WO2015001647A1 - 内燃機関の排気浄化システム - Google Patents

内燃機関の排気浄化システム Download PDF

Info

Publication number
WO2015001647A1
WO2015001647A1 PCT/JP2013/068405 JP2013068405W WO2015001647A1 WO 2015001647 A1 WO2015001647 A1 WO 2015001647A1 JP 2013068405 W JP2013068405 W JP 2013068405W WO 2015001647 A1 WO2015001647 A1 WO 2015001647A1
Authority
WO
WIPO (PCT)
Prior art keywords
ratio
catalyst
exhaust
air
internal combustion
Prior art date
Application number
PCT/JP2013/068405
Other languages
English (en)
French (fr)
Inventor
慎太郎 堀田
入澤 泰之
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2013/068405 priority Critical patent/WO2015001647A1/ja
Priority to CN201380077994.0A priority patent/CN105378242B/zh
Priority to US14/902,133 priority patent/US10047689B2/en
Priority to JP2015524975A priority patent/JP6149930B2/ja
Priority to EP13888582.7A priority patent/EP3018314B1/en
Publication of WO2015001647A1 publication Critical patent/WO2015001647A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0052Feedback control of engine parameters, e.g. for control of air/fuel ratio or intake air amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0245Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by increasing temperature of the exhaust gas leaving the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D2041/0265Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to decrease temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • F02D41/107Introducing corrections for particular operating conditions for acceleration and deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/49Detecting, diagnosing or indicating an abnormal function of the EGR system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust gas purification system for an internal combustion engine.
  • Patent Document 1 discloses a configuration in which an exhaust purification device including a selective catalytic reduction catalyst (SCR (Selective Catalytic Reduction) catalyst) is disposed in an exhaust passage of an internal combustion engine, and nitrogen oxide (NO X ) contained in exhaust gas.
  • SCR Selective Catalytic Reduction
  • NO X nitrogen oxide
  • Patent Document 2 describes that when the air-fuel ratio of the air-fuel mixture burned in the cylinder of the internal combustion engine is large (when thin), the ratio of NO 2 in the exhaust gas becomes larger than when it is small (when rich). ing.
  • Patent Document 3 in an arrangement in which an exhaust gas purification device including an SCR catalyst is disposed in an exhaust passage of an internal combustion engine, any one of an EGR rate and a fuel injection timing is set so that the NO 2 ratio becomes approximately 1 ⁇ 2 (50 percent). Techniques for controlling either or both are described.
  • JP 2012-167549 A Japanese Utility Model Publication No. 03-87915 JP 2008-231950 A
  • the present invention has been made in view of the above circumstances, and in an exhaust purification system in which an exhaust purification device including an SCR catalyst is disposed in an exhaust passage of an internal combustion engine, the operating state of the internal combustion engine and the purification performance of the exhaust purification device.
  • the present invention provides a technique capable of adjusting the NO 2 ratio while suppressing adverse effects on the above.
  • the present invention is arranged in an exhaust passage of an internal combustion engine, and includes an exhaust purification device including an SCR catalyst, and a part of exhaust gas (EGR gas) is recirculated from the exhaust passage of the internal combustion engine to the intake passage.
  • EGR gas exhaust gas
  • the NO 2 ratio is adjusted using a method suitable for the operating state of the internal combustion engine or the state of the exhaust gas purification device.
  • the first aspect of the exhaust gas purification system for an internal combustion engine is: An exhaust purification device that is disposed in an exhaust passage of the internal combustion engine and includes a selective reduction catalyst (SCR catalyst); An EGR device that recirculates a portion of the exhaust gas flowing through the exhaust passage to the intake passage as EGR gas;
  • SCR catalyst selective reduction catalyst
  • EGR device that recirculates a portion of the exhaust gas flowing through the exhaust passage to the intake passage as EGR gas
  • NO 2 ratio which is the ratio of nitrogen dioxide in the NO X contained in the exhaust
  • Processing means for executing at least one of the increasing processes
  • the NO 2 ratio of the exhaust gas discharged from the internal combustion engine becomes larger than when it is small (when the fuel concentration of the air-fuel mixture is high). Further, when the amount of EGR gas is large or the EGR rate is large, the NO 2 ratio of the exhaust gas discharged from the internal combustion engine becomes larger than when the amount of EGR gas is small or the EGR rate is small.
  • the temperature of the exhaust gas discharged from the internal combustion engine tends to be higher than when the amount of EGR gas is small or the EGR rate is small. For this reason, when the EGR gas or the EGR rate is increased in a situation where the temperature of the exhaust purification device is high, the temperature of the exhaust purification device may deviate from the active temperature range (temperature purification window). As a result, the purification performance of the exhaust emission control device may be reduced, and the emission may be deteriorated.
  • the temperature of the exhaust gas purification device is high, when the increase amount of the air-fuel ratio is increased and the increase amount of the EGR gas (or EGR rate) is reduced, the temperature increase amount of the exhaust gas purification device is reduced.
  • the NO 2 ratio can be increased while keeping it small. As a result, the purification performance of the exhaust purification device is enhanced.
  • the increase amount of the air-fuel ratio is increased and the increase amount of the EGR gas is decreased
  • the air-fuel ratio is increased without increasing the EGR gas, and the EGR gas is decreased and the air-fuel ratio is decreased.
  • a mode in which the fuel ratio is increased and a mode in which the air-fuel ratio is increased while the EGR gas is slightly increased are included. These three modes may be properly used according to the temperature of the exhaust purification device.
  • the air-fuel ratio of the air-fuel mixture may be increased while decreasing the EGR gas.
  • the NO 2 ratio can be increased while lowering the temperature of the exhaust purification device.
  • the temperature of the exhaust purification device is equal to or lower than the upper limit value of the temperature purification window and the difference between the temperature of the exhaust purification device and the upper limit value is relatively small, the air-fuel ratio of the air-fuel mixture is increased without increasing the EGR gas. You may let them. In that case, it is possible to increase the NO 2 ratio while suppressing the temperature rise of the exhaust gas purification device.
  • the air-fuel ratio of the air-fuel mixture is increased while slightly increasing the EGR gas. It may be increased. In that case, the NO 2 ratio can be increased while suppressing an excessive temperature rise in the exhaust purification device. Furthermore, it is also possible to obtain the reducing effect or knocking suppressing effect of the NO X generation amount due to an increase in EGR gas.
  • control means may control the processing means so that the increase amount of the EGR gas is increased while the increase amount of the air-fuel ratio is decreased. . In that case, the NO 2 ratio can be increased while increasing the temperature of the exhaust purification device.
  • An exhaust purification device that is disposed in an exhaust passage of the internal combustion engine and includes a selective reduction catalyst (SCR catalyst);
  • An EGR device that recirculates a portion of the exhaust gas flowing through the exhaust passage to the intake passage as EGR gas;
  • NO 2 ratio which is the ratio of nitrogen dioxide in the NO X contained in the exhaust
  • Processing means for executing at least one of the increasing processes;
  • Control means for controlling the processing means so that the air-fuel ratio of the air-fuel mixture is increased at least when the internal combustion engine is in the transient operation state and the amount of increase in the air-fuel ratio is larger than when the internal combustion engine is not in the transient operation state When, You may make it provide.
  • the process of increasing the air-fuel ratio of the mixture is longer than the time to be reflected to NO 2 ratio. Therefore, if the NO 2 ratio is increased by the process of increasing the EGR gas when the internal combustion engine is in a transient operation state, the NO 2 ratio may not be a ratio suitable for the transient operation state of the internal combustion engine. .
  • the NO 2 ratio can be set to a ratio suitable for the transient operation state of the internal combustion engine.
  • the torque fluctuation of the internal combustion engine may increase.
  • the torque fluctuation that the driver can tolerate becomes larger than when the internal combustion engine is not in the transient operation state. Therefore, the NO 2 ratio can be changed while reducing the uncomfortable feeling that the driver learns.
  • the exhaust purification device may include a three-way catalyst arranged upstream of the SCR catalyst.
  • NO 2 in the exhaust is reduced to nitrogen monoxide (NO) by the three-way catalyst.
  • the purification capacity of the three-way catalyst is low (for example, when the temperature of the three-way catalyst deviates from the temperature purification window, when the flow rate of exhaust gas passing through the three-way catalyst is high, or when the three-way catalyst deteriorates)
  • the amount of NO 2 reduced by the three-way catalyst is reduced.
  • the NO 2 ratio of the exhaust flowing into the SCR catalyst increases.
  • control means may control the processing means so that the increase amount of the NO 2 ratio is smaller when the purification capability of the three-way catalyst is low than when it is high.
  • control when such control is performed, when the purification capacity of the three-way catalyst is low, the NO 2 ratio of the exhaust gas flowing into the SCR catalyst is suppressed from becoming excessively large.
  • the exhaust purification device may include an occlusion reduction type catalyst (NSR (NO X Storage Reduction) catalyst) disposed upstream of the SCR catalyst.
  • NSR NO X Storage Reduction
  • the NSR catalyst When the NSR catalyst is arranged upstream from the SCR catalyst, NO in the exhaust is oxidized to NO 2 by the NSR catalyst.
  • the purification capability of the NSR catalyst is low (for example, when the temperature of the NSR catalyst deviates from the temperature purification window, when the flow rate of exhaust gas passing through the NSR catalyst is large, or when the NSR catalyst is deteriorated, etc.) ) Reduces the amount of NO oxidized by the NSR catalyst. As a result, the NO 2 ratio of the exhaust flowing into the SCR catalyst becomes small.
  • control means may control the processing means so that the increase amount of the NO 2 ratio is larger when the purification capability of the NSR catalyst is low than when it is high.
  • control when such control is performed, when the purification capability of the NSR catalyst is low, the NO 2 ratio of the exhaust gas flowing into the SCR catalyst is suppressed from becoming excessively small.
  • the exhaust purification device may include an NSR catalyst arranged upstream from the SCR catalyst and a three-way catalyst arranged upstream from the NSR catalyst.
  • the control means may adjust the amount of increase in the NO 2 ratio according to the purification performance of the three-way catalyst and the purification performance of the NSR catalyst.
  • the control means increases the amount of NO 2 ratio compared to the case where the purification performance of the three-way catalyst and the NSR catalyst is appropriate. What is necessary is just to control a processing means so that becomes small.
  • the control means has a larger increase in the NO 2 ratio than when the purification performance of the three-way catalyst and the NSR catalyst is appropriate. What is necessary is just to control a processing means so that it may become.
  • the control means may adjust the amount of increase in the NO 2 ratio according to the degree of decrease in the purification performance of each catalyst.
  • the NO 2 ratio may be adjusted by adjusting the air-fuel ratio without decreasing it. Further, the NO 2 ratio may be adjusted by adjusting the air-fuel ratio while slightly reducing the amount of EGR gas. Further, the NO 2 ratio may be adjusted by adjusting the air-fuel ratio while increasing the amount of EGR gas. According to these methods, the NO 2 ratio can be set to a desired ratio while suppressing the occurrence of knocking.
  • the EGR device may be an apparatus that includes an EGR passage that connects the exhaust passage and the intake passage, an EGR valve that changes the cross-sectional area of the EGR passage, and the like.
  • it may be a variable valve mechanism that can adjust the amount of burnt gas (internal EGR gas) remaining in the cylinder by changing at least one of the opening / closing timing of the intake valve and the opening / closing timing of the exhaust valve. .
  • an exhaust purification device including an SCR catalyst is disposed in an exhaust passage of an internal combustion engine, it is possible to suppress adverse effects on the operating state of the internal combustion engine, the purification performance of the exhaust purification device, and the like. , NO 2 ratio can be adjusted.
  • FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which the present invention is applied and its intake / exhaust system.
  • An internal combustion engine 1 shown in FIG. 1 is a four-stroke cycle spark ignition type internal combustion engine (gasoline engine) operated in a lean burn mode.
  • the internal combustion engine 1 has a plurality of cylinders 2. In FIG. 1, the internal combustion engine 1 has four cylinders 2, but the number of cylinders 2 may be three or less, or five or more.
  • the internal combustion engine 1 includes a fuel injection valve 3 for supplying fuel to each cylinder 2.
  • the fuel injection valve 3 may be a valve device that injects fuel into the cylinder 2 or may be a valve device that injects fuel into the intake port.
  • the internal combustion engine 1 is connected to the intake pipe 4.
  • the intake pipe 4 is a pipe for guiding fresh air (air) taken from the atmosphere to the internal combustion engine 1.
  • An intake throttle valve 40 is disposed in the middle of the intake pipe 4.
  • the intake throttle valve 40 adjusts the amount of air flowing in the intake pipe 4 by changing the passage cross-sectional area in the intake pipe 4.
  • a compressor 60 of a centrifugal supercharger (turbocharger) 6 is disposed in the intake pipe 4 downstream of the intake throttle valve 40.
  • the compressor 60 compresses intake air by using rotational energy of a turbine 61 described later.
  • An intercooler 41 is disposed in the intake pipe 4 downstream of the compressor 60.
  • the intercooler 41 performs heat exchange between the air or cooling water and the intake air.
  • the internal combustion engine 1 is connected to the exhaust pipe 5.
  • the exhaust pipe 5 is a pipe for circulating burned gas (exhaust gas) discharged from each cylinder 2.
  • a turbine 61 of the turbocharger 6 is disposed in the middle of the exhaust pipe 5.
  • the turbine 61 converts the heat energy of the exhaust into rotational energy.
  • An exhaust gas purification device is disposed in the exhaust pipe 5 downstream of the turbine 61.
  • the exhaust purification device includes a first catalyst casing 50, a second catalyst casing 51, and a third catalyst casing 52.
  • the first catalyst casing 50 accommodates a three-way catalyst composed of a honeycomb structure covered with a coat layer such as alumina and a noble metal (for example, platinum, palladium, rhodium, etc.) supported on the coat layer. .
  • the second catalyst casing 51 is disposed downstream of the first catalyst casing 50.
  • the second catalyst casing 51 includes a honeycomb structure covered with a coat layer such as alumina, a noble metal (platinum, palladium, rhodium, etc.) supported on the coat layer, and an NO X storage agent (alkaline) supported on the coat layer. Occlusion, alkaline earth, etc.).
  • the third catalyst casing 52 is disposed downstream of the second catalyst casing 51.
  • the third catalyst casing 52 includes a honeycomb structure made of cordierite or Fe—Cr—Al heat-resistant steel, an alumina-based or zeolite-based coat layer that covers the honeycomb structure, and a noble metal supported on the coat layer ( SCR catalyst composed of platinum, palladium, etc.) is accommodated.
  • the internal combustion engine 1 includes an EGR device 7.
  • the EGR device 7 includes an EGR passage 70, an EGR valve 71, and an EGR cooler 72.
  • the EGR passage 70 connects a portion of the exhaust pipe 5 upstream of the turbine 61 and a portion of the intake pipe 4 downstream of the intercooler 41.
  • the EGR passage 70 is a passage that guides a part of the exhaust gas (EGR gas) flowing through the exhaust pipe 5 to the intake pipe 4.
  • the EGR valve 71 and the EGR cooler 72 are disposed in the middle of the EGR passage 70.
  • the EGR valve 71 is a valve device that adjusts the amount of EGR gas by changing the cross-sectional area of the EGR passage 70.
  • the EGR cooler 72 is a device that exchanges heat between the EGR gas flowing through the EGR passage 70 and the cooling water or the atmosphere.
  • the internal combustion engine 1 configured as described above is provided with an electronic control unit (ECU) 8.
  • the ECU 8 includes an air-fuel ratio sensor (air-fuel ratio sensor) 9, an oxygen concentration sensor (O 2 sensor) 10, a first temperature sensor 11, a second temperature sensor 12, a third temperature sensor 13, a crank position sensor 14, and an accelerator position sensor 15. , And various sensors such as an air flow meter 42.
  • the air-fuel ratio sensor 9 is attached to the exhaust pipe 5 upstream from the first catalyst casing 50, and outputs an electric signal correlated with the air-fuel ratio of the exhaust flowing into the first catalyst casing 50.
  • the oxygen concentration sensor 10 is attached to the exhaust pipe 5 between the first catalyst casing 50 and the second catalyst casing 51 and outputs an electrical signal correlated with the oxygen concentration of the exhaust gas flowing out from the first catalyst casing 50.
  • the first temperature sensor 11 is attached to the exhaust pipe 5 between the first catalyst casing 50 and the second catalyst casing 51 and outputs an electrical signal correlated with the temperature of the exhaust gas flowing out from the first catalyst casing 50.
  • the second temperature sensor 12 is attached to the exhaust pipe 5 between the second catalyst casing 51 and the third catalyst casing 52 and outputs an electrical signal correlated with the temperature of the exhaust gas flowing out from the second catalyst casing 51.
  • the third temperature sensor 13 is attached to the exhaust pipe 5 downstream from the third catalyst casing 52 and outputs an electrical signal correlated with the temperature of the exhaust gas flowing out from the third catalyst casing 52.
  • the crank position sensor 14 is attached to the internal combustion engine 1 and outputs an electrical signal correlated with the rotational position of the crankshaft.
  • the accelerator position sensor 15 is attached to the accelerator pedal 16 and outputs an electrical signal correlated with the amount of operation of the accelerator pedal 16 (accelerator opening).
  • the air flow meter 42 is attached to the intake pipe 4 upstream of the intake throttle valve 40 and outputs an electrical signal correlated with the mass of the air flowing through the intake pipe 4 (intake air amount).
  • the ECU 8 is electrically connected to various devices such as the fuel injection valve 3, the intake throttle valve 40, and the EGR valve 71.
  • the ECU 8 controls the various devices described above based on the output signals of the various sensors described above.
  • the ECU 8 calculates the rotational speed of the crankshaft (engine rotational speed) from the output signal of the crank position sensor 14.
  • the ECU 8 calculates a target intake air amount of the internal combustion engine 1 based on the engine speed, the output signal (accelerator opening) of the accelerator position sensor 15 and the like.
  • the ECU 8 controls the opening of the intake throttle valve 40 so that the output signal (intake air amount) of the air flow meter 42 matches the target intake air amount.
  • the ECU 8 determines the valve opening timing (fuel injection timing) and the valve opening period (fuel injection amount) of the fuel injection valve 3 based on the output signal (intake air amount) of the air flow meter 42, the accelerator opening, the engine speed, and the like. Control. At that time, the ECU 8 may feedback control the fuel injection amount so that the output signal of the air-fuel ratio sensor 9 matches the target air-fuel ratio.
  • the ECU 8 theoretically calculates the target air-fuel ratio when the operating state of the internal combustion engine 1 is in a low rotation / low load region or an intermediate rotation / medium load region (region A in FIG. 2).
  • a lean air-fuel ratio higher than the air-fuel ratio is set.
  • the region A is referred to as a lean operation region.
  • the ECU 8 sets the target air-fuel ratio to the stoichiometric air-fuel ratio when the operating state of the internal combustion engine 1 is in the high load region or the high rotation region (region B in FIG. 2).
  • the air-fuel ratio of the air-fuel mixture is adjusted for each region as shown in FIG. 2, the fuel consumption of the internal combustion engine 1 can be reduced.
  • the target air-fuel ratio is set to a lean air-fuel ratio
  • NO X purifying performance of the three-way catalyst contained in the first catalyst casing 50 becomes lower. Therefore, if the target air-fuel ratio is set to a lean air-fuel ratio, it is necessary to purify NO X in the exhaust gas by the NSR catalyst and the SCR catalyst in the third catalytic casing 52 of the second catalyst casing 51.
  • the NSR catalyst occludes or adsorbs NO X in the exhaust when the oxygen concentration of the exhaust flowing into the second catalyst casing 51 is high.
  • the NSR catalyst is occluded by the NSR catalyst when the oxygen concentration of the exhaust gas flowing into the second catalyst casing 51 is low and reducing components such as hydrocarbon (HC) and carbon monoxide (CO) are contained in the exhaust gas.
  • HC hydrocarbon
  • CO carbon monoxide
  • the released NO X is released, and the released NO X is reduced to nitrogen (N 2 ).
  • the rich spike process is a process for adjusting the fuel injection amount and the intake air amount so that the oxygen concentration in the exhaust gas is low and the HC and CO concentrations are high.
  • Rich spike treatment when the NO X storage amount of the NSR catalyst becomes more than a certain amount, previous rich spike action operating time from the end (preferably, operating time the target air-fuel ratio is set to a lean air-fuel ratio) Is executed when the travel distance from the end of the previous rich spike processing (preferably, the travel distance in which the target air-fuel ratio is set to the lean air-fuel ratio) exceeds the predetermined distance. That's fine.
  • the rich spike processing As a specific execution method of the rich spike processing, a method of executing at least one of processing for increasing the fuel injection amount of the fuel injection valve 3 or processing for decreasing the opening of the intake throttle valve 40 is used. Can do.
  • the rich spike process may be executed by a method of injecting fuel from the fuel injection valve 3 during the exhaust stroke of the cylinder 2.
  • the SCR catalyst adsorbs ammonia (NH 3 ) contained in the exhaust gas.
  • the SCR catalyst reduces NO X to nitrogen (N 2 ) by reacting NH 3 adsorbed on the SCR catalyst with NO X in the exhaust.
  • N 2 nitrogen
  • NH 3 supplied to the SCR catalyst is generated in a three-way catalyst or an NSR catalyst. For example, if the rich-spike treatment is executed, part of the NO X in the three-way catalyst is reduced to NH 3, part of the NO X released from the NSR catalyst is reduced to NH 3 in the NSR catalyst .
  • the amount of NH 3 produced in the NSR catalyst varies depending on the interval at which the rich spike process is executed, the air-fuel ratio at the time when the rich spike process is executed, and the like. Therefore, when NH 3 is supplied to the SCR catalyst, the execution interval of the rich spike process is set to an interval suitable for the generation of NH 3 , or the air-fuel ratio at the execution of the rich spike process is an empty space suitable for the generation of NH 3. What is necessary is just to set to an air-fuel ratio (for example, about 14.1).
  • the reaction rate of (2) is faster than the reaction rates of (1) and (3).
  • the reduction reaction (2) occurs in a lower temperature range than the (1) and (3). Therefore, by promoting the reaction of the (2), it is possible to increase the NO X purification performance of the SCR catalyst.
  • the reduction reaction (2) is likely to occur when the amount (mole) of nitrogen monoxide (NO) and the amount (mole) of nitrogen dioxide (NO 2 ) contained in the exhaust gas are substantially equal. Since most of NO X in the exhaust is occupied by NO and NO 2 , the reduction reaction of (2) becomes active when the NO 2 ratio is approximately 1 ⁇ 2.
  • NO 2 ratio adjustment process a process of approaching 1/2
  • FIG. 3 is a diagram showing the correlation between the air-fuel ratio of the air-fuel mixture and the NO 2 ratio.
  • the EGR rate the ratio of the EGR gas amount to the gas amount sucked into the cylinder 2
  • the NO 2 ratio becomes larger than when the EGR rate is small. Since the EGR rate increases as the EGR gas amount increases, it can be said that the NO 2 ratio increases when the EGR gas amount is large compared to when the EGR gas amount is small.
  • the operating state of the internal combustion engine 1, the purification performance of the exhaust purification device, etc. May be adversely affected.
  • the temperature of at least one of the three-way catalyst, the NSR catalyst, or the SCR catalyst is high, the exhaust gas temperature increases when the EGR rate is increased.
  • the temperature of the three-way catalyst, NSR catalyst, or SCR catalyst may be higher than the temperature purification window. If the temperature of at least one of the three-way catalyst, the NSR catalyst, or the SCR catalyst becomes higher than the temperature purification window, the purification performance of these catalysts may be lowered, leading to deterioration of emissions.
  • the temperature of at least one of the three-way catalyst, the NSR catalyst, or the SCR catalyst is low, if the EGR rate is decreased or the air-fuel ratio of the mixture is increased (changed to the lean air-fuel ratio), the exhaust gas Temperature drops. As a result, the temperature of the three-way catalyst, NSR catalyst, or SCR catalyst may be lower than the temperature purification window. If the temperature of at least one of the three-way catalyst, the NSR catalyst, or the SCR catalyst becomes lower than the temperature purification window, the purification performance of these catalysts may be lowered, and the emission may be deteriorated.
  • the ECU 8 determines that the NO 8 ratio when the operating state of the internal combustion engine 1 belongs to the lean operation region (region A in FIG. 2) described in the description of FIG.
  • the NO 2 ratio adjustment process is executed by a method according to the operating state of the internal combustion engine, the state of the exhaust purification device, and the like.
  • the ECU 8 compares the EGR with that when the temperature of the catalyst is low.
  • the amount of increase in gas was reduced and the amount of increase in air-fuel ratio was increased.
  • the amount of increase in EGR gas is larger than in other lean operation regions. Increase the air-fuel ratio increase while keeping it low.
  • the ECU 8 when the temperature of the three-way catalyst, the NSR catalyst, or the SCR catalyst is higher than a predetermined temperature (for example, an upper limit value of the temperature purification window, or a temperature obtained by subtracting a predetermined margin from the upper limit value), the ECU 8
  • the NO 2 ratio may be increased by increasing the air-fuel ratio of the air-fuel mixture without increasing the gas.
  • the ECU 8 may decrease the increase amount of the EGR gas and increase the increase amount of the air-fuel ratio as the temperature of the three-way catalyst, the NSR catalyst, or the SCR catalyst increases.
  • the air-fuel ratio is reduced while reducing the amount of EGR gas. It may be increased. In that case, since the temperature of the exhaust gas is further lowered, the NO 2 ratio can be increased while keeping the temperature of the three-way catalyst, the NSR catalyst, or the SCR catalyst in the temperature purification window.
  • knocking is likely to occur in the lean operation region (region A3 in FIG. 5) where the engine load is large. Therefore, when the operating state of the internal combustion engine 1 belongs to the region A3, if the NO 2 ratio is increased by increasing the air-fuel ratio while decreasing the amount of EGR gas, knocking may be more likely to occur. There is sex. Further, when the NO 2 ratio is decreased in the region A3, knocking is more likely to occur if the NO 2 ratio is decreased by a method of decreasing the EGR gas amount. Therefore, even when the NO 2 ratio is decreased, if the operating state of the internal combustion engine 1 belongs to the region A3, the air-fuel ratio of the air-fuel mixture is decreased without decreasing the EGR gas amount (the air-fuel ratio on the rich side). It is desirable to reduce the NO 2 ratio by the method of Hereinafter, an operation region in which knocking is likely to occur like the region A3 is referred to as a “knock region”.
  • the ECU 8 is compared with the case where the temperature of those catalysts is high, While increasing the amount of EGR gas, the amount of increase of the air-fuel ratio was kept small. For example, as shown in FIG. 5, in the lean operation region where the engine load is small and the engine rotation speed is small (region A2 in FIG. 5), the amount of increase in EGR gas is smaller than in other lean operation regions. Increase the air-fuel ratio and decrease the increase.
  • the ECU 8 when the temperature of the three-way catalyst, the NSR catalyst, or the SCR catalyst is lower than a predetermined temperature (for example, a lower limit value of the temperature purification window, or a temperature obtained by adding a predetermined margin to the lower limit value), the ECU 8
  • the NO 2 ratio may be increased by increasing the amount of EGR gas without increasing the fuel ratio.
  • the ECU 8 may increase the increase amount of the EGR gas and decrease the increase amount of the air-fuel ratio as the temperature of the three-way catalyst, the NSR catalyst, or the SCR catalyst decreases.
  • the temperature of the three-way catalyst, NSR catalyst, or SCR catalyst is close to the lower limit value of the temperature purification window or lower than the lower limit value, increase the EGR gas amount while reducing the air-fuel ratio. You may let them. In that case, since the temperature of the exhaust gas further increases, the NO 2 ratio can be increased while keeping the temperature of the three-way catalyst, the NSR catalyst, or the SCR catalyst in the temperature purification window.
  • the NO 2 ratio adjustment process is executed by a method of changing the air-fuel ratio of the air-fuel mixture without changing the EGR gas amount. It takes a certain amount of time (response delay time) until the NO 2 ratio changes after the ECU 8 outputs the command value related to the opening change of the EGR valve 71. For this reason, when the internal combustion engine 1 is in a transient operation, even if the NO 2 ratio adjustment process involving a change in the EGR gas amount is performed, the actual NO 2 ratio may not be a ratio suitable for the transient operation state. . As a result, the emission when the internal combustion engine 1 is transiently operated may be deteriorated.
  • the time it takes for the NO 2 ratio to change after the ECU 8 outputs the command value related to the change of the air-fuel ratio (change of the fuel injection amount) is sufficiently shorter than the response delay time. Therefore, when the internal combustion engine 1 is a transitional operation, if NO 2 ratio adjustment process performed by the method of increasing the air-fuel ratio without changing the EGR gas amount, NO 2 ratio while suppressing the deterioration of emission Can be adjusted. By the way, there is a concern that the method of changing the air-fuel ratio of the air-fuel mixture without changing the EGR gas amount has a greater torque fluctuation of the internal combustion engine 1 than the method of using both the change of the EGR gas amount and the change of the air-fuel ratio. Is done.
  • the torque fluctuation that the driver can tolerate becomes larger than when the internal combustion engine 1 is in the steady operation state. Therefore, the NO 2 ratio can be adjusted while reducing the uncomfortable feeling that the driver learns.
  • the NO 2 ratio can be adjusted while suppressing the deterioration of emissions.
  • the NO 2 ratio of the exhaust gas flowing into the SCR catalyst varies depending on the state of the three-way catalyst or the NSR catalyst.
  • the vertical axis in FIG. 6 represents the NO 2 ratio
  • the horizontal axis represents the exhaust position.
  • P1 in FIG. 6 indicates a position upstream from the first catalyst casing 50
  • P2 indicates a position between the first catalyst casing 50 and the second catalyst casing 51
  • P3 indicates the second catalyst casing 51 and the first catalyst casing 50.
  • the position between the three catalyst casings 52 is shown.
  • the NO 2 ratio at the position of P2 is larger than when the purification performance of the three-way catalyst and the NSR catalyst is appropriate.
  • the NO 2 ratio (R1 in FIG. 6) at the position P3 is larger than the NO 2 ratio R0 when the purification performance of the three-way catalyst and the NSR catalyst is appropriate.
  • the NO 2 ratio (R2 in FIG. 6) at the position P3 is greater than the NO 2 ratio R0 when the purification performance of the three-way catalyst and the NSR catalyst is appropriate. Get smaller.
  • the NO 2 ratio (R3 in FIG. 6) at the position of P3 has a size approximate to the NO 2 ratio at the position of P1.
  • the NO 2 ratio R3 at the position of P3 varies depending on the respective performance deterioration degrees of the three-way catalyst and the NSR catalyst.
  • the NO 2 ratio of the exhaust gas flowing into the SCR catalyst becomes larger than when the purification performance of the three-way catalyst and the NSR catalyst is appropriate. Therefore, the NO 2 ratio of the exhaust discharged from the internal combustion engine 1 may be made smaller than when the purification performance of the three-way catalyst and the NSR catalyst is appropriate.
  • the purification performance of the three-way catalyst is reduced, at least one of the increase amount of the EGR gas or the increase amount of the air-fuel ratio is compared with the case where the purification performance of the three-way catalyst and the NSR catalyst is appropriate. It only has to be made smaller.
  • the increase amount of the air-fuel ratio may be reduced without changing the amount of EGR gas. .
  • the NO 2 ratio of the exhaust gas flowing into the SCR catalyst is smaller than when the purification performance of the three-way catalyst and the NSR catalyst is appropriate. Therefore, the NO 2 ratio of the exhaust discharged from the internal combustion engine 1 may be made larger than when the purification performance of the three-way catalyst and the NSR catalyst is appropriate.
  • the purification performance of the NSR catalyst is reduced, at least one of the increase amount of the EGR gas or the increase amount of the air-fuel ratio is larger than when the purification performance of the three-way catalyst and the NSR catalyst is appropriate. It only has to be done.
  • the increase amount of the EGR gas or the increase amount of the air-fuel ratio may be corrected according to the degree of decrease in the performance of the three-way catalyst and the NSR catalyst.
  • the purification performance of the three-way catalyst and the NSR catalyst is as follows: when each catalyst is deteriorated, when the temperature of each catalyst deviates from the temperature purification window, when the flow rate of exhaust gas passing through each catalyst is large, etc. To drop.
  • the degree of deterioration of each catalyst can be specified by specifying the degree of deterioration of the oxygen storage capacity.
  • a method for specifying the degree of deterioration of the oxygen storage capacity a known method as described in JP-A-8-260949 can be used.
  • the relationship between the degree of deterioration of the three-way catalyst and the NO 2 reduction rate of the three-way catalyst (the ratio of the amount of NO 2 reduced by the three-way catalyst to the amount of NO 2 flowing into the three-way catalyst) is obtained in advance. In this case, when the three-way catalyst is deteriorated, the amount of NO 2 reduced by the three-way catalyst can be specified.
  • the degree of deterioration of the NSR catalyst and the NO oxidation rate of the NSR catalyst (the ratio of the amount of NO oxidized by the NSR catalyst to the amount of NO flowing into the NSR catalyst) is obtained in advance,
  • the amount of NO oxidized by the NSR catalyst can be specified.
  • the temperature of the three-way catalyst and the temperature of the NSR catalyst can be specified from the measured values of the first temperature sensor 11 and the second temperature sensor 12, respectively. Be previously obtained relation between the temperature and the NO 2 reduction ratio of the three-way catalyst of the three-way catalyst, NO 2 is reduced by the three way catalyst when the temperature of the three-way catalyst deviates from the temperature purification window The amount of can be specified. Similarly, if the relationship between the temperature of the NSR catalyst and the NO oxidation rate of the NSR catalyst is obtained in advance, the amount of NO oxidized by the NSR catalyst when the temperature of the NSR catalyst deviates from the temperature purification window is determined. Can be identified.
  • the flow rate of the exhaust gas passing through the three-way catalyst and the NSR catalyst can be specified from the measured value of the air flow meter 42 and the engine speed. If the relationship between the flow rate of the exhaust gas passing through the three-way catalyst and the NO 2 reduction rate of the three-way catalyst is determined in advance, the NO gas reduced by the three-way catalyst when the flow rate of the exhaust gas passing through the three-way catalyst is large. Two quantities can be specified. Similarly, if the relationship between the flow rate of exhaust gas passing through the NSR catalyst and the NO oxidation rate of the NSR catalyst is obtained in advance, the amount of NO oxidized by the NSR catalyst when the flow rate of exhaust gas passing through the NSR catalyst is high Can be specified.
  • the NO 2 ratio of the exhaust discharged from the internal combustion engine 1 can be calculated using the air-fuel ratio of the air-fuel mixture, the amount of EGR gas, the fuel injection timing, etc. as parameters. Therefore, the NO 2 ratio of the exhaust gas flowing into the SCR catalyst is calculated using the NO 2 ratio of the exhaust discharged from the internal combustion engine 1, the NO 2 reduction rate of the three-way catalyst, and the NO oxidation rate of the NSR catalyst as parameters. May be. In that case, the relationship between the NO 2 ratio of the exhaust discharged from the internal combustion engine 1, the NO 2 reduction rate of the three-way catalyst, the NO oxidation rate of the NSR catalyst, and the NO 2 ratio of the exhaust flowing into the SCR catalyst is determined. Alternatively, the map or the function formula may be stored in the ROM of the ECU 8.
  • the purification performance of at least one of the three-way catalyst or the NSR catalyst is lowered. Even in this case, the NO 2 ratio of the exhaust gas flowing into the SCR catalyst can be set to a desired ratio.
  • the NO 2 ratio of the exhaust discharged from the internal combustion engine 1 becomes the measured value of the NO X sensor.
  • Feedback control may be performed based on this.
  • the amount of NO 2 contained in the exhaust gas is substantially constant regardless of the NO 2 ratio. Therefore, the difference between the measured value of the NO X sensor after executing the measurement and NO 2 ratio adjustment process of the NO X sensor before the execution of the NO 2 ratio adjustment process corresponds to the change amount of NO.
  • the change amount of NO by such a method it can also identify NO 2 ratio after the execution of the NO 2 ratio adjustment process.
  • the NO 2 ratio of the exhaust gas flowing into the SCR catalyst may be obtained using the map and the function formula.
  • the measured value of the third temperature sensor 13 can be used as the temperature of the SCR catalyst.
  • the NO X purification rate of the SCR catalyst is determined based on the amount of NO X contained in the exhaust flowing into the third catalyst casing 52 (NO X inflow amount) and the amount of NO X contained in the exhaust flowing out from the third catalyst casing 52 (NO X outflow amount) can be calculated as a parameter.
  • the NO X inflow amount and the NO X outflow amount can be obtained by attaching NO X sensors to the exhaust pipes 5 before and after the third catalyst casing 52.
  • FIG. 7 is a flowchart showing a processing routine executed by the ECU 8 when the NO 2 ratio adjustment processing is executed.
  • This processing routine is stored in advance in the ROM of the ECU 8, and is periodically executed by the ECU 8 (CPU).
  • the ECU 8 first determines whether or not the operating state of the internal combustion engine 1 belongs to the aforementioned lean operating region in the processing of S101. If a negative determination is made in the processing of S101, the ECU 8 once ends the execution of this routine. If an affirmative determination is made in the process of S101, the ECU 8 proceeds to the process of S102.
  • the ECU 8 determines whether or not the NO 2 ratio of the exhaust gas flowing into the SCR catalyst is smaller than the target NO 2 ratio Rno2trg.
  • the target NO 2 ratio Rno2trg is, NO 2 ratio of the proportion of NO 2 occupies among the NO X contained in the exhaust is 1/2, for preferably the total amount of NO and NO 2 contained in the exhaust gas ratio is 1/2 NO 2 ratio of the amount of NO 2 is (the amount of the amount and NO 2 of NO NO 2 ratio becomes equal).
  • the NO 2 ratio at which the reduction reaction (2) described above is most active may vary depending on the amount of HC flowing into the SCR catalyst or the amount of HC adhering to the SCR catalyst.
  • the target NO 2 ratio may be changed according to the amount of HC flowing into the SCR catalyst or the HC adhesion amount of the SCR catalyst.
  • the ECU 8 In the processing of the S102, ECU 8 is, purification performance of the three-way catalyst is appropriate, and if the decrease in purification performance of the NSR catalyst, be determined NO 2 ratio Rno2 is targeted NO 2 ratio Rno2trg smaller Good. Further, as described above, the ECU 8 flows into the SCR catalyst using the NO 2 ratio of the exhaust discharged from the internal combustion engine 1, the NO 2 reduction rate of the three-way catalyst, and the NO oxidation rate of the NSR catalyst as parameters. The NO 2 ratio Rno2 of the exhaust gas to be calculated may be calculated, and the NO 2 ratio Rno2 may be compared with the target NO 2 ratio Rno2trg.
  • ECU 8 includes a temperature of the SCR catalyst (measured value of the third temperature sensor 13), the NO X purification rate of the SCR catalyst, as a parameter, and calculating the NO 2 proportion Rno2 of the exhaust gas flowing into the SCR catalyst, the The NO 2 ratio Rno2 and the target NO 2 ratio Rno2trg may be compared.
  • the ECU 8 proceeds to the process of S103.
  • the ECU 8 determines whether or not an abnormality has occurred in the EGR valve 71. Whether or not the EGR valve 71 is abnormal is determined based on a diagnosis result of a separate abnormality diagnosis process.
  • the ECU 8 proceeds to the process of S104, and increases the NO 2 ratio Rno2 by increasing the air-fuel ratio (A / F) of the air-fuel mixture. In that case, even if an abnormality occurs in the EGR valve 71, the NO 2 ratio Rno2 can be increased.
  • the ECU 8 proceeds to a process of S105 and determines whether or not the internal combustion engine 1 is in a transient operation state.
  • the ECU 8 proceeds to the process of S104, and increases the NO 2 ratio Rno2 by increasing the air-fuel ratio (A / F) of the air-fuel mixture.
  • the NO 2 ratio Rno2 of the exhaust flowing into the SCR catalyst can be quickly increased.
  • the internal combustion engine 1 is in a transient operating condition, it is possible to increase the NO X purification performance of the SCR catalyst.
  • the ECU 8 proceeds to a process of S106, and determines whether at least one of the three-way catalyst, the NSR catalyst, or the SCR catalyst is in a high temperature state. For example, if the temperature of at least one of the three-way catalyst, the NSR catalyst, or the SCR catalyst is higher than the upper limit value of the temperature purification window or a value obtained by subtracting a predetermined margin from the upper limit value, the ECU 8 Alternatively, it is determined that at least one of the three-way catalysts is in a high temperature state. The ECU 8 determines that at least one of the three-way catalyst, the NSR catalyst, or the SCR catalyst is in a high temperature state when the operating state of the internal combustion engine 1 belongs to the region A1 described in the description of FIG. Also good.
  • the ECU 8 proceeds to the process of S104 and increases the NO 2 ratio Rno2 by increasing the air-fuel ratio (A / F) of the air-fuel mixture.
  • the three-way catalyst, NSR catalysts, or without excessively raising the temperature of the SCR catalyst it is possible to increase the NO X purification performance of the SCR catalyst.
  • the ECU 8 proceeds to the process of S107 and increases the NO 2 ratio Rno2 by increasing the EGR gas amount. In that case, while suppressing the occurrence of increased and knocking of the NO X generation amount, it is possible to increase the NO X purification performance of the SCR catalyst.
  • the ECU 8 determines whether or not the operating state of the internal combustion engine 1 belongs to the region A3 (knock region) described in the description of FIG. If an affirmative determination is made in the process of S109, the ECU 8 proceeds to the process of S110.
  • the ECU 8 decreases the NO 2 ratio Rno2 by reducing the air-fuel ratio (A / F) of the air-fuel mixture. In this case, since the EGR gas is not reduced, while suppressing the occurrence of knocking, it is possible to increase the NO X purification performance of the SCR catalyst.
  • the ECU 8 proceeds to a process of S111, and determines whether at least one of the three-way catalyst, the NSR catalyst, or the SCR catalyst is in a low temperature state. For example, if the temperature of at least one of the three-way catalyst, the NSR catalyst, or the SCR catalyst is lower than the lower limit value of the temperature purification window or a value obtained by adding a predetermined margin to the lower limit value, the ECU 8 Alternatively, it is determined that at least one of the three-way catalysts is in a high temperature state. The ECU 8 determines that at least one of the three-way catalyst, the NSR catalyst, or the SCR catalyst is in a low temperature state when the operating state of the internal combustion engine 1 belongs to the region A2 described in the description of FIG. Also good.
  • the ECU 8 proceeds to the process of S110, and decreases the NO 2 ratio Rno2 by reducing the air-fuel ratio (A / F) of the air-fuel mixture.
  • the NO 2 ratio Rno2 can be reduced while suppressing a decrease in the exhaust temperature.
  • the three-way catalyst, NSR catalysts, or without excessively lowering the temperature of the SCR catalyst it is possible to increase the NO X purification performance of the SCR catalyst.
  • the ECU 8 proceeds to the process of S112, and decreases the NO 2 ratio Rno2 by decreasing the amount of EGR gas. In that case, since the air-fuel ratio (A / F) of the air-fuel mixture does not become small, the NO 2 ratio Rno2 can be reduced without increasing the fuel consumption of the internal combustion engine 1.
  • control means according to the present invention is realized by the ECU 8 executing the processing routine of FIG. As a result, without adversely affecting the cleaning performance of the operating state of the exhaust gas purifying apparatus for an internal combustion engine 1, it is possible to increase the NO X purification performance of exhaust gas purification apparatus.
  • ⁇ Modification 1> when the NO 2 ratio is smaller than the target NO 2 ratio and the EGR valve 71 is not in failure, the internal combustion engine 1 is in a transient operation state (in the process of S105 in FIG. 7). If the determination is affirmative), the air-fuel ratio is increased without increasing the EGR gas amount, but the air-fuel ratio may be increased while increasing the EGR gas amount. For example, when the internal combustion engine 1 is in a relatively gentle acceleration operation state, an increase in the EGR gas amount may be reflected in the NO 2 ratio during the transient operation period of the internal combustion engine 1. Therefore, by increasing the air-fuel ratio while increasing the EGR gas amount, the NO 2 ratio can be increased while expecting the effect of suppressing the increase in NO X generation amount and the occurrence of knocking.
  • the air-fuel ratio may be increased while decreasing the EGR gas.
  • the NO 2 ratio can be increased while lowering the temperature of the three-way catalyst, NSR catalyst, or SCR catalyst.
  • the air-fuel mixture can be emptied without increasing the EGR gas.
  • the fuel ratio may be increased. In that case, the NO 2 ratio can be increased while suppressing the temperature rise of the three-way catalyst, the NSR catalyst, or the SCR catalyst.
  • the mixture gas The air / fuel ratio may be increased.
  • the NO 2 ratio can be increased while suppressing an excessive temperature rise of the three-way catalyst, the NSR catalyst, or the SCR catalyst.
  • the EGR gas amount may be increased while increasing the air-fuel ratio within a range where the torque fluctuation of the internal combustion engine 1 falls within an allowable range.
  • the NO 2 ratio can be increased while obtaining the effect of reducing the fuel consumption by increasing the air-fuel ratio.
  • the air fuel ratio may be decreased. In that case, the NO 2 ratio can be reduced while suppressing an increase in fuel consumption accompanying a decrease in the air-fuel ratio.
  • the air-fuel ratio is decreased while increasing the EGR gas amount. May be. In that case, it is possible to reduce the NO 2 ratio while more reliably suppressing the occurrence of knocking.
  • the EGR gas amount may be increased while decreasing the air-fuel ratio.
  • the NO 2 ratio can be decreased while increasing the temperature of the three-way catalyst, the NSR catalyst, or the SCR catalyst.
  • the EGR gas amount may be increased while slightly decreasing the air-fuel ratio. In that case, the NO 2 ratio can be reduced while suppressing a temperature drop of the three-way catalyst, the NSR catalyst, or the SCR catalyst.
  • the amount of EGR gas is reduced without reducing the air-fuel ratio. It may be increased. In that case, it is possible to reduce the NO 2 ratio while suppressing an increase in fuel consumption accompanying a decrease in temperature of the three-way catalyst, NSR catalyst, or SCR catalyst and a decrease in the air-fuel ratio.
  • the above-described modifications 1 to 5 can be appropriately combined.
  • the NO 2 ratio can be adjusted while appropriately suppressing an increase in fuel consumption, occurrence of knocking, a sense of incongruity felt by the driver, deterioration of emissions, and the like.
  • the example in which the first catalyst casing 50 and the second catalyst casing 4 are disposed upstream of the third catalyst casing 52 has been described.
  • the first catalyst casing 50 or the second catalyst casing 4 is described. Only one of them may be arranged, or the first catalyst casing 50 and the second catalyst casing 4 may not be arranged.

Abstract

 本発明は、SCR触媒を含む排気浄化装置が内燃機関の排気通路に配置された排気浄化システムにおいて、内燃機関の運転状態や排気浄化装置の浄化性能に悪影響が及ぶことを抑制しつつ、NO比率を調整することを課題とする。このような課題を解決するために、本発明の内燃機関の排気浄化システムは、排気のNO比率を増加させる場合に、内燃機関で燃焼される混合気の空燃比を増加させる処理、又はEGR装置により還流されるEGRガスを増加させる処理の少なくとも一方を実行する処理手段と、排気浄化装置の温度が高い場合は低い場合に比べ、空燃比の増加量が大きくなるとともにEGRガスの増加量が少なくなるように処理手段を制御する制御手段と、を備えるようにした。

Description

内燃機関の排気浄化システム
 本発明は、内燃機関の排気浄化システムに関する。
 特許文献1には、選択還元型触媒(SCR(Selective Catalytic Reduction)触媒)を含む排気浄化装置が内燃機関の排気通路に配置された構成において、排気中に含まれる窒素酸化物(NO)のうち、二酸化窒素(NO)が占める割合(以下、「NO比率」と称する)が所望の比率より大きい場合に、EGR(Exhaust Gas Recirculation)ガスの量を減少させることにより、NO比率を低減させる技術について記述されている。
 特許文献2には、内燃機関の気筒内で燃焼される混合気の空燃比が大きい場合(薄い場合)は小さい場合(濃い場合)に比べ、排気中のNO比率が大きくなることが記述されている。
 特許文献3には、SCR触媒を含む排気浄化装置が内燃機関の排気通路に配置された構成において、NO2比率がほぼ1/2(50パーセント)になるようにEGR率及び燃料噴射時期の何れか一方又は双方を制御する技術について記述されている。
特開2012-167549号公報 実開平03-87915号公報 特開2008-231950号公報
 ところで、NO比率を調整するにあたり、混合気の空燃比やEGRガスの量が不用意に変更されると、内燃機関の燃料消費量が増加したり、排気浄化装置の浄化性能が低下したりする可能性がある。
 本発明は、上記した実情に鑑みてなされたものであり、SCR触媒を含む排気浄化装置が内燃機関の排気通路に配置された排気浄化システムにおいて、内燃機関の運転状態や排気浄化装置の浄化性能等に悪影響が及ぶことを抑制しつつ、NO比率を調整することができる技術の提供にある。
 本発明は、上記した課題を解決するために、内燃機関の排気通路に配置され、SCR触媒を含む排気浄化装置と、内燃機関の排気通路から吸気通路へ排気の一部(EGRガス)を還流させるEGR装置と、を備えた内燃機関の排気浄化システムにおいて、内燃機関の運転状態又は排気浄化装置の状態に適した方法を用いてNO比率を調整するようにした。
 詳細には、本発明に係わる内燃機関の排気浄化システムの第一の態様は、
 内燃機関の排気通路に配置され、選択還元型触媒(SCR触媒)を含む排気浄化装置と、
 排気通路を流れる排気の一部をEGRガスとして吸気通路へ還流させるEGR装置と、
 排気中に含まれるNOにおいて二酸化窒素が占める割合であるNO比率を増加させる場合に、内燃機関で燃焼される混合気の空燃比を増加させる処理、又はEGR装置により還流されるEGRガスを増加させる処理の少なくとも一方を実行する処理手段と、
 排気浄化装置の温度が高い場合は低い場合に比べ、空燃比の増加量が大きくなるとともにEGRガスの増加量が少なくなるように前記処理手段を制御する制御手段と、
を備えるようにした。
 混合気の空燃比が大きい場合(混合気の燃料濃度が低い場合)は小さい場合(混合気の燃料濃度が高い場合)に比べ、内燃機関から排出される排気のNO比率が大きくなる。また、EGRガスの量が多い場合やEGR率が大きい場合は、EGRガス量が少ない場合やEGR率が小さい場合に比べ、内燃機関から排出される排気のNO比率が大きくなる。
 ところで、EGRガスの量が多い場合又はEGR率が大きい場合は、EGRガス量が少ない場合又はEGR率が小さい場合に比べ、内燃機関から排出される排気の温度が高くなり易い。そのため、排気浄化装置の温度が高い状況下において、EGRガスやEGR率が増加されると、排気浄化装置の温度が活性温度域(温度浄化ウインド)から外れてしまう可能性がある。その結果、排気浄化装置の浄化性能が低下し、エミッションの悪化を招く可能性がある。
 これに対し、混合気の空燃比が大きい場合は小さい場合に比べ、内燃機関から排出される排気の温度が低くなる。そのため、排気浄化装置の温度が高い状況において、空燃比が増加されると(混合気中の燃料濃度が低くされると)、排気浄化装置の温度上昇を抑制しつつ、NO比率を増加させることができる。
 したがって、排気浄化装置の温度が高い場合は低い場合に比べ、空燃比の増加量が大きくされるとともにEGRガス(又はEGR率)の増加量が少なくされると、排気浄化装置の温度上昇量を少なく抑えつつ、NO比率を増加させることができる。その結果、排気浄化装置の浄化性能が高くなる。
 なお、「空燃比の増加量が大きくされるとともにEGRガスの増加量が少なくされる」態様としては、EGRガスが増加されずに空燃比が増加される態様、EGRガスが減少されるとともに空燃比が増加される態様、及び、EGRガスがわずかに増加されるとともに空燃比が増加される態様を含む。これら三つの態様は、排気浄化装置の温度に応じて使い分けられてもよい。
 たとえば、排気浄化装置の温度が温度浄化ウインドの上限値を超えている場合は、EGRガスを減少させつつ混合気の空燃比を増加させてもよい。その場合、排気浄化装置の温度を低下させつつ、NO比率を増加させることができる。また、排気浄化装置の温度が温度浄化ウインドの上限値以下であり、且つ排気浄化装置の温度と上限値の差が比較的小さい場合は、EGRガスを増加させずに混合気の空燃比を増加させてもよい。その場合、排気浄化装置の温度上昇を抑えつつNO比率を増加させることができる。さらに、排気浄化装置の温度が温度浄化ウインドの上限値以下であり、且つ排気浄化装置の温度と上限値の差が比較的大きい場合は、EGRガスをわずかに増加させつつ混合気の空燃比を増加させてもよい。その場合、排気浄化装置の過剰な温度上昇を抑えつつNO比率を増加させることができる。さらに、EGRガスの増加によるNO発生量の減少効果やノッキング抑制効果等を得ることもできる。
 なお、排気浄化装置の温度が温度浄化ウインドの下限値より低い場合は、制御手段は、空燃比の増加量が小さくなるとともにEGRガスの増加量が多くなるように処理手段を制御してもよい。その場合、排気浄化装置の温度を高めつつ、NO比率を増加させることができる。
 次に、本発明に係わる内燃機関の排気浄化システムの第二の態様は、
 内燃機関の排気通路に配置され、選択還元型触媒(SCR触媒)を含む排気浄化装置と、
 排気通路を流れる排気の一部をEGRガスとして吸気通路へ還流させるEGR装置と、
 排気中に含まれるNOにおいて二酸化窒素が占める割合であるNO比率を増加させる場合に、内燃機関で燃焼される混合気の空燃比を増加させる処理、又はEGR装置によって還流されるEGRガスを増加させる処理の少なくとも一方を実行する処理手段と、
 内燃機関が過渡運転状態にある場合は、少なくとも混合気の空燃比を増加させ、且つ過渡運転状態にない場合に比して空燃比の増加量が大きくなるように前記処理手段を制御する制御手段と、
を備えるようにしてもよい。
 EGRガスを増加させる処理がNO比率に反映されるまでにかかる時間は、混合気の空燃比を増加させる処理がNO比率に反映されるまでかかる時間より長くなる。そのため、内燃機関が過渡運転状態にあるときに、EGRガスを増加させる処理によってNO比率の増加が図られると、NO比率が内燃機関の過渡運転状態に適した比率にならない可能性がある。これに対し、内燃機関が過渡運転状態にあるときに、混合気の空燃比を増加させる処理によってNO比率の増加が図られると、NO比率が速やかに増加する。よって、NO比率を内燃機関の過渡運転状態に適した比率にすることが可能になる。
 なお、空燃比の増加量が大きくされた場合は、内燃機関のトルク変動が大きくなる可能性がある。しかしながら、内燃機関が過渡運転状態にあるときは過渡運転状態にない場合に比べ、運転者が許容することができるトルク変動が大きくなると考えられる。よって、運転者が覚える違和感を軽減しつつ、NO比率を変更することができる。
 前述した第一の態様又は第二の態様において、排気浄化装置は、SCR触媒より上流に配置される三元触媒を含むようにしてもよい。SCR触媒より上流に三元触媒が配置される場合は、排気中のNOが三元触媒によって一酸化窒素(NO)に還元される。ただし、三元触媒の浄化能力が低い場合(たとえば、三元触媒の温度が温度浄化ウインドから逸脱している場合、三元触媒を通過する排気の流速が大きい場合、又は三元触媒が劣化している場合等)は、三元触媒によって還元されるNOの量が少なくなる。その結果、SCR触媒へ流入する排気のNO比率が大きくなる。
 そこで、制御手段は、三元触媒の浄化能力が低い場合は高い場合に比べ、NO比率の増加量が小さくなるように処理手段を制御してもよい。このような制御が行われると、三元触媒の浄化能力が低い場合に、SCR触媒へ流入する排気のNO比率が過剰に大きくなることが抑制される。
 また、前述した第一の態様又は第二の態様において、排気浄化装置は、SCR触媒より上流に配置される吸蔵還元型触媒(NSR(NOX Storage Reduction)触媒)を含むようにしてもよい。SCR触媒より上流にNSR触媒が配置される場合は、排気中のNOがNSR触媒によってNOに酸化される。ただし、NSR触媒の浄化能力が低い場合(たとえば、NSR触媒の温度が温度浄化ウインドから逸脱している場合、NSR触媒を通過する排気の流速が大きい場合、又はNSR触媒が劣化している場合等)は、NSR触媒によって酸化されるNOの量が少なくなる。その結果、SCR触媒へ流入する排気のNO比率が小さくなる。
 そこで、制御手段は、NSR触媒の浄化能力が低い場合は高い場合に比べ、NO比率の増加量が大きくなるように処理手段を制御してもよい。このような制御が行われると、NSR触媒の浄化能力が低い場合に、SCR触媒へ流入する排気のNO比率が過剰に小さくなることが抑制される。
 なお、排気浄化装置は、SCR触媒より上流に配置されるNSR触媒と、NSR触媒より上流に配置される三元触媒と、を含むようにしてもよい。その場合、制御手段は、三元触媒の浄化性能とNSR触媒の浄化性能に応じて、NO比率の増加量を調整すればよい。
 たとえば、制御手段は、三元触媒の浄化性能が低く且つNSR触媒の浄化性能が適当である場合は、三元触媒及びNSR触媒の浄化性能が適当である場合に比べ、NO比率の増加量が小さくなるように処理手段を制御すればよい。制御手段は、三元触媒の浄化性能が適当であり且つNSR触媒の浄化性能が低い場合は、三元触媒及びNSR触媒の浄化性能が適当である場合に比べ、NO比率の増加量が大きくなるように処理手段を制御すればよい。制御手段は、三元触媒及びNSR触媒の浄化性能が低い場合は、各触媒の浄化性能の低下度合いに応じてNO比率の増加量を調整すればよい。
 なお、火花点火式の内燃機関においては、EGRガスの量が多い場合又はEGR率が大きい場合は、EGRガス量が少ない場合又はEGR率が小さい場合に比べ、ノッキングが発生し難くなる傾向がある。そのため、ノッキングが発生し易い状況下において、EGRガスやEGR率が減少されると、ノッキングが発生し易くなる可能性がある。
 そこで、内燃機関の運転状態がノッキングの発生しやすい運転領域にある場合において、三元触媒の浄化性能の低下等によってNO比率の増加量を小さくする必要があるときは、EGRガスの量を減少させずに、空燃比を調整することでNO比率を調整してもよい。また、EGRガスの量をわずかに減少させつつ、空燃比を調整することによりNO比率を調整してもよい。さらに、EGRガスの量を増加させつつ、空燃比を調整することによりNO比率を調整してもよい。これらの方法によれば、ノッキングの発生を抑制しつつNO比率を所望の比率にすることができる。
 なお、前述した第一の態様及び第二の態様において、EGR装置は、排気通路と吸気通路を接続するEGR通路と該EGR通路の通路断面積を変更するEGR弁等を含む装置であってもよく、又は吸気バルブの開閉タイミング又は排気バルブの開閉タイミングの少なくとも一方を変更することにより気筒内に残留する既燃ガス(内部EGRガス)の量を調整可能な可変動弁機構であってもよい。
 本発明によれば、SCR触媒を含む排気浄化装置が内燃機関の排気通路に配置された排気浄化システムにおいて、内燃機関の運転状態や排気浄化装置の浄化性能等に悪影響が及ぶことを抑制しつつ、NO比率を調整することができる。
本発明を適用する内燃機関とその吸排気系の概略構成を示す図である。 内燃機関のリーン運転領域とストイキ運転領域を示す図である。 混合気の空燃比とNO比率との相関を示す図である。 EGR率とNO比率との相関を示す図である。 NO比率調整処理の実行方法に応じた運転領域を示す図である。 排気の位置とNO比率との関係を示す図である。 NO比率調整処理が実行される際にECUが実行する処理ルーチンを示すフローチャートである。
 以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施形態に記載される構成部品の寸法、材質、形状、相対配置等は、特に記載がない限り発明の技術的範囲をそれらのみに限定する趣旨のものではない。
 図1は、本発明が適用される内燃機関とその吸排気系の概略構成を示す図である。図1に示す内燃機関1は、希薄燃焼運転される4ストローク・サイクルの火花点火式内燃機関(ガソリンエンジン)である。
 内燃機関1は、複数の気筒2を有している。なお、図1においては、内燃機関1は4つの気筒2を有しているが、気筒2の数は3つ以下、又は5つ以上であってもよい。内燃機関1は、各気筒2へ燃料を供給するための燃料噴射弁3を備えている。燃料噴射弁3は、気筒2内に燃料を噴射する弁装置であってもよく、又は吸気ポート内に燃料を噴射する弁装置であってもよい。
 内燃機関1は、吸気管4と接続されている。吸気管4は、大気中から取り込まれた新気(空気)を内燃機関1へ導くための管である。吸気管4の途中には、吸気絞り弁40が配置されている。吸気絞り弁40は、吸気管4内の通路断面積を変更することにより、吸気管4内を流れる空気の量を調整する。吸気絞り弁40より下流の吸気管4には、遠心過給機(ターボチャージャ)6のコンプレッサ60が配置されている。コンプレッサ60は、後述するタービン61の回転エネルギを利用して吸気を圧縮する。コンプレッサ60より下流の吸気管4には、インタークーラ41が配置されている。インタークーラ41は、大気又は冷却水等と吸気との間で熱交換を行う。
 内燃機関1は、排気管5と接続されている。排気管5は、各気筒2から排出された既燃ガス(排気)を流通させるための管である。排気管5の途中には、ターボチャージャ6のタービン61が配置されている。タービン61は、排気の熱エネルギを回転エネルギに変換する。タービン61より下流の排気管5には、排気浄化装置が配置されている。
 排気浄化装置は、第一触媒ケーシング50、第二触媒ケーシング51、及び第三触媒ケーシング52を備えている。第一触媒ケーシング50は、アルミナ等のコート層によって被覆されたハニカム構造体と、コート層に担持される貴金属(たとえば、白金、パラジウム、又はロジウム等)とから構成される三元触媒を収容する。
 第二触媒ケーシング51は、第一触媒ケーシング50の下流に配置される。第二触媒ケーシング51は、アルミナ等のコート層によって被覆されたハニカム構造体と、コート層に担持される貴金属(白金、パラジウム、ロジウム等)と、コート層に担持されるNO吸蔵剤(アルカリ類、アルカリ土類等)とから構成される吸蔵還元型触媒(NSR触媒)を収容する。
 第三触媒ケーシング52は、第二触媒ケーシング51の下流に配置される。第三触媒ケーシング52は、コーディライトやFe-Cr-Al系の耐熱鋼から成るハニカム構造体と、ハニカム構造体を被覆するアルミナ系又はゼオライト系のコート層と、コート層に担持される貴金属(白金やパラジウム等)とから構成されるSCR触媒を収容する。
 内燃機関1は、EGR装置7を備えている。EGR装置7は、EGR通路70と、EGR弁71と、EGRクーラ72と、を備えている。EGR通路70は、排気管5におけるタービン61より上流の部位と、吸気管4におけるインタークーラ41より下流の部位とを接続する。EGR通路70は、排気管5を流れる排気の一部(EGRガス)を吸気管4へ導く通路である。EGR弁71とEGRクーラ72は、EGR通路70の途中に配置される。EGR弁71は、EGR通路70の通路断面積を変更することによりEGRガス量を調整する弁装置である。EGRクーラ72は、EGR通路70を流れるEGRガスと冷却水又は大気との間で熱交換を行う機器である。
 このように構成された内燃機関1には、電子制御ユニット(ECU)8が併設される。ECU8は、空燃比センサ(空燃比センサ)9、酸素濃度センサ(Oセンサ)10、第一温度センサ11、第二温度センサ12、第三温度センサ13、クランクポジションセンサ14、アクセルポジションセンサ15、及びエアフローメータ42等の各種センサと電気的に接続されている。
 空燃比センサ9は、第一触媒ケーシング50より上流の排気管5に取り付けられ、第一触媒ケーシング50へ流入する排気の空燃比に相関した電気信号を出力する。酸素濃度センサ10は、第一触媒ケーシング50と第二触媒ケーシング51の間の排気管5に取り付けられ、第一触媒ケーシング50から流出した排気の酸素濃度に相関した電気信号を出力する。第一温度センサ11は、第一触媒ケーシング50と第二触媒ケーシング51の間の排気管5に取り付けられ、第一触媒ケーシング50から流出した排気の温度に相関した電気信号を出力する。第二温度センサ12は、第二触媒ケーシング51と第三触媒ケーシング52の間の排気管5に取り付けられ、第二触媒ケーシング51から流出した排気の温度に相関した電気信号を出力する。第三温度センサ13は、第三触媒ケーシング52より下流の排気管5に取り付けられ、第三触媒ケーシング52から流出した排気の温度に相関した電気信号を出力する。クランクポジションセンサ14は、内燃機関1に取り付けられ、クランクシャフトの回転位置に相関した電気信号を出力する。アクセルポジションセンサ15は、アクセルペダル16に取り付けられ、アクセルペダル16の操作量(アクセル開度)に相関した電気信号を出力する。エアフローメータ42は、吸気絞り弁40より上流の吸気管4に取り付けられ、吸気管4を流れる空気の質量(吸入空気量)に相関した電気信号を出力する。
 また、ECU8は、燃料噴射弁3、吸気絞り弁40、及びEGR弁71等の各種機器と電気的に接続される。ECU8は、前記した各種センサの出力信号に基づいて、前記した各種機器を制御する。
 たとえば、ECU8は、クランクポジションセンサ14の出力信号からクランクシャフトの回転速度(機関回転速度)を演算する。ECU8は、機関回転速度やアクセルポジションセンサ15の出力信号(アクセル開度)等に基づいて、内燃機関1の目標吸入空気量を演算する。ECU8は、エアフローメータ42の出力信号(吸入空気量)が目標吸入空気量と一致するように吸気絞り弁40の開度を制御する。
 ECU8は、エアフローメータ42の出力信号(吸入空気量)、アクセル開度、機関回転速度等に基づいて、燃料噴射弁3の開弁タイミング(燃料噴射時期)や開弁期間(燃料噴射量)を制御する。その際、ECU8は、空燃比センサ9の出力信号が目標空燃比と一致するように、燃料噴射量をフィードバック制御してもよい。
 なお、ECU8は、図2に示すように、内燃機関1の運転状態が低回転・低負荷領域又は中回転・中負荷領域にある場合(図2中の領域A)は、目標空燃比を理論空燃比より高いリーン空燃比に設定する。以下では、領域Aをリーン運転領域と称する。ECU8は、内燃機関1の運転状態が高負荷領域又は高回転領域にある場合(図2中の領域B)は、目標空燃比を理論空燃比に設定する。図2に示したような領域別に混合気の空燃比が調整されると、内燃機関1の燃料消費量を少なく抑えることができる。
 ところで、目標空燃比がリーン空燃比に設定された場合は、第一触媒ケーシング50に収容された三元触媒のNO浄化性能が低くなる。そのため、目標空燃比がリーン空燃比に設定されている場合は、第二触媒ケーシング51のNSR触媒と第三触媒ケーシング52のSCR触媒によって排気中のNOを浄化する必要がある。
 ここで、NSR触媒は、第二触媒ケーシング51へ流入する排気の酸素濃度が高いときは、排気中のNOを吸蔵又は吸着する。NSR触媒は、第二触媒ケーシング51へ流入する排気の酸素濃度が低く、且つ炭化水素(HC)や一酸化炭素(CO)等の還元成分が排気に含まれるときは、該NSR触媒に吸蔵されていたNOを放出し、放出されたNOを窒素(N)に還元させる。
 そこで、ECU8は、前記リーン運転領域においては、リッチスパイク処理を周期的に実行する。リッチスパイク処理は、排気中の酸素濃度が低く且つHCやCOの濃度が高くなるように、燃料噴射量や吸入空気量を調整する処理である。リッチスパイク処理は、NSR触媒のNO吸蔵量が一定量以上になったとき、前回のリッチスパイク処理終了時からの運転時間(好ましくは、目標空燃比がリーン空燃比に設定された運転時間)が一定時間以上になったとき、前回のリッチスパイク処理終了時からの走行距離(好ましくは、目標空燃比がリーン空燃比に設定された走行距離)が一定距離以上になったときに実行されればよい。
 リッチスパイク処理の具体的な実行方法としては、燃料噴射弁3の燃料噴射量を増加させる処理、又は吸気絞り弁40の開度を減少させる処理の少なくなくとも一つを実行する方法を用いることができる。なお、燃料噴射弁3が気筒2内に直接燃料を噴射する構成においては、気筒2の排気行程中に燃料噴射弁3から燃料を噴射させる方法によりリッチスパイク処理が実行されてもよい。
 SCR触媒は、排気中に含まれるアンモニア(NH)を吸着する。SCR触媒は、該SCR触媒に吸着されたNHと排気中のNOを反応させることにより、NOを窒素(N)に還元させる。なお、SCR触媒へ供給されるNHは、三元触媒やNSR触媒において生成される。たとえば、リッチスパイク処理が実行された場合に、三元触媒においてNOの一部がNHに還元され、NSR触媒において該NSR触媒から放出されたNOの一部がNHに還元される。その際、NSR触媒において生成されるNHの量は、リッチスパイク処理が実行される間隔や、リッチスパイク処理が実行されるときの空燃比等によって変化する。よって、SCR触媒へNHを供給する場合は、リッチスパイク処理の実行間隔がNHの生成に適した間隔に設定され、又はリッチスパイク処理実行時の空燃比がNHの生成に適した空燃比(たとえば、14.1程度)に設定されればよい。
 SCR触媒においてNOが還元される場合は、以下の3つの還元反応が起こり得る。
 (1) 4NO+4NH+O→4N+6H
 (2) NO+NO+2NH→2N+3H
 (3) 6NO+8NH→7N+12H
 前記(2)の反応速度は、前記(1)及び前記(3)の反応速度より速い。また、前記(2)の還元反応は、前記(1)及び前記(3)より低い温度域で起こる。よって、前記(2)の反応を促進させることにより、SCR触媒のNO浄化性能を高めることができる。ここで、前記(2)の還元反応は、排気中に含まれる一酸化窒素(NO)の量(モル)と二酸化窒素(NO)の量(モル)が略同等であるときに起こりやすい。排気中のNOの大部分はNOとNOが占めるため、前記(2)の還元反応はNO比率が略1/2であるときに活発になる。
 そこで、本実施例の内燃機関の排気浄化システムは、三元触媒やNSR触媒のNO浄化性能が低い場合、又はSCR触媒の温度が低い場合に、SCR触媒へ流入する排気のNO比率を1/2に近づける処理(以下、「NO比率調整処理」と称する)を行うようにした。以下、NO比率調整処理の実行方法について述べる。
 排気のNO比率は、混合気の空燃比、又はEGRガスの量に応じて変化する。図3は、混合気の空燃比とNO比率の相関を示す図である。図3において、混合気の空燃比が大きい場合(リーンの場合)は小さい場合(リッチの場合)に比べ、NO比率が大きくなる。図4は、EGR率(気筒2内に吸入されたガス量に対するEGRガス量の比率)とNO比率の相関を示す図である。図4において、EGR率が大きい場合は小さい場合に比べ、NO比率が大きくなる。なお、EGRガス量が多くなるほどEGR率が大きくなるため、EGRガス量が多い場合は少ない場合に比べ、NO比率が大きくなるとも言える。
 ところで、NO比率を変更させる必要がある場合に、混合気の空燃比やEGR率(EGRガス量)が不用意に変更されると、内燃機関1の運転状態や排気浄化装置の浄化性能等に悪影響が及ぶ可能性がある。たとえば、三元触媒、NSR触媒、又はSCR触媒の少なくとも一つの温度が高い場合に、EGR率が増加されると、排気の温度が上昇する。その結果、三元触媒、NSR触媒、又はSCR触媒の温度が温度浄化ウインドより高くなる可能性がある。三元触媒、NSR触媒、又はSCR触媒の少なくとも一つの温度が温度浄化ウインドより高くなると、それら触媒の浄化性能が却って低下し、エミッションの悪化を招く可能性がある。
 また、三元触媒、NSR触媒、又はSCR触媒の少なくとも一つの温度が低い場合に、EGR率が減少されたり、混合気の空燃比が増加(リーン側の空燃比へ変更)されたりすると、排気の温度が低下する。その結果、三元触媒、NSR触媒、又はSCR触媒の温度が温度浄化ウインドより低くなる可能性がある。三元触媒、NSR触媒、又はSCR触媒の少なくとも一つの温度が温度浄化ウインドより低くなると、それら触媒の浄化性能が却って低下し、エミッションの悪化を招く可能性がある。
 さらに、内燃機関1が定常運転状態にある場合等に、混合気の空燃比が増減されると、内燃機関のトルク変動が発生する可能性がある。その場合、車両の運転者が違和感を覚える可能性がある。
 そこで、本実施例のNO比率調整処理においては、ECU8は、内燃機関1の運転状態が前述の図2の説明で述べたリーン運転領域(図2中の領域A)に属するときに、NO比率を変更する必要が生じると、内燃機関の運転状態や排気浄化装置の状態等に応じた方法によりNO比率調整処理を実行するようにした。
 先ず、ECU8は、NO比率を増加させる必要がある場合に、三元触媒、NSR触媒、又はSCR触媒の少なくとも一つの温度が高ければ、それらの触媒の温度が低いときに比して、EGRガスの増加量を少なくするとともに、空燃比の増加量を大きくするようにした。たとえば、図5に示すように、リーン運転領域のうち機関負荷が小さく且つ機関回転速度が大きい領域(図5中の領域A1)においては、他のリーン運転領域に比べ、EGRガスの増加量を少なく抑えつつ、空燃比の増加量を大きくする。好ましくは、ECU8は、三元触媒、NSR触媒、又はSCR触媒の温度が所定温度(たとえば、温度浄化ウインドの上限値、又は該上限値から所定のマージンを差し引いた温度)より高い場合は、EGRガスを増加させずに、混合気の空燃比を増加させることにより、NO比率を増加させてもよい。また、ECU8は、前記領域A1においては、三元触媒、NSR触媒、又はSCR触媒の温度が高くなるほど、EGRガスの増加量を少なくするとともに、空燃比の増加量を大きくしてもよい。さらに、三元触媒、NSR触媒、又はSCR触媒の温度が温度浄化ウインドの上限値に近似している場合や前記上限値を超えている場合は、EGRガスの量を減少させつつ、空燃比を増加させてもよい。その場合、排気の温度が一層低くなるため、三元触媒、NSR触媒、又はSCR触媒の温度を温度浄化ウインド内に収めつつ、NO比率を大きくすることができる。
 このような方法によってNO比率調整処理が実行されると、内燃機関1から排出される排気の温度を低く抑えつつ、NO比率を増加させることができる。その結果、三元触媒、NSR触媒、又はSCR触媒の過昇温を抑えつつ、SCR触媒のNO浄化性能を高めることができる。三元触媒、NSR触媒、又はSCR触媒の過昇温が抑制されると、三元触媒、NSR触媒、及びSCR触媒によるNO以外の浄化率(たとえば、炭化水素(HC)や一酸化炭素(CO)等の浄化率)が低下することを抑制することができる。
 ところで、リーン運転領域のうち機関負荷が大きい領域(図5中の領域A3)においては、ノッキングが発生しやすい。そのため、内燃機関1の運転状態が前記領域A3に属するときに、EGRガスの量を減少させつつ空燃比を増加させる方法でNO比率の増加が図られると、ノッキングが一層発生し易くなる可能性がある。また、前記領域A3においてNO比率を減少させる場合に、EGRガス量を減少させる方法でNO比率の減少が図られると、ノッキングが一層発生し易くなる。そのため、NO比率を減少させる場合においても、内燃機関1の運転状態が前記領域A3に属していれば、EGRガス量を減少させずに、混合気の空燃比を減少(リッチ側の空燃比へ変更)させる方法でNO比率を減少させることが望ましい。以下では、前記領域A3のようにノッキングが発生しやすい運転領域を「ノック領域」と記す。
 次に、ECU8は、NO比率を増加させる必要がある場合に、三元触媒、NSR触媒、又はSCR触媒の少なくとも一つの温度が低ければ、それらの触媒の温度が高いときに比して、EGRガスの増加量を多くするとともに、空燃比の増加量を小さく抑えるようにした。たとえば、図5に示すように、リーン運転領域のうち機関負荷が小さく且つ機関回転速度が小さい領域(図5中の領域A2)においては、他のリーン運転領域に比べ、EGRガスの増加量を多くするとともに、空燃比の増加量を小さくする。好ましくは、ECU8は、三元触媒、NSR触媒、又はSCR触媒の温度が所定温度(たとえば、温度浄化ウインドの下限値、又は該下限値に所定のマージンを加算した温度)より低い場合は、空燃比を増加させずに、EGRガス量を増加させることにより、NO比率を増加させてもよい。また、ECU8は、前記領域A2においては、三元触媒、NSR触媒、又はSCR触媒の温度が低くなるほど、EGRガスの増加量を多くするとともに、空燃比の増加量を小さくしてもよい。なお、三元触媒、NSR触媒、又はSCR触媒の温度が温度浄化ウインドの下限値に近似している場合や前記下限値を下回っている場合は、空燃比を小さくしつつ、EGRガス量を増加させてもよい。その場合、排気の温度が一層高まるため、三元触媒、NSR触媒、又はSCR触媒の温度を温度浄化ウインド内に収めつつ、NO比率を大きくすることができる。
 このような方法によってNO比率調整処理が実行されると、内燃機関1から排出された時点における排気の温度を高めつつ、NO比率を増加させることができる。その結果、三元触媒、NSR触媒、又はSCR触媒の過剰な温度低下を抑えつつ、SCR触媒のNO浄化性能を高めることができる。三元触媒、NSR触媒、又はSCR触媒の過剰な温度低下が抑制されると、三元触媒、NSR触媒、及びSCR触媒によるNO以外の浄化率(たとえば、炭化水素(HC)や一酸化炭素(CO)等の浄化率)が低下することを抑制することができる。
 なお、内燃機関1が過渡運転状態にあるときは、EGRガス量を変更せずに、混合気の空燃比を変更する方法によってNO比率調整処理が実行されることが望ましい。ECU8がEGR弁71の開度変更に関する指令値を出力してからNO比率が変化するまでにはある程度の時間(応答遅れ時間)がかかる。そのため、内燃機関1が過渡運転にあるときに、EGRガス量の変更を伴うNO比率調整処理が実施されても、実際のNO比率が過渡運転状態に適した比率にならない可能性がある。その結果、内燃機関1が過渡運転されているときのエミッションが悪化する可能性がある。これに対し、ECU8が空燃比の変更(燃料噴射量の変更)に関する指令値を出力してからNO比率が変化するまでにかかる時間は、前記応答遅れ時間に比して十分に短い。よって、内燃機関1が過渡運転されているときは、EGRガス量を変更せずに空燃比を増加させる方法によってNO比率調整処理が実行されれば、エミッションの悪化を抑制しつつNO比率を調整することができる。ところで、EGRガス量を変更せずに混合気の空燃比を変更する方法は、EGRガス量の変更と空燃比の変更を併用する方法に比べ、内燃機関1のトルク変動が大きくなることが懸念される。しかしながら、内燃機関1が過渡運転状態にあるときは定常運転状態にあるとき等に比べ、運転者が許容することができるトルク変動が大きくなると考えられる。よって、運転者が覚える違和感を軽減しつつ、NO比率を調整することができる。
 上記したように内燃機関1の運転状態や排気浄化装置の状態等に応じてNO比率調整処理の実行方法が変更されると、燃料消費量の増加、ノッキングの発生、運転者が覚える違和感、又はエミッションの悪化等を抑制しつつ、NO比率を調整することができる。
 なお、SCR触媒へ流入する排気のNO比率は、三元触媒やNSR触媒の状態によって変化する。ここで、排気の位置と各位置におけるNO比率との関係を図6に示す。図6中の縦軸はNO比率を示し、横軸は排気の位置を示す。また、図6中のP1は第一触媒ケーシング50より上流の位置を示し、P2は第一触媒ケーシング50と第二触媒ケーシング51との間の位置を示し、P3は第二触媒ケーシング51と第三触媒ケーシング52との間の位置を示す。
 図6において、三元触媒及びNSR触媒の浄化性能が適正である場合は、図6中の実線の矢印で示すように、内燃機関1から排出されたNOの一部は、三元触媒のパラジウムによってNOへ還元される。その結果、第一触媒ケーシング50から流出する排気(図6中P2の位置における排気)のNO比率は、第一触媒ケーシング50へ流入する排気(図6中P1の位置における排気)のNO比率より小さくなる。また、第二触媒ケーシング51においては、排気中に含まれるNOの一部がSCR触媒の白金によってNOへ酸化される。その結果、第二触媒ケーシング51から流出する排気(図6中P3の位置における排気)のNO比率(図6中R0)は、第二触媒ケーシング51へ流入する排気(第一触媒ケーシング50から流出する排気)のNO比率より大きくなる。
 これに対し、三元触媒の浄化性能が低い場合は、三元触媒によって還元されるNOの量が少なくなる。そのため、図6中の一点鎖線の矢印で示すように、P2の位置におけるNO比率は、三元触媒及びNSR触媒の浄化性能が適正である場合より大きくなる。その結果、P3の位置におけるNO比率(図6中R1)は、三元触媒及びNSR触媒の浄化性能が適正である場合のNO比率R0より大きくなる。
 NSR触媒の浄化性能が低い場合は、NSR触媒において酸化されるNOの量が少なくなる。そのため、図6中の破線の矢印で示すように、P3の位置におけるNO比率(図6中のR2)は、三元触媒及びNSR触媒の浄化性能が適正である場合のNO比率R0より小さくなる。
 三元触媒及びNSR触媒の浄化性能が低い場合は、三元触媒によって還元されるNOの量が少なくなるとともに、NSR触媒によって酸化されるNOの量が少なくなる。そのため、図6中の二点鎖線の矢印で示すように、P3の位置におけるNO比率(図6中のR3)は、P1の位置におけるNO比率に近似した大きさになる。ただし、P3の位置におけるNO比率R3は、三元触媒及びNSR触媒のそれぞれの性能低下度合いによって変化する。
 よって、三元触媒又はNSR触媒の少なくとも一方の浄化性能が低下している場合は、浄化性能の低下度合いに応じて、内燃機関1から排出される排気のNO比率を変更する必要がある。
 先ず、三元触媒の浄化性能が低下している場合は、三元触媒及びNSR触媒の浄化性能が適正である場合に比べ、SCR触媒へ流入する排気のNO比率が大きくなる。よって、内燃機関1から排出される排気のNO比率は、三元触媒及びNSR触媒の浄化性能が適正である場合より小さくされればよい。詳細には、三元触媒の浄化性能が低下している場合は、三元触媒及びNSR触媒の浄化性能が適正である場合に比べ、EGRガスの増加量又は空燃比の増加量の少なくとも一方が小さくされればよい。ただし、内燃機関1の運転状態が前述した図5の説明で述べた領域A3(ノック領域)に属するときは、EGRガスの量を変更せずに、空燃比の増加量を小さくしてもよい。
 NSR触媒の浄化性能が低下している場合は、三元触媒及びNSR触媒の浄化性能が適正である場合に比べ、SCR触媒へ流入する排気のNO比率が小さくなる。よって、内燃機関1から排出される排気のNO比率は、三元触媒及びNSR触媒の浄化性能が適正である場合より大きくされればよい。詳細には、NSR触媒の浄化性能が低下している場合は、三元触媒及びNSR触媒の浄化性能が適正である場合に比べ、EGRガスの増加量又は空燃比の増加量の少なくとも一方が大きくされればよい。
 三元触媒及びNSR触媒の浄化性能が低下している場合は、三元触媒とNSR触媒のそれぞれの性能の低下度合いに応じて、EGRガスの増加量又は空燃比の増加量を補正すればよい。ここで、三元触媒及びNSR触媒の浄化性能は、各触媒が劣化している場合、各触媒の温度が温度浄化ウインドから逸脱している場合、各触媒を通過する排気の流速が大きい場合等に低下する。
 なお、三元触媒及びNSR触媒は、酸素吸蔵能を有しているため、酸素吸蔵能の劣化度合いを特定することにより各々の触媒の劣化度合いを特定することができる。酸素吸蔵能の劣化度合いを特定する方法としては、特開平8-260949号公報に記載されているような既知の方法を用いることができる。三元触媒の劣化度合いと三元触媒のNO還元率(三元触媒へ流入するNO量に対して、三元触媒によって還元されるNOの量の割合)との関係を予め求めておけば、三元触媒が劣化している場合に該三元触媒によって還元されるNOの量を特定することができる。同様に、NSR触媒の劣化度合いとNSR触媒のNO酸化率(NSR触媒へ流入するNOの量に対して、NSR触媒によって酸化されるNOの量の割合)との関係を予め求めておけば、NSR触媒が劣化している場合に該NSR触媒によって酸化されるNOの量を特定することができる。
 三元触媒の温度とNSR触媒の温度は、第一温度センサ11と第二温度センサ12の測定値から各々特定することができる。三元触媒の温度と三元触媒のNO還元率との関係を予め求めておけば、三元触媒の温度が温度浄化ウインドから逸脱している場合に該三元触媒によって還元されるNOの量を特定することができる。同様に、NSR触媒の温度とNSR触媒のNO酸化率との関係を予め求めておけば、NSR触媒の温度が温度浄化ウインドから逸脱している場合に該NSR触媒によって酸化されるNOの量を特定することができる。
 三元触媒及びNSR触媒を通過する排気の流速は、エアフローメータ42の測定値及び機関回転速度から特定することができる。三元触媒を通過する排気の流速と三元触媒のNO還元率との関係を予め求めておけば、三元触媒を通過する排気の流速が大きい場合に該三元触媒によって還元されるNOの量を特定することができる。同様に、NSR触媒を通過する排気の流速とNSR触媒のNO酸化率との関係を予め求めておけば、NSR触媒を通過する排気の流速が高い場合に該NSR触媒によって酸化されるNOの量を特定することができる。
 一方、内燃機関1から排出される排気のNO比率は、混合気の空燃比、EGRガスの量、燃料噴射時期等をパラメータとして演算することができる。よって、内燃機関1から排出された排気のNO比率と、三元触媒のNO還元率と、NSR触媒のNO酸化率と、をパラメータとして、SCR触媒へ流入する排気のNO比率が演算されてもよい。その場合、内燃機関1から排出された排気のNO比率と、三元触媒のNO還元率と、NSR触媒のNO酸化率と、SCR触媒へ流入する排気のNO比率との関係を定めたマップ又は関数式がECU8のROMに記憶されるようにしてもよい。
 上記したように、三元触媒及びNSR触媒の浄化性能に応じて、内燃機関1から排出される排気のNO比率が変更されれば、三元触媒又はNSR触媒の少なくとも一方の浄化性能が低下している場合であっても、SCR触媒へ流入する排気のNO比率を所望の比率にすることが可能となる。
 また、第二触媒ケーシング51と第三触媒ケーシング52の間の排気管5にNOセンサが取り付けられる構成においては、内燃機関1から排出される排気のNO比率がNOセンサの測定値に基づいてフィードバック制御されてもよい。ここで、排気中に含まれるNOの量は、NO比率にかかわらず略一定である。よって、NO比率調整処理の実行前におけるNOセンサの測定値とNO比率調整処理の実行後におけるNOセンサの測定値との差は、NOの変化量に相当する。このような方法によってNOの変化量が特定されると、NO比率調整処理の実行後におけるNO比率も特定することができる。よって、NO比率調整処理実行後のNO比率と目標NO比率との差に基づいたフィードバック制御を行うことができる。このような方法によってフィードバック制御が実行されると、SCR触媒へ流入するNO比率をより確実に目標NO比率に近づけることができる。
 なお、SCR触媒の温度とSCR触媒のNO浄化率とSCR触媒へ流入する排気のNO比率との間には相関があるため、SCR触媒の温度とSCR触媒のNO浄化率とを引数とするマップや関数式を用いて、SCR触媒へ流入する排気のNO比率が求められてもよい。その際、SCR触媒の温度としては、第三温度センサ13の測定値を用いることができる。SCR触媒のNO浄化率は、第三触媒ケーシング52へ流入する排気に含まれるNOの量(NO流入量)及び第三触媒ケーシング52から流出する排気に含まれるNOの量(NO流出量)をパラメータとして演算することできる。NO流入量及びNO流出量は、第三触媒ケーシング52の前後の排気管5にNOセンサを取り付けることにより求めることができる。
 以下、本実施例におけるNO比率調整処理の実行手順について図7に沿って説明する。図7は、NO比率調整処理が実行される際にECU8が実行する処理ルーチンを示すフローチャートである。この処理ルーチンは、予めECU8のROMに記憶されており、ECU8(CPU)によって周期的に実行される。
 図7の処理ルーチンでは、ECU8は、先ずS101の処理において、内燃機関1の運転状態が前述したリーン運転領域に属しているか否かを判別する。S101の処理において否定判定された場合は、ECU8は、本ルーチンの実行を一旦終了する。S101の処理において肯定判定された場合は、ECU8は、S102の処理へ進む。
 S102の処理では、ECU8は、SCR触媒へ流入する排気のNO比率が目標NO比率Rno2trgより小さいか否かを判別する。ここでいう「目標NO比率Rno2trg」は、排気中に含まれるNOのうちNOが占める割合が1/2となるNO比率、好ましくは排気中に含まれるNOとNOの総量に対するNOの量の割合が1/2となるNO比率(NOの量とNOの量が同等になるNO比率)である。ただし、前述の(2)の還元反応が最も活発となるNO比率は、SCR触媒へ流入するHCの量、又はSCR触媒に付着しているHCの量によって変化する場合がある。たとえば、SCR触媒へ流入するHCの量、又はSCR触媒に付着しているHCの量が多くなると、前述の(2)の還元反応が最も活発になるNO比率は、1/2より大きくなる。よって、前記目標NO比率は、SCR触媒へ流入するHCの量やSCR触媒のHC付着量に応じて変更されてもよい。
 前記S102の処理において、ECU8は、三元触媒の浄化性能が適正であり、且つNSR触媒の浄化性能が低下していれば、NO比率Rno2が目標NO比率Rno2trgより小さいと判定してもよい。また、ECU8は、前述したように、内燃機関1から排出される排気のNO比率と、三元触媒のNO還元率と、NSR触媒のNO酸化率と、をパラメータとして、SCR触媒へ流入する排気のNO比率Rno2を演算し、そのNO比率Rno2と目標NO比率Rno2trgとを比較してもよい。さらに、ECU8は、SCR触媒の温度(第三温度センサ13の測定値)と、SCR触媒のNO浄化率と、をパラメータとして、SCR触媒へ流入する排気のNO比率Rno2を演算し、そのNO比率Rno2と目標NO比率Rno2trgとを比較してもよい。
 前記S102の処理において肯定判定された場合(Rno2<Rno2trg)は、ECU8は、S103の処理へ進む。S103の処理では、ECU8は、EGR弁71に異常が発生しているか否かを判別する。EGR弁71が異常であるか否かの判定は、別途の異常診断処理の診断結果に基づいて行われる。
 前記S103の処理において肯定判定された場合は、ECU8は、S104の処理へ進み、混合気の空燃比(A/F)を増加させることによりNO比率Rno2を増加させる。その場合、EGR弁71に異常が発生していても、NO比率Rno2を増加させることができる。
 前記S103の処理において否定判定された場合は、ECU8は、S105の処理へ進み、内燃機関1が過渡運転状態にあるか否かを判別する。S105の処理において肯定判定された場合は、ECU8は、S104の処理へ進み、混合気の空燃比(A/F)を増加させることによりNO比率Rno2を増加させる。その場合、SCR触媒へ流入する排気のNO比率Rno2を速やかに増加させることができる。その結果、内燃機関1が過渡運転状態にある場合であっても、SCR触媒のNO浄化性能を高めることができる。
 前記S105の処理において否定判定された場合は、ECU8は、S106の処理へ進み、三元触媒、NSR触媒、又はSCR触媒の少なくとも一つが高温状態にあるか否かを判別する。たとえば、ECU8は、三元触媒、NSR触媒、又はSCR触媒の少なくとも一つの温度が温度浄化ウインドの上限値又は該上限値から所定のマージンを減算した値より高ければ、三元触媒、NSR触媒、又は三元触媒の少なくとも一つが高温状態にあると判定する。なお、ECU8は、内燃機関1の運転状態が前述した図5の説明で述べた領域A1に属するときに、三元触媒、NSR触媒、又はSCR触媒の少なくとも一つが高温状態にあると判定してもよい。
 前記S106の処理において肯定判定された場合は、ECU8は、S104の処理へ進み、混合気の空燃比(A/F)を増加させることによりNO比率Rno2を増加させる。その場合、三元触媒、NSR触媒、又はSCR触媒の温度を過剰に上昇させることなく、SCR触媒のNO浄化性能を高めることができる。
 前記S106の処理において否定判定された場合は、ECU8は、S107の処理へ進み、EGRガス量を増加させることにより、NO比率Rno2を増加させる。その場合、NO発生量の増加やノッキングの発生等を抑制しつつ、SCR触媒のNO浄化性能を高めることが可能になる。
 なお、前記S105の処理と前記S106の処理の双方が実行される必要はなく、何れか一方の処理のみが実行されてもよい。すなわち、前記S105の処理又は前記S106の何れか一方の処理において肯定判定された場合に前記S104の処理が実行され、前記S105の処理又は前記S106の何れか一方の処理において否定判定された場合に前記S107の処理が実行されてもよい。
 また、前記S102の処理において否定判定された場合(Rno2≧Rno2trg)は、ECU8は、S108の処理へ進み、SCR触媒へ流入する排気のNO比率Rno2が目標NO比率Rno2trgより大きいか否かを判別する。S108の処理において否定判定された場合(Rno2=Rno2trg)は、ECU8は、本ルーチンの実行を一旦終了する。S108の処理において肯定判定された場合(Rno2>Rno2trg)は、ECU8は、S109の処理へ進む。
 S109の処理では、ECU8は、内燃機関1の運転状態が前述した図5の説明で述べた領域A3(ノック領域)に属するか否かを判別する。S109の処理において肯定判定された場合は、ECU8は、S110の処理へ進む。
 S110の処理では、ECU8は、混合気の空燃比(A/F)を小さくすることによりNO比率Rno2を減少させる。その場合、EGRガスが減量されないため、ノッキングの発生を抑制しつつ、SCR触媒のNO浄化性能を高めることが可能になる。
 前記S109の処理において否定判定された場合は、ECU8は、S111の処理へ進み、三元触媒、NSR触媒、又はSCR触媒の少なくとも一つが低温状態にあるか否かを判別する。たとえば、ECU8は、三元触媒、NSR触媒、又はSCR触媒の少なくとも一つの温度が温度浄化ウインドの下限値又は該下限値に所定のマージンを加算した値より低ければ、三元触媒、NSR触媒、又は三元触媒の少なくとも一つが高温状態にあると判定する。なお、ECU8は、内燃機関1の運転状態が前述した図5の説明で述べた領域A2に属するときに、三元触媒、NSR触媒、又はSCR触媒の少なくとも一つが低温状態にあると判定してもよい。
 前記S111の処理において肯定判定された場合は、ECU8は、S110の処理へ進み、混合気の空燃比(A/F)を小さくすることによりNO比率Rno2を減少させる。その場合、EGRガスが減量されないため、排気温度の低下を抑制しつつ、NO比率Rno2を減少させることができる。その結果、三元触媒、NSR触媒、又はSCR触媒の温度を過剰に低下させることなく、SCR触媒のNO浄化性能を高めることができる。
 前記S111の処理において否定判定された場合は、ECU8は、S112の処理へ進み、EGRガスを減量させることによりNO比率Rno2を減少させる。その場合、混合気の空燃比(A/F)が小さくならないため、内燃機関1の燃料消費量を増加させることなく、NO比率Rno2を減少させることができる。
 以上述べたようにECU8が図7の処理ルーチンを実行することにより、本発明に係わる制御手段が実現される。その結果、内燃機関1の運転状態や排気浄化装置の浄化性能に悪影響を与えることなく、排気浄化装置のNO浄化性能を高めることができる。
 <変形例1>
 前述した実施例では、NO比率が目標NO比率より小さい場合であって、EGR弁71が故障していない場合において、内燃機関1が過渡運転状態にあると(図7のS105の処理において肯定判定されると)、EGRガス量を増加させずに空燃比を増加させているが、EGRガス量を増加させつつ空燃比を増加させてもよい。たとえば、内燃機関1が比較的穏やかな加速運転状態にある場合は、内燃機関1の過渡運転期間中にEGRガス量の増加がNO比率に反映される可能性がある。よって、EGRガス量を増加させつつ空燃比を増加させることにより、NO発生量の増加やノッキングの発生を抑制する効果を見込みつつ、NO比率を高めることができる。
 <変形例2>
 前述した実施例では、NO比率が目標NO比率より小さい場合であって、EGR弁71が故障していない場合において、排気浄化装置が高温状態にあると(図7のS106の処理において肯定判定されると)、EGRガス量を変化させずに空燃比を増加させているが、EGRガス量を変化させつつ空燃比を増加させてもよい。
 具体的には、三元触媒、NSR触媒、又はSCR触媒の少なくとも一つの温度が温度浄化ウインドの上限値を超えている場合は、EGRガスを減少させつつ空燃比を増加させてもよい。その場合、三元触媒、NSR触媒、又はSCR触媒の温度を低下させつつ、NO比率を増加させることができる。
 三元触媒、NSR触媒、又はSCR触媒の少なくとも一つの温度が温度浄化ウインドの上限値以下であり、且つ上限値との差が比較的小さい場合は、EGRガスを増加させずに混合気の空燃比を増加させてもよい。その場合、三元触媒、NSR触媒、又はSCR触媒の温度上昇を抑えつつNO比率を増加させることができる。
 三元触媒、NSR触媒、又はSCR触媒の少なくとも一つの温度が温度浄化ウインドの上限値以下であり、且つ上限値との差が比較的大きい場合は、EGRガスをわずかに増加させつつ混合気の空燃比を増加させてもよい。その場合、三元触媒、NSR触媒、又はSCR触媒の過剰な温度上昇を抑えつつNO比率を増加させることができる。さらに、EGRガスの増加によるNO発生量の減少効果やノッキング抑制効果等を得ることもできる。
 <変形例3>
 前述した実施例では、NO比率が目標NO比率より小さく、且つEGR弁71が故障していない場合において、内燃機関1が過渡運転状態になく、且つ排気浄化装置が高温状態になければ(図7のS106の処理において否定判定されると)、空燃比を変更せずにEGRガス量を増加させているが、空燃比を変更しつつEGRガス量を増加させてもよい。
 具体的には、内燃機関1のトルク変動が許容範囲に収まる範囲内で空燃比を増加させつつEGRガス量を増加させてもよい。その場合、空燃比の増加による燃料消費量の低減効果を得つつ、NO比率を増加させることができる。
 <変形例4>
 前述した実施例では、NO比率が目標NO比率より大きい場合において、内燃機関1の運転状態がノック領域にあると(図7のS109の処理において肯定判定されると)、EGRガス量を変更せずに空燃比を減少させているが、EGRガス量を変更させつつ空燃比を減少させてもよい。
 具体的には、内燃機関1の運転状態がノック領域に属する場合において、機関負荷が比較的低い、又は気筒2内の雰囲気が比較的低温であれば、EGRガス量をわずかに減少させつつ、空燃比を減少させてもよい。その場合、空燃比の減少に伴う燃料消費量の増加を少なく抑えつつ、NO比率を小さくすることができる。
 また、内燃機関1の運転状態がノック領域に属する場合において、機関負荷が比較的高い、又は気筒2内の雰囲気が比較的高温であれば、EGRガス量を増加させつつ、空燃比を減少させてもよい。その場合、ノッキングの発生をより確実に抑制しつつ、NO比率を小さくすることができる。
 <変形例5>
 前述した実施例では、NO比率が目標NO比率より大きく、且つ内燃機関1の運転状態がノック領域に属さない場合において、排気浄化装置が低温状態にあると(図7のS111の処理において否定判定されると)、空燃比を変更せずにEGRガス量を減少させているが、空燃比を変更させつつEGRガス量を減少させてもよい。
 具体的には、三元触媒、NSR触媒、又はSCR触媒の少なくとも一つの温度が温度浄化ウインドの下限値を下回っている場合は、空燃比を減少させつつEGRガス量を増加させてもよい。その場合、三元触媒、NSR触媒、又はSCR触媒の温度を上昇させつつ、NO比率を減少させることができる。
 三元触媒、NSR触媒、又はSCR触媒の少なくとも一つの温度が温度浄化ウインドの下限値以上である場合は、空燃比をわずかに減少させつつEGRガス量を増加させてもよい。その場合、三元触媒、NSR触媒、又はSCR触媒の温度低下を抑えつつNO比率を減少させることができる。
 三元触媒、NSR触媒、又はSCR触媒の少なくとも一つの温度が温度浄化ウインドの下限値以上であり、且つ下限値との差が比較的大きい場合は、空燃比を減少させずにEGRガス量を増加させてもよい。その場合、三元触媒、NSR触媒、又はSCR触媒の温度低下、及び空燃比の減少に伴う燃料消費量の増加を抑制しつつ、NO比率を減少させることができる。
 ここで、前述した変形例1乃至5は、適宜組み合わせることができる。その場合、燃料消費量の増加、ノッキングの発生、運転者が覚える違和感、又はエミッションの悪化等を適当に抑制しつつ、NO比率を調整することが可能になる。
 なお、前述した本実施例においては、第三触媒ケーシング52の上流に第一触媒ケーシング50と第二触媒ケーシング4が配置される例について述べたが、第一触媒ケーシング50又は第二触媒ケーシング4の何れか一方のみが配置されていてもよく、或いは第一触媒ケーシング50及び第二触媒ケーシング4が配置されていなくてもよい。
1     内燃機関
2     気筒
3     燃料噴射弁
4     吸気管
5     排気管
6     ターボチャージャ
7     EGR装置
8     ECU
9     空燃比センサ
10   酸素濃度センサ
11   第一温度センサ
12   第二温度センサ
13   第三温度センサ
16   アクセルペダル
40   吸気絞り弁
50   第一触媒ケーシング
51   第二触媒ケーシング
52   第三触媒ケーシング
60   コンプレッサ
61   タービン
70   EGR通路
71   EGR弁
72   EGRクーラ

Claims (4)

  1.  内燃機関の排気通路に配置され、選択還元型触媒を含む排気浄化装置と、
     排気通路を流れる排気の一部をEGRガスとして吸気通路へ還流させるEGR装置と、
     排気中に含まれるNOのうち二酸化窒素が占める割合であるNO比率を増加させる場合に、内燃機関で燃焼される混合気の空燃比を増加させる処理、又はEGR装置によって還流されるEGRガスを増加させる処理の少なくとも一方を実行する処理手段と、
     排気浄化装置の温度が高い場合は低い場合に比べ、空燃比の増加量が大きくなるとともにEGRガスの増加量が少なくなるように前記処理手段を制御する制御手段と、
    を備える内燃機関の排気浄化システム。
  2.  内燃機関の排気通路に配置され、選択還元型触媒を含む排気浄化装置と、
     排気通路を流れる排気の一部をEGRガスとして吸気通路へ還流させるEGR装置と、
     排気中に含まれるNOのうち二酸化窒素が占める割合であるNO比率を増加させる場合に、内燃機関で燃焼される混合気の空燃比を増加させる処理、又は内燃機関の排気通路から吸気通路へ還流されるEGRガスを増加させる処理の少なくとも一方を実行する処理手段と、
     内燃機関が過渡運転状態にある場合は、少なくとも空燃比を増加させ、且つ過渡運転状態にない場合に比して空燃比の増加量が大きくなるように前記処理手段を制御する制御手段と、
    を備える内燃機関の排気浄化システム。
  3.  請求項1又は2において、前記排気浄化装置は、選択還元型触媒より上流に配置される三元触媒を含み、
     前記制御手段は、前記三元触媒の浄化能力が低い場合は高い場合に比べ、NO比率の増加量が小さくなるように前記処理手段を制御する内燃機関の排気浄化システム。
  4.  請求項1乃至3の何れか1項において、前記排気浄化装置は、前記選択還元型触媒より上流に配置される吸蔵還元型触媒を含み、
     前記制御手段は、前記吸蔵還元型触媒の浄化能力が低い場合は高い場合に比べ、NO比率の増加量が大きくなるように前記処理手段を制御する内燃機関の排気浄化システム。
PCT/JP2013/068405 2013-07-04 2013-07-04 内燃機関の排気浄化システム WO2015001647A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2013/068405 WO2015001647A1 (ja) 2013-07-04 2013-07-04 内燃機関の排気浄化システム
CN201380077994.0A CN105378242B (zh) 2013-07-04 2013-07-04 内燃机的排气净化系统
US14/902,133 US10047689B2 (en) 2013-07-04 2013-07-04 Exhaust gas purification system of internal combustion engine
JP2015524975A JP6149930B2 (ja) 2013-07-04 2013-07-04 内燃機関の排気浄化システム
EP13888582.7A EP3018314B1 (en) 2013-07-04 2013-07-04 Exhaust gas purification system of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/068405 WO2015001647A1 (ja) 2013-07-04 2013-07-04 内燃機関の排気浄化システム

Publications (1)

Publication Number Publication Date
WO2015001647A1 true WO2015001647A1 (ja) 2015-01-08

Family

ID=52143266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/068405 WO2015001647A1 (ja) 2013-07-04 2013-07-04 内燃機関の排気浄化システム

Country Status (5)

Country Link
US (1) US10047689B2 (ja)
EP (1) EP3018314B1 (ja)
JP (1) JP6149930B2 (ja)
CN (1) CN105378242B (ja)
WO (1) WO2015001647A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3103993A1 (en) * 2015-06-09 2016-12-14 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
JP2016211437A (ja) * 2015-05-08 2016-12-15 トヨタ自動車株式会社 内燃機関の排気浄化装置
KR20170104599A (ko) * 2015-02-05 2017-09-15 만 디젤 앤 터보 에스이 내연 기관 및 그 작동 방법
KR101836260B1 (ko) 2016-09-09 2018-03-08 현대자동차 주식회사 자동차의 배기가스 정화장치

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012056515A1 (ja) * 2010-10-26 2012-05-03 トヨタ自動車 株式会社 内燃機関の制御装置
KR101807448B1 (ko) * 2013-12-20 2017-12-08 도요타지도샤가부시키가이샤 내연 기관의 배기 정화 장치
JP6252450B2 (ja) * 2014-11-28 2017-12-27 トヨタ自動車株式会社 内燃機関の制御装置
JP2016133064A (ja) * 2015-01-20 2016-07-25 いすゞ自動車株式会社 排気浄化システム
JP2016133096A (ja) * 2015-01-22 2016-07-25 いすゞ自動車株式会社 排気浄化システム
JP6544388B2 (ja) * 2017-06-23 2019-07-17 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP7107080B2 (ja) * 2018-08-07 2022-07-27 トヨタ自動車株式会社 内燃機関の制御装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387915U (ja) 1989-12-27 1991-09-09
JPH08260949A (ja) 1995-03-28 1996-10-08 Toyota Motor Corp NOx 吸収剤の劣化検出装置
JP2000064877A (ja) * 1998-08-13 2000-02-29 Mitsubishi Motors Corp 内燃機関の排気浄化装置
JP2000110615A (ja) * 1998-10-08 2000-04-18 Mitsubishi Motors Corp 希薄燃焼内燃機関
JP2008231950A (ja) 2007-03-16 2008-10-02 Toyota Motor Corp 内燃機関の排気浄化装置
JP2009097471A (ja) * 2007-10-18 2009-05-07 Toyota Motor Corp 内燃機関の排気浄化システム
JP2009264285A (ja) * 2008-04-25 2009-11-12 Toyota Motor Corp 内燃機関の排気ガス浄化装置
JP2010138748A (ja) * 2008-12-10 2010-06-24 Nissan Motor Co Ltd 内燃機関の排気浄化装置
WO2011027469A1 (ja) * 2009-09-01 2011-03-10 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2012154231A (ja) * 2011-01-25 2012-08-16 Honda Motor Co Ltd 内燃機関の排気浄化システム
JP2012167549A (ja) 2011-02-09 2012-09-06 Honda Motor Co Ltd 内燃機関の排気浄化システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7332135B2 (en) * 2002-10-22 2008-02-19 Ford Global Technologies, Llc Catalyst system for the reduction of NOx and NH3 emissions
US20060251548A1 (en) * 2005-05-06 2006-11-09 Willey Ray L Exhaust aftertreatment device
FR2936011B1 (fr) * 2008-09-15 2012-06-15 Inst Francais Du Petrole Installation de traitement des polluants contenus dans des gaz d'echappement d'un moteur a combustion interne et procede utilisant une telle installation
JP5136654B2 (ja) * 2009-11-11 2013-02-06 トヨタ自動車株式会社 内燃機関の制御装置
JP2012087673A (ja) * 2010-10-19 2012-05-10 Toyota Motor Corp 内燃機関の制御装置
WO2012056515A1 (ja) * 2010-10-26 2012-05-03 トヨタ自動車 株式会社 内燃機関の制御装置
US8627804B2 (en) * 2010-11-16 2014-01-14 GM Global Technology Operations LLC Transient control strategy in spark-assisted HCCI combustion mode

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0387915U (ja) 1989-12-27 1991-09-09
JPH08260949A (ja) 1995-03-28 1996-10-08 Toyota Motor Corp NOx 吸収剤の劣化検出装置
JP2000064877A (ja) * 1998-08-13 2000-02-29 Mitsubishi Motors Corp 内燃機関の排気浄化装置
JP2000110615A (ja) * 1998-10-08 2000-04-18 Mitsubishi Motors Corp 希薄燃焼内燃機関
JP2008231950A (ja) 2007-03-16 2008-10-02 Toyota Motor Corp 内燃機関の排気浄化装置
JP2009097471A (ja) * 2007-10-18 2009-05-07 Toyota Motor Corp 内燃機関の排気浄化システム
JP2009264285A (ja) * 2008-04-25 2009-11-12 Toyota Motor Corp 内燃機関の排気ガス浄化装置
JP2010138748A (ja) * 2008-12-10 2010-06-24 Nissan Motor Co Ltd 内燃機関の排気浄化装置
WO2011027469A1 (ja) * 2009-09-01 2011-03-10 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2012154231A (ja) * 2011-01-25 2012-08-16 Honda Motor Co Ltd 内燃機関の排気浄化システム
JP2012167549A (ja) 2011-02-09 2012-09-06 Honda Motor Co Ltd 内燃機関の排気浄化システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3018314A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170104599A (ko) * 2015-02-05 2017-09-15 만 디젤 앤 터보 에스이 내연 기관 및 그 작동 방법
JP2018505985A (ja) * 2015-02-05 2018-03-01 マン・ディーゼル・アンド・ターボ・エスイー 内燃機関及び内燃機関の運転方法
KR101951137B1 (ko) * 2015-02-05 2019-02-21 만 에너지 솔루션즈 에스이 내연 기관 및 그 작동 방법
US10876449B2 (en) 2015-02-05 2020-12-29 Man Energy Solutions Se Internal combustion engine and method for operating same
JP2016211437A (ja) * 2015-05-08 2016-12-15 トヨタ自動車株式会社 内燃機関の排気浄化装置
EP3103993A1 (en) * 2015-06-09 2016-12-14 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
CN106246368A (zh) * 2015-06-09 2016-12-21 丰田自动车株式会社 内燃机的控制装置
CN106246368B (zh) * 2015-06-09 2019-04-05 丰田自动车株式会社 内燃机的控制装置
KR101836260B1 (ko) 2016-09-09 2018-03-08 현대자동차 주식회사 자동차의 배기가스 정화장치

Also Published As

Publication number Publication date
US10047689B2 (en) 2018-08-14
US20160222896A1 (en) 2016-08-04
EP3018314A1 (en) 2016-05-11
JPWO2015001647A1 (ja) 2017-02-23
JP6149930B2 (ja) 2017-06-21
CN105378242A (zh) 2016-03-02
CN105378242B (zh) 2018-01-02
EP3018314A4 (en) 2016-07-06
EP3018314B1 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
JP6149930B2 (ja) 内燃機関の排気浄化システム
JP4438828B2 (ja) 内燃機関の排気浄化装置
JP5472406B2 (ja) 内燃機関の制御システム
JP5907269B2 (ja) 内燃機関の排気浄化装置
JPWO2013175604A1 (ja) 内燃機関の排気浄化装置
JPWO2014192846A1 (ja) 排気浄化装置の異常診断装置
JP5397542B2 (ja) 内燃機関の排気浄化システム
JP2007162489A (ja) 過給機付き内燃機関の制御装置
JP5834906B2 (ja) 内燃機関の排気浄化装置
JP5716687B2 (ja) 内燃機関の排気浄化装置
JP2013144938A (ja) 内燃機関の排気浄化装置
JP5787083B2 (ja) 内燃機関の排気浄化装置
US20190293617A1 (en) Method for estimating exhaust gas state of engine, method for determining abnormality of catalyst, and catalyst abnormality determination device for an engine
EP2677150A2 (en) Exhaust gas control apparatus of internal combustion engine
JP5834978B2 (ja) 内燃機関の排気浄化装置
US20190292961A1 (en) Method for estimating exhaust gas state of engine, method for determining abnormality of catalyst, and catalyst abnormality determination device for an engine
JP2008038622A (ja) 内燃機関の排気浄化装置、及び方法
JP2009264203A (ja) 内燃機関の排気装置
JP4893493B2 (ja) 内燃機関の排気浄化装置
JP2015040480A (ja) 内燃機関の添加剤供給装置
JP7408522B2 (ja) エンジンシステム
JP7155566B2 (ja) エンジンの触媒異常判定方法、並びに、エンジンの触媒異常判定装置
JP7147214B2 (ja) エンジンの排気ガス状態推定方法及び触媒異常判定方法、並びに、エンジンの触媒異常判定装置
JP2023116239A (ja) 内燃機関の排気浄化装置
JP6453702B2 (ja) 排気浄化機構の異常診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13888582

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015524975

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013888582

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14902133

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE