WO2015008452A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2015008452A1
WO2015008452A1 PCT/JP2014/003594 JP2014003594W WO2015008452A1 WO 2015008452 A1 WO2015008452 A1 WO 2015008452A1 JP 2014003594 W JP2014003594 W JP 2014003594W WO 2015008452 A1 WO2015008452 A1 WO 2015008452A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
refrigerant
refrigerant liquid
evaporator
heat exchanger
Prior art date
Application number
PCT/JP2014/003594
Other languages
English (en)
French (fr)
Inventor
朋一郎 田村
英俊 田口
文紀 河野
尭宏 松浦
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2015527165A priority Critical patent/JP5935232B2/ja
Priority to US14/904,878 priority patent/US10544968B2/en
Priority to EP14826827.9A priority patent/EP3023710A4/en
Priority to CN201480040162.6A priority patent/CN105378393B/zh
Publication of WO2015008452A1 publication Critical patent/WO2015008452A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B19/00Machines, plants or systems, using evaporation of a refrigerant but without recovery of the vapour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D16/00Devices using a combination of a cooling mode associated with refrigerating machinery with a cooling mode not associated with refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • F24F2005/0025Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice using heat exchange fluid storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/024Evaporators with refrigerant in a vessel in which is situated a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a refrigeration apparatus.
  • the refrigeration apparatus 300 of Document 1 is composed of a water-refrigerant turbo ice maker and an ice storage / de-icing facility.
  • the water refrigerant turbo ice maker is constituted by a compressor, an evaporator, a condenser, an ice slurry pump, and the like.
  • the ice storage / melting equipment includes an ice heat storage tank, an ice melting pump, and the like.
  • the ice slurry generated by the evaporator is conveyed and stored in the ice heat storage tank by the ice slurry pump.
  • the cold water in the ice heat storage tank is conveyed by an ice-breaking pump and used as a cooling heat source.
  • the refrigeration apparatus 300 of Document 1 enables a reduction in running cost as compared with a normal turbo chiller.
  • incidental facilities such as an ice storage tank and an ice slurry pump are required, so the initial cost increases.
  • an object of the present invention is to reduce the number of parts and initial cost of a refrigeration apparatus.
  • a container that stores the heat inside the latent heat of the refrigerant, A compressor connected to the container and generating latent heat of the refrigerant; A heat exchanger, a feed flow path connecting the inlet of the heat exchanger and the container, a return flow path connecting the outlet of the heat exchanger and the container, and passing through the heat exchanger A heat exchange circuit for circulating the refrigerant liquid stored in the container; A flow path used in a heat storage operation for storing heat in the container, wherein the feed flow path and the return flow path are connected, and the refrigerant liquid flowing out of the container passes through the heat exchanger.
  • a heat storage flow path configured to be returned to the container without, A flow path switching mechanism that selects one of the heat exchange circulation path and the heat storage flow path as a flow path through which the refrigerant liquid that has flowed out of the evaporator flows.
  • a refrigeration apparatus comprising:
  • the number of parts and initial cost of the refrigeration apparatus can be reduced.
  • the first aspect of the present disclosure is: A container that stores the heat inside the latent heat of the refrigerant, A compressor connected to the container and generating latent heat of the refrigerant; A heat exchanger, a feed flow path connecting the inlet of the heat exchanger and the container, a return flow path connecting the outlet of the heat exchanger and the container, and passing through the heat exchanger A heat exchange circuit for circulating the refrigerant liquid stored in the container; A flow path used in a heat storage operation for storing heat in the container, wherein the feed flow path and the return flow path are connected, and the refrigerant liquid flowing out of the container passes through the heat exchanger.
  • a heat storage flow path configured to be returned to the container without, A flow path switching mechanism that selects one of the heat exchange circulation path and the heat storage flow path as a flow path through which the refrigerant liquid that has flowed out of the evaporator flows.
  • a refrigeration apparatus comprising:
  • heat (including cold energy) is stored inside the container.
  • the refrigerant liquid stored in the container circulates between the container and the heat exchanger in the heat exchange circuit. In the heat exchanger, cooling or heating ability is exhibited.
  • the container since the container also serves as a heat storage tank, the heat storage tank can be omitted. Therefore, the number of parts and the initial cost of the refrigeration apparatus can be reduced.
  • the container is an evaporator that stores the refrigerant liquid
  • the compressor stores the refrigerant in the evaporator by sucking refrigerant vapor from the evaporator.
  • the refrigerant liquid is evaporated, the refrigerant vapor sucked from the evaporator is compressed, and the heat storage flow path is a cold storage operation for storing cold heat in the evaporator using latent heat of vaporization of the refrigerant liquid.
  • a refrigeration apparatus which is a cold storage channel used.
  • cold energy is stored in the evaporator.
  • An object (such as indoor air) can be cooled using the stored cold energy.
  • the compressor solidifies the refrigerant liquid stored in the evaporator inside the evaporator by sucking the refrigerant vapor from the evaporator. And providing the refrigeration apparatus in which the solid refrigerant is stored in the evaporator in the cold storage operation.
  • the solid refrigerant is stored in the evaporator.
  • the remaining refrigerant liquid stored in the evaporator is cooled by the solid refrigerant.
  • the cooled refrigerant liquid circulates between the evaporator and the heat exchanger in the heat exchange circuit. The cooling capacity is exhibited in the heat exchanger.
  • the evaporator also serves as a cold storage tank
  • the cold storage tank can be omitted. Therefore, the number of parts and the initial cost of the refrigeration apparatus can be reduced.
  • the solid refrigerant is stored inside the evaporator, a high cold storage density can be achieved.
  • the heat exchange circuit has an upstream end connected to the container, and the heat storage flow path extends from the container. Branch from the heat exchange circuit between the inlet of the heat exchanger and the upstream end of the heat exchange circuit so that the refrigerant liquid that has flowed out is returned to the container bypassing the heat exchanger
  • a refrigeration apparatus that is a flow path.
  • the fifth aspect of the present disclosure provides the refrigeration apparatus in addition to the fourth aspect, wherein the flow path switching mechanism includes a three-way valve provided at a branch point between the heat exchange circuit and the heat storage path. It is desirable to use a three-way valve from the viewpoint of suppressing an increase in the number of parts.
  • the flow path switching mechanism is connected to the heat exchange circuit closer to the heat exchanger than a branch point between the heat exchange circuit and the heat storage path.
  • a refrigeration apparatus including an on-off valve provided and another on-off valve provided in the heat storage flow path.
  • the on-off valve is cheaper and more reliable than the three-way valve.
  • the refrigerant liquid returned to the container via the heat exchange circuit or the heat storage path is inside the container.
  • a refrigeration apparatus that is poured down from above is provided. In this way, the evaporation or condensation of the refrigerant can proceed efficiently. For example, even if a sufficient amount of solid refrigerant is stored inside the evaporator, the refrigerant liquid is poured onto the stored solid refrigerant one after another. Therefore, the gas-liquid interface necessary for the production of the solid refrigerant continues to be secured.
  • the eighth aspect of the present disclosure includes, in addition to the second or third aspect, a pump that sucks and discharges the refrigerant liquid stored in the evaporator, and the heat exchanger while stopping the operation of the compressor.
  • the thawing operation for circulating the refrigerant liquid in the heat exchange circuit, and the heat via the heat exchanger while cooling the refrigerant liquid stored in the evaporator by operating the compressor There is provided a refrigeration apparatus further comprising a control device for controlling the pump and the compressor so that a chasing operation for circulating the refrigerant liquid in an exchange circuit is selectively performed. By the action of the control device, the refrigeration device can be operated in an appropriate operation mode.
  • the control device further passes the cold storage passage while cooling and solidifying the refrigerant liquid inside the evaporator by operating the compressor.
  • a refrigeration apparatus is provided for controlling the pump and the compressor so that a cold storage operation for circulating the refrigerant liquid is selectively performed.
  • the refrigeration device can be operated in an appropriate operation mode.
  • a tenth aspect of the present disclosure includes, in addition to the second or third aspect, a heat absorption heat exchanger that heats the heat medium cooled by the heat exchanger, and the heat absorption heat exchanger passes through the heat absorption heat exchanger.
  • a refrigeration apparatus further comprising an endothermic circulation path for circulating a heat medium. According to the endothermic circuit, the overall length of the heat exchange circuit can be shortened. This is significant when the refrigeration apparatus is operated under a pressure condition lower than atmospheric pressure.
  • the eleventh aspect of the present disclosure provides the refrigeration apparatus in addition to the tenth aspect, wherein the heat-absorbing heat exchanger is an indoor heat exchanger that should be placed in the room to cool the room.
  • the endothermic circuit is independent of the heat exchange circuit. Therefore, there is no technical difficulty in extending the flow path of the heat absorption circuit from the outside to the room, and the heat absorption heat exchanger is suitable as an indoor heat exchanger for cooling the room.
  • a condenser that condenses the refrigerant vapor compressed by the compressor, and the refrigerant liquid stored in the condenser or heated by the condenser
  • a heat dissipating heat exchanger for cooling the other heat medium, and further comprising a heat dissipating circuit for circulating the refrigerant liquid or the other heat medium via the heat dissipating heat exchanger
  • a refrigeration apparatus is provided. According to the condenser and the heat radiation circuit, since the discharge pressure of the compressor can be set to a pressure sufficiently lower than the atmospheric pressure, the work of the compressor is greatly reduced, and the efficiency of the refrigeration apparatus is improved.
  • a thirteenth aspect of the present disclosure in addition to any one of the first to twelfth aspects, further includes a heat storage material disposed inside the container, and the heat storage body has a melting point different from the melting point of the refrigerant.
  • a refrigeration apparatus including a latent heat storage material. According to the thirteenth aspect, heat or cold energy can be stored in the heat storage body using latent heat of vaporization or latent heat of condensation of the refrigerant.
  • the container is a condenser that condenses the refrigerant vapor compressed by the compressor, and the heat storage channel uses the latent heat of condensation of the refrigerant liquid.
  • operation for storing heat in the said condenser is provided.
  • heat is stored in the condenser. The stored heat can be used to heat the object (such as indoor air).
  • heat storage is used to mean both storing heat and storing cold energy.
  • the refrigeration apparatus 100 of the present embodiment includes a main circuit 2, a heat radiation circuit 3, a heat exchange circuit 4, a heat absorption circuit 5, a cold storage channel 6 (heat storage channel), and a control device 24. I have. Both ends of the heat radiation circuit 3 are connected to the main circuit 2. Both ends of the heat exchange circuit 4 are also connected to the main circuit 2.
  • the saturated vapor pressure at normal temperature (Japan Industrial Standard: 20 ° C ⁇ 15 ° C / JIS Z8703) is negative (absolute pressure is large) Refrigerant at a pressure lower than atmospheric pressure) is filled.
  • the refrigerant having a negative saturated vapor pressure at room temperature include a refrigerant containing water, alcohol or ether as a main component.
  • the “main component” means a component that is contained most in mass ratio. A mixed refrigerant containing a plurality of types of refrigerants may be used.
  • the refrigerant pressure is lower than atmospheric pressure at all positions of the main circuit 2.
  • the main circuit 2 is a circuit for circulating the refrigerant, and includes an evaporator 11, a compressor 12, a condenser 13, and flow paths 2a to 2c.
  • the evaporator 11, the compressor 12, and the condenser 13 are connected in a ring shape by flow paths 2a to 2c.
  • the evaporator 11 and the condenser 13 are connected by the flow path 2c.
  • the bottom of the evaporator 11 and the bottom of the condenser 13 are connected by the flow path 2c.
  • the flow path 2 c is a refrigerant return path for returning the refrigerant liquid stored in the condenser 13 to the evaporator 11.
  • the refrigerant return path may be provided with a decompression mechanism such as a capillary or an expansion valve.
  • the flow paths 2a to 2c are each formed by one or a plurality of pipes (refrigerant pipes). The same applies to channels 3a to 3d, channels 4a to 4d, and channels 5a to 5c described later.
  • the compressor 12 is connected to the evaporator 11 by the flow path 2a, and is connected to the condenser 13 by the flow path 2b.
  • the compressor 12 sucks substantially saturated refrigerant vapor from the evaporator 11 and compresses it. High-temperature and superheated refrigerant vapor is discharged from the compressor 12 toward the condenser 13.
  • the compressor 12 may be a positive displacement compressor or a speed compressor.
  • the compressor 12 may be configured by a plurality of compressors connected in series or in parallel. When a plurality of compressors connected in series is used as the compressor 12, an intermediate cooler that cools the refrigerant vapor may be provided between the compressors.
  • the intercooler may be air-cooled or water-cooled. If the intercooler is provided, the work of compression can be reduced, so that the efficiency of the refrigeration apparatus 100 is improved. Moreover, since the discharge temperature of the compressor 12 falls, the reliability of the compressor 12 also increases.
  • the evaporator 11 is formed by, for example, a pressure-resistant container (vacuum container) having heat insulation properties.
  • the evaporator 11 has not only a role of storing the refrigerant liquid but also a role of a cold storage tank (typically an ice storage tank).
  • An upstream end and a downstream end of the heat exchange circuit 4 are connected to the evaporator 11. Specifically, the downstream end of the heat exchange circuit 4 is connected to the top of the evaporator 11, and the upstream end of the heat exchange circuit 4 is connected to the bottom of the evaporator 11.
  • the evaporator 11 is configured such that the refrigerant liquid returned to the evaporator 11 from the heat exchange circuit 4 flows down the internal space of the evaporator 11.
