WO2015001710A1 - 電磁接触器 - Google Patents

電磁接触器 Download PDF

Info

Publication number
WO2015001710A1
WO2015001710A1 PCT/JP2014/002999 JP2014002999W WO2015001710A1 WO 2015001710 A1 WO2015001710 A1 WO 2015001710A1 JP 2014002999 W JP2014002999 W JP 2014002999W WO 2015001710 A1 WO2015001710 A1 WO 2015001710A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
thermal conductivity
arc
electromagnetic contactor
movable
Prior art date
Application number
PCT/JP2014/002999
Other languages
English (en)
French (fr)
Inventor
鹿志村 修
磯崎 優
幸悦 高谷
雄二 柴
Original Assignee
富士電機株式会社
富士電機機器制御株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社, 富士電機機器制御株式会社 filed Critical 富士電機株式会社
Priority to KR1020157024351A priority Critical patent/KR102206249B1/ko
Priority to EP14819501.9A priority patent/EP3018688A4/en
Priority to CN201480012701.5A priority patent/CN105009248B/zh
Priority to JP2015525015A priority patent/JP6514104B2/ja
Publication of WO2015001710A1 publication Critical patent/WO2015001710A1/ja
Priority to US14/847,757 priority patent/US9583291B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/02Bases; Casings; Covers
    • H01H50/023Details concerning sealing, e.g. sealing casing with resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/12Ventilating; Cooling; Heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • H01H50/36Stationary parts of magnetic circuit, e.g. yoke
    • H01H50/38Part of main magnetic circuit shaped to suppress arcing between the contacts of the relay
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2205/00Movable contacts
    • H01H2205/002Movable contacts fixed to operating part

Definitions

  • the present invention relates to an electromagnetic contactor including a contact device in which a movable contact is arranged to be movable toward and away from a fixed contact, and an electromagnet unit that moves the movable contact of the contact device. Is designed to easily extinguish an arc generated at the time of opening apart from the fixed contact.
  • an electromagnetic contactor that opens and closes a current path
  • an electromagnetic contactor described in Patent Document 1 As an electromagnetic contactor that opens and closes a current path, for example, an electromagnetic contactor described in Patent Document 1 is known.
  • a pair of fixed contacts arranged at a predetermined distance and a movable contact arranged so as to be able to come into contact with and separate from the pair of fixed contacts are arranged in a contact housing case.
  • the insulation cylinder is arrange
  • An arc extinguishing permanent magnet that extinguishes an arc generated between a pair of fixed contact and movable contact is positioned and held in the insulating cylindrical body by the magnet storage portion, and the extending direction of the movable contact of the magnet storage portion An arc extinguishing space is formed outside.
  • the arc extinguishing space is formed on the inner peripheral surface of an insulating cylinder formed of a resin molded product made of synthetic resin, for example.
  • a resin molded product since the inner wall surface is finished smoothly, the air flow along the inner wall surface becomes a laminar flow, and the heat exchange amount is small and the heat exchange amount is saturated.
  • the thermal conductivity of the resin molded product is as small as 0.2 W / mK, the arc cooling effect is small and the arc electric field cannot be increased, so that the arc length for obtaining a predetermined arc voltage becomes long and small. There is an unresolved problem that it will be difficult to make it easier.
  • the present invention has been made by paying attention to the unsolved problems of the above-described conventional example, and the arc is sufficiently cooled and the arc is easily extinguished without saturating the heat exchange amount. It is an object to provide an electromagnetic contactor that can.
  • one aspect of the electromagnetic contactor according to the present invention is a movable contactor with respect to a pair of fixed contacts arranged at a predetermined interval in an insulating contact housing case.
  • An arc extinguishing chamber is formed at the contact position between the contact of the pair of fixed contacts and the movable contact, and at least the inner wall surface side of the arc extinguishing chamber contacting the arc is made of synthetic resin. It is formed of a high thermal conductivity material having a higher thermal conductivity than the molding material.
  • At least the inner wall surface side in contact with the arc of the arc extinguishing chamber is formed of a high thermal conductivity material having a higher thermal conductivity than the synthetic resin molding material, so that the heat transfer coefficient of the arc contact surface is increased.
  • the arc can be sufficiently cooled.
  • the arc electric field is increased, and the arc length for obtaining a predetermined arc voltage can be shortened. Therefore, the arc extinguishing space for extending the arc can be reduced, and the size and weight can be reduced.
  • the time until completion of interruption (arc duration) is shortened, and it becomes possible to suppress the consumption of the contacts of the stationary contact and the movable contact, thereby extending the life of the contactor. Can do.
  • FIG. 2 is an enlarged cross-sectional view showing a part of the contact device on line II-II in FIG. 1.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. It is explanatory drawing explaining the generation
  • FIG. 2 which shows the 2nd Embodiment of this invention.
  • FIG. 2 shows the 3rd Embodiment of this invention.
  • FIG. 2 which shows the 4th Embodiment of this invention.
  • FIG. 1 is a cross-sectional view showing an example of an electromagnetic switch according to the present invention
  • FIG. 2 is a cross-sectional view of a contact device on line II-II in FIG.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 1 to 3, reference numeral 10 denotes an electromagnetic contactor.
  • the electromagnetic contactor 10 includes a contact device 100 having a contact mechanism and an electromagnet unit 200 that drives the contact device 100.
  • the contact device 100 includes a contact storage case 102 that stores the contact mechanism 101.
  • the contact storage case 102 includes a metal rectangular tube 104 having a flange 103 protruding outward at a metal lower end, a fixed contact support insulating substrate 105 that closes the upper end of the metal rectangular tube 104, a metal And an insulating cylinder 140 disposed on the inner peripheral side of the rectangular cylinder 104.
  • the rectangular metal cylinder 104 is made of, for example, stainless steel, and its flange portion 103 is fixed by being sealed and bonded to an upper magnetic yoke 210 of an electromagnet unit 200 described later.
  • the fixed contact support insulating substrate 105 is composed of a flat ceramic insulating substrate, and through holes 106 and 107 through which a pair of fixed contacts 111 and 112 (to be described later) are inserted at a predetermined interval are formed at the center. Yes.
  • the contact mechanism 101 includes a pair of fixed contacts 111 and 112 that are inserted into and fixed to the through holes 106 and 107 of the fixed contact support insulating substrate 105 of the contact storage case 102.
  • Each of the fixed contacts 111 and 112 includes a support conductor portion 114 having a flange portion 113 protruding outward at an upper end inserted through the through holes 106 and 107 of the fixed contact support insulating substrate 105, and the support conductor portion 114.
  • a C-shaped portion 115 disposed on the lower surface side of the fixed contact supporting insulating substrate 105 and having an inner side open.
  • the C-shaped portion 115 includes an upper plate portion 116 that extends outward along the lower surface of the fixed contact supporting insulating substrate 105, an intermediate plate portion 117 that extends downward from the outer end portion of the upper plate portion 116, and the intermediate plate.
  • the intermediate plate portion 117 and the lower plate portion 118 are formed in a C-shape with the lower plate portion 118 extending inward from the lower end side of the portion 117 in parallel to the upper plate portion 116, that is, in the facing direction of the fixed contacts 111 and 112. Is formed.
  • the support conductor portion 114 and the C-shaped portion 115 include a pin 114 a that protrudes from the lower end surface of the support conductor portion 114 in the through hole 120 formed in the upper plate portion 116 of the C-shaped portion 115. In the inserted state, it is fixed by brazing, for example.
  • the fixing of the support conductor 114 and the C-shaped portion 115 is not limited to brazing or the like, but the pin 114a is fitted into the through hole 120, the male screw is formed on the pin 114a, and the female screw is formed on the through hole 120. Then, they may be screwed together.
  • an insulating cover 121 made of a synthetic resin material that restricts the generation of an arc is attached to each of the C-shaped portions 115 of the fixed contacts 111 and 112.
  • the insulating cover 121 covers the inner peripheral surfaces of the upper plate portion 116 and the intermediate plate portion 117 of the C-shaped portion 115.
  • the movable contact 130 is arrange
  • the movable contact 130 is supported by a connecting shaft 131 fixed to a movable plunger 215 of an electromagnet unit 200 described later.
  • the movable contact 130 is formed with a recess 132 that protrudes downward in the vicinity of the central connection shaft 131, and a through-hole 133 through which the connection shaft 131 is inserted is formed in the recess 132.
  • the connecting shaft 131 has a flange portion 131a that protrudes outward at the upper end.
  • a contact spring 134 is inserted into the connecting shaft 131 from the lower end side, and then the through hole 133 of the movable contact 130 is inserted. Then, the upper end of the contact spring 134 is brought into contact with the flange portion 131a, and the movable contact 130 is positioned by, for example, the C ring 135 so as to obtain a predetermined urging force by the contact spring 134.
  • the movable contact 130 is in a state in which the contact portions at both ends and the contact portion 118a of the lower plate portion 118 of the C-shaped portion 115 of the fixed contacts 111 and 112 are separated from each other with a predetermined interval.
  • the contact portions at both ends are in contact with the contact portion 118a of the lower plate portion 118 of the C-shaped portion 115 of the fixed contacts 111 and 112 with a predetermined contact pressure by the contact spring 134 at the closing position. It is set to be.
  • the insulating cylinder 140 constituting the contact housing case 102 has a higher thermal conductivity than that of a synthetic resin molding material made of a thermosetting resin such as an unsaturated polyester resin or a phenol resin, and has an insulating property higher than 0.2 W / mK. It is formed of a ceramic-based high thermal conductivity material such as alumina ceramic (thermal conductivity 30 W / mK), aluminum nitride (thermal conductivity 180 W / mK), boron nitride (thermal conductivity 63 W / mK).
  • alumina ceramic thermal conductivity 30 W / mK
  • aluminum nitride thermal conductivity 180 W / mK
  • boron nitride thermal conductivity 63 W / mK
  • the thermal conductivity at a high temperature of hydrogen which is a gas enclosed in the contact housing case 102, is higher than 20 W / mK (4000 ° C., 1 atm) as described later.
  • Magnet insulating pockets 141 and 142 projecting inward are formed in the insulating cylinder 140 at positions facing the side surface of the central portion in the extending direction of the movable contact 130.
  • arc extinguishing permanent magnets 143 and 144 are inserted and fixed.
  • the arc extinguishing permanent magnets 143 and 144 are magnetized so that their opposing surfaces have the same polarity, for example, N pole, in the thickness direction.
  • Arc extinguishing chambers 145 and 146 are formed outside the magnet storage pockets 141 and 142 in the left-right direction and at the contact positions between the contact 118a of the pair of fixed contacts 111 and 112 and the contact 130a of the movable contact 130, respectively. ing.
  • the electromagnet unit 200 includes a U-shaped magnetic yoke 201 that is flat when viewed from the side, and a cylindrical auxiliary yoke 203 is fixed to the center of the bottom plate portion 202 of the magnetic yoke 201.
  • a spool 204 as a plunger driving unit is disposed outside the cylindrical auxiliary yoke 203.
  • the spool 204 includes a central cylindrical portion 205 that passes through the cylindrical auxiliary yoke 203, a lower flange portion 206 that protrudes radially outward from the lower end portion of the central cylindrical portion 205, and a slightly lower position than the upper end of the central cylindrical portion 205.
  • the upper flange portion 207 protrudes radially outward from the side.
  • An exciting coil 208 is wound around a storage space formed by the central cylindrical portion 205, the lower flange portion 206, and the upper flange portion 207.
  • the upper magnetic yoke 210 is fixed between the upper ends of the magnetic yoke 201 serving as the open end.
  • the upper magnetic yoke 210 is formed with a through hole 210 a facing the central cylindrical portion 205 of the spool 204 at the central portion.
  • a movable plunger 215 having a return spring 214 disposed between the bottom portion and the bottom plate portion 202 of the magnetic yoke 201 is slidably disposed.
  • the movable plunger 215 is formed with a peripheral flange portion 216 protruding outward in the radial direction at an upper end portion protruding upward from the upper magnetic yoke 210.
  • annular permanent magnet 220 formed in an annular shape is fixed on the upper surface of the upper magnetic yoke 210 so as to surround the peripheral flange portion 216 of the movable plunger 215.
  • the annular permanent magnet 220 has a rectangular outer shape and has a through hole 221 that surrounds the peripheral flange 216 at the center.
  • the annular permanent magnet 220 is magnetized so that the upper end side is, for example, an N pole and the lower end side is an S pole in the vertical direction, that is, the thickness direction.
  • the shape of the through-hole 221 of the annular permanent magnet 220 is a shape that matches the shape of the peripheral flange portion 216, and the shape of the outer peripheral surface can be any shape such as a circle or a rectangle.
  • the outer shape of the annular permanent magnet 220 is not limited to a rectangular shape, but may be any shape such as a circle or a hexagon.
  • the movable plunger 215 is covered with a cap 230 made of a non-magnetic material and formed in a bottomed cylindrical shape, and is formed to extend radially outward at the open end of the cap 230.
  • the flange portion 231 is sealed to the lower surface of the upper magnetic yoke 210.
  • a sealed container is formed in which the contact housing case 102 and the cap 230 are communicated with each other via the through hole 210 a of the upper magnetic yoke 210.
  • a gas such as hydrogen gas, nitrogen gas, a mixed gas of hydrogen and nitrogen, air, or SF 6 is sealed in a sealed container formed by the contact housing case 102 and the cap 230.
  • the fixed contact 111 is connected to a power supply source that supplies a large current, for example, and the fixed contact 112 is connected to a load.
  • the exciting coil 208 in the electromagnet unit 200 is in a non-excited state and the electromagnet unit 200 is in a released state in which no exciting force for lowering the movable plunger 215 is generated.
  • the movable plunger 215 is urged upward by the return spring 214 away from the upper magnetic yoke 210.
  • the attractive force due to the magnetic force of the annular permanent magnet 220 is applied to the auxiliary yoke 225, and the peripheral flange portion 216 of the movable plunger 215 is attracted.
  • the upper surface of the peripheral flange portion 216 of the movable plunger 215 is in contact with the lower surface of the step plate portion of the auxiliary yoke 225.
  • the contact part 130a of the movable contact 130 of the contact mechanism 101 connected to the movable plunger 215 via the connection shaft 131 is spaced apart from the contact part 118a of the fixed contacts 111 and 112 upward by a predetermined distance. .
  • the current path between the stationary contacts 111 and 112 is in a disconnected state, and the contact mechanism 101 is in an open state.
  • both the urging force by the return spring 214 and the attractive force by the annular permanent magnet 220 are acting on the movable plunger 215, so that the movable plunger 215 is inadvertently caused by external vibration or impact. Therefore, it is possible to reliably prevent malfunction.
  • the exciting coil 208 of the electromagnet unit 200 is energized from this released state, an exciting force is generated by the electromagnet unit 200 and the movable plunger 215 is resisted against the biasing force of the return spring 214 and the attractive force of the annular permanent magnet 220. Press down.
  • the movable contact 130 connected to the movable plunger 215 via the connecting shaft 131 is also lowered, and the contact portion 130a thereof is the contact portion 118a of the fixed contacts 111 and 112. In contact with the contact pressure of the contact spring 134. For this reason, a closed state is reached in which a large current of the external power supply source is supplied to the load through the fixed contact 111, the movable contact 130, and the fixed contact 112.
  • the fixed contactors 111 and 112 have a C-shaped portion 115 formed by the upper plate portion 116, the intermediate plate portion 117, and the lower plate portion 118.
  • a current in the reverse direction flows between the plate portion 118 and the movable contact 130 facing the plate portion 118.
  • the movable contact 130 is connected to the contact portion 118a of the fixed contacts 111 and 112 according to Fleming's left-hand rule.
  • the Lorentz force that presses against the surface can be generated.
  • this Lorentz force it becomes possible to resist the electromagnetic repulsion force in the opening direction generated between the contact portions 118a of the fixed contacts 111 and 112 and the contact portion 130a of the movable contact 130, and the contact portion of the movable contact 130 It is possible to reliably prevent the 130a from opening.
  • the pressing force of the contact spring 134 that supports the movable contact 130 can be reduced, and the thrust generated by the exciting coil 208 can be reduced accordingly, and the configuration of the entire electromagnetic contactor can be reduced in size. can do.
  • the excitation of the excitation coil 208 of the electromagnet unit 200 is stopped.
  • the exciting force that moves the movable plunger 215 downward by the electromagnet unit 200 disappears, so that the movable plunger 215 rises by the urging force of the return spring 214, and the annular permanent magnet 216 as the peripheral flange 216 approaches the auxiliary yoke 225.
  • the suction force of 220 increases.
  • the movable contact 130 connected via the connecting shaft 131 rises.
  • the movable contact 130 is in contact with the stationary contacts 111 and 112 while the contact pressure is applied by the contact spring 134.
  • the contact pressure of the contact spring 134 disappears, the movable contact 130 is in an open state in which it is separated upward from the fixed contacts 111 and 112. In this open state, an arc is generated between the contact part 118a of the fixed contacts 111 and 112 and the contact part 130a of the movable contact 130, and the current conduction state is continued by this arc.
  • the insulating cover 121 that covers the upper plate portion 116 and the intermediate plate portion 117 of the C-shaped portion 115 of the fixed contacts 111 and 112 is attached, the arc is connected to the contact portion 118a of the fixed contacts 111 and 112. It can be generated only between the contact 130a of the movable contact 130. For this reason, the generation
  • the insulating cover 121 between the both end portions of the movable contact 130 and the upper plate portion 116 and the intermediate plate portion 117 of the C-shaped portion 115, and the movable contact 130 can move in the movable direction.
  • the height can be shortened. Therefore, the contact device 100 can be reduced in size.
  • the magnetic field generated by the current flowing through the intermediate plate portion 117 is shielded by the magnetic plate 119. .
  • the magnetic field generated by the arc generated between the contact portions 118a of the fixed contacts 111 and 112 and the contact portion 130a of the movable contact 130 does not interfere with the magnetic field generated by the current flowing through the intermediate plate portion 117. It is possible to prevent the arc from being affected by the magnetic field generated by the current flowing through the plate portion 117.
  • the opposing magnetic pole surfaces of the arc extinguishing permanent magnets 143 and 144 are N poles and the outside thereof is the S pole, the magnetic flux emitted from the N poles is shown in FIG.
  • the arc generating part of the opposing part of the contact part 118a of each arc extinguishing permanent magnet 143 and 144 fixed contactor 111 and the contact part 130a of the movable contactor 130 is arranged in the longitudinal direction of the movable contactor 130 from the inside to the outside.
  • a magnetic field is formed by reaching the south pole.
  • the arc generation part of the contact part 118a of the fixed contactor 112 and the contact part 130a of the movable contactor 130 crosses from the inside to the outside in the longitudinal direction of the movable contactor 130 and reaches the S pole to form a magnetic field.
  • the magnetic fluxes of the arc extinguishing permanent magnets 143 and 144 are both between the contact portion 118a of the fixed contact 111 and the contact portion 130a of the movable contact 130, and between the contact portion 118a of the fixed contact 112 and the contact of the movable contact 130.
  • the portions 130a cross in the opposite directions in the longitudinal direction of the movable contact 130. For this reason, between the contact part 118a of the fixed contactor 111 and the contact part 130a of the movable contactor 130, as shown in FIG. 4B, the current I flows from the fixed contactor 111 side to the movable contactor 130 side. As it flows, the direction of the magnetic flux ⁇ becomes the direction from the inside toward the outside.
  • an arc 151 generated between the contact part 118a of the fixed contactor 111 and the contact part 130a of the movable contactor 130 has a side surface of the contact part 118a of the fixed contactor 111 as shown in FIG.
  • the insulating cylinder 140 constituting the inner wall surface of the arc extinguishing chamber 145 is thermoset such as unsaturated polyester resin or phenol resin that is normally used.
  • Alumina ceramics thermal conductivity 30 W / mK
  • alumina nitride thermal conductivity 180 W / mK
  • boron nitride 63 W / mK
  • the arc extinguishing chamber 145 and the thermal conductivity therein are increased, the heat of the arc 151 can be efficiently transferred into the wall surface of the arc extinguishing chamber 145. Therefore, the arc 151 can be sufficiently cooled. As a result, the arc electric field can be increased, and the arc length for obtaining a predetermined arc voltage can be shortened. Therefore, the arc extinguishing space for extending the arc 151 can be reduced, and the contact device 100 can be reduced in size and weight. Also, when the arc length is shortened, the time until completion of interruption (arc duration) is shortened, and it becomes possible to suppress the consumption of the contacts of the stationary contact and the movable contact, thereby extending the life of the contactor. Can do.
  • the current I flows from the movable contact 130 side to the fixed contact 112 side and the magnetic flux ⁇ . Is the right direction from the inside to the outside.
  • the arc extinguishing chamber 145 is directed to the arc extinguishing chamber 145 side perpendicular to the longitudinal direction of the movable contact 130 and perpendicular to the opening / closing direction of the contact portion 118a of the fixed contact 112 and the movable contact A large Lorentz force F acts.
  • This Lorentz force F causes the arc 151 generated between the contact portion 118a of the fixed contact 112 and the movable contact 130 to be greatly stretched along the arc extinguishing chamber 145 from the upper surface side of the movable contact 130.
  • the insulating cylindrical body 140 is higher than the thermal conductivity (0.2 W / mK) of a synthetic resin molding material made of thermosetting resin such as unsaturated polyester resin or phenol resin, which is normally used, and is enclosed in the contact housing case 102.
  • Alumina ceramics thermal conductivity 30 W / mK
  • alumina nitride thermal conductivity 180 W / mK
  • boron nitride 63 W
  • the insulating cylinder 140 can cover and insulate the inner peripheral surface of the metal rectangular cylinder 104, there is no short circuit of the arc at the time of current interruption, and current interruption can be performed reliably. Furthermore, since the insulating function, the positioning function of the arc extinguishing permanent magnets 143 and 144 and the arc extinguishing permanent magnets 143 and 144 can be protected from the arc by one insulating cylinder 140, the manufacturing cost can be reduced. Can be reduced.
  • the material of the insulating cylinder 140 is higher than the thermal conductivity (0.2 W / mK) of a synthetic resin molding material made of a thermosetting resin such as an unsaturated polyester resin or a phenol resin that has an insulating property and is usually used. Any material having high thermal conductivity can be used.
  • the configuration of the insulating cylinder is changed. That is, in the second embodiment, as shown in FIG. 6, the insulating cylinder 140 is made of an alumina ceramic having a higher thermal conductivity than the thermosetting resin, such as an unsaturated polyester resin or a phenol resin. Synthetic resin with increased thermal conductivity while maintaining the insulating performance of the molded resin material by mixing thermal conductivity filler 148 made of powder with high thermal conductivity such as aluminum nitride, boron nitride, iron, aluminum, copper, etc. It is a molding material. Other configurations are the same as those of the first embodiment described above.
  • thermosetting resin 147 since the thermal conductivity filler 148 is mixed into the thermosetting resin 147 to increase the thermal conductivity of the synthetic resin molding material itself, the first embodiment described above. The same effect can be obtained.
  • the thermal conductivity filler 148 is mixed into the thermosetting resin 147 as a high thermal conductivity material, which can significantly reduce the manufacturing cost compared to the ceramic material in the first embodiment described above. it can.
  • the thermal conductivity filler 148 is not limited to alumina ceramic, aluminum nitride, boron nitride, iron, aluminum, copper and other high thermal conductivity powders having higher thermal conductivity than the above-described thermosetting resin, Any high thermal conductivity material having a higher thermal conductivity than the thermosetting resin can be applied, and the properties are not limited to powder, but can be any property such as a short fibrous shape.
  • a high thermal conductive material is insert-molded on the surface of the insulating cylinder 140. That is, in the third embodiment, as shown in FIG. 7, when the insulating cylinder 140 is molded with the above-described thermosetting resin material made of unsaturated polyester resin or phenol resin, heat of copper, CuW, or the like is used.
  • a high thermal conductivity plate 149 as a metal high thermal conductivity material having a higher thermal conductivity than the curable resin material is insert-molded so as to be on the inner wall surface side.
  • Other configurations are the same as those of the first embodiment described above.
  • the metal high thermal conductivity plate 149 as the high thermal conductivity material is insert-molded on the inner wall surface of the insulating cylinder 140, the arc 151 generated at the time of opening is stretched and insulated.
  • the heat of the arc 151 can be efficiently transferred into the wall surface of the arc extinguishing chamber 145. Therefore, the arc 151 can be sufficiently cooled.
  • the arc electric field can be increased, and the arc length for obtaining a predetermined arc voltage can be shortened. Therefore, the arc extinguishing space for extending the arc 151 can be reduced, and the contact device 100 can be reduced in size and weight.
  • the high thermal conductivity plate 149 is insert-molded has been described.
  • the present invention is not limited to this, and the insulating cylinder is configured on the inner peripheral surface of the insulating cylinder 140.
  • An arbitrary metal material or ceramic having a higher thermal conductivity than the thermosetting resin material to be coated may be coated.
  • a metal high thermal conductivity plate 149 having a higher thermal conductivity than the thermosetting resin material is coated with an insulating material on the inner wall of the insulating cylindrical body 140 and fixed by insert molding or bonding and screwing. Also good.
  • a metal heat conductive material that covers the inner peripheral surface of the insulating cylinder 140 is mounted instead of insert molding the high thermal conductivity plate. That is, in the fourth embodiment, as shown in FIG. 8, heat such as copper, CuW, or the like is formed on the inner peripheral surface of the insulating cylinder 140 made of a thermosetting resin such as unsaturated polyester resin or phenol resin.
  • a high thermal conductivity cylindrical body 150 made of a high thermal conductivity material having a higher thermal conductivity than the curable resin material is disposed in close contact.
  • the arrangement method of the high thermal conductivity cylinder 150 employs mechanical coupling such as adhesion and screwing. Other configurations are the same as those of the first embodiment described above.
  • the fourth embodiment since the inner peripheral surface of the insulating cylinder 140 is disposed in close contact with the high thermal conductivity cylinder 150, the same effects as those of the third embodiment described above can be obtained.
  • the material of the high thermal conductivity cylindrical body 150 any high thermal conductive material can be applied as long as the thermal conductivity is higher than that of the thermosetting resin constituting the insulating cylindrical body 140.
  • the insulating cylinder is made to have a high thermal conductivity or the high thermal conductivity material is disposed on the inner wall surface in contact with the arc 151.
  • the present invention is not limited to this. Instead of increasing the thermal conductivity of the insulating cylinder, a high thermal conductivity material may be disposed on the inner wall surface of the insulating cylinder.
  • the high heat conductive material need not be arranged over the entire inner wall surface of the insulating cylindrical body 140, but at least only on the inner wall surface touched by the arc 151 generated at the time of opening. That's fine.
  • the contact storage case 102 of the contact device 100 is configured by the metal rectangular tube 104, the fixed contact supporting insulating substrate 105, and the insulating tube 140 has been described.
  • the present invention is not limited to this, and the fixed contact supporting insulating substrate 105 can be omitted, and it can be constituted by a metal square tube 104, a bowl-shaped insulating tube having an open lower end, and an insulating bottom plate covering the lower surface. .
  • the contact mechanism 101 is not limited to the structure of the said embodiment,
  • the contact mechanism of arbitrary structures can be applied.
  • an L-shaped portion 160 having a shape in which the upper plate portion 116 of the C-shaped portion 115 is omitted may be connected to the support conductor portion 114.
  • the concave portion 132 may be omitted to form a flat plate.
  • the connecting shaft 131 is screwed to the movable plunger 215 .
  • the present invention is not limited to screwing, and any connection method can be applied.
  • the movable plunger 215 and the connecting shaft 131 may be integrally formed.
  • the connection between the connecting shaft 131 and the movable contact 130 forms a flange portion 131a at the tip of the connecting shaft 131, and the lower end of the movable contact 130 is inserted into the C after inserting the contact spring 134 and the movable contact 130.
  • a positioning large-diameter portion that protrudes in the radial direction is formed at the C-ring position of the connecting shaft 131, and the contact spring 134 is disposed after the movable contact 130 is brought into contact with the positioning large-diameter portion. You may make it fix with a ring.
  • the electromagnet unit 200 is not limited to the above configuration, and an electromagnet unit having an arbitrary configuration can be applied.
  • the movable contact 130 can be connected to and separated from the fixed contacts 111 and 112. It is only necessary to be able to be driven.
  • the present invention is not limited to this. Alternatively, gas sealing may be omitted when the current to be cut off is low.
  • Electromagnetic contactor 100 ... Contact apparatus, 101 ... Contact mechanism, 102 ... Contact storage case, 104 ... Metal square cylinder, 105 ... Fixed contact support insulation board, 111, 112 ... Fixed contact, 114 ... Support conductor part 115 ... C-shaped part, 121 ... Insulating cover, 130 ... Movable contact, 130a ... Contact part, 131 ... Connecting shaft, 134 ... Contact spring, 140 ... Insulating cylinder, 141, 142 ... Magnet storage pocket, 143 144 ... Arc extinguishing permanent magnet, 145, 146 ... Arc arc extinguishing chamber, 147 ... Resin molding material, 148 ...
  • Thermal conductivity filler 149 ... High thermal conductivity plate, 150 ... High thermal conductivity cylinder, 151 ... Arc, 200 ... electromagnet unit, 201 ... magnetic yoke, 203 ... cylindrical auxiliary yoke, 204 ... spool, 208 ... excitation coil, 210 ... upper magnetic yoke, 214 ... return Pulling, 215 ... movable plunger

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Abstract

 可動接触子が固定接触子から離間する際に発生するアークを容易に消弧することができる電磁接触器を提供する。絶縁性の接点収納ケース(102)内に所定間隔を保って配置された一対の固定接触子(111)に対して可動接触子(130)を接離可能に配置するとともに、一対の固定接触子の接点と可動接触子の接点との接触位置にアーク消弧室(145),(146)を形成し、前記アーク消弧室の少なくともアークと接触する内壁面側を合成樹脂成型材より高い熱電導率を有する高熱伝導性材で形成している。

Description

電磁接触器
 本発明は、固定接触子に対して可動接触子が接離可能に配置された接点装置と、この接点装置の可動接触子を可動する電磁石ユニットとを備えた電磁接触器に関し、特に可動接触子が固定接触子から離間する開極時に発生するアークを容易に消弧するようにしたものである。
 電流路の開閉を行う電磁接触器としては、例えば特許文献1に記載された電磁接触器が知られている。この電磁接触器は、所定距離を保って配置された一対の固定接触子とこれら一対の固定接触子に対して接離可能に配置された可動接触子とが接点収納ケース内に配置されている。そして、接点収納ケースの内側に一対の固定接触子及び可動接触子を囲むように絶縁筒体が配置されている。この絶縁筒体に一対の固定接触子及び可動接触子間に発生するアークを消弧するアーク消弧用永久磁石を磁石収納部で位置決め保持するとともに、この磁石収納部の可動接触子の延長方向外側にアーク消弧空間を形成するようにしている。
特開2012-243592号公報
 しかしながら、上記特許文献1に記載の従来例にあっては、アーク消弧空間が例えば合成樹脂製の樹脂成型品で構成される絶縁筒体の内周面で形成されている。このため、樹脂成型品の場合、内壁面が滑らかに仕上げられているので、この内壁面に沿う気流は層流となり熱交換量も小さく熱交換量が飽和状態となっている。また、樹脂成型品の熱伝導率は0.2W/mKと小さいため、アークの冷却効果が小さく、アーク電界を高めることができないため、所定のアーク電圧を得るためのアーク長が長くなり、小型化が困難となるという未解決の課題がある。
 そこで、本発明は、上記従来例の未解決の課題に着目してなされたものであり、熱交換量が飽和することなく、アークの冷却を十分に行って、アークの消弧を容易に行うことができる電磁接触器を提供することを目的としている。
 上記目的を達成するために、本発明に係る電磁接触器の一の態様は、絶縁性を有する接点収納ケース内に所定間隔を保って配置された一対の固定接触子に対して可動接触子を接離可能に配置するとともに、一対の固定接触子の接点と可動接触子の接点との接触位置にアーク消弧室を形成し、アーク消弧室の少なくともアークと接触する内壁面側を合成樹脂成型材より高い熱電導率を有する高熱伝導性材で形成している。
 本発明によれば、アーク消弧室の少なくともアークと接触する内壁面側を合成樹脂成型材より高い熱伝導率を有する高熱伝導性材で形成したので、アーク接触面の熱伝達率を高めることができ、アークの冷却を十分に行うことが可能となる。その結果、アーク電界が高まり、所定のアーク電圧を得るためのアーク長を短くすることができるので、アークを引き伸ばすための消弧スペースを小さくすることができ、小型化・軽量化が可能となる。
 また、アーク長が短くなると、遮断完了までの時間(アーク持続時間)が短くなり、固定接触子及び可動接触子の接点の消耗を抑制することが可能となり、コンタクタとしての長寿命化を図ることができる。
本発明に係る電磁接触器の一実施形態を示す断面図である。 図1のII-II線上の接点装置の一部を拡大して示す断面図である。 図1のIII-III線上の断面図である。 アークの発生状態を説明する説明図である。 本発明の第2の実施形態を示す図2と同様の断面図である。 図5のA部の拡大断面図である。 本発明の第3の実施形態を示す図2と同様の断面図である。 本発明の第4の実施形態を示す図2と同様の断面図である。 本発明に適用し得る接点装置の変形例を示す図であって、(a)は断面図、(b)は斜視図である。 本発明に適用し得る接点装置の他の変形例を示す図であって、(a)は断面図、(b)は斜視図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
 図1は本発明に係る電磁開閉器の一例を示す断面図、図2は図1のII-II線上における接点装置の断面図である。図3は図1のIII-III線上の断面図である。
 これら図1~図3において、10は電磁接触器であり、この電磁接触器10は接点機構を配置した接点装置100と、この接点装置100を駆動する電磁石ユニット200とで構成されている。
 接点装置100は、図1~図3から明らかなように、接点機構101を収納する接点収納ケース102を有する。この接点収納ケース102は、金属製の下端部に外方と突出するフランジ部103を有する金属角筒体104と、この金属角筒体104の上端を閉塞する固定接点支持絶縁基板105と、金属角筒体104の内周側に配置された絶縁筒体140とを備えている。
 金属角筒体104は、例えばステンレス鋼で形成され、そのフランジ部103が後述する電磁石ユニット200の上部磁気ヨーク210にシール接合されて固定されている。
 また、固定接点支持絶縁基板105は、平板状のセラミック絶縁基板で構成され、中央部に後述する一対の固定接触子111及び112を挿通する貫通孔106及び107が所定間隔を保って形成されている。
 接点機構101は、図1に示すように、接点収納ケース102の固定接点支持絶縁基板105の貫通孔106及び107に挿通されて固定された一対の固定接触子111及び112を備えている。これら固定接触子111及び112のそれぞれは、固定接点支持絶縁基板105の貫通孔106及び107に挿通される上端に外方に突出するフランジ部113を有する支持導体部114と、この支持導体部114に連結されて固定接点支持絶縁基板105の下面側に配設され内方側を開放したC字状部115とを備えている。
 C字状部115は、固定接点支持絶縁基板105の下面に沿って外側に延長する上板部116とこの上板部116の外側端部から下方に延長する中間板部117と、この中間板部117の下端側から上板部116と平行に内方側すなわち固定接触子111及び112の対面方向に延長する下板部118とで中間板部117及び下板部118とでC字状に形成されている。
 ここで、支持導体部114とC字状部115とは、支持導体部114の下端面に突出形成されたピン114aをC字状部115の上板部116に形成された貫通孔120内に挿通した状態で例えばロウ付け等によって固定されている。なお、支持導体部114及びC字状部115の固定は、ロウ付け等に限らず、ピン114aを貫通孔120に嵌合させたり、ピン114aに雄ねじを形成し、貫通孔120に雌ねじを形成して両者を螺合させたりしてもよい。
 そして、固定接触子111及び112のC字状部115にそれぞれ、アークの発生を規制する合成樹脂材製の絶縁カバー121が装着されている。この絶縁カバー121は、C字状部115の上板部116及び中間板部117の内周面を被覆するものである。
 このように、固定接触子111及び112のC字状部115に絶縁カバー121を装着することにより、このC字状部115の内周面では下板部118の上面側のみが露出されて接点部118aとされている。
 そして、固定接触子111及び112のC字状部115内に両端部を配置するように可動接触子130が配設されている。この可動接触子130は後述する電磁石ユニット200の可動プランジャ215に固定された連結軸131に支持されている。この可動接触子130は、中央部の連結軸131の近傍が下方に突出する凹部132が形成され、この凹部132に連結軸131を挿通する貫通孔133が形成されている。
 連結軸131は、上端に外方に突出するフランジ部131aが形成されている。この連結軸131には、下端側から接触スプリング134を挿通し、次いで可動接触子130の貫通孔133を挿通する。そして、接触スプリング134の上端をフランジ部131aに当接させこの接触スプリング134で所定の付勢力を得るように可動接触子130を例えばCリング135によって位置決めする。
 この可動接触子130は、釈放状態で、両端の接点部と固定接触子111及び112のC字状部115の下板部118の接点部118aとが所定間隔を保って離間した状態となる。また、可動接触子130は、投入位置で、両端の接点部が固定接触子111及び112のC字状部115の下板部118の接点部118aに、接触スプリング134による所定の接触圧で接触するように設定されている。
 さらに、接点収納ケース102を構成する絶縁筒体140は、不飽和ポリエステル樹脂やフェノール樹脂などの熱硬化性樹脂でなる合成樹脂成型材の熱伝導率0.2W/mKより熱伝導率が高く絶縁性を有するアルミナセラミックス(熱伝導率30W/mK)、窒化アルミニウム(熱伝導率180W/mK)、窒化ホウ素(熱伝導率63W/mK)などのセラミックス系の高熱伝導性材で成型されている。この高熱伝導性材としては、後述するように接点収納ケース102内に封入する気体である水素の高温度における熱伝導率20W/mK(4000℃,1atm)より高いことが好ましい。
 絶縁筒体140には、可動接触子130の延長方向中央部の側面に対向する位置に内方に突出する磁石収納ポケット141及び142が形成されている。この磁石収納ポケット141及び142には、アーク消弧用永久磁石143及び144が挿通されて固定されている。
 このアーク消弧用永久磁石143及び144は、厚み方向に互いの対向面が同極例えばN極となるように着磁されている。そして、磁石収納ポケット141及び142の左右方向の外側で且つ一対の固定接触子111,112の接点118aと可動接触子130の接点130aとの接触位置にそれぞれアーク消弧室145及び146が形成されている。
 電磁石ユニット200は、図1に示すように、側面から見て扁平なU字形状の磁気ヨーク201を有し、この磁気ヨーク201の底板部202の中央部に円筒状補助ヨーク203が固定されている。この円筒状補助ヨーク203の外側にプランジャ駆動部としてのスプール204が配置されている。
 スプール204は、円筒状補助ヨーク203を挿通する中央円筒部205と、この中央円筒部205の下端部から半径方向外方に突出する下フランジ部206と、中央円筒部205の上端より僅かに下側から半径方向外方に突出する上フランジ部207とで構成されている。そして、中央円筒部205、下フランジ部206及び上フランジ部207で構成される収納空間に励磁コイル208が巻装されている。
 また、磁気ヨーク201の開放端となる上端間に上部磁気ヨーク210が固定されている。この上部磁気ヨーク210は、中央部にスプール204の中央円筒部205に対向する貫通孔210aが形成されている。
 そして、スプール204の中央円筒部205内に、底部と磁気ヨーク201の底板部202との間に復帰スプリング214を配設した可動プランジャ215が上下に摺動可能に配設されている。この可動プランジャ215には、上部磁気ヨーク210から上方に突出する上端部に半径方向外方に突出する周鍔部216が形成されている。
 また、上部磁気ヨーク210の上面に、環状に形成された環状永久磁石220が可動プランジャ215の周鍔部216を囲むように固定されている。この環状永久磁石220は外形が長方形に形成され中央部に周鍔部216を囲む貫通孔221を有する。この環状永久磁石220は上下方向すなわち厚み方向に上端側を例えばN極とし、下端側をS極とするように着磁されている。なお、環状永久磁石220の貫通孔221の形状は周鍔部216の形状に合わせた形状とし、外周面の形状は円形、方形等の任意の形状とすることができる。同様に、環状永久磁石220の外形も長方形状に限らず、円形、六角形等の任意の形状とすることができる。
 そして、環状永久磁石220の上端面に、環状永久磁石220と同一外形で中心開口224を有する補助ヨーク225が固定されている。
 また、可動プランジャ215が、図1に示すように、非磁性体製で有底筒状に形成されたキャップ230で覆われ、このキャップ230の開放端に半径方向外方に延長して形成されたフランジ部231が上部磁気ヨーク210の下面にシール接合されている。これによって、接点収納ケース102及びキャップ230が上部磁気ヨーク210の貫通孔210aを介して連通される密封容器が形成されている。そして、接点収納ケース102及びキャップ230で形成される密封容器内に水素ガス、窒素ガス、水素及び窒素の混合ガス、空気、SF等のガスが封入されている。
 次に、上記第1の実施形態の動作を説明する。
 今、固定接触子111が例えば大電流を供給する電力供給源に接続され、固定接触子112が負荷に接続されているものとする。
 この状態では、電磁石ユニット200における励磁コイル208が非励磁状態にあって、電磁石ユニット200で可動プランジャ215を下降させる励磁力を発生していない釈放状態にあるものとする。この釈放状態では、可動プランジャ215が復帰スプリング214によって、上部磁気ヨーク210から離れる上方向に付勢される。
 これと同時に、環状永久磁石220の磁力による吸引力が補助ヨーク225に作用されて、可動プランジャ215の周鍔部216が吸引される。このため、可動プランジャ215の周鍔部216の上面が補助ヨーク225の段差板部下面に当接している。
 このため、可動プランジャ215に連結軸131を介して連結されている接点機構101の可動接触子130の接点部130aが固定接触子111及び112の接点部118aから上方に所定距離だけ離間している。このため、固定接触子111及び112間の電流路が遮断状態にあり、接点機構101が開極状態となっている。
 このように、釈放状態では、可動プランジャ215に復帰スプリング214による付勢力と環状永久磁石220による吸引力との双方が作用しているので、可動プランジャ215が外部からの振動や衝撃等によって不用意に下降することがなく、誤動作を確実に防止することができる。
 この釈放状態から、電磁石ユニット200の励磁コイル208を励磁すると、この電磁石ユニット200で励磁力を発生させて、可動プランジャ215を復帰スプリング214の付勢力及び環状永久磁石220の吸引力に抗して下方に押し下げる。
 このように、可動プランジャ215が下降することにより、可動プランジャ215に連結軸131を介して連結されている可動接触子130も下降し、その接点部130aが固定接触子111及び112の接点部118aに接触スプリング134の接触圧で接触する。
 このため、外部電力供給源の大電流が固定接触子111、可動接触子130、及び固定接触子112を通じて負荷に供給される閉極状態となる。
 このとき、固定接触子111及び112と可動接触子130との間に可動接触子130を開極させる方向の電磁反発力が発生する。
 しかしながら、固定接触子111及び112は、図1に示すように、上板部116、中間板部117及び下板部118によってC字状部115が形成されているので、上板部116及び下板部118とこれに対向する可動接触子130とで逆方向の電流が流れることになる。
 このため、固定接触子111及び112の下板部118が形成する磁界と可動接触子130に流れる電流の関係からフレミングの左手の法則により可動接触子130を固定接触子111及び112の接点部118aに押し付けるローレンツ力を発生することができる。
 このローレンツ力によって、固定接触子111及び112の接点部118aと可動接触子130の接点部130a間に発生する開極方向の電磁反発力に抗することが可能となり、可動接触子130の接点部130aが開極することを確実に防止することができる。
 このため、可動接触子130を支持する接触スプリング134の押圧力を小さくすることができ、これに応じて励磁コイル208で発生する推力も小さくすることができ、電磁接触器全体の構成を小型化することができる。
 この接点機構101の閉極状態から、負荷への電流供給を遮断する場合には、電磁石ユニット200の励磁コイル208の励磁を停止する。
 これによって、電磁石ユニット200で可動プランジャ215を下方に移動させる励磁力がなくなることにより、可動プランジャ215が復帰スプリング214の付勢力によって上昇し、周鍔部216が補助ヨーク225に近づくに従って環状永久磁石220の吸引力が増加する。
 この可動プランジャ215が上昇することにより、連結軸131を介して連結された可動接触子130が上昇する。これに応じて接触スプリング134で接触圧を与えている間は可動接触子130が固定接触子111及び112に接触している。その後、接触スプリング134の接触圧がなくなった時点で可動接触子130が固定接触子111及び112から上方に離間する開極状態となる。
 この開極状態となると、固定接触子111及び112の接点部118aと可動接触子130の接点部130aとの間にアークが発生し、このアークによって電流の通電状態が継続される。
 このとき、固定接触子111及び112のC字状部115の上板部116及び中間板部117を覆う絶縁カバー121が装着されているので、アークが固定接触子111及び112の接点部118aと可動接触子130の接点部130aとの間のみに発生させることができる。このため、アークの発生状態を安定させることができ、アークをアーク消弧室145又は146へ引き伸ばして消弧することができ、消弧性能を向上させることができる。
 また、C字状部115の上板部116及び中間板部117が絶縁カバー121で覆われている。このため、可動接触子130の両端部とC字状部115の上板部116及び中間板部117の間の絶縁カバー121によって絶縁距離を確保することができ、可動接触子130の可動方向の高さを短縮することができる。したがって、接点装置100を小型化することができる。
 さらに、固定接触子111,112の中間板部117の内側面には磁性体板119によって覆われているので、この中間板部117を流れる電流によって発生する磁場が磁性体板119によってシールドされる。このため、固定接触子111,112の接点部118a及び可動接触子130の接点部130a間に発生するアークによる磁場と中間板部117を流れる電流によって発生する磁場とが干渉することはなく、中間板部117を流れる電流によって発生する磁場にアークが影響されることを防止できる。
 一方、アーク消弧用永久磁石143及び144の対向磁極面がN極であり、その外側がS極であるので、このN極が出た磁束が、平面から見て図4(a)に示すように、各アーク消弧用永久磁石143及び144固定接触子111の接点部118aと可動接触子130の接点部130aとの対向部のアーク発生部を可動接触子130の長手方向に内側から外側に横切ってS極に達して磁界が形成される。同様に、固定接触子112の接点部118aと可動接触子130の接点部130aのアーク発生部を可動接触子130の長手方向に内側から外側に横切ってS極に達して磁界が形成される。
 したがって、アーク消弧用永久磁石143及び144の磁束がともに固定接触子111の接点部118a及び可動接触子130の接点部130a間と、固定接触子112の接点部118a及び可動接触子130の接点部130a間を可動接触子130の長手方向で互いに逆方向に横切ることになる。
 このため、固定接触子111の接点部118aと可動接触子130の接点部130aとの間では、図4(b)に示すように、電流Iが固定接触子111側から可動接触子130側に流れるとともに、磁束Φの向きが内側から外側に向かう方向となる。このため、フレミングの左手の法則によって、図4(c)に示すように、可動接触子130の長手方向と直交し且つ固定接触子111の接点部118aと可動接触子130との開閉方向と直交してアーク消弧室145側に向かう大きなローレンツ力Fが作用する。
 このローレンツ力Fによって、固定接触子111の接点部118aと可動接触子130の接点部130aとの間に発生したアーク151が、図2に示すように、固定接触子111の接点部118aの側面からアーク消弧室145の内壁まで伸ばされ、この内壁に沿って可動接触子130の上面側に達するように大きく引き伸ばされる。
 このように、アークがアーク消弧室145の内壁面に沿う状態となると、アーク消弧室145の内壁面を構成する絶縁筒体140が通常使用する不飽和ポリエステル樹脂やフェノール樹脂などの熱硬化樹脂でなる合成樹脂成型材の熱伝導率(0.2W/mK)より高く、接点収納ケース102に封入する水素の高温(4000℃,1atm)での熱伝導率(20W/mK)より高い伝導率のアルミナセラミックス(熱伝導率30W/mK)、窒化アルミナ(熱伝導率180W/mK)、窒化ホウ素(63W/mK)等の高熱伝導性材で構成されている。
 このため、アーク消弧室145の内壁面及びその内部の熱伝導率が高くなるので、アーク151の熱をアーク消弧室145の壁面内に効率よく伝熱することができる。したがって、アーク151の冷却を十分に行うことが可能となる。
 この結果、アーク電界を高めることができ、所定のアーク電圧を得るためのアーク長を短くすることができる。したがって、アーク151を引き伸ばすための消弧スペースを小さくすることができ、接点装置100の小型化・軽量化を図ることができる。
 また、アーク長が短くなると、遮断完了までの時間(アーク持続時間)が短くなり、固定接触子及び可動接触子の接点の消耗を抑制することが可能となり、コンタクタとしての長寿命化を図ることができる。
 一方、固定接触子112の接点部118aと可動接触子130との間では、図4(b)に示すように、電流Iが可動接触子130側から固定接触子112側に流れるとともに、磁束Φの向きが内側から外側に向かう右方向となる。このため、フレミングの左手の法則によって、可動接触子130の長手方向と直交し且つ固定接触子112の接点部118aと可動接触子130との開閉方向と直交してアーク消弧室145側に向かう大きなローレンツ力Fが作用する。
 このローレンツ力Fによって、固定接触子112の接点部118aと可動接触子130との間に発生したアーク151が、可動接触子130の上面側からアーク消弧室145内に沿って大きく引き伸ばされる。ここでも、絶縁筒体140が通常使用する不飽和ポリエステル樹脂やフェノール樹脂などの熱硬化樹脂でなる合成樹脂成型材の熱伝導率(0.2W/mK)より高く、接点収納ケース102に封入する水素の高温(4000℃,1atm)での熱伝導率(20W/mK)より高い伝導率のアルミナセラミックス(熱伝導率30W/mK)、窒化アルミナ(熱伝導率180W/mK)、窒化ホウ素(63W/mK)等の高熱伝導性材で構成されている。このため、前述した固定接触子111の接点部118aと可動接触子130との間と同様に熱伝導率を高めて、アーク151を十分に冷却し、アーク151を確実に遮断することができる。
 一方、電磁接触器10の投入状態で、負荷側から直流電源側に回生電流が流れている状態で、釈放状態とする場合には、前述した図4(b)における電流の方向が逆となることから、ローレンツ力Fがアーク消弧室146側に作用し、アークがアーク消弧室146側に引き伸ばされることを除いては同様のアーク消弧機能が発揮される。
 このとき、アーク消弧用永久磁石143及び144は絶縁筒体140に形成された磁石収納ポケット141及び142内に配置されているので、アーク151が直接アーク消弧用永久磁石143及び144に接触することがない。このため、アーク消弧用永久磁石143及び144の磁気特性を安定して維持することができ、遮断性能を安定化させることができる。
 また、絶縁筒体140によって、金属角筒体104の内周面を覆って絶縁できるので、電流遮断時のアークの短絡がなく、確実に電流遮断を行うことができる。
 さらに、絶縁機能、アーク消弧用永久磁石143及び144の位置決め機能及びアーク消弧用永久磁石143及び144のアークからの保護機能を1つの絶縁筒体140で行うことができるので、製造コストを低減させることができる。
 なお、絶縁筒体140の材質は、絶縁性を有し且つ通常使用する不飽和ポリエステル樹脂やフェノール樹脂などの熱硬化樹脂でなる合成樹脂成型材の熱伝導率(0.2W/mK)より高い熱伝導率を有すれば任意の高熱伝導性材を適用することができる。
 次に、本発明の第2の実施形態について図5及び図6を参照して説明する。
 この第2の実施形態では、絶縁筒体の構成を変更したものである。
 すなわち、第2の実施形態では、絶縁筒体140を図6に示すように、不飽和ポリエステル樹脂、フェノール樹脂等の熱硬化性樹脂147に、この熱硬化性樹脂より熱伝導率の高いアルミナセラミックス、窒化アルミニウム、窒化ホウ素、鉄、アルミニウム、銅等の熱伝導率の高い粉末等でなる熱伝導率フィラー148を混入させて成型樹脂材の絶縁性能を維持しながら熱伝導率を高めた合成樹脂成型材としている。その他の構成については前述した第1の実施形態と同様の構成を有する。
 この第2の実施形態によると、熱硬化性樹脂147に熱伝導率フィラー148を混入することにより、合成樹脂成型材自体の熱伝導率を高めるようにしているので、前述した第1の実施形態と同様の作用効果を得ることができる。しかも、高熱伝導性材として熱硬化性樹脂147に熱伝導率フィラー148を混入させるだけであるで、前述した第1の実施形態におけるセラミックス系材料に比較して製造コストを大幅に抑制することができる。
 ここで、熱伝導率フィラー148としては、上述した熱硬化性樹脂より熱伝導率の高いアルミナセラミックス、窒化アルミニウム、窒化ホウ素、鉄、アルミニウム、銅等の熱伝導率の高い粉末等に限らず、熱硬化性樹脂より熱伝導率が高い任意の高熱伝導率材を適用することができ、性状としては粉状に限らず、短い繊維状等の任意の性状とすることができる。
 次に、本発明の第3の実施形態について図7を伴って説明する。
 この第3の実施形態は、絶縁筒体140の表面に高熱伝導材をインサート成型したものである。
 すなわち、第3の実施形態では、図7に示すように、前述した不飽和ポリエステル樹脂、フェノール樹脂でなる熱硬化性樹脂材で絶縁筒体140を成型する際に、銅、CuW、等の熱硬化性樹脂材より熱伝導率の高い金属製の高熱伝導性材としての高熱伝導率板149を内壁面側となるようにインサート成型している。その他の構成については前述した第1の実施形態と同様の構成を有する。
 この第3の実施形態によると、絶縁筒体140の内壁面に高熱伝導性材としての金属の高熱伝導率板149をインサート成型しているので、開極時に発生するアーク151が引き伸ばされて絶縁筒体140の内壁面の近傍に到達したときに、アーク151の熱をアーク消弧室145の壁面内に効率よく伝熱することができる。したがって、アーク151の冷却を十分に行うことが可能となる。
 この結果、アーク電界を高めることができ、所定のアーク電圧を得るためのアーク長を短くすることができる。したがって、アーク151を引き伸ばすための消弧スペースを小さくすることができ、接点装置100の小型化・軽量化を図ることができる。
 なお、上記第3の実施形態においては、高熱伝導率板149をインサート成型する場合について説明したが、これに限定されるものではなく、絶縁筒体140の内周面にこの絶縁筒体を構成する熱硬化性樹脂材より高い熱伝導率を有する任意の金属材やセラミックスをコーティングするようにしてもよい。
 また、熱硬化性樹脂材よりも熱伝導率の高い金属の高熱伝導率板149に、絶縁材をコーティングしたものを絶縁筒体140の内壁に、インサート成型又は接着、ネジ止めして固定してもよい。
 次に、本発明の第4の実施形態について図8を伴って説明する。
 この第4の実施形態では、高熱伝導率板をインサート成型する場合に代えて絶縁筒体140の内周面を覆う金属熱伝導材を装着したものである。
 すなわち、第4の実施形態では、図8に示すように、不飽和ポリエステル樹脂、フェノール樹脂等の熱硬化性樹脂で構成された絶縁筒体140の内周面に、銅、CuW、等の熱硬化性樹脂材より熱伝導率の高い高熱伝導性材で構成された高熱伝導率筒体150を密着させて配置している。高熱伝導率筒体150の配置方法は、接着、ネジ止めなどの機械的な結合を採用している。その他の構成については前述した第1の実施形態と同様の構成を有する。
 この第4の実施形態によると、絶縁筒体140の内周面が高熱伝導率筒体150を密着させて配置したので、前述した第3の実施形態と同様の作用効果を得ることができる。
 ここで、高熱伝導率筒体150の材質は絶縁筒体140を構成する熱硬化性樹脂より熱伝導率が高ければ任意の高熱伝導性材を適用することができる。
 なお、上記第1~第4の実施形態においては、絶縁筒体を高熱伝導率化するか、アーク151と接触する内壁面に高熱伝導性材を配置する場合について説明したが、これに限定されるものではなく、絶縁筒体を高熱伝導率化するとともに、絶縁筒体の内壁面に高熱伝導性材を配置するようにしてもよい。
 また、上記第3及び第4の実施形態において、高熱伝導材の配置は絶縁筒体140の内壁面全域に配置する必要はなく、少なくとも開極時に発生するアーク151が触れる内壁面にのみ配置すればよい。
 また、上記第1~第4の実施形態においては、接点装置100の接点収納ケース102を金属角筒体104と固定接点支持絶縁基板105と絶縁筒体140とで構成する場合について説明したが、これに限定されるものではなく、固定接点支持絶縁基板105を省略して、金属角筒体104と下端を開放した桶状の絶縁筒体とその下面を覆う絶縁底板とで構成することができる。
 また、接点機構101も上記実施形態の構成に限定されるものではなく、任意の構成の接点機構を適用することができる。
 例えば、図9(a)及び(b)に示すように、支持導体部114にC字状部115における上板部116を省略した形状となるL字状部160を連結するようにしてもよい。この場合でも、固定接触子111及び112に可動接触子130を接触させた閉極状態で、L字状部160の垂直板部を流れる電流によって生じる磁束を固定接触子111及び112と可動接触子130との接触部に作用させることができる。このため、固定接触子111及び112と可動接触子130との接触部における磁束密度を高めて電磁反発力に抗するローレンツ力を発生させることができる。
 また、図10(a)及び(b)に示すように、凹部132を省略して平板状に形成するようにしてもよい。
 また、上記第1~第4の実施形態においては、可動プランジャ215に連結軸131を螺合させる場合について説明したが、螺合に限らず、任意の接続方法を適用することができ、さらには可動プランジャ215と連結軸131とを一体に形成するようにしてもよい。
 また、連結軸131と可動接触子130との連結が、連結軸131の先端部にフランジ部131aを形成し、接触スプリング134及び可動接触子130を挿通してから可動接触子130の下端をCリングで固定する場合について説明したが、これに限定されるものではない。すなわち、連結軸131のCリング位置に半径方向に突出する位置決め大径部を形成し、これに可動接触子130を当接させてから接触スプリング134を配置し、この接触スプリング134の上端をCリングによって固定するようにしてもよい。
 また、電磁石ユニット200についても、上記構成に限定されるものではなく、任意の構成の電磁石ユニットを適用することができ、要は可動接触子130を固定接触子111及び112に対して接離可能に駆動できればよいものである。
 また、上記第1~第4の実施形態においては、接点収納ケース102及びキャップ230で密封容器を構成し、この密封容器内にガスを封入する場合について説明したが、これに限定されるものではなく、遮断する電流が低い場合にはガス封入を省略するようにしてもよい。
 10…電磁接触器、100…接点装置、101…接点機構、102…接点収納ケース、104…金属角筒体、105…固定接点支持絶縁基板、111,112…固定接触子、114…支持導体部、115…C字状部、121…絶縁カバー、130…可動接触子、130a…接点部、131…連結軸、134…接触スプリング、140…絶縁筒体、141,142…磁石収納ポケット、143,144…アーク消弧用永久磁石、145,146…アーク消弧室、147…樹脂成型材、148…熱伝導率フィラー、149…高熱伝導性板、150…高熱電導率筒体、151…アーク、200…電磁石ユニット、201…磁気ヨーク、203…円筒状補助ヨーク、204…スプール、208…励磁コイル、210…上部磁気ヨーク、214…復帰スプリング、215…可動プランジャ

Claims (9)

  1.  絶縁性を有する接点収納ケース内に所定間隔を保って配置された一対の固定接触子に対して可動接触子を接離可能に配置するとともに、一対の固定接触子の接点と可動接触子の接点との接触位置にアーク消弧室を形成し、
     前記アーク消弧室の少なくともアークと接触する内壁面側を合成樹脂成型材より高い熱伝導率を有する高熱伝導性材で形成したことを特徴とする電磁接触器。
  2.  前記高熱伝導性材は、アルミナセラミックス、窒化アルミニウム、窒化ホウ素の何れかを含んでいることを特徴とする請求項1に記載の電磁接触器。
  3.  前記高熱伝導性材は、合成樹脂成型材の内面にインサート成型されていることを特徴とする請求項1又は2に記載の電磁接触器。
  4.  前記アーク消弧室は熱伝導フィラーを混入させた合成樹脂成型材で構成されていることを特徴とする請求項1に記載の電磁接触器。
  5.  前記熱伝導フィラーは、アルミナセラミックス、窒化アルミニウム、鉄、アルミニウム、銅の何れかを含んでいることを特徴とする請求項4に記載の電磁接触器。
  6.  前記アーク消弧室の内表面に合成樹脂成型材より高い熱伝導率を有する金属熱伝導材を配置したことを特徴とする請求項1に記載の電磁接触器。
  7.  前記金属熱伝導材は、合成樹脂成型材の内面にインサート成型されていることを特徴とする請求項6に記載の電磁接触器。
  8.  前記金属熱伝導材は、合成樹脂成型材の内面を覆うように装着されていることを特徴とする請求項6に記載の電磁接触器。
  9.  前記金属熱伝導材は、合成樹脂成型材の内面にコーティングされていることを特徴とする請求項6に記載の電磁接触器。
PCT/JP2014/002999 2013-07-05 2014-06-05 電磁接触器 WO2015001710A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020157024351A KR102206249B1 (ko) 2013-07-05 2014-06-05 전자기 접촉기
EP14819501.9A EP3018688A4 (en) 2013-07-05 2014-06-05 Electromagnetic contactor
CN201480012701.5A CN105009248B (zh) 2013-07-05 2014-06-05 电磁接触器
JP2015525015A JP6514104B2 (ja) 2013-07-05 2014-06-05 電磁接触器
US14/847,757 US9583291B2 (en) 2013-07-05 2015-09-08 Electromagnetic contactor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013142057 2013-07-05
JP2013-142057 2013-07-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/847,757 Continuation US9583291B2 (en) 2013-07-05 2015-09-08 Electromagnetic contactor

Publications (1)

Publication Number Publication Date
WO2015001710A1 true WO2015001710A1 (ja) 2015-01-08

Family

ID=52143317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002999 WO2015001710A1 (ja) 2013-07-05 2014-06-05 電磁接触器

Country Status (6)

Country Link
US (1) US9583291B2 (ja)
EP (1) EP3018688A4 (ja)
JP (2) JP6514104B2 (ja)
KR (1) KR102206249B1 (ja)
CN (1) CN105009248B (ja)
WO (1) WO2015001710A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10133010B2 (en) 2015-05-29 2018-11-20 Corning Optical Communications LLC Fiber optic cable assemblies with cap apparatuses for sealing optical fiber connectors and associated methods
JP2018198117A (ja) * 2017-05-23 2018-12-13 パナソニックIpマネジメント株式会社 電磁リレー
US10209456B2 (en) 2015-05-29 2019-02-19 Corning Optical Communications LLC Fiber optic cable assemblies with cap apparatuses for sealing optical fiber connectors and associated methods
EP3382732A4 (en) * 2015-11-27 2019-06-26 DSM IP Assets B.V. CIRCUIT BREAKER BENCH WITH MOLDED HOUSING
WO2020031403A1 (ja) * 2018-08-10 2020-02-13 オムロン株式会社 リレー
WO2020049756A1 (ja) * 2018-09-07 2020-03-12 オムロン株式会社 リレー及びリレーの製造方法
CN111725029A (zh) * 2019-03-19 2020-09-29 富士通电子零件有限公司 电磁继电器

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017106300B4 (de) * 2017-03-23 2023-07-27 Schaltbau Gmbh Schaltgerät mit verbesserter permanentmagnetischer Lichtbogenlöschung
CN107123574B (zh) * 2017-07-05 2020-10-16 厦门宏发电力电器有限公司 提高灭弧能力的高压直流继电器
CN208622653U (zh) * 2018-04-16 2019-03-19 泰科电子(深圳)有限公司 继电器
JP2020092041A (ja) * 2018-12-06 2020-06-11 パナソニックIpマネジメント株式会社 電磁継電器
CN111430185B (zh) * 2019-01-09 2022-06-17 厦门台松精密电子有限公司 具有散热功能的继电器结构
JP7390791B2 (ja) * 2019-01-18 2023-12-04 オムロン株式会社 リレー
KR20200144271A (ko) * 2019-06-18 2020-12-29 엘에스일렉트릭(주) 직류 릴레이
JP7435487B2 (ja) * 2021-01-22 2024-02-21 富士電機機器制御株式会社 密閉型電磁接触器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142195A (ja) * 2010-12-28 2012-07-26 Fujitsu Component Ltd 電磁継電器
JP2012199095A (ja) * 2011-03-22 2012-10-18 Panasonic Corp 接点装置
JP2012243592A (ja) 2011-05-19 2012-12-10 Fuji Electric Co Ltd 電磁接触器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1255833B (de) * 1963-08-10 1967-12-07 Siemens Ag Verfahren und Einrichtung zum Aufheizen von Gasen in einem Plasmabrenner
JPS5945812U (ja) * 1982-09-16 1984-03-27 三菱電機株式会社 電気開閉装置
JP2925402B2 (ja) * 1991-09-11 1999-07-28 三菱電機株式会社 高熱伝導性低収縮湿式不飽和ポリエステル系樹脂組成物を成形してなる筐体を有する回路遮断器
JP4525153B2 (ja) * 2003-06-05 2010-08-18 オムロン株式会社 端子のシール構造およびそれに用いるシール材
JP2005078926A (ja) * 2003-08-29 2005-03-24 Toshiba Lighting & Technology Corp 蛍光ランプ
JP2006019148A (ja) * 2004-07-01 2006-01-19 Matsushita Electric Works Ltd 電磁開閉装置
JP5227890B2 (ja) * 2009-05-22 2013-07-03 パナソニック株式会社 スイッチ装置
CN102262981B (zh) * 2011-01-11 2013-06-19 沈阳二一三控制电器制造有限公司 两极直流接触器
JP5430800B2 (ja) * 2011-05-16 2014-03-05 三菱電機株式会社 開閉器
JP5809443B2 (ja) 2011-05-19 2015-11-10 富士電機株式会社 接点機構及びこれを使用した電磁接触器
JP5689741B2 (ja) * 2011-05-19 2015-03-25 富士電機株式会社 電磁接触器
KR101354405B1 (ko) * 2011-06-07 2014-01-22 후지쯔 콤포넌트 가부시끼가이샤 전자계전기 및 전자계전기의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012142195A (ja) * 2010-12-28 2012-07-26 Fujitsu Component Ltd 電磁継電器
JP2012199095A (ja) * 2011-03-22 2012-10-18 Panasonic Corp 接点装置
JP2012243592A (ja) 2011-05-19 2012-12-10 Fuji Electric Co Ltd 電磁接触器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3018688A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10133010B2 (en) 2015-05-29 2018-11-20 Corning Optical Communications LLC Fiber optic cable assemblies with cap apparatuses for sealing optical fiber connectors and associated methods
US10209456B2 (en) 2015-05-29 2019-02-19 Corning Optical Communications LLC Fiber optic cable assemblies with cap apparatuses for sealing optical fiber connectors and associated methods
EP3382732A4 (en) * 2015-11-27 2019-06-26 DSM IP Assets B.V. CIRCUIT BREAKER BENCH WITH MOLDED HOUSING
JP2018198117A (ja) * 2017-05-23 2018-12-13 パナソニックIpマネジメント株式会社 電磁リレー
WO2020031403A1 (ja) * 2018-08-10 2020-02-13 オムロン株式会社 リレー
US11348750B2 (en) 2018-08-10 2022-05-31 Omron Corporation Relay
WO2020049756A1 (ja) * 2018-09-07 2020-03-12 オムロン株式会社 リレー及びリレーの製造方法
JP2020042934A (ja) * 2018-09-07 2020-03-19 オムロン株式会社 リレー及びリレーの製造方法
JP7077884B2 (ja) 2018-09-07 2022-05-31 オムロン株式会社 リレー及びリレーの製造方法
CN111725029A (zh) * 2019-03-19 2020-09-29 富士通电子零件有限公司 电磁继电器

Also Published As

Publication number Publication date
US9583291B2 (en) 2017-02-28
CN105009248A (zh) 2015-10-28
JP6514104B2 (ja) 2019-05-15
US20150380193A1 (en) 2015-12-31
JP2017120793A (ja) 2017-07-06
KR102206249B1 (ko) 2021-01-22
EP3018688A4 (en) 2017-02-22
EP3018688A1 (en) 2016-05-11
CN105009248B (zh) 2017-05-31
KR20160030875A (ko) 2016-03-21
JPWO2015001710A1 (ja) 2017-02-23

Similar Documents

Publication Publication Date Title
WO2015001710A1 (ja) 電磁接触器
JP5684650B2 (ja) 電磁接触器
JP5856426B2 (ja) 接点装置及びこれを使用した電磁接触器
JP5727862B2 (ja) 電磁接触器
JP5684649B2 (ja) 電磁接触器
JP5689741B2 (ja) 電磁接触器
JP5767508B2 (ja) 電磁接触器
JP5965218B2 (ja) 電磁接触器
WO2012157176A1 (ja) 電磁接触器
JP5914065B2 (ja) 開閉器
JP5864902B2 (ja) 電磁接触器の消弧室組立方法
US9202652B2 (en) Electromagnetic contactor
JP5727861B2 (ja) 電磁接触器
JP2014116256A (ja) 電磁接触器
JP6281301B2 (ja) 接点装置及びこれを使用した電磁接触器
JP6291871B2 (ja) 接点装置及びこれを使用した電磁接触器
JP2015176810A (ja) 電磁接触器
JP6309717B2 (ja) 電磁接触器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14819501

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014819501

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015525015

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20157024351

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE