WO2015005496A1 - 三次元形状造形物の製造方法 - Google Patents

三次元形状造形物の製造方法 Download PDF

Info

Publication number
WO2015005496A1
WO2015005496A1 PCT/JP2014/068846 JP2014068846W WO2015005496A1 WO 2015005496 A1 WO2015005496 A1 WO 2015005496A1 JP 2014068846 W JP2014068846 W JP 2014068846W WO 2015005496 A1 WO2015005496 A1 WO 2015005496A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
layer
contour
solidified layer
suction nozzle
Prior art date
Application number
PCT/JP2014/068846
Other languages
English (en)
French (fr)
Inventor
阿部 諭
武南 正孝
武 松本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201480002866.4A priority Critical patent/CN104768680B/zh
Priority to US14/439,523 priority patent/US9604282B2/en
Priority to EP14823771.2A priority patent/EP2902137B1/en
Priority to KR1020157011171A priority patent/KR101606426B1/ko
Publication of WO2015005496A1 publication Critical patent/WO2015005496A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/70Recycling
    • B22F10/73Recycling of powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/188Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/268Arrangements for irradiation using laser beams; using electron beams [EB]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/35Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/357Recycling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • B22F12/224Driving means for motion along a direction within the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/49Scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • B22F12/67Blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/247Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method for manufacturing a three-dimensional shaped object. More specifically, the present invention manufactures a three-dimensional shaped object in which a plurality of solidified layers are laminated and integrated by repeatedly performing formation of a solidified layer by irradiating a predetermined portion of the powder layer with a light beam. Regarding the method.
  • a method of manufacturing a three-dimensional shaped object by irradiating a powder material with a light beam is known.
  • the following steps (i) and (ii) are repeated to produce a three-dimensional shaped object (see Patent Document 1 or Patent Document 2).
  • (I) A step of forming a solidified layer by irradiating a predetermined portion of the powder layer with a light beam to sinter or melt and solidify the powder at the predetermined portion.
  • the obtained three-dimensional shaped object can be used as a mold.
  • an organic powder material such as resin powder or plastic powder
  • the obtained three-dimensional shaped object can be used as a model. According to such a manufacturing technique, it is possible to manufacture a complicated three-dimensional shaped object in a short time.
  • metal powder is used as a powder material and the obtained three-dimensional shaped object is used as a mold.
  • a powder layer 22 having a predetermined thickness t1 is formed on a modeling plate 21 (see FIG. 1A), and then a light beam is irradiated on a predetermined portion of the powder layer 22 to form a model.
  • a solidified layer 24 is formed on the plate 21 (see FIG. 1B).
  • a new powder layer 22 is laid on the formed solidified layer 24 and irradiated again with a light beam to form a new solidified layer.
  • the solidified layer is repeatedly formed in this way, a three-dimensional shaped object in which a plurality of solidified layers 24 are laminated and integrated can be obtained. Since the solidified layer corresponding to the lowermost layer can be formed in a state of being adhered to the modeling plate surface, the three-dimensional modeled object and the modeling plate are integrated with each other and can be used as a mold as they are.
  • the three-dimensional shaped object obtained by irradiation with a light beam has a relatively rough surface, and generally has a surface roughness of about several hundred ⁇ m Rz. This is because the powder adheres to the surface of the solidified layer.
  • the light beam energy is converted into heat, so that the irradiated powder is once melted and then fused in the cooling process.
  • the surrounding powder adheres to the solidified layer surface. Since such adhering powder brings about “surface roughness” to the three-dimensional shaped object, it is necessary to cut the surface of the three-dimensional shaped object. That is, it is necessary to subject the entire surface of the obtained three-dimensional shaped object to cutting.
  • the inventors of the present application have found a phenomenon in which a tool breakage trouble may occur more frequently when powder exists around a modeled object (see FIG. 17A). Although not limited by a specific theory, it is considered that one of the factors is that the load applied to the cutting tool increases due to the biting of the powder between the surface of the modeled object and the cutting tool.
  • an object of the present invention is to provide a powder sintering lamination method capable of reducing inconveniences such as “tool breakage trouble”.
  • a powder layer formation and a solidification layer formation are repeated in the steps (i) and (ii), and a tertiary having the following characteristics (a) to (c):
  • a method for producing an original shaped article is provided.
  • the surface of the solidified layer and / or the three-dimensional shaped object is subjected to a surface cutting process with a cutting tool at least once.
  • the powder around the solidified layer and / or the three-dimensional shaped object is removed by suction with a suction nozzle.
  • the surrounding powder of the three-dimensional shaped object is locally removed in consideration of the lowest level that can be cut by the cutting tool.
  • the suction nozzle is moved so that the movement trajectory of the suction nozzle becomes a trajectory along the following contour A, contour B, and region C to achieve local removal of powder.
  • A Contour A of the solidified layer cross section located at the lowest tool level of the cutting tool.
  • B The contour B of the upper surface of the solidified layer formed most recently.
  • C When it is assumed that the contour A and the contour B are projected on the same plane in the stacking direction of the solidified layer (or powder layer), “projected from the closed region A ′ formed by the projected contour A” A region C obtained by dividing the closed region B ′ ”formed by the contour B.
  • the suction nozzle When moving the suction nozzle, the suction nozzle may be moved horizontally above the “most recently formed powder layer”. For example, the separation distance between the tip portion of the suction nozzle and the “powder layer formed most recently” may be within 5 mm.
  • the suction nozzle may be moved so as to be offset from the locus. That is, the suction nozzle is moved so that the movement locus of the suction nozzle becomes a locus along “contour A ′ offset from the contour A”, “contour B ′ offset from the contour B”, and “region C”. May be.
  • the amount of offset may be determined according to the nozzle diameter of the suction nozzle and / or the tool diameter of the cutting tool.
  • the powder around the solidified layer and / or the three-dimensional shaped object is sucked and removed prior to the surface cutting process, the “because of the powder biting between the surface of the object and the cutting tool” "Tool breakage trouble” can be reduced.
  • the powder biting between the surface of the modeled object and the cutting tool is reduced, the load exerted on the modeled object surface during the cutting process can be reduced, and the surface smoothness of the modeled object can be improved.
  • the suction removal of the powder is performed only locally on the powder layer by the suction nozzle, it can be performed efficiently and has little influence on the manufacturing time of the three-dimensional shaped object.
  • the movement trajectory of the suction nozzle is easily obtained by considering the lowest level at which the cutting tool can be cut, so that more efficient suction removal is achieved in that respect.
  • FIG. 2A is a perspective view schematically showing an apparatus for carrying out the powder sintering lamination method
  • FIG. 2A an optical modeling combined processing machine equipped with a cutting mechanism
  • FIG. 2B an apparatus not equipped with a cutting mechanism.
  • powder layer refers to, for example, “metal powder layer made of metal powder” or “resin powder layer made of resin powder”.
  • the “predetermined portion of the powder layer” substantially means a region of the three-dimensional shaped article to be manufactured. Therefore, by irradiating the powder existing at the predetermined location with a light beam, the powder is sintered or melted and solidified to form a three-dimensional shaped object.
  • the “solidified layer” substantially means “sintered layer” when the powder layer is a metal powder layer, and substantially means “cured layer” when the powder layer is a resin powder layer. Meaning.
  • upward substantially means the direction in which the solidified layer is laminated at the time of manufacturing the modeled object
  • downward means the direction opposite to the “upward” (that is, (Vertical direction) means substantially.
  • the powder sintering lamination method as a premise of the production method of the present invention will be described.
  • the powder sintering lamination method will be described on the premise that the material powder is supplied from the material powder tank and the powder material is formed by leveling the material powder using a squeezing blade.
  • a description will be given by taking as an example a mode of composite processing in which cutting of a molded article is also performed (that is, assuming a mode shown in FIG. 2A instead of FIG. And).
  • 1, 3 and 4 show the function and configuration of an optical modeling composite processing machine capable of performing the powder sintering lamination method and cutting.
  • the optical modeling composite processing machine 1 mainly includes a powder layer forming unit 2, a modeling table 20, a modeling plate 21, a light beam irradiation unit 3, and a cutting unit 4.
  • the powder layer forming means 2 is for forming a powder layer by spreading a powder such as a metal powder and a resin powder with a predetermined thickness.
  • the modeling table 20 is a table that can be moved up and down in a modeling tank 29 whose outer periphery is surrounded by a wall 27.
  • the modeling plate 21 is a plate that is arranged on the modeling table 20 and serves as a foundation of a modeled object.
  • the light beam irradiation means 3 is a means for irradiating the light beam L to an arbitrary position.
  • the cutting means 4 is a machining means for cutting the surface (particularly the side surface) of the modeled object.
  • the powder layer forming means 2 includes “a powder table 25 that moves up and down in a material powder tank 28 whose outer periphery is surrounded by a wall 26” and “to form a powder layer 22 on a modeling plate”.
  • the squeezing blade 23 “.
  • the light beam irradiation means 3 includes a “light beam oscillator 30 that emits a light beam L” and a “galvanomirror 31 that scans (scans) the light beam L onto the powder layer 22 (scanning). Optical system) ”.
  • the light beam irradiating means 3 is a beam shape correcting means for correcting the shape of the light beam spot (for example, means having a pair of cylindrical lenses and a rotation driving mechanism for rotating the lenses around the axis of the light beam). Or an f ⁇ lens may be provided.
  • the cutting means 4 mainly includes “a milling head 40 that cuts the periphery of a modeled object” and “an XY drive mechanism 41 (41a, 41b) that moves the milling head 40 to a cutting position” (FIGS. 3 and 4). reference).
  • FIG. 5 shows a general operation flow of the stereolithography combined processing machine
  • FIG. 6 schematically shows a process of the stereolithography composite processing machine.
  • the operation of the optical modeling composite processing machine includes a powder layer forming step (S1) for forming the powder layer 22, a solidified layer forming step (S2) for forming the solidified layer 24 by irradiating the powder layer 22 with the light beam L, This is mainly composed of a surface cutting step (S3) for cutting the surface of the modeled object.
  • the powder layer forming step (S1) the modeling table 20 is first lowered by ⁇ t1 (S11). Next, after raising the powder table 25 by ⁇ t1, the squeezing blade 23 is moved in the horizontal direction indicated by the arrow a as shown in FIG.
  • the powder arranged on the powder table 25 is transferred onto the modeling plate 21 (S12), and the powder layer 22 is formed to be equal to the predetermined thickness ⁇ t1 (S13).
  • the powder in the powder layer include “iron powder having an average particle size of about 5 ⁇ m to 100 ⁇ m” and “powder of nylon, polypropylene, ABS, etc. having an average particle size of about 30 ⁇ m to 100 ⁇ m”.
  • the process proceeds to a solidified layer forming step (S2), where a light beam L is emitted from the light beam oscillator 30 (S21), and the light beam L is scanned to an arbitrary position on the powder layer 22 by the galvanometer mirror 31 (S22). .
  • the powder is melted and solidified to form a solidified layer 24 integrated with the modeling plate 21 (S23).
  • the light beam L include a carbon dioxide laser (about 500 W), an Nd: YAG laser (about 500 W), a fiber laser (about 500 W), and ultraviolet light.
  • the light beam L is not limited to being transmitted in the air, but may be transmitted by an optical fiber or the like.
  • the powder layer forming step (S1) and the solidified layer forming step (S2) are repeated until the thickness of the solidified layer 24 reaches a predetermined thickness obtained from the tool length of the milling head 40, and the solidified layer 24 is laminated (FIG. 1). (See (b)).
  • stacked will be integrated with the solidified layer which comprises the already formed lower layer in the case of sintering or melt-solidification.
  • the process proceeds to the surface cutting step (S3).
  • the cutting step is started by driving the milling head 40 (S31).
  • the tool (ball end mill) of the milling head 40 has a diameter of 1 mm and an effective blade length of 3 mm, a cutting process with a depth of 3 mm can be performed. Therefore, if ⁇ t1 is 0.05 mm, 60 solidified layers are formed. At that time, the milling head 40 is driven.
  • the milling head 40 is moved in the directions of the arrow X and the arrow Y by the XY drive mechanism 41 (41a, 41b), and a surface cutting process is performed on the modeled object composed of the laminated solidified layer 24 (S32). And when manufacture of a three-dimensional shape molded article has not ended yet, it will return to a powder layer formation step (S1). Thereafter, the three-dimensional shaped object is manufactured by repeating S1 to S3 and continuing the lamination of the solidified layer 24 (see FIG. 6).
  • the irradiation path of the light beam L in the solidified layer forming step (S2) and the cutting path in the surface cutting step (S3) are created in advance from three-dimensional CAD data.
  • a machining path is determined by applying contour line machining.
  • contour shape data of each cross section obtained by slicing STL data generated from a three-dimensional CAD model at an equal pitch for example, 0.05 mm pitch when ⁇ t1 is 0.05 mm
  • the present invention is characterized by an aspect related to the surface cutting treatment among the above-described powder sintering lamination methods.
  • the production method of the present invention includes at least one step of performing a surface cutting treatment with a cutting tool on the surface (particularly the side surface) after the solidified layer and / or the three-dimensional shaped object is obtained.
  • a surface cutting treatment with a cutting tool on the surface (particularly the side surface) after the solidified layer and / or the three-dimensional shaped object is obtained.
  • the powder around the solidified layer and / or the three-dimensional shaped object is removed by suction with a suction nozzle.
  • the powder around the three-dimensional shaped object is removed only locally in view of the lowest level at which the cutting tool can be cut (see FIG. 7).
  • the suction nozzle is moved to suck and remove the powder around the three-dimensional shaped object, and the path (trajectory) of the suction nozzle is determined by considering the “cutting tool lowest level”.
  • the cutting tool is a tool for performing a surface cutting process on the side surface of the solidified layer, that is, the surface (particularly the side surface portion) of the modeled article.
  • the cutting tool 80 is a tool attached to the tooling 82, for example, as shown in FIG.
  • Specific examples of the cutting tool include an end mill, for example, a carbide two-blade ball end mill, a square end mill, a radius end mill, and the like.
  • the lowest level at which the cutting tool can be cut refers to the height range (the range in the vertical direction along the stacking direction of the solidified layer) in which the side surface of the solidified layer / model can be cut. It means the height level located at the bottom. In other words, “the lowest level at which a cutting tool can be cut” indicates that the cutting tool is most effective when it is assumed that the cutting tool is inserted from above into the powder layer around the solidified layer / modeling object and cutting is performed. It means a height level that penetrates deeply. In other words, “the lowest level at which a cutting tool can be cut” corresponds to the tip level or the lower end level of the cutting tool during the surface cutting process.