  • the refrigerant liquid may be sprayed from the downstream end of the heat exchange circuit 4 toward the internal space of the evaporator 11.
  • the refrigerant liquid discharged from the downstream end of the heat exchange circuit 4 evaporates by the pressure reducing action of the compressor 12.
  • the remaining refrigerant (refrigerant liquid) is directly cooled by latent heat of vaporization.
  • a part of the refrigerant liquid stored in the evaporator 11 is solidified inside the evaporator 11.
  • a solid refrigerant for example, ice
  • cold heat is stored inside by utilizing the latent heat of the refrigerant (the latent heat of vaporization of the refrigerant liquid).
  • the compressor 12 generates latent heat of the refrigerant.
  • the downstream end of the heat exchange circuit 4 is positioned above the evaporator 12, and the refrigerant liquid circulated through the heat exchange circuit 4 and returned to the evaporator 11 is It is poured from top to bottom inside. In this way, even if a sufficient amount of solid refrigerant is stored in the evaporator 11, the refrigerant liquid is poured onto the stored solid refrigerant one after another. Therefore, the gas-liquid interface necessary for the production of the solid refrigerant continues to be secured.
  • a filler for forming a liquid film from the refrigerant liquid discharged from the downstream end of the heat exchange circuit 4 may be disposed.
  • the filler any of regular fillers and irregular fillers can be used.
  • the ordered filler an ordered filler obtained by laminating a plurality of plates having a corrugated surface can be used.
  • the irregular filler an irregular filler obtained by irregularly combining a plurality of hollow and cylindrical structures can be used.
  • a filter 11 a is provided at the lower part of the evaporator 11.
  • the filter 11 a can prevent the solid refrigerant from being sucked into the heat exchange circuit 4.
  • An example of the filter 11a is a mesh made of a corrosion resistant material such as metal or resin. Although there may be a sherbet-like solid refrigerant, only the refrigerant liquid is generally stored below the filter 11a.
  • the upstream end (inlet) of the heat exchange circuit 4 is located below the filter 11a in the vertical direction. According to such a positional relationship, only the refrigerant liquid can be selectively supplied to the heat exchange circuit 4.
  • the bottom of the evaporator 11 (for example, below the filter 11a) is agitated for agitating the stored refrigerant liquid.
  • a machine may be provided.
  • the inlet of the flow path 2a is located above the downstream end of the heat exchange circuit 4 in the vertical direction. As a result, the refrigerant liquid can be prevented from being directly sucked into the compressor 12.
  • the condenser 13 is formed by, for example, a pressure-resistant container (vacuum container) having heat insulation properties.
  • the condenser 13 plays a role of condensing the refrigerant vapor compressed by the compressor 11.
  • An upstream end and a downstream end of the heat radiation circuit 3 are connected to the condenser 13.
  • the downstream end of the heat dissipation circuit 3 is connected to the upper portion of the condenser 13, and the upstream end of the heat dissipation circuit 3 is connected to the bottom of the condenser 13.
  • the condenser 13 is configured such that the refrigerant liquid returned to the condenser 13 from the heat radiation circuit 3 flows down the internal space of the condenser 13.
  • the superheated refrigerant vapor discharged from the compressor 11 directly contacts the refrigerant liquid flowing down the internal space of the evaporator 11 and condenses.
  • the refrigerant vapor When the refrigerant vapor is liquefied, latent heat is given to the refrigerant liquid flowing down the internal space of the evaporator 11.
  • a high-temperature refrigerant liquid is generated. That is, heat is stored in the condenser 13 using the latent heat of condensation of the refrigerant liquid.
  • the refrigerant liquid may be sprayed from the downstream end of the heat radiation circuit 3 toward the internal space of the condenser 13. In the condenser 13, a packing similar to the evaporator 11 may be disposed.
  • the heat radiation circuit 3 is formed by a pump 15, an outdoor heat exchanger 14 (heat radiation heat exchanger), and flow paths 3a to 3c.
  • the refrigerant liquid stored in the condenser 13 circulates in the heat radiation circuit 3 via the outdoor heat exchanger 14 by the action of the pump 15.
  • the refrigerant liquid radiates heat to the outside air in the outdoor heat exchanger 14 and is cooled.
  • a plate heat exchanger may be used as the outdoor heat exchanger 14.
  • the refrigerant liquid can be cooled with cold water supplied from the cooling tower to the plate heat exchanger.
  • the pump 15 may be a positive displacement pump or a speed pump. From the viewpoint of suppressing the generation of bubbles, it is desirable that the pump 15 is disposed below the condenser 13 in the vertical direction.
  • a plurality of pumps connected in series or in parallel may be used as the pump 15.
  • the condenser 13 As will be described later, if an amount of refrigerant corresponding to the refrigerant vapor sucked into the compressor 12 is sequentially supplied to the evaporator 11, the condenser 13, the heat radiation circuit 3 and the flow path 2c can be omitted.
  • the discharge pressure of the compressor 12 can be set to a pressure sufficiently lower than the atmospheric pressure, so the work of the compressor 12 is greatly reduced.
  • the efficiency of the refrigeration apparatus 100 is improved.
  • the condenser 13 is not necessarily a direct contact heat exchanger, and may be an indirect heat exchanger.
  • the heat medium heated inside the condenser 13 circulates in the heat radiation circuit 3 and is cooled in the outdoor heat exchanger 14.
  • the heat medium water, ethylene glycol, a mixture thereof or the like can be used.
  • the condenser 13 may be constituted by an ejector and an extraction container.
  • the ejector plays a role of generating a refrigerant mixture using the refrigerant vapor compressed by the compressor 12 and the refrigerant liquid flowing out of the outdoor heat exchanger 14.
  • the extraction container receives a refrigerant mixture from the ejector and plays a role of extracting refrigerant liquid from the refrigerant mixture.
  • the heat exchange circuit 4 is formed by a pump 16, a heat exchanger 20, and channels 4a to 4d.
  • a three-way valve 17 is disposed in the heat exchange circuit 4.
  • the heat exchange circuit 4 is a circuit for circulating the refrigerant liquid stored in the evaporator 11 via the heat exchanger 20. As will be described later, by using the heat exchange circuit 4, the cooling operation (thawing operation) and the chasing operation can be selectively performed.
  • the flow paths 4a to 4c form a feed flow path that connects the inlet of the heat exchanger 20 and the evaporator 11 (specifically, the lower portion of the evaporator 11).
  • the flow path 4d forms a return flow path that connects the outlet of the heat exchanger 20 and the evaporator 11 (specifically, the upper part of the evaporator 11).
  • the cold storage channel 6 connects the feed channel and the return channel.
  • the pump 16 sucks and discharges the refrigerant liquid stored in the evaporator 11. As described above, since almost only the refrigerant liquid is supplied to the heat exchange circuit 4, the pump 16 does not need to be a special pump (for example, a slurry pump). This contributes to cost reduction of the refrigeration apparatus 100.
  • the pump 16 may be a positive displacement pump or a speed pump. From the viewpoint of suppressing the generation of bubbles, it is desirable that the pump 16 is disposed below the evaporator 11 in the vertical direction. A plurality of pumps connected in series or in parallel may be used as the pump 16.
  • the refrigerant liquid discharged from the pump 16 is selectively supplied to either the heat exchanger 20 or the cold storage passage 6 by the action of the three-way valve 17. That is, the three-way valve 17 serves as a flow path switching mechanism that switches the flow path of the refrigerant liquid.
  • the flow path switching mechanism selects either the heat exchange circuit 4 or the heat storage flow path 6 as a flow path through which the refrigerant liquid that has flowed out of the evaporator 11 should flow.
  • the heat exchanger 20 is, for example, a plate heat exchanger.
  • the cold storage passage 6 is a passage used in a cold storage operation for storing a solid refrigerant in the evaporator 11.
  • the cold storage passage 6 is configured such that the refrigerant liquid flowing out of the evaporator 11 is returned to the evaporator 11 without passing through the heat exchanger 20.
  • the refrigerant liquid flowing out of the evaporator 11 bypasses the heat exchanger 20 and is returned to the evaporator 11 between the upstream end of the heat exchange circuit 4 and the inlet of the heat exchanger 20.
  • the cold storage passage 6 branches off from the heat exchange circuit 4.
  • the three-way valve 17 as a flow path switching mechanism plays a role of selecting either the heat exchange circuit 4 or the cold storage path 6 as a flow path through which the refrigerant liquid flowing out from the evaporator 11 should flow.
  • the three-way valve 17 includes an operation mode (cooling operation or chasing operation) in which the refrigerant liquid flowing out from the evaporator 11 is supplied to the heat exchanger 20, and the refrigerant liquid flowing out from the evaporator 11 into the cold storage passage 6. It is used to switch between supplied operation modes (cold storage operation). By flowing the refrigerant liquid through the cold storage passage 6 so as to bypass the heat exchanger 20, the pressure loss of the refrigerant liquid can be reduced.
  • the flow path switching mechanism such as the three-way valve 17, the refrigerant liquid can be selectively passed through a desired flow path, so that the operation mode can be switched reliably.
  • a three-way valve 17 provided at a branch point between the heat exchange circuit 4 and the cold storage channel 6 is used as the channel switching mechanism.
  • the two-way valve 17 can be replaced with two on-off valves.
  • the cold storage passage 6 is branched from the heat exchange circuit 4 between the outlet of the pump 16 and the inlet of the heat exchanger 20.
  • the refrigerant liquid can be selectively supplied to the cold storage passage 6 and the heat exchanger 20 with one pump 16. This contributes to a reduction in the number of pumps and, in turn, a reduction in the cost of the refrigeration apparatus 100.
  • a dedicated pump may be provided for each of the cold storage passage 6 and the heat exchange circulation passage 4.
  • the cold storage passage 6 joins the heat exchange circuit 4 between the outlet of the heat exchanger 20 and the downstream end of the heat exchange circuit 4. According to such a configuration, the total length of the heat exchange circuit 4 and the cold storage channel 6 can be shortened. However, the downstream end of the cold storage passage 6 may be directly connected to the evaporator 11.
  • the heat absorption circuit 5 is formed by a pump 18, a load side heat exchanger 19 (heat absorption heat exchanger), and flow paths 5a to 5c.
  • the upstream end and the downstream end of the heat absorption circuit 5 are each connected to the heat exchanger 20.
  • the endothermic circulation path 5 is filled with a liquid heat medium such as brine.
  • brine is an aqueous ethylene glycol solution.
  • the load side heat exchanger 19 a finned tube heat exchanger provided with a blower can be suitably used.
  • the load side heat exchanger 19 may be a radiation panel using radiation.
  • the load-side heat exchanger 19 can be an indoor heat exchanger that should be placed indoors to cool the room.
  • the pump 18 may be a positive displacement pump or a speed pump. A plurality of pumps connected in series or in parallel may be used as the pump 18.
  • the total length of the heat exchange circuit 4 (the total length of the channels 4a to 4d) can be shortened. This is significant when the refrigeration apparatus 100 is operated under a pressure condition lower than atmospheric pressure.
  • the endothermic circulation path 5 is a circulation path through which a liquid heat medium such as brine circulates, and is independent of the heat exchange circulation path 4, the main circuit 2, and the heat radiation circulation path 3. Therefore, there is no technical difficulty in extending the flow paths 5a and 5b of the endothermic circulation path 5 from the outdoor to the indoor, and the load-side heat exchanger 19 is suitable as an indoor heat exchanger for cooling the room. ing.
  • the control device 24 controls the compressor 12, the pump 15, the pump 16, the pump 18, and the three-way valve 17.
  • a DSP Digital Signal Processor
  • the control device 24 stores a program for operating the refrigeration apparatus 100 appropriately.
  • the refrigeration apparatus 100 further includes a cold storage sensor 22.
  • the cold storage sensor 22 is a temperature sensor, and is disposed inside the evaporator 11 so as to measure the temperature of the refrigerant liquid stored in the evaporator 11.
  • the cold storage sensor 22 is disposed below the filter 11a.
  • the detection value of the cold storage sensor 22 indicates a temperature near the melting point of the refrigerant.
  • the temperature of the refrigerant liquid rises. Therefore, the detection value of the cold storage sensor 22 indicates a temperature higher than the melting point of the refrigerant.
  • the detected value of the cold storage sensor 22 indicates a temperature lower than the melting point of the refrigerant.
  • the situation in the evaporator 11 can be known.
  • the output signal of the cold storage sensor 22 is input to the control device 24.
  • the control device 24 can switch the operation mode from one operation mode to another operation mode based on the detection result of the cold storage sensor 22.
  • the control device 24 can also stop the operation of the refrigeration apparatus 100 based on the detection result of the cold storage sensor 22.
  • the refrigeration apparatus 100 is operated in any one of a cold storage operation, a cooling operation (thawing operation), and a chasing operation.
  • a cold storage operation is performed at night, and a cooling operation is performed during the day.
  • the cold storage operation is an operation in which the refrigerant liquid is circulated through the cold storage passage 6 while the refrigerant liquid is cooled and solidified inside the evaporator 11 by operating the compressor 12.
  • the cooling operation is an operation in which the refrigerant liquid is circulated through the heat exchange circuit 4 via the heat exchanger 20 while the operation of the compressor 12 is stopped.
  • the chasing operation is an operation in which the refrigerant liquid is circulated through the heat exchange circuit 4 via the heat exchanger 20 while the refrigerant liquid stored in the evaporator 11 is cooled by operating the compressor 12.
  • the control device 24 controls the pump 15, the pump 16, the pump 18, the three-way valve 17, and the compressor 12 so that the cold storage operation, the cooling operation, and the chasing operation are selectively performed.
  • the refrigeration apparatus 100 can be operated in an appropriate operation mode by the action of the control device 24.
  • the rotation speed of the compressor 12 is adjusted so that the temperature inside the evaporator 11 is equal to or lower than the melting point of the refrigerant (for example, 0 ° C. or lower).
  • the refrigerant liquid is solidified inside the evaporator 11 and the refrigerating capacity corresponding to the latent heat (and sensible heat) of the refrigerant is stored.
  • the cold storage operation is ended when, for example, the operation time of the compressor 12 reaches a set time. Whether or not the cold storage operation should be terminated may be determined based on the detection result of the cold storage sensor 22.
