。
(3)前記背面室剛性低減部が、前記スリップ制御装置の作動状態において前記スリップ制御装置の非作動状態における場合に比較して、前記背面室の容積変化を許容する容積変化許容部を含む(2)項に記載の液圧ブレーキシステム。
 背面室の容積変化(容積の増加、減少)が許容されれば、加圧ピストンの軸方向の振動(前進、後退)が吸収され得る。その結果、前方加圧室の液圧の振動を抑制し、上流側部の液圧の振動を抑制することができる。
(4)前記背面液圧制御装置が、
 (i)(a)ハウジングに液密かつ摺動可能に嵌合された制御ピストンと、(b)その制御ピストンの後方に設けられた制御圧室と、(c)前記制御ピストンの前方に設けられ、前記背面室に接続されたサーボ室とを備えたレギュレータと、
 (ii)(a)前記制御圧室と高圧源との間に設けられた増圧リニア弁と、前記制御圧室と低圧源との間に設けられた減圧リニア弁との少なくとも一方と、
 (iii)前記増圧リニア弁と前記減圧リニア弁との少なくとも一方を制御することにより、前記制御圧室の液圧を制御して、前記サーボ室の液圧を制御する制御圧室液圧制御部とを含み、
 前記背面室剛性低減部が、前記増圧リニア弁と前記減圧リニア弁との少なくとも一方のうちの1つ以上の制御により、前記スリップ制御装置の作動状態において非作動状態における場合より、前記制御圧室の剛性を小さくする制御圧室剛性低減部を含み、その制御圧室剛性低減部が前記制御圧室液圧制御部に含まれる(2)項または(3)項に記載の液圧ブレーキシステム。
 背面室の液圧の振動はサーボ室に伝達され、制御ピストンを介して制御圧室に伝達される。それに対して、制御圧室の剛性が小さくされれば、サーボ室、背面室の液圧の振動を抑制することができ、前方加圧室、上流側部の液圧の振動を抑制することができる。
 背面室の液圧とサーボ室の液圧とはほぼ同じとなり、サーボ室の液圧と制御圧室の液圧との間にはレギュレータの構造等で決まる関係が成立する。背面室の液圧と制御圧室の液圧とは1対1に対応する。そのため、制御圧室の実際の液圧が目標液圧に近づくように制御されれば、背面室の実際の液圧を目標液圧に近づけることができる。なお、サーボ室の液圧と制御圧室の液圧とがほぼ同じ高さとなるようにすることもできる。
 高圧源として動力式液圧源とすることができ、例えば、ポンプ装置とアキュムレータとを備えたものとすることができる。
(5)前記背面液圧制御装置が、前記制御圧室と低圧源との間に設けられた減圧リニア弁を備え、
 その減圧リニア弁が、前記制御圧室と前記低圧源との差圧が小さい場合は大きい場合より開弁電流が小さくなる特性を備え、
 前記制御圧室剛性低減部が、前記減圧リニア弁のコイルへの供給電流を、前記スリップ制御装置が作動状態にある場合に非作動状態にある場合より、小さくする減圧リニア弁電流制御部を含む(4)項に記載の液圧ブレーキシステム。
 背面室の液圧制御において、制御圧室の目標液圧、実際の液圧が同じであっても、スリップ制御装置の作動状態においては非作動状態における場合より、減圧リニア弁のコイルへの供給電流が小さくされる。減圧リニア弁は差圧が小さくても開状態にされるのであり、開き気味となる。その結果、スリップ制御装置の作動状態において非作動状態における場合と比較して、制御圧室の容積変化が許容され、剛性を小さくすることができる。
(6)前記背面液圧制御装置が、前記制御圧室と低圧源との間に設けられた減圧リニア弁を備え、
 その減圧リニア弁が、前記コイルへの供給電流が保持された状態で、前記制御圧室の液圧が前記供給電流で決まる開閉切換圧より高い場合に開状態にあるものであり、
 前記制御圧室剛性低減部が、前記スリップ制御装置が作動状態にある場合に非作動状態にある場合より、前記開閉切換圧を低くする減圧リニア弁制御部を含む(4)項または(5)項に記載の液圧ブレーキシステム。
 ポペット弁部とソレノイドとを備えた電磁弁においては、当該電磁弁に作用する高圧側と低圧側との差圧に応じた差圧作用力Fpと、スプリングの弾性力Fsと、コイルへの供給電流に応じた電磁駆動力Fdとの関係により弁子の弁座に対する相対位置関係が決まる。電磁弁としての減圧リニア弁に作用する差圧作用力Fpは、低圧源の液圧が一定である場合に制御圧室の液圧が大きい場合は小さい場合より大きくなる。また、減圧リニア弁が常開弁である場合には、スプリングの弾性力Fsが弁子を弁座から離間させる向きに作用し、電磁駆動力Fdが差圧作用力とスプリングの弾性力との和より大きくなると閉状態に切り換えられる(Fd>Fs+Fp:閉)。減圧リニア弁が常閉弁である場合には、スプリングの弾性力Fsが弁子を弁座に着座させる向きに作用し、電磁駆動力Fdと差圧作用力Fpとの和がスプリングの弾性力Fsより大きくなると開状態に切り換えられる(Fd+Fp>Fs:開)。減圧リニア弁が常開弁であっても常閉弁であっても、制御圧室の液圧が供給電流で決まる開閉切換圧より高い間、開状態にあり、制御圧室が低圧源に連通させられる。また、減圧リニア弁が常開弁である場合には供給電流が小さくされることにより開閉切換圧が低くされ、常閉弁である場合には供給電流が大きくされることにより開閉切換圧が低くされる。
(7)前記背面液圧制御装置が、前記制御圧室の目標液圧を制動要求に基づいて決定する目標液圧決定部を含み、
 前記減圧リニア弁制御部が、前記制御圧室の目標液圧が減少傾向にある場合は増加傾向にある場合より、前記開閉切換圧を低くする目標液圧変化対応減圧リニア弁制御部を含む(6)項に記載の液圧ブレーキシステム。
 目標液圧は、例えば、運転者によるブレーキ操作部材の操作状態に基づいて決まる制動要求に基づいて決めることができる。また、自動ブレーキが作動させられる場合、トラクション制御、ビークルスタビリティ制御が行われる場合等には、自動ブレーキの作動要求、それぞれの制御における要求で決まる制動要求に基づいて決めることができる。
 目標液圧が減少傾向にある場合は増加傾向にある場合より、制御圧室が低圧源に連通させられ易くなるため、制御圧室の液圧を良好に減少させることができ、目標液圧に近づけることができる。
(8)前記背面液圧制御装置が、前記制御圧室の実際の液圧と目標液圧との比較により、少なくとも、前記制御圧室の液圧を増加させる増圧制御と、減少させる減圧制御とのいずれかを行う増圧・減圧制御部を含み、
 前記減圧リニア弁制御部が、前記増圧・減圧制御部によって減圧制御が行われる場合に、前記増圧制御が行われる場合より、前記開閉切換圧を小さくする(6)項または(7)項に記載の液圧ブレーキシステム。
 増圧・減圧制御部は、増圧制御と減圧制御とのいずれかを行うものであっても、増圧制御、減圧制御、保持制御のうちのいずれかを行うものであってもよい。
 なお、制御圧室の実際の液圧は、センサ等により直接検出しても、増圧リニア弁、減圧リニア弁の制御態様等に基づいて推定してもよい。
(9)前記背面液圧制御装置が、(a)前記制御圧室と低圧源との間に設けられた減圧リニア弁と、(b)その減圧リニア弁を、前記制御圧室の目標液圧に基づいて制御する目標液圧対応減圧リニア弁制御部とを含み、
 前記制御圧室剛性低減部が、前記目標液圧を、前記スリップ制御装置が作動状態にある場合に非作動状態にある場合より小さい値に決定する減圧リニア弁制御用目標液圧決定部を含む(4)項ないし(8)項のいずれか1つに記載の液圧ブレーキシステム。
 例えば、減圧リニア弁が、制御圧室の実際の液圧が目標液圧より大きい間、開状態にあり、実際の液圧が目標液圧に達すると閉状態とされるように制御される場合において、目標液圧が低くされれば、減圧リニア弁は開き気味となる。
(10)前記背面液圧制御装置が、前記制御圧室と高圧源との間に設けられた増圧リニア弁を備え、
 その増圧リニア弁が、前記高圧源と前記制御圧室との間の差圧と開弁電流との関係が、差圧が大きくなると開弁電流が小さくなる特性を備え、
 前記制御圧室剛性低減部が、前記スリップ制御装置の作動状態において非作動状態における場合に比較して、供給電流を大きくする増圧リニア弁制御部を含む(4)項ないし(9)項のいずれか1つに記載の液圧ブレーキシステム。
 背面室の液圧制御において、制御圧室の目標液圧、実際の液圧が同じであっても、スリップ制御装置の作動状態においては非作動状態における場合より、増圧リニア弁のコイルへの供給電流が大きくされる。増圧リニア弁は、差圧が小さくても開状態とされるのであり、開き気味となる。その結果、スリップ制御装置の作動状態において非作動状態における場合に比較して、制御圧室の容積変化が許容され、制御圧室の剛性を小さくすることができる。
(11)前記背面液圧制御装置が、前記制御圧室と高圧源との間に設けられた増圧リニア弁を備え、
 その増圧リニア弁が、前記コイルへの供給電流が保持される場合において、前記制御圧室の液圧が前記供給電流で決まる開閉切換圧より低い場合に、開状態にあるものであり、
 前記制御圧室剛性低減部が、前記スリップ制御装置の作動状態において非作動状態における場合に比較して、前記開閉切換圧を高くする増圧リニア弁制御部を含む(4)項ないし(10)項のいずれか1つに記載の液圧ブレーキシステム。
 増圧リニア弁に作用する差圧作用力は、高圧源の液圧が一定である場合に制御圧室の液圧が大きい場合は小さい場合より小さくなる。また、増圧リニア弁は、コイルに電流が供給されない状態において、スプリングの弾性力が差圧作用力以上の場合に閉状態にある。それに対して、電磁駆動力と差圧作用力との和がスプリングの弾性力より大きくなると、開状態に切り換えられ、制御圧室が高圧源に連通させられる。本増圧リニア弁において、コイルへの供給電流が大きくされると、差圧が小さくても(制御圧室の液圧が高くても)開状態とされるのであり、増圧リニア弁が開気味になる。
(12)前記背面液圧制御装置が、前記制御圧室の目標液圧を制動要求に基づいて決定する目標液圧決定部を含み、
 前記増圧リニア弁制御部が、前記目標液圧決定部によって決定された前記制御圧室の目標液圧が増加傾向にある場合は減少傾向にある場合より、前記増圧リニア弁のコイルへの供給電流を大きくする目標液圧変化対応増圧リニア弁制御部を含む(10)項または(11)項に記載の液圧ブレーキシステム。
 目標液圧が増加傾向にある場合に減少傾向にある場合より制御圧室が高圧源に連通させられ易くなり(開閉切換圧が高くされ)、制御圧室の液圧を良好に増加させることができ、目標液圧に近づけることができる。
(13)前記背面液圧制御装置が、前記制御圧室の実際の液圧と目標液圧との比較により、少なくとも、前記制御圧室の液圧を増加させる増圧制御と、減少させる減圧制御とのいずれかを行う増圧・減圧制御部を含み、
 前記増圧リニア弁制御部が、前記増圧・減圧制御部によって増圧制御が行われる場合に、前記減圧制御が行われる場合より、前記増圧リニア弁のコイルへの供給電流を大きくする(10)項ないし(12)項のいずれか1つに記載の液圧ブレーキシステム。
(14)前記背面液圧制御装置が、(a)前記制御圧室と高圧源との間に設けられた増圧リニア弁と、(b)その増圧リニア弁を、前記制御圧室の実際の液圧が目標液圧に近づくように制御する目標液圧対応増圧リニア弁制御部とを含み、
 前記剛性低減部が、前記目標液圧を、前記スリップ制御装置が作動状態にある場合に非作動状態にある場合より大きい値に決定する増圧リニア弁制御用目標液圧決定部を含む(4)項ないし(13)項のいずれか1つに記載の液圧ブレーキシステム。
 例えば、制御圧室の実際の液圧が目標液圧より小さい間、増圧リニア弁が開状態とされ、実液圧が目標液圧に達すると閉状態に切り換えられる場合に、目標液圧が高くされれば、増圧リニア弁は開き気味となる。
(15)前記背面液圧制御装置が、(a)前記制御圧室と高圧源との間に設けられた増圧リニア弁と、(b)前記制御圧室と低圧源との間に設けられた減圧リニア弁と、(c)前記増圧リニア弁と前記減圧リニア弁との両方を、前記スリップ制御装置が作動状態にあるうちの少なくとも一時期に開状態とする開制御部とを含む(4)項ないし(14)項のいずれか1つに記載の液圧ブレーキシステム。
 スリップ制御装置が作動状態にある間の少なくとも一時期において増圧リニア弁と減圧リニア弁との両方が開状態にされればよく、スリップ制御装置が作動状態にある間の全期間に開状態とされる必要は必ずしもない。
(16)前記背面液圧制御装置が、(a)前記制御圧室と高圧源との間に設けられた増圧リニア弁と、(b)前記制御圧室と低圧源との間に設けられた減圧リニア弁と、(c)前記増圧リニア弁と前記減圧リニア弁との両方を、前記制御圧室の液圧が目標液圧で決まる設定範囲内にある場合に、開状態とする開制御部とを含む(4)項ないし(15)項のいずれか1つに記載の液圧ブレーキシステム。
 制御圧室の液圧がほぼ目標液圧にある場合には、増圧リニア弁も減圧リニア弁も閉状態とされるのが普通である。それに対して、本項に記載の液圧ブレーキシステムにおいては、制御圧室の液圧が目標液圧で決まる設定範囲内にある場合に、増圧リニア弁と減圧リニア弁との両方が開状態とされる。それにより、制御圧室が高圧源と低圧源とに、増圧リニア弁、減圧リニア弁を介して(絞りを介して)連通させられ、作動液の流入・流出が許容された状態とされる。制御圧室において、容積変化(増加、減少)が許容され、液圧の振動が許容される。
(17)前記スリップ制御装置が、前記複数のブレーキシリンダの各々の液圧を、前記液圧発生装置の液圧を利用して、前記複数のブレーキシリンダが設けられた複数の車輪の各々のスリップが路面の摩擦係数で決まる適正範囲内に保たれるように制御するスリップ制御部を含む(1)項ないし(16)項のいずれか1つに記載の液圧ブレーキシステム。
 液圧発生装置が、運転者がブレーキ操作部材を操作しなくても液圧を発生可能なものである場合には、スリップ制御部には、アンチロック制御部のみならず、トラクション制御部、ビークルスタビリティ制御部等も該当する。
 なお、ブレーキシリンダの液圧制御は、ブレーキシリンダと液圧発生装置とが連通させられた状態で行われることもある。
(18)前記スリップ制御装置が、前記複数のブレーキシリンダを、それぞれ、前記液圧発生装置と低圧源とのいずれかに連通させることにより、前記複数のブレーキシリンダの液圧をそれぞれ制御可能な複数のスリップ制御用電磁弁を含む(1)項ないし(16)項のいずれか1つに記載の液圧ブレーキシステム。
 低圧源は、マスタリザーバとしたり、減圧用リザーバとしたりすることができるのであり、スリップ制御装置は排出式のものとしたり、還流式のものとしたりすること等ができる。
 スリップ制御装置の作動状態とは、少なくともスリップ制御用電磁弁が作動させられている状態をいう。スリップ制御用電磁弁の開閉に伴ってスリップ制御用電磁弁の上流側の液圧が振動させられるが、その振動が抑制される。スリップ制御用電磁弁としては、例えば、液圧発生装置とブレーキシリンダとの間に設けられた増圧弁(保持弁)、ブレーキシリンダと低圧源との間に設けられた減圧弁等が該当する。
(19)前記スリップ制御装置が、前記複数のブレーキシリンダから流出させられた作動液を汲み上げて前記上流側部に供給するポンプ装置を含む(1)項ないし(17)項のいずれか1つに記載の液圧ブレーキシステム。
 スリップ制御装置の作動状態とは、スリップ制御用電磁弁が作動させられている状態とポンプ装置が作動させられている状態との少なくとも一方をいう。ポンプ装置の作動に伴って、スリップ制御用電磁弁の上流側の液圧が振動させられるが、その振動が抑制される。ポンプ装置の作動に起因する振動を抑制するためにダンパが設けられることが多いが、本項に記載の液圧ブレーキシステムにおいては、液圧発生装置の制御により上流側部の液圧の振動が抑制される。その結果、ダンパを設ける必要がなくなり、液圧ブレーキシステムの大形化を回避することができ、コストアップを抑制することができる。
 スリップ制御装置は、例えば、スリップ制御用電磁弁と、複数のブレーキシリンダから流出させられた作動液を収容する減圧用リザーバと、減圧用リザーバの作動液を汲み上げて上流側部に供給するポンプ装置とを含むものとすることができる。
(20)前記複数のスリップ制御用電磁弁のうちの1つ以上である第1スリップ制御用電磁弁が、前記液圧発生装置と前記複数のブレーキシリンダとの間にそれぞれ設けられ、
 前記スリップ制御装置が、前記第1スリップ制御用電磁弁を、前記液圧発生装置の出力液圧と前記第1スリップ制御用電磁弁が接続された1つ以上のブレーキシリンダの各々の液圧との差が、各々の目標差圧に近づくように制御する差圧制御部を含む(18)項または(19)項に記載の液圧ブレーキシステム。
 本項に記載の液圧ブレーキシステムにおいては、複数のスリップ制御用電磁弁により、複数のブレーキシリンダの液圧が個別に制御可能とされる。
(21)前記背面液圧制御装置が、(a)前記背面室と高圧源との間に設けられた背面室用増圧リニア弁と、前記背面室と低圧源との間に設けられた背面室用減圧リニア弁との少なくとも一方と、(b)前記背面室用増圧リニア弁と前記背面室用減圧リニア弁との少なくとも一方をそれぞれ制御することにより、前記背面室の液圧を制御して前記前方加圧室の液圧を制御する背面液圧直接制御部とを備え、
 前記背面室剛性低減部が、前記背面室用増圧リニア弁と前記背面室用減圧リニア弁との少なくとも一方のうちの1つ以上の制御により、前記スリップ制御装置の作動状態において非作動状態における場合より前記背面室の剛性を小さくする直接背面室剛性低減部を含み、その直接背面室剛性低減部が前記背面液圧直接制御部に含まれる(2)項または(3)項、(17)項ないし(20)項のいずれか1つに記載の液圧ブレーキシステム。
 背面室に直接増圧リニア弁、減圧リニア弁が接続されるのであり、背面室の液圧の制御により前方加圧室の液圧が制御される。
 背面室用増圧リニア弁、背面室用減圧リニア弁の制御については、(5)項ないし(16)項のいずれかに記載の技術的特徴を採用することができる。
(22)前記液圧発生装置が、動力式液圧源と、その動力式液圧源の液圧を利用して前記上流側部の液圧を制御する上流側部液圧制御部とを含む(1)項、(17)項ないし(20)項のいずれか1つに記載の液圧ブレーキシステム。
 液圧発生装置は、前述のように、マスタシリンダ等のマニュアル液圧源を含むものであっても含まないものであってもよい。マニュアル液圧源を含まない場合には、上流側部がマニュアル液圧源から遮断された状態で、動力式液圧源の液圧を利用して上流側部の液圧が制御される。また、上流側部液圧制御部により、上流側部の液圧の振動が抑制される。
 なお、上流側部液圧制御部は、(i)1つ以上の電磁弁を備え、1つ以上の電磁弁の制御により上流側部の液圧を制御するものとしたり、(ii)動力式液圧源に含まれるポンプ装置のポンプモータの制御により上流側部の液圧を制御するものであってもよい。
(23)前記液圧発生装置が、(i)高圧源と、(ii)その高圧源と前記上流側部との間に設けられた上流側増圧リニア弁と前記上流側部と低圧源との間に設けられた上流側減圧リニア弁との少なくとも一方とを含み、
 前記剛性低減部が、前記上流側増圧リニア弁と前記上流側減圧リニア弁との少なくとも一方のうちの1つ以上の制御により、前記スリップ制御装置の作動状態において非作動状態における場合より前記上流側部の剛性を小さくするものである(1)項、(17)項ないし(20)項、(22)項のいずれか1つに記載の液圧ブレーキシステム。
 上流側増圧リニア弁、上流側減圧リニア弁の制御については、(5)項ないし(16)項のいずれかに記載の技術的特徴を採用することができる。
(24)複数のブレーキシリンダと、
 (a)ハウジングに液密かつ摺動可能に嵌合された加圧ピストンと、(b)その加圧ピストンの後方から前進方向の力である前進力を加える前進力制御装置と、(c)前記加圧ピストンの前方に設けられ、前記複数のブレーキシリンダが接続された前方加圧室とを備え、前記前方加圧室の液圧を前記前進力制御装置により制御可能な液圧発生装置と、
 前記複数のブレーキシリンダの各々を、それぞれ、前記前方加圧室と低圧源とのいずれかに連通させることにより、前記複数のブレーキシリンダの各々の液圧を個別に制御可能なスリップ制御装置と
を含む液圧ブレーキシステムであって、
 前記前進力制御装置が、前記スリップ制御装置が作動状態にある場合に前記前方加圧室の液圧の振動を抑制する振動抑制部を含むことを特徴とする液圧ブレーキシステム。
 前進力制御装置として、(i)電動モータと、(ii)運動変換機構とを備えたものとすることができる。運動変換機構は、電動モータの出力軸の回転力を前進力に変換して加圧ピストンに伝達する運動伝達機構でもある。本項に記載の液圧ブレーキシステムには、(1)項ないし(23)項のいずれかに記載の技術的特徴を採用することができる。特に、振動抑制部には、剛性低減部についての技術的特徴を採用することができる。以下、(25)項~(27)項についても同様とする。
(25)複数のブレーキシリンダと、
 (i)(a)ハウジングに液密かつ摺動可能に嵌合された加圧ピストンと、(b)その加圧ピストンの前方に設けられ、前記複数のブレーキシリンダが接続された前方加圧室と、(c)前記加圧ピストンの後方に設けられた背面室とを有するマスタシリンダと、(ii)前記背面室の液圧を制御可能な背面液圧制御装置とを備えた液圧発生装置と、
 前記複数のブレーキシリンダの各々を、それぞれ、前記前方加圧室と低圧源とのいずれかに連通させることにより、前記複数のブレーキシリンダの各々の液圧を個別に制御可能なスリップ制御装置と
を含む液圧ブレーキシステムであって、
 前記背面液圧制御装置が、前記スリップ制御装置が作動状態にある場合に前記前方加圧室の液圧の振動を抑制する振動抑制部を含むことを特徴とする液圧ブレーキシステム。
 本項に記載の液圧ブレーキシステムには、(1)項ないし(23)項のいずれかに記載の技術的特徴を採用することができる。
(26)液圧発生装置と、
 複数のブレーキシリンダと、
 それら複数のブレーキシリンダと液圧発生装置との間に設けられ、前記複数のブレーキシリンダから流出させられた作動液を、前記複数のブレーキシリンダの上流側の部分である上流側部に戻すポンプ装置を備えたスリップ制御装置と
を含む液圧ブレーキシステムであって、
 前記液圧発生装置が、前記上流側部の液圧の振動を、電子的な制御により抑制する振動抑制部を含むことを特徴とする液圧ブレーキシステム。
 本項に記載の液圧ブレーキシステムには、(1)項ないし(23)項のいずれかに記載の技術的特徴を採用することができる。
(27)複数のブレーキシリンダと、
 液圧発生装置と、
 それら液圧発生装置と前記複数のブレーキシリンダとの間に設けられ、前記複数のブレーキシリンダのうちの1つ以上ずつの液圧をそれぞれ制御するスリップ制御装置であって、前記複数のブレーキシリンダから流出させられた作動液を前記複数のブレーキシリンダの上流側の部分である上流側部に戻すポンプ装置を備えたものと
を含む液圧ブレーキシステムであって、
 前記液圧発生装置が、前記上流側部の剛性を、前記ポンプ装置が作動状態にある場合に、非作動状態にある場合に比較して小さくする剛性低減部を含むことを特徴とする液圧ブレーキシステム。
 本項に記載の液圧ブレーキシステムには、(1)項ないし(23)項のいずれかに記載の技術的特徴を採用することができる。
本発明の実施例1に係る液圧ブレーキシステムの回路図である。 (a)上記液圧ブレーキシステムに含まれる増圧リニア弁の断面図である。(b)前記増圧リニア弁の特性を示す図である。 (a)上記液圧ブレーキシステムに含まれる減圧リニア弁の断面図である。(b)前記減圧リニア弁の特性を示す図である。 上記液圧ブレーキシステムのブレーキECUの周辺を示す図である。 上記液圧ブレーキシステムにおける増圧リニア弁、減圧リニア弁のコイルへの供給電流の制御態様を示す図である。 (a)アンチロック制御における増圧リニア弁、減圧リニア弁の開度を概念的に示す図である。(b)通常制動時における増圧リニア弁、減圧リニア弁の開度を概念的に示す図である。 上記ブレーキECUの記憶部に記憶されたスリップ制御プログラムを表すフローチャートである。 上記ブレーキECUの記憶部に記憶されたリニア弁制御プログラムを表すフローチャートである。 液圧ブレーキシリンダにおける前方加圧室の液圧とブレーキシリンダの液圧との関係を示す図であり、本発明の課題を説明するための図である。 本発明の実施例2に係る液圧ブレーキシステムの回路図である。 本発明の実施例3に係る液圧ブレーキシステムの回路図である 上記実施例に係る液圧ブレーキシステムに含まれる減圧リニア弁の制御を説明するための図であり、差圧と開弁電流との関係を常開弁と常閉弁とで比較して説明するための図である。 本発明の実施例4に係る液圧ブレーキシステムの回路図である。 本発明の実施例5に係る液圧ブレーキシステムの回路図である。
発明の実施形態
 以下、本発明の一実施形態に係る液圧ブレーキシステムについて図面に基づいて詳細に説明する。
 なお、本液圧ブレーキシステムは、ハイブリッド車両に搭載したり、電気自動車、燃料電池車両に搭載したり、内燃駆動車両に搭載することもできる。ハイブリッド車両、電気自動車、燃料電池自動車等に搭載された場合には、駆動輪に回生制動力が加えられるため、回生協調制御が行われるが、内燃駆動車両においては、回生協調制御が行われることはない。いずれにしても、本液圧ブレーキシステムにおいて、液圧ブレーキのブレーキ力が所望の大きさとなるよう電気的に制御される。
<液圧ブレーキシステムの構成>
 図1に示すように、液圧ブレーキシステムは、(i)左右前輪2FL,2FRに設けられた液圧ブレーキ4FL,4FRのブレーキシリンダ6FL,6FRおよび左右後輪8RL,8RRに設けられた液圧ブレーキ10RL,10RRのブレーキシリンダ12RL,12RR、(ii)これらブレーキシリンダ6FL,6FR,12RL,12RRに液圧を供給可能な液圧発生装置14、(iii)これらブレーキシリンダ6FL,6FR,12RL,12RRと液圧発生装置14との間に設けられたスリップ制御装置16等を含む。液圧発生装置14、スリップ制御装置16等は、コンピュータを主体とするブレーキECU20(図4参照)によって制御される。
[液圧発生装置]
 液圧発生装置14は、(i)ブレーキ操作部材としてのブレーキペダル24、(ii)マスタシリンダ26、(iii)マスタシリンダ26の背面室の液圧を制御する背面液圧制御装置28等を含む。
{マスタシリンダ}
 マスタシリンダ26は、(a)ハウジング30、(b)ハウジング30に形成されたシリンダボアに、互いに直列に、液密かつ摺動可能に嵌合された加圧ピストン32,34および入力ピストン36等を含む。
 加圧ピストン32,34の前方が、それぞれ、前方加圧室40,42とされる。前方加圧室40には液通路44を介して左右前輪2FL,2FRの液圧ブレーキ4FL,4FRのブレーキシリンダ6FL,6FRが接続され、前方加圧室42には液通路46を介して左右後輪8RL,8RRの液圧ブレーキ10RL,10RRのブレーキシリンダ12RL,12RRが接続される。これら液圧ブレーキ4FL,4FR,10RL,10RRは、それぞれ、ブレーキシリンダ6FL,6FR,12RL,12RRに液圧が供給されることにより作動させられ、車輪2FL、2FR,8RL,8RRの回転を抑制する。
 以下、本明細書において、液圧ブレーキ、後述する電磁弁等につき、車輪位置を区別する必要がない場合等には、車輪位置を表すFL,FR,RL,RRを省略する場合がある。
 また、加圧ピストン32とハウジング30との間、2つの加圧ピストン32,34の間には、それぞれ、リターンスプリングが配設され、加圧ピストン32,34を後退方向に付勢する。加圧ピストン32,34が後退端位置にある場合には、前方加圧室40,42は、それぞれ、マスタリザーバ(リザーバタンクと称することもできる)52に連通させられる。
 加圧ピストン34は、(a)前部に設けられた前ピストン部56と、(b)中間部に設けられ、半径方向に突出した中間ピストン部58と、(c)後部に設けられ、中間ピストン部58より小径の後小径部60とを含む。前ピストン部56と中間ピストン部58とは、ハウジング30にそれぞれ液密かつ摺動可能に嵌合され、前ピストン部56の前方が前方加圧室42とされ、中間ピストン部58の前方が環状室62とされる。
 一方、ハウジング30には、円環状の内周側突部64が設けられ、中間ピストン部58の後方、すなわち、後小径部60が液密かつ摺動可能に嵌合される。その結果、中間ピストン部58の後方の、中間ピストン部58と内周側突部64との間に背面室66が形成される。
 加圧ピストン34の後方に入力ピストン36が位置し、後小径部60と入力ピストン36との間が入力室70とされる。入力ピストン36の後部には、ブレーキペダル24がオペレイティングロッド72等を介して連携させられる。
 なお、加圧ピストン34のうちの前ピストン部56と中間ピストン部58とによって加圧ピストン(または、加圧ピストン部)が構成されると考えることもできる。
 環状室62と入力室70とは連結通路80によって連結され、連結通路80に連通制御弁82が設けられる。連通制御弁82は、コイル82sへの供給電流のON・OFFにより開閉させられる電磁開閉弁であり、OFFの場合に閉状態にある常閉弁である。また、連結通路80の連通制御弁82より環状室62側の部分は、リザーバ通路84によってマスタリザーバ52に接続され、リザーバ通路84にはリザーバ遮断弁86が設けられる。リザーバ遮断弁86は、コイル86sへの供給電流のON・OFFにより開閉させられる電磁開閉弁であり、OFFの場合に開状態にある常開弁である。
 また、連結通路80の連通制御弁82より環状室62側の部分に、シミュレータ通路88を介してストロークシミュレータ90が接続される。ストロークシミュレータ90は、シミュレータ通路88、連結通路80を介して入力室70に接続されるため、連通制御弁82の開状態において作動が許容され、閉状態において阻止される。このように、連通制御弁82はシミュレータ制御弁としての機能を有するものである。
 さらに、連結通路80のリザーバ通路84が接続された部分より環状室側の部分に、液圧センサ92が設けられる。液圧センサ92は、環状室62,入力室70が互いに連通させられ、かつ、マスタリザーバ52から遮断された状態において、環状室62,入力室70の液圧を検出する。液圧センサ92によって検出された液圧は、ブレーキペダル24の操作力に応じた大きさとなるため、操作力センサ、あるいは、操作液圧センサと称することができる。
{背面液圧制御装置}
 背面室66には背面液圧制御装置28が接続される。背面液圧制御装置28は、(a)高圧源100,(b)レギュレータ102,(c)リニア弁装置103等を含む。
 高圧源100は、ポンプ104およびポンプモータ105を備えたポンプ装置106と、ポンプ装置106から吐出された作動液を加圧した状態で蓄えるアキュムレータ108とを含む。アキュムレータ108に蓄えられた作動液の液圧であるアキュムレータ圧は、アキュムレータ圧センサ109よって検出されるが、アキュムレータ圧が予め定められた設定範囲内に保たれるように、ポンプモータ105が制御される。
 レギュレータ102は、(d)ハウジング110と、(e)ハウジング110に、軸線Lと平行な方向に、互いに直列に並んで設けられたパイロットピストン112および制御ピストン114とを含む。ハウジング110には、段付き形状を成したシリンダボアが形成され、大径部に、パイロットピストン112、制御ピストン114が液密かつ摺動可能に嵌合され、小径部に高圧源100に接続された高圧室116が形成される。パイロットピストン112とハウジング110との間がパイロット圧室120とされ、制御ピストン114の後方が制御圧室122とされ、制御ピストン114と、シリンダボアの大径部と小径部との段部との間がサーボ室124とされる。また、サーボ室124と高圧室116との間に高圧供給弁126が設けられる。
 高圧供給弁126は常閉弁であり、(f)弁座130、(g)弁座130に対して着座、離間可能に設けられた弁子132、(h)弁子132を弁座130に着座させる向き(後退方向)に弾性力を加えるスプリング136等を含む。
 一方、制御ピストン114の本体の中央部には、軸線Lと平行に延びた嵌合穴が形成されるとともに、軸線Lと直交する方向(半径方向)に延びた部分を有し、嵌合穴に連通させられた液通路140が形成される。液通路140は、マスタリザーバに接続された低圧ポートに常時連通させられる。
 嵌合穴には、軸線Lと平行に延びた開弁部材144が嵌合される。開弁部材144の中央部には軸線Lと平行に軸方向通路146が形成され、後側の端部が液通路140に開口し、前側の端部が弁子132に対向する。その結果、開弁部材144の弁子132に対向する前端部と低圧ポートとが、軸方向通路146,液通路140を介して接続される。
 また、開弁部材144とハウジング110との間にはスプリング150が設けられ、制御ピストン114(開弁部材144を有する)を後退方向に付勢する。
 なお、パイロット圧室120はパイロット通路152を介して液通路46に接続される。そのため、パイロットピストン112には、マスタシリンダ26の加圧室42の液圧が作用する。
 さらに、サーボ室124にはサーボ通路154を介してマスタシリンダ26の背面室66が接続される。サーボ室124と背面室66とは直接接続されるため、サーボ室124の液圧と背面室66の液圧とは原則として同じ高さになる。なお、サーボ通路154にはサーボ液圧センサ(背面液圧センサと称することもできる)156が設けられ、サーボ室124の液圧(背面室66の液圧)が検出される。
 制御圧室122には、増圧リニア弁160と減圧リニア弁162とを含むリニア弁装置103が接続され、制御圧室122の液圧が、これら増圧リニア弁160のコイル160s,減圧リニア弁162のコイル162sへの供給電流の制御により制御される。
 増圧リニア弁160は、図2(a)に示すように、ポペット弁部170とソレノイド172とを含み、ポペット弁部170は、弁座174および弁子176と、弁子176を弁座174に接近させる向きに弾性力Fsを加えるスプリング178とを備え、ソレノイド172は、コイル160sと、コイル160sに電流が供給されることにより生じる電磁駆動力Fdを弁子176に付与するプランジャ182とを備える。また、増圧リニア弁160は、高圧源100と制御圧室122との液圧差に応じた差圧作用力Fpが、弁子176を弁座174から離間させる向きに作用する姿勢で設けられる。
Fp+Fd:Fs
 増圧リニア弁160は、差圧作用力Fpと電磁駆動力Fdとの和がスプリング178の弾性力Fsより大きくなると、閉状態から開状態に切り換えられるのであり、増圧リニア弁160は、図2(b)に示す開弁電流IopenAと差圧との関係である特性を有する。
 また、図2(b)から、コイル160sへの供給電流が大きい場合は小さい場合より、差圧作用力Fpが小さくてもポペット弁部170が開状態に切り換えられることが明らかである。すなわち、制御圧室122の液圧が、図2(b)で表される特性と供給電流とで決まる差圧に対応する制御圧室122の液圧(開閉切換圧と称することができる)より低い場合に、ポペット弁部170は開状態にあるが、供給電流が大きい場合は小さい場合より開閉切換圧が大きくなる。
 減圧リニア弁162は、図3(a)に示すように、ポペット弁部186とソレノイド188とを含み、ポペット弁部186は、弁座190および弁子191と、弁子191を弁座190から離間させる向きに弾性力Fsを付与するスプリング192とを備え、ソレノイド188はコイル162sとプランジャ195とを備える。コイル162sに電流が供給されると、弁子191を弁座190に着座させる向きの電磁駆動力Fdが加えられる。また、制御圧室122とマスタリザーバとの差圧に応じた差圧作用力Fpが弁子191を弁座190から離間させる向きに作用する。
Fs+Fp:Fd
 減圧リニア弁162は、電磁駆動力Fdが差圧作用力Fpとスプリングの弾性力Fsとの和より大きくなると、開状態から閉状態に切り換えられるのであり、減圧リニア弁162は、図3(b)に示す開弁電流IopenRと差圧との関係である特性を有する。
 図3(b)に示すように、コイル162sへの供給電流が大きい場合は小さい場合より差圧(制御圧室122の液圧)が高くても、ポペット弁部186は開状態にされる。すなわち、ポペット弁部186は、図3(b)で表される特性とコイル162sへの供給電流とで決まる差圧(制御圧室122の液圧であり、開閉切換圧と称することができる)より、制御圧室122の液圧が高い場合に開状態にあるのであり、供給電流が小さい場合は大きい場合より開閉切換圧が低くされる。
[スリップ制御装置]
 スリップ制御装置16は、加圧室40とブレーキシリンダ6FR,FLの各々との間に設けられた保持弁200FR,FLと、ブレーキシリンダ6FR,FLと減圧用リザーバ202Fとの間にそれぞれ設けられた減圧弁204FR,FLと、減圧用リザーバ202Fの作動液を汲み上げて、前記保持弁200FR,FLの上流側に出力するポンプ装置206Fとを含むとともに、加圧室42とブレーキシリンダ12RR,RLの各々との間に設けられた保持弁200RR,RLと、ブレーキシリンダ12RR,RLと減圧用リザーバ202Rとの間にそれぞれ設けられた減圧弁204RR,RLと、減圧用リザーバ202Rの作動液を汲み上げて、前記保持弁200RR,RLの上流側に出力するポンプ装置206Rとを含む。ポンプ装置206F,Rは、それぞれ、ポンプ208F,Rとポンプモータ210とを含むが、ポンプモータ210が共通とされている。
 保持弁200、減圧弁204は、コイル200s、204sへの供給電流の制御により開閉させられる電磁弁であり、保持弁200は常開弁であり、減圧弁204は常閉弁である。保持弁200、減圧弁204のコイル200s、204sへの供給電流についてはデューティ制御が行われ、デューティ比で決まる大きさの差圧が実現される。
 保持弁200においては、前方加圧室40,42の液圧からブレーキシリンダ6,12の液圧を引いた値である実際の差圧が、前方加圧室40,42の推定液圧とブレーキシリンダ6,12の目標液圧との差である目標差圧に近づくように、デューティ比が決定されるのであり、デューティ比が大きい場合は小さい場合より差圧が小さくなり、ブレーキシリンダ6,12の液圧が前方加圧室40,42の液圧に対して低くなる。減圧弁204においては、ブレーキシリンダ6,12の液圧から減圧用リザーバ202F,Rの液圧(大気圧であると推定することができる)を引いた値であるブレーキシリンダ6,12の実際の液圧が目標液圧に近づくようにデューティ比が決定され、デューティ制御が行われる。デューティ比が大きい場合は小さい場合より、ブレーキシリンダ6,12の液圧が高くなる。
 また、保持弁200、減圧弁204の開閉制御が行われる間、原則として、ポンプ装置206F,Rは作動させられ、減圧用リザーバ202F,Rにある作動液が汲み上げられて、保持弁200の上流側の供給部212F,Rに出力される。このように、本スリップ制御装置は還流式のものである。
 なお、供給部212F,Rは液通路44,46上の部分であり、前方加圧室40,42と連通させられた状態にある。また、接続部212F,R、液通路44,46の保持弁200より上流側の部分等を含む部分を上流側部214F,Rとする。
[ブレーキECU]
 ブレーキECU20は、図4に示すように、実行部220、記憶部222、入出力部224等を含むコンピュータを主体とするものであり、入出力部224には、上述の操作液圧センサ92,アキュムレータ圧センサ109,サーボ液圧センサ156が接続されるとともに、ブレーキペダル24のストローク(以下、操作ストロークと称する場合がある)を検出するストロークセンサ230,前後左右の各車輪2FR,FL,8RR,RLの車輪速度を検出する車輪速度センサ232,車両のヨーレイトを検出するヨーレイトセンサ234等が接続されるとともに、ポンプモータ105,210が図示しない駆動回路を介して接続されるとともに、増圧リニア弁160、減圧リニア弁162、保持弁200、減圧弁204等の電磁弁のコイル等が接続される。
 ブレーキECU20の記憶部222には、複数のプログラムやテーブル等が記憶されている。
<液圧ブレーキシステムにおける作動>
[通常制動時制御]
 本液圧ブレーキシステムが電気自動車、ハイブリッド自動車等に搭載される場合には、原則として回生協調制御が行われる。
 例えば、運転者によってブレーキペダル24が踏み込まれた場合等には制動要求が出される。この制動要求に応じた制動力が回生制動力で満たされる場合には液圧ブレーキ4,10が作動させられることはない。
 マスタシリンダ26において、連通制御弁82が開状態、リザーバ遮断弁86が閉状態にあるため、入力室70と環状室62とが連通させられるとともに、これらがマスタリザーバから遮断されて、ストロークシミュレータ90に連通させられる。中間ピストン部58の環状室62に対向する受圧面の面積と後小径部60の入力室70に対向する受圧面の面積とが同じであるため、加圧ピストン34において、入力室70の液圧に起因する前進方向の力と、環状室62の液圧に起因する後退方向の力とが釣り合う。ブレーキペダル24の前進に伴って入力ピストン36が、加圧ピストン34に対して相対的に前進させられ、ストロークシミュレータ90が作動させられる。
 また、リニア弁装置103が制御されることはなく、レギュレータ102は非作動状態にある。マスタシリンダ26の背面室66に液圧が供給されることはない。加圧ピストン34は前進させられず、前方加圧室40,42に液圧が発生させられることはなく、液圧ブレーキ4,10は非作動状態にある。
 それに対して、運転者が要求する制動力が回生制動力で不足する場合には液圧ブレーキ4,10が作動させられる。
 レギュレータ102において、リニア弁装置103の制御により制御圧室122の液圧が増加させられる。制御ピストン114が前進させられ、サーボ室124の液圧が高くなる。高圧供給弁126が開状態に切り換えられ、高圧室116に連通させられ、サーボ室124の液圧が背面室66に供給される。マスタシリンダ26において、背面室66の液圧により加圧ピストン34が前進させられ、前方加圧室40,42に液圧が発生させられ、ブレーキシリンダ6,12に供給されて、液圧ブレーキ4,10が作動させられる。 
 このようにリニア弁装置103の制御によって、ブレーキシリンダ6,12の液圧が制御されるのであり、液圧制動力と回生制動力とにより運転者が要求する制動力(要求制動力、または、要求総制動力と称することができる)が満たされるように制御される。
 なお、スリップ制御装置16は制御されることがない。保持弁200、減圧弁204は図示する原位置にあり、ポンプモータ210は停止状態にある。
 本液圧ブレーキシステムが内燃駆動車両に搭載された場合、また、回生協調制御が行われない場合には、運転者の要求する制動力が液圧ブレーキ4,10により満たされるように、リニア弁装置103が制御される。
{リニア弁装置の制御}
 要求制動力(要求総制動力)が、ブレーキペダル24の操作状態(ストロークセンサ230によって検出された操作ストロークと、操作液圧センサ92によって検出された操作力との少なくとも一方で表すことができる)に基づいて決定される。そして、回生協調制御が行われる場合には、要求制動力から回生制動力を引いた値に基づいて目標液圧制動力が決定され、回生協調制御が行われない場合には、要求制動力に基づいて目標液圧制動力が決定される。
 また、目標液圧制動力に基づいて前方加圧室40,42の目標液圧が決定され、それに応じて、背面室66の目標液圧Prefが決定され、制御圧室122の目標液圧が決定される。そして、制御圧室122の実際の液圧が目標液圧に近づくように、増圧リニア弁160s、減圧リニア弁162sへの供給電流が制御される。
 前方加圧室40,42の液圧と背面室66の液圧との間にはマスタシリンダ26の構造等で決まる関係が成立し、背面室66の液圧と同じ高さであるサーボ室124の液圧と制御圧室122の液圧との間にはレギュレータ102の構造等で決まる関係が成立する。なお、本実施例においては、サーボ室124の液圧と制御圧室122の液圧とは同じ高さとなるようにされている。そのため、前方加圧室40,42の目標液圧に基づいて決定された背面室66の目標液圧(サーボ室124の目標液圧と同じ高さであり、以下、目標背面液圧Prefと称する)に、背面室66の実際の液圧(サーボ液圧センサ156の検出液圧であり、以下、実背面液圧P*と称する)が近づくように、リニア弁装置103が制御されると考えることができる。
 具体的に、目標背面液圧Prefの変化傾向と、目標背面液圧Prefと実背面液圧P*との差との少なくとも一方に基づき制御モードが決定される。例えば、目標背面液圧Prefが増加傾向にある場合と、目標背面液圧Prefに対して実背面液圧P*が小さい場合との少なくとも一方の場合には増圧モードが設定され、目標背面液圧Prefが減少傾向にある場合と目標背面液圧Prefに対して実背面液圧P*が大きい場合との少なくとも一方の場合には減圧モードが設定され、目標背面液圧Prefがほぼ一定であること、実背面液圧P*が目標背面液圧Prefで決まる設定範囲内にあることとの少なくとも一方の場合に保持モードが設定される。
 なお、制御モードの決定の方法は限定されない。
 図5(c)、(d)に示すように、増圧モードにおいては、増圧リニア弁(SLA)160が開状態、減圧リニア弁(SLR)162が閉状態となるように制御される。増圧リニア弁160のコイル160sには、目標背面液圧Prefとアキュムレータ圧センサ109の検出値とで決まる差圧と図2(b)に示す特性とで決まる開弁電流Iopenと、実背面液圧P*と目標背面液圧Prefとの偏差に応じて決まるフィードバック電流IFBとの和(Iopen+IFB)の電流が供給され、減圧リニア弁162のコイル162sには、閉状態に保持可能な電流(シール電流Isealと称する)が供給される。減圧モードにおいては、増圧リニア弁160が閉状態、減圧リニア弁162が開状態となるように制御される。増圧リニア弁160のコイル160sへの供給電流は0とされ、減圧リニア弁162のコイル162sには、目標背面液圧Prefと図3(b)のテーブルとで決まる開弁電流Iopenと、実背面液圧P*と目標背面液圧Prefとの偏差に応じて決まるフィードバック電流IFB(<0)との和(Iopen+IFB)の電流が供給される。保持モードにおいては、増圧リニア弁160も減圧リニア弁162も閉状態となるように制御される。増圧リニア弁160のコイル160sへの供給電流は0とされ、減圧リニア弁162のコイル162sへの供給電流はシール電流Isealとされる。
 増圧リニア弁160、減圧リニア弁162の制御状態を概念的に示すと図6(b)に示すようになる。
 増圧モードにおいて、増圧リニア弁160は、実背面液圧P*が目標背面液圧Prefより低い間、開状態にあり、ほぼ目標背面液圧Prefに達すると、閉状態とされる。減圧リニア弁162は、実背面液圧P*が目標背面液圧Prefに液圧(Px)を加えた高さ(Pref+Px)より低い間、閉状態に保持される。
 減圧モードにおいて、減圧リニア弁162は、実背面液圧P*が目標背面液圧Prefより高い間、開状態にあるが、ほぼ目標背面液圧Prefに達すると、閉状態とされる。増圧リニア弁160は閉状態に保持される。
 このように、増圧リニア弁160、減圧リニア弁162のコイル160s、162への供給電流は、基本的には、実背面液圧P*がほぼ目標背面液圧Prefである場合に閉状態となるように制御される。また、増圧リニア弁160、減圧リニア弁162の両方が開状態とされることは原則としてない。
[アンチロック制御(ABS)]
 車輪2,8に作用する制動力が路面の摩擦係数に対して過大になると、アンチロック制御が開始される。アンチロック制御において、スリップ制御装置16によりブレーキシリンダ6,12の液圧が個別に制御され、車輪2,8の制動スリップが抑制され、路面の摩擦係数で決まる適正な範囲に保たれる。
{スリップ制御装置の制御}
 保持弁200のコイルへの供給電流は、前方加圧室40,42の推定液圧とブレーキシリンダ6,12の目標液圧との差である目標差圧に、実際の差圧が近づくように制御される。
 本液圧ブレーキシステムには、前方加圧室40,42の液圧を検出するセンサが設けられていないため、要求液圧制動力で決まる前方加圧室40,42の目標液圧に基づいて前方加圧室40,42の液圧が推定される(Pm)。また、アンチロック制御が開始される前は、ブレーキシリンダ6,12の液圧は前方加圧室40,42の液圧と同じ高さであるとみなすことができるため、アンチロック制御の開始後は、アンチロック制御開始直前の前方加圧室40,42の推定液圧と保持弁200、減圧弁204の制御態様とに基づいて推定される(Pw)。さらに、ブレーキシリンダ6,12の目標液圧Pwrefは、車輪2,8のスリップ状態等に基づいて取得される。以上のことから、実際の差圧(Pm-Pw)が目標差圧(Pm-Pwref)に近づくように、保持弁200のコイルへの供給電流量が決定されるのであり、供給電流を制御する際のデューティ比が決定される。
 減圧弁204のコイルへの供給電流は、ブレーキシリンダ6,12の推定液圧Pwが目標液圧Pwrefに近づくように制御される。減圧弁204は、ブレーキシリンダ6,12の液圧を減圧させる場合に、開状態に切り換えられる。
 また、アンチロック制御中には、ポンプ装置206F,Rが作動させられる。ポンプ208F,Rによって、減圧用リザーバ202F,Rの作動液が汲み上げられて、上流側部214F,R(保持弁200、ブレーキシリンダ6,12の上流側)に戻される。
 一方、スリップ制御装置16の作動に起因して、上流側部214F,Rの液圧が振動させられることがある。
 例えば、アンチロック制御中においては、減圧弁204、保持弁200の作動によってブレーキシリンダ4,12の液圧が前方加圧室40,42の液圧に対して低くされるため、前方加圧室40,42とブレーキシリンダ4,12との間に液圧差が生じる。そのため、保持弁200の開閉に伴って上流側部214の液圧が振動することがある。また、ポンプ208F,Rの作動に起因する脈動等によって振動させられることもある。このポンプ208F,Rの脈動に起因する液圧の振動は、振動数が設定値以上の振動である。
 また、上流側部214F,Rの液圧、すなわち、前方加圧室40,42の液圧が振動させられると、ブレーキシリンダ12の液圧の制御精度が低下するという問題が生じる。上述のように、アンチロック制御において、ブレーキシリンダ6,12の液圧が前方加圧室40,42の推定液圧Pmに基づいて制御されるため、図9に示すように、前方加圧室40,42の実際の液圧が推定液圧Pmとは異なると、ブレーキシリンダ6,12の液圧の制御精度が低下するのである。
 それに対して、上流側部214F,Rの液圧の振動、すなわち、前方加圧室40,42の液圧の振動は、加圧ピストン34を介して背面室66に伝達され、レギュレータ102の制御ピストン114を介して制御圧室122に伝達される。そのため、制御圧室122の液圧の振動に追従させてリニア弁装置103の供給電流を増加・減少させることによって振動を抑制することも考えられる。しかし、上流側部214F,Rの液圧の振動に追従させてリニア弁装置103の供給電流を増加・減少させることにより振動を抑制することは困難である。
{リニア弁装置の制御}
 そこで、本実施例においては、制御圧室122の剛性が低くされる。
 図5(a)、(b)に示すように、増圧モードが設定された場合には、増圧リニア弁160のコイル160sには、目標背面液圧Prefとアキュムレータ圧との差圧と図2(b)で表される特性とで決まる開弁電流Iopenに設定電流αを加えた電流(Iopen+α)が供給され、減圧リニア弁162のコイル162sには、目標背面液圧Prefと図3(b)で表される特性とで決まる開弁電流Iopenから設定電流γ(>0)を引いた電流(Iopen-γ)が供給される。保持モードが設定された場合も同様である。
 減圧モードが設定された場合には、増圧リニア弁160のコイル160sには、開弁電流Iopenに設定電流δを加えた電流(Iopen+δ)が供給され、減圧リニア弁162のコイル162sには、開弁電流Iopenから設定電流β(>0)を引いた電流(Iopen-β)が供給される。なお、設定電流αは設定電流δより大きく(α>δ)、設定電流βは設定電流γより大きい(β>γ)。
 増圧リニア弁160、減圧リニア弁162の制御状態を、図6(a)に従って概念的に示す。
 増圧モード、保持モードにおいて、増圧リニア弁160は、実背面液圧P*が目標背面液圧Prefに設定電流α等で決まる設定圧Pαを加えた液圧(Pref+Pα)より低い間、開状態にあるが、実背面液圧P*が液圧(Pref+Pα)に達すると閉状態に切り換えられる。減圧リニア弁162は、実背面液圧P*が目標背面液圧Prefから設定電流γで決まる設定圧Pγを引いた液圧(Pref-Pγ)より高い間、開状態にあるが、液圧(Pref-Pγ)に達すると、閉状態に切り換えられる。そのため、実背面液圧P*が目標液圧Prefで決まる設定範囲内にある間{(Pref-Pγ)<P*<(Pref+Pα)}、増圧リニア弁160も減圧リニア弁162も開状態にされる。制御圧室122において、増圧リニア弁160、減圧リニア弁162を介する(絞りを介する)作動液の流入・流出が許容され、制御圧室122の容積変化(容積の増加、減少)が許容されるのであり、制御圧室122の剛性が低くされる。それにより、制御圧室122の液圧の振動が吸収される。
 また、図6(a)に示すように、設定電流αが設定電流γより大きい値とされるため、実背面液圧P*がほぼ目標背面液圧Prefにある場合の増圧リニア弁160の開度が減圧リニア弁162の開度より大きくされる。換言すれば、増圧リニア弁160、減圧リニア弁162の両方の開度が同じになる液圧<P*>が目標背面液圧Prefより高くなる。その結果、実背面液圧P*が目標背面液圧Prefより低くなり難くすることができる。
 減圧モードにおいても同様であり、増圧リニア弁160は、実背面液圧P*が目標背面液圧Prefに設定電流δ等で決まる設定圧Pδを加えた液圧(Pref+Pδ)より低い間、開状態にあり、減圧リニア弁162は、実背面液圧P*が目標背面液圧Prefから設定電流β等で決まる設定圧Pβを引いた液圧(Pref-Pβ)より高い間、開状態にある。その結果、実背面液圧P*が目標背面液圧Prefで決まる設定範囲内{(Pref-Pβ)<P*<(Pref+Pδ)}にある間、増圧リニア弁160も減圧リニア弁162も開状態とされる。また、設定電流βが設定電流δより大きい値とされているため、減圧リニア弁162の開度が増圧リニア弁160の開度より大きくされるのであり、開度が互いに同じにある液圧<P*>が目標背面液圧Prefより低くなる。それにより、実背面液圧P*が目標背面液圧Prefより高くなり難くすることができる。
 スリップ制御装置16は、図7のフローチャートで表されるスリップ制御プログラムの実行により制御される。
 ステップ1(以下、S1と略称する。他のステップについても同様とする)において、アンチロック制御中であるかどうかが判定され、制御中でない場合には、S2において開始条件が成立するか否かが判定される。例えば、制動スリップが過大になった場合等に開始条件が成立したと判定される。開始条件が成立しない場合には、スリップ制御装置16は制御されることがない。
 それに対して、開始条件が成立した場合には、S3において、アンチロック制御が行われる。アンチロック制御が開始されるとアンチロック制御中フラグがセットされる。保持弁200、減圧弁204の供給電流が上述のように制御される。また、ポンプモータ210が作動させられ、ポンプ208によって減圧用リザーバ202の作動液が汲み上げられて、上流側部214に出力される。
 アンチロック制御中においては、S4において、終了条件が成立するか否かが判定されるが、例えば、ブレーキペダル24の操作が解除された場合、制動スリップが適正範囲に保たれた場合等に成立したとされる。終了条件が成立しない間、判定がNOとなり、S1,4,3が繰り返し実行されて、アンチロック制御が継続して行われる。そのうちに、終了条件が成立すると、S5において、アンチロック制御の終了処理が行われる。ポンプモータ210が停止させられ、保持弁200、減圧弁204が原位置に戻される。
 リニア弁装置103について、図8のフローチャートで表されるリニア弁制御プログラムの実行に従って制御される。
 S9において、要求制動力に基づいて目標背面液圧Prefが決定され、S10において、目標背面液圧Prefの変化傾向等に基づいて制御モードが決定される。
 S11において、アンチロック制御中であるかどうかが判定され、アンチロック制御中でない場合には、S12において、通常制動時制御が適宜行われる。増圧リニア弁160、減圧リニア弁162のコイル160s、162sへの供給電流ISLA,ISLRは、下記の通りである。
 増圧モードにおいては、(ISLA,ISLR)={(Iopen+IFB)、Iseal}とされ、保持モードにおいては、(ISLA,ISLR)=(0、Iseal)とされ、減圧モードにおいては、(ISLA,ISLR)={0、(Iopen-IFB)}とされる。
 アンチロック制御中である場合には、S13~S15において、制御モードが増圧モード、保持モード、減圧モードのいずれであるかが判定される。増圧モードである場合には、S16において、増圧リニア弁160のコイル160sへの供給電流ISLA、減圧リニア弁162のコイル162sへの供給電流ISLRが、それぞれ、
ISLA=Iopen+α
ISLR=Iopen-γ
とされ、保持モードである場合には、S15の判定がYESとなり、S17において、増圧モードにおける場合と同様とされる。減圧モードである場合には、S14の判定がYESとなり、S18において、供給電流ISLA、供給電流ISLRが、それぞれ、
ISLA=Iopen+δ
ISLR=Iopen-β
とされる。
 このように、本実施例においては、アンチロック制御中に、増圧リニア弁160、減圧リニア弁162の両方が開状態にされるため、制御圧室122において、容積変化が許容されるのであり、剛性が低くされる。スリップ制御装置16の作動に起因する制御圧室122の液圧の振動が良好に吸収され、前方加圧室40,42の液圧の振動を抑制することができる。
 また、増圧リニア弁160、減圧リニア弁162への供給電流が振動に伴って増加・減少させられるのではないため、ポンプ装置206の脈動に起因する振動等、振動数が大きい振動であっても良好に吸収することができる。そのため、ダンパを設ける必要がなくなり、液圧ブレーキシステムの大形化を回避することができ、コストアップを抑制することができる。
 さらに、増圧モードが設定された場合には、増圧リニア弁160の開度が減圧リニア弁162の開度より大きくされ、減圧モードが設定された場合には、減圧リニア弁162の開度が増圧リニア弁160の開度より大きくされるため、実背面液圧P*を目標背面液圧Pref近傍の高さに制御することができる。その結果、アンチロック制御におけるブレーキシリンダ液圧の制御精度を向上させることができ、制動距離が長くなることを良好に回避することができる。
 それに対して、特許文献1に記載の液圧ブレーキシステムにおいては、保持弁の上流側部に設けられた増圧リニア弁の開閉切換圧が高くされるとともに減圧リニア弁の開閉切換圧が高くされるため、結果的に、上流側部の剛性は大きくなる。このように、特許文献1に記載の技術は、本願発明と異なる技術である。
 本実施例においては、ブレーキECU20の図8のフローチャートで表されるリニア弁装置制御プログラムのうちのS16~18を記憶する部分、実行する部分等により剛性低減部、背面室剛性低減部、制御圧室剛性低減部、減圧リニア弁制御部、増圧リニア弁制御部、開制御部、容積変化許可部が構成される。また、S16を記憶する部分、実行する部分等により目標液圧変化対応増圧リニア弁制御部が構成され、S18を記憶する部分、実行する部分等により目標液圧変化対応減圧リニア弁制御部が構成され、S12~18を記憶する部分、実行する部分等により制御圧室液圧制御部が構成される。S9を記憶する部分、実行する部分等により目標液圧決定部が構成される。
 また、図7のフローチャートで表されるスリップ制御装置制御プログラムのうちS3を記憶する部分、実行する部分等によりスリップ制御部が構成され、保持弁200、減圧弁204等によりスリップ制御用電磁弁が構成される。
 液圧ブレーキシステムは図10に示す構造のものとすることができる。本実施例に係る液圧ブレーキシステムにおいては、背面室66の液圧が直接、増圧リニア弁、減圧リニア弁の制御によって制御される。なお、実施例1と構造が同じ部分については同じ符号を付して、説明を省略する。
 本液圧ブレーキシステムにおいて、背面室66に背面液圧制御装置250が接続される。背面液圧制御装置250は、レギュレータを含まず、高圧源100とリニア弁装置252とを含む。リニア弁装置252は、高圧源100と背面室66との間に設けられた背面室用増圧リニア弁としての増圧リニア弁254と、背面室66とリザーバ52との間に設けられた背面室用減圧リニア弁としての減圧リニア弁256とを含む。また、背面室66の液圧を検出する背面液圧センサ258が設けられる。 
 本実施例においては、増圧リニア弁254のコイル254sと減圧リニア弁256のコイル256sとへの供給電流は、実施例1における場合と同様に制御される。背面室66の液圧が目標背面液圧Prefで決まる設定範囲内にある場合に、増圧リニア弁254、減圧リニア弁256が開状態にされるため、背面室66の容積変化が許容され、剛性が低くされる。背面室66において、液圧の振動が吸収され、前方加圧室40,42の液圧の振動を良好に抑制することができ、ブレーキシリンダ6,12の液圧の制御精度を向上させることができる。
 本実施例においては、ブレーキECU20のリニア弁制御プログラムを記憶する部分、実行する部分等により背面液圧制御部が構成され、S16~18を記憶する部分、実行する部分等により直接背面室剛性低減部が構成される。
 なお、マスタシリンダの構造は、実施例1,2に示す構造に限定されず、加圧ピストンの後方に設けられた背面室を含むものであればよい。
 液圧ブレーキシステムは、図11に示す構造のものとすることができる。なお、実施例1,2と構造が同じ部分については同じ符号を付して、説明を省略する。
 本液圧ブレーキシステムにおいては、前後2系統とされており、マスタシリンダ300の2つの加圧ピストン302,303の前方の前方加圧室304,305に、マスタ通路306,307を介して、それぞれ、左右前輪のブレーキシリンダ6、左右後輪のブレーキシリンダが接続される。図11においては、前輪のブレーキ系統を記載し、後輪のブレーキ系統についての記載は省略する。
 左右前輪2FL,FRのブレーキシリンダ6FL,FRと前方加圧室304との間にスリップ制御装置310が設けられる。スリップ制御装置310の構造は実施例1のスリップ制御装置16の一部と同様であるため、同じ符号を付して説明を省略する。
 マスタ通路306の上流側部214Fと前方加圧室304との間の部分には、ストロークシミュレータ装置312、マスタ遮断弁314、上流側制御装置316が、上流側からこの順で設けられる。マスタ遮断弁314は常開の電磁開閉弁であり、ストロークシミュレータ装置312は、常閉のシミュレータ制御弁とストロークシミュレータとを含む。
 上流側制御装置316は、高圧源としての動力式液圧源320とリニア弁装置322とを含み、リニア弁装置322は、高圧源320と上流側部214Fとの間に設けられた常閉の上流側増圧リニア弁としての増圧リニア弁324と、上流側部214Fとリザーバ326との間に設けられた常閉の上流側減圧リニア弁としての減圧リニア弁328とを含む。また、上流側部214Fの液圧は液圧センサ330によって検出される。
 これらスリップ制御装置310、リニア弁装置322等は、コンピュータを主体とするブレーキECU340等により制御される。
[通常制動時制御]
 マスタ遮断弁314が閉状態とされることにより、上流側部214Fが前方加圧室304から遮断されて、リニア弁装置322の制御により上流側部214Fの液圧が制御され、左右前輪のブレーキシリンダ6の液圧が共通に制御される。上流側部214Fについての目標液圧は、運転者の要求制動力に基づいて決定される。リニア弁装置322は、液圧センサ330によって検出された実際の上流側部214Fの液圧が目標液圧に近づくように制御される。スリップ制御装置16は非作動状態にあり、ポンプモータ210は停止状態にある。
[アンチロック制御]
 ブレーキシリンダ6FL,FRの液圧がリニア弁装置322により共通に制御される一方、スリップ制御装置310により個別に制御される。
 上流側部214Fの液圧はリニア弁装置322により制御される。増圧リニア弁324については実施例1における場合と同様に制御される。増圧モード、保持モードが設定された場合には、(Iopen+α´)の電流が供給され、減圧モードが設定された場合には、(Iopen+δ´)の電流が供給される。それに対して、減圧リニア弁328は常閉弁であるため、増圧リニア弁234と同様の構造を成したものであり、図2(b)に示す特性と同様の特性を備えたものである(図12に記載)。図12に示すように、アンチロック制御中においては、供給電流が大きくされて、開閉切換圧が低くされる。増圧モード、保持モードが設定された場合には、(Iopen+γ´)の電流が供給され、減圧モードが設定された場合には、(Iopen+β´)の電流が供給される。
 このように、本実施例においても、上流側部214Fの液圧が目標液圧で決まる設定範囲内にある場合に、増圧リニア弁324、減圧リニア弁328が開状態とされる。その結果、アンチロック制御時の上流側部214Fの液圧の振動が抑制され、ブレーキシリンダの液圧の制御精度を向上させることができ、制動距離が長くなることを良好に回避することができる。
 本実施例においては、ブレーキECU340の増圧リニア弁324、減圧リニア弁328を制御する部分等により剛性低減部342が構成される。
 なお、液圧発生装置316がリニア弁装置322を含むことは不可欠ではなく、動力式液圧源320の制御により上流側部214Fの振動が抑制されるようにすることもできる。
 液圧ブレーキシステムは、図13に示す構造のものとすることができる。なお、実施例1~3と構造が同じ部分については同じ符号を付して、説明を省略する。
 図13に示す液圧ブレーキシステムにおいて、スリップ制御装置400が排出式のものであり、ポンプ装置を含まないものである。
 共通通路410には、前後左右の各輪2FL,FR,8RL,RRのブレーキシリンダ6FL,FR,12RL,RRが個別増圧通路412FL,FR,RL,RRを介してそれぞれ接続され、ブレーキシリンダ6FL,FR,12RL,RRとマスタリザーバ414とが個別減圧通路416FL,FR,RL,RRを介してそれぞれ接続される。個別増圧通路412FL,FR,RL,RRには、それぞれ、保持弁420FL,FR,RL,RRが設けられ、個別減圧通路416FL,FR,RL,RRには、それぞれ、減圧弁422FL,FR,RL,RRが設けられる。
 共通通路410には、マスタシリンダ430と液圧ブースタ432とがそれぞれマニュアル通路434,436を介して接続されるとともに、液圧発生装置438が接続される。マニュアル通路434,436には、それぞれ、マニュアル遮断弁440,442が設けられる。液圧発生装置438は、実施例3に記載の液圧ブレーキシステムにおける場合と同様に、高圧源としての動力式液圧源320とリニア弁装置322とを含み、リニア弁装置322は、高圧源320と共通通路410との間に設けられた常閉の増圧リニア弁324、共通通路410とマスタリザーバ414との間に設けられた常閉の減圧リニア弁328等を含む。また、共通通路410には常閉の前後遮断弁452が設けられる
 本実施例においては、スリップ制御装置400、リニア弁装置322等がコンピュータを主体とするブレーキECU340の指令に基づいて制御される。また、共通通路410が上流側部に対応する。
[通常制動時制御]
 通常制動時には、マニュアル遮断弁440,442が閉状態、前後遮断弁452が開状態とされる。共通通路410からマスタシリンダ430、液圧ブースタ432が遮断された状態で、リニア弁装置322の制御により、共通通路410の液圧が制御され、ブレーキシリンダ6,12の液圧が共通に制御される。
[アンチロック制御]
 ブレーキシリンダ6,12の液圧がリニア弁装置322により共通に制御される一方、スリップ制御装置400により個別に制御される。
 共通通路410の液圧は、実施例3における場合と同様に制御されるのであり、増圧リニア弁324について、増圧モード、保持モードが設定された場合には、(Iopen+α*)の電流が供給され、減圧モードが設定された場合には、(Iopen+δ*)の電流が供給される。減圧リニア弁328について、増圧モード、保持モードが設定された場合には、(Iopen+γ*)の電流が供給され、減圧モードが設定された場合には、(Iopen+β*)の電流が供給される。
 このように、アンチロック制御が行われる場合(スリップ制御装置400が作動させられる場合)には、共通通路410である上流側部の剛性が低くされるため、保持弁200、減圧弁204の作動に伴う共通通路410の液圧の振動を良好に抑制することができる。
 液圧ブレーキシステムは、図14の構造を成したものとすることができる。なお、実施例1~4と構造が同じ部分については同じ符号を付して、説明を省略する。図14に示す液圧ブレーキシステムにおいては、液圧発生装置500に電動モータが含まれる。
 液圧発生装置500は、マスタシリンダ502と前進力制御装置504とを含む。マスタシリンダ502は、2つの加圧ピストン506,508と、ブレーキペダル24に連携させられた入力ピストン510とを含み、入力ピストン510が加圧ピストン508に対して相対移動可能とされる。加圧ピストン506,508のそれぞれの前方の前方加圧室512,514には液通路44,46を介して、ブレーキシリンダ6,12に接続されるが、前方加圧室512,514とブレーキシリンダ6,12との間にはスリップ制御装置16が設けられる。
 前進力制御装置504は、電動モータ518と運動変換機構520とを含む。運動変換機構520は、電動モータ518の出力軸522の回転を直線運動に変換して出力部材524を直線移動させるものであり、電動モータ518の回転力を前進力に変換して加圧ピストン508に伝達するものである。
 また、ブレーキECU530には、ストロークセンサ230.車輪速センサ232等が接続されるとともに、駆動回路532を介して電動モータ518が接続される。また、ブレーキECU530には、モータ制御部534が含まれる。
[通常制動時制御]
 前方加圧室512,514の液圧が目標液圧制動力に対応する大きさに近づくように、電動モータ518への供給電流が制御される。
[アンチロック制御]
 電動モータ518への供給電流が制御されつつ、スリップ制御装置16が制御されるが、本実施例においては、電動モータ518の制御により、前方加圧室512,514の液圧の振動が抑制される。例えば、電動モータ518の制御により、前方加圧室512,514の剛性が低くされることにより振動が抑制されるようにすることもできる。
 このように、本実施例においても、アンチロック制御において、スリップ制御装置16の作動に伴う上流側部214F,Rの振動を良好に抑制することができる。
 なお、増圧弁についても常開弁とすることもできる。
 また、トラクション制御、ビークルスタビリティ制御において、ポンプ装置が作動させられる場合にも同様に適用することができる等、上述に記載の態様の他、当業者の知識に基づいて種々の変更、改良を施した態様で実施することができる。
 6,12:ブレーキシリンダ 16:スリップ制御装置 20:ブレーキECU 26:マスタシリンダ 28:背面液圧制御装置 34:加圧ピストン 66:背面室 102:レギュレータ 114:制御ピストン 122:制御圧室 124:サーボ室 126:高圧供給弁 160:増圧リニア弁 162:減圧リニア弁 200:保持弁 202:減圧用リザーバ 204:減圧弁 206:ポンプ装置 208:ポンプ 210:ポンプモータ 214:上流側部 254:増圧リニア弁 256:減圧リニア弁 324:増圧リニア弁 328:減圧リニア弁 340:ブレーキECU 400:スリップ制御装置 504:前進力制御装置 518:電動モータ 520:運動変換機構 530:ブレーキECU

Claims (13)

  1.  車両に設けられた複数の車輪の各々に設けられた複数のブレーキシリンダと、
     液圧発生装置と、
     それら液圧発生装置と前記複数のブレーキシリンダとの間に設けられ、前記複数のブレーキシリンダのうちの1つ以上ずつの液圧をそれぞれ制御して、前記複数の車輪の各々のスリップ状態を制御するスリップ制御装置と
    を含む液圧ブレーキシステムであって、
     前記液圧発生装置が、前記スリップ制御装置の上流側部の剛性を、前記スリップ制御装置が作動状態にある場合に、非作動状態にある場合に比較して小さくする剛性低減部を含むことを特徴とする液圧ブレーキシステム。
  2.  前記液圧発生装置が、(i)(a)ハウジングに液密かつ摺動可能に嵌合された加圧ピストンと、(b)その加圧ピストンの前方に設けられ、前記上流側部に接続された前方加圧室と、(c)前記加圧ピストンの後方に設けられた背面室とを有するマスタシリンダと、(ii)前記背面室の液圧を制御可能な背面液圧制御装置とを備え、
     前記背面液圧制御装置が、前記背面室の剛性を小さくすることにより、前記前方加圧室の剛性を小さくする背面室剛性低減部を含み、その背面室剛性低減部が前記剛性低減部に含まれる請求項1に記載の液圧ブレーキシステム。
  3.  前記背面室剛性低減部が、前記スリップ制御装置の作動状態において前記スリップ制御装置の非作動状態における場合に比較して、前記背面室の容積変化を許容する容積変化許容部を含む請求項2に記載の液圧ブレーキシステム。
  4.  前記背面液圧制御装置が、
     (i)(a)ハウジングに液密かつ摺動可能に嵌合された制御ピストンと、(b)その制御ピストンの後方に設けられた制御圧室と、(c)前記制御ピストンの前方に設けられ、前記背面室に接続されたサーボ室とを備えたレギュレータと、
     (ii)前記制御圧室と高圧源との間に設けられ、コイルを備えた電磁弁である増圧リニア弁と、
     (iii)前記制御圧室と低圧源との間に設けられ、コイルを備えた電磁弁である減圧リニア弁と、
     (iv)前記増圧リニア弁が備えた前記コイルへの供給電流と前記減圧リニア弁が備えた前記コイルへの供給電流とをそれぞれ制御することにより、前記制御圧室の液圧を制御して、前記サーボ室の液圧を制御する制御圧室液圧制御部とを含み、
     前記制御圧室液圧制御部が、前記増圧リニア弁が備えた前記コイルと前記減圧リニア弁が備えた前記コイルとの少なくとも一方への供給電流の制御により、前記スリップ制御装置の作動状態において非作動状態における場合より、前記制御圧室の剛性を小さくする制御圧室剛性低減部を含み、その制御圧室剛性低減部が前記背面室剛性低減部に含まれる請求項2または3に記載の液圧ブレーキシステム。
  5.  前記減圧リニア弁が、前記コイルへの供給電流が保持された状態で、前記制御圧室の液圧が前記供給電流で決まる開閉切換圧より高い場合に開状態にある特性を備えたものであり、
     前記制御圧室剛性低減部が、前記減圧リニア弁の前記コイルへの供給電流の制御により、前記スリップ制御装置が作動状態にある場合に非作動状態にある場合より、前記開閉切換圧を低くする減圧リニア弁制御部を含む請求項4に記載の液圧ブレーキシステム。
  6.  前記背面液圧制御装置が、前記制御圧室の目標液圧を制動要求に基づいて決定する目標液圧決定部を含み、
     前記減圧リニア弁制御部が、前記目標液圧決定部によって決定された前記制御圧室の目標液圧が減少傾向にある場合は増加傾向にある場合より、前記開閉切換圧を低くする目標液圧変化対応減圧リニア弁制御部を含む請求項5に記載の液圧ブレーキシステム。
  7.  前記増圧リニア弁が、前記コイルへの供給電流が保持された状態で、前記制御圧室の液圧が前記供給電流で決まる開閉切換圧より低い場合に開状態にある特性を備えたものであり、
     前記制御圧室剛性低減部が、前記増圧リニア弁の前記コイルへの供給電流の制御により、前記ポンプの作動状態において非作動状態における場合に比較して、前記開閉切換圧を高くする増圧リニア弁制御部を含む請求項4ないし6のいずれか1つに記載の液圧ブレーキシステム。
  8.  前記背面液圧制御装置が、前記制御圧室の目標液圧を制動要求に基づいて決定する目標液圧決定部を含み、
     前記増圧リニア弁制御部が、前記目標液圧決定部によって決定された前記制御圧室の目標液圧が増加傾向にある場合は減少傾向にある場合より、前記増圧リニア弁の前記開閉切換圧を高くする目標液圧変化対応増圧リニア弁制御部を含む請求項7に記載の液圧ブレーキシステム。
  9.  前記背面液圧制御装置が、前記制御圧室の液圧が目標液圧で決まる設定範囲内にある場合に、前記増圧リニア弁と前記減圧リニア弁との両方を開状態とする開制御部を含む請求項4ないし8のいずれか1つに記載の液圧ブレーキシステム。
  10.  前記スリップ制御装置が、前記複数のブレーキシリンダの各々の液圧を、前記液圧発生装置の液圧を利用して、前記複数のブレーキシリンダが設けられた複数の車輪の各々のスリップが路面の摩擦係数で決まる適正範囲内に保たれるように制御するスリップ制御部を含む請求項1ないし9のいずれか1つに記載の液圧ブレーキシステム。
  11.  前記スリップ制御装置が、前記複数のブレーキシリンダのうちの少なくとも1つから流出させられた作動液を汲み上げて、前記上流側部に供給するポンプ装置を含み、前記剛性低減部が、前記ポンプ装置の作動状態において非作動状態における場合より前記上流側部の剛性を低くするものである請求項1ないし10のいずれか1つに記載の液圧ブレーキシステム。
  12.  前記背面液圧制御装置が、(a)前記背面室と高圧源との間に設けられ、コイルを備えた電磁弁である背面室用増圧リニア弁と、(b)前記背面室と低圧源との間に設けられ、コイルを備えた電磁弁である背面室用減圧リニア弁と、(c)前記背面室用増圧リニア弁が備えた前記コイルへの供給電流と前記背面室用減圧リニア弁が備えた前記コイルへの供給電流とをそれぞれ制御することにより、前記背面室の液圧を制御して前記前方加圧室の液圧を制御する背面液圧制御部とを備え、
     前記背面液圧制御部が、前記背面室用増圧リニア弁が備えた前記コイルと前記背面室用減圧リニア弁が備えた前記コイルとの少なくとも一方への供給電流の制御により、前記スリップ制御装置の作動状態において非作動状態における場合より前記背面室の剛性を小さくする直接背面室剛性低減部を含み、その直接背面室剛性低減部が前記背面室剛性低減部に含まれる請求項2ないし4のいずれか1つに記載の液圧ブレーキシステム。
  13.  前記液圧発生装置が、前記上流側部と高圧源との間に設けられ、コイルを備えた電磁弁である上流側増圧リニア弁と、前記上流側部と低圧源との間に設けられ、コイルを備えた電磁弁である上流側減圧リニア弁とを含み、
     前記剛性低減部が、前記上流側増圧リニア弁が備えた前記コイルと前記上流側減圧リニア弁が備えた前記コイルとの少なくとも一方への供給電流の制御により、前記上流側部の剛性を小さくするものである請求項1に記載の液圧ブレーキシステム。
PCT/JP2014/062609 2013-07-18 2014-05-12 液圧ブレーキシステム WO2015008525A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167000415A KR101728284B1 (ko) 2013-07-18 2014-05-12 액압 브레이크 시스템
US14/902,664 US9919687B2 (en) 2013-07-18 2014-05-12 Hydraulic braking system
CN201480039564.4A CN105408176B9 (zh) 2013-07-18 2014-05-12 液压制动系统
EP14826704.0A EP3023311B1 (en) 2013-07-18 2014-05-12 Hydraulic brake system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013149094A JP5947757B2 (ja) 2013-07-18 2013-07-18 液圧ブレーキシステム
JP2013-149094 2013-07-18

Publications (1)

Publication Number Publication Date
WO2015008525A1 true WO2015008525A1 (ja) 2015-01-22

Family

ID=52346000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062609 WO2015008525A1 (ja) 2013-07-18 2014-05-12 液圧ブレーキシステム

Country Status (6)

Country Link
US (1) US9919687B2 (ja)
EP (1) EP3023311B1 (ja)
JP (1) JP5947757B2 (ja)
KR (1) KR101728284B1 (ja)
CN (1) CN105408176B9 (ja)
WO (1) WO2015008525A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200198603A1 (en) * 2017-06-28 2020-06-25 Advics Co., Ltd. Brake control device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9581254B2 (en) * 2014-08-21 2017-02-28 Toyota Jidosha Kabushiki Kaisha Pressure regulator and hydraulic brake system for vehicle equipped with the same
GB2566546B (en) * 2017-09-19 2019-12-18 Jaguar Land Rover Ltd An actuator system
JP6819550B2 (ja) * 2017-11-17 2021-01-27 トヨタ自動車株式会社 車両用制動力制御装置
JP7204502B2 (ja) * 2019-01-25 2023-01-16 株式会社アドヴィックス 制動制御装置
JP7234998B2 (ja) * 2020-04-17 2023-03-08 トヨタ自動車株式会社 液圧ブレーキシステム
KR20220081113A (ko) * 2020-12-08 2022-06-15 현대자동차주식회사 브레이크 패드의 마찰계수 예측을 이용한 제동 제어 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463755A (ja) * 1990-07-03 1992-02-28 Nippondenso Co Ltd 車両用ブレーキ圧力制御装置
JP2000159094A (ja) * 1998-09-22 2000-06-13 Toyota Motor Corp 液圧ブレーキ装置
JP2007253692A (ja) * 2006-03-22 2007-10-04 Nissin Kogyo Co Ltd 車両用ブレーキ液圧制御装置
JP2009292176A (ja) * 2008-06-02 2009-12-17 Toyota Motor Corp ブレーキ制御装置
WO2012114510A1 (ja) * 2011-02-25 2012-08-30 トヨタ自動車株式会社 マスタシリンダ装置およびそれを用いた液圧ブレーキシステム
JP2012192767A (ja) 2011-03-15 2012-10-11 Toyota Motor Corp 車両用液圧ブレーキシステム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6913326B1 (en) 1998-08-28 2005-07-05 Toyota Jidosha Kabushiki Kaisha Apparatus for increasing brake cylinder pressure by controlling pump motor and reducing the pressure by controlling electric energy applied to control valve
DE102009000781A1 (de) * 2009-02-11 2010-08-12 Robert Bosch Gmbh Verfahren zum Betrieb einer hydraulischen, eine Blockierschutzregeleinrichtung aufweisenden Fahrzeugbremsanlage
CN102114834B (zh) * 2011-02-15 2013-02-13 清华大学 X型管路布置能量回馈式电动汽车液压制动防抱死系统
US9045120B2 (en) * 2011-11-04 2015-06-02 Robert Bosch Gmbh Pedal oscillation suppression

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0463755A (ja) * 1990-07-03 1992-02-28 Nippondenso Co Ltd 車両用ブレーキ圧力制御装置
JP2000159094A (ja) * 1998-09-22 2000-06-13 Toyota Motor Corp 液圧ブレーキ装置
JP2007253692A (ja) * 2006-03-22 2007-10-04 Nissin Kogyo Co Ltd 車両用ブレーキ液圧制御装置
JP2009292176A (ja) * 2008-06-02 2009-12-17 Toyota Motor Corp ブレーキ制御装置
WO2012114510A1 (ja) * 2011-02-25 2012-08-30 トヨタ自動車株式会社 マスタシリンダ装置およびそれを用いた液圧ブレーキシステム
JP2012192767A (ja) 2011-03-15 2012-10-11 Toyota Motor Corp 車両用液圧ブレーキシステム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200198603A1 (en) * 2017-06-28 2020-06-25 Advics Co., Ltd. Brake control device

Also Published As

Publication number Publication date
US9919687B2 (en) 2018-03-20
CN105408176A (zh) 2016-03-16
EP3023311A4 (en) 2017-05-03
KR20160018727A (ko) 2016-02-17
CN105408176B9 (zh) 2018-12-11
JP2015020518A (ja) 2015-02-02
JP5947757B2 (ja) 2016-07-06
US20160200301A1 (en) 2016-07-14
EP3023311B1 (en) 2019-04-03
EP3023311A1 (en) 2016-05-25
KR101728284B1 (ko) 2017-04-18
CN105408176B (zh) 2018-10-26

Similar Documents

Publication Publication Date Title
JP5947757B2 (ja) 液圧ブレーキシステム
JP5119646B2 (ja) 車両用ブレーキ制御装置
JP5869527B2 (ja) 液圧ブレーキシステムおよび液圧制御装置
JP5790539B2 (ja) 液圧ブレーキシステム
US9796367B2 (en) Vehicle brake device
WO2007088433A9 (en) Vehicular brake system
JP2014040187A (ja) ブレーキ制御装置
US20160052498A1 (en) Brake-Hydraulic-Pressure Control Device
US20180290636A1 (en) Brake Control Device
JP5692202B2 (ja) マスタシリンダおよびマスタシリンダ装置
JP6475124B2 (ja) 作動開始電流取得方法
JP2013043489A (ja) 車両用のブレーキ装置
JP5796538B2 (ja) 電磁弁装置および液圧ブレーキシステム
KR20140057888A (ko) 차량용 전동 부스터식 제동장치
JP5949093B2 (ja) 車両用の制動制御装置
US20230008163A1 (en) Braking device for vehicle
JP6015538B2 (ja) 電磁弁制御装置、ブレーキ液圧制御システム、ブレーキ液圧制御方法
US11524669B2 (en) Brake controller
US10196049B2 (en) Hydraulic brake system
JP6149823B2 (ja) ブレーキ液圧制御装置および液圧ブレーキシステム
JP6531663B2 (ja) 液圧ブレーキシステム
JP2015217884A (ja) レギュレータおよび液圧ブレーキシステム
JP6313193B2 (ja) 作動特性取得装置
JP2012153181A (ja) 液圧ブレーキシステム
JP2017081277A (ja) 液圧ブレーキシステム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480039564.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826704

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14902664

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167000415

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014826704

Country of ref document: EP