WO2015005361A1 - 分離剤 - Google Patents

分離剤 Download PDF

Info

Publication number
WO2015005361A1
WO2015005361A1 PCT/JP2014/068237 JP2014068237W WO2015005361A1 WO 2015005361 A1 WO2015005361 A1 WO 2015005361A1 JP 2014068237 W JP2014068237 W JP 2014068237W WO 2015005361 A1 WO2015005361 A1 WO 2015005361A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
separating agent
column
carrier
meth
Prior art date
Application number
PCT/JP2014/068237
Other languages
English (en)
French (fr)
Other versions
WO2015005361A9 (ja
Inventor
亨 池上
佑介 河内
研大 國澤
Original Assignee
国立大学法人京都工芸繊維大学
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都工芸繊維大学, 株式会社ダイセル filed Critical 国立大学法人京都工芸繊維大学
Priority to US14/903,699 priority Critical patent/US11285458B2/en
Priority to EP14822794.5A priority patent/EP3021114B1/en
Priority to CN201480038929.1A priority patent/CN105492904B/zh
Priority to JP2015526362A priority patent/JP6358599B2/ja
Publication of WO2015005361A1 publication Critical patent/WO2015005361A1/ja
Publication of WO2015005361A9 publication Critical patent/WO2015005361A9/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • B01J20/289Phases chemically bonded to a substrate, e.g. to silica or to polymers bonded via a spacer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/327Polymers obtained by reactions involving only carbon to carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/52Amides or imides
    • C08F20/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/52Amides or imides
    • C08F20/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F20/60Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing nitrogen in addition to the carbonamido nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/30Partition chromatography
    • B01D15/305Hydrophilic interaction chromatography [HILIC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/80Aspects related to sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J2220/82Shaped bodies, e.g. monoliths, plugs, tubes, continuous beds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/58Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine
    • C08F220/585Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine and containing other heteroatoms, e.g. 2-acrylamido-2-methylpropane sulfonic acid [AMPS]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/60Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing nitrogen in addition to the carbonamido nitrogen
    • C08F220/606Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing nitrogen in addition to the carbonamido nitrogen and containing other heteroatoms

Definitions

  • the present invention relates to a separation agent for chromatography, and more particularly to a separation agent for hydrophilic interaction liquid chromatography used for separation of hydrophilic substances.
  • HPLC High-performance liquid chromatography
  • RPLC reverse phase chromatography
  • HILIC Hydrophilic interaction liquid chromatography
  • HILIC is classified into normal phase liquid chromatography (NPLC), but is different from general NPLC because it uses a mixed solvent of an organic solvent and water or a buffer as a mobile phase.
  • NPLC normal phase liquid chromatography
  • HILIC uses an aqueous mobile phase, it is suitable for separation of hydrophilic compounds that do not elute under normal phase conditions.
  • Patent Document 1 describes a separating agent in which silica gel is used as a carrier and a structure derived from acrylamide as a ligand is bound to the carrier.
  • Patent Document 2 describes a separating agent on which a polymer obtained by polymerizing vinyltetrazole is supported.
  • Non-Patent Document 1 describes nitrile-modified silica modified with tetrazole as a separating agent for hydrophilic interaction chromatography.
  • Patent Documents 1 and 2 and Non-Patent Document 1 are not highly hydrophilic and have room for improvement.
  • the present invention provides a novel separating agent for hydrophilic interaction chromatography.
  • the present inventor paid attention to ionic interactions and hydrogen bonds of structural units derived from the compound represented by the formula (I) such as tetrazole.
  • a separating agent carrying a ligand obtained by synthesizing a (meth) acrylic monomer having such a structural unit and polymerizing the (meth) acrylic monomer is a commercially available conventional hydrophilic interaction chromatography.
  • the inventors have found that a specific compound is excellent in retention characteristics, and completed the present invention described below.
  • a hydrophilic interaction chromatography separation agent formed from a carrier and a ligand supported on the carrier, wherein the ligand has a structural unit derived from a compound represented by the following formula (I) (meth)
  • a separating agent which is an acrylic polymer.
  • X 1 is S, SCH 3 + , O, NH, NCH 3 , CH 2 , CHR and CR 1.
  • R 1 and R 2 are each substituted or unsubstituted alkyl having 1 to 18 carbon atoms, aryl having 6 to 18 carbon atoms, alkenyl having 2 to 18 carbon atoms, alkynyl having 2 to 18 carbon atoms, 7-18 aralkyl, C2-C18 acyl, C3-C18 cycloalkyl, carboxyl, amino, C6-C18 aryloxy or C1-C18 alkoxy, halo, hydroxy, nitro and One of cyano, R is substituted or unsubstituted alkyl having 1 to 18 carbon atoms, aryl having 6 to 18 carbon atoms, alkenyl having 2 to 18 carbon atoms, alkyn
  • the ligand is a (meth) acrylic polymer having a structural unit derived from a compound selected from the group consisting of aminoimidazole, aminoimidazoline, aminothiazole, aminotriazole, aminotetrazole, aminothiadiazole, and aminomethylimidazole.
  • the separating agent according to [1]. [3] The separating agent according to [1], wherein the ligand is a (meth) acrylic polymer having a structural unit derived from aminotetrazole. [4] The separating agent according to [1], wherein the ligand is a methacrylic polymer having a structural unit derived from aminotetrazole. [5] The separating agent according to any one of [1] to [4], wherein the carrier is silica gel or silica monolith.
  • the separating agent of the present invention is formed by supporting a (meth) acrylic polymer having a structural unit derived from the compound represented by the formula (I) on a carrier. According to the present invention, a novel separating agent useful for separating a specific hydrophilic compound is provided.
  • FIG. 3 shows the results of plotting ⁇ (Tb / Tp) and ⁇ (U / 2dU) for a column packed with a separation agent of the present invention (using 5-methacrylamide-1H-tetrazole at different concentrations) and a commercially available column.
  • FIG. It is a figure which shows the result of having plotted (alpha) (Tb / Tp) and (alpha) (U / 2dU) about the separation agent (monolith column) of this invention, a commercial item, and the column of a comparison object.
  • the separating agent of the present invention is formed by supporting a ligand in which a structural unit derived from the compound represented by the formula (I) is contained in a (meth) acrylic polymer.
  • (meth) acryl as used in the present invention includes both “methacryl” and “acryl”.
  • X 1 is S, SCH 3 + , O, NH, NCH 3 , CH 2 , CHR and CR 1.
  • Selected from the group consisting of R 2 and each of X 2 , X 3 and X 4 is selected from the group consisting of N, NH, NCH 3 , CH 2 , CHR, NCH 3 + , CH, CR, CR 1 R 2
  • R 1 and R 2 are each substituted or unsubstituted alkyl having 1 to 18 carbon atoms, aryl having 6 to 18 carbon atoms, alkenyl having 2 to 18 carbon atoms, alkynyl having 2 to 18 carbon atoms, 7-18 aralkyl, C2-C18 acyl, C3-C18 cycloalkyl, carboxyl, amino, C6-C18 aryloxy or C1-C18 alkoxy, halo, hydroxy,
  • each of X 1 , X 2 , X 3 and X 4 is preferably selected from S, N, O, NH, NCH 3 and CH 2, and selected from S, N and NH Is more preferable.
  • the structural unit derived from the compound represented by the formula (I) is contained in the (meth) acrylic polymer as the ligand, the ionic interaction or hydrogen bonding of the structural unit derived from the formula (I) , Affecting the ability of the separating agent to retain hydrophilic compounds.
  • the nitrogen atom functions as a hydrogen bond acceptor, which affects the retention of the hydrophilic compound.
  • (meth) acrylamide tetrazole is a compound containing four nitrogen atoms in the ring, and is an acidic compound that is resonantly stabilized by deprotonation.
  • the nitrogen atom on tetrazole acts as a hydrogen bond acceptor.
  • a commercially available compound may be used as the compound represented by the formula (I), or the compound may be synthesized using a known method.
  • the compound represented by the formula (I) is represented by the formula (I) by reacting, for example, a compound represented by the following formula (II) with (meth) acryloyl chloride in a solvent such as tetrahydrofuran.
  • a (meth) acrylamide monomer having a structure can be obtained.
  • (meth) acryloyl chloride means methacryloyl chloride or acryloyl chloride.
  • Specific examples of the compound represented by the formula (II) include the following. Aminotetrazole such as 5-aminotetrazole, aminoimidazole such as 2-aminoimidazole, aminoimidazoline such as 2-amino-2-imidazoline, aminothiazole such as 2-aminothiazole, 3-amino-1,2 Aminotriazoles such as 1,4-triazole, 4-amino-1,2,4-triazole, aminothiadiazoles such as 2-amino-1,3,4-thiadiazole and 2-amino-1-methyl-1H-imidazole And aminomethylimidazole.
  • Aminotetrazole such as 5-aminotetrazole
  • aminoimidazole such as 2-aminoimidazole
  • aminoimidazoline such as 2-amino-2-imidazoline
  • aminothiazole such as 2-aminothiazole
  • 3-amino-1,2 Aminotriazoles such as 1,4-triazole, 4-amino-1,2,4
  • the (meth) acrylamide monomer of the above formula (I) has a polymerizable functional group and a heterocyclic ring bonded via an amide bond
  • the (meth) acrylic polymer obtained by polymerizing the monomer is The main chain and the heterocyclic ring are bonded via an amide bond.
  • radical polymerization of the (meth) acrylamide monomer described above a ligand in which the structural unit derived from the compound represented by the formula (I) is contained in the (meth) acrylic polymer can be obtained.
  • the radical polymerization of the (meth) acrylamide monomer described above is free radical polymerization.
  • the polymerization of the polymer described in Patent Document 2 is performed by atom transfer radical polymerization (ATRP).
  • ATRP atom transfer radical polymerization
  • a copper complex is used as a catalyst. According to this method, metal ions such as copper ions may remain on the carrier, and this metal ions may adversely affect the separation of the target substance.
  • the ligand supported on the separating agent of the present invention may contain a structural unit derived from another compound within the range not impairing the effects of the present invention, in addition to the structural unit represented by the formula (I). .
  • the proportion of the structural unit represented by the formula (I) is preferably 90 mol% or more.
  • the polymerization of the compound represented by the formula (I) can be performed in the presence of a carrier, or can be performed separately from the carrier.
  • a carrier When it is carried out in the presence of a carrier, it can be a chemical bond type separating agent, and when it is polymerized separately from the carrier, a physical adsorption type separating agent can be produced.
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the (meth) acrylic polymer are preferably as large as possible from the viewpoint of the separation performance of the hydrophilic compound, and preferably 5000 to 20000.
  • the molecular weight dispersion (Mw / Mn) of the (meth) acrylic polymer is not particularly limited, but an embodiment in which it is 1.0 to 5.0 can be mentioned.
  • An increase in the molecular weight of the (meth) acrylic polymer contributes to an increase in the retention of the hydrophilic compound by increasing the proportion of the constituent unit derived from the compound represented by the formula (I) in the separating agent.
  • the hydrophilicity of the separating agent carried on the carrier (to be described later) with the (meth) acrylic polymer can also be adjusted by changing the polymerization conditions.
  • the hydrophilicity of the separating agent carrying the produced polymer can be increased by lowering the polymerization temperature during the polymerization or adding a RAFT reagent.
  • Mn, Mw, and Mw / Mn of the (meth) acrylic polymer can be determined by size exclusion chromatography (SEC).
  • the Mn and Mw of the (meth) acrylic polymer can be adjusted by adjusting the molar ratio of the polymerization initiator and the monomer used in the polymerization step described later in the range of 10 to 1,000. Moreover, molecular weight can be made small using a chain transfer agent.
  • a chain transfer agent for example, a dithiocarboxylic acid derivative that is a water-soluble RAFT agent can be used.
  • increasing the Mn and Mw of the polymer can be achieved by increasing the molar ratio of the polymerization initiator and the monomer.
  • the polymerization initiator for example, ammonium persulfate can be used.
  • the separating agent of the present invention is formed by supporting a ligand containing a structural unit derived from the compound represented by the formula (I) on a carrier.
  • Examples of the mode of supporting the carrier include physical adsorption and chemical bonding.
  • a ligand having a structural unit derived from the compound represented by formula (I) was dissolved in an appropriate solvent, and the solution was applied to the following carrier. Thereafter, it can be supported by distilling off the solvent.
  • the carrier to be supported by physical adsorption can be a carrier that is accommodated in a column tube and has chemical and physical durability in separation.
  • a known carrier can be used, for example, an inorganic carrier such as silica, alumina, magnesia, glass, kaolin, titanium oxide, silicate, and hydroxyapatite, and polystyrene, polyacrylamide, And organic carriers such as polyacrylate.
  • the carrier is preferably porous from the viewpoint of increasing the separation ability for the target product.
  • the carrier may be in the form of particles, or may be an integral carrier that is integrally accommodated in the column tube, but is in the form of particles from the viewpoint of the production of the separating agent and the ease of handling at that time. It is preferable.
  • a specific example of such a carrier is silica gel.
  • the following method can be used.
  • Surface treatment is performed on the carrier in advance.
  • silica gel a compound obtained by reacting an acrylic monomer with a silane coupling agent is used as a spacer, and this is reacted with silica gel.
  • the compound that can be used as the spacer can be obtained, for example, by reacting (meth) acryloyl chloride with aminoalkoxysilane.
  • alkyl group of the aminoalkylalkoxysilane include those having 1 to 5 carbon atoms, and examples of the alkoxy group having 1 to 3 carbon atoms.
  • aminoalkylalkoxysilanes include 3-aminopropyltriethoxysilane.
  • methacryloyl chloride and 3-aminopropyltriethoxysilane are reacted in a solvent such as THF in the presence of triethylamine, 3-methacrylamidopropyltriethoxysilane is obtained.
  • the alkoxy group of the spacer thus obtained is reacted with silica gel to bond the silica gel and the spacer.
  • the formula (I) It is represented by the formula (I) by causing a polymerization reaction between the silica gel bonded with a spacer having a double bond derived from an acrylic monomer and the (meth) acrylamide monomer represented by the formula (I) described above.
  • a (meth) acrylic polymer having a structural unit derived from a compound is chemically bonded to silica gel as a carrier.
  • a dimethylformamide (DMF) solvent or water / pyridine which dissolves the (meth) acrylamide monomer represented by the formula (I) can be used.
  • the concentration of the (meth) acrylamide monomer represented by the formula (I) can be about 50 to 800 mg / mL.
  • methacrylamide tetrazole about 50 to 500 mg / mL can be mentioned, and the concentration of other acrylamide monomers can be, for example, 300 to 600 mg / mL.
  • concentration of the monomer during polymerization By increasing the concentration of the monomer during polymerization, the hydrophilic group selectivity and hydrophobic selectivity of the resulting separating agent can be increased.
  • the reaction temperature is 20 to 100 ° C., and the reaction time is about 1 to 24 hours.
  • a spacer having a polymerizable functional group such as a vinyl group is bonded to the surface of the carrier, and then the polymerizable functional group and the (meth) acrylamide monomer represented by the formula (I) are polymerized.
  • the carrier preferably has a silanol group on the surface of the carrier from the viewpoint of easy surface treatment.
  • silane coupling agent examples include vinylmethylchlorosilane, vinyldimethylethoxysilane, vinylethyldichlorosilane, vinylmethyldiacetoxysilane, vinylmethyldiethoxysilane, 1-vinylsilatrane, vinyltriacetoxy.
  • Silane vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriphenoxysilane, vinyltris (2-methoxyethoxy) silane, vinyltriisopropoxysilane, styrylethyltrimethoxysilane, methacryloxypropyldimethylchlorosilane, 3-methacryloxypropylmethyldi Ethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltris (methoxyethoxy) silane, 3-acryloxyp Pyrtrimethoxysilane, 3-acryloxypropylmethyldimethoxysilane, 1,3-divinyl-1,3-dimethyl-1,3-dichlorodisiloxane, 1,3-divinyltetraethoxydisiloxane, 1,3-divinyltetra And methyldisilazane.
  • the particle size of the carrier is usually 3 to 15 ⁇ m, regardless of whether the ligand is supported on the carrier by physical adsorption or chemical bonding.
  • the amount of the ligand supported on the carrier is usually 10 to 30 parts by weight, preferably 15 to 25 parts by weight, based on 100 parts by weight of the total amount of the separating agent.
  • a monolithic carrier can be used as the carrier, and such a monolithic carrier can be obtained by a sol-gel method caused by hydrolysis and polycondensation of alkoxysilane, as shown in the following reaction formula, for example.
  • the silica monolith which can be mentioned can be mentioned.
  • Si (OR) 4 + H 2 O ⁇ Si (OH) (OR) 3 + ROH Si-OH + Si-OH ⁇ Si-O-Si + H 2 O Si-OH + Si-OR ⁇ Si-O-Si + ROH Hydrolysis and polycondensation of alkoxysilane may be performed, for example, in a capillary column depending on the form of the column used.
  • Examples of the alkoxy group of the alkoxysilane include those having about 1 to 5 carbon atoms, and among them, a methoxy group and an ethoxy group are preferable.
  • an integrated inorganic porous body (monolith carrier) having macropores and medium pores formed on the inner wall surface of the macropores described in JP-A-2006-150214.
  • An example of the capillary column is a fused silica capillary.
  • the fused silica capillary can be produced by a known method, or can be obtained by treating the inner wall of a commercially available column. Known conditions can be used for the silica sol-gel reaction.
  • a known polymer monolith can be used in addition to the silica monolith.
  • a polymer having a structural unit derived from the compound represented by the formula (I) can be supported and used by physical adsorption.
  • silica monolith When silica monolith is used, the chemical bonding described above can be mentioned as a method for supporting the monolith. Specifically, a compound obtained by reacting an acrylic monomer and a silane coupling agent with a silica monolith prepared in advance is used as a spacer, and this is reacted with the silica monolith. For example, when 3-aminopropyltriethoxysilane is reacted with methacrylic chloride, 3-methacrylamideamidopropyltriethoxysilane is obtained. The alkoxy group of the spacer thus obtained is reacted with silica gel to bond the silica gel and the spacer.
  • a silica monolith having a double bond-derived spacer derived from an acrylic monomer and a (meth) acrylamide monomer represented by the formula (I) described above are allowed to undergo a polymerization reaction, thereby being represented by the formula (I).
  • the (meth) acrylic polymer having a structural unit derived from the compound is chemically bonded to the silica monolith as the carrier.
  • the concentration of the (meth) acrylamide monomer can be about 50 to 800 mg / mL.
  • methacrylamide tetrazole about 50 to 500 mg / mL can be mentioned, and the concentration of other acrylamide monomers can be, for example, 300 to 600 mg / mL.
  • the hydrophilic group selectivity and hydrophobic selectivity of the resulting separating agent can be increased.
  • the reaction temperature is 20 to 100 ° C.
  • the reaction time is about 1 to 24 hours.
  • MAS 3-methacrylamidopropyltriethoxysilane
  • Table 2 shows the measurement results of the column of the example (hereinafter also referred to as PTz column) and the commercially available column (TSKgel Amide-80, Halo-HILIC).
  • the value of ⁇ (OH) representing the size of hydrophilic selectivity was 1.927 to 2.25. Therefore, it is considered that this PTZ column has very high retention and selectivity for hydrophilic substances such as uridine. Further, since the value of ⁇ (Tb / Tp) is 1 or more, it is considered to be an acidic type separating agent.
  • FIG. 3 shows the result of comparison of k (U) between the column of the example and the commercially available column.
  • the (meth) acrylamide monomer shown in the following Table 3 was produced by the same method. However, in the reaction using 3-amino-1,2,4-triazole and 5-amino 1H-tetrazole as raw materials, the reaction was carried out using only an aqueous solvent without using tetrahydrofuran, and potassium hydrogen carbonate was used as the base. The formation of these monomers was confirmed by 1 H NMR and MS, and consistent results were obtained.
  • the (meth) acrylamide monomer described in Table 3 was polymerized under the conditions described in Table 4 below in the form of silica gel particles and silica gel particles modified with 3-methacrylamideamidopropyltriethoxysilane (MAS).
  • MAS 3-methacrylamideamidopropyltriethoxysilane
  • MA thiazole and MA thiadiazole were low in water solubility of monomers and polymers, polymerization was performed in a dimethylformamide (DMF) system in which all monomers were dissolved.
  • Table 5 shows the results of the column test using the column of the example (hereinafter also referred to as PTz column) and the commercially available column (TSKgel Amide-80, Halo-HILIC).
  • TSKgel Amide-80 is a polyacrylamide modified column and Halo-HILIC is an unmodified silica column.
  • the value of ⁇ (Tb / Tp) indicating the pH state of the stationary phase surface is 1 or less in the case of MA thiadiazole, MA triazole, and AA tetrazole, and the stationary phase surface modified with these monomers is basic. Showed that.
  • the stationary phase by MA tetrazole is considered to be an acidic separating agent because ⁇ (Tb / Tp) is 1 or more as in the case of polymerization in water. It was an AA tetrazole type stationary phase, and ⁇ (Tb / Tp) was 0.68, indicating a basic property.
  • Neutral to weakly basic HILIC stationary phases can be prepared by polymerization modification of MA thiazole and MA thiazdiazole, and basic HILIC stationary phases can be prepared by polymerization modification of MA triazole.
  • FIG. 7 shows the separation characteristics for each monomer concentration of the PTZ column produced in Example 1.
  • the vertical axis and the horizontal axis are the same as those in FIG. 6, and the reference numerals in the figure also mean the same as those in FIG. From the results shown in FIG. 7, the hydrophilicity and selectivity of the PTZ column can be increased by increasing the monomer concentration.
  • Preparation of porous silica monolith column The porous silica monolith was prepared by a known method. Specifically, it was carried out by a sol-gel method caused by hydrolysis and polycondensation of alkoxysilane. 2.
  • Inner wall treatment of fused silica capillary 1N-sodium hydroxide was fed to a fused silica capillary column (Polymicro Technologies) of 100 ⁇ m ID ⁇ 375 ⁇ m OD and allowed to stand at 40 ° C. for 3 hours. Next, after washing with 1N hydrochloric acid, it was left at 40 ° C. for 3 hours.
  • This mixed solution was injected into a fused silica capillary that had been subjected to an inner wall treatment, and reacted at 40 ° C. for 24 hours to cause gelation.
  • the capillary was heat-aged at 90 ° C. (24 hours) with both ends immersed in 0.06 g / ml urea water, and then heat-treated at 120 ° C. for 4 hours.
  • the skeleton was recombined by heat treatment, and mesopores were formed by dissolution of silica by ammonia generated by decomposition of urea. Thereafter, the inside of the capillary was washed with methanol.
  • Preparation of polymerization-modified stationary phase A monomer solution containing the polymerization initiator (the same as that prepared in Example 1) solution was sent in a sufficient amount at room temperature to a MAS column previously substituted with water. The monomer solution was charged. Thereafter, a column with both ends sealed was put into a water bath set at each polymerization temperature (60 ° C.) and polymerized for a predetermined time. Finally, water or methanol was fed by an HPLC pump, and the inside of the capillary was washed to obtain a polymerization modified silica monolith capillary column.
  • the monomer structure is shown in FIG. 1, and the polymerization conditions are shown below.
  • Example 4-4 The monomer solution prepared under the following conditions is packed into the MAS-made silica monolith capillary column prepared in Step 1, and as shown in Table 7 below, the monomer concentration is changed to perform an in-column polymerization reaction. Obtained. Initiator: ammonium persulfate (5mg / ml in 4.1mol / l NH 3 aq) 60 ° C Reaction time: 2hr Since the polymer obtained by polymerizing this monomer has a high solubility in water or MeOH, the amount of monomer charged was relatively large. In this experiment, the amount of monomer charged and column performance (retention and selectivity) were evaluated using the wide range of the amount charged. The results are shown in Table 7.
  • the PTZ-200 according to the present invention exhibited the largest retention in the monolith column (polymerization modified monolith type). Further, compared with the particle packed column, it had a holding capacity 1.75 times that of ZIC-HILIC, 1.51 times that of NH2-MS, and 0.8 times that of Amide-80. Taking into account the porosity of the monolithic column, it was found that PTZ-200 expressed a very large retention. This feature is a characteristic that more than compensates for the low holding capacity, which is a weak point of the monolith column. In addition, the selectivity also showed a characteristic value compared to other columns. Hydrophilic selectivity showed the largest value, and hydrophobic selectivity also showed a relatively large value. The results of OH group orientation and position selectivity were larger in other columns.
  • uracil fluoride analogs were separated using PTZ-150 prepared by changing the monomer concentration and columns prepared using PSDMA, PAEMA and PAAm described in Table 8 above.
  • the compound groups to be separated are very similar in structure, and it is generally difficult to separate them all at once. The results are shown in FIG.
  • the chromatographic conditions and the compounds to be separated are as follows.
  • a new separating agent was developed by polymerizing and modifying a monomer having a structure derived from the compound represented by the formula (I) on a carrier such as silica gel.
  • the separating agent on which MA tetrazole is supported is a weak acidic type column, and exhibits extremely high retention of uridine and hydrophilic selectivity.
  • the column using the separation agent carrying MAoletetrazole has much higher retention and selectivity for hydrophilic substances than commercially available columns, and separation of nucleosides and nucleobases. Excellent performance.
  • the separating agent of the present invention is expected to be very useful for separating various hydrophilic compounds that have been difficult to separate. From this, the column having the separation agent of the present invention not only discovers and improves new separation conditions for future biological substances (including saccharides, peptides and proteins), but also identifies and analyzes the separated biological substances. Improvement of convenience is expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

親水性化合物の分離に有用な親水性相互作用クロマトグラフィー用の新規な分離剤を提供することを課題とする。担体と担体に担持されたリガンドから形成された親水性相互作用クロマトグラフィー分離剤であって、該リガンドが、下記式(I)で示される化合物に由来する構成単位を有する(メタ)アクリルポリマーである、分離剤。 式(I)中、複素環を構成する原子の間に1または2個の二重結合を有し、X1はS、SCH3 +、O、NH、NCH3、CH2、CHRおよびCR12からなる群から選択され、X2、X3およびX4のそれぞれは、N、NH、NCH3、CH2、CHR、NCH3 +、CH、CR、CR12からなる群から選択され、但しR1およびR2は、それぞれ置換または未置換の炭素数1~18のアルキル、炭素数6~18のアリール、炭素数2~18のアルケニル、炭素数2~18のアルキニル、炭素数7~18のアラールキル、炭素数2~18のアシル、炭素数3~18のシクロアルキル、カルボキシル、アミノ、炭素数6~18のアリールオキシまたは炭素数1~18のアルコキシ、ハロ、ヒドロキシ、ニトロ及びシアノのいずれかであり、但しRは置換または未置換の炭素数1~18のアルキル、炭素数6~18のアリール、炭素数2~18のアルケニル、炭素数2~18のアルキニル、炭素数7~18のアラールキル、炭素数2~18のアシル、炭素数3~18のシクロアルキル、カルボキシル、アミノ、炭素数6~18のアリールオキシまたは炭素数1~18のアルコキシ、ハロ、ヒドロキシ、ニトロ及びシアノのいずれかであり、X1、X2、X3およびX4の少なくとも2個はCH2、CH、CRまたはCR12ではなく、R3はHまたはCH3である。)

Description

分離剤
 本発明はクロマトグラフィー用の分離剤に関し、特に親水性物質の分離に用いる親水性相互作用液体クロマトグラフィー用の分離剤に関する。
 高速液体クロマトグラフィー(HPLC)は生命科学、医薬学等様々な分野で応用されている分析手法の一つであり、近年では特に高度な分離あるいは高速領域での高性能化が要求されている。HPLCには様々な分離モードがあるが、現在のHPLC分析でよく利用されているものとして逆相クロマトグラフィー(RPLC)が挙げられる。しかし、生命科学の分野において重要な生理活性物質や代謝物などは高極性かつ親水性の化合物が多く、RPLCではこれらの親水性化合物の保持は小さくなるため、分離が困難となる。そのような化合物を分離するために考案されたのが親水性相互作用液体クロマトグラフィー(Hydrophilic Interaction Liquid Chromatography, HILIC)である(非特許文献2)。HILICは順相液体クロマトグラフィー(NPLC)に分類されるが、移動相に有機溶媒と水または緩衝液の混合溶媒を用いるため一般のNPLCとは異なる。一般のNPLCでは移動相に非水溶性溶媒を用いるので, 親水性の化合物を溶解させることが難しい。しかしHILICでは水系の移動相を利用するため、順相条件では溶出しない親水性化合物の分離に適している。
 特許文献1には、シリカゲルを担体として用い、該担体にリガンドとしてアクリルアミドに由来する構造が結合している分離剤が記載されている。
 特許文献2には、ビニルテトラゾールを重合して得られるポリマーが担持されてなる分離剤が記載されている。
 また、非特許文献1には、親水性相互作用クロマトグラフィー用の分離剤として、テトラゾールで修飾されたニトリル改質シリカが記載されている。
特許第2504005号公報 中国特許第101837284号明細書
Chromatographia, 73, 865-870 (2011) J.Chromatography.A, 1218, 5920-5938 (2011)
 特許文献1及び2や非特許文献1に記載の分離剤は親水性が高くなく、改善の余地があった。本発明は、親水性相互作用クロマトグラフィー用の新規な分離剤を提供する。
 本発明者は、テトラゾールのような式(I)で示される化合物に由来する構成単位のイオン相互作用や水素結合に着目した。
 そして、そのような構成単位を有する(メタ)アクリルモノマーを合成し、その(メタ)アクリルモノマーを重合して得られるリガンドが担持された分離剤が、市販されている従来の親水性相互作用クロマトグラフィー用の分離剤に比べ、特定の化合物に対して保持特性に優れることを見出し、以下に示す本発明を完成させた。
[1] 担体と担体に担持されたリガンドから形成された親水性相互作用クロマトグラフィー分離剤であって、該リガンドが、下記式(I)で示される化合物に由来する構成単位を有する(メタ)アクリルポリマーである、分離剤。
Figure JPOXMLDOC01-appb-C000002
 式(I)中、複素環を構成する原子の間に1または2個の二重結合を有し、X1はS、SCH3 +、O、NH、NCH3、CH2、CHRおよびCR12からなる群から選択され、X2、X3およびX4のそれぞれは、N、NH、NCH3、CH2、CHR、NCH3 +、CH、CR、CR12からなる群から選択され、但しR1およびR2は、それぞれ置換または未置換の炭素数1~18のアルキル、炭素数6~18のアリール、炭素数2~18のアルケニル、炭素数2~18のアルキニル、炭素数7~18のアラールキル、炭素数2~18のアシル、炭素数3~18のシクロアルキル、カルボキシル、アミノ、炭素数6~18のアリールオキシまたは炭素数1~18のアルコキシ、ハロ、ヒドロキシ、ニトロ及びシアノのいずれかであり、但しRは置換または未置換の炭素数1~18のアルキル、炭素数6~18のアリール、炭素数2~18のアルケニル、炭素数2~18のアルキニル、炭素数7~18のアラールキル、炭素数2~18のアシル、炭素数3~18のシクロアルキル、カルボキシル、アミノ、炭素数6~18のアリールオキシまたは炭素数1~18のアルコキシ、ハロ、ヒドロキシ、ニトロ及びシアノのいずれかであり、X1、X2、X3およびX4の少なくとも2個はCH2、CH、CRまたはCR12ではなく、R3はHまたはCH3である。)
[2] 前記リガンドが、アミノイミダゾール、アミノイミダゾリン、アミノチアゾール、アミノトリアゾール、アミノテトラゾール、アミノチアジアゾール、アミノメチルイミダゾールからなる群から選ばれる化合物に由来する構成単位を有する(メタ)アクリルポリマーである、[1]に記載の分離剤。
[3] 前記リガンドがアミノテトラゾールに由来する構成単位を有する(メタ)アクリルポリマーである、[1]に記載の分離剤。
[4] 前記リガンドがアミノテトラゾールに由来する構成単位を有するメタクリルポリマーである、[1]に記載の分離剤。
[5] 前記担体がシリカゲルまたはシリカモノリスであることを特徴とする[1]~[4]のいずれかに記載の分離剤。
 本発明の分離剤は、前記式(I)で表わされる化合物に由来する構成単位を有する(メタ)アクリルポリマーが担体に担持されて形成されているものである。本発明によれば、特定の親水性化合物の分離をするのに有用な新規な分離剤が提供される。
実施例で作製したメタクリルアミドモノマーの1H NMRの測定結果を示す図である。 カラムテストに用いた化合物の構造を示す図である。 本発明の分離剤及び市販品の分離剤を充填したカラムのk(U)を比較した結果を示す図である。 本発明の分離剤及び市販品の分離剤を充填したカラムを用いた核酸誘導体など8種の親水性化合物の分離結果(クロマトグラム)を示す図である。 本発明の分離剤を充填したカラムと市販品のカラムについて、log k(U)および log k(TMPAC)をプロットした結果を示す図である。 本発明の分離剤(異なる(メタ)アクリルアミド系モノマーを使用)を充填したカラムと市販品のカラムについて、α(Tb/Tp)およびα(U/2dU)をプロットした結果を示す図である。 本発明の分離剤(異なる濃度で5-メタアクリルアミド-1H-テトラゾールを使用)を充填したカラムと市販品のカラムについて、α(Tb/Tp)およびα(U/2dU)をプロットした結果を示す図である。 本発明の分離剤(モノリスカラム)と市販品及び比較対象のカラムについて、α(Tb/Tp)およびα(U/2dU)をプロットした結果を示す図である。 本発明の分離剤(モノリスカラム)と比較対象のカラムを用いてフッ化ウラシル化合物を分離して得られたクロマトグラムを示す図である。
<本発明の分離剤に担持されるリガンド>
 本発明の分離剤は、式(I)で示される化合物に由来する構成単位が、(メタ)アクリルポリマーに含まれているリガンドが担持されて形成されるものである。
 また、本発明でいう「(メタ)アクリル」には、「メタクリル」と「アクリル」の両方を含むものである。
Figure JPOXMLDOC01-appb-C000003
 式(I)中、複素環を構成する原子の間に1または2個の二重結合を有し、X1はS、SCH3 +、O、NH、NCH3、CH2、CHRおよびCR12からなる群から選択され、X2、X3およびX4のそれぞれは、N、NH、NCH3、CH2、CHR、NCH3 +、CH、CR、CR12からなる群から選択され、但しR1およびR2は、それぞれ置換または未置換の炭素数1~18のアルキル、炭素数6~18のアリール、炭素数2~18のアルケニル、炭素数2~18のアルキニル、炭素数7~18のアラールキル、炭素数2~18のアシル、炭素数3~18のシクロアルキル、カルボキシル、アミノ、炭素数6~18のアリールオキシまたは炭素数1~18のアルコキシ、ハロ、ヒドロキシ、ニトロ及びシアノのいずれかであり、但しRは置換または未置換の炭素数1~18のアルキル、炭素数6~18のアリール、炭素数2~18のアルケニル、炭素数2~18のアルキニル、炭素数7~18のアラールキル、炭素数2~18のアシル、炭素数3~18のシクロアルキル、カルボキシル、アミノ、炭素数6~18のアリールオキシまたは炭素数1~18のアルコキシ、ハロ、ヒドロキシ、ニトロ及びシアノのいずれかであり、X1、X2、X3およびX4の少なくとも2個はCH2、CH、CRまたはCR12ではなく、R3はHまたはCH3である。
 式(I)において、X1、X2、X3およびX4のそれぞれは、S、N、O、NH、NCH3、CH2から選ばれることが好ましく、S、N及びNHから選ばれることがより好ましい。
 式(I)で示される化合物に由来する構成単位が、リガンドである(メタ)アクリルポリマーに含まれていることで、式(I)に由来する構成単位のイオン相互作用や水素結合の作用により、分離剤の親水性化合物を保持する能力に影響を与える。
 特に、式(I)で示される化合物として、複素環に窒素原子を有する化合物を用いた場合には、その窒素原子が水素結合受容体として働き、これが親水性化合物の保持に影響を与える。
 上記の化合物のうち、(メタ)アクリルアミドテトラゾールについて見ると、環に4つの窒素原子を含む化合物であり、脱プロトン化することにより共鳴安定化する酸性化合物である。さらにテトラゾール上の窒素原子は水素結合の受容体として働く。
 式(I)で示される化合物は市販のものを用いてもよいし、公知の方法を用いて合成することもできる。
 式(I)で示される化合物は、例えば以下の式(II)で示される化合物と(メタ)アクリロイルクロリドとを、例えばテトラヒドロフランのような溶媒中で反応させることで、式(I)で示される構造を有する(メタ)アクリルアミドモノマーを得ることができる。なお、(メタ)アクリロイルクロリドは、メタクリロイルクロリドまたはアクリロイルクロリドを意味する。
Figure JPOXMLDOC01-appb-C000004
(式(II)中、複素環を構成する元素の間に1または2個の二重結合を有し、X1~X4は式(I)と同じものを表し、R3は水素又はメチルを示す。)
 式(II)で示される化合物の具体例としては、例えば以下のものを挙げることができる。
 5-アミノテトラゾールのようなアミノテトラゾール、2-アミノイミダゾールのようなアミノイミダゾール、2-アミノ-2-イミダゾリンのようなアミノイミダゾリン、2-アミノチアゾールのようなアミノチアゾール、3-アミノ-1,2,4-トリアゾール、4-アミノ-1,2,4-トリアゾールのようなアミノトリアゾール 、2-アミノ-1,3,4-チアジアゾールのようなアミノチアジアゾール及び2-アミノ-1-メチル-1H-イミダゾールのようなアミノメチルイミダゾールが挙げられる。
 上記の式(I)の(メタ)アクリルアミドモノマーは、重合性官能基と複素環とがアミド結合を介して結合していることから、これを重合させて得られる(メタ)アクリルポリマーは、その主鎖と上記複素環とがアミド結合を介して結合することになる。
 上述した(メタ)アクリルアミドモノマーをラジカル重合させることで、式(I)で示される化合物に由来する構成単位が(メタ)アクリルポリマーに含まれるリガンドを得ることができる。
 上述した(メタ)アクリルアミドモノマーのラジカル重合は、フリーラジカル重合である。これに対し、特許文献2に記載のポリマーの重合は、原子移動ラジカル重合(ATRP)により行われるものであり、この重合法では銅錯体を触媒として用いる。この方法によれば、銅イオンのような金属イオンが担体に残存する可能性があり、この金属イオンが目的物質の分離に悪影響を及ぼす可能性がある。本発明では金属触媒を用いずにラジカル重合を行うことができるので、金属イオンの残存に起因する問題が生じない。
 なお、本発明の分離剤に担持されるリガンドは、式(I)に示される構成単位に加えて、本発明の効果を損なわない範囲で他の化合物に由来する構成単位を含んでいてもよい。
 その場合、式(I)で示される構成単位の割合が90モル%以上含まれていることが好ましい。
 式(I)で示される化合物の重合については、後述するように、担体の存在下で行うこともできるし、担体とは別に行うこともできる。担体の存在下で行う場合には、化学結合型の分離剤とすることができ、担体とは別に重合させる場合には、物理吸着型の分離剤を作製することができる。
 前記(メタ)アクリルポリマーの数平均分子量(Mn)及び重量平均分子量(Mw)は親水性化合物の分離性能の観点からは、できるだけ大きい方が好ましく5000~20000であることが好ましい。前記(メタ)アクリルポリマーの分子量分散(Mw/Mn)は特に限定されないが、1.0~5.0である態様を挙げることができる。
 (メタ)アクリルポリマーの分子量が大きくなることは、式(I)で示される化合物に由来する構成単位の分離剤における割合が増えることにより、親水性化合物の保持力を高めることに寄与する。
 前記(メタ)アクリルポリマーが後述する担体に担持された分離剤の親水性については、その重合条件を変えることによっても、調整することができる。
 例えば、重合の際に重合温度を低くしたり、RAFT試薬を添加することで、生成するポリマーが担持された分離剤の親水性を上げることができる。
 前記(メタ)アクリルポリマーのMn、Mw、及びMw/Mnは、サイズ排除クロマトグラフィー(SEC)によって求めることができる。
 前記(メタ)アクリルポリマーのMn、Mwは、後述する重合の工程において用いる重合開始剤とモノマーとのモル比を10~1000の範囲で調整することによって調整することができる。また、分子量は、連鎖移動剤を用いて小さくすることができる。連鎖移動剤としては、例えば水溶性のRAFT剤であるジチオカルボン酸誘導体を用いることができる。
 例えば、前記ポリマーのMnやMwを大きくすることは、重合開始剤とモノマーとのモル比を大きくすることにより可能となる。
 重合開始剤としては、例えば過硫酸化アンモニウムを用いることができる。
 本発明の分離剤は、式(I)で示される化合物に由来する構成単位が含まれているリガンドが担体に担持されて形成されるものである。
 担体への担持の態様としては、物理的な吸着や化学的な結合を挙げることができる。
 担体への担持が物理的吸着である場合には、式(I)で示される化合物に由来する構成単位を有するリガンドを適当な溶剤に溶解させた後、その溶液を下記の担体に塗工した後、溶剤を留去することによって担持させることができる。
 物理的吸着により担持させる担体は、カラム管に収容され、分離における化学的及び物理的な耐久性を有する担体を用いることができる。このような担体としては、公知の担体を用いることができ、例えば、シリカ、アルミナ、マグネシア、ガラス、カオリン、酸化チタン、ケイ酸塩、及びヒドロキシアパタイト等の無機担体、及び、ポリスチレン、ポリアクリルアミド、ポリアクリレート等の有機担体、が挙げられる。
 前記担体は、目的物に対する分離能を高める観点から、多孔質であることが好ましい。担体は粒子状であってもよいし、カラム管に一体的に収容される一体型担体であってもよいが、分離剤の製造及びそのときの取り扱いの容易さの観点から、粒子状であることが好ましい。このような担体の具体例としてはシリカゲルが挙げられる。
 担体への担持を、化学的結合により行う場合には、例えば以下の方法を用いることができる。
 担体に予め表面処理を行う。例えば、担体としてシリカゲルを用いる場合、アクリル系モノマーとシランカップリング剤を反応させて得られる化合物をスペーサーとして用い、これをシリカゲルと反応させる。
 スペーサーとして用いることのできる化合物は、例えば(メタ)アクリロイルクロリドとアミノアルコキシシランを反応させて得ることができる。アミノアルキルアルコキシシランのアルキル基の炭素数は、例えば1~5のものを挙げることができ、アルコキシ基の炭素数は1~3のものを挙げることができる。アミノアルキルアルコキシシランの具体例としては、3-アミノプロピルトリエトキシシランを挙げることができる。
 THFのような溶媒の中でトリエチルアミンの存在下、メタクリロイルクロリドと3-アミノプロピルトリエトキシシランを反応させた場合には、3-メタクリルアミドプロピルトリエトキシシランが得られる。
 このようにして得られたスペーサーのアルコキシ基と、シリカゲルとを反応させ、シリカゲルとスペーサーを結合させる。
 アクリル系モノマーに由来する二重結合を有するスペーサーが結合したシリカゲルと、前述した式(I)で示される(メタ)アクリルアミドモノマーとを共に重合反応を起こさせることで、式(I)で示される化合物に由来する構成単位を有する(メタ)アクリルポリマーが担体であるシリカゲルと化学的に結合する。重合の際に用いる溶媒としては、式(I)で示される(メタ)アクリルアミドモノマーを溶解するジメチルホルムアミド(DMF)系の溶媒や水/ピリジンを用いることができる。
 なお、この際の式(I)で示される(メタ)アクリルアミドモノマーの濃度については、50~800mg/mL程度を挙げることができる。メタクリルアミドテトラゾールを用いる態様としては50~500mg/mL程度を挙げることができ、それ以外のアクリルアミド系モノマーの濃度は、例えば300~600mg/mLを挙げることができる。重合の際の前記モノマーの濃度を増加させることで、得られる分離剤の親水性基選択性や疎水性選択性を高めることができる。反応温度は20~100℃、反応時間は1~24時間程度を挙げることができる。
 担体としてシリカゲルを用いない場合でも、担体表面にビニル基のような重合性官能基を有するスペーサーを結合させ、その後その重合性官能基と、式(I)で示される(メタ)アクリルアミドモノマーの重合性官能基に対して重合反応を起こさせることで、担体に化学的に結合させることができる。
 担体としては、その表面処理を容易に行う観点から、シラノール基を担体の表面に有しているものが好ましい。
 上記のスペーサーとして用いることのできるシランカップリング剤としては、ビニルメチルクロロシラン、ビニルジメチルエトキシシラン、ビニルエチルジクロロシラン、ビニルメチルジアセトキシシラン、ビニルメチルジエトキシシラン、1-ビニルシラトラン、ビニルトリアセトキシシラン、ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリフェノキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、ビニルトリイソプロポキシシラン、スチリルエチルトリメトキシシラン、メタクリロキシプロピルジメチルクロロシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリス(メトキシエトキシ)シラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルメチルジメトキシシラン、1,3-ジビニル-1,3-ジメチル-1,3-ジクロロジシロキサン、1,3-ジビニルテトラエトキシジシロキサン、1,3-ジビニルテトラメチルジシラザンなどを挙げることができる。
 担体の粒径としては、担体へのリガンドの担持が物理的吸着でも化学的結合であっても、通常3~15μmのものを用いる。
 上記担体に対する前記リガンドの担持量は、分離剤全量の100重量部に対して通常、10~30重量部であり、15~25重量部であることが好ましい。
 また、担体としてはモノリス担体を用いることもでき、そのようなモノリス担体は、例えば以下の反応式で示されるように、アルコキシシランの加水分解及び重縮合により引き起こされるゾル-ゲル法により得ることができるシリカモノリスを挙げることができる。
Si(OR)4 + H2O → Si(OH)(OR)3 + ROH
Si-OH + Si-OH → Si-O-Si + H2O
Si-OH + Si-OR → Si-O-Si + ROH
 アルコキシシランの加水分解及び重縮合は、使用するカラムの形態に応じて、例えばキャピラリーカラムの中で行わせてもよい。
 アルコキシシランのアルコキシ基としては、炭素数が1~5程度のものを挙げることができ、その中でもメトキシ基、エトキシ基を好ましく挙げることができる。
 上記の他にも、特開2006-150214号公報に記載の、マクロ細孔と該マクロ細孔の内壁面に形成される中細孔を有する一体型の無機系多孔質体(モノリス担体)も使用することができる。
 キャピラリーカラムとしては、フューズドシリカキャピラリーを挙げることができる。フューズドシリカキャピラリーは、公知の方法により作製することもできるし、市販品のカラムの内壁を処理して得ることもできる。
 シリカゾル-ゲル反応は、公知の条件を用いることができる。
 また、モノリスカラムとしては、シリカモノリスの他に、公知のポリマーモノリスを用いることもできる。
 このようなポリマーモノリスを用いる場合には、これに物理的吸着により、式(I)で表される化合物に由来する構成単位を持ったポリマーを担持させて用いることができる。
 シリカモノリスを用いる場合には、そのモノリスへの担持方法として、上述した化学的結合を挙げることができる。
 具体的には、予め調製したシリカモノリスに、アクリル系モノマーとシランカップリング剤を反応させて得られる化合物をスペーサーとして用い、これをシリカモノリスと反応させる。例えば、3-アミノプロピルトリエトキシシランとメタクリルクロリドを反応させると、3-メタクリルアミドプロピルトリエトキシシランが得られる。
 このようにして得られたスペーサーのアルコキシ基と、シリカゲルとを反応させ、シリカゲルとスペーサーを結合させる。
 アクリル系モノマーに由来する二重結合を有するスペーサーが結合したシリカモノリスと、前述した式(I)で示される(メタ)アクリルアミドモノマーとを共に重合反応を起こさせることで、式(I)で示される化合物に由来する構成単位を有する(メタ)アクリルポリマーが担体であるシリカモノリスと化学的に結合する。
 その際の(メタ)アクリルアミド系モノマーの濃度は50~800mg/mL程度を挙げることができる。メタクリルアミドテトラゾールを用いる態様としては50~500mg/mL程度を挙げることができ、それ以外のアクリルアミド系モノマーの濃度は、例えば300~600mg/mLを挙げることができる。重合の際の前記モノマーの濃度を増加させることで、得られる分離剤の親水性基選択性や疎水性選択性を高めることができる。例えば反応温度は20~100℃、反応時間は1~24時間程度を挙げることができる。
 本発明を実施例によって更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例の記載に限定されるものではない。
 本発明の実施例を以下に示す。
1. 5-メタクリルアミド-1H-テトラゾールの合成
<実験操作>
(1) 5-アミノ-1H-テトラゾール 3.09g、テトラヒドロフラン90mL, 水11.4mLの溶液にメタクリロイルクロリド3.79mLを30分かけて滴下し、3時間後に水90mLを加え、冷蔵保存した。
(2)この溶液を吸引ろ過し、ろ紙上の白い固体を真空乾燥した。
Figure JPOXMLDOC01-appb-C000005
5-Methacrylamido-1H-tetrazoleの合成
<結果>
作製した(メタ)アクリルアミドモノマーの1H NMRの測定結果を図1に示す。収率は70%であった。
2. テトラゾール含有ポリマー修飾型固定相 (PTz) の合成
2-1. 3-メタクリルアミドプロピルトリエトキシシラン(MAS)の合成およびシリカゲルへの担持
<実験操作>
(1)3-アミノプロピルトリエトキシシラン11.09gをTHF25mLに溶解し、 トリエチルアミン7.39mLを加えた。
(2)氷冷下でメタクリロイルクロライド5.08mLを30分かけて滴下。
(3)21時間後、この溶液を吸引ろ過し、 エバポレーターで濃縮後、真空乾燥を行った。(MASの単離)
(4)乾燥させたシリカゲル13.67gにトルエン60mLを加え、120℃で蒸留(共沸)した。
(5)MAS、ピリジン8.46gおよびヒドロキノンを加え、24時間加熱還流した。
(6)還流終了後、メタノールでろ過し、ろ紙上の固体を乾燥した。(MAS-Siの単離)
2-2. メタクリルアミドモノマーの重合による固定相の合成
<実験操作>
(1)MAS-Si 700mgに対し、400~1300mgのメタクリルアミドモノマーを用い、溶媒5mL中で、60℃、3時間ラジカル重合を行った。開始剤には、すべて過硫酸アンモニウムを用い、溶媒は水/ピリジン=4/1とした。
(2)重合後、メタノールおよびアセトンでろ過し、乾燥した。
(3)出来上がった充填剤を、スラリー溶媒(メタノール/水=4/1)20mLを用いてステンレスカラムに充填した。
Figure JPOXMLDOC01-appb-C000006
PTz固定相の合成
3. カラムテスト法による特性評価
3-1. カラムテスト法
 カラムテスト法を用いて、表1の各項目について表2に示す各分離剤について評価を行った。
測定条件
移動相: α(AX), α(CX)…Acetonitrile (ACN)/AcONH4 buffer (100 mM, pH 4.76 )
上記以外の項目…Acetonitrile (ACN)/AcONH4 buffer (20 mM, pH 4.76 )
カラム温度:   30 °C 
検出器:       UV 254 nm
<結果と考察>
 実施例のカラム(以下、PTzカラムともいう)及び市販のカラム(TSKgel Amide-80, Halo-HILIC)の測定結果を表2に示した。ウリジンの保持k(U)に関して、実施例のカラムではk(U)=4.562~8.944の値が得られた。これは、市販カラムの中で最大の保持を有するTSKgel Amide-80のk(U)=4.58と同等以上であり、大きく上回るものもあった。親水性選択性の大きさを表すα(OH)の値は1.927~2.25であった。よって、このPTzカラムはウリジンなどの親水性物質に対しての保持や選択性が非常に高いと考えられる。また、α(Tb/Tp)の値が1以上であることから、酸性型の分離剤であると考えられる。図3として、実施例のカラムと市販品のカラムのk(U)を比較した結果を示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
4. 市販のカラムとの比較
8種の核酸および核酸塩基を試料とし、 PTzカラム(実施例)、TSK gel Amide-80(5μm)、Halo-HILICの3つのカラムでその分離性能を比較した。
<結果と考察>
 8種の試料 (Guanine, Guanosine, Uracil, Uridine, Adenine, Adenosine, Cytosine, Cytidine) の分離性能比較の結果を図4に示した。
測定条件
移動相: ACN/20 mM AcONH4buffer = 90/10
検出器: UV 254 nm
カラム温度: 30 ℃
 図4のクロマトグラムで示されるように、Amide-80(5μm)ではAdenosineとUridineが、Halo-HilicではAdenineとAdenosineが同時に溶出し, 分離できなかった。これに対して、PTzのみがこれら8種の化合物全ての分離を達成することができた。したがって、PTzカラムはヌクレオシドや、核酸類のような親水性の化合物に対しての分離性能が高いことが確認された。
<参考例:カラムの分類について(市販のカラムとの比較)>
 カラムテスト法に利用した検体を使って、log k(U)(k(uridine)の対数値)および log k(TMPAC)(k (trimethylphenylammonium chloride)の対数値)の値をプロットすることにより、カラムを分類することができる。
 この手法の長所は、性質が分からないカラムを分類する際、たった2つの試料を用いることである程度の分類が可能であり、簡便に行えることである。市販のカラム15本(図5参照)とPTzカラムを用いてこのプロットを行った。
<結果>
 log k(U) および log k(TMPAC)を用いたプロットの結果を図5に示した。ここから読み取れるように、市販のカラムはアミン系、シリカ系、アミド系などに分類することができる。その中でも、PTzカラムはアミド系のカラムと性質が類似していた。
 上記1.と同様の方法により、以下の表3に示す(メタ)アクリルアミドモノマーを作製した。ただし、3-アミノ-1,2,4-トリアゾールと、5-アミノ1H-テトラゾールを原料とした反応ではテトラヒドロフランを用いず水溶媒のみで反応を行ない、塩基として炭酸水素カリウムを用いた。これらのモノマーの生成は、1H NMR及びMSで確認し、矛盾のない結果を得た。
Figure JPOXMLDOC01-appb-T000009
 上記2-1.で作製した3-メタクリルアミドプロピルトリエトキシシラン(MAS)で修飾したシリカゲル粒子とシリカゲル粒子状で、上記表3に記載の(メタ)アクリルアミドモノマーを以下の表4に記載の条件で重合した。なお、MA thiazoleやMA thiadiazoleはモノマー及びポリマーの水溶性が低かったため、全てのモノマーが溶解するジメチルホルムアミド(DMF)系での重合を行なった。
Figure JPOXMLDOC01-appb-T000010
<結果と考察>
 実施例のカラム(以下、PTzカラムともいう)及び市販のカラム(TSKgel Amide-80, Halo-HILIC)を用いたカラムテストの結果を表5に示した。なお、TSKgel Amide-80はポリアクリルアミド修飾型、Halo-HILICは未修飾のシリカ型のカラムである。
Figure JPOXMLDOC01-appb-T000011
 ウリジンの保持k(U)に関して、表4に記載のモノマー(MA tetrazoleを除く)によるカラムではk(U)=0.40~0.57の値が得られた。これは同時に重合したMA tetrazoleによるカラムのk(U)=5.15に比べると小さく親水性は高くないが、親水性クロマトグラフィー用の分離剤としては用いることができる値である。また、固定相表面のpHの状態を示すα(Tb/Tp)の値は、MA thiadiazole、MA triazole、AA tetrazoleの場合に1以下となり、これらのモノマーで修飾した固定相表面が塩基性であることを示した。
 MA tetrazoleによる固定相は、水中で重合した場合と同様にα(Tb/Tp)が1以上であることから、酸性型の分離剤であると考えられる。
 AA tetrazole型固定相で、α(Tb/Tp)が0.68と塩基性の性質を示した。
 次に、横軸にα(OH)、縦軸にα(Tb/Tp)をとって各カラムの値をプロットすると、図6のようになった。α(Tb/Tp)が1付近なら中性の表面、1以上なら酸性、1以下なら塩基性の表面であることを示す。α(OH)が大きいほどヒドロキシ基の選択性が高いことを示し、プロットの右上の方が親水性が大きくなる方向である。表4に記載のモノマーを用いて調製した固定相は16~20に相当する。
 MA thiazoleやMA thiazdiazoleの重合修飾によって中性~弱塩基性のHILIC固定相を、MA triazoleの重合修飾によって塩基性のHILIC固定相を調製できる。表3に記載の用いた条件では、MA tetrazole修飾型カラムのプロット位置は双性イオン型の領域にとどまったが、k(U)=10のMA tetrazole修飾型カラムではずっと右上の領域にプロットが現れた。
 実施例1で作製したPTzカラムについて、各モノマー濃度ごとの分離特性を示す図として図7を示す。縦軸と横軸は図6と同じであり、図中の符号の数字も図6と同じものを意味する。図7に示された結果から、モノマー濃度を増加させることでPTzカラムの親水性と選択性を高めることができる。
<実施例2:一体型担体(モノリスカラム)>
1. 多孔性シリカモノリスカラムの調製
 多孔性シリカモノリスの調製は、公知の方法により行った。具体的には、アルコキシシランの加水分解、重縮合により引き起こされるゾル-ゲル法により行った。
2. フューズドシリカキャピラリーの内壁処理
 100μm I.D.×375μm O.D.のヒューズドシリカキャピラリーカラム(Polymicro Technologies)に1N-水酸化ナトリウムを送液し、40℃で3時間放置した。次に1N-塩酸で洗浄を行った後、40℃で3時間放置した。最後に、超純水、アセトンの順に洗浄を行い、乾燥した。
3. Hybrid型シリカモノリスキャピラリーカラムの調製
 氷冷下でポリエチレングリコール(PEG) 0.9gと尿素2gに0.01N酢酸20mlを加えて30分間撹拌した。混合溶液にテトラメトキシシランとメチルトリメトキシシランの混合アルコキシシラン(3:1 vol/vol)を9ml滴下し30分間撹拌を行った。さらに、40℃で10分間加熱した後、混合溶液をPTFEフィルター(0.45μm)でろ過した。この混合溶液を内壁処理を行ったフューズドシリカキャピラリー中に注入し、40℃で24時間反応を行いゲル化させた。次に、両端を0.06g/ml尿素水に浸した状態でこのキャピラリーを90℃加熱エージング処理し(24時間)、その後120℃で熱処理を4時間行った。熱処理を行うことにより骨格の再結合、および尿素の分解により発生するアンモニアによるシリカの溶解によるメソポアの形成を行った。その後、キャピラリー内をメタノールで洗浄した。最後にキャピラリー内により完全に乾燥させ熱処理を行い、シリカモノリスキャピラリーカラムを得た。
4. シリカモノリスキャピラリーカラムのMASによるシリル化
 メタノール、トルエンで置換したシリカモノリスキャピラリーカラムにMAS、トルエン、ピリジン混合溶液(体積比=1:1:1)をシリンジポンプで24時間送液した(反応温度80℃)。その後、トルエンでキャピラリー内の洗浄を行った。同様の操作を再度行いシリカモノリスキャピラリーカラムのMAS化を行った。
5. 重合修飾型固定相の調製
 重合開始剤を含んだモノマー(実施例1で作製したものと同じもの)溶液を、あらかじめ水で置換したMASカラムに室温で十分量送液し、カラム内にモノマー溶液の充填を行った。その後、それぞれの重合温度(60℃)に設定されたウォーターバス中に両端を密栓したカラムを投入し所定の時間重合させた。最後にHPLCポンプにより水またはメタノールを送液し、キャピラリー内を洗浄することにより重合修飾型シリカモノリスキャピラリーカラムを得た。モノマーの構造は図1に、重合条件は以下に示した。
・重合修飾型固定相の調製条件
モノマー濃度:150mg/ml
反応時間:2hr
開始剤:5mg(過硫酸アンモニウム)/ 1% NH3aq in water
測定条件
実施例1と同一条件
Figure JPOXMLDOC01-appb-T000012
<モノリスカラムの調製-2>
 実施例2の4.で作製したMAS化されたシリカモノリスキャピラリーカラムに、下記の条件で調製したモノマー溶液を充填し、以下の表7に示すように、モノマーの濃度を変えてカラム内重合反応を行い、各モノリスカラムを得た。
開始剤: 過硫酸アンモニウム (5mg/ml in  4.1mol/l NH3aq) 
温度60℃
反応時間:2hr
 このモノマーを重合してできるポリマーは、水又はMeOHへの溶解性が富んでいるため、モノマーの仕込み量が比較的大きかった。当該実験ではその仕込み量範囲の広さを利用して、モノマーの仕込み量とカラム性能(保持や選択性)の評価を行った。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000013
クロマトグラフィー条件:
Mobile phase: AN90%-20 mM AcONH4 buffer pH 4.7, Flow rate: 0.5 ml/min, Pressure: 12 kgf, temperature: 30℃, Detection: 254 nm, Sample: α(CH2): k(uridine)/k(5-methyluridine), α(OH): k(uridine)/k(2'-deoxyluridine), α(Tb/Tp): k(theobromine)/k(theophylline), α(V/A): k(vidarabine)/k(adenosine), α(2dG/3dG): k(2'-deoxyguanosine)/k(3'-deoxyguanosine), k(TPA): N,N,N-trimethylphenylammonium chloride
 上記で作製したモノリスカラムのうち、モノマーの濃度が200mg/mlのもの(PTZ200)と、様々なHILIC型モノリスカラム、及び粒子充填型カラムとを用いて、分離特性を比較した。クロマトグラフィーの条件や分離対象のサンプルは表7と同様である。結果を表8と図8に示す。図8の縦軸と横軸は図6と同じであり、図中の符号の数字も図6と同じものを意味する。表8に記載されたPSDMA、PAAm、PAEMAの各モノマーの構造を図8中に示す。
Figure JPOXMLDOC01-appb-T000014
 本発明にかかるPTZ-200はモノリスカラム(重合修飾モノリス型)で最も大きい保持を発現した。また、粒子充填型カラムと比較すると、ZIC-HILICの1.75倍、NH2-MSの1.51倍、Amide-80の0.8倍の保持能力を有していた。モノリスカラムのポロシティーを考慮に入れるとPTZ-200は非常に大きな保持が発現されている事がわかった。この特徴はモノリスカラムの弱点である保持能力の低さを十二分に補う特性だといえる。
 また、選択性に関しても他のカラムに比べ特徴的な値を示していた。親水性選択性は最も大きな値を示しており、疎水性選択性も比較的大きな値を示していた。OH基の向きや位置選択性は他のカラムの方が大きな結果となった。
 また、モノマー濃度を変えて調製したPTZ-150、及び上記表8に記載のPSDMA、PAEMA、PAAmを用いて調製したカラムを用いて、フッ化ウラシルの類縁体の分離を行った。分離対象とした化合物群は、構造が極めて類似しており、一般的にこれらの一斉分離は困難である。結果を図9に示す。
 クロマトグラフィーの条件と、分離対象とした化合物は以下の通りである。
Mobile phase: AN90% 20 mM AcONH4 buffer, Column: a: PSDMA 26cm, b: PAEMA 26 cm, c: PAAm 25cm, d: PTZ-150 26.7 cm, Flow rate: 0.5 ml/min, Pressure: 15 kgf, temperature: 30℃, Detection: 254 nm
Sample 1: toluene, 2: trifluorothymidine, 3: 5'-deoxy-5-fluorouridine, 4: 2'-deoxy-5-fluorouridine, 5: 2'-deoxy-2'-fluorouridine, 6: thymidine, 7: 2'-deoxyuridine, 8: 5-fluorouridine, 9: uridine
 図9の結果から、PSDMAやPAEMAでは全ての化合物を分離することはできなかった。PAAmでは全てのピークトップを確認できたが、4,5,6,7のサンプルは完全に分離できなかった。しかし、PTZ-150カラムは全ての化合物を完全に分離することができた。これはPTZの特徴である大きな保持と良好な選択性によって分離が達成された一例である。
 本発明では、式(I)で示される化合物に由来する構造を有するモノマーをシリカゲルのような担体に重合、修飾することにより新たな分離剤を開発した。本発明で開発した分離剤を充填したカラムの中で、MA tetrazoleが担持された分離剤は、弱い酸性型のカラムであり、ウリジンの保持や親水性選択性が極めて高い特性を示した。本発明の分離剤の中でも特に、MA tetrazoleが担持された分離剤を用いたカラムは、親水性物質の保持及び選択性が市販のカラムと比較して非常に大きく、またヌクレオシドや核酸塩基の分離性能に優れる。
 本発明の分離剤は、これまで分離が難しかった様々な親水性化合物の分離に大いに役立つと予想される。このことから、本発明の分離剤を有するカラムは今後の生体関連物質(糖類、ペプチド、タンパク質も含む)の新たな分離条件の発見や改良だけでなく、分離された生体関連物質の同定、解析の利便性の向上が期待される。

Claims (5)

  1.  担体と担体に担持されたリガンドから形成された親水性相互作用クロマトグラフィー分離剤であって、該リガンドが、下記式(I)で示される化合物に由来する構成単位を有する(メタ)アクリルポリマーである、分離剤。
    Figure JPOXMLDOC01-appb-C000001
     式(I)中、複素環を構成する原子の間に1または2個の二重結合を有し、X1はS、SCH3 +、O、NH、NCH3、CH2、CHRおよびCR12からなる群から選択され、X2、X3およびX4のそれぞれは、N、NH、NCH3、CH2、CHR、NCH3 +、CH、CR、CR12からなる群から選択され、但しR1およびR2は、それぞれ置換または未置換の炭素数1~18のアルキル、炭素数6~18のアリール、炭素数2~18のアルケニル、炭素数2~18のアルキニル、炭素数7~18のアラールキル、炭素数2~18のアシル、炭素数3~18のシクロアルキル、カルボキシル、アミノ、炭素数6~18のアリールオキシまたは炭素数1~18のアルコキシ、ハロ、ヒドロキシ、ニトロ及びシアノのいずれかであり、但しRは置換または未置換の炭素数1~18のアルキル、炭素数6~18のアリール、炭素数2~18のアルケニル、炭素数2~18のアルキニル、炭素数7~18のアラールキル、炭素数2~18のアシル、炭素数3~18のシクロアルキル、カルボキシル、アミノ、炭素数6~18のアリールオキシまたは炭素数1~18のアルコキシ、ハロ、ヒドロキシ、ニトロ及びシアノのいずれかであり、X1、X2、X3およびX4の少なくとも2個はCH2、CH、CRまたはCR12ではなく、R3はHまたはCH3である。)
  2.  前記リガンドが、アミノイミダゾール、アミノイミダゾリン、アミノチアゾール、アミノトリアゾール、アミノテトラゾール、アミノチアジアゾール、アミノメチルイミダゾールからなる群から選ばれる化合物に由来する構成単位を有する(メタ)アクリルポリマーである、請求項1に記載の分離剤。
  3.  前記リガンドがアミノテトラゾールに由来する構成単位を有する(メタ)アクリルポリマーである、請求項1に記載の分離剤。
  4.  前記リガンドがアミノテトラゾールに由来する構成単位を有するメタクリルポリマーである、請求項1に記載の分離剤。
  5.  前記担体がシリカゲルまたはシリカモノリスであることを特徴とする請求項1~4のいずれか一項に記載の分離剤。
PCT/JP2014/068237 2013-07-08 2014-07-08 分離剤 WO2015005361A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/903,699 US11285458B2 (en) 2013-07-08 2014-07-08 Separating agent
EP14822794.5A EP3021114B1 (en) 2013-07-08 2014-07-08 Separating agent
CN201480038929.1A CN105492904B (zh) 2013-07-08 2014-07-08 分离剂
JP2015526362A JP6358599B2 (ja) 2013-07-08 2014-07-08 分離剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013142550 2013-07-08
JP2013-142550 2013-07-08

Publications (2)

Publication Number Publication Date
WO2015005361A1 true WO2015005361A1 (ja) 2015-01-15
WO2015005361A9 WO2015005361A9 (ja) 2015-11-12

Family

ID=52280039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068237 WO2015005361A1 (ja) 2013-07-08 2014-07-08 分離剤

Country Status (5)

Country Link
US (1) US11285458B2 (ja)
EP (1) EP3021114B1 (ja)
JP (1) JP6358599B2 (ja)
CN (1) CN105492904B (ja)
WO (1) WO2015005361A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152996A1 (ja) * 2015-03-24 2016-09-29 株式会社ダイセル 超臨界流体クロマトグラフィー用の固定相

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109642894B (zh) * 2016-08-29 2021-08-24 昭和电工株式会社 胺类化合物的分析方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2504005B2 (ja) 1986-11-17 1996-06-05 東ソー株式会社 充填剤およびその製法
JPH10500615A (ja) * 1994-05-16 1998-01-20 バイオセプラ インコーポレイテッド メルカプト複素環式リガンドを用いるクロマトグラフィ吸着剤
JP2006150214A (ja) 2004-11-29 2006-06-15 Daicel Chem Ind Ltd 光学異性体用分離剤及び光学異性体用分離カラム
JP2009007094A (ja) * 2007-06-27 2009-01-15 Kyocera Mita Corp 用紙供給装置及びこれを搭載した画像形成装置
CN101837284A (zh) 2010-05-28 2010-09-22 西北大学 一种聚乙烯基四唑分离介质及其制备方法和应用
WO2010118985A1 (en) * 2009-04-15 2010-10-21 Mip Technologies Ab Affinity material

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4322459A (en) * 1980-11-21 1982-03-30 Ppg Industries, Inc. Epoxy derived resins containing amino or mercapto substituted azole functionality and compositions containing same
US4381239A (en) 1981-02-10 1983-04-26 Tanabe Seiyaku Co., Ltd. Method for reducing the pyrogen content of or removing pyrogens from substances contaminated therewith
DE3811042A1 (de) 1988-03-31 1989-10-19 Merck Patent Gmbh Ionenaustauscher
FR2631849B1 (fr) * 1988-05-30 1992-02-14 Centre Nat Rech Scient Support pour la separation des proteines, procede pour sa preparation et application en chromatographie
SU1650592A1 (ru) * 1988-07-29 1991-05-23 Иркутский государственный университет Способ извлечени ртути из растворов
IT1252628B (it) * 1991-12-06 1995-06-19 Pier Giorgio Righetti Formulazioni per matrici poliacrilamidiche in metodiche elettrocinetiche
US6716948B1 (en) 1999-07-31 2004-04-06 Symyx Technologies, Inc. Controlled-architecture polymers and use thereof as separation media
JP4219327B2 (ja) 2002-06-27 2009-02-04 アクゾ ノーベル エヌ.ブイ. 吸着材料及び吸着材料の調製方法
JP5189286B2 (ja) * 2003-02-19 2013-04-24 ナトリックス セパレイションズ インコーポレーテッド 支持型多孔質ゲルを含んでなる複合材
JP5498025B2 (ja) 2008-03-13 2014-05-21 公益財団法人相模中央化学研究所 新規なチアゾール誘導体固定化マトリックス、及びその製造方法
US20090294362A1 (en) * 2008-05-30 2009-12-03 Persson Jonas Par Stationary phase for hydrophilic interaction chromatography
SG178173A1 (en) * 2009-07-28 2012-03-29 Instraction Gmbh Specific sorbent for binding proteins and peptides, and separation method using the same
EP2570182A1 (en) * 2011-09-15 2013-03-20 InstrAction GmbH Sorbent comprising on its surface a cationic or protonizable aliphatic residue for the purification of organic molecules

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2504005B2 (ja) 1986-11-17 1996-06-05 東ソー株式会社 充填剤およびその製法
JPH10500615A (ja) * 1994-05-16 1998-01-20 バイオセプラ インコーポレイテッド メルカプト複素環式リガンドを用いるクロマトグラフィ吸着剤
JP2006150214A (ja) 2004-11-29 2006-06-15 Daicel Chem Ind Ltd 光学異性体用分離剤及び光学異性体用分離カラム
JP2009007094A (ja) * 2007-06-27 2009-01-15 Kyocera Mita Corp 用紙供給装置及びこれを搭載した画像形成装置
WO2010118985A1 (en) * 2009-04-15 2010-10-21 Mip Technologies Ab Affinity material
CN101837284A (zh) 2010-05-28 2010-09-22 西北大学 一种聚乙烯基四唑分离介质及其制备方法和应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHROMATOGRAPHIA, vol. 73, 2011, pages 865 - 870
HAZER O ET AL.: "Speciation of chromium in water samples by solid-phase extraction on a new synthesized adsorbent", ANAL SCI, vol. 29, no. 7, 10 June 2013 (2013-06-10), pages 729 - 734, XP055252446 *
J. CHROMATOGRAPHY.A, vol. 1218, 2011, pages 5920 - 5938
SCHWARZ A: "Five-membered mercaptoheterocyclic ligands for thiophilic adsorption chromatography", J MOL RECOGNIT, vol. 9, no. 5-6, September 1996 (1996-09-01), pages 672 - 674, XP009008707 *
See also references of EP3021114A4
XIAOJUN DAI ET AL.: "Tetrazole-Functionalized Silica for Hydrophilic Interaction Chromatography of Polar Solutes", CHROMATOGRAPHIA, vol. 73, no. ISSUE, 26 February 2011 (2011-02-26), pages 865 - 870, XP019895727 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152996A1 (ja) * 2015-03-24 2016-09-29 株式会社ダイセル 超臨界流体クロマトグラフィー用の固定相
CN107430100A (zh) * 2015-03-24 2017-12-01 株式会社大赛璐 超临界流体色谱用的固定相
JPWO2016152996A1 (ja) * 2015-03-24 2018-01-18 株式会社ダイセル 超臨界流体クロマトグラフィー用の固定相
JP2021015129A (ja) * 2015-03-24 2021-02-12 株式会社ダイセル 超臨界流体クロマトグラフィー用の固定相
US11065558B2 (en) 2015-03-24 2021-07-20 Daicel Corporation Stationary phase for supercritical fluid chromatography
JP7061172B2 (ja) 2015-03-24 2022-04-27 株式会社ダイセル 超臨界流体クロマトグラフィー用の固定相

Also Published As

Publication number Publication date
US11285458B2 (en) 2022-03-29
CN105492904B (zh) 2017-10-24
EP3021114A1 (en) 2016-05-18
EP3021114A4 (en) 2016-07-27
JPWO2015005361A1 (ja) 2017-03-02
WO2015005361A9 (ja) 2015-11-12
EP3021114B1 (en) 2021-03-03
JP6358599B2 (ja) 2018-07-18
US20160168302A1 (en) 2016-06-16
CN105492904A (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
JP6043062B2 (ja) イオン交換クロマトグラフィー用グラフトコポリマー
KR101603521B1 (ko) 친수성 상호작용 크로마토그래피용 충전제
AU2009332900A1 (en) Nucleic acid purification method
US9302203B2 (en) Chromatographic separation material
EP2562178B1 (en) Filler for affinity chromatography
Hao et al. Preparation of poly (vinyltetrazole) chain-grafted poly (glycidymethacrylate-co-ethylenedimethacrylate) beads by surface-initiated atom transfer radical polymerization for the use in weak cation exchange and hydrophilic interaction chromatography
JP6358599B2 (ja) 分離剤
CN112384520A (zh) 寡核苷酸化合物的制造方法
EP3137209A1 (en) Functionalized support material and methods of making and using functionalized support material
JP7026116B2 (ja) クロマトグラフィー用担体、リガンド固定担体、クロマトグラフィーカラム、標的物質の精製方法、及びクロマトグラフィー用担体の製造方法
JP4673836B2 (ja) 少なくとも二価結合による基質の収着剤への選択的結合方法
EP1651685A4 (en) CUCURBITURIL CONTAINING POLYMER, STATIONARY PHASE AND PILLAR THEREOF
US9303098B2 (en) Ce(IV)-initiated graft polymerisation on polymers containing no hydroxyl groups
CN114981280A (zh) 寡核苷酸化合物的制造方法
EP3845307A1 (en) Stationary phase for chromatography
ES2263038T3 (es) Aislamiento de oligonucleotidos antisentido.
US9675959B2 (en) Porous silicon oxynitride materials for chromatographic separation and method of their preparation
Chang et al. Preparation of High‐capacity, Monodisperse Polymeric Weak Cation Exchange Packings Using Surface‐initiated Atom Transfer Radical Polymerization and Its Chromatographic Properties
JP2014161833A (ja) タンパク質用アフィニティ分離剤
WO2003091185A1 (fr) Agent de separation pour isomere optique et procede de preparation associe
AU2021381371A9 (en) Ribonucleic acid purification
JP2017160429A (ja) 直鎖状高分子、高分子組成物、化合物、複合担体、分離剤および連鎖移動剤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480038929.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14822794

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015526362

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14903699

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014822794

Country of ref document: EP