  • the heat medium cooled by the heat exchanger 20 is transferred to the load-side heat exchanger 19 by the pump 18 and takes heat from the indoor air. As a result, the temperature in the room decreases.
  • the cooling operation is selected until the temperature of the refrigerant liquid stored in the evaporator 11 reaches a predetermined temperature (for example, 4 ° C.). As described above, the temperature of the refrigerant liquid stored in the evaporator 11 is detected by the cold storage sensor 22.
  • another temperature may be used as an index for determining whether or not the cooling operation should be terminated.
  • the temperature of the refrigerant liquid in the flow paths 4a to 4c from the refrigerant liquid outlet of the evaporator 11 to the inlet of the heat exchanger 20 or the temperature of the refrigerant pipe forming the flow paths 4a to 4c can be used as the index.
  • the temperature of the heat medium in the flow paths 5a and 5b from the upstream end of the heat absorption circuit 5 to the inlet of the load-side heat exchanger 19 may be used as the index.
  • the temperature of the refrigerant liquid stored in the evaporator 11 may be estimated from these temperatures, and the estimated temperature may be used as the index.
  • the rotation speed of the compressor 12 is adjusted so that the temperature of the refrigerant liquid stored in the evaporator 11 approaches a predetermined temperature (for example, 4 ° C.).
  • a predetermined temperature for example, 4 ° C.
  • the compressor 12 may be controlled using another temperature described above.
  • the cooling operation is terminated and the compressor 12 is started.
  • the chasing operation can be performed. That is, the operation mode is switched from the cooling operation to the chasing operation.
  • a slurry pump for conveying the solid refrigerant is not essential. Therefore, the cost reduction of the refrigeration cycle apparatus 100 by reducing the number of parts can be expected.
  • the refrigeration apparatus 102 includes open / close valves 26 and 28 instead of the three-way valve 17 as a flow path switching mechanism used when switching the operation mode.
  • One on-off valve 26 is provided in the heat exchange circuit 4 closer to the heat exchanger 20 than the branch point P between the heat exchange circuit 4 and the cold storage channel 6.
  • the opening / closing valve 26 is provided in the flow path 4b connecting the outlet of the pump 16 and the inlet of the heat exchanger 20.
  • the other on-off valve 28 is provided in the cold storage passage 6.
  • the on-off valves 26 and 28 are provided at these positions, all the operation modes can be implemented by disposing the pump 16 in the heat exchange circuit 4 upstream from the branch point P. Moreover, the on-off valve is cheaper and more reliable than the three-way valve. In particular, when the refrigeration apparatus 102 is operated under a pressure condition lower than atmospheric pressure, it is desirable to use an on-off valve from the viewpoint of further improving the reliability.
  • the refrigeration apparatus 104 of the present modification is different from the refrigeration apparatus 100 shown in FIG. 1 in that the endothermic circuit 5 is not provided. That is, the heat exchanger 20 in the heat exchange circuit 4 can be used as an indoor heat exchanger. Since the endothermic circulation path 5 is omitted, this modification is advantageous in terms of the number of parts. However, the endothermic circuit 5 is effective as a means for shortening the vacuum line as much as possible. Other structures of the refrigeration apparatus 104 are the same as those of the refrigeration apparatus 100.
  • the refrigeration apparatus 106 includes a plurality of heat accumulators 34 disposed inside the evaporator 11.
  • the heat storage body 34 is comprised by the container and the latent heat storage material accommodated in the container, for example.
  • the container include a container made of a laminate film and a capsule made of a resin.
  • the melting point of the latent heat storage material is different from the melting point of the refrigerant.
  • the melting point of the latent heat storage material is higher than the melting point of the refrigerant. For example, when the melting point of the refrigerant is 0 ° C., a latent heat storage material having a melting point in the range of 5 to 10 ° C.
  • the refrigerant liquid and the cold storage body 34 can be cooled using the latent heat of vaporization of the refrigerant, and cold heat can be stored in the heat storage body 34.
  • the latent heat storage material of the heat storage body 34 can be solidified even when the temperature of the refrigerant liquid stored in the evaporator 11 is higher than the melting point of the refrigerant. That is, the work of the compressor 12 can be reduced by increasing the pressure on the low pressure side of the refrigeration cycle.
  • the kind of latent-heat storage material of the thermal storage body 34 can be changed as needed, the freedom degree of design of the freezing apparatus 106 is high.
  • the refrigeration apparatus 108 of the present modification is different from the refrigeration apparatus 100 shown in FIG. 1 in that the condenser 13, the heat radiation circuit 3, and the flow path 2c are not provided.
  • the outlet pressure of the compressor 12 is equal to atmospheric pressure. That is, the refrigerating apparatus 108 employs an open cycle that releases compressed refrigerant vapor to the atmosphere.
  • a refrigerant replenishment path 32 for sequentially replenishing the evaporator 11 with a refrigerant liquid (for example, water) is connected to the evaporator 11.
  • the refrigeration apparatus 110 of Reference Example 1 is the refrigeration apparatus 100, 102, 104 described with reference to FIGS. 1 to 5 in that the cold storage passage 6 is separated from the heat exchange circuit 4. , 106 and 108.
  • the cold storage channel 6 (heat storage circuit) is formed by the pump 30, the channel 6a, and the channel 6b.
  • the pump 30 is a pump dedicated to the cold storage passage 6.
  • the upstream end of the cold storage passage 6 is connected to the bottom of the evaporator 11, and the downstream end is connected to the top of the evaporator 11.
  • the structure of the heat exchange circuit 4 is as described with reference to FIG. 1 except that the three-way valve 17 is omitted.
  • the pump 16 is a pump dedicated to the heat exchange circuit 4.
  • the cold storage flow path 6 does not share the heat exchange circuit 4 with the flow path and the pump.
  • a flow path switching mechanism such as a three-way valve or an on-off valve is not necessary.
  • the refrigerant liquid circulated through the heat exchange circuit 4 and returned to the evaporator 11 is poured into the evaporator 11 from above to below.
  • the refrigerant liquid circulated through the cold storage channel 6 (cold storage circuit) and returned to the evaporator 11 is also poured from the top to the bottom inside the evaporator 11. Therefore, the refrigeration apparatus 106 of the present modification can be operated in three operation modes in the same manner as the refrigeration apparatus 100 described above.
  • the cold storage passage 6 may join the heat exchange circuit 4 on the downstream side of the heat exchanger 20. That is, the flow path 6 b of the cold storage flow path 6 may be connected to the flow path 4 c of the heat exchange circuit 4. In this case, since the flow path for returning the refrigerant liquid to the inside of the evaporator 11 can be unified, the structure of the piping inside the evaporator 11 can be simplified.
  • the refrigeration apparatus 100 As described above, the refrigeration apparatus 100 according to the first embodiment is configured to store heat (cold heat) in the evaporator 11 using the latent heat of vaporization of the refrigerant.
  • the refrigeration apparatus 200 of the present embodiment is configured to store heat inside the condenser 13 by using the latent heat of condensation of the refrigerant.
  • the heat radiation circuit 3 is formed by a pump 15, a heat exchanger 14 (indoor heat exchanger), and flow paths 3a to 3d.
  • a three-way valve 38 is disposed in the heat dissipation circuit 3.
  • the heat radiation circuit 3 is a circuit that circulates the refrigerant liquid stored in the condenser 13 via the heat exchanger 14.
  • the flow paths 3a to 3c form a feed flow path that connects the inlet of the heat exchanger 14 and the condenser 13 (specifically, the lower part of the condenser 13).
  • the flow path 3d forms a return flow path that connects the outlet of the heat exchanger 14 and the condenser 13 (specifically, the upper part of the condenser 13).
  • the feed channel and the return channel are connected by a heat storage channel 40.
  • the refrigerant liquid discharged from the pump 15 is selectively supplied to either the heat exchanger 14 or the heat storage passage 40 by the action of the three-way valve 38. That is, the three-way valve 38 serves as a flow path switching mechanism that switches the flow path of the refrigerant liquid.
  • the refrigeration apparatus 200 further includes a heat storage sensor 42.
  • the heat storage sensor 42 is a temperature sensor, and is disposed inside the condenser 13 so as to measure the temperature of the refrigerant liquid stored in the condenser 13.
  • the heat storage channel 40 is a channel used in a heat storage operation for storing a high-temperature refrigerant liquid in the condenser 13.
  • the heat storage channel 40 is configured such that the refrigerant liquid flowing out of the condenser 13 is returned to the condenser 13 without passing through the heat exchanger 14.
  • the upstream end of the heat radiation circuit 3 (heat exchange circuit) and the heat exchanger 14 are connected so that the refrigerant liquid flowing out from the condenser 13 bypasses the heat exchanger 14 and is returned to the condenser 13.
  • a heat storage channel 40 branches from the heat radiation circuit 3 between the inlet and the inlet.
  • the three-way valve 38 as a flow path switching mechanism plays a role of selecting either the heat radiation circulation path 3 or the heat storage flow path 40 as a flow path through which the refrigerant liquid flowing out from the condenser 13 should flow.
  • the three-way valve 38 has an operation mode (heating operation or chasing operation) in which the refrigerant liquid flowing out from the condenser 13 is supplied to the heat exchanger 14, and the refrigerant liquid flowing out from the condenser 13 into the heat storage passage 40. It is used to switch between the supplied operation mode (heat storage operation).
  • the flow path switching mechanism such as the three-way valve 38, the refrigerant liquid can be selectively passed through the desired flow path, so that the operation mode can be switched reliably.
  • the three-way valve 38 provided at the branch point between the heat radiation circuit 3 and the heat storage channel 40 is used as the channel switching mechanism. As described above, the three-way valve 38 can be replaced with two on-off valves.
  • the heat storage channel 40 is branched from the heat radiation circuit 3 between the outlet of the pump 15 and the inlet of the heat exchanger 14.
  • the refrigerant liquid can be selectively supplied to the heat storage flow path 40 and the heat exchanger 14 by one pump 15. This contributes to a reduction in the number of pumps and, in turn, to a reduction in the cost of the refrigeration apparatus 200.
  • a dedicated pump may be provided in each of the heat storage flow path 40 and the heat radiation circulation path 3.
  • the heat storage passage 40 joins the heat radiation circuit 3 between the outlet of the heat exchanger 14 and the downstream end of the heat radiation circuit 3. According to such a configuration, the total length of the heat radiation circuit 3 and the heat storage channel 40 can be shortened. However, the downstream end of the heat storage channel 40 may be directly connected to the condenser 13.
  • the heat storage body 36 includes, for example, a container and a latent heat storage material accommodated in the container.
  • the container include a container made of a laminate film and a capsule made of a resin.
  • a latent heat storage material having a melting point in the range of 40 to 50 ° C. can be used for the heat storage body 36.
  • the heat storage body 36 can be heated using the latent heat of condensation of the refrigerant, and heat can be stored in the heat storage body 36.
  • the condenser 13 can be downsized as compared with the case where only the sensible heat of the refrigerant liquid is used.
  • the heat storage body 36 is not essential for the refrigeration apparatus 200.
  • a high-temperature refrigerant liquid may be stored in the condenser 13 using the latent heat of condensation of the refrigerant, and a heating operation described later may be performed using the sensible heat of the refrigerant liquid.
  • a heat exchange circuit may be provided separately from the heat dissipation circuit 3 in this embodiment.
  • Heat storage operation In the heat storage operation, a high-temperature refrigerant liquid is stored in the condenser 13. In the heat storage operation, the compressor 12, the pump 15, and the pump 18 are operated. The three-way valve 38 is set to a state in which the refrigerant liquid discharged from the pump 15 bypasses the heat exchanger 14 and flows into the heat storage passage 40. Since the refrigerant liquid bypasses the heat exchanger 14 and flows through the heat storage passage 40, the pressure loss of the refrigerant liquid can be reduced. That is, the power required for the pump 15 can be reduced, and the efficiency of the refrigeration apparatus 200 is improved.
  • the refrigerant vapor condenses inside the condenser 13, and the heating capacity corresponding to the latent heat of condensation of the refrigerant is stored.
  • the heat storage operation ends when, for example, the operation time of the compressor 12 reaches a set time. Whether or not the heat storage operation should be terminated may be determined based on the detection result of the cold storage sensor 42.
  • Heating operation In the heating operation, indoor air is heated using the high-temperature refrigerant liquid and the heat storage body 36 stored in the condenser 13.
  • the pump 15 In the heating operation, the pump 15 is operated.
  • the three-way valve 38 is set to a state in which the refrigerant liquid discharged from the pump 15 circulates through the heat radiation circuit 3 via the heat exchanger 14.
  • the high-temperature refrigerant liquid is conveyed to the heat exchanger 14 by the pump 15 and heats indoor air. This increases the indoor temperature.
  • the heating operation is selected until the temperature of the refrigerant liquid stored in the condenser 13 is equal to or lower than a predetermined temperature (for example, 35 ° C.).
  • This predetermined temperature may be a temperature lower than the melting point of the latent heat storage material used for the heat storage body 36. That is, in the heating operation, the latent heat of the latent heat storage material can be used.
  • the temperature of the refrigerant liquid stored in the condenser 13 another temperature may be used as an index for determining whether or not the heating operation should be terminated.
  • the temperature of the refrigerant liquid in the flow paths 3a to 3c from the refrigerant liquid outlet of the condenser 13 to the inlet of the heat exchanger 14 or the temperature of the refrigerant pipe forming the flow paths 3a to 3c can be used as the index.
  • the temperature of the refrigerant liquid stored in the condenser 13 may be estimated from these temperatures, and the estimated temperature may be used as the index.
  • the heating operation is terminated and the compressor 12 is started.
  • the chasing operation can be performed. That is, the operation mode is switched from the heating operation to the chasing operation.
  • the cost of the refrigeration cycle apparatus 200 can be expected to be reduced by reducing the number of parts.
  • the technology disclosed in this specification is useful for air conditioners such as home air conditioners and commercial air conditioners.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

 冷凍装置(100)は、蒸発器などの容器(11)、圧縮機(12)、熱交換循環路(4)及び蓄熱流路(6)を備えている。熱交換循環路(4)は、熱交換器(20)を有し、熱交換器(20)を経由して冷媒液を循環させる循環路である。蓄熱流路(6)は、容器(11)に蓄熱するための蓄熱運転で使用される流路であって、容器(11)から流出した冷媒液が熱交換器(20)を経由することなく容器(11)に戻されるように構成されている。

Description

冷凍装置
 本発明は、冷凍装置に関する。
 氷蓄熱を採用した冷凍装置として、フロン冷媒又は代替フロン冷媒を用いた冷凍装置が知られている。しかし、これらの冷媒は、オゾン層の破壊、地球温暖化などの問題を抱えている。文献1には、地球環境に対する負荷が極めて小さい冷媒として水を用いた冷凍装置が記載されている。
 図8に示すように、文献1の冷凍装置300は、水冷媒ターボ製氷機と、蓄氷/解氷設備とで構成されている。水冷媒ターボ製氷機は、圧縮機、蒸発器、凝縮器、氷スラリーポンプなどによって構成されている。蓄氷/解氷設備は、氷蓄熱槽、解氷ポンプなどで構成されている。蓄氷運転時には、蒸発器で生成された氷スラリーが氷スラリーポンプによって氷蓄熱槽に搬送され、蓄えられる。冷房運転時には、氷蓄熱槽の冷水が解氷ポンプによって搬送され、冷房用冷熱源として使用される。
エレクトロヒート,27巻4号(2006),30-37頁
 文献1の冷凍装置300は、通常のターボ冷凍機と比較して、ランニングコストの削減を可能にする。その反面、氷蓄熱槽、氷スラリーポンプなどの付帯設備が必要なので、イニシャルコストは増加する。
 上記事情に鑑み、本発明は、冷凍装置の部品点数及びイニシャルコストを削減することを目的とする。
 すなわち、本開示は、
 冷媒の潜熱を利用し、内部に蓄熱する容器と、
 前記容器に接続され、前記冷媒の潜熱を発生させる圧縮機と、
 熱交換器と、前記熱交換器の入口と前記容器とを接続する送り流路と、前記熱交換器の出口と前記容器とを接続する戻し流路とを有し、前記熱交換器を経由して、前記容器に貯留された冷媒液を循環させる熱交換循環路と、
 前記容器に蓄熱するための蓄熱運転で使用される流路であって、前記送り流路と前記戻し流路とを接続し、前記容器から流出した前記冷媒液が前記熱交換器を経由することなく前記容器に戻されるように構成された蓄熱流路と、
 前記蒸発器から流出した前記冷媒液を流すべき流路として、前記熱交換循環路と前記蓄熱流路とのいずれか一方を選択する流路切替機構と、
 を備えた、冷凍装置を提供する。
 上記の技術によれば、冷凍装置の部品点数及びイニシャルコストを削減することができる。
本発明の第1実施形態に係る冷凍装置の構成図 変形例1に係る冷凍装置の構成図 変形例2に係る冷凍装置の構成図 変形例3に係る冷凍装置の構成図 変形例4に係る冷凍装置の構成図 参考例1に係る冷凍装置の構成図 本発明の第2実施形態に係る冷凍装置の構成図 従来の冷凍装置の構成図
 本開示の第1態様は、
 冷媒の潜熱を利用し、内部に蓄熱する容器と、
 前記容器に接続され、前記冷媒の潜熱を発生させる圧縮機と、
 熱交換器と、前記熱交換器の入口と前記容器とを接続する送り流路と、前記熱交換器の出口と前記容器とを接続する戻し流路とを有し、前記熱交換器を経由して、前記容器に貯留された冷媒液を循環させる熱交換循環路と、
 前記容器に蓄熱するための蓄熱運転で使用される流路であって、前記送り流路と前記戻し流路とを接続し、前記容器から流出した前記冷媒液が前記熱交換器を経由することなく前記容器に戻されるように構成された蓄熱流路と、
 前記蒸発器から流出した前記冷媒液を流すべき流路として、前記熱交換循環路と前記蓄熱流路とのいずれか一方を選択する流路切替機構と、
 を備えた、冷凍装置を提供する。
 上記の冷凍装置においては、容器の内部に熱(冷熱を含む)が蓄えられる。容器に貯留された冷媒液は、熱交換循環路において容器と熱交換器との間で循環する。熱交換器において、冷却又は加熱能力が発揮される。このように、第1態様の冷凍装置によれば、容器が蓄熱槽の役割も担っているので、蓄熱槽を省略できる。故に、冷凍装置の部品点数及びイニシャルコストを削減することができる。
 本開示の第2態様は、第1態様に加え、前記容器は、前記冷媒液を貯留する蒸発器であり、前記圧縮機は、前記蒸発器から冷媒蒸気を吸入することによって前記蒸発器に貯留された前記冷媒液を蒸発させ、前記蒸発器から吸入した前記冷媒蒸気を圧縮し、前記蓄熱流路は、前記冷媒液の蒸発潜熱を利用して前記蒸発器に冷熱を蓄えるための蓄冷運転で使用される蓄冷流路である、冷凍装置を提供する。第2態様によれば、蒸発器に冷熱が蓄えられる。蓄えられた冷熱を使用して、対象物(室内の空気など)を冷却できる。
 本開示の第3態様は、第2態様に加え、前記圧縮機は、前記蒸発器から前記冷媒蒸気を吸入することによって、前記蒸発器に貯留された前記冷媒液を前記蒸発器の内部で凝固させ、前記蓄冷運転において、前記蒸発器の内部に固体の前記冷媒が蓄えられる、冷凍装置を提供する。第3態様によれば、固体の冷媒が蒸発器に蓄えられる。蒸発器に貯留された残余の冷媒液は、固体の冷媒によって冷却される。この冷却された冷媒液は、熱交換循環路において蒸発器と熱交換器との間で循環する。熱交換器において、冷却能力が発揮される。このように、第3態様の冷凍装置によれば、蒸発器が蓄冷槽の役割も担っているので、蓄冷槽を省略できる。故に、冷凍装置の部品点数及びイニシャルコストを削減することができる。特に、第3態様によれば、蒸発器の内部に固体の冷媒が蓄えられるので、高い蓄冷密度を達成できる。
 本開示の第4態様は、第1~第3態様のいずれか1つに加え、前記熱交換循環路は、前記容器に接続された上流端を有し、前記蓄熱流路は、前記容器から流出した前記冷媒液が前記熱交換器をバイパスして前記容器に戻されるように、前記熱交換器の前記入口と前記熱交換循環路の前記上流端との間で前記熱交換循環路から分岐している流路である、冷凍装置を提供する。熱交換器をバイパスするように蓄熱流路に冷媒液を流すことによって、冷媒液の圧力損失を減らすことができる。流路切替機構によれば、所望の流路に冷媒液を選択的に流すことができるので、運転モードを確実に切り替えることができる。
 本開示の第5態様は、第4態様に加え、前記流路切替機構は、前記熱交換循環路と前記蓄熱流路との分岐点に設けられた三方弁を含む、冷凍装置を提供する。部品点数の増加を抑制する観点で三方弁を使用することは望ましい。
 本開示の第6態様は、第4態様に加え、前記流路切替機構は、前記熱交換循環路と前記蓄熱流路との分岐点よりも前記熱交換器の近くで前記熱交換循環路に設けられた開閉弁と、前記蓄熱流路に設けられた他の開閉弁とを含む、冷凍装置を提供する。開閉弁は、三方弁よりも安価であり、信頼性も高い。特に、冷凍装置が大気圧よりも低い圧力条件で運転される場合、信頼性をより高める観点で開閉弁を使用することが望ましい。
 本開示の第7態様は、第1~第6態様のいずれか1つに加え、前記熱交換循環路又は前記蓄熱流路を経由して前記容器に戻された前記冷媒液が前記容器の内部において上から下に降り注がれる、冷凍装置を提供する。このようにすれば、冷媒の蒸発又は凝縮が効率的に進行しうる。例えば、蒸発器の内部に十分な量の固体の冷媒が蓄えられたとしても、蓄えられた固体の冷媒の上に冷媒液が次々と降り注がれる。そのため、固体の冷媒の生成に必要な気液界面が確保され続ける。
 本開示の第8態様は、第2又は第3態様に加え、前記蒸発器に貯留された前記冷媒液を吸入及び吐出するポンプと、前記圧縮機の運転を停止しつつ前記熱交換器を経由して前記熱交換循環路に前記冷媒液を循環させる解凍運転と、前記圧縮機を運転することによって前記蒸発器に貯留された前記冷媒液を冷却しながら前記熱交換器を経由して前記熱交換循環路に前記冷媒液を循環させる追い掛け運転とが選択的に実施されるように、前記ポンプ及び前記圧縮機を制御する制御装置と、をさらに備えた、冷凍装置を提供する。制御装置の働きによって、冷凍装置を適切な運転モードで運転することができる。
 本開示の第9態様は、第8態様に加え、前記制御装置は、さらに、前記圧縮機を運転することによって前記蒸発器の内部で前記冷媒液を冷却及び凝固させながら前記蓄冷流路を経由して前記冷媒液を循環させる蓄冷運転が選択的に実施されるように、前記ポンプ及び前記圧縮機を制御する、冷凍装置を提供する。制御装置の働きによって、冷凍装置を適切な運転モードで運転することができる。
 本開示の第10態様は、第2又は第3態様に加え、前記熱交換器で冷却された熱媒体を加熱する吸熱用熱交換器を有し、前記吸熱用熱交換器を経由して前記熱媒体を循環させる吸熱循環路をさらに備えた、冷凍装置を提供する。吸熱循環路によれば、熱交換循環路の全長を短くすることができる。このことは、冷凍装置が大気圧よりも低い圧力条件で運転される場合に意義がある。
 本開示の第11態様は、第10態様に加え、前記吸熱用熱交換器は、室内の冷房を行うために前記室内に配置されるべき室内熱交換器である、冷凍装置を提供する。吸熱循環路は、熱交換循環路から独立している。従って、吸熱循環路の流路を室外から室内へと延長することに技術上の困難性は無く、吸熱用熱交換器は室内の冷房を行うための室内熱交換器に適している。
 本開示の第12態様は、第2又は第3態様に加え、前記圧縮機によって圧縮された前記冷媒蒸気を凝縮させる凝縮器と、前記凝縮器に貯留された前記冷媒液又は前記凝縮器で加熱された他の熱媒体を冷却する放熱用熱交換器を有し、前記放熱用熱交換器を経由して前記冷媒液又は前記他の熱媒体を循環させる放熱循環路と、をさらに備えた、冷凍装置を提供する。凝縮器及び放熱循環路によれば、圧縮機の吐出圧力を大気圧よりも十分に低い圧力に設定することができるため、圧縮機の仕事が大幅に減少し、冷凍装置の効率も向上する。
 本開示の第13態様は、第1~第12態様のいずれか1つに加え、前記容器の内部に配置された蓄熱材をさらに備え、前記蓄熱体は、前記冷媒の融点とは異なる融点を有する潜熱蓄熱材を含む、冷凍装置を提供する。第13態様によれば、冷媒の蒸発潜熱又は凝縮潜熱を利用して、蓄熱体に熱又は冷熱を蓄えることができる。
 本開示の第14態様は、第1態様に加え、前記容器は、前記圧縮機によって圧縮された前記冷媒蒸気を凝縮させる凝縮器であり、前記蓄熱流路は、前記冷媒液の凝縮潜熱を利用して前記凝縮器に熱を蓄えるための蓄熱運転で使用される、冷凍装置を提供する。第14態様によれば、凝縮器に熱が蓄えられる。蓄えられた熱を使用して、対象物(室内の空気など)を加熱できる。
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、以下の実施形態によって本発明が限定されるものではない。また、本明細書において、「蓄熱」の用語は、熱を蓄えること及び冷熱を蓄えることの両方の意味で使用される。
(第1実施形態)
 図1に示すように、本実施形態の冷凍装置100は、主回路2、放熱循環路3、熱交換循環路4、吸熱循環路5、蓄冷流路6(蓄熱流路)及び制御装置24を備えている。放熱循環路3の両端は主回路2に接続されている。熱交換循環路4の両端も主回路2に接続されている。
 主回路2、放熱循環路3、熱交換循環路4及び蓄冷流路6には、常温(日本工業規格:20℃±15℃/JIS Z8703)での飽和蒸気圧が負圧(絶対圧で大気圧よりも低い圧力)の冷媒が充填されている。常温での飽和蒸気圧が負圧の冷媒としては、水、アルコール又はエーテルを主成分として含む冷媒が挙げられる。「主成分」とは、質量比で最も多く含まれた成分を意味する。複数の種類の冷媒を含む混合冷媒を使用してもよい。冷凍装置100の運転時において、冷媒の圧力は、例えば、主回路2の全ての位置で大気圧よりも低い。
 主回路2は、冷媒を循環させる回路であり、蒸発器11、圧縮機12、凝縮器13及び流路2a~2cを含む。蒸発器11、圧縮機12及び凝縮器13は、流路2a~2cによって環状に接続されている。蒸発器11及び凝縮器13は流路2cによって接続されている。詳細には、蒸発器11の底部と凝縮器13の底部とが流路2cによって接続されている。流路2cは、凝縮器13に貯留された冷媒液を蒸発器11に戻すための冷媒戻し路である。冷媒戻し路には、キャピラリ、膨張弁などの減圧機構が設けられていてもよい。流路2a~2cは、それぞれ、1又は複数の配管(冷媒管)によって形成されている。後述する流路3a~3d、流路4a~4d及び流路5a~5cも同様である。
 圧縮機12は、流路2aによって蒸発器11に接続され、流路2bによって凝縮器13に接続されている。圧縮機12は、蒸発器11からほぼ飽和状態の冷媒蒸気を吸入し、圧縮する。凝縮器13に向けて、高温及び過熱状態の冷媒蒸気が圧縮機12から吐出される。圧縮機12は、容積型圧縮機であってもよいし、速度型圧縮機であってもよい。直列又は並列に接続された複数の圧縮機によって圧縮機12が構成されていてもよい。圧縮機12として、直列に接続された複数の圧縮機が使用されている場合、各圧縮機の間に冷媒蒸気を冷却する中間冷却器が設けられていてもよい。中間冷却器は、空冷式であってもよいし、水冷式であってもよい。中間冷却器が設けられていると、圧縮仕事を減らすことができるので冷凍装置100の効率が向上する。また、圧縮機12の吐出温度が低下するので、圧縮機12の信頼性も高まる。
 蒸発器11は、例えば、断熱性を有する耐圧容器(真空容器)によって形成されている。本実施形態において、蒸発器11は、冷媒液を貯留する役割だけでなく、蓄冷槽(典型的には蓄氷槽)の役割も担っている。蒸発器11には熱交換循環路4の上流端及び下流端が接続されている。詳細には、蒸発器11の上部に熱交換循環路4の下流端が接続され、蒸発器11の底部に熱交換循環路4の上流端が接続されている。蒸発器11は、熱交換循環路4から蒸発器11に戻された冷媒液が蒸発器11の内部空間を流下するように構成されている。冷媒液は、熱交換循環路4の下流端から蒸発器11の内部空間に向けて噴霧されてもよい。熱交換循環路4の下流端から吐出された冷媒液は、圧縮機12の減圧作用によって蒸発する。冷媒の一部が気化するとき、残りの冷媒(冷媒液)は、蒸発潜熱によって直接的に冷却される。蒸発器11の内部の温度が冷媒の凝固温度を下回ると、蒸発器11に貯留された冷媒液の一部が蒸発器11の内部で凝固する。これにより、固体の冷媒(例えば氷)が蒸発器11の中に蓄えられる。言い換えれば、蒸発器11には、冷媒の潜熱(冷媒液の蒸発潜熱)を利用して、内部に冷熱が蓄えられる。圧縮機12は、冷媒の潜熱を発生させる。
 特に、本実施形態では、熱交換循環路4の下流端が蒸発器12の上部に位置しており、熱交換循環路4を循環して蒸発器11に戻された冷媒液が蒸発器11の内部において上から下に降り注がれる。このようにすれば、蒸発器11の内部に十分な量の固体の冷媒が蓄えられたとしても、蓄えられた固体の冷媒の上に冷媒液が次々と降り注がれる。そのため、固体の冷媒の生成に必要な気液界面が確保され続ける。
 蒸発器11の内部には、熱交換循環路4の下流端から吐出された冷媒液から液膜を形成するための充填物が配置されていてもよい。充填物として、規則充填材及び不規則充填材のいずれも使用可能である。規則充填材として、波板状の表面を有する複数のプレートを積層することによって得られた規則充填材を使用できる。不規則充填材として、中空かつ筒状の複数の構造物を不規則に組み合わせることによって得られた不規則充填材を使用できる。
 蒸発器11の下部には、フィルタ11aが設けられている。フィルタ11aによって、固体の冷媒が熱交換循環路4に吸い込まれることを防止できる。フィルタ11aの例は、金属、樹脂などの耐食性材料で作られたメッシュである。シャーベット状の固体の冷媒が存在する可能性はあるものの、フィルタ11aよりも下には概ね冷媒液のみが貯留されている。熱交換循環路4の上流端(入口)は、鉛直方向においてフィルタ11aよりも下に位置している。このような位置関係によれば、冷媒液のみを選択的に熱交換循環路4に供給できる。熱交換循環路4の入口が固体の冷媒で塞がれることを防止するために、蒸発器11の底部(例えば、フィルタ11aよりも下)には、貯留された冷媒液を撹拌するための撹拌機が設けられていてもよい。なお、流路2aの入口は、鉛直方向において熱交換循環路4の下流端よりも上に位置している。これにより、圧縮機12に冷媒液が直接吸い込まれることを防止できる。
 凝縮器13は、例えば、断熱性を有する耐圧容器(真空容器)によって形成されている。凝縮器13は、圧縮機11によって圧縮された冷媒蒸気を凝縮させる役割を担っている。凝縮器13に放熱循環路3の上流端及び下流端が接続されている。詳細には、凝縮器13の上部に放熱循環路3の下流端が接続され、凝縮器13の底部に放熱循環路3の上流端が接続されている。凝縮器13は、放熱循環路3から凝縮器13に戻された冷媒液が凝縮器13の内部空間を流下するように構成されている。圧縮機11から吐出された過熱状態の冷媒蒸気は、蒸発器11の内部空間を流下する冷媒液に直接接触して凝縮する。冷媒蒸気が液化するとき、蒸発器11の内部空間を流下する冷媒液に潜熱が与えられる。これにより、高温の冷媒液が生成される。つまり、冷媒液の凝縮潜熱を利用して、凝縮器13に熱が蓄えられる。冷媒液は、放熱循環路3の下流端から凝縮器13の内部空間に向けて噴霧されてもよい。凝縮器13の内部には、蒸発器11と同様の充填物が配置されていてもよい。
 放熱循環路3は、ポンプ15、室外熱交換器14(放熱用熱交換器)及び流路3a~3cによって形成されている。凝縮器13に貯留された冷媒液は、ポンプ15の働きによって、室外熱交換器14を経由して放熱循環路3を循環する。冷媒液は、室外熱交換器14において外気に放熱し、冷却される。室外熱交換器14として、送風機を備えたフィンチューブ熱交換器を好適に使用できる。室外熱交換器14として、プレート熱交換器を使用してもよい。例えば、冷却塔からプレート熱交換器に供給された冷水で冷媒液を冷却することができる。ポンプ15は、容積型ポンプであってもよいし、速度型ポンプであってもよい。気泡の発生を抑制する観点から、鉛直方向において凝縮器13よりも下にポンプ15が配置されていることが望ましい。ポンプ15として、直列又は並列に接続された複数のポンプを使用してもよい。
 後述するように、圧縮機12に吸入された冷媒蒸気に相当する量の冷媒を蒸発器11に逐次供給すれば、凝縮器13、放熱循環路3及び流路2cを省略することもできる。しかし、凝縮器13、放熱循環路3及び流路2cによれば、圧縮機12の吐出圧力を大気圧よりも十分に低い圧力に設定することができるため、圧縮機12の仕事が大幅に減少し、冷凍装置100の効率も向上する。
 なお、凝縮器13は、必ずしも直接接触式の熱交換器である必要はなく、間接式の熱交換器であってもよい。この場合、凝縮器13の内部で加熱された熱媒体が放熱循環路3を循環し、室外熱交換器14において冷却される。熱媒体としては、水、エチレングリコール、これらの混合物などを使用できる。さらに、凝縮器13は、エジェクタ及び抽出容器によって構成されていてもよい。エジェクタは、圧縮機12で圧縮された冷媒蒸気と、室外熱交換器14から流出した冷媒液とを用いて冷媒混合物を生成する役割を担う。抽出容器は、エジェクタから冷媒混合物を受け取り、冷媒混合物から冷媒液を抽出する役割を担う。
 熱交換循環路4は、ポンプ16、熱交換器20及び流路4a~4dによって形成されている。熱交換循環路4には、三方弁17が配置されている。熱交換循環路4は、熱交換器20を経由して、蒸発器11に貯留された冷媒液を循環させる循環路である。後述するように、熱交換循環路4を使用することによって、冷房運転(解凍運転)と追い掛け運転とを選択的に実施できる。流路4a~4cは、熱交換器20の入口と蒸発器11(詳細には、蒸発器11の下部)とを接続する送り流路を形成している。流路4dは、熱交換器20の出口と蒸発器11(詳細には、蒸発器11の上部)とを接続する戻し流路を形成している。蓄冷流路6は、送り流路と戻し流路とを接続している。
 ポンプ16は、蒸発器11に貯留された冷媒液を吸入及び吐出する。先に説明したように、熱交換循環路4には、ほぼ冷媒液のみが供給されるので、ポンプ16が特殊なポンプ(例えば、スラリーポンプ)である必要はない。このことは、冷凍装置100のコストの削減に寄与する。ポンプ16は、容積型ポンプであってもよいし、速度型ポンプであってもよい。気泡の発生を抑制する観点から、鉛直方向において蒸発器11よりも下にポンプ16が配置されていることが望ましい。ポンプ16として、直列又は並列に接続された複数のポンプを使用してもよい。
 ポンプ16から吐出された冷媒液は、三方弁17の働きによって、熱交換器20及び蓄冷流路6のいずれかに選択的に供給される。すなわち、三方弁17は、冷媒液の流路を切り替える流路切替機構としての役割を担っている。流路切替機構は、蒸発器11から流出した冷媒液を流すべき流路として、熱交換循環路4と蓄熱流路6とのいずれか一方を選択する。熱交換器20は、例えば、プレート熱交換器である。
 蓄冷流路6は、蒸発器11に固体の冷媒を蓄えるための蓄冷運転で使用される流路である。蓄冷流路6は、蒸発器11から流出した冷媒液が熱交換器20を経由することなく蒸発器11に戻されるように構成されている。本実施形態では、蒸発器11から流出した冷媒液が熱交換器20をバイパスして蒸発器11に戻されるように、熱交換循環路4の上流端と熱交換器20の入口との間で蓄冷流路6が熱交換循環路4から分岐している。流路切替機構としての三方弁17は、蒸発器11から流出した冷媒液を流すべき流路として、熱交換循環路4と蓄冷流路6とのいずれか一方を選択する役割を担う。言い換えれば、三方弁17は、蒸発器11から流出した冷媒液が熱交換器20に供給される運転モード(冷房運転又は追い掛け運転)と、蒸発器11から流出した冷媒液が蓄冷流路6に供給される運転モード(蓄冷運転)とを相互に切り替えるために使用される。熱交換器20をバイパスするように蓄冷流路6に冷媒液を流すことによって、冷媒液の圧力損失を減らすことができる。三方弁17などの流路切替機構によれば、所望の流路に冷媒液を選択的に流すことができるので、運転モードを確実に切り替えることができる。
 本実施形態では、流路切替機構として、熱交換循環路4と蓄冷流路6との分岐点に設けられた三方弁17が使用されている。後述するように、三方弁17は、2つの開閉弁で代用することが可能である。しかし、部品点数の増加を抑制する観点で三方弁17を使用することは望ましい。
 本実施形態において、蓄冷流路6は、ポンプ16の出口と熱交換器20の入口との間で熱交換循環路4から分岐している。このような位置に分岐点がある場合、1つのポンプ16で蓄冷流路6及び熱交換器20に選択的に冷媒液を供給できる。このことは、ポンプの台数の削減、ひいては冷凍装置100のコストの削減に寄与する。もちろん、蓄冷流路6及び熱交換循環路4のそれぞれに専用のポンプが設けられていてもよい。
 本実施形態において、蓄冷流路6は、熱交換器20の出口と熱交換循環路4の下流端との間で熱交換循環路4に合流している。このような構成によれば、熱交換循環路4及び蓄冷流路6の合計長さを短くすることができる。ただし、蓄冷流路6の下流端が蒸発器11に直接接続されていてもよい。
 吸熱循環路5は、ポンプ18、負荷側熱交換器19(吸熱用熱交換器)及び流路5a~5cによって形成されている。吸熱循環路5の上流端及び下流端は、それぞれ、熱交換器20に接続されている。吸熱循環路5には、ブラインなどの液体の熱媒体が充填されている。ブラインの典型例は、エチレングリコール水溶液である。ポンプ18の働きによって、熱媒体は、負荷側熱交換器19及び熱交換器20を経由して吸熱循環路5を循環する。熱媒体は、熱交換器20において、冷媒に放熱し、冷却される。熱交換器20で冷却された熱媒体は、負荷側熱交換器19において加熱される。負荷側熱交換器19として、送風機を備えたフィンチューブ熱交換器を好適に使用できる。負荷側熱交換器19は、輻射を使用した放射パネルであってもよい。負荷側熱交換器19は、室内の冷房を行うために室内に配置されるべき室内熱交換器でありうる。ポンプ18は、容積型ポンプであってもよいし、速度型ポンプであってもよい。ポンプ18として、直列又は並列に接続された複数のポンプを使用してもよい。
 吸熱循環路5によれば、熱交換循環路4の全長(流路4a~4dの合計長さ)を短くすることができる。このことは、冷凍装置100が大気圧よりも低い圧力条件で運転される場合に意義がある。他方、吸熱循環路5はブラインなどの液体の熱媒体が循環する循環路であり、熱交換循環路4、主回路2及び放熱循環路3から独立している。従って、吸熱循環路5の流路5a及び5bを室外から室内へと延長することに技術上の困難性は無く、負荷側熱交換器19は室内の冷房を行うための室内熱交換器に適している。
 制御装置24は、圧縮機12、ポンプ15、ポンプ16、ポンプ18及び三方弁17を制御する。制御装置24として、A/D変換回路、入出力回路、演算回路、記憶装置などを含むDSP(Digital Signal Processor)を使用できる。制御装置24には、冷凍装置100を適切に運転するためのプログラムが格納されている。
 冷凍装置100は、さらに、蓄冷センサ22を備えている。本実施形態において、蓄冷センサ22は、温度センサであり、蒸発器11に貯留された冷媒液の温度を測定するように、蒸発器11の内部に配置されている。詳細には、蓄冷センサ22は、フィルタ11aよりも下に配置されている。蒸発器11に固体の冷媒が蓄えられているとき、蓄冷センサ22の検出値は、冷媒の融点付近の温度を示す。固体の冷媒が溶け切ると、冷媒液の温度が上昇するので、蓄冷センサ22の検出値は、冷媒の融点よりも高い温度を示す。蓄冷センサ22が固体の冷媒によって被覆されるほど過剰な量の固体の冷媒が蒸発器11に蓄えられた場合、蓄冷センサ22の検出値は、冷媒の融点よりも低い温度を示す。このように、蓄冷センサ22による検出温度を監視することによって、蒸発器11の中の状況を知ることができる。
 蓄冷センサ22の出力信号は制御装置24に入力される。制御装置24は、蓄冷センサ22の検出結果に基づき、ある運転モードから別の運転モードへと運転モードを切り替えることができる。また、制御装置24は、蓄冷センサ22の検出結果に基づき、冷凍装置100の運転を停止させることもできる。
 次に、冷凍装置100の運転について説明する。
 冷凍装置100は、蓄冷運転、冷房運転(解凍運転)及び追い掛け運転のいずれかのモードで運転される。一般的には、夜間に蓄冷運転が実施され、昼間に冷房運転が実施される。蓄冷運転は、圧縮機12を運転することによって蒸発器11の内部で冷媒液を冷却及び凝固させながら蓄冷流路6を経由して冷媒液を循環させる運転である。冷房運転は、圧縮機12の運転を停止しつつ熱交換器20を経由して熱交換循環路4に冷媒液を循環させる運転である。追い掛け運転は、圧縮機12を運転することによって蒸発器11に貯留された冷媒液を冷却しながら熱交換器20を経由して熱交換循環路4に冷媒液を循環させる運転である。蓄冷運転、冷房運転及び追い掛け運転が選択的に実施されるように、制御装置24は、ポンプ15、ポンプ16、ポンプ18、三方弁17及び圧縮機12を制御する。制御装置24の働きによって、冷凍装置100を適切な運転モードで運転することができる。
(蓄冷運転)
 蓄冷運転では、蒸発器11に固体の冷媒が蓄えられる。蓄冷運転では、圧縮機12、ポンプ15及びポンプ16が運転される。三方弁17は、ポンプ16から吐出された冷媒液が熱交換器20をバイパスして蓄冷流路6に流れる状態に設定される。冷媒液が熱交換器20をバイパスして蓄冷流路6を流れるので、冷媒液の圧力損失を減らすことができる。つまり、ポンプ16に必要な動力を減らすことができ、ひいては冷凍装置100の効率が向上する。圧縮機12の回転数は、蒸発器11の内部の温度が冷媒の融点以下(例えば0℃以下)となるように調節される。蒸発器11の内部で冷媒液が凝固し、冷媒の潜熱(及び顕熱)に相当する冷凍能力が蓄えられる。蓄冷運転は、例えば、圧縮機12の運転時間が設定時間に達した場合に終了する。蓄冷センサ22の検出結果に基づいて蓄冷運転を終了すべきかどうかを判断してもよい。
(冷房運転)
 冷房運転では、蒸発器11に蓄えられた固体の冷媒が溶けることによって得られた低温の冷媒液を使用して室内の空気を冷却する。冷房運転では、ポンプ16及びポンプ18が運転される。三方弁17は、ポンプ16から吐出された冷媒液が熱交換器20を経由して熱交換循環路4を循環する状態に設定される。蒸発器11の内部で固体の冷媒が溶けることによって低温の冷媒液が生成する。低温の冷媒液は、ポンプ16によって熱交換器20に搬送され、吸熱循環路5の中の熱媒体(例えば、ブライン)を冷却する。熱交換器20で冷却された熱媒体は、ポンプ18によって負荷側熱交換器19に搬送され、室内の空気から熱を奪う。これにより、室内の温度が下がる。蒸発器11に貯留された冷媒液の温度が所定温度(例えば4℃)に達するまで冷房運転が選択される。先に説明したように、蒸発器11に貯留された冷媒液の温度は、蓄冷センサ22によって検出される。
 なお、冷房運転を終了すべきかどうかを判断するための指標として、蒸発器11に貯留された冷媒液の温度に代えて、別の温度を使用してもよい。例えば、蒸発器11の冷媒液出口から熱交換器20の入口までの流路4a~4cにおける冷媒液の温度又は流路4a~4cを形成している冷媒管の温度を上記の指標として使用できる。場合によっては、吸熱循環路5の上流端から負荷側熱交換器19の入口までの流路5a及び5bにおける熱媒体の温度を上記の指標として使用してもよい。さらに、これらの温度から蒸発器11に貯留された冷媒液の温度を推定し、推定された温度を上記の指標として使用してもよい。
(追い掛け運転)
 追い掛け運転では、圧縮機12、ポンプ15、ポンプ16及びポンプ18が運転される。三方弁17は、ポンプ16から吐出された冷媒液が熱交換器20を経由して熱交換循環路4を循環する状態に設定される。冷房負荷が存在し、かつ蒸発器11に貯留された冷媒液の温度が所定温度(例えば4℃)以上である場合、冷凍サイクル装置100の運転モードとして追い掛け運転が選択される。「冷房負荷が存在する場合」とは、冷房を継続する必要がある場合を意味する。追い掛け運転において、圧縮機12の回転数は、蒸発器11に貯留された冷媒液の温度が所定温度(例えば4℃)に近づくように調節される。もちろん、蒸発器11に貯留された冷媒液の温度に代えて、先に説明した別の温度を使用して圧縮機12の制御を行ってもよい。
 なお、冷房運転を実施しているときに蒸発器11に貯留された冷媒液の温度が上昇し、所定温度(例えば4℃)に達した場合、冷房運転を終了し、圧縮機12を起動することによって追い掛け運転を実施することができる。すなわち、運転モードが冷房運転から追い掛け運転へと切り替わる。
 以上の通り、本実施形態の冷凍装置100によれば、図8に示す従来の冷凍装置300と比較して、蓄氷/解氷設備一式及びポンプを1台削減できる。また、固体の冷媒を搬送するためのスラリーポンプも必須ではない。従って、部品点数を削減することによる冷凍サイクル装置100のコストの削減を期待できる。
 以下、冷凍装置のいくつかの変形例を説明する。図1に示す冷凍装置100と各変形例とで共通する要素には同じ参照符号を付し、それらの説明を省略する。すなわち、冷凍装置100に関する説明は、技術的に矛盾しない限り、以下の変形例にも適用されうる。
(変形例1)
 図2に示すように、本変形例の冷凍装置102は、運転モードを切り替えるときに使用される流路切替機構として、三方弁17に代えて、開閉弁26及び28を備えている。一方の開閉弁26は、熱交換循環路4と蓄冷流路6との分岐点Pよりも熱交換器20の近くで熱交換循環路4に設けられている。本実施形態では、分岐点Pよりも下流側において、ポンプ16の出口と熱交換器20の入口とを接続している流路4bに開閉弁26が設けられている。他方の開閉弁28は、蓄冷流路6に設けられている。これらの位置に開閉弁26及び28が設けられている場合、分岐点Pよりも上流側において熱交換循環路4にポンプ16を配置することによって、全ての運転モードを実施することができる。また、開閉弁は、三方弁よりも安価であり、信頼性も高い。特に、冷凍装置102が大気圧よりも低い圧力条件で運転される場合、信頼性をより高める観点で開閉弁を使用することが望ましい。
(変形例2)
 図3に示すように、本変形例の冷凍装置104は、吸熱循環路5を備えていない点で図1に示す冷凍装置100と相違する。すなわち、熱交換循環路4の熱交換器20を室内熱交換器として使用できる。吸熱循環路5が省略されているので、本変形例は、部品点数の観点で有利である。ただし、真空ラインをなるべく短くするための手段として、吸熱循環路5は有効である。冷凍装置104のその他の構造は、冷凍装置100と同じである。
(変形例3)
 図4に示すように、本変形例の冷凍装置106は、蒸発器11の内部に配置された複数の蓄熱体34を備えている。蓄熱体34は、例えば、容器と、容器に収容された潜熱蓄熱材とで構成されている。容器としては、ラミネートフィルムで作られた容器、樹脂で作られたカプセルなどが挙げられる。潜熱蓄熱材の融点は、冷媒の融点とは異なる。本変形例では、潜熱蓄熱材の融点は、冷媒の融点よりも高い。例えば、冷媒の融点が0℃であるとき、5~10℃の範囲に融点を有する潜熱蓄熱材を蓄熱体34に使用できる。本変形例によれば、冷媒の蒸発潜熱を利用して冷媒液及び蓄冷体34を冷却し、蓄熱体34に冷熱を蓄えることができる。特に、本変形例によれば、蒸発器11に貯留された冷媒液の温度が冷媒の融点よりも高い場合でも、蓄熱体34の潜熱蓄熱材を凝固させることができる。つまり、冷凍サイクルの低圧側の圧力を上げて圧縮機12の仕事量を減らすことができる。また、本変形例によれば、必要に応じて蓄熱体34の潜熱蓄熱材の種類を変更できるので、冷凍装置106の設計の自由度は高い。
(変形例4)
 図5に示すように、本変形例の冷凍装置108は、凝縮器13、放熱循環路3及び流路2cを備えていない点で図1に示す冷凍装置100と相違する。圧縮機12の出口圧力は大気圧に等しい。つまり、冷凍装置108には、圧縮された冷媒蒸気を大気下に放出する開放サイクルが採用されている。冷媒戻し路としての流路2cの代わりに、蒸発器11に冷媒液(例えば、水)を逐次補給するための冷媒補給路32が蒸発器11に接続されている。
(参考例1)
 図6に示すように、参考例1の冷凍装置110は、蓄冷流路6が熱交換循環路4から分離されている点で図1~5を参照して説明した冷凍装置100,102,104,106及び108と相違する。蓄冷流路6(蓄熱循環路)は、ポンプ30、流路6a及び流路6bによって形成されている。ポンプ30は、蓄冷流路6に専用のポンプである。蓄冷流路6の上流端は蒸発器11の底部に接続され、下流端は蒸発器11の上部に接続されている。他方、熱交換循環路4の構造は、三方弁17が省略されている点を除き、図1を参照して説明した通りである。ポンプ16は、熱交換循環路4に専用のポンプである。このように、本変形例において、蓄冷流路6は、熱交換循環路4と流路及びポンプを共有していない。本変形例によれば、三方弁、開閉弁などの流路切替機構が不要である。
 熱交換循環路4を循環して蒸発器11に戻された冷媒液が蒸発器11の内部において上から下に降り注がれる。同様に、蓄冷流路6(蓄冷循環路)を循環して蒸発器11に戻された冷媒液も蒸発器11の内部において上から下に降り注がれる。従って、本変形例の冷凍装置106は、先に説明した冷凍装置100と同じように3つの運転モードで運転されうる。
 ただし、熱交換器20よりも下流側において、蓄冷流路6が熱交換循環路4に合流していてもよい。すなわち、蓄冷流路6の流路6bが熱交換循環路4の流路4cに接続されていてもよい。この場合、蒸発器11の内部に冷媒液を戻すための流路を一本化できるので、蒸発器11の内部における配管の構造を簡素なものとすることができる。
 以下、本発明の第2実施形態を説明する。第1実施形態と第2実施形態とで共通する要素には同じ参照符号を付し、それらの説明を省略する。すなわち、第1実施形態に関する説明は、技術的に矛盾しない限り、第2実施形態にも適用されうる。
(第2実施形態)
 先に説明したように、第1実施形態の冷凍装置100は、冷媒の蒸発潜熱を利用し、蒸発器11の内部に熱(冷熱)を蓄えるように構成されている。これに対し、本実施形態の冷凍装置200は、冷媒の凝縮潜熱を利用し、凝縮器13の内部に熱を蓄えるように構成されている。
 図7に示すように、本実施形態において、放熱循環路3は、ポンプ15、熱交換器14(室内熱交換器)及び流路3a~3dによって形成されている。放熱循環路3には、三方弁38が配置されている。放熱循環路3は、熱交換器14を経由して、凝縮器13に貯留された冷媒液を循環させる循環路である。流路3a~3cは、熱交換器14の入口と凝縮器13(詳細には、凝縮器13の下部)とを接続する送り流路を形成している。流路3dは、熱交換器14の出口と凝縮器13(詳細には、凝縮器13の上部)とを接続する戻し流路を形成している。送り流路及び戻し流路は、蓄熱流路40によって接続されている。ポンプ15から吐出された冷媒液は、三方弁38の働きによって、熱交換器14及び蓄熱流路40のいずれかに選択的に供給される。すなわち、三方弁38は、冷媒液の流路を切り替える流路切替機構としての役割を担っている。
 冷凍装置200は、さらに、蓄熱センサ42を備えている。本実施形態において、蓄熱センサ42は、温度センサであり、凝縮器13に貯留された冷媒液の温度を測定するように、凝縮器13の内部に配置されている。
 蓄熱流路40は、凝縮器13に高温の冷媒液を蓄えるための蓄熱運転で使用される流路である。蓄熱流路40は、凝縮器13から流出した冷媒液が熱交換器14を経由することなく凝縮器13に戻されるように構成されている。本実施形態では、凝縮器13から流出した冷媒液が熱交換器14をバイパスして凝縮器13に戻されるように、放熱循環路3(熱交換循環路)の上流端と熱交換器14の入口との間で蓄熱流路40が放熱循環路3から分岐している。流路切替機構としての三方弁38は、凝縮器13から流出した冷媒液を流すべき流路として、放熱循環路3と蓄熱流路40とのいずれか一方を選択する役割を担う。言い換えれば、三方弁38は、凝縮器13から流出した冷媒液が熱交換器14に供給される運転モード(暖房運転又は追い掛け運転)と、凝縮器13から流出した冷媒液が蓄熱流路40に供給される運転モード(蓄熱運転)とを相互に切り替えるために使用される。熱交換器14をバイパスするように蓄熱流路40に冷媒液を流すことによって、冷媒液の圧力損失を減らすことができる。三方弁38などの流路切替機構によれば、所望の流路に冷媒液を選択的に流すことができるので、運転モードを確実に切り替えることができる。
 本実施形態においても、流路切替機構として、放熱循環路3と蓄熱流路40との分岐点に設けられた三方弁38が使用されている。先に説明したように、三方弁38は、2つの開閉弁で代用することが可能である。
 本実施形態において、蓄熱流路40は、ポンプ15の出口と熱交換器14の入口との間で放熱循環路3から分岐している。このような位置に分岐点がある場合、1つのポンプ15で蓄熱流路40及び熱交換器14に選択的に冷媒液を供給できる。このことは、ポンプの台数の削減、ひいては冷凍装置200のコストの削減に寄与する。もちろん、蓄熱流路40及び放熱循環路3のそれぞれに専用のポンプが設けられていてもよい。
 本実施形態において、蓄熱流路40は、熱交換器14の出口と放熱循環路3の下流端との間で放熱循環路3に合流している。このような構成によれば、放熱循環路3及び蓄熱流路40の合計長さを短くすることができる。ただし、蓄熱流路40の下流端が凝縮器13に直接接続されていてもよい。
 凝縮器13の内部には、複数の蓄熱体36が配置されている。蓄熱体36は、例えば、容器と、容器に収容された潜熱蓄熱材とで構成されている。容器としては、ラミネートフィルムで作られた容器、樹脂で作られたカプセルなどが挙げられる。例えば、40~50℃の範囲に融点を有する潜熱蓄熱材を蓄熱体36に使用できる。本実施形態によれば、冷媒の凝縮潜熱を利用して蓄熱体36を加熱し、蓄熱体36に熱を蓄えることができる。また、潜熱蓄熱材の潜熱を利用できるので、冷媒液の顕熱のみを利用する場合と比較して、凝縮器13を小型化できる可能性がある。ただし、冷凍装置200にとって、蓄熱体36は必須ではない。冷媒の凝縮潜熱を利用して凝縮器13の内部に高温の冷媒液を蓄え、冷媒液の顕熱を利用して後述する暖房運転を行ってもよい。
 なお、第1実施形態と同様、本実施形態においても、放熱循環路3とは別に熱交換循環路が設けられていてもよい。
(蓄熱運転)
 蓄熱運転では、凝縮器13に高温の冷媒液が蓄えられる。蓄熱運転では、圧縮機12、ポンプ15及びポンプ18が運転される。三方弁38は、ポンプ15から吐出された冷媒液が熱交換器14をバイパスして蓄熱流路40に流れる状態に設定される。冷媒液が熱交換器14をバイパスして蓄熱流路40を流れるので、冷媒液の圧力損失を減らすことができる。つまり、ポンプ15に必要な動力を減らすことができ、ひいては冷凍装置200の効率が向上する。凝縮器13の内部で冷媒蒸気が凝縮し、冷媒の凝縮潜熱に相当する加熱能力が蓄えられる。蓄熱運転は、例えば、圧縮機12の運転時間が設定時間に達した場合に終了する。蓄冷センサ42の検出結果に基づいて蓄熱運転を終了すべきかどうかを判断してもよい。
(暖房運転)
 暖房運転では、凝縮器13に蓄えられた高温の冷媒液及び蓄熱体36を使用して室内の空気を加熱する。暖房運転では、ポンプ15が運転される。三方弁38は、ポンプ15から吐出された冷媒液が熱交換器14を経由して放熱循環路3を循環する状態に設定される。高温の冷媒液は、ポンプ15によって熱交換器14に搬送され、室内の空気を加熱する。これにより、室内の温度が上がる。凝縮器13に貯留された冷媒液の温度が所定温度(例えば35℃)以下になるまで暖房運転が選択される。この所定温度は、蓄熱体36に使用された潜熱蓄熱材の融点よりも低い温度でありうる。つまり、暖房運転では、潜熱蓄熱材の潜熱を使用できる。
 なお、暖房運転を終了すべきかどうかを判断するための指標として、凝縮器13に貯留された冷媒液の温度に代えて、別の温度を使用してもよい。例えば、凝縮器13の冷媒液出口から熱交換器14の入口までの流路3a~3cにおける冷媒液の温度又は流路3a~3cを形成している冷媒管の温度を上記の指標として使用できる。さらに、これらの温度から凝縮器13に貯留された冷媒液の温度を推定し、推定された温度を上記の指標として使用してもよい。
(追い掛け運転)
 追い掛け運転では、圧縮機12、ポンプ15及びポンプ18が運転される。三方弁38は、ポンプ15から吐出された冷媒液が熱交換器14を経由して放熱循環路3を循環する状態に設定される。暖房負荷が存在し、かつ凝縮器13に貯留された冷媒液の温度が所定温度(例えば35℃)以下である場合、冷凍サイクル装置200の運転モードとして追い掛け運転が選択される。「暖房負荷が存在する場合」とは、暖房を継続する必要がある場合を意味する。
 なお、暖房運転を実施しているときに凝縮器13に貯留された冷媒液の温度が低下し、所定温度(例えば35℃)以下になった場合、暖房運転を終了し、圧縮機12を起動することによって追い掛け運転を実施することができる。すなわち、運転モードが暖房運転から追い掛け運転へと切り替わる。
 以上の通り、本実施形態の冷凍装置200によれば、部品点数を削減することによる冷凍サイクル装置200のコストの削減を期待できる。
 本明細書に開示された技術は、家庭用エアコン、業務用エアコンなどの空気調和装置に有用である。

Claims (14)

  1.  冷媒の潜熱を利用し、内部に蓄熱する容器と、
     前記容器に接続され、前記冷媒の潜熱を発生させる圧縮機と、
     熱交換器と、前記熱交換器の入口と前記容器とを接続する送り流路と、前記熱交換器の出口と前記容器とを接続する戻し流路とを有し、前記熱交換器を経由して、前記容器に貯留された冷媒液を循環させる熱交換循環路と、
     前記容器に蓄熱するための蓄熱運転で使用される流路であって、前記送り流路と前記戻し流路とを接続し、前記容器から流出した前記冷媒液が前記熱交換器を経由することなく前記容器に戻されるように構成された蓄熱流路と、
     前記蒸発器から流出した前記冷媒液を流すべき流路として、前記熱交換循環路と前記蓄熱流路とのいずれか一方を選択する流路切替機構と、
     を備えた、冷凍装置。
  2.  前記容器は、前記冷媒液を貯留する蒸発器であり、
     前記圧縮機は、前記蒸発器から冷媒蒸気を吸入することによって前記蒸発器に貯留された前記冷媒液を蒸発させ、前記蒸発器から吸入した前記冷媒蒸気を圧縮し、
     前記蓄熱流路は、前記冷媒液の蒸発潜熱を利用して前記蒸発器に冷熱を蓄えるための蓄冷運転で使用される蓄冷流路である、請求項1に記載の冷凍装置。
  3.  前記圧縮機は、前記蒸発器から前記冷媒蒸気を吸入することによって、前記蒸発器に貯留された前記冷媒液を前記蒸発器の内部で凝固させ、
     前記蓄冷運転において、前記蒸発器の内部に固体の前記冷媒が蓄えられる、請求項2に記載の冷凍装置。
  4.  前記熱交換循環路は、前記容器に接続された上流端を有し、
     前記蓄熱流路は、前記容器から流出した前記冷媒液が前記熱交換器をバイパスして前記容器に戻されるように、前記熱交換器の前記入口と前記熱交換循環路の前記上流端との間で前記熱交換循環路から分岐している流路である、請求項1に記載の冷凍装置。
  5.  前記流路切替機構は、前記熱交換循環路と前記蓄熱流路との分岐点に設けられた三方弁を含む、請求項4に記載の冷凍装置。
  6.  前記流路切替機構は、前記熱交換循環路と前記蓄熱流路との分岐点よりも前記熱交換器の近くで前記熱交換循環路に設けられた開閉弁と、前記蓄熱流路に設けられた他の開閉弁とを含む、請求項4に記載の冷凍装置。
  7.  前記熱交換循環路又は前記蓄熱流路を経由して前記容器に戻された前記冷媒液が前記容器の内部において上から下に降り注がれる、請求項1に記載の冷凍装置。
  8.  前記蒸発器に貯留された前記冷媒液を吸入及び吐出するポンプと、
     前記圧縮機の運転を停止しつつ前記熱交換器を経由して前記熱交換循環路に前記冷媒液を循環させる解凍運転と、前記圧縮機を運転することによって前記蒸発器に貯留された前記冷媒液を冷却しながら前記熱交換器を経由して前記熱交換循環路に前記冷媒液を循環させる追い掛け運転とが選択的に実施されるように、前記ポンプ及び前記圧縮機を制御する制御装置と、
     をさらに備えた、請求項2に記載の冷凍装置。
  9.  前記制御装置は、さらに、前記圧縮機を運転することによって前記蒸発器の内部で前記冷媒液を冷却及び凝固させながら前記蓄冷流路を経由して前記冷媒液を循環させる蓄冷運転が選択的に実施されるように、前記ポンプ及び前記圧縮機を制御する、請求項8に記載の冷凍装置。
  10.  前記熱交換器で冷却された熱媒体を加熱する吸熱用熱交換器を有し、前記吸熱用熱交換器を経由して前記熱媒体を循環させる吸熱循環路をさらに備えた、請求項2に記載の冷凍装置。
  11.  前記吸熱用熱交換器は、室内の冷房を行うために前記室内に配置されるべき室内熱交換器である、請求項10に記載の冷凍装置。
  12.  前記圧縮機によって圧縮された前記冷媒蒸気を凝縮させる凝縮器と、
     前記凝縮器に貯留された前記冷媒液又は前記凝縮器で加熱された他の熱媒体を冷却する放熱用熱交換器を有し、前記放熱用熱交換器を経由して前記冷媒液又は前記他の熱媒体を循環させる放熱循環路と、
     をさらに備えた、請求項2に記載の冷凍装置。
  13.  前記容器の内部に配置された蓄熱材をさらに備え、
     前記蓄熱体は、前記冷媒の融点とは異なる融点を有する潜熱蓄熱材を含む、請求項1に記載の冷凍装置。
  14.  前記容器は、前記圧縮機によって圧縮された前記冷媒蒸気を凝縮させる凝縮器であり、
     前記蓄熱流路は、前記冷媒液の凝縮潜熱を利用して前記凝縮器に熱を蓄えるための蓄熱運転で使用される、請求項1に記載の冷凍装置。
PCT/JP2014/003594 2013-07-17 2014-07-07 冷凍装置 WO2015008452A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015527165A JP5935232B2 (ja) 2013-07-17 2014-07-07 冷凍装置
US14/904,878 US10544968B2 (en) 2013-07-17 2014-07-07 Refrigeration device
EP14826827.9A EP3023710A4 (en) 2013-07-17 2014-07-07 COOLER
CN201480040162.6A CN105378393B (zh) 2013-07-17 2014-07-07 制冷装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013148658 2013-07-17
JP2013-148658 2013-07-17

Publications (1)

Publication Number Publication Date
WO2015008452A1 true WO2015008452A1 (ja) 2015-01-22

Family

ID=52345932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003594 WO2015008452A1 (ja) 2013-07-17 2014-07-07 冷凍装置

Country Status (5)

Country Link
US (1) US10544968B2 (ja)
EP (1) EP3023710A4 (ja)
JP (1) JP5935232B2 (ja)
CN (1) CN105378393B (ja)
WO (1) WO2015008452A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110017717A (zh) * 2019-04-18 2019-07-16 杭州联投能源科技有限公司 一种能量转换与储存系统及其工作方法
US11015964B2 (en) 2015-10-23 2021-05-25 Endress+Hauser Flowtec Ag Thermal flow measuring device and method for its manufacture

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6537986B2 (ja) * 2016-01-26 2019-07-03 伸和コントロールズ株式会社 温度制御システム
CN106247720A (zh) * 2016-08-31 2016-12-21 铜陵新梦想农牧科技有限公司 一种盐水快速加工成冰块的方法
CN111433549A (zh) 2017-07-17 2020-07-17 分形散热器技术有限责任公司 多重分形散热器系统及方法
US11835270B1 (en) * 2018-06-22 2023-12-05 Booz Allen Hamilton Inc. Thermal management systems
US11333402B1 (en) 2018-11-01 2022-05-17 Booz Allen Hamilton Inc. Thermal management systems
US11168925B1 (en) 2018-11-01 2021-11-09 Booz Allen Hamilton Inc. Thermal management systems
US11536494B1 (en) 2018-11-01 2022-12-27 Booz Allen Hamilton Inc. Thermal management systems for extended operation
US11835271B1 (en) 2019-03-05 2023-12-05 Booz Allen Hamilton Inc. Thermal management systems
US11629892B1 (en) 2019-06-18 2023-04-18 Booz Allen Hamilton Inc. Thermal management systems
US11752837B1 (en) 2019-11-15 2023-09-12 Booz Allen Hamilton Inc. Processing vapor exhausted by thermal management systems
US11561030B1 (en) 2020-06-15 2023-01-24 Booz Allen Hamilton Inc. Thermal management systems

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4003213A (en) * 1975-11-28 1977-01-18 Robert Bruce Cox Triple-point heat pump
JP2000204360A (ja) * 1999-01-08 2000-07-25 Kajima Corp 直膨式直接接触型製氷用の冷媒
JP2000337668A (ja) * 1999-05-25 2000-12-08 Fukuoka Prefecture 氷蓄熱方法及び装置
JP2002317978A (ja) * 2001-04-20 2002-10-31 Matsushita Electric Ind Co Ltd 氷蓄熱装置
JP2004340492A (ja) * 2003-05-16 2004-12-02 Sanken Setsubi Kogyo Co Ltd 冷房システム
JP2009019857A (ja) * 2007-07-13 2009-01-29 Kagoshima Univ 冷熱蓄熱用マイクロカプセルとこれを用いた氷蓄熱空調システム
JP2009299920A (ja) * 2008-06-10 2009-12-24 Masahiro Mikami 蓄熱装置、蓄熱システム及び空調装置
JP2012233616A (ja) * 2011-04-28 2012-11-29 Panasonic Corp 空気調和装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5755104A (en) * 1995-12-28 1998-05-26 Store Heat And Produce Energy, Inc. Heating and cooling systems incorporating thermal storage, and defrost cycles for same
ES2231937T3 (es) * 1998-02-23 2005-05-16 Mitsubishi Denki Kabushiki Kaisha Acondicionador de aire.
ATE322659T1 (de) * 2000-05-26 2006-04-15 Teknologisk Inst Integrierter entlüfter und kondensator
JP4454456B2 (ja) * 2004-09-30 2010-04-21 三建設備工業株式会社 水蒸気圧縮冷凍機の冷凍システム
JP4753312B2 (ja) 2006-12-27 2011-08-24 株式会社ササクラ 地下水を利用した空調装置
EP2102571B1 (en) * 2006-12-28 2018-08-29 Carrier Corporation Free-cooling capacity control for air conditioning systems
US20090071181A1 (en) * 2007-09-19 2009-03-19 Spanger Gerald S Evaporator unit
KR20110029139A (ko) 2008-05-28 2011-03-22 아이스 에너지, 인크. 격리된 증발기 코일을 갖는 축열 및 냉각 시스템
CN101737996B (zh) * 2008-11-17 2012-02-01 苏庆泉 热泵循环系统以及冷热联供方法
JP5199161B2 (ja) * 2009-03-27 2013-05-15 三機工業株式会社 水蒸気圧縮冷凍機システム
US8511109B2 (en) * 2009-07-15 2013-08-20 Whirlpool Corporation High efficiency refrigerator
CN201561602U (zh) * 2009-09-29 2010-08-25 深圳市沃尔核材股份有限公司 一种真空制冷装置
CN101788210A (zh) * 2010-01-27 2010-07-28 陈穗 冷凝器预减压水工质制冷制热系统
CN102620462B (zh) * 2011-01-31 2015-12-16 杭州三花研究院有限公司 热源驱动的真空制冷系统
CN102147165B (zh) * 2011-04-08 2012-10-24 魏仕英 水喷射-压力闪蒸真空冷水机
JP5923739B2 (ja) * 2011-04-28 2016-05-25 パナソニックIpマネジメント株式会社 冷凍装置
WO2013108637A1 (ja) * 2012-01-20 2013-07-25 パナソニック株式会社 冷凍サイクル装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4003213A (en) * 1975-11-28 1977-01-18 Robert Bruce Cox Triple-point heat pump
JP2000204360A (ja) * 1999-01-08 2000-07-25 Kajima Corp 直膨式直接接触型製氷用の冷媒
JP2000337668A (ja) * 1999-05-25 2000-12-08 Fukuoka Prefecture 氷蓄熱方法及び装置
JP2002317978A (ja) * 2001-04-20 2002-10-31 Matsushita Electric Ind Co Ltd 氷蓄熱装置
JP2004340492A (ja) * 2003-05-16 2004-12-02 Sanken Setsubi Kogyo Co Ltd 冷房システム
JP2009019857A (ja) * 2007-07-13 2009-01-29 Kagoshima Univ 冷熱蓄熱用マイクロカプセルとこれを用いた氷蓄熱空調システム
JP2009299920A (ja) * 2008-06-10 2009-12-24 Masahiro Mikami 蓄熱装置、蓄熱システム及び空調装置
JP2012233616A (ja) * 2011-04-28 2012-11-29 Panasonic Corp 空気調和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ELECTROHEAT, vol. 27, no. 4, 2006, pages 30 - 37
See also references of EP3023710A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11015964B2 (en) 2015-10-23 2021-05-25 Endress+Hauser Flowtec Ag Thermal flow measuring device and method for its manufacture
CN110017717A (zh) * 2019-04-18 2019-07-16 杭州联投能源科技有限公司 一种能量转换与储存系统及其工作方法
CN110017717B (zh) * 2019-04-18 2023-10-27 杭州联投能源科技有限公司 一种能量转换与储存系统及其工作方法

Also Published As

Publication number Publication date
CN105378393B (zh) 2017-06-09
EP3023710A1 (en) 2016-05-25
US20160201956A1 (en) 2016-07-14
JP5935232B2 (ja) 2016-06-15
JPWO2015008452A1 (ja) 2017-03-02
CN105378393A (zh) 2016-03-02
US10544968B2 (en) 2020-01-28
EP3023710A4 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
JP5935232B2 (ja) 冷凍装置
CN101208564B (zh) 热水供给装置
JP5327308B2 (ja) 給湯空調システム
CN100419349C (zh) 冷冻设备
JPWO2018025318A1 (ja) ヒートポンプ装置
JP2016044964A (ja) 冷凍サイクル装置
JP6344015B2 (ja) 給湯システム
JP2016035045A (ja) 臭化テトラn−ブチルアンモニウム水溶液
JP2015025563A (ja) 空気調和機
JP2011247476A (ja) デフロスト運転用の冷媒管を備えた冷凍サイクル
KR100881328B1 (ko) 연속 제상이 가능한 냉,난방 히트펌프장치
JP2011202939A (ja) 冷凍装置
JP2008082601A (ja) ヒートポンプ給湯装置
EP2678612B1 (en) Air conditioning system with ice storage
JP4661908B2 (ja) ヒートポンプユニット及びヒートポンプ給湯装置
JP2011027358A (ja) 暖房装置
JP2011106718A (ja) ヒートポンプチラー
CN107178823A (zh) 空调供热水系统
JP6613404B2 (ja) 冷凍システム
JP4273727B2 (ja) 冷凍システム
TW200815720A (en) Ice-storage constant-temperature air-conditioning system with coolant distribution function
JP3521011B2 (ja) 熱搬送装置
JP3063969U (ja) 回路型ヒ―トパイプのサ―マルバッテリ
JP2008057858A (ja) ヒートポンプ給湯機
JP2012193870A (ja) ハイブリッド冷凍車

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826827

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015527165

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14904878

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014826827

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE