WO2015004908A1 - 板材の成形方法、及び予成形形状の設定方法 - Google Patents

板材の成形方法、及び予成形形状の設定方法 Download PDF

Info

Publication number
WO2015004908A1
WO2015004908A1 PCT/JP2014/003620 JP2014003620W WO2015004908A1 WO 2015004908 A1 WO2015004908 A1 WO 2015004908A1 JP 2014003620 W JP2014003620 W JP 2014003620W WO 2015004908 A1 WO2015004908 A1 WO 2015004908A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape
cross
molding
plate material
forming
Prior art date
Application number
PCT/JP2014/003620
Other languages
English (en)
French (fr)
Inventor
欣哉 中川
靖廣 岸上
雄司 山▲崎▼
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP14823787.8A priority Critical patent/EP3020492B1/en
Priority to US14/903,818 priority patent/US10730090B2/en
Priority to MX2016000001A priority patent/MX2016000001A/es
Priority to CN201480038949.9A priority patent/CN105451908B/zh
Priority to KR1020167003309A priority patent/KR101815403B1/ko
Priority to JP2015526168A priority patent/JP5867657B2/ja
Publication of WO2015004908A1 publication Critical patent/WO2015004908A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/006Bending sheet metal along straight lines, e.g. to form simple curves combined with measuring of bends
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/26Deep-drawing for making peculiarly, e.g. irregularly, shaped articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D31/00Other methods for working sheet metal, metal tubes, metal profiles
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D7/00Bending rods, profiles, or tubes
    • B21D7/14Bending rods, profiles, or tubes combined with measuring of bends or lengths

Definitions

  • the present invention relates to a technique for applying a plastic deformation such as overmolding to a plate material in multiple stages to obtain a final shape.
  • Patent Document 1 discloses a method of reducing the surplus and improving the yield by creating a range in which the blank material is not restrained in the initial stage of press molding.
  • Patent Document 2 discloses a method for avoiding a molding defect by allowing a local area of a press mold to be driven as an individual movable punch, and drawing a blank into the mold in advance and then performing molding with the movable punch. It is disclosed.
  • Patent Document 1 it is possible to reduce the surplus as compared with the conventional method, but the surplus is still necessary. Moreover, since the method of patent document 1 is drawing, there is a limit in a yield and an improvement allowance.
  • the present invention focuses on the above points, and an object of the present invention is to provide a method for forming a plate material and a method for setting a preformed shape, which can improve both yield and formability.
  • the moldability is improved when the press molding is performed in multiple stages divided into a plurality of molding processes.
  • the reason is that the strain is not concentrated in one place and the whole plate material is more concentrated in the case of forming in stages in multiple forming processes compared to the case of forming to the final shape in one forming process. This is because the strain is easily dispersed.
  • the mold shape at the pre-molding stage prior to the final stage of press working largely depends on the experience of engineers, and a method for determining the shape has not been established.
  • the inventors have conducted a research study to effectively perform preforming in order to simultaneously solve the demands for both yield improvement and formability improvement.
  • the inventors have found that if a cross-sectional line length comparable to that of the final shape can be obtained at the pre-molding stage, the final shape can be obtained at the time of final molding with almost the same strain distribution as during pre-molding. did.
  • a method for forming a plate material is to form a plate material that is plastically deformed from the preformed shape to the final shape after plastic deformation is applied to the plate material.
  • the ratio of the cross-sectional line length in the preformed shape to the cross-sectional line length in the final shape at the same cross-sectional position falls within a predetermined allowable range.
  • the pre-formed shape is determined.
  • the preforming shape setting method includes the preforming shape when the plate material is plastically deformed from the preformed shape to the final shape after being plastically deformed to form the preformed shape.
  • the ratio of the cross-sectional line length in the pre-shaped shape to the cross-sectional line length in the final shape at the same cross-sectional position for a plurality of cross-sections in the final shape is a preset allowable value.
  • the pre-shaped shape is determined so as to be within the range.
  • the positions of the cross-sections at a plurality of locations are set in, for example, a lattice shape or a radial shape.
  • the plate material molding method is obtained by plastically deforming a plate material into a preformed shape, and then plastically deforming from the preformed shape to the final shape.
  • An inner reference point is set in the final shape molding region, and a plurality of outer reference points are set on the outer peripheral contour line of the molding region, and a first inner point corresponding to the inner reference point with respect to the final shape.
  • the length of the endless annular line obtained by connecting the dividing points is a first line length, and in the preformed shape, each of the second inner point corresponding to the inner reference point and each outer reference point A plurality of cross-sectional lines connecting the second outer point are set ratios as described above.
  • the ratio of the second line length to the first line length when the length of the endless annular line obtained by connecting adjacent division points at each divided point is the second line length.
  • the pre-shaped shape is determined so that the value falls within a preset allowable value range.
  • the preforming shape setting method includes the above-described pre-formation in the molding of a plate material that is plastically deformed from the preformed shape to the final shape after plastic deformation is performed on the plate material.
  • a molding shape setting method wherein an inner reference point is set in a molding region of the final shape, and a plurality of outer reference points are set on an outer peripheral contour line of the molding region, and the inner side is set with respect to the final shape.
  • a plurality of cross-sectional lines that individually connect the first inner point corresponding to the reference point and the first outer points corresponding to the respective outer reference points are set, and the set cross-sectional lines are divided at a preset setting ratio.
  • the preforming shape is determined such that the ratio of the second line length to the line length falls within a preset allowable value range.
  • the present invention it is possible to obtain a cross-sectional line length comparable to that of the final shape at the pre-molding stage, so that the final shape can be obtained at the time of final molding with substantially the same strain distribution as that during pre-molding.
  • a plate material forming method and a preformed shape setting method capable of improving both yield improvement and formability improvement.
  • the present invention is particularly effective in the case of stretch forming.
  • press molding for molding by adopting press molding for molding and applying the present invention, it is possible to achieve high yield while facilitating molding by overhang molding when performing press molding.
  • FIG. 1 is a conceptual diagram illustrating a molding process according to an embodiment of the present invention.
  • FIG. 2 is a diagram relating to the first embodiment, and is a diagram illustrating a method for determining a preformed shape.
  • FIG. 3 is a diagram relating to the first embodiment, and is a plan view showing a first example of positions of a plurality of cross-sections for obtaining a cross-sectional alignment.
  • FIG. 4 is a diagram relating to the first embodiment, and is a plan view showing a second example of positions of a plurality of cross-sections for obtaining a cross-sectional alignment.
  • FIG. 5 is a diagram relating to the first embodiment, and is a diagram illustrating a final shape in the first embodiment.
  • FIG. 1 is a conceptual diagram illustrating a molding process according to an embodiment of the present invention.
  • FIG. 2 is a diagram relating to the first embodiment, and is a diagram illustrating a method for determining a preformed shape.
  • FIG. 6 is a diagram related to the first embodiment, and is a diagram showing a pre-formed shape in Example 1, where (a) is a shape example according to the conventional method, and (b) is a shape example according to the method of the present invention. is there.
  • FIG. 7 is a diagram relating to the first embodiment, and is a diagram illustrating a final shape in Example 2.
  • FIG. 8 is a diagram relating to the first embodiment, and is a diagram showing a preformed shape in Example 2.
  • FIG. FIG. 9 is a diagram relating to the second embodiment and is a diagram for explaining a method for determining a preformed shape.
  • FIG. 10 is a diagram relating to the second embodiment, and is a plan view illustrating an example of setting internal reference points and external reference points.
  • FIG. 11 is a diagram relating to the second embodiment, and is a diagram illustrating the setting of an endless annular line (first endless annular line) in the final shape.
  • FIG. 12 is a diagram relating to the second embodiment, and is a diagram illustrating a position that becomes an unexpected annular line (second endless annular line) in a preformed shape.
  • FIG. 13 is a diagram related to the second embodiment and is a diagram illustrating a final shape of the example.
  • FIG. 14 is a diagram relating to the second embodiment, and is a plan view showing an endless annular line (first endless annular line) in the final shape of the example.
  • FIG. 15 is a diagram relating to the second embodiment, and is a plan view showing an endless annular line (second endless annular line) in the preformed shape of the example.
  • FIG. 1 is a conceptual diagram illustrating a molding process in the present embodiment.
  • the molding of this embodiment is performed by pre-forming a plate material 1 (blank) plastically deformed into a pre-formed shape, and the plate material 1 having a pre-formed shape in the pre-forming step as a final product. It consists of a two-stage molding process and a main molding process that plastically deforms into a shape. Note that the preforming process itself may be composed of a plurality of preforming processes.
  • the preforming step is performed, for example, by press molding using a preforming mold for molding into the preformed shape.
  • the mold includes, for example, a punch and die set.
  • the main molding step is also performed by press molding using a main mold for molding into the final shape.
  • the mold includes, for example, a punch and die set.
  • the above press molding is, for example, stretch molding.
  • the preforming mold prior to the preforming step, there is a process of obtaining the shape of the preforming mold, that is, the preformed shape from the final shape.
  • a preforming mold is manufactured so as to obtain the preformed shape.
  • the method for determining the pre-formed shape is to set a plurality of cross-sections along the plate thickness direction of the plate material 1 in the final shape, and the cross-section in the pre-formed shape with respect to the cross-sectional line length in the final shape at the same cross-sectional position.
  • the preforming shape is determined so that the ratios of the line lengths are within the allowable range set in advance. That is, the pre-formed shape is determined by comparing the cross-section line lengths of the final shape and the pre-formed shape so that the ratio of both cross-section line lengths falls within a preset allowable range. Determine the shape.
  • the direction “along the plate thickness direction of the plate 1” corresponds to the pressing direction.
  • FIG. 2 shows a processing example of a method for determining a preformed shape based on the final shape.
  • two or more cross-sectional locations are set for the plate material 1 (Process A). It is preferable that the cross-sectional location is set so as to pass through a characteristic location where the curvature of the cross-sectional shape in the final shape is at least steep. By doing so, it is possible to reduce the number of cross sections to be set.
  • FIG. 3 shows a first setting example of the positions of a plurality of cross sections.
  • the positions of the cross-sections at a plurality of locations are in an n ⁇ m lattice shape when viewed from the direction along the plate thickness direction of the plate material 1 before forming (corresponding to the projecting direction by plan view).
  • This is an example when (n + m) cross-sectional portions are set in (mesh shape).
  • the setting location will be described later.
  • region is corresponded to the external shape line of a final shape.
  • the cross-sectional line length L0 of the final shape is acquired by performing a molding simulation of the final shape using, for example, CAE (Computer Aided Engineering). Further, the cross-sectional line length L0 of the final shape may be obtained by actually performing press molding to produce a final-shaped product and measuring the cross-sectional line length L0 by an optical measurement method or the like. But the acquisition method of cross-sectional line length L0 is not limited to this, What is necessary is just to employ
  • the cross-sectional line length L1 at the same position as the cross-sectional position set in the final shape is the cross-sectional line length corresponding to the acquired corresponding cross-sectional line length.
  • the cross-sectional line length L1 is specified (processing C).
  • the cross-sectional line length L1 at each cross-sectional location is set, for example, within the allowable range described later.
  • the section line length corresponding to the section line length is a section line length when the ratio of the section line length in the preformed shape to the section line length in the final shape is within a preset allowable range.
  • the range of the preset allowable value is a range in which (L1 / L0) is 0.8 times or more and 1.2 times or less. Under this condition, the cross-sectional line length of the final shape and the cross-sectional line length of the preformed shape are set to be the same in the same cross section.
  • the preformed shape is specified so as to satisfy all the conditions of the cross-sectional line length L1 of each specified cross-sectional location (Process D).
  • the accuracy increases as the number of cross-sectional portions for obtaining the cross-sectional line length increases.
  • orthogonal coordinates are considered with the plate thickness direction of the plate material 1 before forming as the Z-axis and the directions orthogonal to the Z-axis as the X-axis and the Y-axis.
  • the X-axis and the Y-axis are directions along the surface of the plate material 1 before molding.
  • n locations and cross-sectional locations are set in parallel with the XZ plane at predetermined intervals, and m locations and cross-sectional locations are set in parallel with the YZ plane at predetermined intervals.
  • n and m are 1 or more.
  • the cross-sectional portion is set in a lattice shape (mesh shape) as viewed from the plate thickness direction of the plate material 1 before forming.
  • the lattice shape does not need to be an orthogonal lattice shape.
  • the cut portions may be set in at least two directions intersecting each other in plan view, and a plurality of cross-sectional shapes may be used in each direction.
  • molding and a press direction are not parallel, it is preferable to set so that the surface direction of each cross section may not be parallel to a Z axis
  • the line specifying the cross section may not be a straight line, but it is easier to set it to a straight line.
  • the other direction The shape of the final preformed shape is determined by correcting with the cross-sectional alignment in FIG.
  • the ratio of the sectional line length between the final shape and the preformed shape is preferably in the range of 0.8 times to 1.2 times as described above, and is preferably in the range of 0.9 times to 1.1 times. Further preferred. It has been confirmed that the occurrence of cracks and the occurrence of wrinkles on the product surface can be significantly reduced by adjusting the range from 0.8 times to 1.2 times. Since it was confirmed that a high yield was secured at least within this range, this value was specified.
  • the example shown in FIG. 3 is an example in which a plurality of cross sections are set in a lattice shape.
  • the setting of the cross sections at a plurality of locations is not limited to this.
  • FIG. 4 shows a second setting example for setting the positions of the cross sections at a plurality of locations.
  • This example is an example in which the positions of a plurality of cross sections are set radially. That is, as viewed from the direction along the pressing direction (the direction along the plate thickness direction of the plate material before forming), the internal set point P 0 is set in the forming region of the final shape, and passes through the internal set point P 0. In addition, a plurality of lines CA 1 to CA 8 extending in different directions are set, and the plurality of cross sections are set at the positions of the set lines.
  • FIG. 4 illustrates the case where the plurality of lines are eight, but may be other than eight.
  • the number of cross sections is preferably 8 or more.
  • the number of cross-sections can be reduced in the radial setting compared to the grid setting.
  • the radially extending lines need not be set at regular intervals. It is preferable to set so as to pass through a portion having a large curvature change in the final shape.
  • FIG. 4 illustrates the case where both ends of the line passing through the internal set point P0 are a single line that reaches the outer peripheral contour line of the final shape forming region.
  • each line may be set so as to connect the internal set point P0 and one point of the outer contour line of the final shape forming region.
  • the “molding region” indicates a region in which plastic deformation is positively applied including a product surface, a pre-formed portion, etc., in a press product after preforming or main molding. However, the part molded by the bead is not included.
  • the internal set point P0 is preferably set at the position of the centroid when the molding area is viewed from the direction along the press direction.
  • the pre-molding process may be composed of two or more temporary molding processes.
  • the processed shape after processing in each of the temporary forming steps is a cross-section in the processed shape after the processing with respect to the cross-sectional line length in the final shape at the same cross-sectional position for a plurality of cross-sectional locations in the final shape. It is preferable to set the wire length for each of the temporary forming steps so that the wire lengths are within the allowable range. However, it is only necessary that the preformed shape one stage before forming into the final shape satisfies the above conditions.
  • the present invention can be applied not only to automobile parts but also to all processes for press-molding the plate material 1.
  • the material for press molding is not limited to steel, but can be applied to ferrous alloys such as stainless steel, non-ferrous materials, and non-metallic materials.
  • FIG. 1 (same as FIG. 1 used in the description of the first embodiment) is a conceptual diagram illustrating the molding process in the present embodiment.
  • the molding of this embodiment is performed by pre-forming a plate material 1 (blank) plastically deformed into a pre-formed shape, and the plate material 1 having a pre-formed shape in the pre-forming step as a final product. It consists of a two-stage molding process and a main molding process that plastically deforms into a shape. Note that the preforming process itself may be composed of a plurality of preforming processes.
  • the preforming step is performed, for example, by press molding using a preforming mold for molding into the preformed shape.
  • the mold includes, for example, a punch and die set.
  • the main molding step is also performed by press molding using a main mold for molding into the final shape.
  • the mold includes, for example, a punch and die set.
  • the above press molding is, for example, stretch molding.
  • the preforming mold prior to the preforming step, there is a process of obtaining the shape of the preforming mold, that is, the preformed shape from the final shape.
  • a preforming mold is manufactured so as to obtain the preformed shape.
  • the preforming shape determination method sets an inner reference point in the molding region of the final shape and sets a plurality of outer reference points on the outer peripheral contour line of the molding region, A plurality of cross-sectional lines passing through the first inner point corresponding to the reference point and the first outer points corresponding to the respective outer reference points are set, and the set cross-sectional lines are divided at a preset setting ratio. Each division point is obtained, and the length of an endless annular line obtained by connecting adjacent division points is a first line length.
  • the second inner point corresponding to the inner reference point and the above The length of an endless annular line obtained by connecting adjacent division points at each division point obtained by dividing a plurality of cross-sectional lines connecting each second outer point corresponding to each outer reference point by the set ratio is Above the first line length when the line length is 2.
  • the second line length is preset to determine the preformed shape.
  • the inner reference point set to the final shape is set as the origin, and the press direction is set as the Z direction.
  • three-dimensional coordinates are set with the directions indicated by two orthogonal straight lines passing through the origin and orthogonal to the Z direction as the X direction and the Y direction.
  • each outer reference point can be expressed using the X, Y, and Z coordinates.
  • the X, Y and Z coordinates are similarly set in the space for designing the preformed shape, and the outer reference in the design space for the preformed shape is referred to by referring to the coordinates of each outer reference point obtained by the above method. It becomes possible to obtain points.
  • an endless annular line having a contour line (annular ring shape) centered on the first inner point is set and the first line length is obtained, and the endless line corresponding to the endless annular line in the preformed shape is obtained.
  • the pre-shaped shape is determined so that the second line length of the annular line falls within a preset allowable value range with respect to the first line length.
  • the endless annular line preferably employs a cross-sectional line in each shape.
  • FIG. 9 shows a processing example of a method for determining a preformed shape based on the final shape.
  • an inner reference point A is set in the forming region that is the final shape of the plate material 1 before forming, and a plurality of outer reference points B1 are formed on the outer peripheral contour line of the forming region.
  • the inner reference point A is, for example, when the final shape is viewed from the centroid of the molding region that is the final shape in the plate material 1 before molding or the direction along the press direction with respect to the plate material 1 after molding into the final shape. Set to the position of the centroid.
  • the plurality of outer reference points B1 to B8 are set along the outer peripheral contour of the molding region on the outer peripheral contour of the molding region.
  • the plurality of outer reference points B1 to B8 need not be set at equal intervals.
  • the positions of the plurality of outer reference points B1 to B8 are set on the plate material 1 before molding is illustrated, but the outer peripheral contour line (outer shape) of the molding region on the plate material 1 after final formation is illustrated. It is preferable that the positions of the plurality of outer reference points B1 to B8 are set by lines), and the positions corresponding to the positions are set in the plate material 1 before forming.
  • outer reference points B1 to B8 at more appropriate positions by setting the positions of the plurality of outer reference points B1 to B8 on the outer peripheral contour line (outline) of the forming region in the plate 1 after the final formation. Become. That is, setting the outer reference points B1 to B8 so as to pass through a cross-sectional position where the curvature change is large (for example, a steep position) can improve the accuracy while reducing the number of outer reference points B1 to B8.
  • the number of outer reference points is preferably four or more.
  • First outer points BF1 to BF8 are set (step S20), and positions of cross-sectional lines D1 to D7 in the final shape connecting the first inner point AF and the first outer points BF1 to BF8 are set (step S30). ).
  • step S40 as shown in FIG. 11, division points B11 to B82 obtained by dividing the actual lengths of the respective sectional lines at the set ratio are set for the respective sectional lines D1 to D7.
  • two dividing points B11 to B82 are set for each of the sectional lines D1 to D7.
  • the accuracy increases as the setting ratio is increased.
  • the calculation cost and time cost required for the design increase as the setting ratio increases. Preferably four or more.
  • first endless annular lines C1 and C2 are determined as first endless annular lines C1 and C2.
  • a line having the shortest distance between adjacent division points B11 to B82 is employed.
  • the first endless annular lines C1 and C2 may be set as endless annular lines in which adjacent division points B11 to B82 are connected by a straight line without being a cross-sectional line.
  • the accuracy is better when the cross-section line is adopted.
  • step S50 the first line length of the first endless annular line for each set ratio determined in step S40 is calculated.
  • two first line lengths are obtained.
  • the first line length in the final shape is obtained by performing a final shape molding simulation using, for example, CAE. Further, for example, the final shape product may be manufactured by actually performing press molding and measured by an optical measurement method or the like.
  • step S60 a straight line connecting the inner reference point A (corresponding to the second inner point) and the outer reference points B1 to B8 in the plate material 1 before forming is formed in a preformed shape.
  • division points B11 to B82 are set. Then, for each set ratio, the position of the endless annular line connecting the adjacent division points B11 to B82 with a straight line is specified as the position to be the second endless annular line in the preformed shape.
  • step S70 the second line length for each set ratio is obtained from the first line length for each set ratio obtained in step S50. Specifically, the second line length is set for each set ratio from a range that is not less than 0.8 times and not more than 1.2 times the first line length.
  • step S80 the shape in which the length of the position that becomes the second endless annular line in the preformed shape set in step S60 becomes the second line length set in step S70 is a preformed shape.
  • the shape of the preformed shape is determined from the position including the location where the degree of curvature change is relatively large in the final shape. After the tentative determination, the length of the position of the other second endless annular line is corrected to determine the shape of the final preformed shape.
  • the ratio of the second line length to the first line length is preferably not less than 0.6 times and not more than 1.4 times, and ranges from 0.8 times to 1.2 times as described above. It is more preferable that Most preferably, it is in the range of 0.9 to 1.1 times.
  • the ratio is less than 0.6 times, the line length is insufficient at the time of final molding, and there is a possibility that cracking may occur or the yield may be reduced.
  • the ratio exceeds 1.4 times, the wire length is excessive at the time of final molding, and wrinkles may occur on the product surface.
  • the pre-molding process may be composed of two or more temporary molding processes.
  • the processed shapes after the processing in each of the temporary forming steps are the first endless annular lines C1 and C2 in the final shape and the second endless annular lines in the processed shape after the processing. It is preferable to set for each of the temporary forming steps so as to fall within the allowable range. However, it is only necessary that the preformed shape one stage before forming into the final shape satisfies the above conditions.
  • the present invention can be applied not only to automobile parts but also to all processes for press-molding the plate material 1.
  • the material for press molding is not limited to steel, but can be applied to ferrous alloys such as stainless steel, non-ferrous materials, and non-metallic materials.
  • Example 1 is an example in which cross-sectional portions for adjusting the cross-sectional line length are set in a lattice shape.
  • the final shape imitating an automobile wheel house part shown in FIG. 5 was created by a multi-stage press molding process.
  • the plate material mild steel having a plate thickness of 0.7 mm was used, and a rock beat was provided on the outer peripheral side of the product forming portion, and complete overmolding was performed to verify the effect of the present invention.
  • FIG. 6 (a) shows a preformed shape that is generally performed for comparison.
  • a pre-formed shape for comparison (FIG. 6A) is a pre-formed shape obtained by projecting a ball head without using the method of the present invention.
  • the pre-formed shape for this comparison is formed into a hemispherical shape.
  • FIG. 6 (b) shows a preformed shape obtained by the method of the present invention.
  • This preformed shape has a shape in which the central portion is slightly depressed so as to satisfy the condition of the obtained sectional line length.
  • the final shape was analyzed using the analysis model, and the pre-formed punch shape (pre-formed shape) was calculated from the result.
  • the mesh size of the analysis model was 5 mm, and the mold was a rigid body. Molding analysis was performed by a dynamic explicit method using LSDYNA ver 9.7.1R5.
  • the cross section for obtaining the preformed shape was set in the above-mentioned coordinate system, as shown in FIG.
  • the preformed shape design uses the above coordinate system in the design space of the preformed shape, and sets 120 cross sections, 60 cross sections each on the XZ plane and YZ plane, at the same coordinate position as the above 120 cross sections.
  • the pre-formed shape was designed so that the ratio of the cross-sectional line length to the final shape was 0.8 or more and 1.2 or less.
  • the shape was calculated such that the overhang of the spherical head and the outline of the preformed shape according to the present invention in the top view coincide.
  • Example 2 is an example in which the location of the cross section for adjusting the cross sectional line length is set to be radial.
  • the internal set point P0 is set at the position of the centroid when the final shape is viewed from the direction along the press direction as shown in FIG. 7 with respect to the final shape using the analysis model.
  • a plurality of lines are set radially from the internal set point P0.
  • a broken line position is a position of a plurality of lines.
  • the cross-section line length ratio with respect to the final shape of the preformed shape was calculated to be 0.8 or more and 1.2 or less at each cross-section position.
  • the shape preformed based on the result is shown in FIG.
  • the broken line position is the section line length position.
  • the plate material mild steel having a plate thickness of 0.7 mm was used, and a rock beat was provided on the outer peripheral side of the product forming portion, and complete overmolding was performed to verify the effect of the present invention.
  • An inner reference point is set at the centroid position of the final shape, a plurality of points are arranged on the outer peripheral contour (outline) of the molding area of the final shape, and the inner reference point and the plurality of points are individually connected. Positions that divide the cross-section line into 10 parts were set as division points, and nine cross-section lines (first endless annular lines) were set according to the division positions (see FIG. 14).
  • the preformed shape was designed so that the lengths of the nine cross-sectional line positions were 0.8 times or more and 1.2 times or less than the final shape.
  • FIG. 15 shows an example of the preformed shape.
  • the final shape was analyzed using the analysis model, and the pre-formed punch shape (pre-formed shape) was calculated from the result.
  • the final shape was also processed by one molding without pre-molding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • General Engineering & Computer Science (AREA)
  • Forging (AREA)

Abstract

歩留まり向上と成形性向上の両方を向上することが可能な板材の成形方法を提供する。板材(1)に塑性変形を加えて予成形形状に成形した後に、その予成形形状から最終形状に塑性変形する板材(1)の成形方法である。上記最終形状における複数箇所の断面について、同一断面位置における、上記最終形状での断面線長L0に対する上記予成形形状での断面線長L1の比率(L1/L0)が、それぞれ予め設定した許容値の範囲に収まるように、上記予成形形状を決定する。

Description

板材の成形方法、及び予成形形状の設定方法
 本発明は、板材に張り出し成形等の塑性変形を多段階で施して最終形状とする技術に関する。
 プレス成形によって板材を最終形状とする場合において、歩留まりの向上や成形性の向上は重要な課題である。
 一般に、歩留まりを向上させるためには、成形時に材料が型内に流入する量を出来るだけ小さくし、張り出し成形に近い成形条件とすることが望ましい。しかし、材料の流入が小さすぎると成形時に型内の材料が足りなくなることにより板厚が過度に薄くなり、割れが生じるといった不具合が生じる。一方、割れを回避するために絞り主体の成形とすると、歩留まりの低下を招く。そのような不具合に対処するため、過去様々な取り組みが行われてきた。
 特許文献1には、プレス成形初期段階においてブランク材が拘束されない範囲をつくることで、余肉を小さくして歩留まりを向上させる方法が開示されている。また、特許文献2には、プレス金型の局所領域を個別の可動ポンチとして駆動可能として、予めブランクを型内に呼び込んでから、上記可動ポンチで成形を行うことにより成形不具合を回避する方法が開示されている。
特開2007-118021号公報 特開2007-326112号公報
 特許文献1の方法では、従来の方法と比較して余肉を小さくすることは可能であるが、依然として余肉が必要である。また、特許文献1の方法は、絞り成形であるため歩留まりや向上代には限界がある。
 また、特許文献2の方法では、成形不具合を回避することは可能であるものの、絞り成形であるため歩留まりが低下する。
 本発明は、上記のような点に着目したもので、歩留まりと成形性の両方を向上することが可能な板材の成形方法、及び予成形形状の設定方法を提供することを目的としている。
 一般に、プレス成形を行う際に、複数の成形工程に分けて、多段階でプレス成形を行うと、成形性が向上することが知られている。その理由は、一度の成形工程で最終形状まで成形を行う場合と比較して、複数の成形工程で段階的に成形を行った場合の方が、ひずみが一箇所に集中せず、板材全体にひずみが分散し易いためである。しかし、プレス加工の最終段階より前の、予成形段階での金型形状については、技術者の経験に頼る部分が大きく、形状の決定方法は確立されていなかった。
 発明者らは、歩留まり向上、成形性向上の双方の需要を同時に解決するため、効果的に予成形を行うための調査研究を行った。本発明者らは、予成形段階で、最終形状と同程度の断面線長を得ることができれば、最終成形時に予成形時とほぼ同じひずみ分布で最終形状を得ることが可能となることを知見した。
 [第一の手段]
 上記課題を解決するために、本発明の一態様である板材の成形方法は、板材に塑性変形を加えて予成形形状に成形した後に、その予成形形状から最終形状に塑性変形する板材の成形方法において、上記最終形状における複数箇所の断面について、同一断面位置における、上記最終形状での断面線長に対する上記予成形形状での断面線長の比率が、それぞれ予め設定した許容値の範囲に収まるように、上記予成形形状を決定することを特徴とする。
 また、本発明の一態様である予成形形状の設定方法は、板材に塑性変形を加えて予成形形状に成形した後に、その予成形形状から最終形状に塑性変形する際における、上記予成形形状の設定方法であって、上記最終形状における複数箇所の断面について、同一断面位置における、上記最終形状での断面線長に対する上記予成形形状での断面線長の比率が、それぞれ予め設定した許容値の範囲に収まるように、上記予成形形状を決定することを特徴とする。
 ここで、複数箇所の断面の位置は、例えば格子状や放射状に設定する。
 [第二の手段]
 上記課題を解決するために、本発明の一態様である板材の成形方法は、板材に塑性変形を加えて予成形形状に成形した後に、その予成形形状から最終形状に塑性変形する際に、上記最終形状の成形領域内に内側基準点を設定すると共に、上記成形領域の外周輪郭線上に複数の外側基準点を設定し、上記最終形状に対し、上記内側基準点に対応する第1内側点と上記各外側基準点に対応する各第1外側点とを個別に結ぶ複数の断面線を設定し、その設定した各断面線を予め設定した設定比率で分割した各分割点を求め、隣り合う分割点同士を結んで得られる無端環状の線の長さを第1の線長とし、上記予成形形状において、上記内側基準点に対応する第2内側点と上記各外側基準点に対応する各第2外側点とを結ぶ複数の断面線を上記設定比率で分割した各分割点における、隣り合う分割点同士を結んで得られる無端環状の線の長さを第2の線長とした場合に、上記第1の線長に対する上記第2の線長の比率が予め設定した許容値の範囲に収まるように、上記予成形形状を決定することを特徴とする。
 また、本発明の一態様である予成形形状の設定方法は、板材に塑性変形を加えて予成形形状に成形した後に、その予成形形状から最終形状に塑性変形する板材の成形における、上記予成形形状の設定方法であって、上記最終形状の成形領域内に内側基準点を設定すると共に、上記成形領域の外周輪郭線上に複数の外側基準点を設定し、上記最終形状に対し、上記内側基準点に対応する第1内側点と上記各外側基準点に対応する各第1外側点とを個別に結ぶ複数の断面線を設定し、その設定した各断面線を予め設定した設定比率で分割する各分割点を求め、隣り合う分割点同士を結んで得られる無端環状の線の長さを第1の線長とし、上記予成形形状において、上記内側基準点に対応する第2内側点と上記各外側基準点に対応する各第2外側点とを結ぶ複数の断面線を上記設定比率で分割した各分割点における、隣り合う分割点同士を結んで得られる無端環状の線の長さを第2の線長とした場合に、上記第1の線長に対する上記第2の線長の比率が予め設定した許容値の範囲に収まるように、上記予成形形状を決定することを特徴とする。
 本発明の一態様によれば、予成形段階で、最終形状と同程度の断面線長を得ることができる結果、最終成形時に予成形時とほぼ同じひずみ分布で最終形状を得ることが出来る。これによって、歩留まり向上と成形性向上の両方を向上することが可能な板材の成形方法、及び予成形形状の設定方法を提供する事が出来る。
 本発明は、特に、張り出し成形の場合に有効である。
 例えば、成形にプレス成形を採用し且つ本発明を適用することにより、プレス成形を行う際に、張り出し成形での成形を容易としつつ、高い歩留まりを達成することが可能となる。
 パンチとダイを使用して張り出し成形を行う場合、一回で最終形状に成形を行うとパンチ底では摩擦抵抗によりほとんど材料はひずまないことに対し、パンチ肩部やダイ肩部では材料が過度に薄くなり、割れが生じる可能性が高くなる。これに対し、予成形段階で最終形状におけるパンチ底部にひずみを導入しておくことにより、擬似的に最終成形段階での成形性を向上させることができる。
 なお、ひずみは全体に均一に入れることが望ましいため、予成形は液圧バルジ加工等のひずみが均一になりやすい成形法で行うことが望ましいが、通常のプレス加工で予成形を行うことも可能である。
図1は、本発明に基づく実施形態に係る成形工程を説明する概念図である。 図2は、第一実施形態に関する図であり、予成形形状の決定方法を説明する図である。 図3は、第一実施形態に関する図であり、断面線形を得る複数箇所の断面の位置の第1の例を示す平面図である。 図4は、第一実施形態に関する図であり、断面線形を得る複数箇所の断面の位置の第2の例を示す平面図である。 図5は、第一実施形態に関する図であり、実施例1における、最終形状を示す図である。 図6は、第一実施形態に関する図であり、実施例1における予成形形状を示す図であって、(a)が従来手法による形状例であり、(b)が本発明手法による形状例である。 図7は、第一実施形態に関する図であり、実施例2における、最終形状を示す図である。 図8は、第一実施形態に関する図であり、実施例2における予成形形状を示す図である。 図9は、第二実施形態に関する図であり、予成形形状の決定方法を説明する図である。 図10は、第二実施形態に関する図であり、内部基準点及び外部基準点の設定例を示す平面図である。 図11は、第二実施形態に関する図であり、最終形状における無端環状の線(第1の無端環状の線)の設定を説明する図である。 図12は、第二実施形態に関する図であり、予成形形状での無案環状の線(第2の無端環状の線)となる位置を示す図である。 図13は、第二実施形態に関する図であり、実施例の最終形状を示す図である。 図14は、第二実施形態に関する図であり、実施例の最終形状での無端環状の線(第1の無端環状の線)を示す平面図である。 図15は、第二実施形態に関する図であり、実施例の予成形形状での無端環状の線(第2の無端環状の線)を示す平面図である。
 次に、本発明の実施形態について図面を参照しつつ説明する。本発明は以下の実施形態に限定されない。
 [第一実施形態]
 図1は、本実施形態における成形工程を説明する概念図である。
 本実施形態の成形は、図1に示すように、板材1(ブランク)を予成形形状に塑性変形する予成形工程と、予成形工程で予成形形状となった板材1を、製品としての最終形状に塑性変形する本成形工程との2段階の成形工程からなる。なお、予成形工程自体が、複数段の予成形工程から構成されていてもよい。
 予成形工程は、例えば、上記予成形形状に成形するための予成形用金型を使用したプレス成形にて行われる。金型は、例えばパンチ及びダイの組を備える。
 同様に、本成形工程も、上記最終形状に成形するための本成形用金型を使用したプレス成形にて行われる。金型は、例えばパンチ及びダイの組を備える。
 上記各プレス成形は、例えば張り出し成形とする。
 本実施形態では、上記予成形工程に先立って、予成形用金型の形状、つまり予成形形状を、上記最終形状から求める処理を有する。なお、予成形形状が決定したら、その予成形形状となるように予成形用金型を製造する。
 上記予成形形状の決定方法は、上記最終形状における板材1の板厚方向に沿った断面を複数箇所設定し、同一断面位置における、上記最終形状での断面線長に対する上記予成形形状での断面線長の比率が、それぞれ予め設定した許容値の範囲に収まるように、上記予成形形状を決定する。すなわち、予成形形状の決定は、最終形状と予成形形状の各断面線長を比較して、両者の断面線長の比率が、それぞれ予め設定した許容値の範囲に収まるように、上記予成形形状を決定する。
 なお、「板材1の板厚方向に沿った」方向は、プレス方向に相当する。
 その最終形状に基づく予成形形状の決定方法の処理例を図2に示す。
 すなわち、板材1に対して2以上の断面の箇所を設定する(処理A)。少なくとも最終形状における断面形状の曲率が急峻しているような特徴箇所を通るように断面箇所を設定することが好ましい。このようにすることで設定する断面の数を少なく抑えることが可能となる。
 複数箇所の断面の位置の第1の設定例を図3に示す。
 すなわち、図3に示す例では、複数箇所の断面の位置を、成形前の板材1の板厚方向(平面視、成形による張り出し方向に対応)に沿った方向からみて、n×mの格子状(メッシュ状)に(n+m)個の断面箇所を設定した場合の例である。設定箇所については後述する。なお、成形領域の外周輪郭線は、最終形状の外形線に相当する。
 次に、最終形状について、上記設定した複数箇所での断面線長をそれぞれ求める(処理B)。最終形状の断面線長L0は、例えばCAE(Computer Aided Engineering)を用いて、最終形状の成形シミュレーションを行うことで取得する。また、最終形状の断面線長L0は、実際にプレス成形を行って最終形状の製品を製造して、断面線長L0を光学的測定法などで測定して取得してもよい。もっとも、断面線長L0の取得方法は、これに限定されず、公知の手法を採用すればよい。
 次に、予成形形状における、上記最終形状で設定した断面位置と同位置での断面線長L1が、上記取得した対応する断面線長相当の断面線長となるように、各断面箇所での断面線長L1をそれぞれ特定する(処理C)。この時点では、各断面箇所での断面線長L1は、例えば後述の許容値の範囲で設定する。
 断面線長相当の断面線長とは、最終形状での断面線長に対する上記予成形形状での断面線長の比率が予め設定した許容値の範囲の場合の断面線長である。本実施形態では、上記予め設定した許容値の範囲は、(L1/L0)が0.8倍以上1.2倍以下となる範囲である。この条件にすれば、同一断面において、最終形状の断面線長と予成形形状の断面線長が同一に近づくように設定される。
 次に、特定した各断面箇所の断面線長L1の条件を全て満足するようにして、予成形形状を特定する(処理D)。
 ここで、上述の処理Aにおいて、上記断面線長を求める断面箇所が多くなるほど精度が高くなる。断面箇所の取り方は自由であるが、少なくとも2箇所以上の断面箇所を採用することが好ましい。
 ここで、成形前の板材1の板厚方向をZ軸とし、そのZ軸に直交する方向をX軸及びY軸として直交座標を考える。このとき、X軸及びY軸は、成形前の板材1の面に沿った方向となる。
 そして、図3に示す第1の設定例では、XZ平面に平行に所定間隔づつn箇所、断面箇所を設定すると共に、YZ平面に平行に所定間隔づつm箇所、断面箇所を設定する。n,mは1以上である。
 このn,mの値を2以上に設定すると、成形前の板材1の板厚方向からみて格子状(メッシュ状)に断面箇所が設定されることになる。なお格子状は直交した格子状である必要は無い。切断箇所は、平面視で、互いに交差する少なくとも2方向に設定して、各方向毎に複数位置の断面形状を使用すればよい。また、成形前の板材1の板厚方向とプレス方向が平行でない場合には,各断面の面方向もZ軸に平行ではなく,プレス方向と平行となるよう設定することが好ましい。
 なお、上述のように、上記最終形状における曲率が予め設定した以上に急峻に変化する箇所を多く通る断面を選択することが好ましい。また断面を特定する線は直線でなくてもよいが、直線に設定する方が簡便である。
 また上記2方向の断面箇所で予成形形状を決定する場合には、例えば、相対的に曲率変化の度合いが小さい方向からの断面線形からの予成形形状の形状を仮決めした後に、他方の方向における断面線形で修正するようにして、最終的な予成形形状の形状を決定する。
 最終形状と予成形形状の断面線長の比率は、上記のように0.8倍以上1.2倍以下の範囲であれば好ましく、0.9倍以上1.1倍以下の範囲であればさらに好ましい。0.8倍以上1.2倍以下の範囲に調整することで、割れ発生や製品面でしわが発生することを大幅に減らすことが可能となることを確認している。少なくともこの範囲内であれば高い歩留まりが確保されることを確認したために、この値に規定した。
 ここで、図3に示す例では格子状に複数箇所の断面を設定する例である。複数箇所の断面の設定は、これに限定されない。
 次に、複数箇所の断面の位置の設定の第2の設定例を図4に示す。
 この例は、複数箇所の断面の位置を放射状に設定する例である。すなわち、プレス方向に沿った方向(成形前の板材における板厚方向に沿った方向)からみて、上記最終形状の成形領域内に内部設定点Pを設定し、その内部設定点P0を通過し且つ互いに異なる方向に延びる複数の線CA~CAを設定し、その設定した複数の線の位置に上記複数箇所の断面を設定する。
 図4では、複数の線が8本の場合を例示しているが、8本以外でも構わない。但し、断面数は8断面以上が好ましい。また、求める精度が同じ場合には、放射状に設定する場合の方が、格子状に設定する場合に比べて、断面数を抑えられる。
 また放射状に延びる線は等間隔に設定する必要はない。最終形状において曲率変化が大きい箇所を通過するように設定することが好ましい。
 また図4では、内部設定点P0を通過する線の両端が、最終形状の成形領域の外周輪郭線に到達する直線を1本の線とした場合を例示しているが、後述の図7に示すように、内部設定点P0と最終形状の成形領域の外周輪郭線の一点とを結ぶように各線を設定してもよい。このようにする場合、図4の例では、線は16本となる。なお、「成形領域」とは予成形、若しくは本成形後のプレス品のうち、製品面、予肉部等を含む、積極的に塑性変形を加えた領域を示す。但し,ビードによって成形された部分は含まない。
 また内部設定点P0は、プレス方向に沿った方向から上記成形領域を見た際の、図心の位置に設定すると好ましい。
 ここで、上記説明では、予成形工程と本成形工程の2段階の成形工程で最終形状に成形する場合を例に説明した。上記予成形工程が、2段階以上の仮成形工程から構成されていてもよい。
 この場合、上記各仮成形工程での加工後の加工形状を、上記最終形状における複数の断面箇所について、同一断面位置における、上記最終形状での断面線長に対する上記加工後の加工形状での断面線長が、それぞれ上記許容値の範囲に収まるように、それぞれ上記仮成形工程毎に設定することが好ましい。もっとも最終形状に成形する1段階前の予成形形状が上記条件に満足していればよい。
 ここで、本発明は、自動車部品に限らず板材1をプレス成形する加工全てに対して適用することが可能である。また、プレス成形の素材は鉄鋼に限らずステンレス等の鉄合金、さらには非鉄材料、非金属材料に対しても適用可能である。
 特に、今まで適用が難しい場合もあった、ハイテン材などにも適用可能となる。
 [第二実施形態]
 図1(第一実施形態の説明で用いた図1と同じ)は、本実施形態における成形工程を説明する概念図である。
 本実施形態の成形は、図1に示すように、板材1(ブランク)を予成形形状に塑性変形する予成形工程と、予成形工程で予成形形状となった板材1を、製品としての最終形状に塑性変形する本成形工程との2段階の成形工程からなる。なお、予成形工程自体が、複数段の予成形工程から構成されていてもよい。
 予成形工程は、例えば、上記予成形形状に成形するための予成形用金型を使用したプレス成形にて行われる。金型は、例えばパンチ及びダイの組を備える。
 同様に、本成形工程も、上記最終形状に成形するための本成形用金型を使用したプレス成形にて行われる。金型は、例えばパンチ及びダイの組を備える。
 上記各プレス成形は、例えば張り出し成形とする。
 本実施形態では、上記予成形工程に先立って、予成形用金型の形状、つまり予成形形状を、上記最終形状から求める処理を有する。なお、予成形形状が決定したら、その予成形形状となるように予成形用金型を製造する。
 上記予成形形状の決定方法は、上記最終形状の成形領域内に内側基準点を設定すると共に、上記成形領域の外周輪郭線上に複数の外側基準点を設定し、上記最終形状に対し、上記内側基準点に対応する第1内側点と上記各外側基準点に対応する各第1外側点とを通過する複数の断面線を設定し、その設定した各断面線を予め設定した設定比率で分割する各分割点を求め、隣り合う分割点同士を結んで得られる無端環状の線の長さを第1の線長とし、上記予成形形状において、上記内側基準点に対応する第2内側点と上記各外側基準点に対応する各第2外側点とを結ぶ複数の断面線を上記設定比率で分割した各分割点における、隣り合う分割点同士を結んで得られる無端環状の線の長さを第2の線長とした場合に、上記第1の線長に対する上記第2の線長の比率が予め設定した許容値の範囲に収まるように、上記予成形形状を決定する。ここで、予成形形状における外側点の設定方法を述べる。最終形状に設定した内側基準点を原点とし、プレス方向をZ方向と設定する。そして、Z方向と直交し、原点を通る2本の直行する直線の指す方向をX方向、Y方向とした三次元座標を設定する。すると、各外側基準点はX、Y、Zの各座標を用いて表現することが可能となる。次に予成形形状を設計する空間内に同様にX、Y、Z座標を設定し、上記の手法で求めた各外側基準点の座標を参照することにより、予成形形状の設計空間における外側基準点を得ることが可能となる。
 即ち、最終形状において、第1内側点を中心として等高線状(年輪状)の無端環状の線を設定すると共にその第1の線長を求め、予成形形状における上記無端環状の線と対応する無端環状の線の第2の線長が、上記第1の線長に対する比率が予め設定した許容値の範囲に収まるように、上記予成形形状を決定する。無端環状の線は、各形状における断面線を採用することが好ましい。
 最終形状に基づく予成形形状の決定方法の処理例を図9に示す。
 先ず、ステップS10で、図10に示すように、成形前の板材1における最終形状となる成形領域内に内側基準点Aを設定すると共に、上記成形領域の外周輪郭線上に複数の外側基準点B1~B8を設定する。
 内側基準点Aは、例えば、成形前の板材1における最終形状となる成形領域の図心や、最終形状に成形後の板材1に対しプレス方向に沿った方向から上記最終形状を見た際の図心の位置に設定する。
 複数の外側基準点B1~B8は、成形領域の外周輪郭線上に成形領域の外周輪郭線に沿って設定される。複数の外側基準点B1~B8は等間隔に設定する必要はない。
 また、本実施形態では、成形前の板材1で複数の外側基準点B1~B8の位置を設定する場合を例示しているが、最終形成後の板材1での成形領域の外周輪郭線(外形線)で複数の外側基準点B1~B8の位置を設定し、その位置に対応する位置を成形前の板材1に設定することが好ましい。
 最終形成後の板材1での成形領域の外周輪郭線(外形線)で複数の外側基準点B1~B8の位置を設定する方が、より適切な位置に外側基準点B1~B8を設定可能となる。即ち、曲率変化が大きい断面位置(例えば急峻する位置)を通るように外側基準点B1~B8を設定する方が、外側基準点B1~B8の数を減らしつつ精度を高めることが可能となる。
 外側基準点の数は多いほど精度が良くなる。外側基準点の数は4つ以上が好ましい。
 次に、模式的平面図である図11(a)のように、上記最終形状に対し、上記内側基準点Aに対応する第1内側点AFと上記各外側基準点B1~B8に対応する各第1外側点BF1~BF8を設定し(ステップS20)、第1内側点AFと各第1外側点BF1~BF8とを結ぶ、最終形状での断面線D1~D7の位置を設定する(ステップS30)。
 次に、ステップS40では、図11に示すように、各断面線D1~D7に対し、それぞれの各断面線の実長を設定比率で分割した分割点B11~B82を設定する。この例では、2つ設定比率を設定しているので、各断面線D1~D7に対して2つの分割点B11~B82が設定される。設定比率を多く設定するほど精度は向上する。但し、設定比率を多く設定するほど設計に必要な計算コスト、時間コストは大きくなる。好ましくは4つ以上である。
 次に、設定比率毎に対応する全ての分割点B11~B82を通る、最終形状での断面線を第1の無端環状の線C1、C2として決定する。このとき、例えば、隣り合う分割点B11~B82同士の最短距離の線を採用する。または、第1の無端環状の線C1、C2を、断面線とせずに、隣り合う分割点B11~B82同士を直線で結んだ無端環状の線として設定してもよい。但し、断面線を採用した方が精度は良い。
 次に、ステップS50では、ステップS40で決定した設定比率毎の第1の無端環状線の第1の線長を算出する。この例では2つの第1の線長が求められる。
 最終形状での第1の線長は、例えばCAEを用いて、最終形状の成形シミュレーションを行うことで取得する。また、例えば、実際にプレス成形を行って最終形状の製品を製造して光学的測定法などで測定してもよい。
 次に、ステップS60では、図12に示すように、成形前の板材1における内側基準点A(第2内側点相当)と各外側基準点B1~B8を結んだ直線を、予成形形状での断面線D1~D7の位置とし、上記各直線を、最終形状で使用した設定比率で分割して分割点B11~B82を設定する。そして、設定比率毎に、隣り合う分割点B11~B82同士を直線で結んだ無端環状の線の位置を、予成形形状での第2の無端環状の線となる位置として特定する。
 ステップS70では、ステップS50で求めた設定比率毎の第1の線長から、設定比率毎の第2の線長を求める。具体的には、設定比率毎に第2の線長を、第1の線長の0.8倍以上1.2倍以下となる範囲から設定する。
 次に、ステップS80では、ステップS60で設定した予成形形状での第2の無端環状の線となる位置の長さが、それぞれステップS70で設定した第2の線長となる形状を予成形形状として設定する。
 なお、複数箇所の第2の無端環状の線となる位置の長さを決定する際に、例えば、最終形状において相対的に曲率変化の度合いが大きい箇所を含む位置から、予成形形状の形状を仮決めした後に、他方の第2の無端環状の線の位置の長さを修正するようにして、最終的な予成形形状の形状を決定する。
 ここで、第1の線長に対する第2の線長の比率は、0.6倍以上1.4倍以下であることが好ましく、上記のように0.8倍以上1.2倍以下の範囲であることがより好ましい。最も好ましくは0.9倍以上1.1倍以下の範囲である。比率が0.6倍未満となると、最終成形時に線長が足りず、割れが生じたり歩留まりが低下したりする恐れがある。また、比率が1.4倍を超えると、最終成形時に線長が余り、製品面でしわが発生する可能性が生じる。これに対し、0.8倍以上1.2倍以下の範囲に調整することで、割れ発生や製品面でしわが発生することを大幅に減らすことが可能となることを確認している。すなわち、0.8倍以上1.2倍以下の範囲における境界値は、臨界的な値では無い。少なくともこの範囲内であれば、高い歩留まりが確保されることを確認したために、この値に規定した。
 ここで、上記説明では、予成形工程と本成形工程の2段階の成形工程で最終形状に成形する場合を例に説明した。上記予成形工程が、2段階以上の仮成形工程から構成されていてもよい。
 この場合、上記各仮成形工程での加工後の加工形状を、上記最終形状における第1の無端環状の線C1、C2と、上記加工後の加工形状での第2の無端環状の線とが、それぞれ上記許容値の範囲に収まるように、それぞれ上記仮成形工程毎に設定することが好ましい。もっとも最終形状に成形する1段階前の予成形形状が上記条件に満足していればよい。
 ここで、本発明は、自動車部品に限らず板材1をプレス成形する加工全てに対して適用することが可能である。また、プレス成形の素材は鉄鋼に限らずステンレス等の鉄合金、さらには非鉄材料、非金属材料に対しても適用可能である。
 特に、今まで適用が難しい場合もあった、ハイテン材などにも適用可能となる。
 [第一実施形態に関する実施例]
 (実施例1)
 以下の実施例1は、断面線長を調整する断面の箇所を格子状に設定した例である。
 図5に示される、自動車のホイールハウス部品を模した最終形状を、多段階のプレス成形工程で作成した。
 板材1としては板厚0.7mmの軟鋼を用い、製品形成部の外周側にロックビートを設け、完全張り出し成形を行って、本発明の効果を検証した。
 図6(a)に、比較のための従来一般的に行われる予成形形状を示す。比較のための予成形形状(図6(a))は、本発明手法を用いずに球頭張り出しによって得た予成形形状である。この比較のための予成形形状は、半球状の形状に成形されている。
 図6(b)に本発明手法によって得られる予成形形状を示す。この予成形形状は、求めた断面線長の条件を満たすように、中央部がやや窪んだ形状となっている。
 ここで、本発明法の予成形形状の設定は、解析モデルを用いて最終形状の成形解析を行い、その結果から予成形のパンチ形状(予成形形状)を算出した。
 解析モデルのメッシュサイズは5mmとし、金型は剛体とした。成形解析はLSDYNA ver9.7.1R5を用い、動的陽解法で行った。予成形形状を得るための断面は、上述の座標系で、図3に示すようにXZ平面を60断面、YZ断面を60断面の計120断面設定した。予成形形状の設計は、予成形形状の設計空間に上述の座標系をとりXZ平面、YZ平面にそれぞれ60断面ずつの計120断面を上述の120断面と同座標位置に設定し、それぞれの断面位置において、予成形形状の最終形状に対する断面線長比が0.8以上1.2以下となるように設計した。このとき、比較のため球頭張り出しと本発明による予成形形状の上面視での外形線が一致するように形状の算出を行った。
 実験結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 表1から分かるように、予成形を行わずに1回の成形で製造した場合はダイ肩にひずみが集中して割れが発生した。また、本発明手法を用いずに予成形形状を設計した場合は、断面線長を考慮していないためパンチ底部では大きなしわが、パンチ肩部ではネッキングが生じていた。それに対し、本発明手法を用いて予成形形状を決定した場合には、しわ、割れ、ネッキング等は発生していないことを確認した。このように、本発明法を提供することで、良好な結果を得ることが可能である。
 (実施例2)
 実施例2は、断面線長を調整する断面の箇所を放射状に設定した例である。
 この実施例2では、解析モデルを用いた最終形状に対し、図7に示すように、プレス方向に沿った方向から上記最終形状を見た際の図心の位置に内部設定点P0を設定し、その内部設定点P0から放射状に複数の線を設定した。破線位置が複数の線の位置である。
 次に、設定した複数の線位置での断面線長に基づき、それぞれの断面位置において、予成形形状の最終形状に対する断面線長比が0.8以上1.2以下となるように計算した。その結果に基づき予成形した形状が図8である。破線位置が断面線長位置である。
 ここで、断面位置の設定以外の、板材や最終形状などについては上記実施例1と同様に設定した。
 この実施例2においても、しわ、割れ、ネッキング等は発生していないことを確認した。このように、この発明法を提供することでも、良好な結果を得ることが可能である。
 [第二実施形態に関する実施例]
 図13に示される、自動車のホイールハウス部品を模した最終形状を、多段階のプレス成形工程で作成した。
 板材1としては板厚0.7mmの軟鋼を用い、製品形成部の外周側にロックビートを設け、完全張り出し成形を行って、本発明の効果を検証した。
 最終形状での図心位置に内側基準点を設定し、最終形状の成形領域の外周輪郭線(外形線)上に複数の点を配置し、内側の基準点と上記複数の点を個別に結ぶ断面線を、それぞれ10等分する位置を分割点として設定し、分割位置に応じて9つの断面線(第1の無端環状の線)を設定した(図14参照)。
 次に、9つの断面線位置の線長が、最終形状に対して0.8倍以上1.2倍以下となるように予成形形状を設計した。図15がその予成形形状の例である。
 ここで、本発明法の予成形形状の設定は、解析モデルを用いて最終形状の成形解析を行い、その結果から予成形のパンチ形状(予成形形状)を算出した。
 比較のために、予成形を行わずに1回の成形で最終形状に加工することも行った。
 実験結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から分かるように、予成形を行わずに1回の成形で製造した場合はダイ肩にひずみが集中して割れが発生した。また、本発明手法を用いずに予成形形状を設計した場合は、断面線長を考慮していないためパンチ底部では大きなしわが、パンチ肩部ではネッキングが生じていた。
 これに対し、本発明手法を用いて予成形形状を決定した場合には、しわ、割れ、ネッキング等は発生していないことを確認した。このように、本発明法を提供することで、良好な結果を得ることが可能である。
 1       板材1(ブランク)
 P0      内部設定点
 A       内側基準点
 AF      内側点
 B11-B82 分割点
 B1-B8   外側基準点
 BF1-BF8 外側点
 C1、C2   第1の無端環状の線
 D1-D7   断面線

Claims (18)

  1.  板材に塑性変形を加えて予成形形状に成形した後に、その予成形形状から最終形状に塑性変形する板材の成形方法において、
     上記最終形状における複数位置の断面について、1つの面で切断した上記最終形状での断面線長に対する同一の面で切断した上記予成形形状での断面線長の比率が、それぞれ予め設定した許容値の範囲に収まるように、上記予成形形状を決定することを特徴とする板材の成形方法。
  2.  上記予め設定した許容値の範囲は、0.8倍以上1.2倍以下の範囲であることを特徴とする請求項1に記載した板材の成形方法。
  3.  上記複数箇所の断面の位置を、成形前の上記板材における板厚方向に沿った方向からみて、格子状となるように設定したことを特徴とする請求項1又は請求項2に記載した板材の成形方法。
  4.  上記最終形状の成形領域内に内部設定点を設定し、その内部設定点を通り且つ互いに異なる方向に延びる複数の線を設定し、その設定した複数の線の位置に上記複数箇所の断面を設定することを特徴とする請求項1又は請求項2に記載した板材の成形方法。
  5.  上記内部設定点は、成形前の上記板材における板厚方向に沿った方向から上記最終形状をみた際の、図心の位置に設定することを特徴とする請求項4に記載した板材の成形方法。
  6.  上記予成形形状の成形は、2段階以上の仮成形工程を経て上記予成形形状に成形され、
     上記各仮成形工程での加工後の各加工形状について、上記複数箇所の断面について、同一断面位置における、上記最終形状での断面線長に対する上記加工後の加工形状での断面線長が、それぞれ予め設定した許容値の範囲に収まるように、上記各仮成形工程での加工後の各加工形状を決定することを特徴とする請求項1~請求項5のいずれか1項に記載した板材の成形方法。
  7.  上記各成形は、プレス成形であることを特徴とする請求項1~請求項6のいずれか1項に記載した板材の成形方法。
  8.  板材に塑性変形を加えて予成形形状に成形した後に、その予成形形状から最終形状に塑性変形する際における、上記予成形形状の設定方法であって、
     上記最終形状における複数箇所の断面について、同一断面位置における、上記最終形状での断面線長に対する上記予成形形状での断面線長の比率が、それぞれ予め設定した許容値の範囲に収まるように、上記予成形形状を決定することを特徴とする予成形形状の設定方法。
  9.  上記複数箇所の断面の位置を、格子状に設定することを特徴とする請求項8に記載した予成形形状の設定方法。
  10.  上記複数箇所の断面の位置を、放射状に設定することを特徴とする請求項8に記載した予成形形状の設定方法。
  11.  板材に塑性変形を加えて予成形形状に成形した後に、その予成形形状から最終形状に塑性変形する際に、
     上記最終形状の成形領域内に内側基準点を設定すると共に、上記成形領域の外周輪郭線上に複数の外側基準点を設定し、
     上記最終形状に対し、上記内側基準点に対応する第1内側点と上記各外側基準点に対応する各第1外側点とを個別に結ぶ複数の断面線を設定し、その設定した各断面線を予め設定した設定比率で分割した各分割点を求め、隣り合う分割点同士を結んで得られる無端環状の線の長さを第1の線長とし、
     上記予成形形状において、上記内側基準点に対応する第2内側点と上記各外側基準点に対応する各第2外側点とを結ぶ複数の断面線を上記設定比率で分割した各分割点における、隣り合う分割点同士を結んで得られる無端環状の線の長さを第2の線長とした場合に、
     上記第1の線長に対する上記第2の線長の比率が予め設定した許容値の範囲に収まるように、上記予成形形状を決定することを特徴とする板材の成形方法。
  12.  上記許容値の範囲は、0.8倍以上1.2倍以下の範囲であることを特徴とする請求項11に記載した板材の成形方法。
  13.  上記無端環状の線は、対応する複数の分割点を通る断面線であることを特徴とする請求項11又は請求項12に記載した板材の成形方法。
  14.  上記設定比率を複数設定し、各設定比率での上記第1の線長に対する上記第2の線長の比率が全て上記許容値の範囲に収まるように、上記予成形形状を決定することを特徴とする請求項11~請求項13のいずれか1項に記載した板材の成形方法。
  15.  上記内部基準点を、上記最終形状の成形領域の図心に設定することを特徴とする請求項11~請求項14のいずれか1項に記載した板材の成形方法。
  16.  上記予成形形状の成形は、2段階以上の仮成形工程を経て上記予成形形状に成形され、
     上記各仮成形工程での加工後の各加工形状について、上記第1の線長に対する上記第2の線長の比率が全て上記許容値の範囲に収まるように、上記各仮成形工程での加工後の各加工形状を決定することを特徴とする請求項11~請求項15のいずれか1項に記載した板材の成形方法。
  17.  上記各成形は、プレス成形であることを特徴とする請求項11~請求項16のいずれか1項に記載した板材の成形方法。
  18.  板材に塑性変形を加えて予成形形状に成形した後に、その予成形形状から最終形状に塑性変形する板材の成形における、上記予成形形状の設定方法であって、
     上記最終形状の成形領域内に内側基準点を設定すると共に、上記成形領域の外周輪郭線上に複数の外側基準点を設定し、
     上記最終形状に対し、上記内側基準点に対応する第1内側点と上記各外側基準点に対応する各第1外側点とを個別に結ぶ複数の断面線を設定し、その設定した各断面線を予め設定した設定比率で分割する各分割点を求め、隣り合う分割点同士を結んで得られる無端環状の線の長さを第1の線長とし、
     上記予成形形状において、上記内側基準点に対応する第2内側点と上記各外側基準点に対応する各第2外側点とを結ぶ複数の断面線を上記設定比率で分割した各分割点における、隣り合う分割点同士を結んで得られる無端環状の線の長さを第2の線長とした場合に、
     上記第1の線長に対する上記第2の線長の比率が予め設定した許容値の範囲に収まるように、上記予成形形状を決定することを特徴とする予成形形状の設定方法。
PCT/JP2014/003620 2013-07-09 2014-07-08 板材の成形方法、及び予成形形状の設定方法 WO2015004908A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP14823787.8A EP3020492B1 (en) 2013-07-09 2014-07-08 Preliminary molded shape setting method and plate molding method
US14/903,818 US10730090B2 (en) 2013-07-09 2014-07-08 Method for forming blank and method for determining preforming shape
MX2016000001A MX2016000001A (es) 2013-07-09 2014-07-08 Metodo para la conformacion de una lamina en bruto y metodo para la determinacion de una forma de preformado.
CN201480038949.9A CN105451908B (zh) 2013-07-09 2014-07-08 板材的成型方法、以及预成型形状的设定方法
KR1020167003309A KR101815403B1 (ko) 2013-07-09 2014-07-08 판재의 성형 방법 및 예성형 형상의 설정 방법
JP2015526168A JP5867657B2 (ja) 2013-07-09 2014-07-08 板材の成形方法、及び予成形形状の設定方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013143748 2013-07-09
JP2013-143748 2013-07-09
JP2014068718 2014-03-28
JP2014-068717 2014-03-28
JP2014-068718 2014-03-28
JP2014068717 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015004908A1 true WO2015004908A1 (ja) 2015-01-15

Family

ID=52279613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003620 WO2015004908A1 (ja) 2013-07-09 2014-07-08 板材の成形方法、及び予成形形状の設定方法

Country Status (7)

Country Link
US (1) US10730090B2 (ja)
EP (1) EP3020492B1 (ja)
JP (1) JP5867657B2 (ja)
KR (1) KR101815403B1 (ja)
CN (2) CN105451908B (ja)
MX (1) MX2016000001A (ja)
WO (1) WO2015004908A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016144825A (ja) * 2015-02-09 2016-08-12 日新製鋼株式会社 2次プレス加工性評価方法
JP6133965B1 (ja) * 2015-12-17 2017-05-24 日新製鋼株式会社 伸びフランジ性の評価方法
JP7020599B1 (ja) * 2020-09-02 2022-02-16 Jfeスチール株式会社 プレス部品の製造方法、金型の設計方法、金型形状設計装置、及び金型

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109475916B (zh) 2016-07-15 2021-06-04 杰富意钢铁株式会社 冲压件制造方法
US11376645B2 (en) 2017-11-15 2022-07-05 Jfe Steel Corporation Sheet material press forming method
MX2020014023A (es) 2018-07-03 2021-03-09 Jfe Steel Corp Metodo para el dise?o de forma de molde y metodo para la produccion de parte prensada.
CN111687269B (zh) * 2020-06-09 2021-04-27 安徽江淮汽车集团股份有限公司 后车门外板冲压工艺方法及汽车后车门外板
MX2023002183A (es) * 2020-09-02 2023-03-03 Jfe Steel Corp Metodo de fabricacion de componentes prensados, metodo de dise?o de troqueles, dispositivo de dise?o de formas de troqueles y troqueles.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0684183A2 (en) * 1994-03-30 1995-11-29 Eberhard Jahn Method of forming a slim package
JP2007098443A (ja) * 2005-10-05 2007-04-19 Toyota Motor Corp プレス成形方法及びプレス成形装置
JP2007118021A (ja) 2005-10-26 2007-05-17 Isuzu Motors Ltd プレス成形品の成形方法およびプレス成形装置
JP2007326112A (ja) 2006-06-06 2007-12-20 Hiroshima Pref Gov プレス成形方法
JP2009104456A (ja) * 2007-10-24 2009-05-14 Honda Motor Co Ltd モデル設計システム
JP2011045905A (ja) * 2009-08-26 2011-03-10 Toyota Motor Corp プレス成形方法
WO2012161050A1 (ja) * 2011-05-20 2012-11-29 新日鐵住金株式会社 プレス成形方法及び車体部品

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7260972B2 (en) * 2004-03-10 2007-08-28 General Motors Corporation Method for production of stamped sheet metal panels
US8091201B2 (en) * 2005-06-30 2012-01-10 Middleville Tool & Die Co, Inc Stamped tubular member and method and apparatus for making same
US20090272171A1 (en) * 2008-05-05 2009-11-05 Ford Global Technologies, Llc Method of designing and forming a sheet metal part
US9522419B2 (en) * 2008-05-05 2016-12-20 Ford Global Technologies, Llc Method and apparatus for making a part by first forming an intermediate part that has donor pockets in predicted low strain areas adjacent to predicted high strain areas
CN101372024B (zh) * 2008-09-27 2010-07-28 沈阳黎明航空发动机(集团)有限责任公司 一种拉深成形抛物线回转体的方法
JP2011206789A (ja) 2010-03-29 2011-10-20 Kobe Steel Ltd プレス成形方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0684183A2 (en) * 1994-03-30 1995-11-29 Eberhard Jahn Method of forming a slim package
JP2007098443A (ja) * 2005-10-05 2007-04-19 Toyota Motor Corp プレス成形方法及びプレス成形装置
JP2007118021A (ja) 2005-10-26 2007-05-17 Isuzu Motors Ltd プレス成形品の成形方法およびプレス成形装置
JP2007326112A (ja) 2006-06-06 2007-12-20 Hiroshima Pref Gov プレス成形方法
JP2009104456A (ja) * 2007-10-24 2009-05-14 Honda Motor Co Ltd モデル設計システム
JP2011045905A (ja) * 2009-08-26 2011-03-10 Toyota Motor Corp プレス成形方法
WO2012161050A1 (ja) * 2011-05-20 2012-11-29 新日鐵住金株式会社 プレス成形方法及び車体部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3020492A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016144825A (ja) * 2015-02-09 2016-08-12 日新製鋼株式会社 2次プレス加工性評価方法
JP6133965B1 (ja) * 2015-12-17 2017-05-24 日新製鋼株式会社 伸びフランジ性の評価方法
JP2017109227A (ja) * 2015-12-17 2017-06-22 日新製鋼株式会社 伸びフランジ性の評価方法
JP7020599B1 (ja) * 2020-09-02 2022-02-16 Jfeスチール株式会社 プレス部品の製造方法、金型の設計方法、金型形状設計装置、及び金型
WO2022049905A1 (ja) * 2020-09-02 2022-03-10 Jfeスチール株式会社 プレス部品の製造方法、金型の設計方法、金型形状設計装置、及び金型

Also Published As

Publication number Publication date
CN107737829B (zh) 2019-10-01
CN105451908A (zh) 2016-03-30
US10730090B2 (en) 2020-08-04
JPWO2015004908A1 (ja) 2017-03-02
US20160160311A1 (en) 2016-06-09
KR101815403B1 (ko) 2018-01-08
EP3020492A1 (en) 2016-05-18
MX2016000001A (es) 2016-03-09
CN105451908B (zh) 2018-05-04
CN107737829A (zh) 2018-02-27
EP3020492A4 (en) 2016-07-06
EP3020492B1 (en) 2020-05-06
JP5867657B2 (ja) 2016-02-24
KR20160030975A (ko) 2016-03-21

Similar Documents

Publication Publication Date Title
JP5867657B2 (ja) 板材の成形方法、及び予成形形状の設定方法
CN104077439B (zh) 一种新型高强钢轮辐拉深冲孔复合工序的数值模拟方法
CN107532980B (zh) 剪切边缘能否成型的评价方法
CN110293167B (zh) Suv汽车后背门外板拉延工艺面造型方法
JP6512191B2 (ja) 金型の設計方法およびプレス成形品の製造方法
CN102672059A (zh) 根据仿真冲压工件厚度确定出模具凹凸模修改型面的方法
CN104971975A (zh) 一种拉伸与冲压复合的蒙皮成形工艺
CA3046944A1 (en) Metal sheet forming method, intermediate shape design method, metal sheet forming die, computer program, and recording medium
CN107649629A (zh) 大高径比镁合金棒料消除各向异性的大塑形变形制坯方法
US11097330B2 (en) Method for producing a formed component having a dimensionally accurate wall region
CN105091825A (zh) 一种蒙皮铣切区域厚度的检测方法
TWI632965B (zh) 無餘料扳手製法
JP2008246569A (ja) 鍛造成形用金型の製造方法
US11731187B2 (en) Press forming method, rigidity-improvement-position specifying method, press forming system, and press-formed product
CN108345703A (zh) 一种基于cae的内高压成型优化分析方法和系统
JP2017070976A (ja) パネル部品の製造方法
JP2021164954A (ja) プレス部品の製造方法、曲げ戻し用の金型、プレス部品の成形方法及び高強度鋼板
JP2008168313A (ja) 体積が不均一な区分からなるフランジ部を有する部材のフラッシュ無し鍛造法
JP6176429B1 (ja) プレス成形品の製造方法
US7640144B2 (en) Method for simulating a hydroforming process
JP6519984B2 (ja) 同時異種加工管部材の製造方法
CN109475916B (zh) 冲压件制造方法
MX2020001926A (es) Metodo para producir un cigue?al forjado.
JP7264116B2 (ja) プレス成形品の剛性評価方法、形状決定方法およびプレス成形品の製造方法
Tzou et al. Multi-stage forging on torx-pin screw with high torque

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480038949.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14823787

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015526168

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014823787

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/000001

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 14903818

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167003309

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201600776

Country of ref document: ID