  • the suction nozzle is a device that can suck the powder in the powder layer in a broad sense. Because of the “nozzle”, it is preferable that the portion used for sucking in the powder has a cylindrical shape (particularly, a thin cylindrical shape). (From this viewpoint, the suction nozzle in the present invention can also be referred to as a “cylindrical suction device”. ).
  • the suction nozzle 90 can be composed at least of a thin tube portion 92 and a suction device 94 connected to the thin tube portion.
  • the suction removal of the powder is performed prior to the surface cutting treatment, but the suction nozzle is preferably operated so as to move in the horizontal direction. That is, the suction nozzle is moved without substantially changing the height level of the suction nozzle (the vertical position level along the stacking direction of the solidified layer). This is because when the suction nozzle is moved above the “most recently formed powder layer and / or solidified layer”, the suction nozzle is moved without changing the vertical separation distance to the powder layer and / or solidified layer. It means to move.
  • the cutting tool 80 and the suction nozzle 90 are provided adjacent to each other.
  • the cutting tool and the suction nozzle are arranged so that the axis of the cutting tool 80 (longitudinal axis) and the axis of the suction nozzle 90 (longitudinal axis of the thin cylindrical portion 92) are substantially parallel. It is preferable that they are adjacent to each other.
  • the suction nozzle and the cutting tool are provided adjacent to each other, the suction nozzle is subjected to suction removal in an installed state adjacent to the cutting tool.
  • the horizontal movement path (movement trajectory) of the suction nozzle is obtained from the “cuttable lowest level”. That is, the “movement path for operating the suction nozzle at the time of powder removal” is obtained from “the lowest level that can be cut”.
  • the “suction nozzle moving path” is the minimum moving path required for the surface cutting process. In order to obtain such a minimum moving path, the “cuttable lowest level” is used.
  • the moving path of the suction nozzle may be along the following contour A, contour B, and region C (see FIG. 9).
  • A Contour A of the solidified layer cross section located at the lowest tool level of the cutting tool.
  • B The contour B of the upper surface of the solidified layer formed most recently.
  • C When it is assumed that the contour A and the contour B are projected on the same plane (a plane perpendicular to the stacking direction) in the stacking direction of the solidified layer, from the “closed region A ′ formed by the projected contour A” Region C obtained by excluding “closed region B ′ formed by projected contour B”.
  • the suction nozzle is moved so that the movement trajectory of the suction nozzle becomes a trajectory along the contour A, the contour B, and the region C, and the powder is removed only locally.
  • Contour A is a contour line of a solidified layer cross section (a cross section obtained by cutting the solidified layer along the horizontal direction) located at the lowest level of the cutting tool. As can be seen from the embodiment shown in FIG. 9, the contour A corresponds to the contour line of the solidified layer cross section at the height level at which the cutting tool penetrates most deeply.
  • Contour B is a contour line on the upper surface of the solidified layer formed most recently. As can be seen from the embodiment shown in FIG. 9, the contour B corresponds to the contour of the uppermost surface of the solidified layer formed last when the surface cutting process is performed. As shown in FIG.
  • region C is the same plane (XY plane) of “closed region A ′ formed by contour A” and “closed region B ′ formed by contour B” without changing the horizontal position. Indicates a local area obtained by excluding the closed area B ′ from the closed area A ′.
  • the closed area B ′ is a closed area because the shaped object may have a shape that becomes narrower in the stacking direction (upward) from the viewpoint of draft angle or the like. It can be positioned so as to be smaller than A ′ and included in the closed region A ′ on the same plane.
  • Such a movement trajectory can be easily obtained by considering the “cuttable lowest level” and utilizing the contour of the solidified layer at that level. That is, the “suction nozzle movement path” required for local powder removal can be easily obtained without going through a complicated calculation process.
  • the suction nozzle is moved in the horizontal direction at the time of suction removal, and the movement trajectory is along the contour A, the contour B, and the region C.
  • the movement locus drawn by the suction port portion of the horizontally moving suction nozzle is along the contour A, the contour B, and the region C (see FIGS. 9 and 10).
  • local powder removal is performed by moving the suction nozzle so that only the following three are included.
  • the suction nozzle is moved horizontally so that the suction port portion of the suction nozzle follows “contour A (particularly, a contour line obtained by shifting the contour A in the stacking direction without changing the position in the horizontal direction)”.
  • the suction nozzle is moved horizontally so that the suction port portion of the suction nozzle follows “contour B (particularly, a contour line obtained by shifting the contour B in the stacking direction without changing the position in the horizontal direction)”.
  • the suction nozzle of the suction nozzle moves horizontally so that the suction nozzle traces "region C (particularly, the region C is shifted in the stacking direction without changing the position in the horizontal direction).
  • the suction nozzle is horizontally moved so that the locus drawn by the mouth fills “region C (particularly, an area where region C is shifted in the stacking direction without changing the position in the horizontal direction).
  • the suction nozzle may be reciprocated while gradually shifting the position in the horizontal direction so that the locus drawn by the suction port portion completely fills the area.
  • FIG. 11 schematically shows a suction removal portion when viewed from above the solidified layer / modeling object.
  • the powder region sucked and removed by the suction nozzle is along the contour A (FIG. 11A), the contour B (FIG. 11B), and the region C (FIG. 11C). It becomes a local region (FIG. 11D).
  • FIG. 11A the contour A
  • FIG. 11B the contour B
  • FIG. 11C the region C
  • the movement trajectory of the suction nozzle may be a predetermined distance offset (offset in the horizontal direction).
  • the suction nozzle may be moved so as to have a locus along “contour A ′ offset from contour A”, “contour B ′ offset from contour B”, and “region C”. (See FIG. 13).
  • the suction effect by the suction nozzle can be effectively exerted on the region near the side surface of the solidified layer / modeled object, and more efficient suction removal is possible in that respect.
  • the powder removal is required to locally remove the powder present around the side of the modeling part to be subjected to the surface cutting process, and has a suction effect at a local location slightly outside from the side of the modeling part. Can be effective.
  • the degree of offset is preferably determined according to the nozzle diameter of the suction nozzle and / or the tool diameter of the cutting tool. That is, the offset amount preferably depends on the “nozzle diameter of the suction nozzle” and / or the “tool diameter of the cutting tool”. For example, the offset amount ⁇ may be increased as the nozzle diameter d 1 of the suction nozzle is increased, and the offset amount ⁇ may be decreased as the nozzle diameter d 1 is decreased (see FIG. 14). For example, when the suction nozzle diameter d 1 is 1.8 mm to 10 mm, the offset amount ⁇ may be about 0.9 mm to 5 mm, which is half of the offset amount ⁇ .
  • a mode in which the central axis of the trajectory T drawn by the central axis of the nozzle may be used. Therefore, as long as the nozzle diameter d 1 of the suction nozzle as or less large from 1.8 mm ⁇ 10 mm, accordingly, it may be respectively greater than or less the offset amount ⁇ from 0.9 mm ⁇ 5 mm. Similarly, the offset amount ⁇ may be increased as the tool diameter d 2 of the cutting tool is increased, and the offset amount ⁇ may be decreased as the tool diameter d 2 is decreased (see FIG. 14).
  • the offset amount [delta] may be 0.25 mm ⁇ approximately 1.5mm in half, thus offset
  • the trajectory may be a trajectory T central axis drawn by the central axis of the suction nozzle. Therefore, as long as the tool diameter d 2 of the cutting tool is one or less large from 0.5 mm ⁇ 3 mm, accordingly, it may be respectively greater than or less the offset amount ⁇ from 0.25 mm ⁇ 1.5 mm.
  • the suction removal of the suction nozzle may be performed close to the surface of the powder layer. That is, at the time of suction removal, the separation distance between the “tip portion of the suction nozzle (suction port portion)” and the “powder layer formed closest” can be made particularly suitable for suction removal. .
  • the separation distance between the “level of the tip of the suction nozzle (ie, the level of the suction port)” and the “powder layer formed most recently” Is preferably within 5 mm, that is, 0 (not including 0) to 5 mm.
  • the separation distance is within 1 mm, that is, 0 (not including 0) to 1 mm, and more preferably about 0.4 mm to 1.0 mm. This is because, as demonstrated in FIG. 15, if the suction nozzle is moved with the tip of the suction nozzle closer to the “most recently formed powder layer”, the powder around the solidified layer can be efficiently removed. is there.
  • the “uppermost formed powder layer” and the “most recently formed solidified layer” are substantially flush with each other before the powder is sucked and removed.
  • the separation distance between the “tip portion of the suction nozzle (suction port portion)” and the “powder layer formed closest” is the distance between the “tip portion of the suction nozzle (suction port portion)” and the “nearest point”. It is synonymous with the separation distance between the "solidified layer formed by”.
  • the suction nozzle is operated to move horizontally, for example, and the suction conditions (for example, the suction amount and the moving speed of the nozzle) are appropriately set according to the thickness (depth) of the powder layer at the suction location. You may change it. To illustrate this, when the thickness of the powder layer is larger (that is, when the powder layer at the portion to be removed by suction is deeper), the suction amount of the suction nozzle may be increased. When the thickness of the powder layer is larger (that is, when the powder layer to be sucked and removed is deeper), the scanning speed of the suction nozzle may be reduced.
  • the suction conditions for example, the suction amount and the moving speed of the nozzle
  • the suction conditions may be appropriately changed according to the shape of the modeled object that is close to the location to be sucked.
  • a place where the powder layer is "broad" in the surroundings ie, a place where a relatively large amount of powder is present
  • suction by the suction nozzle is performed at a place where the powder layer is "broad” in the surroundings.
  • the amount may be larger.
  • the suction amount of the suction nozzle is made smaller at locations where the powder layer is “narrow” in the vicinity, such as suction locations in the vicinity of the rib portion of the modeled object (that is, locations where there is relatively little powder around). You can do it.
  • the scanning speed of the suction nozzle may be further reduced at a location where the powder layer exists “broadly” around the suction location in the vicinity of the outer portion of the modeled object.
  • the scanning speed of the suction nozzle may be further increased at a location where the powder layer is “narrow” around the suction location in the vicinity of the rib portion of the modeled object.
  • the suction method can be appropriately controlled according to the powder layer depth to be sucked and the shape of the modeled object in consideration of the “Z direction (vertical direction)”.
  • the powder biting between the surface of the shaped object and the cutting tool is performed.
  • the resulting tool breakage trouble can be reduced.
  • the average period until tool breakage can be increased by about 80 to 400% (this is just an example, but the “tool breakage average interval” under a certain condition is increased from about 30 to 50 hours to about 140 to 150 hours. Can increase up to).
  • the powder biting between the surface of the modeled object and the cutting tool is reduced, the load exerted on the surface of the modeled object during the cutting process can be reduced, and the surface smoothness of the modeled object can be improved.
  • the surface roughness Rz of the portion subjected to surface cutting can be preferably 6 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 4 ⁇ m or less.
  • the “surface roughness Rz” means “the height from the highest line to the highest peak” and “the lowest valley bottom” in the roughness curve (in the present invention, “cross-sectional profile of the solidified layer surface”). It means the roughness scale obtained by adding together the “depth to”.
  • the program used in the present invention will be added. Specifically, a program for determining the scanning path (movement trajectory) of the suction nozzle, that is, a program for determining the powder exclusion path will be added.
  • a program for determining the scanning path (movement trajectory) of the suction nozzle that is, a program for determining the powder exclusion path will be added.
  • each contour line of the solidified layer cross section at heights h1 and h2 is projected on the XY plane and surrounded by the two projected contour lines.
  • An area is extracted (see FIG. 16A). Through such extraction, the following exclusion paths 1 and 2 (paths 1 and 2 for local removal of powder) will be required.
  • Exclusion path 1 A path that scans the contour lines of h1 and h2
  • Exclusion path 2 A path that scans the area surrounded by the two projected contour lines at a predetermined pitch Note that the powder layer thickness Can be obtained based on the intersection of the vertical plane including the exclusion path and the cross-sectional outline of each layer (see FIG. 16B).
  • the powder sucked and removed by the suction nozzle may be used again for the production of a shaped article. That is, the sucked and removed powder may be recycled.
  • the sucked and removed powder may be automatically sieved and returned to the material powder tank.
  • the suction removal by the suction nozzle may be performed at the time of forming the solidified layer and / or the surface cutting process.
  • the powder may be removed by suction during solidified layer formation or surface cutting treatment. In such a modified mode, it is possible to remove the fumes generated during the formation of the solidified layer, and additionally or alternatively to remove the suspended powder and chips (chips) generated during the surface cutting process.
  • the amount of inert gas injected into the chamber may be increased during suction removal by the suction nozzle. This is because an atmospheric gas (for example, a gas containing nitrogen gas) is sucked into the suction nozzle during suction removal, and the oxygen concentration in the chamber can be increased. That is, by increasing the inert gas injection amount, the inert gas atmosphere can be suitably maintained during suction removal.
  • an atmospheric gas for example, a gas containing nitrogen gas
  • the resulting three-dimensional shaped article is a plastic injection mold, a press mold, a die-cast mold, It can be used as a mold such as a casting mold or a forging mold.
  • the powder layer is an organic resin powder layer and the solidified layer is a cured layer
  • the obtained three-dimensional shaped article can be used as a resin molded product.
  • Powder layer formation means 3
  • Light beam irradiation means 4
  • Cutting means 19
  • Modeling table (support table) 21
  • modeling plate 22
  • powder layer for example, metal powder layer or resin powder layer
  • Blade for squeezing 24
  • Solidified layer for example, sintered layer or hardened layer
  • three-dimensional shaped object 25 obtained therefrom
  • Powder table 26 Wall part 27 of powder material tank 27
  • Wall part 28 of modeling tank 28
  • Powder material tank 29
  • Light beam oscillator 31
  • Galvano mirror 32
  • Reflection mirror 33
  • Condensing lens 40
  • Milling head 41
  • XY drive mechanism 41a X axis drive unit
  • 41b Y axis drive unit 42
  • Tool magazine 50
  • Light transmission window 80
  • Cutting tool 82
  • Tooling 90
  • Suction nozzle 92
  • Suction nozzle Thin tube part
  • Suction instrument 96 Connecting

Abstract

 "工具折損トラブル"などの不都合を減じることができる粉末焼結積層法を提供すること。本発明の製造方法は、(i)粉末層の所定箇所に光ビームを照射して前記所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程、および、(ii)得られた固化層の上に新たな粉末層を形成し、その新たな粉末層の所定箇所に光ビームを照射して更なる固化層を形成する工程によって粉末層形成および固化層形成を繰り返して行い、固化層および/または三次元形状造形物が得られた後において固化層および/または三次元形状造形物の表面に切削工具で表面切削処理を施す工程を少なくとも1回含み、表面切削処理に先立っては、固化層および/または三次元形状造形物の周囲の粉末を吸引ノズルで吸引除去し、吸引除去においては、切削工具の切削可能最下レベルを考慮して三次元形状造形物の周囲の粉末を局所的に除去し、また、吸引ノズルの移動軌跡が、(a)切削工具の工具最下レベルに位置する固化層断面の輪郭A、(b)最直近にて形成された固化層の上面の輪郭B、および、(c)固化層の積層方向に向かって輪郭Aと輪郭Bとを同一平面に投影することを想定した際、投影した輪郭Aが成す閉領域A'から投影した輪郭Bが成す閉領域B'を除して得られる領域Cに沿った軌跡となるように吸引ノズルを移動操作させて粉末を局所的に除去することを特徴とする、三次元形状造形物の製造方法である。

Description

三次元形状造形物の製造方法
 本発明は、三次元形状造形物の製造方法に関する。より詳細には、本発明は、粉末層の所定箇所に光ビームを照射して固化層を形成することを繰り返し実施することによって複数の固化層が積層一体化した三次元形状造形物を製造する方法に関する。
 従来より、粉末材料に光ビームを照射して三次元形状造形物を製造する方法(一般的には「粉末焼結積層法」と称される)が知られている。かかる方法では、以下の工程(i)および(ii)を繰り返して三次元形状造形物を製造している(特許文献1または特許文献2参照)。
 (i)粉末層の所定箇所に光ビームを照射することよって、かかる所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程。
 (ii)得られた固化層の上に新たな粉末層を敷いて同様に光ビームを照射して更に固化層を形成する工程。
 粉末材料として金属粉末やセラミック粉末などの無機質の粉末材料を用た場合では、得られた三次元形状造形物を金型として用いることができる。一方、樹脂粉末やプラスチック粉末などの有機質の粉末材料を用いた場合では、得られた三次元形状造形物をモデルとして用いることができる。このような製造技術に従えば、複雑な三次元形状造形物を短時間で製造することが可能である。
 粉末材料として金属粉末を用い、得られる三次元形状造形物を金型として用いる場合を例にとる。図1に示すように、まず、所定の厚みt1の粉末層22を造形プレート21上に形成した後(図1(a)参照)、光ビームを粉末層22の所定箇所に照射して、造形プレート21上において固化層24を形成する(図1(b)参照)。そして、形成された固化層24の上に新たな粉末層22を敷いて再度光ビームを照射して新たな固化層を形成する。このように繰り返し固化層を形成すると、複数の固化層24が積層一体化した三次元形状造形物を得ることができる。最下層に相当する固化層は造形プレート面に接着した状態で形成され得るので、三次元形状造形物と造形プレートとは相互に一体化した状態となり、そのまま金型として用いることができる。
 光ビームの照射で得られる三次元形状造形物は、その表面が比較的粗く、一般的に数100μmRz程度の表面粗さを有している。これは、固化層表面に粉末が付着するからである。固化層形成時では、光ビーム・エネルギーが熱に変換されるので照射粉末がいったん溶融してから冷却過程で粉末同士が融着する。この際、光ビームが照射されるポイントの周辺の粉末領域の温度も上昇し得るため、当該周辺の粉末が固化層表面に付着してしまう。かかる付着粉末は三次元形状造形物に“表面粗さ”をもたらすことになるので、三次元形状造形物の表面を切削加工する必要がある。即ち、得られる三次元形状造形物の表面を全体的に切削加工に付す必要がある。
特表平1−502890号公報 特開2000−73108号公報
 粉末焼結積層法の切削加工処理において、本願発明者らは、造形物周囲に粉末が存在すると、工具折損トラブルがより多く発生し得るといった現象を見出した(図17(a)参照)。特定の理論に拘束されるわけではないが、造形物表面と切削工具との間に粉末が噛み込むことで切削工具に掛かる負荷が増加することが要因の1つとして考えられる。
 また、造形物周囲に粉末が存在すると、造形物表面に不必要な負荷がもたらされ、造形物の表面平滑性が損なわれ得るといった現象も見出した(図17(b)参照)。これも、造形物表面と切削工具との間の粉末の噛込みが原因の1つとして考えられる。
 本発明は、かかる事情に鑑みてされたものである。即ち、本発明の課題は、“工具折損トラブル”などの不都合を減じることができる粉末焼結積層法を提供することである。
 上記課題を解決するために、本発明では、(i)および(ii)の工程で粉末層形成および固化層形成を繰り返して行い、以下の如くの(a)~(c)の特徴を有する三次元形状造形物の製造方法が提供される。
 (i)粉末層の所定箇所に光ビームを照射して当該所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程。
 (ii)得られた固化層の上に新たな粉末層を形成し、その新たな粉末層の所定箇所に光ビームを照射して更なる固化層を形成する工程。
 (a)固化層および/または三次元形状造形物が得られた後において固化層および/または三次元形状造形物の表面に切削工具で表面切削処理を施す工程を少なくとも1回含む。
 (b)表面切削処理に先立っては、固化層および/または三次元形状造形物の周囲の粉末を吸引ノズルで吸引除去する。
 (c)吸引除去においては、切削工具の切削可能最下レベルを考慮して、三次元形状造形物の周囲の粉末を局所的に除去する。
 ある好適な態様では、吸引ノズルの移動軌跡が以下の輪郭A、輪郭Bおよび領域Cに沿った軌跡となるように吸引ノズルを移動操作させて粉末の局所的除去を達成する。
 (a)切削工具の工具最下レベルに位置する固化層断面の輪郭A。
 (b)最直近にて形成された固化層の上面の輪郭B。
 (c)固化層(又は粉末層)の積層方向に向かって輪郭Aと輪郭Bとを同一平面に投影することを想定した際、「投影した輪郭Aが成す閉領域A’」から「投影した輪郭Bが成す閉領域B’」を除して得られる領域C。
 吸引ノズルの移動操作に際しては「最直近にて形成された粉末層」の上方において吸引ノズルを水平移動するように操作してよい。例えば、吸引ノズルの先端部と「最直近にて形成された粉末層」との間の離隔距離は5mm以内にしてよい。
 吸引ノズルは、上記軌跡からオフセットした位置となるように移動操作してもよい。即ち、吸引ノズルの移動軌跡が「輪郭Aからオフセットさせた輪郭A’」、「輪郭Bからオフセットさせた輪郭B’」および「領域C」に沿った軌跡となるように吸引ノズルを移動操作してもよい。オフセットの量は、吸引ノズルのノズル径および/または切削工具の工具径に応じて決定してよい。
 本発明に従えば、固化層および/または三次元形状造形物の周囲の粉末が表面切削処理に先立って吸引除去されるので、“造形物表面と切削工具との間の粉末噛込みに起因した工具折損トラブル”を減じることができる。また、造形物表面と切削工具との間の粉末噛込みが減じられるので、切削処理に際して造形物表面に及ぼされる負荷を減少させることができ、造形物の表面平滑性を向上させることができる。
 粉末の吸引除去は吸引ノズルによって粉末層に局所的にのみ施すので、効率的に行うことができ、三次元形状造形物の製造時間への影響は少ない。特に本発明では、切削工具の切削可能最下レベルを考慮することによって吸引ノズルの移動軌跡を簡易に求めるので、その点で更に効率的な吸引除去が達成される。
粉末焼結積層法を説明するための断面図 粉末焼結積層法を実施するための装置を模式的に示した斜視図(図2(a):切削機構を備えた光造形複合加工機、図2(b):切削機構を備えていない装置) 粉末焼結積層法が行われる態様を模式的に示した斜視図 粉末焼結積層法を表面切削処理と併せて実施する装置(光造形複合加工機)の構成を模式的に示した斜視図 光造形複合加工機の動作のフローチャート 光造形複合加工機によるプロセスを経時的に示した模式図 本発明の概念を模式的に表した図 切削工具および吸引ノズルの配置態様を示す模式図 「輪郭A、輪郭Bおよび領域Cに沿った吸引ノズルの移動軌跡(移動経路)」を説明するための模式図 「輪郭A、輪郭Bおよび領域Cに沿った吸引ノズルの移動軌跡(移動経路)」を説明するための模式図 固化層・造形物の上方から見た場合の吸引除去部分を示した模式図 吸引除去に付される部分(最直近にて形成された固化層の上面と同一面で捉えた場合)を示した模式図 吸引ノズルの移動軌跡のオフセット態様を示す模式図 オフセット量をノズル径・工具径に応じて決定する態様を示した模式図 本発明に関連する実証実験を説明するための図・グラフ 粉末の排除経路に関連した説明を行うための模式図 本願発明者らが見出した現象を説明するための図・写真図
 以下では、図面を参照して本発明をより詳細に説明する。図面における各種要素の形態・寸法などは、あくまでも例示であって、実際の形態・寸法を反映するものではないことに留意されたい。
 本明細書において「粉末層」とは、例えば「金属粉末から成る金属粉末層」または「樹脂粉末から成る樹脂粉末層」を指している。また「粉末層の所定箇所」とは、製造される三次元形状造形物の領域を実質的に意味している。従って、かかる所定箇所に存在する粉末に対して光ビームを照射することによって、その粉末が焼結又は溶融固化して三次元形状造形物を構成することになる。更に「固化層」とは、粉末層が金属粉末層である場合には「焼結層」を実質的に意味しており、粉末層が樹脂粉末層である場合には「硬化層」を実質的に意味している。
 本明細書において「上方」とは造形物の製造時にて固化層が積層される方向を実質的に意味している一方、「下方」とは、当該“上方”と真逆の方向(即ち、鉛直方向)を実質的に意味している。
[粉末焼結積層法]
 まず、本発明の製造方法の前提となる粉末焼結積層法について説明する。説明の便宜上、材料粉末タンクから材料粉末を供給し、スキージング・ブレードを用いて材料粉末を均して粉末層を形成する態様を前提として粉末焼結積層法を説明する。また、粉末焼結積層法に際しては造形物の切削加工をも併せて行う複合加工の態様を例に挙げて説明する(つまり、図2(b)ではなく図2(a)に表す態様を前提とする)。図1、3および4には、粉末焼結積層法と切削加工とを実施できる光造形複合加工機の機能および構成が示されている。光造形複合加工機1は、粉末層形成手段2と、造形テーブル20と、造形プレート21と、光ビーム照射手段3と、切削手段4とを主として備えている。粉末層形成手段2は、金属粉末および樹脂粉末などの粉末を所定の厚みで敷くことによって粉末層を形成するためのものである。造形テーブル20は、外周が壁27で囲まれた造形タンク29内において上下に昇降できるテーブルである。造形プレート21は、造形テーブル20上に配され造形物の土台となるプレートである。光ビーム照射手段3は、光ビームLを任意の位置に照射するための手段である。切削手段4は、造形物表面(特に側面)を削るための機械加工手段である。
 粉末層形成手段2は、図1に示すように、「外周が壁26で囲まれた材料粉末タンク28内において上下に昇降する粉末テーブル25」と「造形プレート上に粉末層22を形成するためのスキージング・ブレード23」とを主として有して成る。光ビーム照射手段3は、図3および図4に示すように、「光ビームLを発する光ビーム発振器30」と「光ビームLを粉末層22の上にスキャニング(走査)するガルバノミラー31(スキャン光学系)」とを主として有して成る。光ビーム照射手段3には、光ビームスポットの形状を補正するビーム形状補正手段(例えば一対のシリンドリカルレンズと、かかるレンズを光ビームの軸線回りに回転させる回転駆動機構とを有して成る手段)やfθレンズなどが具備されていてよい。切削手段4は「造形物の周囲を削るミーリングヘッド40」と「ミーリングヘッド40を切削箇所へと移動させるXY駆動機構41(41a,41b)」とを主として有して成る(図3および図4参照)。
 光造形複合加工機1の動作を図1、図5および図6を参照して詳述する。図5は、光造形複合加工機の一般的な動作フローを示しており、図6は、光造形複合加工機のプロセスを模式的に示している。
 光造形複合加工機の動作は、粉末層22を形成する粉末層形成ステップ(S1)と、粉末層22に光ビームLを照射して固化層24を形成する固化層形成ステップ(S2)と、造形物の表面を切削する表面切削ステップ(S3)とから主に構成されている。粉末層形成ステップ(S1)では、最初に造形テーブル20をΔt1下げる(S11)。次いで、粉末テーブル25をΔt1上げた後、図1(a)に示すように、スキージング・ブレード23を、矢印aの水平方向に移動させる。これにより、粉末テーブル25に配されていた粉末を造形プレート21上へと移送させつつ(S12)、所定厚みΔt1に均して粉末層22を形成する(S13)。粉末層の粉末としては、例えば「平均粒径5μm~100μm程度の鉄粉」および「平均粒径30μm~100μm程度のナイロン、ポリプロピレン、ABS等の粉末」を挙げることができる。次に、固化層形成ステップ(S2)に移行し、光ビーム発振器30から光ビームLを発し(S21)、光ビームLをガルバノミラー31によって粉末層22上の任意の位置にスキャニングする(S22)。これにより、粉末を溶融させ、固化させて造形プレート21と一体化した固化層24を形成する(S23)。光ビームLとしては、例えば炭酸ガスレーザ(500W程度)、Nd:YAGレーザ(500W程度)、ファイバレーザ(500W程度)および紫外線などを挙げることができる。光ビームLは、空気中を伝達させることに限定されず、光ファイバーなどで伝送させてもよい。
 固化層24の厚みがミーリングヘッド40の工具長さ等から求めた所定厚みになるまで粉末層形成ステップ(S1)と固化層形成ステップ(S2)とを繰り返し、固化層24を積層する(図1(b)参照)。尚、新たに積層される固化層は、焼結又は溶融固化に際して、既に形成された下層を成す固化層と一体化することになる。
 積層した固化層24の厚みが所定の厚みになると、表面切削ステップ(S3)へと移行する。図1および図6に示すような態様ではミーリングヘッド40を駆動させることによって切削ステップの実施を開始している(S31)。例えば、ミーリングヘッド40の工具(ボールエンドミル)が直径1mm、有効刃長さ3mmである場合、深さ3mmの切削加工ができるので、Δt1が0.05mmであれば、60層の固化層を形成した時点でミーリングヘッド40を駆動させる。XY駆動機構41(41a,41b)によってミーリングヘッド40を矢印X及び矢印Y方向に移動させ、積層した固化層24から成る造形物に対して表面切削処理を施す(S32)。そして、三次元形状造形物の製造が依然終了していない場合では、粉末層形成ステップ(S1)へ戻ることになる。以後、S1乃至S3を繰り返して更なる固化層24の積層を継続することによって、三次元形状造形物の製造を行う(図6参照)。
 固化層形成ステップ(S2)における光ビームLの照射経路と、表面切削ステップ(S3)における切削加工経路とは、予め三次元CADデータから作成しておく。この時、等高線加工を適用して加工経路を決定する。例えば、固化層形成ステップ(S2)では、三次元CADモデルから生成したSTLデータを等ピッチ(例えばΔt1を0.05mmとした場合では0.05mmピッチ)でスライスした各断面の輪郭形状データを用いる。
[本発明の製造方法]
 本発明は、上述した粉末焼結積層法のなかでも、表面切削処理に関連する態様に特徴を有している。
 本発明の製造方法は、固化層および/または三次元形状造形物が得られた後においてそれらの表面(特に側面)に切削工具で表面切削処理を施す工程を少なくとも1回含んでいる。表面切削処理に先立っては固化層および/または三次元形状造形物の周囲の粉末を吸引ノズルで吸引除去することを実施する。特に本発明では、かかる吸引除去に際して、切削工具の切削可能最下レベルに鑑みて三次元形状造形物の周囲の粉末を局所的にのみ除去する(図7参照)。
 即ち、吸引ノズルを移動させて三次元形状造形物の周囲の粉末を吸引除去するが、かかる吸引ノズルの移動の経路(軌跡)は“切削工具の切削可能最下レベル”を考慮することによって求める。
 切削工具は、固化層の側面、即ち、造形物の表面(特に側面部分)に対して表面切削処理を施すための工具である。切削工具80は、図8に示されるように例えばツーリング82に取り付けられた工具である。具体的な切削工具としては、エンドミル、例えば超硬素材の二枚刃ボールエンドミル、スクエアエンドミル、ラジアスエンドミルなどを挙げることができる。
 「切削工具の切削可能最下レベル」とは、固化層・造形物の側面に対して切削処理を施すことができる高さ範囲(固化層の積層方向に沿った上下方向における範囲)のうちで最も下方に位置する高さレベルのことを意味している。換言すれば、「切削工具の切削可能最下レベル」は、固化層・造形物の周囲の粉末層に対して上方から切削工具を挿入して切削することを想定した場合、かかる切削工具が最も深く侵入する高さレベルのことを意味している。更に別の表現でいえば、「切削工具の切削可能最下レベル」は、表面切削処理時における切削工具の先端レベルないしは下端レベルに相当する。
 吸引ノズルとは、広義には、粉末層の粉末を吸い込むことができるデバイスである。“ノズル”ゆえ、粉末の吸込みに供する部分が筒形態(特に細筒形態)を有していることが好ましい(かかる観点から、本発明における吸引ノズルは“筒状吸引デバイス”と称すこともできる)。例えば図8に示されるように、吸引ノズル90は、細筒部92と、その細筒部に接続された吸引器具94とから少なくとも構成され得る。
 粉末の吸引除去は、表面切削処理に先立って行われるが、吸引ノズルは水平方向に動かすように操作することが好ましい。つまり、吸引ノズルの高さレベル(固化層の積層方向に沿った垂直方向の位置レベル)を実質的に変えることなく吸引ノズルを移動させる。これは、「最直近にて形成された粉末層および/または固化層」の上方において吸引ノズルを移動させる際に当該粉末層および/または固化層に対する垂直方向の離隔距離を変えずに吸引ノズルを移動させることを意味している。
 図8に示されるように、例えば切削工具80と吸引ノズル90とは相互に隣接して設けられている。具体的には、図示されるように切削工具80の軸(長手方向軸)と吸引ノズル90の軸(細筒部92の長手方向軸)とが略平行となるように切削工具および吸引ノズルが相互に隣接していることが好ましい。このように吸引ノズルと切削工具とが相互に隣接して設けられる場合、切削工具と隣接した設置状態で吸引ノズルが吸引除去に供されることになる。
 本発明では、吸引ノズルの水平方向の移動経路(移動軌跡)は“切削可能最下レベル”から求める。つまり、“切削可能最下レベル”から「粉末除去時に吸引ノズルを操作するための移動経路」を求める。特に本発明においては「局所的な粉末除去」ゆえに「吸引ノズルの移動経路」は、表面切削処理に必要とされる最小限の移動経路となっている。かかる最小限の移動経路を求めるべく“切削可能最下レベル”を利用する。
 例えば、吸引ノズルの移動経路は、以下の輪郭A、輪郭Bおよび領域Cに沿ったものであってよい(図9参照)。
 (a)切削工具の工具最下レベルに位置する固化層断面の輪郭A。
 (b)最直近にて形成された固化層の上面の輪郭B。
 (c)固化層の積層方向に向かって輪郭Aと輪郭Bとを同一平面(積層方向に垂直な平面)に投影することを想定した際、「投影した輪郭Aが成す閉領域A’」から「投影した輪郭Bが成す閉領域B’」を除いて得られる領域C。
 かかる態様では、吸引ノズルの移動軌跡が輪郭A、輪郭Bおよび領域Cに沿った軌跡となるように吸引ノズルを移動操作させて粉末を局所的にのみ除去する。
 「輪郭A」は、切削工具の工具最下レベルに位置する固化層断面(水平方向に沿って固化層を切り取った断面)の輪郭線である。図9に示す態様から分かるように、輪郭Aは、切削工具が最も深く侵入する高さレベルの固化層断面の輪郭線に相当する。
 「輪郭B」は、最直近にて形成された固化層の上面の輪郭線である。図9に示す態様から分かるように、輪郭Bは、表面切削処理を施す時点において最後に形成された固化層の最上面の輪郭線に相当する。
 「領域C」は、図9に示すように「輪郭Aが成す閉領域A’」と「輪郭Bが成す閉領域B’」とを水平方向の位置を変えずに同一平面(XY平面)上で重ね合わせた際、閉領域A’から閉領域B’を除いて得られる局所的領域のことを指している。尚、三次元造形物が最終的に金型として用いられる場合、抜き勾配などの観点から積層方向(上方)へと幅狭くなる形状を造形物が有し得るので、閉領域B’は閉領域A’よりも小さく、かつ、上記同一平面上で閉領域A’に含まれるように位置付けられ得る。
 このような移動軌跡は、“切削可能最下レベル”を考慮して、そのレベルにおける固化層の輪郭を利用することによって簡易に得ることができる。つまり、複雑な算出過程を経ることなく、局所的な粉末除去に必要とされる「吸引ノズルの移動経路」を簡易に得ることができる。
 上述したように吸引ノズルは吸引除去時において水平方向に移動させるが、その移動軌跡が輪郭A、輪郭Bおよび領域Cに沿ったものとなる。これは、水平移動する吸引ノズルの吸引口部が描く移動軌跡が、輪郭A、輪郭Bおよび領域Cに沿ったものとなることを意味している(図9および図10参照)。より具体的には、以下の3つのみが含まれるように吸引ノズルを移動操作して局所的な粉末除去を実施する。
 ・吸引ノズルの吸引口部が「輪郭A(特に水平方向の位置を変えずに輪郭Aを積層方向へとシフトさせた輪郭線)」をなぞるように吸引ノズルを水平移動させる。
 ・吸引ノズルの吸引口部が「輪郭B(特に水平方向の位置を変えずに輪郭Bを積層方向へとシフトさせた輪郭線)」をなぞるように吸引ノズルを水平移動させる。
 ・吸引ノズルの吸引口部が「領域C(特に水平方向の位置を変えずに領域Cを積層方向へとシフトさせたエリア」をなぞるように吸引ノズルを水平移動させる。つまり、吸引ノズルの吸引口部が描く軌跡が「領域C(特に水平方向の位置を変えずに領域Cを積層方向へとシフトさせたエリア」を塗りつぶすように吸引ノズルを水平移動させる。1つ例示すると、吸引ノズルの吸引口部が描く軌跡が前記エリアを隈なく塗りつぶすことになるように、水平方向に位置を漸次ずらしながら吸引ノズルを往復運動させてよい。
 図11には、固化層・造形物の上方から見た場合の吸引除去部分が模式的に示されている。かかる図から分かるように、吸引ノズルによって吸引除去される粉末領域は、輪郭A(図11(a))、輪郭B(図11(b))および領域C(図11(c))に沿った局所的な領域(図11(d))となる。図12も併せて参照されたい。
 本発明では、吸引ノズルの移動軌跡は所定距離オフセット(水平方向にオフセット)させたものであってよい。具体的には、「輪郭Aからオフセットさせた輪郭A’」、「輪郭Bからオフセットさせた輪郭B’」および「領域C」に沿った軌跡となるように吸引ノズルを移動操作してもよい(図13参照)。これは、吸引ノズルの移動軌跡のうち特に外周を成す部分については外側へとオフセットした軌跡となるようにしてよいことを意味している(図13に示されるように、輪郭Aと輪郭Bとが重なる輪郭線の部分は特にオフセットさせなくてもよい)。オフセットにより、吸引ノズルによる吸引効果を固化層・造形物の側面の近傍領域に効果的に及ぼすことができ、その点でより効率的な吸引除去が可能となる。つまり、粉末除去は、表面切削処理に付す造形部側面の周囲に存在する粉末を局所的に除去することが求められるところ、当該造形部側面から僅かに外側に位置する局所的箇所に吸引効果を効果的に及ぼすことができる。
 オフセットさせる程度、即ち、オフセット量は、吸引ノズルのノズル径および/または切削工具の工具径に応じて決定することが好ましい。即ち、オフセット量は、好ましくは「吸引ノズルのノズル径」および/または「切削工具の工具径」に依存したものとなっている。例えば、オフセット量δは吸引ノズルのノズル径dが大きいほど大きくしてよく、ノズル径dが小さくなればオフセット量δを小さくしてよい(図14参照)。例示にすぎないが、吸引ノズル径dが1.8mm~10mmとなっている場合、オフセット量δは、その半分の0.9mm~5mm程度であってよく、このようにオフセットした軌跡が吸引ノズルの中央軸が描く軌跡T中央軸となる態様であってよい。従って、吸引ノズルのノズル径dが1.8mm~10mmから大きいもの又は小さいものであれば、それに応じて、オフセット量δを0.9mm~5mmからそれぞれ大きく又は小さくすればよい。同様にして、オフセット量δは切削工具の工具径dが大きいほど大きくしてよく、工具径dが小さくなればオフセット量δを小さくしてよい(図14参照)。例示にすぎないが、切削工具の工具径dが0.5mm~3mmとなっている場合、オフセット量δは、その半分の0.25mm~1.5mm程度であってよく、このようにオフセットした軌跡が吸引ノズルの中央軸が描く軌跡T中央軸となる態様であってよい。従って、切削工具の工具径dが0.5mm~3mmから大きいもの又は小さいものであれば、それに応じて、オフセット量δを0.25mm~1.5mmからそれぞれ大きく又は小さくすればよい。
 本発明では、吸引ノズルの吸引口を粉末層の表面に近づけて吸引除去を実施してよい。つまり、吸引除去時においては「吸引ノズルの先端部(吸引口部)」と「最直近にて形成された粉末層」との間の離隔距離を吸引除去に特に好適なものとすることができる。例えば、「吸引ノズルの先端部のレベル(即ち、吸引口部のレベル)」と「最直近にて形成された粉末層」との間の離隔距離(積層方向に沿った上下方向の離隔距離)は、5mm以内、即ち、0(0を含まず)~5mmとすることが好ましい。より好ましくは、かかる離隔距離は1mm以内、即ち、0(0を含まず)~1mmとすること、更に好ましくは0.4mm~1.0mm程度とする。これは、図15で実証されている如く、吸引ノズルの先端部を「最直近形成の粉末層」により近づけた状態で吸引ノズルを移動させると、固化層周囲の粉末を効率良く除去できるからである。尚、「最直近にて形成された粉末層」と「最直近にて形成された固化層」とは、粉末の吸引除去前において、それらの上面が略面一となっている。よって、「吸引ノズルの先端部(吸引口部)」と「最直近にて形成された粉末層」との間の離隔距離は、「吸引ノズルの先端部(吸引口部)」と「最直近にて形成された固化層」との間の離隔距離と同義である。
 本発明の製造方法では、吸引ノズルを例えば水平移動させるように操作するが、吸引する箇所の粉末層厚み(深さ)に応じて吸引条件(例えば、吸引量やノズルの移動速度など)を適宜変えてもよい。これにつき例示すると、粉末層厚みがより大きい場合(即ち、吸引除去すべき箇所の粉末層がより深い場合)、吸引ノズルの吸引量をより大きくしてよい。粉末層厚みがより大きい場合(即ち、吸引除去すべき箇所の粉末層がより深い場合)では、吸引ノズルの走査速度を減じてもよい。
 また、吸引する箇所に近接する造形物の形状に応じて吸引条件(例えば、吸引量やノズルの移動速度など)を適宜変えてもよい。これにつき例示すると、造形物の外郭部の近傍における吸引箇所のように周囲に粉末層が“広範に”存在する箇所(即ち、周囲に粉末が比較的多く存在する箇所)では、吸引ノズルの吸引量をより大きくしてよい。一方、造形物のリブ部の近傍における吸引箇所のように周囲に粉末層が“狭く”存在する箇所(即ち、周囲に粉末が比較的少なく存在する箇所)では、吸引ノズルの吸引量をより小さくしてよい。同様にして、造形物の外郭部の近傍における吸引箇所のように周囲に粉末層が“広範に”存在する箇所では、吸引ノズルの走査速度をより減じてよい。一方、造形物のリブ部の近傍における吸引箇所のように周囲に粉末層が“狭く”存在する箇所では、吸引ノズルの走査速度をより増加させてよい。
 このように、本発明においては、“Z方向(鉛直方向)”まで考慮し、吸引すべき粉末層深さや造形物形状に応じて吸引方法を適宜制御することができる。
 本発明に従えば、表面切削処理に先立って固化層および/または三次元形状造形物の周囲の粉末が吸引ノズルで吸引除去されるので、造形物表面と切削工具との間の粉末噛込みに起因した工具折損トラブルを減じることができる。例えば工具折れまでの平均期間を80~400%程度増加させることができる(あくまでも例示にすぎないが、ある条件下における「工具折れ平均間隔」が30~50時間程度から約140~150時間程度にまで増加し得る)。また、造形物表面と切削工具との間の粉末噛込みが減じられるので、切削処理に際して造形物表面に及ぼされる負荷を減少させることができ、造形物の表面平滑性が向上し得る。例えば表面切削加工が施された箇所の表面粗さRzを、好ましくは6μm以下、より好ましくは5μm以下、更に好ましくは4μm以下とすることができる。ここで「表面粗さRz」とは、粗さ曲線(本発明でいうと「固化層表面の断面形状プロファイル」)において平均線から“最も高い山頂部までの高さ”と“最も低い谷底部までの深さ”とを足し合わせることによって得られる粗さ尺度を意味している。
 本発明で使用されるプログラムについて付言しておく。具体的には、吸引ノズルの走査経路(移動軌跡)を決定するプログラム、即ち、粉末の排除経路を決定するプログラムについて付言する。上述の“輪郭A”や“輪郭B”などを用いるプログラムでは、高さh1およびh2における固化層断面のそれぞれの輪郭線をXY平面上に投影し、その投影された2つの輪郭線で囲まれる領域を抽出する(図16(a)参照)。このような抽出を通じることによって、以下の排除経路1および2(粉末の局所的除去のための経路1および2)が求められることになる。
(1)排除経路1:h1およびh2の輪郭線上を走査する経路
(2)排除経路2:投影された2つの輪郭線で囲まれる領域を所定ピッチで塗りつぶすように走査する経路
 尚、粉末層厚みについては、排除経路を含む垂直平面と各層の断面輪郭線との交点に基づいて求めることができる(図16(b)参照)。
 以上、本発明の実施形態について説明してきたが、本発明の適用範囲のうちの典型例を例示したに過ぎない。従って、本発明はこれに限定されず、種々の改変がなされ得ることを当業者は容易に理解されよう。例えば、以下の変更態様・追加態様が考えられる。
本発明においては、吸引ノズルで吸引除去した粉末は造形物の製造に再度利用してもよい。即ち、吸引除去した粉末をリサイクルしてよく、例えば、吸引除去した粉末を自動ふるいにかけて、材料粉末タンクへと戻してもよい。本発明においては、吸引ノズルによる吸引除去は固化層形成時および/または表面切削処理時にも実施してよい。つまり、固化層形成中や表面切削処理中においても粉末を吸引除去を行ってもよい。かかる変更態様では、固化層形成時に発生するヒュームを除去できたり、表面切削処理時に発生する浮遊粉末や切り屑(切り粉)などを付加的に又は代替的に吸引除去できたりする。
本発明においては、吸引ノズルによる吸引除去時にチャンバー内の不活性ガス注入量を増やしてよい。なぜなら、吸引除去時には雰囲気ガス(例えば窒素ガスを含むガス)が吸引ノズルに吸い込こまれて、チャンバー内の酸素濃度が上昇し得るからである。つまり、不活性ガス注入量を増やすことによって、吸引除去時にて不活性ガス雰囲気を好適に維持することができる。
 本発明の三次元形状造形物の製造方法を実施することによって、種々の物品を製造することができる。例えば、『粉末層が無機質の金属粉末層であって、固化層が焼結層となる場合』では、得られる三次元形状造形物をプラスチック射出成形用金型、プレス金型、ダイカスト金型、鋳造金型、鍛造金型などの金型として用いることができる。また、『粉末層が有機質の樹脂粉末層であって、固化層が硬化層となる場合』では、得られる三次元形状造形物を樹脂成形品として用いることができる。
関連出願の相互参照
 本出願は、日本国特許出願第2013−144280号(出願日:2013年7月10日、発明の名称:「三次元形状造形物の製造方法」)に基づくパリ条約上の優先権を主張する。当該出願に開示された内容は全て、この引用により、本明細書に含まれるものとする。
1  光造形複合加工機
2  粉末層形成手段
3  光ビーム照射手段
4  切削手段
19 粉末/粉末層(例えば金属粉末/金属粉末層または樹脂粉末/樹脂粉末層)
20 造形テーブル(支持テーブル)
21 造形プレート
22 粉末層(例えば金属粉末層または樹脂粉末層)
23 スキージング用ブレード
24 固化層(例えば焼結層または硬化層)またはそれから得られる三次元形状造形物
25 粉末テーブル
26 粉末材料タンクの壁部分
27 造形タンクの壁部分
28 粉末材料タンク
29 造形タンク
30 光ビーム発振器
31 ガルバノミラー
32 反射ミラー
33 集光レンズ
40 ミーリングヘッド
41 XY駆動機構
41a X軸駆動部
41b Y軸駆動部
42 ツールマガジン
50 チャンバー
52 光透過窓
80 切削工具
82 ツーリング
90 吸引ノズル
92 吸引ノズルの細筒部
94 吸引器具
96 連結ホース
L 光ビーム

Claims (5)

  1.  (i)粉末層の所定箇所に光ビームを照射して該所定箇所の粉末を焼結又は溶融固化させて固化層を形成する工程、および
     (ii)得られた固化層の上に新たな粉末層を形成し、該新たな粉末層の所定箇所に光ビームを照射して更なる固化層を形成する工程
    によって粉末層形成および固化層形成を繰り返して行う三次元形状造形物の製造方法であって、
     前記固化層および/または前記三次元形状造形物が得られた後において該固化層および/または該三次元形状造形物の表面に切削工具で表面切削処理を施す工程を少なくとも1回含み、
     前記表面切削処理に先立っては、前記固化層および/または前記三次元形状造形物の周囲の粉末を吸引ノズルで吸引除去し、
     前記吸引除去においては、前記切削工具の切削可能最下レベルを考慮して、前記三次元形状造形物の周囲の前記粉末を局所的に除去し、また
     前記吸引ノズルの移動軌跡が、
     (a)前記切削工具の工具最下レベルに位置する固化層断面の輪郭A、
     (b)最直近にて形成された固化層の上面の輪郭B、および
     (c)前記固化層の積層方向に向かって前記輪郭Aと前記輪郭Bとを同一平面に投影することを想定した際、前記投影した輪郭Aが成す閉領域A’から前記投影した輪郭Bが成す閉領域B’を除して得られる領域C
    に沿った軌跡となるように前記吸引ノズルを移動操作させて前記粉末を前記局所的に除去することを特徴とする、三次元形状造形物の製造方法。
  2. 前記移動操作に際しては、最直近にて形成された粉末層の上方において前記吸引ノズルを水平移動させることを特徴とする、請求項1に記載の三次元形状造形物の製造方法。
  3. 前記吸引ノズルの前記移動軌跡が、
     前記輪郭Aに代えて、該輪郭Aからオフセットさせた輪郭A’、
     前記輪郭Bに代えて、該輪郭Bからオフセットさせた輪郭B’、および
     前記領域C
    に沿った軌跡となるように前記吸引ノズルを移動操作することを特徴とする、請求項1または2に記載の三次元形状造形物の製造方法。
  4. 前記吸引ノズルのノズル径および/または前記切削工具の工具径に応じて前記オフセットの量を決めることを特徴とする、請求項3に記載の三次元形状造形物の製造方法。
  5. 前記吸引ノズルの先端部と、前記最直近にて形成された前記粉末層との間の離隔距離を5mm以内にすることを特徴とする、請求項2に従属する請求項3または4に記載の三次元形状造形物の製造方法。
PCT/JP2014/068846 2013-07-10 2014-07-09 三次元形状造形物の製造方法 WO2015005496A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480002866.4A CN104768680B (zh) 2013-07-10 2014-07-09 三维形状造型物的制造方法
US14/439,523 US9604282B2 (en) 2013-07-10 2014-07-09 Method for manufacturing three-dimensional shaped object
EP14823771.2A EP2902137B1 (en) 2013-07-10 2014-07-09 Method for manufacturing a three-dimensional object
KR1020157011171A KR101606426B1 (ko) 2013-07-10 2014-07-09 3차원 형상 조형물의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013144280A JP5599921B1 (ja) 2013-07-10 2013-07-10 三次元形状造形物の製造方法
JP2013-144280 2013-07-10

Publications (1)

Publication Number Publication Date
WO2015005496A1 true WO2015005496A1 (ja) 2015-01-15

Family

ID=51840324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068846 WO2015005496A1 (ja) 2013-07-10 2014-07-09 三次元形状造形物の製造方法

Country Status (7)

Country Link
US (1) US9604282B2 (ja)
EP (1) EP2902137B1 (ja)
JP (1) JP5599921B1 (ja)
KR (1) KR101606426B1 (ja)
CN (1) CN104768680B (ja)
TW (1) TWI549807B (ja)
WO (1) WO2015005496A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107848203A (zh) * 2015-06-25 2018-03-27 松下知识产权经营株式会社 三维形状造型物的制造方法
CN110052713A (zh) * 2019-03-22 2019-07-26 江南大学 零件增减材复合制造工艺

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015111219A1 (ja) * 2014-01-27 2015-07-30 ギガフォトン株式会社 レーザ装置、及び極端紫外光生成システム
CA2952633C (en) 2014-06-20 2018-03-06 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
JP5721886B1 (ja) * 2014-06-20 2015-05-20 株式会社ソディック 積層造形装置
CN106573412B (zh) 2014-07-30 2019-11-05 松下知识产权经营株式会社 三维形状造型物的制造方法及三维形状造型物
KR102283654B1 (ko) * 2014-11-14 2021-07-29 가부시키가이샤 니콘 조형 장치 및 조형 방법
US20160332250A1 (en) * 2014-12-30 2016-11-17 Yuanmeng Precision Technology (Shenzhen) Institute Multi-electron-beam melting and milling composite 3d printing apparatus
US20160325383A1 (en) * 2014-12-30 2016-11-10 Yuanmeng Precision Technology (Shenzhen) Institute Electron beam melting and laser milling composite 3d printing apparatus
WO2016106610A1 (zh) * 2014-12-30 2016-07-07 深圳市圆梦精密技术研究院 多轴铣削加工及激光熔融复合3d打印设备
WO2016106607A1 (zh) * 2014-12-30 2016-07-07 深圳市圆梦精密技术研究院 激光熔融及激光铣削复合3d打印设备
CN104589658A (zh) * 2015-02-09 2015-05-06 吴冈 自动切换式3d打印加工装置及加工方法
JP6070912B1 (ja) 2015-04-10 2017-02-01 新日鐵住金株式会社 成形時の冷間加工性に優れた鋼板及びその製造方法
PL3305931T3 (pl) 2015-05-26 2020-06-01 Nippon Steel Corporation Blacha stalowa cienka i sposób jej wytwarzania
KR101722979B1 (ko) * 2015-06-15 2017-04-05 주식회사 퓨쳐캐스트 3차원 형상의 제작방법
JP6644493B2 (ja) * 2015-08-18 2020-02-12 ローランドディー.ジー.株式会社 三次元造形装置
KR102290893B1 (ko) * 2015-10-27 2021-08-19 엘지전자 주식회사 연속 레이저 조형이 가능한 레이저 신터링 장치
CN108367498A (zh) 2015-11-06 2018-08-03 维洛3D公司 Adept三维打印
CN106853676B (zh) * 2015-11-09 2021-03-09 罗天珍 Fdm-3d打印的伴随雕削留顶过度物件的层积方法
US10065241B2 (en) * 2015-11-17 2018-09-04 General Electric Company Combined additive manufacturing and machining system
US10207454B2 (en) 2015-12-10 2019-02-19 Velo3D, Inc. Systems for three-dimensional printing
US10434573B2 (en) 2016-02-18 2019-10-08 Velo3D, Inc. Accurate three-dimensional printing
EP3492244A1 (en) 2016-06-29 2019-06-05 VELO3D, Inc. Three-dimensional printing system and method for three-dimensional printing
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
KR20180025116A (ko) * 2016-08-29 2018-03-08 에스브이에스 주식회사 적층 면 가공 기능을 구비한 3차원 프린터 및 이를 이용한 3차원 프린트 방법
JP6112693B1 (ja) * 2016-09-01 2017-04-12 株式会社ソディック 積層造形装置
CN106426907B (zh) * 2016-09-20 2019-07-12 西安交通大学 一种非连续填充激光增材制造高效率的扫描方法
CN106493365A (zh) * 2016-10-28 2017-03-15 南通金源智能技术有限公司 激光选区熔化成形技术制备316不锈钢复杂薄壁管路的方法
WO2018083786A1 (ja) * 2016-11-04 2018-05-11 ヤマザキマザック株式会社 複合加工装置及び複合加工方法
US10661341B2 (en) 2016-11-07 2020-05-26 Velo3D, Inc. Gas flow in three-dimensional printing
DE102016222564A1 (de) * 2016-11-16 2018-05-17 Siemens Aktiengesellschaft Verfahren zur additiven Herstellung mit selektivem Entfernen von Basismaterial
CN106583720A (zh) * 2016-11-28 2017-04-26 南通金源智能技术有限公司 铝基烯合金薄壁叶片的3d打印制造方法
CN106513672A (zh) * 2016-12-05 2017-03-22 珠海天威飞马打印耗材有限公司 金属三维打印装置及其打印方法
CN106694880A (zh) * 2016-12-13 2017-05-24 南通金源智能技术有限公司 一种铜合金异形孔冷却模具的制造方法
CN106735209A (zh) * 2016-12-13 2017-05-31 南通金源智能技术有限公司 钛基石墨烯合金轻量化结构件的增材制造方法
US20180186081A1 (en) 2017-01-05 2018-07-05 Velo3D, Inc. Optics in three-dimensional printing
US10442003B2 (en) 2017-03-02 2019-10-15 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
WO2018158426A1 (en) * 2017-03-02 2018-09-07 Bond High Performance 3D Technology B.V. Object made by additive manufacturing and method to produce said object
US20180281283A1 (en) * 2017-03-28 2018-10-04 Velo3D, Inc. Material manipulation in three-dimensional printing
CN109351967A (zh) * 2017-08-06 2019-02-19 江苏尤尼特激光智能装备有限公司 一种增减材激光加工机床及其使用方法
CN107617743B (zh) * 2017-08-30 2019-05-21 深圳市银宝山新科技股份有限公司 同时3d打印多个工件的工艺方法
JP6491289B2 (ja) * 2017-09-06 2019-03-27 電気興業株式会社 金属作製物の製造方法
EP3492243A1 (en) * 2017-11-29 2019-06-05 CL Schutzrechtsverwaltungs GmbH Apparatus for additively manufacturing three-dimensional objects
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10144176B1 (en) 2018-01-15 2018-12-04 Velo3D, Inc. Three-dimensional printing systems and methods of their use
WO2019162654A1 (en) * 2018-02-20 2019-08-29 Bae Systems Plc Manufacturing system for use in space
EP3527373A1 (en) * 2018-02-20 2019-08-21 BAE SYSTEMS plc In-space manufacturing system
CN108971698B (zh) * 2018-08-24 2019-10-25 华中科技大学 一种螺旋桨电弧熔丝增材制造方法
JP7234637B2 (ja) 2019-01-11 2023-03-08 セイコーエプソン株式会社 三次元造形物の製造方法
CN111844757A (zh) * 2020-06-10 2020-10-30 苏州聚复高分子材料有限公司 3d打印数据生成方法、路径规划方法、系统及存储介质
JP2022010642A (ja) * 2020-06-29 2022-01-17 セイコーエプソン株式会社 造形装置、及び、造形物の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01502890A (ja) 1986-10-17 1989-10-05 ボード、オブ、リージェンツ、ザ、ユニバーシティー、オブ、テキサス、システム 選択的焼結によって部品を製造する方法
JP2000073108A (ja) 1998-08-26 2000-03-07 Matsushita Electric Works Ltd 金属粉末焼結部品の表面仕上げ方法
JP2002115004A (ja) * 2000-10-05 2002-04-19 Matsushita Electric Works Ltd 三次元形状造形物の製造方法及びその装置
JP2008106319A (ja) * 2006-10-26 2008-05-08 Matsuura Machinery Corp 金属光造形複合加工装置の粉末回収装置
JP2008291317A (ja) * 2007-05-24 2008-12-04 Panasonic Electric Works Co Ltd 三次元形状造形物の製造方法
JP2008291315A (ja) * 2007-05-24 2008-12-04 Panasonic Electric Works Co Ltd 三次元形状造形物の製造方法
JP2010280173A (ja) * 2009-06-05 2010-12-16 Panasonic Electric Works Co Ltd 三次元形状造形物の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1044248A (ja) 1996-07-29 1998-02-17 Roland D G Kk 三次元造形方法
JP2768355B2 (ja) 1996-08-02 1998-06-25 三菱電機株式会社 積層造形方法
EP0941824A3 (en) * 1998-03-12 2002-01-16 Cca Inc. Method for producing patterned shaped article
JP2001087977A (ja) 1999-09-22 2001-04-03 Toshiba Corp 加工方法及び工作機械システム
DE10065960C5 (de) 2000-06-07 2005-10-06 (bu:st) GmbH Beratungsunternehmen für Systeme und Technologien Verfahren zur Herstellung eines Werkstückes mit exakter Geometrie
TW506868B (en) 2000-10-05 2002-10-21 Matsushita Electric Works Ltd Method of and apparatus for making a three-dimensional object
JP2004082556A (ja) 2002-08-27 2004-03-18 Matsushita Electric Works Ltd 三次元形状造形物の製造方法及びその装置
JP3687677B1 (ja) 2004-10-26 2005-08-24 松下電工株式会社 光造形方法と光造形システム並びに光造形用プログラム
US8329092B2 (en) 2006-08-28 2012-12-11 Panasonic Corporation Metal powder for metal laser-sintering and metal laser-sintering process using the same
JP5272871B2 (ja) * 2008-04-21 2013-08-28 パナソニック株式会社 積層造形装置
EP2492084B1 (en) 2009-10-21 2015-05-13 Panasonic Corporation Process for producing three-dimensionally shaped object and device for producing same
JP5584019B2 (ja) * 2010-06-09 2014-09-03 パナソニック株式会社 三次元形状造形物の製造方法およびそれから得られる三次元形状造形物
CN102029389B (zh) 2010-11-25 2012-05-23 西安交通大学 基于负压的激光烧结快速成型制造多孔组织的装置及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01502890A (ja) 1986-10-17 1989-10-05 ボード、オブ、リージェンツ、ザ、ユニバーシティー、オブ、テキサス、システム 選択的焼結によって部品を製造する方法
JP2000073108A (ja) 1998-08-26 2000-03-07 Matsushita Electric Works Ltd 金属粉末焼結部品の表面仕上げ方法
JP2002115004A (ja) * 2000-10-05 2002-04-19 Matsushita Electric Works Ltd 三次元形状造形物の製造方法及びその装置
JP2008106319A (ja) * 2006-10-26 2008-05-08 Matsuura Machinery Corp 金属光造形複合加工装置の粉末回収装置
JP2008291317A (ja) * 2007-05-24 2008-12-04 Panasonic Electric Works Co Ltd 三次元形状造形物の製造方法
JP2008291315A (ja) * 2007-05-24 2008-12-04 Panasonic Electric Works Co Ltd 三次元形状造形物の製造方法
JP2010280173A (ja) * 2009-06-05 2010-12-16 Panasonic Electric Works Co Ltd 三次元形状造形物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2902137A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107848203A (zh) * 2015-06-25 2018-03-27 松下知识产权经营株式会社 三维形状造型物的制造方法
CN110052713A (zh) * 2019-03-22 2019-07-26 江南大学 零件增减材复合制造工艺
CN110052713B (zh) * 2019-03-22 2020-04-10 江南大学 零件增减材复合制造工艺

Also Published As

Publication number Publication date
CN104768680B (zh) 2016-08-24
CN104768680A (zh) 2015-07-08
TW201529286A (zh) 2015-08-01
EP2902137A1 (en) 2015-08-05
EP2902137B1 (en) 2017-11-15
JP2015017294A (ja) 2015-01-29
EP2902137A4 (en) 2015-11-11
US20150298211A1 (en) 2015-10-22
JP5599921B1 (ja) 2014-10-01
KR20150056661A (ko) 2015-05-26
US9604282B2 (en) 2017-03-28
KR101606426B1 (ko) 2016-03-25
TWI549807B (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
JP5599921B1 (ja) 三次元形状造形物の製造方法
JP5612735B1 (ja) 三次元形状造形物の製造方法およびその製造装置
JP5250338B2 (ja) 三次元形状造形物の製造方法、その製造装置および三次元形状造形物
JP6372725B2 (ja) 三次元形状造形物の製造方法
JP6443698B2 (ja) 三次元形状造形物の製造方法
JP5653358B2 (ja) 三次元形状造形物の製造方法およびその製造装置
JP5599957B2 (ja) 三次元形状造形物の製造方法
JP5764751B2 (ja) 三次元形状造形物の製造方法およびその製造装置
JP2010100884A (ja) 三次元形状造形物の製造方法
WO2017208504A1 (ja) 三次元形状造形物の製造方法
JP5588925B2 (ja) 三次元形状造形物の製造方法
JP6731642B2 (ja) 三次元形状造形物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14823771

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157011171

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014823771

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14439523

Country of ref document: US

Ref document number: 2014823771

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE