WO2015004952A1 - 回路基板 - Google Patents

回路基板 Download PDF

Info

Publication number
WO2015004952A1
WO2015004952A1 PCT/JP2014/057844 JP2014057844W WO2015004952A1 WO 2015004952 A1 WO2015004952 A1 WO 2015004952A1 JP 2014057844 W JP2014057844 W JP 2014057844W WO 2015004952 A1 WO2015004952 A1 WO 2015004952A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor layer
circuit board
conductor
substrate body
layer
Prior art date
Application number
PCT/JP2014/057844
Other languages
English (en)
French (fr)
Inventor
原田英幸
荒木英明
池田哲也
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2015004952A1 publication Critical patent/WO2015004952A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5383Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0263High current adaptations, e.g. printed high current conductors or using auxiliary non-printed means; Fine and coarse circuit patterns on one circuit board
    • H05K1/0265High current adaptations, e.g. printed high current conductors or using auxiliary non-printed means; Fine and coarse circuit patterns on one circuit board characterized by the lay-out of or details of the printed conductors, e.g. reinforced conductors, redundant conductors, conductors having different cross-sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0204Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
    • H05K1/0206Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate by printed thermal vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0207Cooling of mounted components using internal conductor planes parallel to the surface for thermal conduction, e.g. power planes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0209External configuration of printed circuit board adapted for heat dissipation, e.g. lay-out of conductors, coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0347Overplating, e.g. for reinforcing conductors or bumps; Plating over filled vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10075Non-printed oscillator
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/244Finish plating of conductors, especially of copper conductors, e.g. for pads or lands
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4664Adding a circuit layer by thick film methods, e.g. printing techniques or by other techniques for making conductive patterns by using pastes, inks or powders
    • H05K3/4667Adding a circuit layer by thick film methods, e.g. printing techniques or by other techniques for making conductive patterns by using pastes, inks or powders characterized by using an inorganic intermediate insulating layer

Definitions

  • the present invention relates to, for example, a circuit board such as a ceramic substrate, a resin substrate, and a multilayered multilayer ceramic substrate, and more particularly to a circuit substrate used in a field to which a large current is applied.
  • a multilayer ceramic substrate in which wiring conductors such as internal conductors and surface conductors are arranged three-dimensionally is widely used for applications such as modules in which a plurality of electronic components such as semiconductor devices are arranged (for example, Patent Documents). 1).
  • circuit boards including a multilayer ceramic substrate are used for applications where a large current is applied, such as an in-vehicle circuit board mounted on an automobile.
  • a large current is applied
  • the circuit board itself and the surface-mounted electronic components that are mounted may be damaged or may not operate normally.
  • a surface mount type in which a high heat dissipation performance substrate with a thick Cu layer formed on the surface is separately prepared, and a large current is supplied onto the separately prepared substrate.
  • Electronic components and wiring are mounted, and the original circuit board and this separately prepared board are connected by wire bonding or the like.
  • the above-described method requires a substrate separately from the circuit substrate, which not only increases the manufacturing cost, but also increases the overall size of the product (prevents downsizing). .
  • connection between the circuit board and a separately provided board by wire bonding or the like causes not only a complicated manufacturing process but also a noise.
  • the present invention solves the above-described problems, and is intended to provide a circuit board that is suitable for use in the technical field for applying a large current, can be downsized, is economical, and has high reliability. To do.
  • the circuit board of the present invention is: A circuit board comprising a substrate body and a surface-mount electronic component mounted on the substrate body, It has a mounting area where surface mount electronic components are mounted and a non-mount area where no surface mount electronic components are mounted, A conductor layer containing an intermetallic compound formed between Sn and a Cu-based alloy is disposed in both the mounting region and the non-mounting region, The surface mount type electronic component is mounted on the mounting region via the conductor layer.
  • At least a part of the conductor layer may be formed on the substrate body via a surface conductor formed on the substrate body.
  • the present invention can be made more effective.
  • the conductor layer is formed on, for example, a via-hole conductor or a through-hole conductor exposed on the surface of the substrate body, or formed on a metal member disposed on the surface of the substrate body.
  • the conductor layer can be formed directly without using a surface conductor.
  • the surface conductor preferably includes a plating film formed on the surface thereof.
  • a conductor layer having excellent bonding strength to the substrate body is formed. And reliability can be further improved.
  • the thickness of the conductor layer is larger than the thickness of the surface conductor.
  • the thickness of the conductor layer As described above, by making the thickness of the conductor layer larger than the thickness of the surface conductor, it is possible to further improve the compatibility with application of a large current.
  • the conductor layer is preferably formed of a material having the same composition regardless of the position on the substrate body.
  • the conductor layer is formed by using, for example, a paste made of a paste in which Sn powder, and Ni powder and Cu powder that form an intermetallic compound with Sn powder are formed, this conductive property is formed on the surface of the substrate body. Regardless of whether it is a mounting area or a non-mounting area by applying a paste in a predetermined pattern and reflowing, and a conductor having the same composition regardless of the position on the substrate body Layers can be formed. And by forming a conductor layer by such a method, it becomes possible to simplify a manufacturing process and to reduce cost.
  • the surface-mounted electronic component After applying the above-mentioned conductor paste to the surface of the substrate body in a predetermined pattern, the surface-mounted electronic component is placed at a predetermined position in the mounting area and reflowed, thereby forming the conductor layer and the surface-mounted electronic It is possible to perform component mounting at the same time.
  • the intermetallic compound constituting the conductor layer is at least one selected from the group consisting of Cu—Ni—Sn, Cu—Mn—Sn, Cu—Al—Sn, and Cu—Cr—Sn.
  • the melting point is preferably 310 ° C. or higher.
  • the melting point is 310 ° C.
  • the above conductor layer can be easily and reliably formed, and the present invention can be more effectively realized.
  • a conductive layer having a melting point of 310 ° C. or higher can be formed as the conductive layer, for example, even when the circuit board is reflowed in a state where the above-described surface mount electronic component is mounted, The joint between the mounting-type electronic component and the board main body is not remelted, and the reliability can be improved.
  • the present invention can be applied particularly significantly to a circuit board in which wire bonding is performed on the conductor layer. That is, a conductor layer containing an intermetallic compound formed between Sn of the present invention and a Cu-based alloy (for example, Cu—Ni—Sn, Cu—Mn—Sn, Cu—Al—Sn, and Cu—Cr—).
  • the conductor layer containing Sn can perform wire bonding which is difficult with conventional solders or conductive resins, and can efficiently constitute a circuit board.
  • the circuit board of this invention can be set as the structure by which the metal member is joined via the said conductor layer.
  • the metal sealing cap is used as a conductor layer in the circuit board of the present invention. It is possible to bond to the substrate main body through the conductor, and it is possible to realize a highly reliable bonding with a conductor layer having a high melting point.
  • the metal member is interposed through the conductor layer. Thus, it can be reliably bonded to the substrate body.
  • the substrate body is a multilayer ceramic substrate in which a plurality of ceramic layers are laminated.
  • the substrate body is a multilayer ceramic substrate, wiring conductors can be three-dimensionally arranged, and a circuit substrate with higher characteristics can be realized.
  • a low-temperature co-fired ceramic is used as the ceramic constituting the ceramic layer.
  • a low-temperature co-fired ceramic it is not necessary to perform firing at a high temperature, the manufacturing process can be simplified, and the cost can be reduced.
  • the said conductor layer is electrically connected with the internal conductor arrange
  • the substrate body of the substrate body when a thermal via for heat dissipation is disposed, and the conductor layer is disposed so as to be connected to the thermal via, the substrate body of the substrate body
  • the conductor layer is also disposed in a region different from the mounting region, and is disposed in a region different from the mounting region via an internal conductor that conducts to the thermal via and a via-hole conductor that conducts to the internal conductor.
  • the conductor layer and the thermal via are preferably connected.
  • the thickness of the conductor layer there is no particular restriction on the thickness of the conductor layer, and an appropriate thickness can be selected in consideration of the magnitude of the applied current, the required heat dissipation capability, and the like. However, it is usually desirable to provide a conductor layer having a thickness of 10 ⁇ m or more as the conductor layer, and more preferably to provide a conductor layer having a thickness of 50 ⁇ m or more.
  • a facing-surface-side conductor layer containing an intermetallic compound formed between Sn and a Cu-based alloy in a predetermined region of the facing surface facing the surface on which the surface-mount electronic component is mounted of the substrate body Is arranged A metal plate is bonded to the opposing surface of the substrate body via an insulating material layer, and The opposing surface side conductor layer is fitted into the recess of the insulating material layer, and the thickness of the insulating material layer in the region facing the opposing surface side conductor layer is other than the thickness of the opposing surface side conductor layer. It is preferable that the thickness of the insulating material layer in the region is smaller than that of the insulating material layer.
  • a facing-surface-side conductor layer containing an intermetallic compound formed between Sn and a Cu-based alloy in a predetermined region of the facing surface facing the surface on which the surface-mount electronic component is mounted of the substrate body Is arranged The opposing surface side conductor layer is disposed so as to be electrically connected to the thermal via, and A metal plate is bonded to the opposing surface of the substrate body via an insulating material layer, The opposing surface side conductor layer is fitted into the recess of the insulating material layer, and the thickness of the insulating material layer in the region facing the opposing surface side conductor layer is other than the thickness of the opposing surface side conductor layer. It is preferable that the thickness of the insulating material layer in the region is smaller than that of the insulating material layer.
  • the circuit board of the present invention it is formed between Sn and a Cu-based alloy in both the mounting region where the surface-mounted electronic component is mounted and the non-mounting region where the surface-mounted electronic component is not mounted.
  • a conductor layer containing an intermetallic compound is disposed, and the surface-mounted electronic component is mounted on the mounting region via the conductor layer.
  • a conductor layer containing an intermetallic compound formed between Sn and a Cu-based alloy has a higher melting point and excellent thermal stability than a general bonding material such as Sn—Pb solder.
  • a paste-like conductor paste is applied to the surface of the substrate body in a predetermined pattern by a method such as printing or coating, By reflowing and generating an intermetallic compound, it can be easily formed without using a special method.
  • the conductor layer can be formed as described above, the conductor layer having the intended thickness can be reliably formed by adjusting the thickness when the conductor paste is applied.
  • the conductor paste produced as described above was applied to the surface of the substrate body in a predetermined pattern, and then applied to the mounting region.
  • the surface-mount type electronic component By mounting the surface-mount type electronic component on the conductor pattern and performing reflow, it can be mounted in the same manner as in the case of mounting using conventional solder.
  • by performing mounting by such a method it becomes possible to simultaneously perform the formation of the conductor layer and the mounting of the surface mounted electronic component.
  • the conductive layer disposed in the mounting area as a conductive bonding material like the circuit board of the present invention, it is possible to easily and reliably mount the surface mount type electronic component in the mounting area. become.
  • the conductor layer formed in the non-mounting region as a conductor line such as a circuit wiring, it is possible to improve the response to large current application and the heat dissipation.
  • the conductor layer of the present invention is superior in resistance and thermal conductivity to Sn-Pb solder and conductive resin, and can be wire-bonded.
  • a substrate with high heat dissipation performance in which a Cu layer having a large thickness is formed on the surface is prepared separately as in the past. Accordingly, it is possible to provide a circuit board that is small, has high performance, and is highly compatible with a large current.
  • FIG. 1 is a front sectional view showing a multilayer ceramic substrate according to an embodiment (Embodiment 1) of the present invention. It is a figure which shows the structure of the board
  • FIG. 6 is a front sectional view showing a modification of the multilayer ceramic substrate according to the first embodiment. It is front sectional drawing which shows the multilayer ceramic substrate concerning other embodiment (Embodiment 2) of this invention. It is front sectional drawing which shows the multilayer ceramic substrate concerning other embodiment (Embodiment 3) of this invention. It is front sectional drawing which shows the multilayer ceramic substrate concerning other embodiment (Embodiment 4) of this invention. It is a figure explaining the manufacturing method of the multilayer ceramic substrate concerning Embodiment 4 of this invention, Comprising: It is a figure which shows the state before joining a board
  • FIG. 1 is a front sectional view schematically showing a configuration of a multilayer ceramic substrate which is a circuit board according to an embodiment of the present invention.
  • the multilayer ceramic substrate 100 is a circuit substrate (multilayer ceramic substrate) having a multilayer structure formed using LTCC (low temperature co-fired ceramic).
  • LTCC low temperature co-fired ceramic
  • the multilayer ceramic substrate (circuit board) 100 includes a substrate main body 1, an internal conductor 13 disposed inside the substrate main body 1, and a thermal via 14 having a heat spreader 14 a. Also, on the surface of the substrate body 1, surface mount electronic components such as a crystal oscillator 11 and an IC chip 12 are mounted. In the multilayer ceramic substrate 100 according to the first embodiment, other surface-mounted electronic components such as a chip capacitor are further mounted on the surface of the substrate body 1, but the illustration is omitted.
  • the substrate body 1 includes a via-hole conductor 15 that is electrically connected to the internal conductor 13 and has an upper end exposed on the surface of the substrate body 1 (however, the internal conductor 13 that is electrically connected to the crystal oscillator 11).
  • the via-hole conductor 15 is not shown).
  • a mounting region A in which surface-mounted electronic components are mounted and a non-mounting region B in which surface-mounted electronic components are not mounted are surface conductors (for example, an Ag layer). 17 is disposed.
  • the surface conductor 17 includes a plating film (for example, a Ni / Au plating film or a Ni / Pd / Au plating film) 18 on the surface thereof.
  • the conductor layer 10 (10a, 10b) is disposed on the surface conductor 17 provided with the plating film 18.
  • the conductor layers 10 (10a, 10b) disposed in the mounting area A and the non-mounting area B are both intermetallic compounds formed between Sn and a Cu-based alloy (Cu in this embodiment 1). -Ni-Sn), all the conductor layers 10 (10a, 10b) are the same regardless of the position on the substrate body 1 and the mounting area A and the non-mounting area B. It has the composition of. However, the conductor layer 10 (10a, 10b) has a different composition depending on the position on the substrate body 1 and whether it is the mounting area A or the non-mounting area B as long as the requirements of the present invention are provided. It may be a thing.
  • the conductor layer 10 (10a, 10b) is formed to be thicker than the surface conductor 17 including the plating film 18. Specifically, the thickness of the surface conductor 17 including the plating film 18 is 15 ⁇ m, and the thickness of the conductor layer 10 (10a, 10b) is 200 ⁇ m. Thus, by making the thickness of the conductor layer thicker than the thickness of the surface conductor, it becomes possible to further improve the response to large current application.
  • the thickness of the surface conductor 17 including the plating film 18, the thickness of the conductor layer 10 (10a, 10b), and the relationship between the thicknesses are not particularly limited, and the configuration of the circuit board (multilayer ceramic substrate) It is possible to set the thickness as appropriate in consideration of the application and usage.
  • the intermetallic compound formed between Sn and the Cu-based alloy constituting the conductor layer 10 (10a, 10b) is not limited to the above Cu—Ni—Sn, and Cu—Mn—Sn. Cu-Al-Sn, Cu-Cr-Sn, and the like. Further, the intermetallic compound formed between Sn and the Cu-based alloy may be of another composition.
  • the crystal oscillator 11 which is a surface-mount type electronic component and the IC chip 12 are arranged in the mounting region A on the surface of the substrate body 1.
  • the substrate body 1 is joined and mounted via (10a). That is, the conductor layer 10 (10a) disposed in the mounting area A is used as a bonding material for mounting the crystal oscillator 11 and the surface mount electronic component such as the IC chip 12.
  • a metal sealing cap (metal member in the present invention) 16 is mounted on the substrate body 1 via a conductor layer (a conductor layer that also functions as a bonding material) 10. It is accommodated in the sealing cap 16 and is configured to be able to perform a reliable operation.
  • the conductor layer 10 (10b) disposed in the non-mounting region B where no surface mount type electronic component is mounted is configured to function mainly as a circuit through which a large current flows in the first embodiment.
  • the conductor layer 10 (10b) disposed in the non-mounting region B of the substrate body 1 is electrically connected to the internal conductor 13 disposed in the substrate body 1 through the via hole conductor 15 described above. Yes.
  • the conductor layer 10 (10b) disposed in the non-mounting area B of the substrate body 1 is connected to the IC chip 12 mounted in the mounting area A through a wire 19 by wire bonding.
  • the conductor layer 10 (10a) in the mounting area A is also connected to the outside (for example, a socket (not shown)) via the wire 19 by wire bonding.
  • a predetermined region on the surface that is, a predetermined region of the mounting region A and the non-mounting region B, and a sealing cap (metal A substrate body 1 is prepared in which a surface conductor 17 having a plating film 18 on the surface is disposed in a region to which a member 16 is to be attached, and an internal conductor 13 and a thermal via 14 are disposed in a predetermined region inside. .
  • the substrate body 1 on which the crystal oscillator 11, the IC chip 12, the sealing cap 16, and the like are placed is reflowed.
  • the conductor layer 10 made of an intermetallic compound (Cu—Ni—Sn) formed by reacting Sn contained in the conductor paste constituting the conductor layer pattern (conductor paste) 10X and the Cu—Ni alloy is formed.
  • mounting of surface mount type electronic components such as the crystal oscillator 11 and the IC chip 12 and the bonding and fixing of the sealing cap 16 are performed.
  • the sealing cap 16 is joined and fixed by an intermetallic compound formed between Sn and a Cu-based alloy by reflow before the sealing cap 16 is placed on the conductor layer pattern 10X.
  • the conductor layer 10 may be formed, and then the sealing cap 16 may be bonded and fixed on the conductor layer 10 via Au / Su or the like.
  • the method of manufacturing a multilayer ceramic substrate through the above steps (1) to (5) is merely an example of a method of manufacturing a multilayer ceramic substrate according to the first embodiment, and is a specific manufacturing method. There are no special restrictions, and other methods can be used.
  • the multilayer ceramic substrate 100 of the first embodiment is configured as described above, and between the Sn and the Cu-based alloy in the mounting region A and the non-mounting region B where the surface mount type electronic component is not mounted.
  • a conductor layer 10 made of an intermetallic compound (Cu—Ni—Sn in the first embodiment) is provided, and a surface-mount type electronic component such as a crystal oscillator 11 and an IC chip 12 is provided with a conductor layer 10. It is mounted in the mounting area A via An intermetallic compound (Cu—Ni—Sn) formed between Sn and the Cu-based alloy constituting the conductor layer 10 is used as a bonding material that has been generally used in the past, such as Sn—Pb-based solder. Compared with its melting point, it has excellent thermal stability.
  • the conductor layer 10 has a low resistivity and excellent heat conductivity as compared with Sn—Pb solder and conductive resin, and can sufficiently cope with wire bonding.
  • the conductor paste formed by blending the Sn powder, the Ni powder, and the Cu powder used in Embodiment 1 is melted at the same temperature (for example, 250 ° C.) as the Sn—Pb solder.
  • the above-mentioned intermetallic compound is formed, and by applying and reflowing this conductor paste, a conductor layer having a desired thickness can be formed easily and reliably without using a special method. .
  • the conductor layer 10 (10a) as a bonding material, it is possible to reliably mount surface-mount electronic components such as the crystal oscillator 11 and the IC chip 12 in the mounting area A, and the non-mounting area B
  • the conductor layer 10 (10b) formed in the above it is possible to form a line that can cope with application of a large current. That is, by increasing the thickness of the conductor layer 10 as necessary, it is possible to improve the response to large current application and to improve the heat dissipation.
  • the conductor layer 10 (10a) is electrically connected to the thermal via 14 formed in the substrate body 1, the heat of the surface mount electronic component (in this embodiment, the IC chip 12) is efficiently released. It becomes possible. Therefore, by adopting the configuration as in the first embodiment, it is unnecessary to separately use a substrate with high heat dissipation performance in which a thick Cu layer is formed on the surface, for example, as in the prior art. A multilayer ceramic substrate having excellent compatibility with large currents can be obtained.
  • the conductor layer 10 is formed by applying the conductive paste to the surface of the substrate body and reflowing, so that the conductor layer 10 can be efficiently formed and produced. Can be improved.
  • the conductor paste prepared as described above can be reflowed at a low temperature, but the intermetallic compound (Cu—Ni—Sn in Embodiment 1) formed by reflow has a high melting point (melting point: 310 ° C. or higher), and the conductor layer 10 does not remelt even if it is reflowed after that, so that high mounting reliability can be obtained and a reflow process can be easily provided.
  • the degree of freedom in the manufacturing process can be kept large.
  • a sealing cap 16 that covers the crystal oscillator 11 that is one of the surface-mounted electronic components is joined to the substrate body 1 via the conductor layer 10 (10a).
  • the conductor layer 10 can be used for efficient mounting. It should be noted that not only the sealing cap but also other metal members such as a shield case and a lead frame can be attached by the same method.
  • the conductor layer 10 (10b) is configured to be electrically connected to the internal conductor 13 disposed inside the board body 1 via the via-hole conductor 15.
  • the heat of the internal conductor 13 can be released from the conductor layer 10 (10b), and the degree of freedom in routing the wiring formed from the internal conductor can be improved.
  • the multilayer ceramic substrate including the sealing cap 16 has been described as an example.
  • the circuit substrate of the present invention includes the sealing cap as illustrated in FIG. It is also possible to adopt a configuration that does not. In that case, a surface electrode and a conductor layer for connecting the sealing cap to the substrate body are not required.
  • FIG. 5 the parts denoted by the same reference numerals as those in FIG. 1 indicate the same or corresponding parts.
  • FIG. 6 is a diagram showing a configuration of a circuit board (multilayer ceramic substrate) according to another embodiment (second embodiment) of the present invention.
  • the parts denoted by the same reference numerals as those in FIG. 1 indicate the same or corresponding parts.
  • the multilayer ceramic substrate 100 in which the conductor layer 10 is formed on the surface conductor 17 having the plating film 18 has been described.
  • the conductor layer 10 (10a, 10b) is directly disposed on the via-hole conductor 15 and the thermal via 14 exposed on the surface of the substrate body 1 without using a surface conductor.
  • the crystal oscillator 11 which is one of the surface-mount type electronic components is mounted on the substrate via the conductor layer 10 (10a) formed on the surface conductor 17 provided with the plating layer 18 as in the case of the first embodiment. It is mounted on the main body 1.
  • a multilayer ceramic substrate 100 having no sealing cap 16 is shown in the second embodiment.
  • a configuration including a sealing cap as in the case of the first embodiment is also possible.
  • the structure of the other parts of the multilayer ceramic substrate of the second embodiment is the same as that of the multilayer ceramic substrate 100 of the first embodiment.
  • the conductor layer 10 is also formed.
  • the via hole conductor 15 and the thermal via 14 can be reliably conducted, and the same effect as in the first embodiment can be obtained.
  • FIG. 7 is a diagram showing a configuration of a circuit board (multilayer ceramic substrate) according to yet another embodiment (third embodiment) of the present invention.
  • the parts denoted by the same reference numerals as those in FIG. 1 indicate the same or corresponding parts.
  • the multilayer ceramic substrate 100 according to the third embodiment is similar to the multilayer ceramic substrate 100 according to the first embodiment in that the substrate body 1 has a mounting area A on which surface-mounted electronic components such as a crystal oscillator 11 and an IC chip 12 are mounted. And a non-mounting region B in which the surface mount type electronic component is not mounted. Further, an internal conductor 13 and a thermal via 14 including a heat spreader 14a are disposed inside the substrate body 1.
  • the substrate body 1 further includes an internal conductor 13a electrically connected to the thermal via 14 and the internal conductor 13a.
  • a conductive via-hole conductor 15a is disposed, and an upper end portion of the via-hole conductor 15a is formed in a non-mounting region (third region) C different from the mounting region A and the non-mounting region B of the substrate body 1. Exposed on the surface.
  • a conductor layer 10 (10c) is disposed in the non-mounting region (third region) C of the substrate body 1, and the via-hole conductor 15a exposed on the surface of the non-mounting region (third region) C. Is connected to the upper end of the. That is, in the multilayer ceramic substrate 100 of the third embodiment, the thermal via 14 is a conductor layer formed on the surface of the non-mounting region (third region) C via the internal conductor 13a and the via hole conductor 15a. 10 (10c).
  • the other configuration of the multilayer ceramic substrate 100 of the third embodiment is the same as that of the first embodiment.
  • the thermal via 14 is electrically connected to the conductor layer 10 (10c) via the internal conductor 13a and the via hole conductor 15a. It becomes possible to further improve the heat dissipation of the IC chip 12 mounted in the region A.
  • FIG. 8 is a diagram showing a configuration of a circuit board (multilayer ceramic substrate) according to still another embodiment (Embodiment 4) of the present invention.
  • the parts denoted by the same reference numerals as those in FIG. 5 indicate the same or corresponding parts.
  • the main part of the multilayer ceramic substrate 100 according to the fourth embodiment has the same configuration as that of the multilayer ceramic substrate 100 according to the first embodiment shown in FIG. That is, the substrate body 1 constituting the multilayer ceramic substrate 100 includes a mounting area A in which surface-mounted electronic components such as a crystal oscillator 11 and an IC chip 12 are mounted, and a non-mounting area in which no surface-mounted electronic components are mounted. B is provided. Further, an internal conductor 13 and a thermal via 14 including a heat spreader 14a are disposed inside the substrate body 1.
  • Sn is formed on a part (predetermined region) of the facing surface facing the surface on which the surface mount type electronic components 11 and 12 of the substrate body 1 are mounted.
  • An opposing surface-side conductor layer 110 containing an intermetallic compound formed between the copper alloy and the Cu-based alloy is disposed.
  • the opposing surface side conductor layer 110 is connected to the thermal via 14 via the surface conductor 117 formed on the opposing surface of the substrate body 1 and the plating film 118 formed on the surface of the surface conductor 117.
  • a metal plate 121 is bonded to the opposite surface side of the substrate body 1 via an insulating adhesive layer (insulating material layer) 120.
  • insulating adhesive layer insulating material layer
  • a silicone resin adhesive is used as the insulating adhesive.
  • the resin constituting the insulating material layer is not limited to the silicone resin, and various known resin materials can be used.
  • the metal plate 121 an aluminum metal plate having excellent heat conductivity and high heat dissipation function is used.
  • the constituent material of the metal plate 121 is not limited to this, and it is possible to use various materials having excellent thermal conductivity such as aluminum alloy, copper, and copper alloy and having a high heat radiation function.
  • the opposing surface side conductor layer 110 is fitted in the recess of the insulating material layer 120, and the thickness of the insulating material layer 120 in the region R facing the opposing surface side conductor layer 110 is equal to the thickness of the opposing surface side conductor layer 110. Only the thickness of the insulating material layer 120 in the other region R 0 of the insulating material layer 120 is thinner.
  • the thickness of the insulating material layer 120 in the region R 0 not facing the facing surface side conductor layer 110 is about 100 ⁇ m, while facing the facing surface side conductor layer 110 of the insulating material layer 120.
  • the thickness of the insulating material layer 120 in the region R is about 20 ⁇ m. This is because the opposing-surface-side conductor layer 110 having a thickness of about 80 ⁇ m is buried in the adhesive layer (insulating material layer) 120, and therefore the region facing the opposing-surface-side conductor layer 110 of the insulating material layer 120.
  • the thickness of the insulating material layer 120 in R is reduced by the thickness of the opposing surface side conductor layer 110 to be about 20 ⁇ m.
  • the insulating material layer 120 normally requires a thickness (insulation distance) of about 20 ⁇ m. Therefore, by setting the thickness of the opposing-surface-side conductor layer 110 to the thickness of the insulating material layer 120 (about 100 ⁇ m) corresponding to the difference from the above-described insulation distance (here, about 80 ⁇ m), The thickness of the insulating material layer 120 in the region R facing the opposing surface side conductor layer 110 can be set to an appropriate thickness (about 20 ⁇ m).
  • the multilayer ceramic substrate 100 for example, as shown in FIG. 9, an uncured insulating material formed by applying a substrate body 1 and an insulating adhesive.
  • the metal plate 121 provided with the layer 120 is prepared, and after both are joined as shown in FIG. 10, the surface mount type electronic components 11 and 12 are mounted on the substrate body 1 to obtain the structure shown in FIG.
  • a multilayer ceramic substrate 100 having the structure as shown is obtained.
  • the surface mounted electronic component is mounted on the substrate main body 1. 11 and 12, the convex portions generated by forming the opposing surface side conductor layer 110 on the opposing surface (back surface) side of the substrate body 1 are used for mounting the surface mount type electronic components 11 and 12. This is desirable because adverse effects can be prevented.
  • the manufacturing method of the multilayer ceramic substrate 100 according to the fourth embodiment is not limited to the above-described method, and can be manufactured by applying various known methods.
  • the conductor layer (opposing surface side conductor layer) 110 is also disposed on the facing surface side of the substrate body 1, and the metal plate 121 is disposed on the facing surface side. Since the conductor layer 110 is bonded to the opposite surface side of the substrate body 1, efficient heat radiation can be performed from the opposite surface side of the substrate body 1, and reliability is improved. Can do.
  • the opposing surface side conductor layer 110 is connected to the thermal via 14 and the thickness of the insulating material layer 120 in the region R facing the opposing surface side conductor layer 110. Is thinner than the other region R 0 of the insulating material layer 120 by the thickness of the opposing surface-side conductor layer 110, so that heat can be radiated from the opposing surface side of the substrate body 1 more efficiently. It becomes possible.
  • the case where the opposing-surface-side conductor layer 110 is configured to be connected to the thermal via 14 via the plating film 118 formed on the surface of the surface conductor 117 has been described as an example. However, it is also possible to adopt a configuration without a plating film.
  • the configuration in which the facing-surface-side conductor layer 110 is connected to the thermal via 14 has been described as an example.
  • the facing-surface-side conductor A structure having layers can be employed.
  • the surface mounted electronic component is the crystal oscillator 11 and the IC chip 12
  • the type of the surface mounted electronic component to be mounted is not limited to this.
  • the present invention can be widely applied to mounting various active components and passive components.
  • the multilayer ceramic substrate has been described as an example, but the present invention can also be applied to a circuit substrate having a single layer structure.
  • the circuit board of the present invention is not limited to a ceramic substrate, and can be applied to a resin circuit board that does not use ceramic.
  • the present invention is not limited to the above-described embodiment in other respects as well.
  • Specific arrangement modes and constituent materials such as a conductor layer, a surface conductor, and an internal conductor, and a surface mount type mounted on a substrate body
  • Various applications and modifications can be made within the scope of the invention with respect to the types of electronic components.
  • Substrate body 10 (10a, 10b, 10c) Conductor layer 10X Conductor layer pattern 11 Crystal oscillator (surface mount electronic component) 12 IC chip (Surface Mount Electronic Components) 13, 13a Inner conductor 14 Thermal via 14a Heat spreader 15, 15a Via hole conductor 16 Sealing cap (metal member) 17 Surface conductor 18 Plating film 19 Wire 100 Multilayer ceramic substrate (circuit board) DESCRIPTION OF SYMBOLS 110 Opposite surface side conductor layer 117 Surface conductor on opposite surface side 118 Plating film formed on surface conductor on opposite surface side 120 Insulating adhesive layer (insulating material layer) 120a Concave portion of insulating material layer 121 Metal plate A Mounting area B Non-mounting area C Non-mounting area (third area) R Region of the insulating material layer facing the opposing conductor layer R 0 Region of the insulating material layer not facing the opposing conductor layer

Abstract

 小型化が可能で経済性に優れた、大電流を流すことが可能で信頼性の高い回路基板を提供する。 基板本体と、基板本体に実装された表面実装型電子部品とを備えた回路基板において、 水晶発振器11、ICチップ12(表面実装型電子部品)が実装された実装領域Aと、実装されていない非実装領域Bとを備えた回路基板において、実装領域と非実装領域のいずれにも、SnとCu系合金との間に形成される金属間化合物を含む導体層10を配設し、表面実装型電子部品は、実装領域Aに、導体層を介して実装する。 導体層10を構成する金属間化合物を、Cu-Ni-Sn、Cu-Mn-Sn、Cu-Al-Sn、およびCu-Cr-Snからなる群より選ばれる少なくとも1種で、融点が310℃以上のものとする。 基板本体を、複数のセラミック層を積層した多層構造とする。 セラミック層を構成するセラミックとして低温同時焼成セラミックを用いる。

Description

回路基板
 本発明は、例えば、セラミック基板や樹脂基板、さらには、多層化された多層セラミック基板などの回路基板、詳しくは、大電流が印加される分野において用いられる回路基板に関する。
 近年、回路基板が広く用いられている。そして、半導体デバイスなどの電子部品を複数配設したモジュールなどの用途には、内部導体や表面導体などの配線導体を3次元的に配置した多層セラミック基板が広く用いられている(例えば、特許文献1参照)。
 そして、このような多層セラミック基板を用いることにより、電子部品の小型化や高密度化を図ることが可能になる。
 ところで、多層セラミック基板をはじめとする回路基板のなかには、自動車に搭載される車載用回路基板などのように、大電流が印加される用途に用いられるものがあり、そのような回路基板の場合、発熱量が大きくなり、回路基板自体や、搭載されている表面実装型電子部品がダメージを受けたり、正常に動作しなくなったりする場合がある。
 そのため、従来は、回路基板とは別に、例えば、表面に厚みの大きいCu層が形成された放熱性能の高い基板を別途用意し、この別途用意した基板上に大電流が供給される表面実装型電子部品や配線を搭載し、本来の回路基板と、この別途用意した基板とを、ワイヤボンディングなどにより接続することにより対応してきた。
 しかしながら、上述のような方法では、回路基板とは別に基板が必要になり、製造コストが増大するばかりでなく、全体としての製品の大型化を招く(小型化が妨げられる)という問題点がある。
 また、回路基板と、別途設けた基板との、ワイヤボンディングなどによる接続は、製造工程の複雑化を招くばかりでなく、ノイズの原因になるというような問題点がある。
特開2007-73728号公報
 本発明は、上記課題を解決するものであり、大電流を印加する技術分野で用いるのに適し、小型化が可能で、経済性に優れ、信頼性の高い回路基板を提供することを目的とする。
 上記課題を解決するために、本発明の回路基板は、
 基板本体と、前記基板本体に実装された表面実装型電子部品とを備えた回路基板であって、
 表面実装型電子部品が実装された実装領域と、表面実装型電子部品が実装されていない非実装領域とを備え、
 前記実装領域と前記非実装領域のいずれにも、SnとCu系合金との間に形成される金属間化合物を含む導体層が配設されており、
 前記表面実装型電子部品は、前記導体層を介して前記実装領域に実装されていること
 を特徴としている。
 また、本発明の回路基板においては、前記導体層の少なくとも一部が、前記基板本体上に形成された表面導体を介して、前記基板本体上に形成された構成とすることができる。
 上述のように、導体層の少なくとも一部を、基板本体上に形成された表面導体を介して、基板本体上に形成することにより、導体層の基板本体への接合強度を向上させることが可能になり、本発明をより実効あらしめることができる。
 なお、本発明において導体層は、例えば、基板本体の表面に露出させたビアホール導体やスルーホール導体上に形成するような場合、あるいは基板本体の表面に配設した金属部材上に形成するような場合には、表面導体を介することなく、導体層を直接に形成することも可能である。
 また、前記表面導体は、その表面に形成されためっき膜を備えていることが好ましい。
 表面導体が表面にめっき膜(例えば、導体層との接合性に優れた金属材料のめっき膜)を備えている構成とすることにより、さらに基板本体への接合強度に優れた導体層を形成することが可能になり、信頼性をより向上させることができる。
 また、本発明の回路基板において、前記導体層の厚みは、前記表面導体の厚みよりも厚くすることが好ましい。
 上記のように導体層の厚みを表面導体の厚みよりも厚くすることにより、大電流印加への対応性をより向上させることが可能になる。
 また、前記導体層は、前記基板本体上の位置いかんによらず、同一組成を有する材料から形成されたものであることが好ましい。
 導体層を、例えば、Sn粉末と、Sn粉末と金属間化合物を形成するNi粉末およびCu粉末を配合した材料をペースト状にした導体ペーストを用いて形成する場合、基板本体の表面にこの導電性ペーストを所定のパターンで付与して、リフローすることにより、効率よく、実装領域であると非実装領域であるとを問わず、また、基板本体上の位置いかんによらず、同一組成を有する導体層を形成することが可能になる。そして、このような方法で導体層を形成することにより、製造工程を簡略化して、コストの削減を図ることが可能になる。
 なお、上記導体ペーストを基板本体の表面に所定のパターンで付与した後、実装領域の所定の位置に表面実装型電子部品を載置してリフローすることにより、導体層の形成と表面実装型電子部品の実装とを同時に行うことが可能になる。
 また、前記導体層を構成する前記金属間化合物が、Cu-Ni-Sn、Cu-Mn-Sn、Cu-Al-Sn、およびCu-Cr-Snからなる群より選ばれる少なくとも1種であって、融点が310℃以上のものであることが好ましい。
 導体層を、上述のようなCu-Ni-Sn、Cu-Mn-Sn、Cu-Al-Sn、およびCu-Cr-Snからなる群より選ばれる少なくとも1種とすることにより、融点が310℃以上の導体層を容易かつ確実に形成することが可能になり、本発明をより実効あらしめることができる。
 なお、導体層として、融点が310℃以上の導体層を形成することが可能になると、例えば、上述の表面実装型電子部品が実装された状態で、回路基板を再リフローする場合にも、表面実装型電子部品と基板本体側の接合部が、再溶融することがなく、信頼性を向上させることが可能になる。
 また、本発明は、前記導体層に対してワイヤボンディングがなされるような回路基板に特に有意義に適用することができる。すなわち、本発明のSnとCu系合金との間に形成される金属間化合物を含む導体層(例えば、Cu-Ni-Sn、Cu-Mn-Sn、Cu-Al-Sn、およびCu-Cr-Snを含む導体層)は、従来のはんだや導電樹脂などでは困難なワイヤボンディングを行うことが可能で、効率よく回路基板を構成することが可能になる。
 また、本発明の回路基板においては、前記導体層を介して、金属部材が接合されている構成とすることが可能である。
 例えば、実装領域に実装された表面実装型電子部品が金属製の封止キャップに収容されていることが望ましいような場合、本発明の回路基板においては、この金属製の封止キャップを導体層を介して基板本体に接合することが可能で、融点の高い導体層による信頼性の高い接合を実現することができる。
 なお、金属部材が、金属製の封止キャップである場合に限らず、他の金属部材である場合(例えば、シールドケースやリードフレームである場合)にも同様に、金属部材を導体層を介して、基板本体に確実に接合させることができる。
 また、本発明の回路基板においては、前記基板本体が、複数のセラミック層を積層した多層セラミック基板であることが好ましい。
 基板本体が多層セラミック基板である場合、配線導体を3次元的に配置することが可能で、より特性の高い回路基板を実現することができる。
 また、前記セラミック層を構成するセラミックとして、低温同時焼成セラミックが用いられていることが好ましい。
 セラミックとして低温同時焼成セラミックが用いられている場合、高温での焼成を行うことが不要になり、製造工程を簡略化して、コストの低減を図ることができる。
 また、前記導体層が、ビアホール導体を介して、前記基板本体の内部に配設された内部導体と導通していることが好ましい。
 上記構成とすることにより、基板本体の表面に直接または表面配線を介して形成される導体層を内部導体と導通させることが可能になり、回路基板の導体の引き回しの自由度の向上や、内部導体の放熱の促進を図ることが可能になる。
 また、前記基板本体の前記実装領域には、放熱のためのサーマルビアが配設され、かつ、前記導体層が前記サーマルビアと接続するように配設されている場合において、前記基板本体の前記実装領域とは異なる領域にも前記導体層が配設され、かつ、前記サーマルビアと導通する内部導体および前記内部導体と導通するビアホール導体を介して、前記実装領域とは異なる領域に配設された前記導体層と前記サーマルビアとが接続された構成とすることが好ましい。
 上記構成とすることにより、サーマルビアと導通する内部導体および内部導体と導通するビアホール導体を介して、実装領域とは異なる領域に配設された導体層からも放熱を行わせることが可能になり、サーマルビア上の実装領域に実装された表面実装型電子部品(例えばICチップなど)の放熱性をさらに高めることが可能になる。
 なお、本発明においては、導体層の厚みに特別の制約はなく、印加される電流の大きさ、求められる放熱能力などを考慮して、適切な厚みを選択することが可能である。
 ただし、通常は導体層として、厚みが10μm以上の導体層を設けることが望ましく、50μm以上の厚みの導体層を設けることがさらに好ましい。
 また、本発明においては、
 前記基板本体の前記表面実装型電子部品が実装された方の面と対向する対向面の所定の領域に、SnとCu系合金との間に形成される金属間化合物を含む対向面側導体層が配設されているとともに、
 前記基板本体の前記対向面には、絶縁材料層を介して金属板が接合されており、かつ、
 前記対向面側導体層は、前記絶縁材料層の凹部に嵌り込むとともに、前記対向面側導体層に対向する領域における前記絶縁材料層の厚みが、前記対向面側導体層の厚み分だけ他の領域における前記絶縁材料層の厚みよりも薄くなるように構成されていること
 が好ましい。
 上記構成とすることにより、基板本体から対向面側導体層、厚みが他の部分より薄い絶縁材料層を経て、金属板にまで効率よく熱を伝えることが可能になる。その結果、基板本体の対向面側からも確実に放熱を行うことができて、より信頼性の高い回路基板を提供することが可能になる。
 また、本発明においては、
 前記基板本体の前記表面実装型電子部品が実装された方の面と対向する対向面の所定の領域に、SnとCu系合金との間に形成される金属間化合物を含む対向面側導体層が配設されているとともに、
 前記対向面側導体層が前記サーマルビアと導通するように配設されており、かつ、
 前記基板本体の前記対向面には、絶縁材料層を介して金属板が接合されており、
 前記対向面側導体層は、前記絶縁材料層の凹部に嵌り込むとともに、前記対向面側導体層に対向する領域における前記絶縁材料層の厚みが、前記対向面側導体層の厚み分だけ他の領域における前記絶縁材料層の厚みよりも薄くなるように構成されていること
 が好ましい。
 上記構成とした場合、基板本体に配設されたサーマルビアから対向面側導体層、厚みが他の部分より薄い絶縁材料層を経て、金属板にまで効率よく熱を伝えることが可能になる。その結果、基板本体の対向面側から、より効率よく、確実に放熱を行うことが可能で、さらに信頼性の高い多層セラミック基板を提供することが可能になる。
 本発明の回路基板においては、表面実装型電子部品が実装された実装領域と、表面実装型電子部品が実装されていない非実装領域のいずれにも、SnとCu系合金との間に形成される金属間化合物を含む導体層が配設されており、表面実装型電子部品はこの導体層を介して実装領域に実装されている。
 そして、SnとCu系合金との間に形成される金属間化合物を含む導体層は、Sn-Pb系はんだなどの一般的な接合材料に比べて融点が高く、熱的安定性に優れているとともに、例えば、Sn粉末と、Ni粉末と、Cu粉末とを配合し、ペースト状にした導体ペーストを基板本体の表面に、印刷や塗布などの方法で所定のパターンとなるように付与して、リフローし、金属間化合物を生成させることにより、特別な方法を用いることなく容易に形成することができる。
 また、導体層は上述のようにして形成することが可能であることから、導体ペーストを付与する際の厚みを調節することにより、意図する厚みを有する導体層を確実に形成することができる。
 また、上記導体層を用いて表面実装型電子部品を実装するにあたっては、例えば、上述のようにして作製した導体ペーストを基板本体の表面に所定のパターンで付与した後、実装領域に付与された導体パターン上に表面実装型電子部品を載置してリフローすることにより、従来のはんだを用いて実装する場合と同様の方法で実装することができる。
 なお、このような方法で、実装を行うことにより、導体層の形成と表面実装型電子部品の実装を同時に行うことが可能になる。
 したがって、本発明の回路基板のように、実装領域に配設される導体層を導電性の接合材料として利用することにより、表面実装型電子部品を実装領域に容易かつ確実に実装することが可能になる。
また、非実装領域に形成される導体層を回路用配線などの導体線路として利用することにより、大電流印加への対応性や、放熱性を向上させることが可能になる。
 また、本発明の導体層は、抵抗率や熱伝導率が、Sn-Pb系のはんだや導電性樹脂よりも優れており、ワイヤボンディングも可能であり、その点でも有用性に優れている。
 また、本発明によれば、大電流が印加される用途に用いられる回路基板において、従来のように、例えば、表面に厚みの大きいCu層が形成された放熱性能の高い基板などを別途用意することを不要にして(すなわち、放熱用基板と本来の回路基板を一体化して)、小型、高性能で、大電流への対応性に優れた回路基板を提供することが可能になる。
本発明の一実施形態(実施形態1)にかかる多層セラミック基板を示す正面断面図である。 本発明の実施形態1にかかる多層セラミック基板の製造工程において作製した基板本体の構成を示す図である。 本発明の実施形態1にかかる多層セラミック基板の製造工程において、基板本体の所定の位置に導体ペーストを付与した状態を示す図である。 本発明の実施形態1にかかる多層セラミック基板の製造工程において、基板本体の所定の位置に付与された導体ペースト上に表面実装型電子部品などを載置した状態を示す図である。 実施形態1にかかる多層セラミック基板の変形例を示す正面断面図である。 本発明の他の実施形態(実施形態2)にかかる多層セラミック基板を示す正面断面図である。 本発明のさらに他の実施形態(実施形態3)にかかる多層セラミック基板を示す正面断面図である。 本発明のさらに他の実施形態(実施形態4)にかかる多層セラミック基板を示す正面断面図である。 本発明の実施形態4にかかる多層セラミック基板の製造方法を説明する図であって、基板本体と金属板を接合する前の状態を示す図である。 本発明の実施形態4にかかる多層セラミック基板の製造方法を説明する図であって、基板本体と金属板を接合した後の状態を示す図である。
 以下に本発明の実施形態を示して、本発明の特徴とするところをさらに詳しく説明する。
[実施形態1]
 図1は、本発明の一実施形態にかかる回路基板である多層セラミック基板の構成を模式的に示す正面断面図である。
 この実施形態1にかかる多層セラミック基板100は、LTCC(低温同時焼成セラミック)を用いて形成された多層構造を有する回路基板(多層セラミック基板)である。
 この多層セラミック基板(回路基板)100は、基板本体1と、基板本体1の内部に配設された、内部導体13、および、ヒートスプレッダ14aを有するサーマルビア14を備えている。
 また、基板本体1の表面には、水晶発振器11、ICチップ12などの表面実装型電子部品が搭載されている。なお、この実施形態1にかかる多層セラミック基板100においては、基板本体1の表面に、さらにチップコンデンサなどの他の表面実装型電子部品も実装されているが、図示は省略している。
 また、基板本体1は、内部導体13と導通し、上端部が基板本体1の表面に露出するように配設されたビアホール導体15を備えている(但し、水晶発振器11と導通する内部導体13、ビアホール導体15は図示を省略している)。
 さらに基板本体1の表面の所定の領域、すなわち、表面実装型電子部品が搭載される実装領域Aと、表面実装型電子部品が搭載されない非実装領域Bには、表面導体(例えば、Ag層)17が配設されている。なお、表面導体17は、その表面にめっき膜(例えば、Ni/Auめっき膜またはNi/Pd/Auめっき膜)18を備えている。
 そして、めっき膜18を備えた表面導体17上に、導体層10(10a,10b)が配設されている。
 また、実装領域Aと非実装領域Bに配設された導体層10(10a,10b)は、いずれも、SnとCu系合金との間に形成される金属間化合物(この実施形態1ではCu-Ni-Sn)からなるものであり、基板本体1上の位置いかんによらず、また、実装領域Aと、非実装領域Bとを問わず、すべての導体層10(10a,10b)が同一の組成を有している。
 ただし、導体層10(10a,10b)は、本発明の要件を備えている限りにおいて、基板本体1上の位置や、実装領域Aであるか非実装領域Bであるかにより、異なる組成からなるものであってもよい。
 また、この実施形態1の多層セラミック基板100においては、導体層10(10a,10b)は、その厚みが、めっき膜18を含む表面導体17の厚みよりも厚く形成されている。具体的には、めっき膜18を含む表面導体17の厚みが15μmで、導体層10(10a,10b)の厚みが200μmとなるように構成されている。このように、導体層の厚みを表面導体の厚みよりも厚くすることにより、大電流印加への対応性をより向上させることが可能になる。
 ただし、本発明において、めっき膜18を含む表面導体17の厚みと導体層10(10a,10b)の厚みおよび、両者の厚みの関係に特別の制約はなく、回路基板(多層セラミック基板)の構成や用途などを考慮して、適宜その厚みを設定することが可能である。
 なお、導体層10(10a,10b)を構成するSnとCu系合金との間に形成される金属間化合物としては、上記のCu-Ni-Snに限られるものではなく、Cu-Mn-Sn、Cu-Al-Sn、Cu-Cr-Snなどであってもよい。また、SnとCu系合金との間に形成される金属間化合物としては、さらに他の組成のものであってもよい。
 また、図1に示されている多層セラミック基板においては、表面実装型電子部品である水晶発振器11と、ICチップ12は、基板本体1の表面の実装領域Aに配設された、導体層10(10a)を介して基板本体1に接合、実装されている。すなわち、実装領域Aに配設された導体層10(10a)を、水晶発振器11と、ICチップ12などの表面実装型電子部品を実装するための接合材料として利用している。
 また、基板本体1には、導体層(接合材料としても機能する導体層)10を介して金属製の封止キャップ(本発明における金属部材)16が搭載されており、水晶発振器11は、この封止キャップ16内に収容され、確実な動作を行うことができるように構成されている。
 一方、表面実装型電子部品が搭載されていない非実装領域Bに配設された導体層10(10b)は、この実施形態1では主として大電流が流れる回路として機能するように構成されている。
 また、基板本体1の非実装領域Bに配設されたこの導体層10(10b)は、上述のビアホール導体15を介して、基板本体1の内部に配設された内部導体13と導通している。
 さらに、基板本体1の非実装領域Bに配設された導体層10(10b)は、実装領域Aに実装されたICチップ12とワイヤボンディングにより、ワイヤ19を介して接続されている。
 また、この実施形態1では、実装領域Aの導体層10(10a)も、ワイヤボンディングにより、外部(例えば、図示しないソケットなど)とワイヤ19を介して接続されている。
 次に、この多層セラミック基板100の製造方法の概要について、図2~図  4を参照しつつ説明する。
 (1)多層セラミック基板100を製造するにあたり、まず、図2に示すように、表面の所定の領域、すなわち、実装領域A、非実装領域Bのうちの所定の領域、および封止キャップ(金属部材)16を取り付けるべき領域に、表面にめっき膜18を備えた表面導体17が配設され、内部の所定の領域に、内部導体13およびサーマルビア14が配設された基板本体1を用意する。
 (2)次に、図3に示すように、基板本体1の表面の所定の領域に配設された表面導体17上に、Sn粉末と、Cu-Ni合金粉末とを配合してペースト状にした導体ペーストを、印刷や塗布などの方法で付与して、導体層パターン10Xを形成する。
 なお、基板本体1の凹部に導電ペーストを形成する場合は、滴下や描画により導電ペーストを付与することが望ましい。
 (3)それから、図4に示すように、水晶発振器11、ICチップ12などの表面実装型電子部品を、導体層パターン10X上に載置するとともに、封止キャップ16を、水晶発振器を覆うように、導体層パターン10X上に載置する。
 なお、このとき、チップコンデンサなどの他の表面実装型電子部品も導体層パターン10X上に載置する。
 (4)そして、水晶発振器11、ICチップ12や封止キャップ16などが載置された基板本体1をリフローする。
 これにより、導体層パターン(導体ペースト)10Xを構成する導体ペーストに含まれるSnと、Cu-Ni合金が反応してなる金属間化合物(Cu-Ni-Sn)からなる導体層10が形成されるとともに、水晶発振器11、ICチップ12などの表面実装型電子部品の実装や、封止キャップ16の接合、固定が行われる。
 なお、封止キャップ16の接合、固定は、封止キャップ16を導体層パターン10X上に載置する前に、先にリフローによりSnとCu系合金との間に形成される金属間化合物からなる導体層10を形成し、その後、当該導体層10の上に、Au/Su等を介して、封止キャップ16を接合、固定してもよい。
 (5)それから、ワイヤボンディングを行い、非実装領域Bの導体層10(10b)と、実装領域Aに実装されたICチップ12とを、ワイヤ19(図1)を介して接続するとともに、実装領域Aの導体層10(10a)に外部との接続のためのワイヤ19を接続する。これにより、図1に示すような多層セラミック基板100が得られる。
 なお、上記(1)~(5)の工程を経て多層セラミック基板を製造する方法は、あくまでこの実施形態1にかかる多層セラミック基板の製造方法の一例を示すものであって、具体的な製造方法に特別の制約はなく、他の方法で製造することも可能である。
 この実施形態1の多層セラミック基板100は、上述のように構成されており、実装領域Aと、表面実装型電子部品が実装されていない非実装領域Bに、SnとCu系合金との間に形成される金属間化合物(この実施形態1ではCu-Ni-Sn)からなる導体層10が配設されており、水晶発振器11、ICチップ12などの表面実装型電子部品は、導体層10を介して実装領域Aに実装されている。
 そして、導体層10を構成するSnとCu系合金との間に形成される金属間化合物(Cu-Ni-Sn)は、Sn-Pb系はんだなどの従来一般的に用いられてきた接合材料に比べて融点が高く、熱的安定性に優れている。
 また、導体層10は、Sn-Pb系のはんだや導電性樹脂に比べて、抵抗率が低く、伝熱性に優れているばかりでなく、ワイヤボンディングにも十分に対応することができる。
 また、実施形態1で用いたSn粉末と、Ni粉末と、Cu粉末とを配合してペースト状にした導体ペーストは、Sn-Pb系はんだと同様の温度(例えば、250℃)で溶融して、上記金属間化合物を形成するものであり、この導体ペーストを付与し、リフローすることにより、特別な方法を用いることなく、容易かつ確実に、所望の厚みを有する導体層を形成することができる。
 このように、導体層10(10a)を接合材として用いることにより、水晶発振器11、ICチップ12などの表面実装型電子部品を実装領域Aに確実に実装することが可能で、非実装領域Bに形成された導体層10(10b)を線路として利用することにより、大電流の印加にも対応することが可能な線路を形成することができる。すなわち、導体層10の厚みを必要に応じて厚くすることにより、大電流印加への対応性を向上させるとともに、放熱性を高めることができる。
 また、導体層10(10a)を、基板本体1に形成されたサーマルビア14と導通させるようにしているので、表面実装型電子部品(この実施形態ではICチップ12)の熱を効率よく放出することが可能になる。
 したがって、この実施形態1のような構成とすることにより、従来のように、例えば表面に厚いCu層が形成された放熱性能の高い基板を別途用いることを不要にして、小型、高性能で、大電流への対応性に優れた多層セラミック基板を得ることができる。
 また、上記実施形態1では、導体ペーストを基板本体の表面に付与してリフローすることにより導体層10を形成するようにしているので、導体層10を効率よく形成することが可能になり、生産性を向上させることができる。
 また、上述のようにして準備される導体ペーストは、低温でのリフローが可能であるが、リフローにより形成される金属間化合物(実施形態1ではCu-Ni-Sn)は融点が高く(融点:310℃以上)、その後に再リフローされることがあっても導体層10は再溶融しないため、高い実装信頼性を得ることが可能になるとともに、再リフロー工程を設けたりすることが容易になり、製造プロセスの自由度を大きく保つことができる。
 また、この実施形態1の多層セラミック基板100においては、表面実装型電子部品の1つである水晶発振器11を覆う封止キャップ16を、導体層10(10a)を介して基板本体1に接合、固定するようにしており、封止キャップ16のような金属部材を搭載するにあたっても導体層10を用いて効率よく実装することができる。なお、封止キャップに限らず、シールドケース、リードフレームなどの他の金属部材を取り付ける場合にも、同様の方法で取り付けることが可能である。
 また、この実施形態1の回路基板では、導体層10(10b)が、ビアホール導体15を介して、基板本体1の内部に配設された内部導体13と導通するように構成されているため、内部導体13の熱を導体層10(10b)から放出させることが可能になるとともに、内部導体などから形成される配線の引き回しの自由度を向上させることが可能になる。
 なお、この実施形態1では、上述のように、封止キャップ16を備えた多層セラミック基板を例にとって説明したが、本発明の回路基板においては、図5に示すように、封止キャップを備えていない構成とすることも可能である。その場合、封止キャップを基板本体に接続するための表面電極や導体層なども不要になる。なお、図5において、図1と同一符号を付した部分は、同一または相当する部分を示す。
 [実施形態2]
 図6は、本発明の他の実施形態(実施形態2)にかかる回路基板(多層セラミック基板)の構成を示す図である。なお、図6において、図1と同一符号を付した部分は、同一または相当する部分を示す。
 上記実施形態1では、導体層10をめっき膜18を有する表面導体17上に形成するようにした多層セラミック基板100について説明したが、この実施形態2の多層セラミック基板100では、図6に示すように、基板本体1の表面に露出したビアホール導体15およびサーマルビア14上に、表面導体を介することなく、直接に導体層10(10a,10b)が配設されている。
 一方、表面実装型電子部品の一つである水晶発振器11は、実施形態1の場合と同様に、めっき層18を備えた表面導体17上に形成された導体層10(10a)を介して基板本体1に実装されている。
 また、この実施形態2では、封止キャップ16を備えていない構成の多層セラミック基板100を示している。ただし、実施形態1の場合のように封止キャップを備えた構成とすることも可能である。
 この実施形態2の多層セラミック基板の、その他の部分の構成は上記実施形態1の多層セラミック基板100の場合と同様である。
 この実施形態2の多層セラミック基板のように、所定の導体層10(10a,10b)を、表面導体を介さず直接にビアホール導体15およびサーマルビア14上に形成した場合にも、導体層10を、ビアホール導体15やサーマルビア14と確実に導通させることが可能で、上記実施形態1の場合と同様の効果を得ることができる。
 [実施形態3]
 図7は、本発明のさらに他の実施形態(実施形態3)にかかる回路基板(多層セラミック基板)の構成を示す図である。なお、図7において、図1と同一符号を付した部分は、同一または相当する部分を示す。
 この実施形態3にかかる多層セラミック基板100は、実施形態1の多層セラミック基板100と同様に、基板本体1は、水晶発振器11,ICチップ12などの表面実装型電子部品が実装された実装領域Aと、表面実装型電子部品が実装されていない非実装領域Bを備えている。
 さらに、基板本体1の内部には、内部導体13、および、ヒートスプレッダ14aを備えたサーマルビア14が配設されている。
 また、この実施形態3の多層セラミック基板100においては、上記実施形態1の場合とは異なり、基板本体1の内部には、さらに、サーマルビア14と導通する内部導体13aと、この内部導体13aと導通するビアホール導体15aとが配設されており、ビアホール導体15aの上端部は、基板本体1の上記実装領域A、および上記非実装領域Bとは異なる非実装領域(第3の領域)Cの表面に露出している。
 そして、基板本体1の上記非実装領域(第3の領域)Cには、導体層10(10c)が配設され、上記非実装領域(第3の領域)Cの表面に露出したビアホール導体15aの上端部と接続されている。
 すなわち、この実施形態3の多層セラミック基板100においては、サーマルビア14は、上記内部導体13aおよびビアホール導体15aを介して、上記非実装領域(第3の領域)Cの表面に形成された導体層10(10c)と導通している。
 なお、実施形態3の多層セラミック基板100の、その他の構成は上記実施形態1の場合と同様である。
 上述のように構成されたこの実施形態3の多層セラミック基板100においては、サーマルビア14が、内部導体13aおよびビアホール導体15aを介して、導体層10(10c)と導通していることから、実装領域Aに実装されたICチップ12の放熱性をさらに高めることが可能になる。
 また、この実施形態3の構成の場合、サーマルビア14の放熱性能に余裕がある場合には、導体層10(10c)上にさらに他の表面実装型電子部品を実装し、この表面実装型電子部品からの熱をサーマルビア14から放出するように構成することも可能である。
 [実施形態4]
 図8は、本発明のさらに他の実施形態(実施形態4)にかかる回路基板(多層セラミック基板)の構成を示す図である。なお、図8において、図5と同一符号を付した部分は、同一または相当する部分を示す。
 この実施形態4にかかる多層セラミック基板100の主要部は、図5に示す実施形態1の多層セラミック基板100と同様の構成を備えている。すなわち、多層セラミック基板100を構成する基板本体1は、水晶発振器11、ICチップ12などの表面実装型電子部品が実装された実装領域Aと、表面実装型電子部品が実装されていない非実装領域Bを備えている。
 さらに、基板本体1の内部には、内部導体13、および、ヒートスプレッダ14aを備えたサーマルビア14が配設されている。
 そして、この実施形態4にかかる多層セラミック基板100においては、基板本体1の表面実装型電子部品11,12が実装された方の面と対向する対向面の一部(所定の領域)に、SnとCu系合金との間に形成される金属間化合物を含む対向面側導体層110が配設されている。
 そして、対向面側導体層110は、基板本体1の対向面に形成された表面導体117および表面導体117の表面に形成されためっき膜118を介して、サーマルビア14と接続されている。
 そして、この実施形態4にかかる多層セラミック基板100では、基板本体1の対向面側には、絶縁性の接着剤層(絶縁材料層)120を介して金属板121が接合されている。
 なお、この実施形態4では、絶縁性の接着剤として、シリコーン樹脂系の接着剤が用いられている。ただし、絶縁材料層を構成する樹脂はシリコーン系樹脂に限らず、公知の種々の樹脂材料を用いることが可能である。
 金属板121としては、熱伝導性に優れ、放熱機能の高いアルミ金属板が用いられている。ただし、金属板121の構成材料はこれに限られるものではなく、アルミニウム合金、銅、銅合金などの熱伝導性に優れ、放熱機能の高い種々の材料を用いることが可能である。
 また、対向面側導体層110は絶縁材料層120の凹部に嵌り込んでおり、対向面側導体層110に対向する領域Rにおける絶縁材料層120の厚みは、対向面側導体層110の厚み分だけ、絶縁材料層120の他の領域R0における絶縁材料層120の厚みよりもよりも薄くなっている。
 具体的には、対向面側導体層110と対向していない領域R0における絶縁材料層120の厚みが約100μmであるのに対し、絶縁材料層120の対向面側導体層110と対向している領域Rにおける絶縁材料層120の厚みは約20μmとされている。これは、約80μmの厚みを有する対向面側導体層110が、接着剤層(絶縁材料層)120に埋没した状態となるため、絶縁材料層120の対向面側導体層110と対向してい領域Rにおける絶縁材料層120の厚みが、対向面側導体層110の厚み分だけ薄くなり、約20μmとなったものである。
 すなわち、絶縁確保のためには、通常、絶縁材料層120の厚み(絶縁距離)が20μm程度必要となる。そこで、絶縁材料層120の厚み(約100μm)に対して、対向面側導体層110の厚みを、上記の絶縁距離との差分に相当する厚みとする(ここでは約80μmとする)ことにより、対向面側導体層110に対向する領域Rにおける絶縁材料層120の厚みを適正な厚み(約20μm)とすることができる。
 なお、この実施形態4にかかる多層セラミック基板100を作製するにあたっては、例えば、図9に示すように、基板本体1と、絶縁性の接着剤を塗布することにより形成された未硬化の絶縁材料層120を備えた金属板121とを用意し、図10に示すように、両者を接合した後、基板本体1上に、表面実装型電子部品11,12の実装を行うことにより、図8に示すような構造を有する多層セラミック基板100が得られる。
 なお、上述のように、基板本体1と、金属板121とを、例えば、シリコーン樹脂系の絶縁材料層(接着剤層)120を介して接合した後、基板本体1上に表面実装型電子部品11,12を実装するようにした場合、基板本体1の対向面(裏面)側に対向面側導体層110が形成されることにより生じる凸部が、表面実装型電子部品11,12の実装に与える悪影響を防止することができるため望ましい。
 ただし、実施形態4にかかる多層セラミック基板100の製造方法は、上記の方法に限定されるものではなく、公知の種々の方法を適用して製造することが可能である。
 上述のように構成された多層セラミック基板100においては、基板本体1の対向面側にも導体層(対向面側導体層)110が配設されており、かつ、金属板121が、対向面側導体層110が配設された基板本体1の対向面側に接合されているため、基板本体1の対向面側からも効率のよい放熱を行わせることが可能になり、信頼性を向上させることができる。
 特に、この実施形態4にかかる多層セラミック基板100の場合、対向面側導体層110がサーマルビア14と接続されているとともに、対向面側導体層110に対向する領域Rにおける絶縁材料層120の厚みは、対向面側導体層110の厚み分だけ、絶縁材料層120の他の領域R0よりも薄くなっていることから、さらに効率よく、基板本体1の対向面側から放熱を行わせることが可能になる。
 また、実施形態4では、対向面側導体層110が、表面導体117の表面に形成されためっき膜118を介して、サーマルビア14と接続されるように構成されている場合を例にとって説明したが、めっき膜を備えていない構成とすることも可能である。
 また、実施形態4では、対向面側導体層110がサーマルビア14と接続されている構成を例にとって説明したが、例えば、サーマルビアを備えていない多層セラミック基板の場合においても、対向面側導体層を有する構成とすることが可能である。
 なお、上記の各実施形態では、表面実装型電子部品が水晶発振器11、ICチップ12である場合を例にとって説明したが、実装される表面実装型電子部品の種類はこれに限られるものではなく、本発明は、種々の能動部品や受動部品を実装する場合に広く適用することができる。
 また、上記実施形態では、多層セラミック基板を例にとって説明したが、本発明は、単層構造の回路基板にも適用することが可能である。
 また、本発明の回路基板はセラミック基板に限られるものではなく、セラミックを用いない樹脂製の回路基板などにも適用することが可能である。
 本発明はさらにその他の点においても上記実施形態に限定されるものではなく、導体層、表面導体、内部導体などの具体的な配設態様や構成材料、基板本体上に実装される表面実装型電子部品の種類などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。
 1        基板本体
 10(10a,10b,10c)   導体層
 10X      導体層パターン
 11       水晶発振器(表面実装型電子部品)
 12       ICチップ(表面実装型電子部品)
 13,13a   内部導体
 14       サーマルビア
 14a      ヒートスプレッダ
 15,15a   ビアホール導体
 16       封止キャップ(金属部材)
 17       表面導体
 18       めっき膜
 19       ワイヤ
 100      多層セラミック基板(回路基板)
 110      対向面側導体層
 117      対向面側の表面導体
 118      対向面側の表面導体に形成されためっき膜
 120      絶縁性の接着剤層(絶縁材料層)
 120a     絶縁材料層の凹部
 121      金属板
 A        実装領域
 B        非実装領域
 C        非実装領域(第3の領域)
 R        絶縁材料層の対向面側導体層に対向する領域
 R0        絶縁材料層の対向面側導体層に対向していない領域

Claims (14)

  1.  基板本体と、前記基板本体に実装された表面実装型電子部品とを備えた回路基板であって、
     表面実装型電子部品が実装された実装領域と、表面実装型電子部品が実装されていない非実装領域とを備え、
     前記実装領域と前記非実装領域のいずれにも、SnとCu系合金との間に形成される金属間化合物を含む導体層が配設されており、
     前記表面実装型電子部品は、前記導体層を介して前記実装領域に実装されていること
     を特徴とする回路基板。
  2.  前記導体層の少なくとも一部は、前記基板本体上に形成された表面導体を介して、前記基板本体上に形成されていることを特徴とする請求項1記載の回路基板。
  3.  前記表面導体は、その表面に形成されためっき膜を備えていることを特徴とする請求項2記載の回路基板。
  4.  前記導体層の厚みが、前記表面導体の厚みよりも厚いことを特徴とする請求項2または3記載の回路基板。
  5.  前記導体層は、前記基板本体上の位置いかんによらず、同一組成を有する材料から形成されたものであることを特徴とする請求項1~4のいずれかに記載の回路基板。
  6.  前記導体層を構成する前記金属間化合物が、Cu-Ni-Sn、Cu-Mn-Sn、Cu-Al-Sn、およびCu-Cr-Snからなる群より選ばれる少なくとも1種であって、融点が310℃以上のものであることを特徴とする請求項1~5のいずれかに記載の回路基板。
  7.  前記導体層に対してワイヤボンディングがなされていることを特徴とする請求項1~6のいずれかに記載の回路基板。
  8.  前記導体層を介して、金属部材が接合されていることを特徴とする請求項1~7のいずれかに記載の回路基板。
  9.  前記基板本体が、複数のセラミック層を積層した多層セラミック基板であることを特徴とする請求項1~8のいずれかに記載の回路基板。
  10.  前記セラミック層を構成するセラミックとして、低温同時焼成セラミックが用いられていることを特徴とする請求項1~9のいずれかに記載の回路基板。
  11.  前記導体層が、ビアホール導体を介して、前記基板本体の内部に配設された内部導体と導通していることを特徴とする請求項1~10のいずれかに記載の回路基板。
  12.  前記基板本体の前記実装領域には、放熱のためのサーマルビアが配設され、かつ、前記導体層が前記サーマルビアと接続するように配設されている場合において、前記基板本体の前記実装領域とは異なる領域にも前記導体層が配設され、かつ、前記サーマルビアと導通する内部導体および前記内部導体と導通するビアホール導体を介して、前記実装領域とは異なる領域に配設された前記導体層と前記サーマルビアとが接続されていることを特徴とする請求項1~11のいずれかに記載の回路基板。
  13.  前記基板本体の前記表面実装型電子部品が実装された方の面と対向する対向面の所定の領域に、SnとCu系合金との間に形成される金属間化合物を含む対向面側導体層が配設されているとともに、
     前記基板本体の前記対向面には、絶縁材料層を介して金属板が接合されており、かつ、
     前記対向面側導体層は、前記絶縁材料層の凹部に嵌り込むとともに、前記対向面側導体層に対向する領域における前記絶縁材料層の厚みが、前記対向面側導体層の厚み分だけ他の領域における前記絶縁材料層の厚みよりも薄くなるように構成されていること
     を特徴とする請求項1~12のいずれかに記載の回路基板。
  14.  前記基板本体の前記表面実装型電子部品が実装された方の面と対向する対向面の所定の領域に、SnとCu系合金との間に形成される金属間化合物を含む対向面側導体層が配設されているとともに、
     前記対向面側導体層が前記サーマルビアと導通するように配設されており、かつ、
     前記基板本体の前記対向面には、絶縁材料層を介して金属板が接合されており、
     前記対向面側導体層は、前記絶縁材料層の凹部に嵌り込むとともに、前記対向面側導体層に対向する領域における前記絶縁材料層の厚みが、前記対向面側導体層の厚み分だけ他の領域における前記絶縁材料層の厚みよりも薄くなるように構成されていること
     を特徴とする請求項12記載の回路基板。
PCT/JP2014/057844 2013-07-09 2014-03-20 回路基板 WO2015004952A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013143541 2013-07-09
JP2013-143541 2013-07-09
JP2013-194149 2013-09-19
JP2013194149 2013-09-19

Publications (1)

Publication Number Publication Date
WO2015004952A1 true WO2015004952A1 (ja) 2015-01-15

Family

ID=52279651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057844 WO2015004952A1 (ja) 2013-07-09 2014-03-20 回路基板

Country Status (1)

Country Link
WO (1) WO2015004952A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017041984A1 (de) * 2015-09-11 2017-03-16 Zf Friedrichshafen Ag Mehrfunktionale hochstromleiterplatte

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148839A (ja) * 1994-11-21 1996-06-07 Nippondenso Co Ltd 混成集積回路装置
JP2001352009A (ja) * 2000-06-05 2001-12-21 Nec Corp 半導体装置およびその製造方法
JP2003258160A (ja) * 2002-03-04 2003-09-12 Hitachi Metals Ltd セラミック積層基板およびこれを用いたセラミック積層電子部品
JP2004165294A (ja) * 2002-11-11 2004-06-10 Murata Mfg Co Ltd 電子部品およびその製造方法
JP2007141901A (ja) * 2005-11-15 2007-06-07 Toyota Motor Corp 半導体装置および半導体装置の製造方法
JP2008235898A (ja) * 2007-03-19 2008-10-02 Infineon Technologies Ag パワー半導体モジュール、パワー半導体モジュールの製造方法、および、半導体チップ
JP2010245174A (ja) * 2009-04-02 2010-10-28 Denso Corp 電子制御ユニット及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148839A (ja) * 1994-11-21 1996-06-07 Nippondenso Co Ltd 混成集積回路装置
JP2001352009A (ja) * 2000-06-05 2001-12-21 Nec Corp 半導体装置およびその製造方法
JP2003258160A (ja) * 2002-03-04 2003-09-12 Hitachi Metals Ltd セラミック積層基板およびこれを用いたセラミック積層電子部品
JP2004165294A (ja) * 2002-11-11 2004-06-10 Murata Mfg Co Ltd 電子部品およびその製造方法
JP2007141901A (ja) * 2005-11-15 2007-06-07 Toyota Motor Corp 半導体装置および半導体装置の製造方法
JP2008235898A (ja) * 2007-03-19 2008-10-02 Infineon Technologies Ag パワー半導体モジュール、パワー半導体モジュールの製造方法、および、半導体チップ
JP2010245174A (ja) * 2009-04-02 2010-10-28 Denso Corp 電子制御ユニット及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017041984A1 (de) * 2015-09-11 2017-03-16 Zf Friedrichshafen Ag Mehrfunktionale hochstromleiterplatte
US10375824B2 (en) 2015-09-11 2019-08-06 Zf Friedrichshafen Ag Multi-functional high-current circuit board

Similar Documents

Publication Publication Date Title
JP6496571B2 (ja) 極薄埋め込み型半導体デバイスパッケージおよびその製造方法
US7269017B2 (en) Thermal management of surface-mount circuit devices on laminate ceramic substrate
CN111508912B (zh) 功率覆盖结构及其制作方法
JP5100081B2 (ja) 電子部品搭載多層配線基板及びその製造方法
US8737075B2 (en) Electronic component unit and manufacturing method thereof
JP5756515B2 (ja) チップ部品内蔵樹脂多層基板およびその製造方法
US20070205017A1 (en) Circuit device and method of manufacturing the same
WO2004060034A1 (ja) 電子部品内蔵モジュール
KR20080083533A (ko) 플립-칩 방식의 적층형 파워 모듈 및 그 파워 모듈의제조방법
KR100629826B1 (ko) 접합재 및 이를 이용한 회로 장치
JP5747805B2 (ja) 電子装置
JP2014036085A (ja) プリント配線板、プリント回路板及びプリント回路板の製造方法
JP2007335701A (ja) 積層基板の製造方法
JPH10256429A (ja) 半導体パッケージ
US7928559B2 (en) Semiconductor device, electronic component module, and method for manufacturing semiconductor device
JP5868274B2 (ja) 配線基板およびそれを用いた電子装置
WO2015004952A1 (ja) 回路基板
JP5539453B2 (ja) 電子部品搭載多層配線基板及びその製造方法
JP6945513B2 (ja) 電子制御装置
WO2017208309A1 (ja) 電子モジュールおよび電子モジュールの製造方法
JP4463139B2 (ja) 立体的電子回路装置
JPH10275522A (ja) 導電性樹脂ペースト、それを用いたパッケージ用基体および半導体パッケージ
JP2014078627A (ja) 配線基板、はんだバンプ付き配線基板および半導体装置
JP2019125746A (ja) 電子部品搭載用基板、回路基板および電子部品搭載用基板の製造方法
JP2018181995A (ja) 配線基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14822926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14822926

Country of ref document: EP

Kind code of ref document: A1